WorldWideScience

Sample records for acid neural cell

  1. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.; Mahoney, Melissa J.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cel...

  2. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  3. Dehydroepiandroesteron Accompanied Retinoic Acid Enhances Differentiation of P19 Embryonal Stem Cells into Neural Cells

    Hossein Azizi

    2009-01-01

    Full Text Available Objective: Dehydroepiandroesteron (DHEA is a neurosteroid with potential effect on neurogenesis,neuronal survival and proliferation of neural progenitor cells. However there is nodirect evidence for its biological effect during the differentiation of stem cell-derived neurons.The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblastsafter exposure to retinoic acid (RA. This study was initiated to assess the effect of DHEA onneural cells derived from p19 embryonal carcinoma stem cells.Materials and Methods: P19 cells were suspended in dulbecco’s modified eagle’s medium(DMED containing fetal bovine serum (FBS in bacterial-grade petri dishes in the presenceof RA, DHEA and RA+DHEA for 6 days. Then cells were trypsinized for dispersion and replacedin poly L- lysine (10μg/ml coated tissue culture dishes without RA and DHEA for 4days. The expression of neural markers Map-2, Tau, beta-tubulin III- clone Juj (Tuj1, astrocytemarker GFAP and the percent of neurotransmitters tyrosin hydroxylase, glutamate, serotoninand actyl cholin transferase were evaluated by flowcytometry, immunocytochemistryand RT-PCR analysis.Results: Flowcytometry analysis showed that about 63 ± 3% of the cells express neuronalmarker Tuj1 and about 5 ± 1% of the cells express tyrosine hydroxylase neurotransmittersin RA treated groups. However when RA and DHEA were added to the culture medium, Tuj1expression increased to about 74 ± 1% and tyrosine hydroxylase expression increased to23 ± 2%.Conclusion: Results showed that DHEA accompanied RA increased the number of Tuj1 anddopaminergic neurons that were derived from p19 embryonal carcinoma stem cells.

  4. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    Gao J

    2013-07-01

    Full Text Available Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The current study aims to determine whether needle insertion into intact rat spinal cords creates a hypoxic environment that is prone to lipid peroxidation damage upon reperfusion, and whether an antioxidant protects human neural stem cells (hNSCs both in vitro and post-transplantation into rat spinal cords. We show here that a single needle injection creates a hypoxic environment within the rat spinal cord that peaks at approximately 12 hours before reperfusion occurs. Lipid peroxidation damage at the transplantation site is evident by 48 hours post-needle insertion. In an in vitro model, hypoxia-reperfusion results in apoptotic death of hNSCs. Pretreatment with the antioxidant, α-lipoic acid, protects hNSCs against hypoxia-reperfusion injury and oxidative stress–mediated cell death. Increasing glutathione, but not Akt signaling, contributes to the protective effect of lipoic acid. Pretreating hNSCs with lipoic acid also increases the cell survival rate 1 month post-transplantation. Further investigation is warranted to develop improved techniques to maximize the survival of transplanted stem cells. Keywords: neural stem cell, transplantation, hypoxia-reperfusion, antioxidant, cell survival, lipoic acid

  5. Optimal time point for the transplantation of neural stem cells induced to differentiate with retinoic acid

    Shuxin Wang; Dengji Pan; Na Liu; Yongming Liu; Juan Chen; Houjie Ni; Zhouping Tang

    2011-01-01

    Previous studies have demonstrated that differentiated neural stem cells (NSCs) are more suitable for transplantation than non-differentiated NSCs. In this study, NSCs were expanded in vitro for two passages, induced with retinoic acid to differentiate, and harvested between 1-6 days later. They were subsequently cultured in artificial cerebrospinal fluid for an additional 3 days, during which their growth and morphology was monitored. NSCs induced for 4 days exhibited a peak rate of cells differentiating into neurons and robust growth. Our results indicate that the optimal time point for transplanting NSCs is following a 4-day period of induced differentiation.

  6. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  7. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  8. Omega-3 Polyunsaturated Fatty Acids Protect Neural Progenitor Cells against Oxidative Injury

    Qiang Liu

    2014-04-01

    Full Text Available The omega-3 polyunsaturated fatty acids (ω-3 PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, derived mainly from fish oil, play important roles in brain development and neuroplasticity. Here, we reported that application of ω-3 PUFAs significantly protected mouse neural progenitor cells (NPCs against H2O2-induced oxidative injury. We also isolated NPCs from transgenic mice expressing the Caenorhabditis elegans fat-1 gene. The fat-1 gene, which is absent in mammals, can add a double bond into an unsaturated fatty acid hydrocarbon chain and convert ω-6 to ω-3 fatty acids. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining showed that a marked decrease in apoptotic cells was found in fat-1 NPCs after oxidative injury with H2O2 as compared with wild-type NPCs. Quantitative RT-PCR and Western blot analysis demonstrated a much higher expression of nuclear factor erythroid 2-related factor 2 (Nrf2, a master transcriptional factor for antioxidant genes, in fat-1 NPCs. The results of the study provide evidence that ω-3 PUFAs resist oxidative injury to NPCs.

  9. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  10. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  11. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution.

    Crawford, Michael A; Broadhurst, C Leigh; Guest, Martin; Nagar, Atulya; Wang, Yiqun; Ghebremeskel, Kebreab; Schmidt, Walter F

    2013-01-01

    Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence. PMID:23206328

  12. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.

    Sudwilai, Thitima; Ng, Jun Jye; Boonkrai, Chatikorn; Israsena, Nipan; Chuangchote, Surawut; Supaphol, Pitt

    2014-01-01

    Neuronal activities play critical roles in both neurogenesis and neural regeneration. In that sense, electrically conductive and biocompatible biomaterial scaffolds can be applied in various applications of neural tissue engineering. In this study, we fabricated a novel biomaterial for neural tissue engineering applications by coating electrospun poly(lactic acid) (PLA) nanofibers with a conducting polymer, polypyrole (PPy), via admicellar polymerization. Optimal conditions for polymerization and preparation of PPy-coated electrospun PLA nanofibers were obtained by comparing results from scanning electron microscopy, X-ray photoelectron spectrometer, and surface conductivity tests. In vitro cell culture experiments showed that PPy-coated electrospun PLA fibrous scaffold is not toxic. The scaffold could support attachment and migration of neural progenitor cells. Neurons derived from progenitor exhibited long neurite outgrowth under electrical stimulation. Our study concluded that PPy-coated electrospun PLA fibers had a good biocompatibility with neural progenitor cells and may serve as a promising material for controlling progenitor cell behaviors and enhancing neural repair. PMID:24933469

  13. Synergistic Effect of Schwann Cells and Retinoic Acid on Differentiation and Synaptogenesis of Hippocampal Neural Stem Cells in vitro

    XUE-BAO ZHANG; YUAN-SHAN ZENG; WEI ZHANG; YA-YUN CHEN; WEI ZHANG; YI XIONG; SUI-JUN CHEN

    2006-01-01

    Objective To investigate the synergistic effect of Schwann cells (YCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats. Methods The classical method for 2×2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs,and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis. Results After NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95. Conclusion SCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.

  14. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  15. Subcellular distribution of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells within subventricular zone of adult rats

    Zhining Li; Wenlong Lü; Hongyan Dong; Hongbin Fan; Ruiguo Dong; Tiejun Xu

    2011-01-01

    The subcellular localization of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immunogold-silver double staining. Results confirmed the presence of neural stem cells in the subventricular zone, which is a key neurogenic region in the central nervous system of adult mammals. The expression of N-methyl-D-aspartic acid receptor subunit 1 was higher than that of nestin and mainly distributed in the cell membrane, cytoplasm, rough endoplasmic reticulum and Golgi complex of neural stem cells.

  16. Membrane properties of neural stem cells after in vitro induced neurogenesis by retinoic acid

    Jelitai, M.; Anděrová, Miroslava; Marko, K.; Madarasz, E.; Syková, Eva

    Praha, 2003. s. 37. ISBN 80-239-0887-1. [IBRO World Congress of Neuroscience /6./. 10.07.2003-15.07.2003, Praha] R&D Projects: GA ČR GA305/02/1528; GA ČR GA305/03/1172; GA MŠk LN00A065 Institutional research plan: CEZ:MSM 111300004 Keywords : neural stem cells Subject RIV: FH - Neurology

  17. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  18. Enzymatic Depletion of the Polysialic Acid Moiety Associated with the Neural Cell Adhesion Molecule Inhibits Antidepressant Efficacy.

    Wainwright, Steven R; Barha, Cindy K; Hamson, Dwayne K; Epp, Jonathan R; Chow, Carmen; Lieblich, Stephanie E; Rutishauser, Urs; Galea, Liisa Am

    2016-05-01

    Antidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) functions broadly, serving to mediate synaptic plasticity, neurogenesis, neurotrophic factor signaling, and inflammatory signaling throughout the brain; all of which are associated with the pathophysiology and treatment of depression. Moreover, the expression of PSA-NCAM is reduced by depression, and conversely enhanced by antidepressant treatment, particularly within the hippocampus. Here we demonstrate that selectively cleaving the polysialic acid moiety, using the bacteriophage-derived enzyme endoneuraminidase N, completely inhibits the antidepressant efficacy of the selective-serotonin reuptake inhibitor fluoxetine (FLX) in a chronic unpredictable stress model of depression. We also observe a corresponding attenuation of FLX-induced hippocampal neuroplasticity, including decreased hippocampal neurogenesis, synaptic density, and neural activation. These data indicate that PSA-NCAM-mediated neuroplasticity is necessary for antidepressant action; therefore PSA-NCAM represents an interesting, and novel, target for pharmacotherapy. PMID:26530284

  19. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  20. Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid - inhibitory effect of serum

    Pacherník, J.; Bryja, Vítězslav; Ešner, M.; Kubala, Lukáš; Dvořák, Petr; Hampl, Aleš

    2005-01-01

    Roč. 54, - (2005), s. 115-122. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP524/03/P171; GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z5039906 Keywords : neural differentiation Subject RIV: FH - Neurology Impact factor: 1.806, year: 2005

  1. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    Wu, Ping

    2013-01-01

    Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The curren...

