WorldWideScience

Sample records for acid neural cell

  1. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.; Mahoney, Melissa J.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cel...

  2. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  3. Dehydroepiandroesteron Accompanied Retinoic Acid Enhances Differentiation of P19 Embryonal Stem Cells into Neural Cells

    Hossein Azizi

    2009-01-01

    Full Text Available Objective: Dehydroepiandroesteron (DHEA is a neurosteroid with potential effect on neurogenesis,neuronal survival and proliferation of neural progenitor cells. However there is nodirect evidence for its biological effect during the differentiation of stem cell-derived neurons.The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblastsafter exposure to retinoic acid (RA. This study was initiated to assess the effect of DHEA onneural cells derived from p19 embryonal carcinoma stem cells.Materials and Methods: P19 cells were suspended in dulbecco’s modified eagle’s medium(DMED containing fetal bovine serum (FBS in bacterial-grade petri dishes in the presenceof RA, DHEA and RA+DHEA for 6 days. Then cells were trypsinized for dispersion and replacedin poly L- lysine (10μg/ml coated tissue culture dishes without RA and DHEA for 4days. The expression of neural markers Map-2, Tau, beta-tubulin III- clone Juj (Tuj1, astrocytemarker GFAP and the percent of neurotransmitters tyrosin hydroxylase, glutamate, serotoninand actyl cholin transferase were evaluated by flowcytometry, immunocytochemistryand RT-PCR analysis.Results: Flowcytometry analysis showed that about 63 ± 3% of the cells express neuronalmarker Tuj1 and about 5 ± 1% of the cells express tyrosine hydroxylase neurotransmittersin RA treated groups. However when RA and DHEA were added to the culture medium, Tuj1expression increased to about 74 ± 1% and tyrosine hydroxylase expression increased to23 ± 2%.Conclusion: Results showed that DHEA accompanied RA increased the number of Tuj1 anddopaminergic neurons that were derived from p19 embryonal carcinoma stem cells.

  4. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    Gao J

    2013-07-01

    Full Text Available Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The current study aims to determine whether needle insertion into intact rat spinal cords creates a hypoxic environment that is prone to lipid peroxidation damage upon reperfusion, and whether an antioxidant protects human neural stem cells (hNSCs both in vitro and post-transplantation into rat spinal cords. We show here that a single needle injection creates a hypoxic environment within the rat spinal cord that peaks at approximately 12 hours before reperfusion occurs. Lipid peroxidation damage at the transplantation site is evident by 48 hours post-needle insertion. In an in vitro model, hypoxia-reperfusion results in apoptotic death of hNSCs. Pretreatment with the antioxidant, α-lipoic acid, protects hNSCs against hypoxia-reperfusion injury and oxidative stress–mediated cell death. Increasing glutathione, but not Akt signaling, contributes to the protective effect of lipoic acid. Pretreating hNSCs with lipoic acid also increases the cell survival rate 1 month post-transplantation. Further investigation is warranted to develop improved techniques to maximize the survival of transplanted stem cells. Keywords: neural stem cell, transplantation, hypoxia-reperfusion, antioxidant, cell survival, lipoic acid

  5. Optimal time point for the transplantation of neural stem cells induced to differentiate with retinoic acid

    Shuxin Wang; Dengji Pan; Na Liu; Yongming Liu; Juan Chen; Houjie Ni; Zhouping Tang

    2011-01-01

    Previous studies have demonstrated that differentiated neural stem cells (NSCs) are more suitable for transplantation than non-differentiated NSCs. In this study, NSCs were expanded in vitro for two passages, induced with retinoic acid to differentiate, and harvested between 1-6 days later. They were subsequently cultured in artificial cerebrospinal fluid for an additional 3 days, during which their growth and morphology was monitored. NSCs induced for 4 days exhibited a peak rate of cells differentiating into neurons and robust growth. Our results indicate that the optimal time point for transplanting NSCs is following a 4-day period of induced differentiation.

  6. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  7. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  8. Omega-3 Polyunsaturated Fatty Acids Protect Neural Progenitor Cells against Oxidative Injury

    Qiang Liu

    2014-04-01

    Full Text Available The omega-3 polyunsaturated fatty acids (ω-3 PUFAs, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, derived mainly from fish oil, play important roles in brain development and neuroplasticity. Here, we reported that application of ω-3 PUFAs significantly protected mouse neural progenitor cells (NPCs against H2O2-induced oxidative injury. We also isolated NPCs from transgenic mice expressing the Caenorhabditis elegans fat-1 gene. The fat-1 gene, which is absent in mammals, can add a double bond into an unsaturated fatty acid hydrocarbon chain and convert ω-6 to ω-3 fatty acids. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining showed that a marked decrease in apoptotic cells was found in fat-1 NPCs after oxidative injury with H2O2 as compared with wild-type NPCs. Quantitative RT-PCR and Western blot analysis demonstrated a much higher expression of nuclear factor erythroid 2-related factor 2 (Nrf2, a master transcriptional factor for antioxidant genes, in fat-1 NPCs. The results of the study provide evidence that ω-3 PUFAs resist oxidative injury to NPCs.

  9. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  10. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  11. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution.

    Crawford, Michael A; Broadhurst, C Leigh; Guest, Martin; Nagar, Atulya; Wang, Yiqun; Ghebremeskel, Kebreab; Schmidt, Walter F

    2013-01-01

    Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence. PMID:23206328

  12. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.

    Sudwilai, Thitima; Ng, Jun Jye; Boonkrai, Chatikorn; Israsena, Nipan; Chuangchote, Surawut; Supaphol, Pitt

    2014-01-01

    Neuronal activities play critical roles in both neurogenesis and neural regeneration. In that sense, electrically conductive and biocompatible biomaterial scaffolds can be applied in various applications of neural tissue engineering. In this study, we fabricated a novel biomaterial for neural tissue engineering applications by coating electrospun poly(lactic acid) (PLA) nanofibers with a conducting polymer, polypyrole (PPy), via admicellar polymerization. Optimal conditions for polymerization and preparation of PPy-coated electrospun PLA nanofibers were obtained by comparing results from scanning electron microscopy, X-ray photoelectron spectrometer, and surface conductivity tests. In vitro cell culture experiments showed that PPy-coated electrospun PLA fibrous scaffold is not toxic. The scaffold could support attachment and migration of neural progenitor cells. Neurons derived from progenitor exhibited long neurite outgrowth under electrical stimulation. Our study concluded that PPy-coated electrospun PLA fibers had a good biocompatibility with neural progenitor cells and may serve as a promising material for controlling progenitor cell behaviors and enhancing neural repair. PMID:24933469

  13. Synergistic Effect of Schwann Cells and Retinoic Acid on Differentiation and Synaptogenesis of Hippocampal Neural Stem Cells in vitro

    XUE-BAO ZHANG; YUAN-SHAN ZENG; WEI ZHANG; YA-YUN CHEN; WEI ZHANG; YI XIONG; SUI-JUN CHEN

    2006-01-01

    Objective To investigate the synergistic effect of Schwann cells (YCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats. Methods The classical method for 2×2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs,and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis. Results After NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95. Conclusion SCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.

  14. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  15. Subcellular distribution of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells within subventricular zone of adult rats

    Zhining Li; Wenlong Lü; Hongyan Dong; Hongbin Fan; Ruiguo Dong; Tiejun Xu

    2011-01-01

    The subcellular localization of N-methyl-D-aspartic acid receptor subunit 1 in neural stem cells of the subventricular zone of adult rats was detected using electron microscopy, following immunohistochemistry and immunogold-silver double staining. Results confirmed the presence of neural stem cells in the subventricular zone, which is a key neurogenic region in the central nervous system of adult mammals. The expression of N-methyl-D-aspartic acid receptor subunit 1 was higher than that of nestin and mainly distributed in the cell membrane, cytoplasm, rough endoplasmic reticulum and Golgi complex of neural stem cells.

  16. Membrane properties of neural stem cells after in vitro induced neurogenesis by retinoic acid

    Jelitai, M.; Anděrová, Miroslava; Marko, K.; Madarasz, E.; Syková, Eva

    Praha, 2003. s. 37. ISBN 80-239-0887-1. [IBRO World Congress of Neuroscience /6./. 10.07.2003-15.07.2003, Praha] R&D Projects: GA ČR GA305/02/1528; GA ČR GA305/03/1172; GA MŠk LN00A065 Institutional research plan: CEZ:MSM 111300004 Keywords : neural stem cells Subject RIV: FH - Neurology

  17. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  18. Enzymatic Depletion of the Polysialic Acid Moiety Associated with the Neural Cell Adhesion Molecule Inhibits Antidepressant Efficacy.

    Wainwright, Steven R; Barha, Cindy K; Hamson, Dwayne K; Epp, Jonathan R; Chow, Carmen; Lieblich, Stephanie E; Rutishauser, Urs; Galea, Liisa Am

    2016-05-01

    Antidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) functions broadly, serving to mediate synaptic plasticity, neurogenesis, neurotrophic factor signaling, and inflammatory signaling throughout the brain; all of which are associated with the pathophysiology and treatment of depression. Moreover, the expression of PSA-NCAM is reduced by depression, and conversely enhanced by antidepressant treatment, particularly within the hippocampus. Here we demonstrate that selectively cleaving the polysialic acid moiety, using the bacteriophage-derived enzyme endoneuraminidase N, completely inhibits the antidepressant efficacy of the selective-serotonin reuptake inhibitor fluoxetine (FLX) in a chronic unpredictable stress model of depression. We also observe a corresponding attenuation of FLX-induced hippocampal neuroplasticity, including decreased hippocampal neurogenesis, synaptic density, and neural activation. These data indicate that PSA-NCAM-mediated neuroplasticity is necessary for antidepressant action; therefore PSA-NCAM represents an interesting, and novel, target for pharmacotherapy. PMID:26530284

  19. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  20. Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid - inhibitory effect of serum

    Pacherník, J.; Bryja, Vítězslav; Ešner, M.; Kubala, Lukáš; Dvořák, Petr; Hampl, Aleš

    2005-01-01

    Roč. 54, - (2005), s. 115-122. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP524/03/P171; GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z5039906 Keywords : neural differentiation Subject RIV: FH - Neurology Impact factor: 1.806, year: 2005

  1. Lipoic acid enhances survival of transplanted neural stem cells by reducing transplantation-associated injury

    Wu, Ping

    2013-01-01

    Junling Gao,1,* Jason R Thonhoff,1,2,* Tiffany J Dunn,1 Ping Wu1 1Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Neurology, The Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: The efficacy of stem cell-based therapy for neurological diseases depends highly on cell survival post-transplantation. One of the key factors affecting cell survival is the grafting procedure. The curren...