  2. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. PMID:27044662

  3. Retinoic acid enhances expression of neural specific genes in Sca-1+ cells of mouse fetal liver through activating protein kinase C

    Gexiu Liu; Yuan Zhang; Dongmei He

    2006-01-01

    BACKGROUND: Interstitial stem cell is characterized by multiple differentiations,and retinoic acid (RA) can induce differentiation of stromal cells into nerve tissue cells in fetal liver of mice, so, its signal transduction pathway should be discussed to trigger differentiation.OBJECTIVE: To study the effect of RA on expression of neural specific gene and its signal transduction in fetal liver of mice.DESIGN: Paired controlled study on the basis of cell.SETTING: Institute of Hematology, Medical College of Jinan University.MATERIALS: The experiment was completed in the Institute of Hematology, Medical College of Jinan University from April to December 2005. C57BL/6 mice, of clean grade, aged 8-10 weeks, weighting 20-35 g,10 females and 4 males, were selected in this study.METHODS: Sca-1+ cells in fetal liver were prepared with MACS kit and cultured with DMEM + 10% fetal bovine serum (FBS). On the fourth day, it was added with or without protein kinase C (PKC) inhibitor chelerythrine chloride (3 μmol/L) and 5×10-7 mol/L RA for 24 hours, and then incubated in serum-free medium for 5 days. Expressions of genes were assayed by Western blotting and semi-quantitative RT-PCR.MAIN OUTCOME MEASURES: Expression of neural specific gene NF-L, NF-H, BF-1 and TH.RESULTS: Expression of neural specific gene NF-L, NF-H, BF-1 and TH was significantly increased after treatment with RA and they were increased 5.06, 5.15, 4.63 and 3.33 times, respectively. However, chelerythrine chloride could inhibit expression of neural specific gene NF-L, NF-H, BF-1 and TH induced by RA.CONCLUSION: RA can promote the expression of neural specific genes in Sca-1+ cells of fetal liver, and its pathway may be related to PKC.

  4. Neural stem cell derived tumourigenesis

    Francesca Froldi; Milán Szuperák; Cheng, Louise Y.

    2015-01-01

    In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we wil...

  5. Flexibility of neural stem cells

    EumorphiaRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  6. The neural cell adhesion molecule

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  7. Expression of Hyaluronan and the Hyaluronan-Binding Proteoglycans Neurocan, Aggrecan and Versican by Neural Stem Cells and Neural Cells Derived from Embryonic Stem Cells

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-01-01

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans agg...

  8. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  9. Retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells is effected by modulation of intracellular redox state

    Konopka, Roman; Pacherník, J.; Lojek, Antonín; Kubala, Lukáš

    Brno, 2007. s. 110-111. ISBN 978-80-239-9591-6. [Analytical Cytometry IV. 23.06.2007-26.06.2007, Brno] R&D Projects: GA ČR(CZ) GA524/06/1197 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : retinoic acid * NADPH oxidase * embryonal carcinoma cells Subject RIV: BO - Biophysics

  10. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.

    Piraino, P; Ricciardi, A; Salzano, G; Zotta, T; Parente, E

    2006-08-01

    Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. PMID:16480784

  11. Neural Tube Defects, Folic Acid and Methylation

    Henk J. Blom

    2013-09-01

    Full Text Available Neural tube defects (NTDs are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.

  12. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis.

    Jeong, Claire G; Francisco, Aubrey T; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L; Setton, Lori A

    2014-08-01

    Hyaluronic acid (HA)-poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular "outcomes" of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and annulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70 to 489kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower-molecular-weight HA, with evidence of higher sulfated glycosaminoglycan production also upon lower-HA-molecular-weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters. PMID:24859415

  13. Producing Insulin from Neural Cells

    Yuichi Hori; Xueying Gu; Xiaodong Xie; Kim, Seung K.

    2005-01-01

    BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals t...

  14. Neural Stem Cells and Glioblastoma

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neura...

  15. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  16. Neural differentiation of human embryonic stem cells

    Dhara, Sujoy K.; Stice, Steven L.

    2008-01-01

    Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the integration of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to new and novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special...

  17. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway

    Arenas Ernest

    2008-12-01

    Full Text Available Abstract Background Valproic acid (VPA, a commonly used mood stabilizer that promotes neuronal differentiation, regulates multiple signaling pathways involving extracellular signal-regulated kinase (ERK and glycogen synthase kinase3β (GSK3β. However, the mechanism by which VPA promotes differentiation is not understood. Results We report here that 1 mM VPA simultaneously induces differentiation and reduces proliferation of basic fibroblast growth factor (bFGF-treated embryonic day 14 (E14 rat cerebral cortex neural progenitor cells (NPCs. The effects of VPA on the regulation of differentiation and inhibition of proliferation occur via the ERK-p21Cip/WAF1 pathway. These effects, however, are not mediated by the pathway involving the epidermal growth factor receptor (EGFR but via the pathway which stabilizes Ras through β-catenin signaling. Stimulation of differentiation and inhibition of proliferation in NPCs by VPA occur independently and the β-catenin-Ras-ERK-p21Cip/WAF1 pathway is involved in both processes. The independent regulation of differentiation and proliferation in NPCs by VPA was also demonstrated in vivo in the cerebral cortex of developing rat embryos. Conclusion We propose that this mechanism of VPA action may contribute to an explanation of its anti-tumor and neuroprotective effects, as well as elucidate its role in the independent regulation of differentiation and inhibition of proliferation in the cerebral cortex of developing rat embryos.

  18. Differentiation of chicken embryonic germ cells into neural stem cells in vitro

    Wang, Juan; Pan, Xiao-hong; Du, Li-Xin

    2008-01-01

    To explore the feasibility of inducing chicken embryonic germ cells into neural stem cells in vitro. Embryoid bodies (EB) induced by retinoic acid (RA), were selected in neural stem cell-defined medium for 7 days, and the resulting morphological changes were observed. The selected cells were stained immunocytochemically with anti-nestin antibodies, and their expansion and differentiation were analyzed. Large amounts of neurosphere-like colonies were derived from embryoid bodies in the selecte...

  19. Neonatal Maternal Separation Alters the Capacity of Adult Neural Precursor Cells to Differentiate into Neurons Via Methylation of Retinoic Acid Receptor Gene Promoter

    Boku, Shuken; Toda, Hiroyuki; Nakagawa, Shin; Kato, Akiko; Inoue, Takeshi; Koyama, Tsukasa; Hiroi, Noboru; Kusumi, Ichiro

    2015-01-01

    BACKGROUND: Early life stress is thought to contribute to psychiatric disorders, but the precise mechanisms underlying this link are poorly understood. As neonatal stress decreases adult hippocampal neurogenesis, which, in turn, functionally contributes to many behavioral phenotypes relevant to psychiatric disorders, we examined how in vivo neonatal maternal separation (NMS) impacts the capacity of adult hippocampal neural precursor cells via epigenetic alterations in vitro. METHODS: Rat pups...

  20. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  1. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  2. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  3. Immunological control of adult neural stem cells

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many patholog...

  4. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  5. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL

    Han Seol

    2011-07-01

    Full Text Available Abstract Background At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis. Apoptosis occurs in not only neuron but also in NPCs and neuroblast. When growth and survival signals such as EGF or LIF are removed, apoptosis is activated as well as the induction of differentiation. To investigate the regulation of cell death during developmental stage, it is essential to investigate the regulation of apoptosis of NPCs. Methods Neural progenitor cells were cultured from E14 embryonic brains of Sprague-Dawley rats. For in vivo VPA animal model, pregnant rats were treated with VPA (400 mg/kg S.C. diluted with normal saline at E12. To analyze the cell death, we performed PI staining and PARP and caspase-3 cleavage assay. Expression level of proteins was investigated by Western blot and immunocytochemical assays. The level of mRNA expression was investigated by RT-PCR. Interaction of Bcl-XL gene promoter and NF-κB p65 was investigated by ChIP assay. Results In this study, FACS analysis, PI staining and PARP and caspase-3 cleavage assay showed that VPA protects cultured NPCs from cell death after growth factor withdrawal both in basal and staurosporine- or hydrogen peroxide-stimulated conditions. The protective effect of prenatally injected VPA was also observed in E16 embryonic brain. Treatment of VPA decreased the level of IκBα and increased the nuclear translocation of NF-κB, which subsequently enhanced expression of anti-apoptotic protein Bcl-XL. Conclusion To the best of our knowledge, this is the first report to indicate the reduced death of NPCs by VPA at developmentally

  6. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  7. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  8. Neural repair with pluripotent stem cells.

    Döbrössy, Máté; Pruszak, Jan

    2013-01-01

    The nervous system is characterized by its complex network of highly specialized cells that enable us to perceive stimuli from the outside world and react accordingly. The computational integration enabled by these networks remains to be elucidated, but appropriate sensory input, processing, and motor control are certainly essential for survival. Consequently, loss of nervous tissue due to injury or disease represents a considerable biomedical challenge. Stem cell research offers the promise to provide cells for nervous system repair to replace lost and damaged neural tissue and alleviate disease. We provide a protocol-based chapter on fundamental principles and procedures of pluripotent stem cell (PSC) differentiation and neural transplantation. Rather than detailed methodological step-by-step descriptions of these procedures, we provide an overview and highlight the most critical aspects and key steps of PSC neural induction, subtype specification in different in vitro systems, as well as neural cell transplantation to the central nervous system. We conclude with a summary of suitable readout methods including in vitro phenotypic analysis, histology, and functional analysis in vivo. PMID:24029933

  9. Study of neural cells on organic semiconductor ultra thin films

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  10. Clinical translation of human neural stem cells.

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  11. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Emmanuelle Gruz-Gibelli; Natacha Chessel; Clélia Allioux; Pascale Marin; Françoise Piotton; Geneviève Leuba; Herrmann, François R.; Armand Savioz

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigat...

  12. Differentiation state determines neural effects on microvascular endothelial cells

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  13. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  14. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation. PMID:12186855

  15. Cells in Multidimensional Recurrent Neural Networks

    Leifert, G.; Strauß, T.; Grüning, T; Labahn, R.