  2. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. PMID:27044662

  3. Retinoic acid enhances expression of neural specific genes in Sca-1+ cells of mouse fetal liver through activating protein kinase C

    Gexiu Liu; Yuan Zhang; Dongmei He

    2006-01-01

    BACKGROUND: Interstitial stem cell is characterized by multiple differentiations,and retinoic acid (RA) can induce differentiation of stromal cells into nerve tissue cells in fetal liver of mice, so, its signal transduction pathway should be discussed to trigger differentiation.OBJECTIVE: To study the effect of RA on expression of neural specific gene and its signal transduction in fetal liver of mice.DESIGN: Paired controlled study on the basis of cell.SETTING: Institute of Hematology, Medical College of Jinan University.MATERIALS: The experiment was completed in the Institute of Hematology, Medical College of Jinan University from April to December 2005. C57BL/6 mice, of clean grade, aged 8-10 weeks, weighting 20-35 g,10 females and 4 males, were selected in this study.METHODS: Sca-1+ cells in fetal liver were prepared with MACS kit and cultured with DMEM + 10% fetal bovine serum (FBS). On the fourth day, it was added with or without protein kinase C (PKC) inhibitor chelerythrine chloride (3 μmol/L) and 5×10-7 mol/L RA for 24 hours, and then incubated in serum-free medium for 5 days. Expressions of genes were assayed by Western blotting and semi-quantitative RT-PCR.MAIN OUTCOME MEASURES: Expression of neural specific gene NF-L, NF-H, BF-1 and TH.RESULTS: Expression of neural specific gene NF-L, NF-H, BF-1 and TH was significantly increased after treatment with RA and they were increased 5.06, 5.15, 4.63 and 3.33 times, respectively. However, chelerythrine chloride could inhibit expression of neural specific gene NF-L, NF-H, BF-1 and TH induced by RA.CONCLUSION: RA can promote the expression of neural specific genes in Sca-1+ cells of fetal liver, and its pathway may be related to PKC.

  4. Neural stem cell derived tumourigenesis

    Francesca Froldi; Milán Szuperák; Cheng, Louise Y.

    2015-01-01

    In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we wil...

  5. Flexibility of neural stem cells

    EumorphiaRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  6. The neural cell adhesion molecule

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  7. Expression of Hyaluronan and the Hyaluronan-Binding Proteoglycans Neurocan, Aggrecan and Versican by Neural Stem Cells and Neural Cells Derived from Embryonic Stem Cells

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-01-01

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans agg...

  8. Polysialic Acid Neural Cell Adhesion Molecule (PSA-NCAM) is an adverse prognosis factor in glioblastoma, and regulates olig2 expression in glioma cell lines

    Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. Although patient survival is limited to one year on average, significant variability in outcome is observed. The assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall survival (OS) and disease free survival (DFS). We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the cox regression proportional hazard models. The threshold for statistical significance was p = 0.05. We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription factor required for gliomagenesis. PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients

  9. Retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells is effected by modulation of intracellular redox state

    Konopka, Roman; Pacherník, J.; Lojek, Antonín; Kubala, Lukáš

    Brno, 2007. s. 110-111. ISBN 978-80-239-9591-6. [Analytical Cytometry IV. 23.06.2007-26.06.2007, Brno] R&D Projects: GA ČR(CZ) GA524/06/1197 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : retinoic acid * NADPH oxidase * embryonal carcinoma cells Subject RIV: BO - Biophysics

  10. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.

    Piraino, P; Ricciardi, A; Salzano, G; Zotta, T; Parente, E

    2006-08-01

    Conventional multivariate statistical techniques (hierarchical cluster analysis, linear discriminant analysis) and unsupervised (Kohonen Self Organizing Map) and supervised (Bayesian network) artificial neural networks were compared for as tools for the classification and identification of 352 SDS-PAGE patterns of whole cell proteins of lactic acid bacteria belonging to 22 species of the genera Lactobacillus, Leuconostoc, Enterococcus, Lactococcus and Streptococcus including 47 reference strains. Electrophoretic data were pre-treated using the logistic weighting function described by Piraino et al. [Piraino, P., Ricciardi, A., Lanorte, M. T., Malkhazova, I., Parente, E., 2002. A new procedure for data reduction in electrophoretic fingerprints of whole-cell proteins. Biotechnol. Lett. 24, 1477-1482]. Hierarchical cluster analysis provided a satisfactory classification of the patterns but was unable to discriminate some species (Leuconostoc, Lb. sakei/Lb. curvatus, Lb. acidophilus/Lb. helveticus, Lb. plantarum/Lb. paraplantarum, Lc. lactis/Lc. raffinolactis). A 7x7 Kohonen self-organizing map (KSOM), trained with the patterns of the reference strains, provided a satisfactory classification of the patterns and was able to discriminate more species than hierarchical cluster analysis. The map was used in predictive mode to identify unknown strains and provided results which in 85.5% of cases matched the classification obtained by hierarchical cluster analysis. Two supervised tools, linear discriminant analysis and a 23:5:2 Bayesian network were proven to be highly effective in the discrimination of SDS-PAGE patterns of Lc. lactis from those of other species. We conclude that data reduction by logistic weighting coupled to traditional multivariate statistical analysis or artificial neural networks provide an effective tool for the classification and identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins. PMID:16480784

  11. Neural Tube Defects, Folic Acid and Methylation

    Henk J. Blom

    2013-09-01

    Full Text Available Neural tube defects (NTDs are common complex congenital malformations resulting from failure of the neural tube closure during embryogenesis. It is established that folic acid supplementation decreases the prevalence of NTDs, which has led to national public health policies regarding folic acid. To date, animal studies have not provided sufficient information to establish the metabolic and/or genomic mechanism(s underlying human folic acid responsiveness in NTDs. However, several lines of evidence suggest that not only folates but also choline, B12 and methylation metabolisms are involved in NTDs. Decreased B12 vitamin and increased total choline or homocysteine in maternal blood have been shown to be associated with increased NTDs risk. Several polymorphisms of genes involved in these pathways have also been implicated in risk of development of NTDs. This raises the question whether supplementation with B12 vitamin, betaine or other methylation donors in addition to folic acid periconceptional supplementation will further reduce NTD risk. The objective of this article is to review the role of methylation metabolism in the onset of neural tube defects.

  12. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis.

    Jeong, Claire G; Francisco, Aubrey T; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L; Setton, Lori A

    2014-08-01

    Hyaluronic acid (HA)-poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular "outcomes" of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and annulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70 to 489kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower-molecular-weight HA, with evidence of higher sulfated glycosaminoglycan production also upon lower-HA-molecular-weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters. PMID:24859415

  13. Producing Insulin from Neural Cells

    Yuichi Hori; Xueying Gu; Xiaodong Xie; Kim, Seung K.

    2005-01-01

    BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals t...

  14. Neural Stem Cells and Glioblastoma

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neura...

  15. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  16. Neural differentiation of human embryonic stem cells

    Dhara, Sujoy K.; Stice, Steven L.

    2008-01-01

    Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the integration of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to new and novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special...

  17. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway

    Arenas Ernest

    2008-12-01

    Full Text Available Abstract Background Valproic acid (VPA, a commonly used mood stabilizer that promotes neuronal differentiation, regulates multiple signaling pathways involving extracellular signal-regulated kinase (ERK and glycogen synthase kinase3β (GSK3β. However, the mechanism by which VPA promotes differentiation is not understood. Results We report here that 1 mM VPA simultaneously induces differentiation and reduces proliferation of basic fibroblast growth factor (bFGF-treated embryonic day 14 (E14 rat cerebral cortex neural progenitor cells (NPCs. The effects of VPA on the regulation of differentiation and inhibition of proliferation occur via the ERK-p21Cip/WAF1 pathway. These effects, however, are not mediated by the pathway involving the epidermal growth factor receptor (EGFR but via the pathway which stabilizes Ras through β-catenin signaling. Stimulation of differentiation and inhibition of proliferation in NPCs by VPA occur independently and the β-catenin-Ras-ERK-p21Cip/WAF1 pathway is involved in both processes. The independent regulation of differentiation and proliferation in NPCs by VPA was also demonstrated in vivo in the cerebral cortex of developing rat embryos. Conclusion We propose that this mechanism of VPA action may contribute to an explanation of its anti-tumor and neuroprotective effects, as well as elucidate its role in the independent regulation of differentiation and inhibition of proliferation in the cerebral cortex of developing rat embryos.

  18. Differentiation of chicken embryonic germ cells into neural stem cells in vitro

    Wang, Juan; Pan, Xiao-hong; Du, Li-Xin

    2008-01-01

    To explore the feasibility of inducing chicken embryonic germ cells into neural stem cells in vitro. Embryoid bodies (EB) induced by retinoic acid (RA), were selected in neural stem cell-defined medium for 7 days, and the resulting morphological changes were observed. The selected cells were stained immunocytochemically with anti-nestin antibodies, and their expansion and differentiation were analyzed. Large amounts of neurosphere-like colonies were derived from embryoid bodies in the selecte...

  19. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  20. Neonatal Maternal Separation Alters the Capacity of Adult Neural Precursor Cells to Differentiate into Neurons Via Methylation of Retinoic Acid Receptor Gene Promoter

    Boku, Shuken; Toda, Hiroyuki; Nakagawa, Shin; Kato, Akiko; Inoue, Takeshi; Koyama, Tsukasa; Hiroi, Noboru; Kusumi, Ichiro

    2015-01-01

    BACKGROUND: Early life stress is thought to contribute to psychiatric disorders, but the precise mechanisms underlying this link are poorly understood. As neonatal stress decreases adult hippocampal neurogenesis, which, in turn, functionally contributes to many behavioral phenotypes relevant to psychiatric disorders, we examined how in vivo neonatal maternal separation (NMS) impacts the capacity of adult hippocampal neural precursor cells via epigenetic alterations in vitro. METHODS: Rat pups...

  1. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  2. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  3. Immunological control of adult neural stem cells

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many patholog...

  4. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  5. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL

    Han Seol

    2011-07-01

    Full Text Available Abstract Background At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis. Apoptosis occurs in not only neuron but also in NPCs and neuroblast. When growth and survival signals such as EGF or LIF are removed, apoptosis is activated as well as the induction of differentiation. To investigate the regulation of cell death during developmental stage, it is essential to investigate the regulation of apoptosis of NPCs. Methods Neural progenitor cells were cultured from E14 embryonic brains of Sprague-Dawley rats. For in vivo VPA animal model, pregnant rats were treated with VPA (400 mg/kg S.C. diluted with normal saline at E12. To analyze the cell death, we performed PI staining and PARP and caspase-3 cleavage assay. Expression level of proteins was investigated by Western blot and immunocytochemical assays. The level of mRNA expression was investigated by RT-PCR. Interaction of Bcl-XL gene promoter and NF-κB p65 was investigated by ChIP assay. Results In this study, FACS analysis, PI staining and PARP and caspase-3 cleavage assay showed that VPA protects cultured NPCs from cell death after growth factor withdrawal both in basal and staurosporine- or hydrogen peroxide-stimulated conditions. The protective effect of prenatally injected VPA was also observed in E16 embryonic brain. Treatment of VPA decreased the level of IκBα and increased the nuclear translocation of NF-κB, which subsequently enhanced expression of anti-apoptotic protein Bcl-XL. Conclusion To the best of our knowledge, this is the first report to indicate the reduced death of NPCs by VPA at developmentally

  6. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  7. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  8. Neural repair with pluripotent stem cells.

    Döbrössy, Máté; Pruszak, Jan

    2013-01-01

    The nervous system is characterized by its complex network of highly specialized cells that enable us to perceive stimuli from the outside world and react accordingly. The computational integration enabled by these networks remains to be elucidated, but appropriate sensory input, processing, and motor control are certainly essential for survival. Consequently, loss of nervous tissue due to injury or disease represents a considerable biomedical challenge. Stem cell research offers the promise to provide cells for nervous system repair to replace lost and damaged neural tissue and alleviate disease. We provide a protocol-based chapter on fundamental principles and procedures of pluripotent stem cell (PSC) differentiation and neural transplantation. Rather than detailed methodological step-by-step descriptions of these procedures, we provide an overview and highlight the most critical aspects and key steps of PSC neural induction, subtype specification in different in vitro systems, as well as neural cell transplantation to the central nervous system. We conclude with a summary of suitable readout methods including in vitro phenotypic analysis, histology, and functional analysis in vivo. PMID:24029933

  9. Study of neural cells on organic semiconductor ultra thin films

    Bystrenova, Eva; Tonazzini, Ilaria; Stoliar, Pablo; Greco, Pierpaolo; Lazar, Adina; Dutta, Soumya; Dionigi, Chiara; Cacace, Marcello; Biscarini, Fabio [ISMN-CNR, Bologna (Italy); Jelitai, Marta; Madarasz, Emilia [IEM- HAS, Budapest (Hungary); Huth, Martin; Nickel, Bert [LMU, Munich (Germany); Martini, Claudia [Dept. PNPB, Univ. of Pisa (Italy)

    2008-07-01

    Many technological advances are currently being developed for nano-fabrication, offering the ability to create and control patterns of soft materials. We report the deposition of cells on organic semiconductor ultra-thin films. This is a first step towards the development of active bio/non bio systems for electrical transduction. Thin films of pentacene, whose thickness was systematically varied, were grown by high vacuum sublimation. We report adhesion, growth, and differentiation of human astroglial cells and mouse neural stem cells on an organic semiconductor. Viability of astroglial cells in time was measured as a function of the roughness and the characteristic morphology of ultra thin organic film, as well as the features of the patterned molecules. Optical fluorescence microscope coupled to atomic force microscope was used to monitor the presence, density and shape of deposited cells. Neural stem cells remain viable, differentiate by retinoic acid and form dense neuronal networks. We have shown the possibility to integrate living neural cells on organic semiconductor thin films.

  10. Clinical translation of human neural stem cells.

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  11. Differentiation state determines neural effects on microvascular endothelial cells

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  12. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Emmanuelle Gruz-Gibelli; Natacha Chessel; Clélia Allioux; Pascale Marin; Françoise Piotton; Geneviève Leuba; Herrmann, François R.; Armand Savioz

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigat...

  13. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  14. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation. PMID:12186855

  15. Cells in Multidimensional Recurrent Neural Networks

    Leifert, G.; Strauß, T.; Grüning, T; Labahn, R.

    2014-01-01

    The transcription of handwritten text on images is one task in machine learning and one solution to solve it is using multi-dimensional recurrent neural networks (MDRNN) with connectionist temporal classification (CTC). The RNNs can contain special units, the long short-term memory (LSTM) cells. They are able to learn long term dependencies but they get unstable when the dimension is chosen greater than one. We defined some useful and necessary properties for the one-dimensional LSTM cell and...

  16. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  17. Radiation response of rodent neural precursor cells

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  18. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Emmanuelle Gruz-Gibelli

    2016-01-01

    Full Text Available The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer’s disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs in aging and Alzheimer’s disease. All-trans retinoic acid (RA, a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  19. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    Direct-write printing of stem cells within biomaterials presents an opportunity to engineer tissue for in vitro modeling and regenerative medicine. Here, a first example of constructing neural tissue by printing human neural stem cells that are differentiated in situ to functional neurons and supporting neuroglia is reported. The supporting biomaterial incorporates a novel clinically relevant polysaccharide-based bioink comprising alginate, carboxymethyl-chitosan, and agarose. The printed bioink rapidly gels by stable cross-linking to form a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. Differentiated neurons form synaptic contacts, establish networks, are spontaneously active, show a bicuculline-induced increased calcium response, and are predominantly gamma-aminobutyric acid expressing. The 3D tissues will facilitate investigation of human neural development, function, and disease, and may be adaptable for engineering other 3D tissues from different stem cell types. PMID:27028356

  20. Acid distribution in phosphoric acid fuel cells

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  1. Pipeline for Tracking Neural Progenitor Cells

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter;

    2012-01-01

    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play a...... key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  2. Proteomics of neural stem cells

    Skalníková, Helena; Vodička, Petr; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 5, č. 2 (2008), s. 175-186. ISSN 1478-9450 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : cell-based regnerative and reparative therapy * conditioned media * differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.848, year: 2008

  3. Aging differentially affects male and female neural stem cell neurogenic properties

    Jay Waldron

    2010-09-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Montreal, Quebec, CanadaPurpose: Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies.Methods: Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting.Conclusion: We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased

  4. Skeletal myogenic potential of human and mouse neural stem cells.

    Galli, R; Borello, U; Gritti, A; Minasi, M G; Bjornson, C; Coletta, M; Mora, M; De Angelis, M G; Fiocco, R; Cossu, G; Vescovi, A L

    2000-10-01

    Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues. PMID:11017170

  5. Neural Stem Cells (NSCs) and Proteomics.

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  6. Neural Stem Cells (NSCs) and Proteomics*

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  7. Retinoic acid induction of genes associated with neural tube developmental defects

    Xinjun Li; Zhong Yang; Yi Zeng; Hong Xu; Hongli Li; Yangyun Han; Xiaodong Long; Chao You

    2010-01-01

    To date, little information has been available regarding genes involved in the regulation of embryonic cell development, which participate in retinoic acid-induced neural tube defects in mice.Previous studies have revealed seven differentially expressed genes involved in neural tube developmental defects. However, gene expression and regulation is a complex process. Therefore,gene expression differences between normal and defective neural tubes at 9.5 and 10.5 days were compared. A total of eight differentially expressed genes exhibited coincident alterations at embryonic 9.5 and 10.5 days. In mice with retinoic acid-induced neural tube defects, NeK7, IGFBP5,ZW10, Csf3r, PSMC6, Cdk5, and Rb1 expressions were downregulated, but Apoa-4 expression was upregulated. These results were confirmed by Northern blot hybridization. Results suggested that NeK7, IGFBP5, ZW10, Csf3r, PSMC6, Cdk5, Rb1, and Apoa-4 are important regulatory factors involved in neural tube defects.

  8. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  9. Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells

    Zhenkun Wang; Xiaoyang Zhao; Zhonghua Liu; Liu Wang; Qi Zhou; Chao Sheng; Tianda Li; Fei Teng; Lisi Sang; Fenglin Cao; Ziwei Wang; Wanwan Zhu; Wei Li

    2012-01-01

    Rat is a valuable model for pharmacological and physiological studies.Germline-competent rat embryonic stem (rES) cell lines have been successfully established and the molecular networks maintaining the self-renewing,undifferentiated state of rES cells have also been well uncovered.However,little is known about the differentiation strategies and the underlying mechanisms of how these authentic rat pluripotent stem cells give rise to specific cell types.The aim of this study is to investigate the neural differentiation capacity of rES cells.By means of a modified procedure based on previous publications - combination of mitogen-activated protein kinase (MAPK) and glycogen synthase kinase 3 (GSK3) inhibitors (two inhibitors,"2i") with feeder-conditioned medium,we successfully obtained high-quality rat embryoid bodies (rEBs) from rES cells and then differentiated them to tripotent neural progenitors.These rES cell-derived neural progenitor cells (rNPCs) were capable of self-renewing and giving rise to all three neural lineages,including astrocytes,oligodendrocytes,and neurons.Besides,these rES cell-derived neurons stained positive for y-aminobutyric acid (GABA) and tyrosine hydroxylase (TH).In summary,we develop an experimental system for differentiating rES cells to tripotent neural progenitors,which may provide a powerful tool for pharmacological test and a valuable platform for studying the pathogenesis of many neurodegenerative disorders such as Parkinson's disease and the development of rat nervous system.

  10. Segmentation and Tracking of Neural Stem Cell

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  11. Are newborn rat-derived neural stem cells more sensitive to lead neurotoxicity?

    Yan Ho Chan; Mingyong Gao; Wutian Wu

    2013-01-01

    Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+ from lead acetate [Pb (CH3COO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 200 μM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2+ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+ cytotoxicity.

  12. Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferation▿

    Sun, Guoqiang; Alzayady, Kamil; Stewart, Richard; Ye, Peng; Yang, Su; Li, Wendong; Shi, Yanhong

    2010-01-01

    Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation. Its role in neural stem cells has not been studied. We show here for the first time that LSD1 serves as a key regulator of neural stem cell proliferation. Inhibition of LSD1 activity or knockdown of LSD1 expression led to dramatically reduced neural stem cell proliferation. LSD1 is recruited by nuclear receptor TLX, an essential neural stem cell regulator, to the promoters of TLX...

  13. [Neural stem cells and Notch signalling].

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  14. Perlecan is required for FGF-2 signaling in the neural stem cell niche

    Aurelien Kerever

    2014-03-01

    Full Text Available In the adult subventricular zone (neurogenic niche, neural stem cells double-positive for two markers of subsets of neural stem cells in the adult central nervous system, glial fibrillary acidic protein and CD133, lie in proximity to fractones and to blood vessel basement membranes, which contain the heparan sulfate proteoglycan perlecan. Here, we demonstrate that perlecan deficiency reduces the number of both GFAP/CD133-positive neural stem cells in the subventricular zone and new neurons integrating into the olfactory bulb. We also show that FGF-2 treatment induces the expression of cyclin D2 through the activation of the Akt and Erk1/2 pathways and promotes neurosphere formation in vitro. However, in the absence of perlecan, FGF-2 fails to promote neurosphere formation. These results suggest that perlecan is a component of the neurogenic niche that regulates FGF-2 signaling and acts by promoting neural stem cell self-renewal and neurogenesis.

  15. Stat3 inhibition in neural lineage cells.

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  16. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  17. Differentiation of Human Breast-Milk Stem Cells to Neural Stem Cells and Neurons

    Seyed Mojtaba Hosseini

    2014-01-01

    Full Text Available Objectives. Human breast milk contains a heterogeneous population of cells that have the potential to provide a noninvasive source of cells for cell therapy in many neurodegenerative diseases without any ethical concern. The objectives of this study were to differentiate the breast milk-derived stem cells (BMDSC toward neural stem cells and then into the neurons and neuroglia. Materials and Methods. To do this, the BMDSC were isolated from human breast milk and cultured in Dulbecco’s modified Eagle medium/F12 (DMEM/F12 containing fibroblast growth factor (bFGF. The cells were then characterized by evaluation of the embryonic and stem cell markers. Then, the cells were exposed to culture medium containing 1% B27 and 2% N2 for 7–10 days followed by medium supplemented with B27, N2, bFGF 10 µg/mL, and endothelial growth factor (EGF 20 µg/mL. Then, the sphere-forming assay was performed. The spheres were then differentiated into three neural lineages by withdrawing growth factor in the presence of 5% FBS (fetal bovine serum. The immunofluorescence was done for β-tubulin III, O4, and GFAP (glial fibrillary acidic protein. Results. The results indicated that the cells expressed both embryonic and mesenchymal stem cell (MSC markers. They also showed neurospheres formation that was nestin-positive. The cells were also differentiated into all three neural lineages. Conclusion. The BMDSC can behave in the same way with neural stem cells. They were differentiated into oligodendrocytes, and astrocytes as well as neurons.