    2014-01-01

    The transcription of handwritten text on images is one task in machine learning and one solution to solve it is using multi-dimensional recurrent neural networks (MDRNN) with connectionist temporal classification (CTC). The RNNs can contain special units, the long short-term memory (LSTM) cells. They are able to learn long term dependencies but they get unstable when the dimension is chosen greater than one. We defined some useful and necessary properties for the one-dimensional LSTM cell and...

  16. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  17. Radiation response of rodent neural precursor cells

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  18. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Emmanuelle Gruz-Gibelli

    2016-01-01

    Full Text Available The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer’s disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs in aging and Alzheimer’s disease. All-trans retinoic acid (RA, a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  19. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  20. Acid distribution in phosphoric acid fuel cells

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  1. Pipeline for Tracking Neural Progenitor Cells

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter;

    2012-01-01

    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play a...... key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  2. Proteomics of neural stem cells

    Skalníková, Helena; Vodička, Petr; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 5, č. 2 (2008), s. 175-186. ISSN 1478-9450 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : cell-based regnerative and reparative therapy * conditioned media * differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.848, year: 2008

  3. Aging differentially affects male and female neural stem cell neurogenic properties

    Jay Waldron

    2010-09-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Montreal, Quebec, CanadaPurpose: Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies.Methods: Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting.Conclusion: We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased

  4. Skeletal myogenic potential of human and mouse neural stem cells.

    Galli, R; Borello, U; Gritti, A; Minasi, M G; Bjornson, C; Coletta, M; Mora, M; De Angelis, M G; Fiocco, R; Cossu, G; Vescovi, A L

    2000-10-01

    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues. PMID:11017170

  5. Neural Stem Cells (NSCs) and Proteomics*

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  6. Neural Stem Cells (NSCs) and Proteomics.

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  7. Retinoic acid induction of genes associated with neural tube developmental defects

    Xinjun Li; Zhong Yang; Yi Zeng; Hong Xu; Hongli Li; Yangyun Han; Xiaodong Long; Chao You

    2010-01-01

    To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice.Previous studies have revealed seven differentially expressed genes involved in neural tube developmental defects. However, gene expression and regulation is a complex process. Therefore,gene expression differences between normal and defective neural tubes at 9.5 and 10.5 days were compared. A total of eight differentially expressed genes exhibited coincident alterations at embryonic 9.5 and 10.5 days. In mice with retinoic acid-induced neural tube defects, NeK7, IGFBP5,ZW10, Csf3r, PSMC6, Cdk5, and Rb1 expressions were downregulated, but Apoa-4 expression was upregulated. These results were confirmed by Northern blot hybridization. Results suggested that NeK7, IGFBP5, ZW10, Csf3r, PSMC6, Cdk5, Rb1, and Apoa-4 are important regulatory factors involved in neural tube defects.

  8. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  9. Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells

    Zhenkun Wang; Xiaoyang Zhao; Zhonghua Liu; Liu Wang; Qi Zhou; Chao Sheng; Tianda Li; Fei Teng; Lisi Sang; Fenglin Cao; Ziwei Wang; Wanwan Zhu; Wei Li

    2012-01-01

    Rat is a valuable model for pharmacological and physiological studies.Germline-competent rat embryonic stem (rES) cell lines have been successfully established and the molecular networks maintaining the self-renewing,undifferentiated state of rES cells have also been well uncovered.However,little is known about the differentiation strategies and the underlying mechanisms of how these authentic rat pluripotent stem cells give rise to specific cell types.The aim of this study is to investigate the neural differentiation capacity of rES cells.By means of a modified procedure based on previous publications - combination of mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3) inhibitors (two inhibitors,"2i") with feeder-conditioned medium,we successfully obtained high-quality rat embryoid bodies (rEBs) from rES cells and then differentiated them to tripotent neural progenitors.These rES cell-derived neural progenitor cells (rNPCs) were capable of self-renewing and giving rise to all three neural lineages,including astrocytes,oligodendrocytes,and neurons.Besides,these rES cell-derived neurons stained positive for y-aminobutyric acid (GABA) and tyrosine hydroxylase (TH).In summary,we develop an experimental system for differentiating rES cells to tripotent neural progenitors,which may provide a powerful tool for pharmacological test and a valuable platform for studying the pathogenesis of many neurodegenerative disorders such as Parkinson's disease and the development of rat nervous system.

  10. Segmentation and Tracking of Neural Stem Cell

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  11. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?

    Yan Ho Chan; Mingyong Gao; Wutian Wu

    2013-01-01

    Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+ from lead acetate [Pb (CH3COO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 200 μM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2+ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+ cytotoxicity.

  12. Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferation▿

    Sun, Guoqiang; Alzayady, Kamil; Stewart, Richard; Ye, Peng; Yang, Su; Li, Wendong; Shi, Yanhong

    2010-01-01

    Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is recruited by nuclear receptor TLX, an essential neural stem cell regulator, to the promoters of TLX...

  13. [Neural stem cells and Notch signalling].

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  14. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  15. Stat3 inhibition in neural lineage cells.

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  16. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  17. Differentiation of Human Breast-Milk Stem Cells to Neural Stem Cells and Neurons

    Seyed Mojtaba Hosseini

    2014-01-01

    Full Text Available Objectives. Human breast milk contains a heterogeneous population of cells that have the potential to provide a noninvasive source of cells for cell therapy in many neurodegenerative diseases without any ethical concern. The objectives of this study were to differentiate the breast milk-derived stem cells (BMDSC toward neural stem cells and then into the neurons and neuroglia. Materials and Methods. To do this, the BMDSC were isolated from human breast milk and cultured in Dulbecco’s modified Eagle medium/F12 (DMEM/F12 containing fibroblast growth factor (bFGF. The cells were then characterized by evaluation of the embryonic and stem cell markers. Then, the cells were exposed to culture medium containing 1% B27 and 2% N2 for 7–10 days followed by medium supplemented with B27, N2, bFGF 10 µg/mL, and endothelial growth factor (EGF 20 µg/mL. Then, the sphere-forming assay was performed. The spheres were then differentiated into three neural lineages by withdrawing growth factor in the presence of 5% FBS (fetal bovine serum. The immunofluorescence was done for β-tubulin III, O4, and GFAP (glial fibrillary acidic protein. Results. The results indicated that the cells expressed both embryonic and mesenchymal stem cell (MSC markers. They also showed neurospheres formation that was nestin-positive. The cells were also differentiated into all three neural lineages. Conclusion. The BMDSC can behave in the same way with neural stem cells. They were differentiated into oligodendrocytes, and astrocytes as well as neurons.

  18. Gene expression analysis of neuronal precursors from adult mouse brain and differential screen for neural stem cell markers

    Pennartz, Sandra

    2004-01-01

    In the adult mouse brain, neuronal precursor cells continuously emanate from neural stem cells (NSC) in the subventricular zone (SVZ) and migrate into the olfactory bulb (OB) where they differentiate to serve as replenishment for GABAergic interneurons. During the migration process, PSA-NCAM (Polysialic acid-Neural cell adhesion molecule) specifically marks the neuronal precursors (PSA+ cells). This phenomenon was exploited in the framework of this doctoral thesis to isolate a homogeneous cel...

  19. Development of neural precursor cells from mouse embryonic stem cells

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  20. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  1. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  2. Lack of telomerase activity in rabbit bone marrow stromal cells during differentiation along neural pathway

    CHEN Zhen-zhou; XU Ru-xiang; JIANG Xiao-dan; TENG Xiao-hua; LI Gui-tao; ZHOU Yü-xi

    2006-01-01

    Objective: To investigate telomerase activity in rabbit bone marrow stromal cells (BMSCs) during their committed differentiation in vitro along neural pathway and the effect of glial cell line-derived neurotrophic factor (GDNF) on the expression of telomerase.Methods: BMSCs were acquired from rabbit marrow and divided into control group, GDNF (10 ng/ml) group.No. ZL02134314. 4) supplemented with 10% fetal bovine serum (FBS) was used to induce BMSCs differentiation along neural pathway. Fluorescent immunocytochemistry was employed to identify the expressions of Nestin, neuronspecific endase (NSE), and gial fibrillary acidic protein (GFAP). The growth curves of the cells and the status of cell cycles were analyzed, respectively. During the differentiation, telomerase activitys were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (TRAP-ELISA).Results: BMSCs were successfully induced to differentiate along neural pathway and expressed specific markers of fetal neural epithelium, mature neuron and glial cells. Telomerase activities were undetectable in BMSCs during differentiation along neural pathway. Similar changes of cell growth curves, cell cycle status and telomerase expression were observed in the two groups.Conclusions: Rabbit BMSCs do not display telomerase activity during differentiation along neural pathway. GDNF shows little impact on proliferation and telomerase activity of BMSCs.

  3. Data defining markers of human neural stem cell lineage potential.

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  4. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  5. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  6. New mechanism for neural stem cell maintenance in early embryos

    2007-01-01

    @@ Teamning up with co-workers from Japan, UK and US,CAS biochemists have revealed a novel mechanism for maintaining neural stem cells in early embryos. Their work was published on the 6 August issue of Cell Development.

  7. Effect of monocular deprivation on rabbit neural retinal cell densities

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  8. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  9. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments

    Sanna Maria

    2006-02-01

    Full Text Available Abstract Background It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential. Results In order to identify factors able to lead differentiation of stem cells towards cells of neural lineage, we isolated stromal cells from human adult bone marrow (BMSC. Cells were treated with: (1 TPA, forskolin, IBMX, FGF-1 or (2 retinoic acid and 2-mercaptoethanol (BME. Treatment (1 induced differentiation into neuron-like cells within 24 hours, while a longer treatment was required when using retinoic acid and BME. Morphological modifications were more dramatic after treatment (1 compared with treatment (2. In BMSC both treatments induced the expression of neural markers such as NF, GFAP, TUJ-1 and neuron-specific enolase. Moreover, the transcription factor Hes1 increased after both treatments. Conclusion Our study may contribute towards the identification of mechanisms involved in the differentiation of stem cells towards cells of neural lineage.