  18. Gene expression analysis of neuronal precursors from adult mouse brain and differential screen for neural stem cell markers

    Pennartz, Sandra

    2004-01-01

    In the adult mouse brain, neuronal precursor cells continuously emanate from neural stem cells (NSC) in the subventricular zone (SVZ) and migrate into the olfactory bulb (OB) where they differentiate to serve as replenishment for GABAergic interneurons. During the migration process, PSA-NCAM (Polysialic acid-Neural cell adhesion molecule) specifically marks the neuronal precursors (PSA+ cells). This phenomenon was exploited in the framework of this doctoral thesis to isolate a homogeneous cel...

  19. Development of neural precursor cells from mouse embryonic stem cells

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  20. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  1. Lack of telomerase activity in rabbit bone marrow stromal cells during differentiation along neural pathway

    CHEN Zhen-zhou; XU Ru-xiang; JIANG Xiao-dan; TENG Xiao-hua; LI Gui-tao; ZHOU Yü-xi

    2006-01-01

    Objective: To investigate telomerase activity in rabbit bone marrow stromal cells (BMSCs) during their committed differentiation in vitro along neural pathway and the effect of glial cell line-derived neurotrophic factor (GDNF) on the expression of telomerase.Methods: BMSCs were acquired from rabbit marrow and divided into control group, GDNF (10 ng/ml) group.No. ZL02134314. 4) supplemented with 10% fetal bovine serum (FBS) was used to induce BMSCs differentiation along neural pathway. Fluorescent immunocytochemistry was employed to identify the expressions of Nestin, neuronspecific endase (NSE), and gial fibrillary acidic protein (GFAP). The growth curves of the cells and the status of cell cycles were analyzed, respectively. During the differentiation, telomerase activitys were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (TRAP-ELISA).Results: BMSCs were successfully induced to differentiate along neural pathway and expressed specific markers of fetal neural epithelium, mature neuron and glial cells. Telomerase activities were undetectable in BMSCs during differentiation along neural pathway. Similar changes of cell growth curves, cell cycle status and telomerase expression were observed in the two groups.Conclusions: Rabbit BMSCs do not display telomerase activity during differentiation along neural pathway. GDNF shows little impact on proliferation and telomerase activity of BMSCs.

  2. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold

    Fei Huang; Qiang Shen; Jitong Zhao

    2013-01-01

    Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.

  3. Data defining markers of human neural stem cell lineage potential.

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  4. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  5. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  6. Effect of monocular deprivation on rabbit neural retinal cell densities

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  7. New mechanism for neural stem cell maintenance in early embryos

    2007-01-01

    @@ Teamning up with co-workers from Japan, UK and US,CAS biochemists have revealed a novel mechanism for maintaining neural stem cells in early embryos. Their work was published on the 6 August issue of Cell Development.

  8. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  9. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments

    Sanna Maria

    2006-02-01

    Full Text Available Abstract Background It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential. Results In order to identify factors able to lead differentiation of stem cells towards cells of neural lineage, we isolated stromal cells from human adult bone marrow (BMSC. Cells were treated with: (1 TPA, forskolin, IBMX, FGF-1 or (2 retinoic acid and 2-mercaptoethanol (BME. Treatment (1 induced differentiation into neuron-like cells within 24 hours, while a longer treatment was required when using retinoic acid and BME. Morphological modifications were more dramatic after treatment (1 compared with treatment (2. In BMSC both treatments induced the expression of neural markers such as NF, GFAP, TUJ-1 and neuron-specific enolase. Moreover, the transcription factor Hes1 increased after both treatments. Conclusion Our study may contribute towards the identification of mechanisms involved in the differentiation of stem cells towards cells of neural lineage.

  10. Imprinted Zac1 in neural stem cells

    Guillaume Daniel; Udo Schmidt-Edelkraut; Dietmar Spengler; Anke Hoffmann

    2015-01-01

    Neural stem cells (NSCs) and imprinted genes playan important role in brain development. On historicalgrounds, these two determinants have been largelystudied independently of each other. Recent evidencesuggests, however, that NSCs can reset select genomicimprints to prevent precocious depletion of the stemcell reservoir. Moreover, imprinted genes like thetranscriptional regulator Zac1 can fine tune neuronalvs astroglial differentiation of NSCs. Zac1 binds ina sequence-specific manner to pro-neuronal andimprinted genes to confer transcriptional regulation andfurthermore coregulates members of the p53-familyin NSCs. At the genome scale, Zac1 is a central hub ofan imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation anddifferentiation. Overall, transcriptional, epigenomic, andgenomic mechanisms seem to coordinate the functionalrelationships of NSCs and imprinted genes fromdevelopment to maturation, and possibly aging.

  11. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  12. 骨髓间充质干细胞复合聚乳酸-羟基乙酸材料治疗大鼠神经损伤的实验研究%Bone Marrow Mesenchymal Stem Cells Combined with Polylactic Glycolic Acid Scaffold for Rat Neural Injury

    符厚圣; 周兴; 桂有富; 郑煜; 潘建刚

    2011-01-01

    Objectives To study separately the effect of bone marrow mesenchymal stem cells (BMSCs) and differentiated neural - like cells combined with polylactic glycolic acid ( PLGA ) scaffolds, both composite which restore to SD rat nerve injury. Methods BMSCs were cultured by differential adherence,and composited PLGA,via scanning electron microscope to investigate the information of BMSCs'adhesion, proliferation and induction into neural - like cells in the scaffolds. Bold scaffold, BMSCs - PLGA complex, and neural - like cells - PLGA complex were separately transplanted into SD rat models, with the injury for right sciatic nerve, and obsvered SD rat models during 60 days after operation. Results BMSCs and neural - like cells can be exactly adhere to, proliferate and grow on the PLGA;BMSCs and neural -like cells combined with PLGA, which can restore to nerve injury. Conclusions BMSCs and differentiated neural - like cells combined with polylactic glycolic acid (PLGA) scaffolds,which can be used as a method of tissue engineering,to treat neurogenic bladder caused by spinal cord injury and advanced diabetes.%目的 研究骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells,BMSCs)及其分化的神经样细胞分别与聚乳酸-羟基乙酸(polylactic glycolic acid,PLGA)支架材料复合修复大鼠神经损伤的效果.方法 将BMSCs复合PIGA培养,通过扫描电镜观察BMSCs在PLGA上的黏附、增殖并诱导分化成神经样细胞的情况;然后分别将单纯的PLGA、BMSCs-PLGA复合物以及神经样细胞-PLGA复合物分别移植入3组右侧坐骨神经损伤的SD大鼠模型中,术后观察三组动物60 d.结果 BMSCs及诱导分化生成的神经样细胞能在PLGA良好的黏附、增殖和生长;复合PLGA移植后能修复损伤的神经.结论 BMSCs及神经样细胞复合PLGA移植可作为组织工程治疗脊髓损伤及糖尿病晚期神经源性膀胱的一种方法.

  13. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Xiong Y

    2012-04-01

    Full Text Available Yi Xiong1,*, Ji-Xiang Zhu2,*, Zheng-Yu Fang1, Cheng-Guang Zeng2, Chao Zhang1, Guo-Long Qi3, Man-Hui Li1, Wei Zhang1, Da-Ping Quan2, Jun Wan1,41Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, 2DSAPM Lab, PCFM Lab, Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 3Department of Medical Information, Medical Collage of Jinan University, Guangzhou, 4Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China*These authors contributed equally to this manuscriptAbstract: Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid (PLGA conduits and neurotrophin-3 (NT-3 to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs and Schwann cells (SCs were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80% were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury.Keywords: PLGA, NT-3, neural stem cells, Schwann cells, myelin sheath

  14. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers.

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  15. Elastic modulus affects the growth and differentiation of neural stem cells

    Xian-feng Jiang; Kai Yang; Xiao-qing Yang; Ying-fu Liu; Yuan-chi Cheng; Xu-yi Chen; Yue Tu

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron speciifc enolase, glial ifbrillary acidic protein, and myelin basic protein expression was detected by immunolfuorescence. Moreover, lfow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These ifndings con-ifrm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re-sults in a more obvious trend of cell differentiation into astrocytes.

  16. Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse.

    Rui Lan Zhang

    Full Text Available The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP positive neural stem cells that are in contact with the cerebrospinal fluid (CSF via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction.

  17. Differentiation of Human Bone Marrow Stromal Cells into Neural-Like Cells Induced by Sodium Ferulate in vitro

    Yang Wang; Zhifeng Deng; Xianliang Lai; Wei Tu

    2005-01-01

    Human marrow stromal cells (hMSCs) are multipotential stem cells, capable of differentiating into bone, cartilage,fat and muscle. Several recent reports demonstrated that hMSCs have been also differentiated into neural cells.However, only a few reported inducers are applicable for clinical use. This work is to explore the effects of sodium ferulate (SF) on differentiation of hMSCs into neural cells in vitro. We found that hMSCs could be induced to the cells with typical neural morphology when cultured with SF. The cells express neural proteins, such as nestin,neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP). About 30% of the hMSC-derived cells expressed nestin when cultured with SF for 3 h, but no expression was detected after 24 h. The percentages of positive cells for NSE or GFAP were about 67% and 39% separately at 6 h, and reached the plateau phage after treatment with SF for 3 days. The data suggest that SF can induce hMSCs to differentiate into neural-like cells in vitro.

  18. Adult neural stem cells-Functional potential and therapeutic applications

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  19. Stimulation of adult neural stem cells with a novel glycolipid biosurfactant

    Stipcevic, Tamara; Knight, Christopher P.; Kippin, Tod E.

    2013-01-01

    Glycolipids are amphipatic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated, proliferative, multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid, also referred to as di-rhamnolipid BAC-3, is a glycolipid isolated from bacteria Pseudomonas...

  20. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  1. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  2. Utilizing stem cells for three-dimensional neural tissue engineering.

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs. PMID:26890524

  3. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Biernat Wojciech

    2009-02-01

    Full Text Available Abstract Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA: exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP. Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+ and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8, as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.

  4. Development of neural stem cell in the adult brain

    Duan, Xin; Kang, Eunchai; Liu, Cindy Y.; Ming, Guo-li; Song, Hongjun

    2008-01-01

    New neurons are continuously generated in the dentate gyrus of the mammalian hippocampus and in the subventricular zone of the lateral ventricles throughout life. The origin of these new neurons is believed to be from multipotent adult neural stem cells. Aided by new methodologies, significant progress has been made in the characterization of neural stem cells and their development in the adult brain. Recent studies have also begun to reveal essential extrinsic and intrinsic molecular mechani...

  5. Intraspinal transplantation of mouse and human neural precursor cells

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detec...