  10. Imprinted Zac1 in neural stem cells

    Guillaume Daniel; Udo Schmidt-Edelkraut; Dietmar Spengler; Anke Hoffmann

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes playan important role in brain development. On historicalgrounds, these two determinants have been largelystudied independently of each other. Recent evidencesuggests, however, that NSCs can reset select genomicimprints to prevent precocious depletion of the stemcell reservoir. Moreover, imprinted genes like thetranscriptional regulator Zac1 can fine tune neuronalvs astroglial differentiation of NSCs. Zac1 binds ina sequence-specific manner to pro-neuronal andimprinted genes to confer transcriptional regulation andfurthermore coregulates members of the p53-familyin NSCs. At the genome scale, Zac1 is a central hub ofan imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation anddifferentiation. Overall, transcriptional, epigenomic, andgenomic mechanisms seem to coordinate the functionalrelationships of NSCs and imprinted genes fromdevelopment to maturation, and possibly aging.

  11. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  12. 骨髓间充质干细胞复合聚乳酸-羟基乙酸材料治疗大鼠神经损伤的实验研究%Bone Marrow Mesenchymal Stem Cells Combined with Polylactic Glycolic Acid Scaffold for Rat Neural Injury

    符厚圣; 周兴; 桂有富; 郑煜; 潘建刚

    2011-01-01

    Objectives To study separately the effect of bone marrow mesenchymal stem cells (BMSCs) and differentiated neural - like cells combined with polylactic glycolic acid ( PLGA ) scaffolds, both composite which restore to SD rat nerve injury. Methods BMSCs were cultured by differential adherence,and composited PLGA,via scanning electron microscope to investigate the information of BMSCs'adhesion, proliferation and induction into neural - like cells in the scaffolds. Bold scaffold, BMSCs - PLGA complex, and neural - like cells - PLGA complex were separately transplanted into SD rat models, with the injury for right sciatic nerve, and obsvered SD rat models during 60 days after operation. Results BMSCs and neural - like cells can be exactly adhere to, proliferate and grow on the PLGA;BMSCs and neural -like cells combined with PLGA, which can restore to nerve injury. Conclusions BMSCs and differentiated neural - like cells combined with polylactic glycolic acid (PLGA) scaffolds,which can be used as a method of tissue engineering,to treat neurogenic bladder caused by spinal cord injury and advanced diabetes.%目的 研究骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells,BMSCs)及其分化的神经样细胞分别与聚乳酸-羟基乙酸(polylactic glycolic acid,PLGA)支架材料复合修复大鼠神经损伤的效果.方法 将BMSCs复合PIGA培养,通过扫描电镜观察BMSCs在PLGA上的黏附、增殖并诱导分化成神经样细胞的情况;然后分别将单纯的PLGA、BMSCs-PLGA复合物以及神经样细胞-PLGA复合物分别移植入3组右侧坐骨神经损伤的SD大鼠模型中,术后观察三组动物60 d.结果 BMSCs及诱导分化生成的神经样细胞能在PLGA良好的黏附、增殖和生长;复合PLGA移植后能修复损伤的神经.结论 BMSCs及神经样细胞复合PLGA移植可作为组织工程治疗脊髓损伤及糖尿病晚期神经源性膀胱的一种方法.

  13. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Xiong Y

    2012-04-01

    Full Text Available Yi Xiong1,*, Ji-Xiang Zhu2,*, Zheng-Yu Fang1, Cheng-Guang Zeng2, Chao Zhang1, Guo-Long Qi3, Man-Hui Li1, Wei Zhang1, Da-Ping Quan2, Jun Wan1,41Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 2DSAPM Lab, PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 3Department of Medical Information, Medical Collage of Jinan University, Guangzhou, 4Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China*These authors contributed equally to this manuscriptAbstract: Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid (PLGA conduits and neurotrophin-3 (NT-3 to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs and Schwann cells (SCs were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80% were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury.Keywords: PLGA, NT-3, neural stem cells, Schwann cells, myelin sheath

  14. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers.

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  15. Elastic modulus affects the growth and differentiation of neural stem cells

    Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.

  16. Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse.

    Rui Lan Zhang

    Full Text Available The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP positive neural stem cells that are in contact with the cerebrospinal fluid (CSF via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction.

  17. Differentiation of Human Bone Marrow Stromal Cells into Neural-Like Cells Induced by Sodium Ferulate in vitro

    Yang Wang; Zhifeng Deng; Xianliang Lai; Wei Tu

    2005-01-01

    Human marrow stromal cells (hMSCs) are multipotential stem cells, capable of differentiating into bone, cartilage,fat and muscle. Several recent reports demonstrated that hMSCs have been also differentiated into neural cells.However, only a few reported inducers are applicable for clinical use. This work is to explore the effects of sodium ferulate (SF) on differentiation of hMSCs into neural cells in vitro. We found that hMSCs could be induced to the cells with typical neural morphology when cultured with SF. The cells express neural proteins, such as nestin,neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP). About 30% of the hMSC-derived cells expressed nestin when cultured with SF for 3 h, but no expression was detected after 24 h. The percentages of positive cells for NSE or GFAP were about 67% and 39% separately at 6 h, and reached the plateau phage after treatment with SF for 3 days. The data suggest that SF can induce hMSCs to differentiate into neural-like cells in vitro.

  18. Adult neural stem cells-Functional potential and therapeutic applications

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  19. Stimulation of adult neural stem cells with a novel glycolipid biosurfactant

    Stipcevic, Tamara; Knight, Christopher P.; Kippin, Tod E.

    2013-01-01

    Glycolipids are amphipatic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated, proliferative, multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3, is a glycolipid isolated from bacteria Pseudomonas...

  20. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  1. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  2. Utilizing stem cells for three-dimensional neural tissue engineering.

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524

  3. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Biernat Wojciech

    2009-02-01

    Full Text Available Abstract Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA: exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP. Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+ and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8, as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.

  4. Development of neural stem cell in the adult brain

    Duan, Xin; Kang, Eunchai; Liu, Cindy Y.; Ming, Guo-li; Song, Hongjun

    2008-01-01

    New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechani...

  5. Intraspinal transplantation of mouse and human neural precursor cells

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detec...

  6. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    Young, Stephanie Z.; Bordey, Angélique

    2009-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery tha...

  7. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Mattu Chetana Shivaraj; Guillaume Marcy; Guoliang Low; Jae Ryun Ryu; Xianfeng Zhao; Rosales, Francisco J.; Goh, Eyleen L.K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippoc...

  8. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  9. Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair.

    Santos, Tiago; Boto, Carlos; Saraiva, Cláudia M; Bernardino, Liliana; Ferreira, Lino

    2016-06-01

    We explore the concept of modulating neural stem cells and their niches for brain repair using nanotechnology-based approaches. These approaches include stimulating cell proliferation, recruitment, and differentiation to functionally recover damaged areas. Nanoscale-engineered materials potentially overcome limited crossing of the blood-brain barrier, deficient drug delivery, and cell targeting. PMID:26917252

  10. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de [Department of Neurosurgery, University Hospital, Leipzig (Germany); Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany); Glien, Anja; Groba, Claudia; Schlichting, Nadine [Department of Neurosurgery, University Hospital, Leipzig (Germany); Kamprad, Manja [Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig (Germany); Meixensberger, Juergen [Department of Neurosurgery, University Hospital, Leipzig (Germany); Milosevic, Javorina [Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany)

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  11. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment

  12. Electrical Property Characterization of Neural Stem Cells in Differentiation

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  13. Negative chemotaxis does not control quail neural crest cell dispersion.

    Erickson, C A; Olivier, K R

    1983-04-01

    Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth 13(Suppl. 9), 133-161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a "putative" chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool. 108, 405-437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a "no man's land" forms between two confronted explants (Oldfield, 1963, Exp. Cell Res. 30, 125-138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed. PMID:6832483

  14. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  15. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  16. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  17. Embryonic and adult neural stem cell research in China

    2010-01-01

    Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work done by investigators in China.

  18. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  19. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  20. Immune Cells Exploit a Neural Circuit to Enter the CNS

    Kevin J Tracey

    2012-01-01

    Multiple sclerosis (MS) is associated with the appearance of autoreactive T cells in the central nervous system. Using a mouse model of MS, Arima et al. now show that this attack begins at a specific spinal cord location. T cell entry into the CNS is regulated by a reflex neural circuit originating from leg muscle contractions.

  1. Understanding How Zika Virus Enters and Infects Neural Target Cells.

    Miner, Jonathan J; Diamond, Michael S

    2016-05-01

    Zika virus is a mosquito-transmitted flavivirus that has become a public health concern because of its ability to cause microcephaly. In this issue of Cell Stem Cell, Tang et al. (2016) and Nowakowski et al. (2016) use human neural stem cell models and single-cell RNA sequencing to investigate Zika virus tropism and potential entry receptors. PMID:27152436

  2. Neural tissue engineering using embryonic and induced pluripotent stem cells

    Willerth, Stephanie M.

    2011-01-01

    With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in ...

  3. Neural stem cell transplantation in the repair of spinal cord injury

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  4. Dynamic neural network controller model of PEM fuel cell system

    Hatti, Mustapha [Nuclear Technologies Division, Nuclear Research Center of Birine, Ain Oussera, B.P 180, 17200 Djelfa (Algeria); Tioursi, Mustapha [Electrical Engineering Department, University of Sciences and Technology of Oran, B.P 1505, El M' Naouar, 31000 Oran (Algeria)

    2009-06-15

    This paper presents the artificial intelligence techniques to control a proton exchange membrane fuel cell system process, using particularly a methodology of dynamic neural network. In this work a dynamic neural network control model is obtained by introducing a delay line in the input of the neural network. A static production system including a PEMFC is subjected to variations of active and reactive power. Therefore the goal is to make the system follow these imposed variations. The simulation requires the modelling of the principal element (PEMFC) in dynamic mode. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for controlling, the stability of the identification and the tracking error were analyzed, and some reasons for the usefulness of this methodology are given. (author)

  5. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  6. The prevention of neural tube defects by folic acid supplementation

    H. W. Hitzeroth

    1993-05-01

    Full Text Available Neural tube defects, in particular spina bifida and anencephaly, are serious and relatively common congenital abnormalities worldwide. They also occur in South Africa and affect all population groups to varying degrees. The overall incidence in South Africa is approximately 1-2 per 1000 newborns. Higher incidences, up to 6 per 1000 newborns have been recorded in certain parts, especially in some rural areas of the country. In total as many as 1500 newborns could be affected by a neural tube defect each year. The precise aetiology of neural tube defects is still unknown.