  6. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    Young, Stephanie Z.; Bordey, Angélique

    2009-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery tha...

  7. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Mattu Chetana Shivaraj; Guillaume Marcy; Guoliang Low; Jae Ryun Ryu; Xianfeng Zhao; Rosales, Francisco J.; Goh, Eyleen L.K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippoc...

  8. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  9. Nanomedicine Approaches to Modulate Neural Stem Cells in Brain Repair.

    Santos, Tiago; Boto, Carlos; Saraiva, Cláudia M; Bernardino, Liliana; Ferreira, Lino

    2016-06-01

    We explore the concept of modulating neural stem cells and their niches for brain repair using nanotechnology-based approaches. These approaches include stimulating cell proliferation, recruitment, and differentiation to functionally recover damaged areas. Nanoscale-engineered materials potentially overcome limited crossing of the blood-brain barrier, deficient drug delivery, and cell targeting. PMID:26917252

  10. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de [Department of Neurosurgery, University Hospital, Leipzig (Germany); Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany); Glien, Anja; Groba, Claudia; Schlichting, Nadine [Department of Neurosurgery, University Hospital, Leipzig (Germany); Kamprad, Manja [Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig (Germany); Meixensberger, Juergen [Department of Neurosurgery, University Hospital, Leipzig (Germany); Milosevic, Javorina [Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig (Germany)

    2013-12-10

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.

  11. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment

  12. Electrical Property Characterization of Neural Stem Cells in Differentiation

    Sun, He; Chen, Deyong; Li, Zhaohui; Fan, Beiyuan; George, Julian; Xue, Chengcheng; Cui, Zhanfeng; Wang, Junbo

    2016-01-01

    Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers

  13. Negative chemotaxis does not control quail neural crest cell dispersion.

    Erickson, C A; Olivier, K R

    1983-04-01

    Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth 13(Suppl. 9), 133-161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a "putative" chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool. 108, 405-437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a "no man's land" forms between two confronted explants (Oldfield, 1963, Exp. Cell Res. 30, 125-138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed. PMID:6832483

  14. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  15. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  16. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  17. Embryonic and adult neural stem cell research in China

    2010-01-01

    Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work done by investigators in China.

  18. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  19. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  20. Immune Cells Exploit a Neural Circuit to Enter the CNS

    Kevin J Tracey

    2012-01-01

    Multiple sclerosis (MS) is associated with the appearance of autoreactive T cells in the central nervous system. Using a mouse model of MS, Arima et al. now show that this attack begins at a specific spinal cord location. T cell entry into the CNS is regulated by a reflex neural circuit originating from leg muscle contractions.

  1. Neural tissue engineering using embryonic and induced pluripotent stem cells

    Willerth, Stephanie M.

    2011-01-01

    With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in ...

  2. Understanding How Zika Virus Enters and Infects Neural Target Cells.

    Miner, Jonathan J; Diamond, Michael S

    2016-05-01

    Zika virus is a mosquito-transmitted flavivirus that has become a public health concern because of its ability to cause microcephaly. In this issue of Cell Stem Cell, Tang et al. (2016) and Nowakowski et al. (2016) use human neural stem cell models and single-cell RNA sequencing to investigate Zika virus tropism and potential entry receptors. PMID:27152436

  3. Neural stem cell transplantation in the repair of spinal cord injury

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  4. Dynamic neural network controller model of PEM fuel cell system

    Hatti, Mustapha [Nuclear Technologies Division, Nuclear Research Center of Birine, Ain Oussera, B.P 180, 17200 Djelfa (Algeria); Tioursi, Mustapha [Electrical Engineering Department, University of Sciences and Technology of Oran, B.P 1505, El M' Naouar, 31000 Oran (Algeria)

    2009-06-15

    This paper presents the artificial intelligence techniques to control a proton exchange membrane fuel cell system process, using particularly a methodology of dynamic neural network. In this work a dynamic neural network control model is obtained by introducing a delay line in the input of the neural network. A static production system including a PEMFC is subjected to variations of active and reactive power. Therefore the goal is to make the system follow these imposed variations. The simulation requires the modelling of the principal element (PEMFC) in dynamic mode. The simulation results demonstrate that the model-based dynamic neural network control scheme is appropriate for controlling, the stability of the identification and the tracking error were analyzed, and some reasons for the usefulness of this methodology are given. (author)

  5. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  6. The prevention of neural tube defects by folic acid supplementation

    H. W. Hitzeroth

    1993-05-01

    Full Text Available Neural tube defects, in particular spina bifida and anencephaly, are serious and relatively common congenital abnormalities worldwide. They also occur in South Africa and affect all population groups to varying degrees. The overall incidence in South Africa is approximately 1-2 per 1000 newborns. Higher incidences, up to 6 per 1000 newborns have been recorded in certain parts, especially in some rural areas of the country. In total as many as 1500 newborns could be affected by a neural tube defect each year. The precise aetiology of neural tube defects is still unknown.

  7. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    Li-Song YAO; Tian-Qing LIU; Dan GE; Xue-Hu MA; Zhan-Feng CUI

    2005-01-01

    @@ 1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like NSCs.

  8. Culture of Neural Stem Cells in Calcium-alginate Microbeads

    2005-01-01

    1 Introduction Recent research shows that neural stem cells may play an important role in the nerve injury reparation and nerve disease treatment. The shortage of the source and the number of NSCs, however, is the main challenge for its clinic application. In this situation, expansion of NSCs in large scale and culture in three dimensional environment are very worth of exploration. Notablely, the shear stress existed in bioreactors can cause serious cell injury especially for the shear sensitive cells like ...

  9. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity.

    Schwartz, Michael P; Hou, Zhonggang; Propson, Nicholas E; Zhang, Jue; Engstrom, Collin J; Santos Costa, Vitor; Jiang, Peng; Nguyen, Bao Kim; Bolin, Jennifer M; Daly, William; Wang, Yu; Stewart, Ron; Page, C David; Murphy, William L; Thomson, James A

    2015-10-01

    Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial. PMID:26392547

  10. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions.

    Slaven Erceg

    Full Text Available BACKGROUND: Human embryonic stem cells (hESC provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury. METHODOLOGY AND PRINCIPAL FINDINGS: The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA or to human recombinant basic fibroblast growth factor (bFGF in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF and caudalizing (RA signals were confirmed by patch clamp analysis. CONCLUSIONS/SIGNIFICANCE: These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.

  11. RhoA inhibits neural differentiation in murine stem cells through multiple mechanisms.

    Yang, Junning; Wu, Chuanshen; Stefanescu, Ioana; Jakobsson, Lars; Chervoneva, Inna; Horowitz, Arie

    2016-01-01

    Spontaneous neural differentiation of embryonic stem cells is induced by Noggin-mediated inhibition of bone morphogenetic protein 4 (BMP4) signaling. RhoA is a guanosine triphosphatase (GTPase) that regulates cytoskeletal dynamics and gene expression, both of which control stem cell fate. We found that disruption of Syx, a gene encoding a RhoA-specific guanine nucleotide exchange factor, accelerated retinoic acid-induced neural differentiation in murine embryonic stem cells aggregated into embryoid bodies. Cells from Syx(+/+) and Syx(-/-) embryoid bodies had different abundances of proteins implicated in stem cell pluripotency. The differentiation-promoting proteins Noggin and RARγ (a retinoic acid receptor) were more abundant in cells of Syx(-/-) embryoid bodies, whereas the differentiation-suppressing proteins SIRT1 (a protein deacetylase) and the phosphorylated form of SMAD1 (the active form of this transcription factor) were more abundant in cells of Syx(+/+) embryoid bodies. These differences were blocked by the overexpression of constitutively active RhoA, indicating that the abundance of these proteins was maintained, at least in part, by RhoA activity. The peripheral stress fibers in cells from Syx(-/-) embryoid bodies were thinner than those in Syx(+/+) cells. Furthermore, less Noggin and fewer vesicles containing Rab3d, a GTPase that mediates Noggin trafficking, were detected in cells from Syx(-/-) embryoid bodies, which could result from increased Noggin exocytosis. These results suggested that, in addition to inhibiting Noggin transcription, RhoA activity in wild-type murine embryonic stem cells also prevented neural differentiation by limiting Noggin secretion. PMID:27460990

  12. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  13. Adult human neural stem cell therapeutics: Currentdevelopmental status and prospect

    Hyun Nam; Kee-Hang Lee; Do-Hyun Nam; Kyeung Min Joo

    2015-01-01

    Over the past two decades, regenerative therapies usingstem cell technologies have been developed for variousneurological diseases. Although stem cell therapy is anattractive option to reverse neural tissue damage and torecover neurological deficits, it is still under developmentso as not to show significant treatment effects in clinicalsettings. In this review, we discuss the scientific andclinical basics of adult neural stem cells (aNSCs), andtheir current developmental status as cell therapeuticsfor neurological disease. Compared with other typesof stem cells, aNSCs have clinical advantages, suchas limited proliferation, inborn differentiation potentialinto functional neural cells, and no ethical issues. Inspite of the merits of aNSCs, difficulties in the isolationfrom the normal brain, and in the in vitro expansion,have blocked preclinical and clinical study using aNSCs.However, several groups have recently developed noveltechniques to isolate and expand aNSCs from normaladult brains, and showed successful applications ofaNSCs to neurological diseases. With new technologiesfor aNSCs and their clinical strengths, previous hurdlesin stem cell therapies for neurological diseases could beovercome, to realize clinically efficacious regenerativestem cell therapeutics.

  14. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells

    Rao Mahendra S

    2008-09-01

    Full Text Available Abstract Background Interactions of cells with the extracellular matrix (ECM are critical for the establishment and maintenance of stem cell self-renewal and differentiation. However, the ECM is a complex mixture of matrix molecules; little is known about the role of ECM components in human embryonic stem cell (hESC differentiation into neural progenitors and neurons. Results A reproducible protocol was used to generate highly homogenous neural progenitors or a mixed population of neural progenitors and neurons from hESCs. This defined adherent culture system allowed us to examine the effect of ECM molecules on neural differentiation of hESCs. hESC-derived differentiating embryoid bodies were plated on Poly-D-Lysine (PDL, PDL/fibronectin, PDL/laminin, type I collagen and Matrigel, and cultured in neural differentiation medium. We found that the five substrates instructed neural progenitors followed by neuronal differentiation to differing degrees. Glia did not appear until 4 weeks later. Neural progenitor and neuronal generation and neurite outgrowth were significantly greater on laminin and laminin-rich Matrigel substrates than on other 3 substrates. Laminin stimulated hESC-derived neural progenitor expansion and neurite outgrowth in a dose-dependent manner. The laminin-induced neural progenitor expansion was partially blocked by the antibody against integrin α6 or β1 subunit. Conclusion We defined laminin as a key ECM molecule to enhance neural progenitor generation, expansion and differentiation into neurons from hESCs. The cell-laminin interactions involve α6β1 integrin receptors implicating a possible role of laminin/α6β1 integrin signaling in directed neural differentiation of hESCs. Since laminin acts in concert with other ECM molecules in vivo, evaluating cellular responses to the composition of the ECM is essential to clarify further the role of cell-matrix interactions in neural derivation of hESCs.