  7. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  8. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    2005-01-01

    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  9. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  10. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions.

    Slaven Erceg

    Full Text Available BACKGROUND: Human embryonic stem cells (hESC provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. METHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA or to human recombinant basic fibroblast growth factor (bFGF in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF and caudalizing (RA signals were confirmed by patch clamp analysis. CONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.

  11. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms.

    Yang, Junning; Wu, Chuanshen; Stefanescu, Ioana; Jakobsson, Lars; Chervoneva, Inna; Horowitz, Arie

    2016-01-01

    Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion. PMID:27460990

  12. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  13. Adult human neural stem cell therapeutics: Currentdevelopmental status and prospect

    Hyun Nam; Kee-Hang Lee; Do-Hyun Nam; Kyeung Min Joo

    2015-01-01

    Over the past two decades, regenerative therapies usingstem cell technologies have been developed for variousneurological diseases. Although stem cell therapy is anattractive option to reverse neural tissue damage and torecover neurological deficits, it is still under developmentso as not to show significant treatment effects in clinicalsettings. In this review, we discuss the scientific andclinical basics of adult neural stem cells (aNSCs), andtheir current developmental status as cell therapeuticsfor neurological disease. Compared with other typesof stem cells, aNSCs have clinical advantages, suchas limited proliferation, inborn differentiation potentialinto functional neural cells, and no ethical issues. Inspite of the merits of aNSCs, difficulties in the isolationfrom the normal brain, and in the in vitro expansion,have blocked preclinical and clinical study using aNSCs.However, several groups have recently developed noveltechniques to isolate and expand aNSCs from normaladult brains, and showed successful applications ofaNSCs to neurological diseases. With new technologiesfor aNSCs and their clinical strengths, previous hurdlesin stem cell therapies for neurological diseases could beovercome, to realize clinically efficacious regenerativestem cell therapeutics.

  14. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    Laura Bindila; Antoni Pastor; Margarita Pérez-Martín; Rafael De La Torre; Juan Suarez

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum o...

  15. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and ...

  16. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells

    Rao Mahendra S

    2008-09-01

    Full Text Available Abstract Background Interactions of cells with the extracellular matrix (ECM are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC differentiation into neural progenitors and neurons. Results A reproducible protocol was used to generate highly homogenous neural progenitors or a mixed population of neural progenitors and neurons from hESCs. This defined adherent culture system allowed us to examine the effect of ECM molecules on neural differentiation of hESCs. hESC-derived differentiating embryoid bodies were plated on Poly-D-Lysine (PDL, PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, and cultured in neural differentiation medium. We found that the five substrates instructed neural progenitors followed by neuronal differentiation to differing degrees. Glia did not appear until 4 weeks later. Neural progenitor and neuronal generation and neurite outgrowth were significantly greater on laminin and laminin-rich Matrigel substrates than on other 3 substrates. Laminin stimulated hESC-derived neural progenitor expansion and neurite outgrowth in a dose-dependent manner. The laminin-induced neural progenitor expansion was partially blocked by the antibody against integrin α6 or β1 subunit. Conclusion We defined laminin as a key ECM molecule to enhance neural progenitor generation, expansion and differentiation into neurons from hESCs. The cell-laminin interactions involve α6β1 integrin receptors implicating a possible role of laminin/α6β1 integrin signaling in directed neural differentiation of hESCs. Since laminin acts in concert with other ECM molecules in vivo, evaluating cellular responses to the composition of the ECM is essential to clarify further the role of cell-matrix interactions in neural derivation of hESCs.

  17. Neural stem cells and proteomics assesment of their properties

    Skalníková, Helena; Halada, Petr; Vodička, Petr; Motlík, Jan; Kovářová, Hana

    Vídeň : FENS (The Federation of European Neuroscience Societies), 2006. s. 1. [Forum of European Neuroscience /5./. 08.07.2006-12.07.2006, Vienna] R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z50450515 Keywords : neural stem cells Subject RIV: EB - Genetics ; Molecular Biology

  18. p73 regulates maintenance of neural stem cell

    Agostini, Massimiliano [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Tucci, Paola [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy); Chen, Hailan; Knight, Richard A. [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Bano, Daniele; Nicotera, Pierluigi [Deutsche Zentrum fuer Neurodegenerative Erkrankungen (DZNE), Bonn (Germany); McKeon, Frank [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Melino, Gerry, E-mail: gm89@le.ac.uk [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy)

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  19. p73 regulates maintenance of neural stem cell

    Research highlights: → TAp73 is expressed in neural stem cells and its expression increases following their differentiation. → Neural stem cells from p73 null mice have a reduced proliferative potential. → p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. → Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  20. Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment

    Lathia, Justin D.; Heddleston, John M.; Venere, Monica; Jeremy N Rich

    2011-01-01

    Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.

  1. Proteomes and Neural Stem Cells: cellular signalling during differentiation

    Skalníková, Helena; Halada, Petr; Vodička, Petr; Motlík, Jan; Horning, O.; Jensen, O. N.; Gadher, S. J.; Pelech, S.; Kovářová, Hana

    Cambridge : -, 2007, s. 1-1. [BSPR-EBI Meeting: Integrative Proteomics: From Molecules to Systems,. Cambridge (GB), 25.07.2007-27.07.2007] Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : neural stem cells * differentiation * signalling * proteome Subject RIV: EB - Genetics ; Molecular Biology

  2. Protein signaling pathways in differentiation of neural stem cells

    Skalníková, Helena; Vodička, Petr; Pelech, S.; Motlík, Jan; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 8, - (2008), s. 4547-4559. ISSN 1615-9853 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : antibody microarray * differentiation * neural stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2008

  3. Roles of imprinted genes in neural stem cells.

    Hoffmann, Anke; Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar

    2014-01-01

    Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size. PMID:25431944

  4. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  5. Neural cell image segmentation method based on support vector machine

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  6. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation

    Hillje, Anna-Lena; Pavlou, Maria Angeliki; Beckmann, Elisabeth; Worlitzer, Maik; Bahnassawy, Lamiaa; Lewejohann, Lars; Palm, Thomas; Schwamborn, Jens Christian

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells...

  7. Proteomics Applied to Porcine and Human Neural Stem Cell Differentiation

    Mairychová, Kateřina; Skalníková, Helena; Tylečková, Jiřina; Halada, Petr; Marsala, M.; Kovářová, Hana

    Liběchov : Institute of Animal Physiology and Genetics AS CR, v.v.i, 2010. s. 61-61. [Informal Proteomic Meeting 2010. 09.11.2010-10.11.2010, Liblice] R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) ME10044 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * cell differentiation * neural stem cell s Subject RIV: FH - Neurology

  8. Genetic instability in neural stem cells: an inconvenient truth?

    Harrison, Neil J.

    2012-01-01

    The evolutionary struggles from which mutants arise have been documented in almost every living system. In this issue of the JCI, Varela and colleagues extend this list of systems to include neural derivatives of human embryonic stem cells, which they show exhibit a repeated gain of material from chromosome 1q. Although this raises safety issues for therapeutic use of such cells, the frequent observation of a particular change may direct screening strategies for detection and removal of these...

  9. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  10. Aebp2 as an epigenetic regulator for neural crest cells.

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  11. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  12. Neural stem cell-derived exosomes mediate viral entry

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  13. Neural precursors derived from human embryonic stem cells

    Peng Hongmei; Chen Gui'an

    2005-01-01

    Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells, hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs).The EBs were then cultured in N2 medium containing bFGF in poly- L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2-3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4-5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeⅢ, GABA, serotonin and synaptophysin.Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS) in vitro.

  14. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    Shengxiu Li; Guoqiang Sun; Kiyohito Murai; Peng Ye; Yanhong Shi

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analo...

  15. Application of adult stem cells in neural tissue engineering

    Lihong Piao; Wei Wang

    2006-01-01

    OBJECTTIVE:To investigate the progress in finding,isolation and culture.proliferation and differentiation,and application in neural tissue engineering of adult stem cells(ASCs).DATA SOURCES:Using the terms"adult stem cells,nerve,tissue engineering".we searched the PubMed for adult stem ceils-related studies published in English from January 2001 to August 2006.Meanwhile,we also performed a China National Knowledge Infrastructure(CNKI)search for homochronous correlative literatures on the computer by inputting the terms"adult stem cells,nerve,tissue engineering"in Chinese.texts were searched for.Inclusive criteria:①Literatures about the sources,distribution,culture.proliferation and differentiation.and application in the repair of neural ASCs by tissue engineering.②Articles recommended either by randomized.blind or by other methods were not excluded.Exclusive criteria:①Embryonic stem cells.②Review,repetitive study,case report,Meta analysis. DATA EXTRACTION:Totally 1 278 articles related to ASCs were collected,32 were involved and the other 1 246 were excluded. DATA SYNTHESIS:Adult stem cell has the ability of self-renewal.unceasing proliferation and transdifferentiation.It has wide source,which does not involved in ethical problems.It has advantages over embryonic stem cell.Studies on the isolation and culture,induction and differentiation and application in neural ASCs by tissue engineering contribute to obtaining considerable ASCs,so as to provide experimental and theoretical bases for CONCLUSION:ASCs play a very important role in neural tissue engineering.

  16. Hyaluronic acid-based scaffold for central neural tissue engineering

    Wang, Xiumei; He, Jin; Wang, Ying; CUI, FU-ZHAI

    2012-01-01

    Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and ma...

  17. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  18. Efficient derivation of neural precursor cells, spinal motor neurons and midbrain dopaminergic neurons from human ES cells at 3% oxygen

    Stacpoole, SRL; Bilican, B.; Webber, DJ; Luzhynskaya, A; He, XL; COMPSTON, A.; Karadottir, R.; Franklin, RJM; Chandran, S

    2011-01-01

    This protocol has been designed to generate neural precursor cells (NPCs) from human embryonic stem cells (hESCs) using a physiological oxygen (O2) level of 3% and chemically defined conditions. The first stage involves suspension culture of hESC colonies at 3% O2, where they acquire a neuroepithelial identity over two weeks. This timescale is comparable to that at 20% O2, but survival is enhanced. Sequential application of retinoic acid (RA) and purmorphamine (PM), from day 14 to 28, directs...