  15. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    Laura Bindila; Antoni Pastor; Margarita Pérez-Martín; Rafael De La Torre; Juan Suarez

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum o...

  16. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and ...

  17. Deadly Teamwork: Neural Cancer Stem Cells and the Tumor Microenvironment

    Lathia, Justin D.; Heddleston, John M.; Venere, Monica; Jeremy N Rich

    2011-01-01

    Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.

  18. Proteomes and Neural Stem Cells: cellular signalling during differentiation

    Skalníková, Helena; Halada, Petr; Vodička, Petr; Motlík, Jan; Horning, O.; Jensen, O. N.; Gadher, S. J.; Pelech, S.; Kovářová, Hana

    Cambridge : -, 2007, s. 1-1. [BSPR-EBI Meeting: Integrative Proteomics: From Molecules to Systems,. Cambridge (GB), 25.07.2007-27.07.2007] Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : neural stem cells * differentiation * signalling * proteome Subject RIV: EB - Genetics ; Molecular Biology

  19. p73 regulates maintenance of neural stem cell

    Agostini, Massimiliano [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Tucci, Paola [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy); Chen, Hailan; Knight, Richard A. [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Bano, Daniele; Nicotera, Pierluigi [Deutsche Zentrum fuer Neurodegenerative Erkrankungen (DZNE), Bonn (Germany); McKeon, Frank [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Melino, Gerry, E-mail: gm89@le.ac.uk [Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN (United Kingdom); Biochemistry Laboratory, IDI-IRCCS, C/O University of Rome ' Tor Vergata' , 00133 Rome (Italy)

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  20. p73 regulates maintenance of neural stem cell

    Research highlights: → TAp73 is expressed in neural stem cells and its expression increases following their differentiation. → Neural stem cells from p73 null mice have a reduced proliferative potential. → p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. → Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  1. Neural stem cells and proteomics assesment of their properties

    Skalníková, Helena; Halada, Petr; Vodička, Petr; Motlík, Jan; Kovářová, Hana

    Vídeň : FENS (The Federation of European Neuroscience Societies), 2006. s. 1. [Forum of European Neuroscience /5./. 08.07.2006-12.07.2006, Vienna] R&D Projects: GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z50450515 Keywords : neural stem cells Subject RIV: EB - Genetics ; Molecular Biology

  2. Protein signaling pathways in differentiation of neural stem cells

    Skalníková, Helena; Vodička, Petr; Pelech, S.; Motlík, Jan; Gadher, S. J.; Kovářová, Hana

    2008-01-01

    Roč. 8, - (2008), s. 4547-4559. ISSN 1615-9853 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : antibody microarray * differentiation * neural stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2008

  3. Roles of imprinted genes in neural stem cells.

    Hoffmann, Anke; Daniel, Guillaume; Schmidt-Edelkraut, Udo; Spengler, Dietmar

    2014-01-01

    Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size. PMID:25431944

  4. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  5. Neural cell image segmentation method based on support vector machine

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  6. TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation

    Hillje, Anna-Lena; Pavlou, Maria Angeliki; Beckmann, Elisabeth; Worlitzer, Maik; Bahnassawy, Lamiaa; Lewejohann, Lars; Palm, Thomas; Schwamborn, Jens Christian

    2013-01-01

    In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells...

  7. Proteomics Applied to Porcine and Human Neural Stem Cell Differentiation

    Mairychová, Kateřina; Skalníková, Helena; Tylečková, Jiřina; Halada, Petr; Marsala, M.; Kovářová, Hana

    Liběchov : Institute of Animal Physiology and Genetics AS CR, v.v.i, 2010. s. 61-61. [Informal Proteomic Meeting 2010. 09.11.2010-10.11.2010, Liblice] R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) ME10044 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * cell differentiation * neural stem cell s Subject RIV: FH - Neurology

  8. Genetic instability in neural stem cells: an inconvenient truth?

    Harrison, Neil J.

    2012-01-01

    The evolutionary struggles from which mutants arise have been documented in almost every living system. In this issue of the JCI, Varela and colleagues extend this list of systems to include neural derivatives of human embryonic stem cells, which they show exhibit a repeated gain of material from chromosome 1q. Although this raises safety issues for therapeutic use of such cells, the frequent observation of a particular change may direct screening strategies for detection and removal of these...

  9. Aebp2 as an epigenetic regulator for neural crest cells.

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  10. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.

    Entekhabi, Elahe; Haghbin Nazarpak, Masoumeh; Moztarzadeh, Fathollah; Sadeghi, Ali

    2016-12-01

    Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation. This research attempted to design a high porous nanofibrous scaffold using hyaluronic acid and polycaprolactone to provide ideal conditions for nerve regeneration by applying proper physicochemical and mechanical signals. Chemical and mechanical properties of pure PCL and PCL/HA nanofibrous scaffolds were measured by FTIR and tensile test. Morphology, swelling behavior, and biodegradability of the scaffolds were evaluated too. Porosity of various layers of scaffolds was measured by image analysis method. To assess the cell-scaffold interaction, SH-SY5Y human neuroblastoma cell line were cultured on the electrospun scaffolds. Taken together, these results suggest that the blended nanofibrous scaffolds PCL/HA 95:5 exhibit the most balanced properties to meet all of the required specifications for neural cells and have potential application in neural tissue engineering. PMID:27612726

  11. The neural crest stem cells: control of neural crest cell fate and plasticity by endothelin-3

    ELISABETH DUPIN

    2001-12-01

    Full Text Available How the considerable diversity of neural crest (NC-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.O modo como a diversidade dos tipos celulares derivados da crista neural (CN surge, no embrião de vertebrado, tem sido uma pergunta chave na biologia do desenvolvimento. A pluripotência e a plasticidade na diferenciação da população de células da CN têm sido intensivamente documentadas, ficando deste modo estabelecido que os factores ambientais têm um papel importante na correta diferenciação dos derivados da CN no organismo. Na d

  12. Neural stem cell-derived exosomes mediate viral entry

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  13. Neural precursors derived from human embryonic stem cells

    Peng Hongmei; Chen Gui'an

    2005-01-01

    Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells, hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs).The EBs were then cultured in N2 medium containing bFGF in poly- L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2-3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4-5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeⅢ, GABA, serotonin and synaptophysin.Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS) in vitro.

  14. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    Shengxiu Li; Guoqiang Sun; Kiyohito Murai; Peng Ye; Yanhong Shi

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analo...

  15. Application of adult stem cells in neural tissue engineering

    Lihong Piao; Wei Wang

    2006-01-01

    OBJECTTIVE:To investigate the progress in finding,isolation and culture.proliferation and differentiation,and application in neural tissue engineering of adult stem cells(ASCs).DATA SOURCES:Using the terms"adult stem cells,nerve,tissue engineering".we searched the PubMed for adult stem ceils-related studies published in English from January 2001 to August 2006.Meanwhile,we also performed a China National Knowledge Infrastructure(CNKI)search for homochronous correlative literatures on the computer by inputting the terms"adult stem cells,nerve,tissue engineering"in Chinese.texts were searched for.Inclusive criteria:①Literatures about the sources,distribution,culture.proliferation and differentiation.and application in the repair of neural ASCs by tissue engineering.②Articles recommended either by randomized.blind or by other methods were not excluded.Exclusive criteria:①Embryonic stem cells.②Review,repetitive study,case report,Meta analysis. DATA EXTRACTION:Totally 1 278 articles related to ASCs were collected,32 were involved and the other 1 246 were excluded. DATA SYNTHESIS:Adult stem cell has the ability of self-renewal.unceasing proliferation and transdifferentiation.It has wide source,which does not involved in ethical problems.It has advantages over embryonic stem cell.Studies on the isolation and culture,induction and differentiation and application in neural ASCs by tissue engineering contribute to obtaining considerable ASCs,so as to provide experimental and theoretical bases for CONCLUSION:ASCs play a very important role in neural tissue engineering.

  16. Hyaluronic acid-based scaffold for central neural tissue engineering

    Wang, Xiumei; He, Jin; Wang, Ying; CUI, FU-ZHAI

    2012-01-01

    Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and ma...

  17. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  18. Efficient derivation of neural precursor cells, spinal motor neurons and midbrain dopaminergic neurons from human ES cells at 3% oxygen

    Stacpoole, SRL; Bilican, B.; Webber, DJ; Luzhynskaya, A; He, XL; COMPSTON, A.; Karadottir, R.; Franklin, RJM; Chandran, S

    2011-01-01

    This protocol has been designed to generate neural precursor cells (NPCs) from human embryonic stem cells (hESCs) using a physiological oxygen (O2) level of 3% and chemically defined conditions. The first stage involves suspension culture of hESC colonies at 3% O2, where they acquire a neuroepithelial identity over two weeks. This timescale is comparable to that at 20% O2, but survival is enhanced. Sequential application of retinoic acid (RA) and purmorphamine (PM), from day 14 to 28, directs...

  19. Radiopharmaceutical Tracers for Neural Progenitor Cells

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine

  20. Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells

    Zeltner, Nadja; Lafaille, Fabien G.; Fattahi, Faranak; Studer, Lorenz

    2014-01-01

    Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic develo...

  1. Adult neural stem cells in the mammalian central nervous system

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  2. Neural stem cells attacked by Zika virus.

    Nguyen, Ha Nam; Qian, Xuyu; Song, Hongjun; Ming, Guo-Li

    2016-07-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. Insights from cell and animal models to understand how Zika virus causes severe birth defects may lead to treatments and prevention of these diseases. PMID:27283801

  3. Differentation of neural stem cells expressing sonic hedgehog

    Prajerová, Iva; Anděrová, Miroslava; Kunke, D.; Lorico, A.; Chvátal, Alexandr

    Vienna, 2006. A226.18. [Forum of European Neuroscience /5./. 08.07.2006-12.07.2006, Vienna] R&D Projects: GA ČR GA305/04/1293; GA ČR GA305/06/1316; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Neurogenesis -Gliogenesis * Neural Stem Cells Subject RIV: FH - Neurology

  4. The homeostatic astroglia emerges from evolutionary specialization of neural cells

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-01-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and...... defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic...

  5. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  6. The use of artificial neural networks to study fatty acids in neuropsychiatric disorders

    Tonello Lucio

    2008-04-01

    Full Text Available Abstract Background The range of the fatty acids has been largely investigated in the plasma and erythrocytes of patients suffering from neuropsychiatric disorders. In this paper we investigate, for the first time, whether the study of the platelet fatty acids from such patients may be facilitated by means of artificial neural networks. Methods Venous blood samples were taken from 84 patients with a DSM-IV-TR diagnosis of major depressive disorder and from 60 normal control subjects without a history of clinical depression. Platelet levels of the following 11 fatty acids were analyzed using one-way analysis of variance: C14:0, C16:0, C16:1, C18:0, C18:1 n-9, C18:1 n-7, C18:2 n-6, C18:3 n-3, C20:3 n-3, C20:4 n-6 and C22:6 n-3. The results were then entered into a wide variety of different artificial neural networks. Results All the artificial neural networks tested gave essentially the same result. However, one type of artificial neural network, the self-organizing map, gave superior information by allowing the results to be described in a two-dimensional plane with potentially informative border areas. A series of repeated and independent self-organizing map simulations, with the input parameters being changed each time, led to the finding that the best discriminant map was that obtained by inclusion of just three fatty acids. Conclusion Our results confirm that artificial neural networks may be used to analyze platelet fatty acids in neuropsychiatric disorder. Furthermore, they show that the self-organizing map, an unsupervised competitive-learning network algorithm which forms a nonlinear projection of a high-dimensional data manifold on a regular, low-dimensional grid, is an optimal type of artificial neural network to use for this task.

  7. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies

    Žižková, Martina; Suchá, Rita; Tylečková, Jiřina; Jarkovská, Karla; Mairychová, Kateřina; Kotrčová, Eva; Marsala, M.; Gadher, S. J.; Kovářová, Hana

    2015-01-01

    Roč. 12, č. 1 (2015), s. 83-95. ISSN 1478-9450 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell therapy * immunomodulation * neural stem cell differentiation * neural subpopulation * neurodegenerative disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2014

  8. Neural network adapted to wound cell analysis in surgical patients.

    Viljanto, Jouko; Koski, Antti

    2011-01-01

    Assessment of the real state of wound healing of closed surgical wounds is uncertain both clinically and from conventional laboratory tests. Therefore, a novel approach based on early analysis of exactly timed wound cells, computerized further with an artificial neural network, was developed. At the end of routine surgery performed on 481 children under 18 years of age, a specific wound drain Cellstick™ was inserted subcutaneously between the wound edges to harvest wound cells. The Cellsticks™ were removed from 1 to 50 hours, mainly at hour 3 or 24 postsurgery. Immediately, the cellular contents were washed out using a pump constructed for the purpose. After cytocentrifugation, the cells were stained and counted differentially. Based on their relative proportions at selected time intervals, an artificial self-organizing neural map was developed. This was further transformed to a unidirectional linear graph where each node represents one set of relative cell quantities. As early as 3 hours, but more precisely 24 hours after surgery, the location of the nodes on this graph showed individually the patients' initial speed of wound inflammatory cell response. Similarly, timed Cellstick™ specimens from new surgical patients could be analyzed, computerized, and compared with these node values to assess their initial speed in wound inflammatory cell response. Location of the node on the graph does not express the time lapse after surgery but the speed of wound inflammatory cell response in relation to that of other patients. PMID:21362082

  9. Radiopharmaceutical Tracers for Neural Progenitor Cells

    Mangner, Thomas J.

    2006-09-29

    The Technical Report summarizes the results of the synthesis and microPET animal scanning of several compounds labeled with positron-emitting isotopes in normal, neonatal and kainic acid treated (seizure induced) rats as potential PET tracers to image the process of neurogenesis using positron emission tomography (PET). The tracers tested were 3'-deoxy-3'-[F-18]fluorothymidine ([F-18]FLT) and 5'-benzoyl-FTL, 1-(2'-deoxy-2'-[F-18]fluoro-B-D-arabinofuranosyl)-5-bromouracil (FBAU) and 3',5'-dibenzoyl-FBAU, N-[F-18]fluoroacetyl-D-glucosamine (FLAG) and tetraacetyl-FLAG, and L-[1-C-11]leucine.

  10. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  11. Genetic instability in neural stem cells: an inconvenient truth?

    Harrison, Neil J

    2012-02-01

    The evolutionary struggles from which mutants arise have been documented in almost every living system. In this issue of the JCI, Varela and colleagues extend this list of systems to include neural derivatives of human embryonic stem cells, which they show exhibit a repeated gain of material from chromosome 1q. Although this raises safety issues for therapeutic use of such cells, the frequent observation of a particular change may direct screening strategies for detection and removal of these unwanted cellular variants. PMID:22269327

  12. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  13. Biological properties of neural progenitor cells isolated from the hippocampus of adult cynomolgus monkeys

    2006-01-01

    Background The existence of neurogenesis in the hippocampus of adult nonhuman primates has been confirmed in recent years, however, the biological properties of adult neural stem cells or neural progenitor cells (NPCs) from this region remain to be extensively explored. The present work was to investigate on the expansion of NSCs/NPCs from the hippocampus of adult cynomolgus monkeys and the examination of their characteristics in vitro.Methods NPCs isolated from the hippocampus of adult cynomolgus monkeys were expanded in vitro in serum-free media containing growth factors, and were then allowed to differentiate by removing mitotic factors. The expansion capacity of NPCs and their differentiation potential were assayed by immunohistochemical and immunocytochemical analysis.Results During primary culture, NPCs underwent cell division, proliferation and aggregation to form neurospheres that were growing in suspension. Without mitotic stimulation, most neurospheres adhered to the culture dish and started to differentiate. Eventually, nearly 12% of the differentiated cells expressed neuron specific marker-βIII-tubulin (Tuj1) and 84% expressed astrocyte specific marker-fibrillary acidic protein (GFAP). In addition, the expression of a neural stem cell marker, nestin, was found both in NPCs and in the subgranular zone of adult monkey hippocampus, where NPCs were originally derived. Conclusions NPCs from the hippocampus of adult cynomolgus monkeys can be expanded to some extent in vitro and are capable of differentiating into neurons and astrocytes. Further experiments to promote the in vitro proliferation capacity of NPCs will be required before adult NPCs can be used as a useful cell model for studying adult neurogenesis and cell replacement therapy using adult stem cells.

  14. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...

  15. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects.

    Chang, Yu-Jen; Su, Hong-Lin; Hsu, Lee-Feng; Huang, Po-Jui; Wang, Tzu-Hao; Cheng, Fu-Chou; Hsu, Li-Wen; Tsai, Ming-Song; Chen, Chih-Ping; Chang, Yao-Lung; Chao, An-Shine; Hwang, Shiaw-Min

    2015-08-01

    Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders. PMID:25923707

  16. Mouse neural stem cells cultured in vitro and expressing an exogenous gene

    2001-01-01

    Neural stem cells are the multipotential, self-re- newing cells in central nerve system, and play an essential role in the development and differentiation of nerve system. Neural stem cells can be used to treat the nerve system diseases, especially, the transplantation of neural stem cells to rescue the degenerated neural cells has become a very promising therapeutic way. We successfully cultured neural stem cells isolated from the brains of embryonic mice in vitro and determined their distribution in the E17 mice brains. The neural stem cells were transfected with adenoviral vector carrying GFP (green fluorescence protein) gene and then highly expressed the exogenous gene. It paves the way for gene therapy of degenerative nerve system diseases.

  17. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  18. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Jariya Umka Welbat; Apiwat Sirichoat; Wunnee Chaijaroonkhanarak; Parichat Prachaney; Wanassanun Pannangrong; Poungrat Pakdeechote; Bungorn Sripanidkulchai; Peter Wigmore

    2016-01-01

    Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella as...

  19. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo.

    Carradori, Dario; Saulnier, Patrick; Préat, Véronique; des Rieux, Anne; Eyer, Joel

    2016-09-28

    The replacement of injured neurons by the selective stimulation of neural stem cells in situ represents a potential therapeutic strategy for the treatment of neurodegenerative diseases. The peptide NFL-TBS.40-63 showed specific interactions towards neural stem cells of the subventricular zone. The aim of our work was to produce a NFL-based drug delivery system able to target neural stem cells through the selective affinity between the peptide and these cells. NFL-TBS.40-63 (NFL) was adsorbed on lipid nanocapsules (LNC) whom targeting efficiency was evaluated on neural stem cells from the subventricular zone (brain) and from the central canal (spinal cord). NFL-LNC were incubated with primary neural stem cells in vitro or injected in vivo in adult rat brain (right lateral ventricle) or spinal cord (T10). NFL-LNC interactions with neural stem cells were different depending on the origin of the cells. NFL-LNC showed a preferential uptake by neural stem cells from the brain, while they did not interact with neural stem cells from the spinal cord. The results obtained in vivo correlate with the results observed in vitro, demonstrating that NFL-LNC represent a promising therapeutic strategy to selectively deliver bioactive molecules to brain neural stem cells. PMID:27503706

  20. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Mohan C. Vemuri

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  1. Nanosized zinc oxide particles induce neural stem cell apoptosis

    Deng, Xiaoyong; Luan, Qixia; Chen, Wenting; Wang, Yanli; Wu, Minghong; Zhang, Haijiao; Jiao, Zheng

    2009-03-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  2. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  3. Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis

    Baianu, Professor I.C.; Prisecaru, M.S. V

    2004-01-01

    A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane...

  4. Prevention of neural tube defects with folic acid: The Chinese experience.

    Ren, Ai-Guo

    2015-08-01

    Neural tube defects (NTDs) are a group of congenital malformations of the central nervous system that are caused by the closure failure of the embryonic neural tube by the 28(th) day of conception. Anencephaly and spina bifida are the two major subtypes. Fetuses with anencephaly are often stillborn or electively aborted due to prenatal diagnosis, or they die shortly after birth. Most infants with spina bifida are live-born and, with proper surgical treatment, can survive into adulthood. However, these children often have life-long physical disabilities. China has one of the highest prevalence of NTDs in the world. Inadequate dietary folate intake is believed to be the main cause of the cluster. Unlike many other countries that use staple fortification with folic acid as the public health strategy to prevent NTDs, the Chinese government provides all women who have a rural household registration and who plan to become pregnant with folic acid supplements, free of charge, through a nation-wide program started in 2009. Two to three years after the initiation of the program, the folic acid supplementation rate increased to 85% in the areas of the highest NTD prevalence. The mean plasma folate level of women during early and mid-pregnancy doubled the level before the program was introduced. However, most women began taking folic acid supplements when they knew that they were pregnant. This is too late for the protection of the embryonic neural tube. In a post-program survey of the women who reported folic acid supplementation, less than a quarter of the women began taking supplements prior to pregnancy, indicating that the remaining three quarters of the fetuses remained unprotected during the time of neural tube formation. Therefore, staple food fortification with folic acid should be considered as a priority in the prevention of NTDs. PMID:26261765

  5. Prospective identification and culture of rat enteric neural stem cells (ENSCs).

    Gao, Tingting; Chen, Haijiao; Liu, Mei; Ge, Wenliang; Yin, Qiyou

    2016-05-01

    Hirschprung's disease (HD), a very common congenital abnormality in children, occurs mainly due to the congenital developmental defect of the enteric nervous system. The absence of enteric ganglia from the distal gut due to deletion in gut colonization by neural crest progenitor cells may lead to HD. The capacity to identify and isolate the enteric neuronal precursor cells from developing and mature tissues would enable the development of cell replacement therapies for HD. However, a mature method to culture these cells is a challenge. The present study aimed to propose a method to culture enteric neural stem cells (ENSCs) from the DsRed transgenic fetal rat gut. The culture medium used contained 15 % chicken embryo extract, basic fibroblast growth factor, and epidermal growth factor. ENSCs were cultured from embryonic day 18 in DsRed transgenic rat. Under inverted microscope and fluorescence staining, ENSCs proliferated to form small cell clusters on the second day of culture. The neurospheres-like structure were suspended in the medium, and there were some filaments between the adherent cells from day 3 to day 6 of the culture. The neurospheres were formed by ENSCs on day 8 of the culture. Network-like connections were formed between the adherent cells and differentiated cells after adding 10 % FBS. The differentiated cells were positive for neurofilament and glial fibrillary acidic protein antibodies. The present study established a method to isolate and culture ENSCs from E18 DsRed transgenic rats in the terminal stage of embryonic development. This study would offer a way to obtain plenty of cells for the future research on the transplantation of HD. PMID:25407731

  6. Chemo-mechanical control of neural stem cell differentiation

    Geishecker, Emily R.