  19. Radiopharmaceutical Tracers for Neural Progenitor Cells

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine

  20. Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells

    Zeltner, Nadja; Lafaille, Fabien G.; Fattahi, Faranak; Studer, Lorenz

    2014-01-01

    Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic develo...

  1. Adult neural stem cells in the mammalian central nervous system

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  2. Neural stem cells attacked by Zika virus.

    Nguyen, Ha Nam; Qian, Xuyu; Song, Hongjun; Ming, Guo-Li

    2016-07-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases. PMID:27283801

  3. The use of artificial neural networks to study fatty acids in neuropsychiatric disorders

    Tonello Lucio

    2008-04-01

    Full Text Available Abstract Background The range of the fatty acids has been largely investigated in the plasma and erythrocytes of patients suffering from neuropsychiatric disorders. In this paper we investigate, for the first time, whether the study of the platelet fatty acids from such patients may be facilitated by means of artificial neural networks. Methods Venous blood samples were taken from 84 patients with a DSM-IV-TR diagnosis of major depressive disorder and from 60 normal control subjects without a history of clinical depression. Platelet levels of the following 11 fatty acids were analyzed using one-way analysis of variance: C14:0, C16:0, C16:1, C18:0, C18:1 n-9, C18:1 n-7, C18:2 n-6, C18:3 n-3, C20:3 n-3, C20:4 n-6 and C22:6 n-3. The results were then entered into a wide variety of different artificial neural networks. Results All the artificial neural networks tested gave essentially the same result. However, one type of artificial neural network, the self-organizing map, gave superior information by allowing the results to be described in a two-dimensional plane with potentially informative border areas. A series of repeated and independent self-organizing map simulations, with the input parameters being changed each time, led to the finding that the best discriminant map was that obtained by inclusion of just three fatty acids. Conclusion Our results confirm that artificial neural networks may be used to analyze platelet fatty acids in neuropsychiatric disorder. Furthermore, they show that the self-organizing map, an unsupervised competitive-learning network algorithm which forms a nonlinear projection of a high-dimensional data manifold on a regular, low-dimensional grid, is an optimal type of artificial neural network to use for this task.

  4. Differentation of neural stem cells expressing sonic hedgehog

    Prajerová, Iva; Anděrová, Miroslava; Kunke, D.; Lorico, A.; Chvátal, Alexandr

    Vienna, 2006. A226.18. [Forum of European Neuroscience /5./. 08.07.2006-12.07.2006, Vienna] R&D Projects: GA ČR GA305/04/1293; GA ČR GA305/06/1316; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Neurogenesis -Gliogenesis * Neural Stem Cells Subject RIV: FH - Neurology

  5. The homeostatic astroglia emerges from evolutionary specialization of neural cells

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-01-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and...... defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic...

  6. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  7. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies

    Žižková, Martina; Suchá, Rita; Tylečková, Jiřina; Jarkovská, Karla; Mairychová, Kateřina; Kotrčová, Eva; Marsala, M.; Gadher, S. J.; Kovářová, Hana

    2015-01-01

    Roč. 12, č. 1 (2015), s. 83-95. ISSN 1478-9450 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell therapy * immunomodulation * neural stem cell differentiation * neural subpopulation * neurodegenerative disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2014

  8. Neural network adapted to wound cell analysis in surgical patients.

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. PMID:21362082

  9. Radiopharmaceutical Tracers for Neural Progenitor Cells

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  10. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  11. Genetic instability in neural stem cells: an inconvenient truth?

    Harrison, Neil J

    2012-02-01

    The evolutionary struggles from which mutants arise have been documented in almost every living system. In this issue of the JCI, Varela and colleagues extend this list of systems to include neural derivatives of human embryonic stem cells, which they show exhibit a repeated gain of material from chromosome 1q. Although this raises safety issues for therapeutic use of such cells, the frequent observation of a particular change may direct screening strategies for detection and removal of these unwanted cellular variants. PMID:22269327

  12. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  13. Biological properties of neural progenitor cells isolated from the hippocampus of adult cynomolgus monkeys

    2006-01-01

    Background The existence of neurogenesis in the hippocampus of adult nonhuman primates has been confirmed in recent years, however, the biological properties of adult neural stem cells or neural progenitor cells (NPCs) from this region remain to be extensively explored. The present work was to investigate on the expansion of NSCs/NPCs from the hippocampus of adult cynomolgus monkeys and the examination of their characteristics in vitro.Methods NPCs isolated from the hippocampus of adult cynomolgus monkeys were expanded in vitro in serum-free media containing growth factors, and were then allowed to differentiate by removing mitotic factors. The expansion capacity of NPCs and their differentiation potential were assayed by immunohistochemical and immunocytochemical analysis.Results During primary culture, NPCs underwent cell division, proliferation and aggregation to form neurospheres that were growing in suspension. Without mitotic stimulation, most neurospheres adhered to the culture dish and started to differentiate. Eventually, nearly 12% of the differentiated cells expressed neuron specific marker-βIII-tubulin (Tuj1) and 84% expressed astrocyte specific marker-fibrillary acidic protein (GFAP). In addition, the expression of a neural stem cell marker, nestin, was found both in NPCs and in the subgranular zone of adult monkey hippocampus, where NPCs were originally derived. Conclusions NPCs from the hippocampus of adult cynomolgus monkeys can be expanded to some extent in vitro and are capable of differentiating into neurons and astrocytes. Further experiments to promote the in vitro proliferation capacity of NPCs will be required before adult NPCs can be used as a useful cell model for studying adult neurogenesis and cell replacement therapy using adult stem cells.

  14. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...

  15. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects.

    Chang, Yu-Jen; Su, Hong-Lin; Hsu, Lee-Feng; Huang, Po-Jui; Wang, Tzu-Hao; Cheng, Fu-Chou; Hsu, Li-Wen; Tsai, Ming-Song; Chen, Chih-Ping; Chang, Yao-Lung; Chao, An-Shine; Hwang, Shiaw-Min

    2015-08-01

    Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders. PMID:25923707

  16. Mouse neural stem cells cultured in vitro and expressing an exogenous gene

    2001-01-01

    Neural stem cells are the multipotential, self-re- newing cells in central nerve system, and play an essential role in the development and differentiation of nerve system. Neural stem cells can be used to treat the nerve system diseases, especially, the transplantation of neural stem cells to rescue the degenerated neural cells has become a very promising therapeutic way. We successfully cultured neural stem cells isolated from the brains of embryonic mice in vitro and determined their distribution in the E17 mice brains. The neural stem cells were transfected with adenoviral vector carrying GFP (green fluorescence protein) gene and then highly expressed the exogenous gene. It paves the way for gene therapy of degenerative nerve system diseases.

  17. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  18. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Jariya Umka Welbat; Apiwat Sirichoat; Wunnee Chaijaroonkhanarak; Parichat Prachaney; Wanassanun Pannangrong; Poungrat Pakdeechote; Bungorn Sripanidkulchai; Peter Wigmore

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella as...

  19. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo.

    Carradori, Dario; Saulnier, Patrick; Préat, Véronique; des Rieux, Anne; Eyer, Joel

    2016-09-28

    The replacement of injured neurons by the selective stimulation of neural stem cells in situ represents a potential therapeutic strategy for the treatment of neurodegenerative diseases. The peptide NFL-TBS.40-63 showed specific interactions towards neural stem cells of the subventricular zone. The aim of our work was to produce a NFL-based drug delivery system able to target neural stem cells through the selective affinity between the peptide and these cells. NFL-TBS.40-63 (NFL) was adsorbed on lipid nanocapsules (LNC) whom targeting efficiency was evaluated on neural stem cells from the subventricular zone (brain) and from the central canal (spinal cord). NFL-LNC were incubated with primary neural stem cells in vitro or injected in vivo in adult rat brain (right lateral ventricle) or spinal cord (T10). NFL-LNC interactions with neural stem cells were different depending on the origin of the cells. NFL-LNC showed a preferential uptake by neural stem cells from the brain, while they did not interact with neural stem cells from the spinal cord. The results obtained in vivo correlate with the results observed in vitro, demonstrating that NFL-LNC represent a promising therapeutic strategy to selectively deliver bioactive molecules to brain neural stem cells. PMID:27503706

  20. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Mohan C. Vemuri

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  1. Nanosized zinc oxide particles induce neural stem cell apoptosis

    Deng, Xiaoyong; Luan, Qixia; Chen, Wenting; Wang, Yanli; Wu, Minghong; Zhang, Haijiao; Jiao, Zheng

    2009-03-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  2. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  3. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  4. Prevention of neural tube defects with folic acid: The Chinese experience.

    Ren, Ai-Guo

    2015-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  5. Prospective identification and culture of rat enteric neural stem cells (ENSCs).

    Gao, Tingting; Chen, Haijiao; Liu, Mei; Ge, Wenliang; Yin, Qiyou

    2016-05-01

    Hirschprung's disease (HD), a very common congenital abnormality in children, occurs mainly due to the congenital developmental defect of the enteric nervous system. The absence of enteric ganglia from the distal gut due to deletion in gut colonization by neural crest progenitor cells may lead to HD. The capacity to identify and isolate the enteric neuronal precursor cells from developing and mature tissues would enable the development of cell replacement therapies for HD. However, a mature method to culture these cells is a challenge. The present study aimed to propose a method to culture enteric neural stem cells (ENSCs) from the DsRed transgenic fetal rat gut. The culture medium used contained 15 % chicken embryo extract, basic fibroblast growth factor, and epidermal growth factor. ENSCs were cultured from embryonic day 18 in DsRed transgenic rat. Under inverted microscope and fluorescence staining, ENSCs proliferated to form small cell clusters on the second day of culture. The neurospheres-like structure were suspended in the medium, and there were some filaments between the adherent cells from day 3 to day 6 of the culture. The neurospheres were formed by ENSCs on day 8 of the culture. Network-like connections were formed between the adherent cells and differentiated cells after adding 10 % FBS. The differentiated cells were positive for neurofilament and glial fibrillary acidic protein antibodies. The present study established a method to isolate and culture ENSCs from E18 DsRed transgenic rats in the terminal stage of embryonic development. This study would offer a way to obtain plenty of cells for the future research on the transplantation of HD. PMID:25407731

  6. Chemo-mechanical control of neural stem cell differentiation

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  7. Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-01-01

    Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

  8. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  9. Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

    Sher, Falak; Boddeke, Erik; Copray, Sjef

    2011-01-01

    Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or

  10. Ethanol regulates calcium channels in clonal neural cells.

    Messing, R. O.; Carpenter, C. L.; Diamond, I.; Greenberg, D A

    1986-01-01

    The acute and long-term effects of ethanol on voltage-dependent Ca channel function were studied in PC12, a clonal cell line of neural crest origin. Acute exposure to ethanol produced a concentration-dependent decrease in depolarization-evoked 45Ca2+ uptake, while prolonged (2-10 days) exposure led to a reciprocal increase in 45Ca2+ uptake and in the number of Ca-channel binding sites labeled by the dihydropyridine Ca-channel antagonist [3H]nitrendipine. Uptake was restored to control levels ...

  11. History of Neural Stem Cell Research and Its Clinical Application.

    Takagi, Yasushi

    2016-03-15

    "Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated," wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized. PMID:26888043

  12. Neural stem cells and the regulation of adult neurogenesis

    Conover Joanne C

    2003-11-01

    Full Text Available Abstract Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ, which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.

  13. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  14. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  15. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  16. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  17. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-01

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking). PMID:26867130

  18. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  19. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  20. Potential of Neural Stem Cells for the Treatment of Brain Tumors

    P. Taupin

    2008-01-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent cells that generate the main phenotypes of the nervous system, neurons, astrocytes and oligodendrocytes. As such they hold the promise to treat a broad range of neurological diseases and injuries. Neural progenitor and stem cells have been isolated and characterized in vitro, from adult, fetal and post-mortem tissues, providing sources of material for cellular therapy. However, NSCs are still elusive cells and remain to be unequivocally identified and characterized, limiting their potential use for therapy. Neural progenitor and stem cells, isolated and cultured in vitro, can be genetically modified and when transplanted migrate to tumor sites in the brain. These intrinsic properties of neural progenitor and stem cells provide tremendous potential to bolster the translation of NSC research to therapy. It is proposed to combine gene therapy and cellular therapy to treat brain cancers. Hence, neural progenitor and stem cells provide new opportunities for the treatment of brain cancers.

  1. Effects of Triclosan on Neural Stem Cell Viability and Survival

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  2. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  3. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Ying-bo Li; Yan Wang; Ji-ping Tang; Di Chen; Sha-li Wang

    2015-01-01

    Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent exper-iments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypox-ic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplantedvia intracerebroventricular injection. These tests conifrmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a signiifcantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-speciifc enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  4. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    Edvardsen, K; Pedersen, P H; Bjerkvig, R; Hermann, G G; Zeuthen, J; Laerum, O D; Walsh, F S; Bock, E

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region of the...

  5. Long-term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells

    Weihua Wu, Qihua He, Xiaoxia Li, Xiaoyan Zhang, Aili Lu, Ruimin Ge, HongYing Zhen, Alfred E. Chang, Qiao Li, Li Shen

    2011-01-01

    Full Text Available In this report, we describe the spontaneous malignant transformation of long-term cultured human fetal striatum neural stem cells (hsNSCs, passage 17. After subcutaneous transplantation of long-term cultured hsNSCs into immunodeficient nude mice, 2 out of 15 mice formed xenografts which expressed neuroendocrine tumor markers CgA and NSE. T1 cells, a cell line that we derived from one of the two subcutaneous xenografts, have undergone continuous expansion in vitro. These T1 cells showed stem cell-like features and expressed neural stem cell markers nestin and CD133. The T1 cells were involved in abnormal karyotype, genomic instability and fast proliferation. Importantly, after long-term in vitro culture, the T1 cells did not result in subcutaneous xenografts, but induced intracranial tumor formation, indicating that they adjusted themselves to the intracranial microenvironment. We further found that the T1 cells exhibited an overexpressed level of EGFR, and the CD133 positive T1 cells showed a truncation mutation in the exons 2-7 of the EGFR (EGFRvIII gene. These results suggest that continuous expansion of neural stem cells in culture may lead to malignant spontaneous transformation. This phenomenon may be functionally related to EGFR by EGFRvIII gene mutation.

  6. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  7. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  8. International retrospective cohort study of neural tube defects in relation to folic acid recommendations : are the recommendations working?

    Botto, LD; Lisi, A; Robert-Gnansia, E; Erickson, JD; Vollset, SE; Mastroiacovo, P; Botting, B; Cocchi, G; de Vigan, C; de Walle, H; Feijoo, M; Irgens, LM; McDonnell, B; Merlob, P; Ritvanen, A; Scarano, G; Siffel, C; Metneki, J; Stoll, C; Smithells, R; Goujard, J

    2005-01-01

    Objective To evaluate the effectiveness of policies and recommendations on folic acid aimed at reducing the occurrence of neural tube defects. Design Retrospective cohort study of births monitored by birth defect registries. Setting 13 birth defects registries monitoring rates of neural tube defects

  9. Adult neural stem cells: The promise of the future

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  10. Stem cell-based therapy in neural repair.

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Dan-Yen; Chiu, Ing-Ming

    2013-01-01

    Cell-based therapy could aid in alleviating symptoms or even reversing the progression of neurodegenerative diseases and nerve injuries. Fibroblast growth factor 1 (FGF1) has been shown to maintain the survival of neurons and induce neurite outgrowth. Accumulating evidence suggests that combination of FGF1 and cell-based therapy is promising for future therapeutic application. Neural stem cells (NSCs), with the characteristics of self-renewal and multipotency, can be isolated from embryonic stem cells, embryonic ectoderm, and developing or adult brain tissues. For NSC clinical application, several critical problems remain to be resolved: (1) the source of NSCs should be personalized; (2) the isolation methods and protocols of human NSCs should be standardized; (3) the clinical efficacy of NSC transplants must be evaluated in more adequate animal models; and (4) the mechanism of intrinsic brain repair needs to be better characterized. In addition, the ideal imaging technique for tracking NSCs would be safe and yield high temporal and spatial resolution, good sensitivity and specificity. Here, we discuss recent progress and future development of cell-based therapy, such as NSCs, induced pluripotent stem cells, and induced neurons, in neurodegenerative diseases and peripheral nerve injuries. PMID:23806879

  11. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  12. Effect of Staurosporine on Neural Differentiation of CD133+ Umbilical Cord Blood Cells

    Faezeh Faghihi

    2008-01-01

    Full Text Available Objective: CD133+ umbilical cord blood cells were identified as a hematopoieticstem cell which has the capacity for extensive self-renewal and differentiation.The aim of this study was to identify the effect of staurosporine (STS, a wellknownprotein kinase inhibitor on differentiation of CD133+ cells into neuralcells.Materials and Methods: CD133+ cells were enriched by immunomagneticbeads from human mononuclear cells of umbilical cord blood and the purityof higher than 94% was achieved by flowcytometry. Induction of differentiationwas performed by addition of STS (12.5, 25, and 50 nΜ. The differentiatedcells were evaluated by immunofluorescence and RT-PCR for neuron-specificproteins and transcripts.Results: STS-treated CD133+ cells expressed mRNA transcripts for neuronspecificneurofilament protein (NFM, and several basic helix-loop-helix(bHLH transcription factors important for early neurogenesis, including Otx2,Wnt1, and Hash1. The structural proteins characteristics of neurons includingβ-tubulinIII and Microtubule-Associated Protein-2 (MAP-2, were shown byimmunocytochemistry. STS-treated CD133+ cells also expressed the astrocytespecificmarker, glial fibrillary acidic protein (GFAP by immunofluorescence.Conclusion: The human cord blood-derived CD133+ hematopoietic stem cellscould differentiate into neural cell types of neuron-like cells and astrocytes bySTS treatment.

  13. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  14. File list: DNS.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  15. File list: DNS.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  16. File list: DNS.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.05.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  17. File list: DNS.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived... neural cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  18. File list: Pol.PSC.20.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived... neural cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_cells.bed ...

  19. File list: NoD.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available NoD.PSC.50.AllAg.mESC_derived_neural_cells mm9 No description Pluripotent stem cell mESC derived... neural cells SRX440736,SRX440731 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  20. File list: DNS.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived... neural cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  1. [Transplanted epidermal neural crest stem cell in a peripheral nerve gap].

    Zhang, Lu; Zhang, Jieyuan; Li, Bingcang; Liu, Zheng; Liu, Bin

    2014-04-01

    Neural crest stem cells originated from hair follicle (epidermal neural crest stem cell, EPI-NCSC) are easy to obtain and have potentials to differentiate into various tissues, which make them eminent seed cells for tissue engineering. EPI-NCSC is now used to repair nerve injury, especially, the spinal cord injury. To investigate their effects on repairing peripheral nerve injury, EPI-NCSC from a GFP-SD rat were primarily cultured on coated dishes and on a poly lactic acid coglycolic acid copolymer (PLGA) membrane. Methyl thiazolyl tetrazolium (MTT) assay showed that the initial adhesion rate of EPI-NCSC was 89.7% on PLGA membrane, and the relative growth rates were 89.3%, 87.6%, 85.6%, and 96.6% on the 1st, 3rd, 5th, 7th day respectively. Cell cycles and DNA ploidy analysis demonstrated that cell cycles and proliferation indexes of cultured EPI-NCSC had the same variation pattern on coated dishes and PLGA membrane. Then cultured EPI-NCSC were mixed with equal amount of extracellular matrix and injected into a PLGA conduit to connect a 10 mm surgery excision gap of rat sciatic nerve, Dulbecco's Modified Eagle's medium (DMEM) was used to substitute EPI-NCSC in the control group. After four weeks of transplantation, the defected sciatic nerve achieved a histological restoration, the sensory function of rat hind limb was partly recovered and the sciatic nerve index was also improved. The above results showed that a PLGA conduit filled with EPI-NCSC has a good repair effect on the peripheral nerve injury. PMID:25195250

  2. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong; Cho, Yong-Beom

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was ob...

  3. Astaxanthin Improves Stem Cell Potency via an Increase in the Proliferation of Neural Progenitor Cells

    Yung-Hyun Choi; Byung-Woo Kim; Woobong Choi; Jong-Hwan Lee; Wun-Jae Kim; Soo-Wan Nam; Jeong-Hwan Kim

    2010-01-01

    The present study was designed to investigate the question of whether or not astaxanthin improves stem cell potency via an increase in proliferation of neural progenitor cells (NPCs). Treatment with astaxanthin significantly increased proliferation and colony formation of NPCs. For identification of possible activated signaling molecules involved in active cell proliferation occurring after astaxanthin treatment, total protein levels of several proliferation-related proteins, and expression l...

  4. Endogenous Expression of Matriptase in Neural Progenitor Cells Promotes Cell Migration and Neuron Differentiation*

    Fang, Jung-Da; Chou, Hsiao-Chin; Tung, Hsiu-Hui; Huang, Pao-Yi; Lee, Sheau-Ling

    2010-01-01

    Recent studies show that type II transmembrane serine proteases play important roles in diverse cellular activities and pathological processes. Their expression and functions in the central nervous system, however, are largely unexplored. In this study, we show that the expression of one such member, matriptase (MTP), was cell type-restricted and primarily expressed in neural progenitor (NP) cells and neurons. Blocking MTP expression or MTP activity prevented NP cell traverse of reconstituted...

  5. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    Parker, Mark A.; Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, ...

  6. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  7. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel;

    2011-01-01

    OBJECTIVE: The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become...

  8. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  9. The Neural Network analysis for the single cell of Molten Carbonate Fuel cell (MCFC

    S. K. Dhakad, S.C.soni, Pankaj Agrawal, Prashant Baredaer

    2012-11-01

    Full Text Available In the present work try to trained the performance and evolution for the single cell of the MCFC by using the Neural Network tool in the MAT-Lab software. The data used for the Neural Network training are, simulated results, these are obtained for the single cell of the MCFC [1].The analysis carried out for n input vectors (known input variables i.e. temperature and load current and power as output vector. Figure 2 shown simulated powers at the different values of input variables, as load current & temperature. Figures 3 shown the trained results are obtained using model in the form of approximate feed forward neural network for the 4 layers & 2:3:2 neurons. Power as the output vector of the MCFC is well compare to the simulated results shown in figure 5.

  10. The protective effect of magnesium sulfate against irradiation injury of neural stem cells in neonatal rats

    Objective: To study the protection of magnesium sulfate against radiation-induced injury of neural stem cells. Methods: Brain tissues of new-born Sprague-Dawley (SD) rats were dissociated to culture the neural stem cells. The neural stern cells were divided into 3 groups as blank control group, experimental control group and experimental group (with magnesium sulfate). Observe neural stem cell apoptosis after being irradiated with 2 Gy of gamma rays, detect the cell cycle by FCM on 24 h and 48 h after being irradiated with 2 Gy, 4 Gy. Results: Compared with the blank control group, the apoptosis of neural stem cells in the experimental control group was obvious, and the neural stem cells were blocked in G1, G2 phase obviously. Compared with the experimental control group, the number of the apoptotic cells in the experimental group decreased and the cell cycle blocking was also reduced significantly (P<0.05). Conclusion: Magnesium sulfate can alleviate the injury of neural stem cells; ease the apoptosis and the cell cycle blocking after irradiation. (authors)

  11. Angiogenic factors stimulate growth of adult neural stem cells.

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  12. Functional integration of human neural precursor cells in mouse cortex.

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  13. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  14. Regulation of endogenous neural stem/progenitor cells for neural repair - factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    Kimberly eChristie

    2013-01-01

    Full Text Available Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ of the lateral ventricles and the subgranular zone (SGZ of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioural outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem /precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.

  15. Folic acid supplement use in the prevention of neural tube defects.

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  16. Identification and culture of neural stem cells isolated from adult rat subventricular zone following fluid percussion brain injury

    2010-01-01

    Objective To analyze proliferation and differentiation of glial fibrillary acid protein(GFAP)-and nestin-positive(GFAP+/nestin+)cells isolated from the subventricular zone following fluid percussion brain injury to determine whether GFAP+/nestin+ cells exhibit characteristics of neural stem cells.Methods Male Sprague-Dawley rats,aged 12 weeks and weighing 200-250 g,were randomly and evenly assigned to normal control group and model group.In the model group,a rat model of fluid percussion brain injury was es...

  17. Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network

    CHAI Yu-hua; PAN Wei; NING Hai-long

    2005-01-01

    In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.

  18. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    Walmod, P S; Foley, A; Berezin, A; Ellerbeck, U; Nau, H; Bock, E; Berezin, V

    1998-01-01

    Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image...

  19. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    Rajalaxmi Natarajan

    Full Text Available Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3 plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs. In vitro hNSCs primed with fibroblast growth factor 2 (FGF2 exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF, which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases.

  20. Properties of Neural Crest-Like Cells Differentiated from Human Embryonic Stem Cells

    Křivánek, J.; Švandová, Eva; Králik, J.; Hajda, S.; Fedr, Radek; Vinařský, V.; Jaroš, J.; Souček, Karel

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 30-38. ISSN 0015-5500 R&D Projects: GA ČR(CZ) GAP304/11/1418 Institutional support: RVO:68081707 Keywords : stem cell differentiation * neural crest * odontogenesis Subject RIV: BO - Biophysics; ED - Physiology (UZFG-Y) Impact factor: 1.000, year: 2014

  1. MR-based imaging of neural stem cells

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  2. Secretome analysis of human oligodendrocytes derived from neural stem cells.

    Woo Kyung Kim

    Full Text Available In this study, we investigated the secretome of human oligodendrocytes (F3.Olig2 cells generated from human neural stem cells by transduction with the gene encoding the Olig2 transcription factor. Using mRNA sequencing and protein cytokine arrays, we identified a number of biologically important secretory proteins whose expression has not been previously reported in oligodendrocytes. We found that F3.Olig2 cells secrete IL-6, PDGF-AA, GRO, GM-CSF, and M-CSF, and showed prominent expression of their corresponding receptors. Co-expression of ligands and receptors suggests that autocrine signaling loops may play important roles in both differentiation and maintenance of oligodendrocytes. We also found that F3.Olig2 cells secrete matrix metalloproteinases and matrix metalloproteinase-associated proteins associated with functional competence of oligodendrocytes. The results of our secretome analysis provide insights into the functional and molecular details of human oligodendrocytes. To the best of our knowledge, this is the first systematic analysis of the secretome of oligodendrocytes.

  3. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  4. Neural stem cells could serve as a therapeutic material forage-related neurodegenerative diseases

    Sarawut Suksuphew; Parinya Noisa

    2015-01-01

    Progressively loss of neural and glial cells is the keyevent that leads to nervous system dysfunctions anddiseases. Several neurodegenerative diseases, forinstance Alzheimer's disease, Parkinson's disease, andHuntington's disease, are associated to aging andsuggested to be a consequence of deficiency of neuralstem cell pool in the affected brain regions. Endogenousneural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cellsare responsible for the regeneration of new neurons torestore, in the normal circumstance, the functions of thebrain. Endogenous neural stem cells can be isolated,propagated, and, notably, differentiated to most celltypes of the brain. On the other hand, other types ofstem cells, such as mesenchymal stem cells, embryonicstem cells, and induced pluripotent stem cells can alsoserve as a source for neural stem cell production, thathold a great promise for regeneration of the brain. Thereplacement of neural stem cells, either endogenousor stem cell-derived neural stem cells, into impairedbrain is highly expected as a possible therapeutic meanfor neurodegenerative diseases. In this review, clinicalfeatures and current routinely treatments of agerelatedneurodegenerative diseases are documented.Noteworthy, we presented the promising evidence ofneural stem cells and their derivatives in curing suchdiseases, together with the remaining challenges toachieve the best outcome for patients.

  5. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  6. The homeostatic astroglia emerges from evolutionary specialization of neural cells.

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-08-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377722

  7. Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod

    Buckley, Clare E.; Ren, Xiaoyun; Ward, Laura C; Girdler, Gemma C; Araya, Claudio; Green, Mary J; Clark, Brian S.; Link, Brian A.; Clarke, Jonathan D. W.

    2012-01-01

    By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necess...

  8. An emerging molecular mechanism for the neural vs mesodermal cell fate decision

    Roman A Li; Kate G Storey

    2011-01-01

    @@ Understanding how primary cell fates are established and maintained in the vertebrate embryo provides important insights that inform directed in vitro differentiation of embryonic stem cells or adult cells that have undergone induced pluripotency.Neural differentiation is of particular interest as new neural cells may contribute to therapeutic approaches to nervous system injury and diseases and provide in vitro disease models for small molecule screening and for determining personalized drug treatments.

  9. Opti mal Protocols to Expand Neural Stem Cells in Rotating Wall Vessel Bioreactor

    2005-01-01

    1 IntroductionNeurodegenerative disorders exert on an enormous cost, both financially and emotionally, on afflicted individuals and their families for a long time. Fortunately, a neural stem cell (NSC) was identified in the adult central nervous system (CNS) and induced to proliferate untransformed in vitro~([1,2]). Neural stem cells are extremely primitive cells capable of self-maintenance and have the ability to generate large numbers of cells, including all of the phenotypes present in the adult CNS. The...

  10. Effect of ionizing radiation on the differentiation of neural stem cells

    In order to investigate the effect of ionizing radiation on neural stem cells differentiation, we cultured neural stem cells of newborn rat in serum-free media containing EGF or bFGF. The neural stem cells were divided into 4 groups, which were irradiated by γ-rays with doses of 0, 0.5, 1, and 2 Gy. The irradiated cells were cultured under the same condition for 7 days, and the nestin content of neural stem cell was detected by immunofluorescence. The same method was carried out with irradiated cells in the culture medium after removing EGF, bFGF for 7 days, NSE and GFAP expression content and nestin were also detected by immunofluorescence. It has been found that the irradiated neural stem cells can express less nestin and differentiate more neurons compared to that of control group. Results show that ionizing radiation can induce the differentiation of the neural stem cells and make the neural stem cells differentiate more neuron. (authors)