    Cellular processes such as adhesion, proliferation, and differentiation are controlled in part by cell interactions with the microenvironment. Cells can sense and respond to a variety of stimuli, including soluble and insoluble factors (such as proteins and small molecules) and externally applied mechanical stresses. Mechanical properties of the environment, such as substrate stiffness, have also been suggested to play an important role in cell processes. The roles of both biochemical and mechanical signaling in fate modification of stem cells have been explored independently. However, very few studies have been performed to study well-controlled chemo-mechanotransduction. The objective of this work is to design, synthesize, and characterize a chemo-mechanical substrate to encourage neuronal differentiation of C17.2 neural stem cells. In Chapter 2, Polyacrylamide (PA) gels of varying stiffnesses are functionalized with differing amounts of whole collagen to investigate the role of protein concentration in combination with substrate stiffness. As expected, neurons on the softest substrate were more in number and neuronal morphology than those on stiffer substrates. Neurons appeared locally aligned with an expansive network of neurites. Additional experiments would allow for statistical analysis to determine if and how collagen density impacts C17.2 differentiation in combination with substrate stiffness. Due to difficulties associated with whole protein approaches, a similar platform was developed using mixed adhesive peptides, derived from fibronectin and laminin, and is presented in Chapter 3. The matrix elasticity and peptide concentration can be individually modulated to systematically probe the effects of chemo-mechanical signaling on differentiation of C17.2 cells. Polyacrylamide gel stiffness was confirmed using rheological techniques and found to support values published by Yeung et al. [1]. Cellular growth and differentiation were assessed by cell counts

  7. Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-01-01

    Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

  8. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  9. Ethanol regulates calcium channels in clonal neural cells.

    Messing, R. O.; Carpenter, C. L.; Diamond, I.; Greenberg, D A

    1986-01-01

    The acute and long-term effects of ethanol on voltage-dependent Ca channel function were studied in PC12, a clonal cell line of neural crest origin. Acute exposure to ethanol produced a concentration-dependent decrease in depolarization-evoked 45Ca2+ uptake, while prolonged (2-10 days) exposure led to a reciprocal increase in 45Ca2+ uptake and in the number of Ca-channel binding sites labeled by the dihydropyridine Ca-channel antagonist [3H]nitrendipine. Uptake was restored to control levels ...

  10. History of Neural Stem Cell Research and Its Clinical Application.

    Takagi, Yasushi

    2016-03-15

    "Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated," wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized. PMID:26888043

  11. Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

    Sher, Falak; Boddeke, Erik; Copray, Sjef

    2011-01-01

    Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or

  12. Neural stem cells and the regulation of adult neurogenesis

    Conover Joanne C

    2003-11-01

    Full Text Available Abstract Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ, which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.

  13. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  14. Vertebrate Neural Stem Cells: Development, Plasticity, and Regeneration.

    Shimazaki, Takuya

    2016-03-25

    Natural recovery from disease and damage in the adult mammalian central nervous system (CNS) is limited compared with that in lower vertebrate species, including fish and salamanders. Species-specific differences in the plasticity of the CNS reflect these differences in regenerative capacity. Despite numerous extensive studies in the field of CNS regeneration, our understanding of the molecular mechanisms determining the regenerative capacity of the CNS is still relatively poor. The discovery of adult neural stem cells (aNSCs) in mammals, including humans, in the early 1990s has opened up new possibilities for the treatment of CNS disorders via self-regeneration through the mobilization of these cells. However, we now know that aNSCs in mammals are not plastic enough to induce significant regeneration. In contrast, aNSCs in some regenerative species have been found to be as highly plastic as early embryonic neural stem cells (NSCs). We must expand our knowledge of NSCs and of regenerative processes in lower vertebrates in an effort to develop effective regenerative treatments for damaged CNS in humans. PMID:26853878

  15. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  16. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  17. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-01

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking). PMID:26867130

  18. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  19. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  20. Potential of Neural Stem Cells for the Treatment of Brain Tumors

    P. Taupin

    2008-01-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent cells that generate the main phenotypes of the nervous system, neurons, astrocytes and oligodendrocytes. As such they hold the promise to treat a broad range of neurological diseases and injuries. Neural progenitor and stem cells have been isolated and characterized in vitro, from adult, fetal and post-mortem tissues, providing sources of material for cellular therapy. However, NSCs are still elusive cells and remain to be unequivocally identified and characterized, limiting their potential use for therapy. Neural progenitor and stem cells, isolated and cultured in vitro, can be genetically modified and when transplanted migrate to tumor sites in the brain. These intrinsic properties of neural progenitor and stem cells provide tremendous potential to bolster the translation of NSC research to therapy. It is proposed to combine gene therapy and cellular therapy to treat brain cancers. Hence, neural progenitor and stem cells provide new opportunities for the treatment of brain cancers.

  1. Effects of Triclosan on Neural Stem Cell Viability and Survival

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  2. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Ying-bo Li; Yan Wang; Ji-ping Tang; Di Chen; Sha-li Wang

    2015-01-01

    Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent exper-iments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypox-ic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplantedvia intracerebroventricular injection. These tests conifrmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a signiifcantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-speciifc enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  3. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  4. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    Edvardsen, K; Pedersen, P H; Bjerkvig, R; Hermann, G G; Zeuthen, J; Laerum, O D; Walsh, F S; Bock, E

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region of the...

  5. Long-term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells

    Weihua Wu, Qihua He, Xiaoxia Li, Xiaoyan Zhang, Aili Lu, Ruimin Ge, HongYing Zhen, Alfred E. Chang, Qiao Li, Li Shen

    2011-01-01

    Full Text Available In this report, we describe the spontaneous malignant transformation of long-term cultured human fetal striatum neural stem cells (hsNSCs, passage 17. After subcutaneous transplantation of long-term cultured hsNSCs into immunodeficient nude mice, 2 out of 15 mice formed xenografts which expressed neuroendocrine tumor markers CgA and NSE. T1 cells, a cell line that we derived from one of the two subcutaneous xenografts, have undergone continuous expansion in vitro. These T1 cells showed stem cell-like features and expressed neural stem cell markers nestin and CD133. The T1 cells were involved in abnormal karyotype, genomic instability and fast proliferation. Importantly, after long-term in vitro culture, the T1 cells did not result in subcutaneous xenografts, but induced intracranial tumor formation, indicating that they adjusted themselves to the intracranial microenvironment. We further found that the T1 cells exhibited an overexpressed level of EGFR, and the CD133 positive T1 cells showed a truncation mutation in the exons 2-7 of the EGFR (EGFRvIII gene. These results suggest that continuous expansion of neural stem cells in culture may lead to malignant spontaneous transformation. This phenomenon may be functionally related to EGFR by EGFRvIII gene mutation.

  6. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  7. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  8. International retrospective cohort study of neural tube defects in relation to folic acid recommendations : are the recommendations working?

    Botto, LD; Lisi, A; Robert-Gnansia, E; Erickson, JD; Vollset, SE; Mastroiacovo, P; Botting, B; Cocchi, G; de Vigan, C; de Walle, H; Feijoo, M; Irgens, LM; McDonnell, B; Merlob, P; Ritvanen, A; Scarano, G; Siffel, C; Metneki, J; Stoll, C; Smithells, R; Goujard, J

    2005-01-01

    Objective To evaluate the effectiveness of policies and recommendations on folic acid aimed at reducing the occurrence of neural tube defects. Design Retrospective cohort study of births monitored by birth defect registries. Setting 13 birth defects registries monitoring rates of neural tube defects

  9. Adult neural stem cells: The promise of the future

    Philippe Taupin

    2007-01-01

    Full Text Available Philippe TaupinNational Neuroscience Institute, National University of SingaporeAbstract: Stem cells are self-renewing undifferentiated cells that give rise to multiple types of specialized cells of the body. In the adult, stem cells are multipotents and contribute to homeostasis of the tissues and regeneration after injury. Until recently, it was believed that the adult brain was devoid of stem cells, hence unable to make new neurons and regenerate. With the recent evidences that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS, the adult brain has the potential to regenerate and may be amenable to repair. The function(s of NSCs in the adult CNS remains the source of intense research and debates. The promise of the future of adult NSCs is to redefine the functioning and physiopathology of the CNS, as well as to treat a broad range of CNS diseases and injuries.Keywords: neurogenesis, transdifferentiation, plasticity, cellular therapy

  10. Stem cell-based therapy in neural repair.

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Dan-Yen; Chiu, Ing-Ming

    2013-01-01

    Cell-based therapy could aid in alleviating symptoms or even reversing the progression of neurodegenerative diseases and nerve injuries. Fibroblast growth factor 1 (FGF1) has been shown to maintain the survival of neurons and induce neurite outgrowth. Accumulating evidence suggests that combination of FGF1 and cell-based therapy is promising for future therapeutic application. Neural stem cells (NSCs), with the characteristics of self-renewal and multipotency, can be isolated from embryonic stem cells, embryonic ectoderm, and developing or adult brain tissues. For NSC clinical application, several critical problems remain to be resolved: (1) the source of NSCs should be personalized; (2) the isolation methods and protocols of human NSCs should be standardized; (3) the clinical efficacy of NSC transplants must be evaluated in more adequate animal models; and (4) the mechanism of intrinsic brain repair needs to be better characterized. In addition, the ideal imaging technique for tracking NSCs would be safe and yield high temporal and spatial resolution, good sensitivity and specificity. Here, we discuss recent progress and future development of cell-based therapy, such as NSCs, induced pluripotent stem cells, and induced neurons, in neurodegenerative diseases and peripheral nerve injuries. PMID:23806879

  11. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  12. Effect of Staurosporine on Neural Differentiation of CD133+ Umbilical Cord Blood Cells

    Faezeh Faghihi

    2008-01-01

    Full Text Available Objective: CD133+ umbilical cord blood cells were identified as a hematopoieticstem cell which has the capacity for extensive self-renewal and differentiation.The aim of this study was to identify the effect of staurosporine (STS, a wellknownprotein kinase inhibitor on differentiation of CD133+ cells into neuralcells.Materials and Methods: CD133+ cells were enriched by immunomagneticbeads from human mononuclear cells of umbilical cord blood and the purityof higher than 94% was achieved by flowcytometry. Induction of differentiationwas performed by addition of STS (12.5, 25, and 50 nΜ. The differentiatedcells were evaluated by immunofluorescence and RT-PCR for neuron-specificproteins and transcripts.Results: STS-treated CD133+ cells expressed mRNA transcripts for neuronspecificneurofilament protein (NFM, and several basic helix-loop-helix(bHLH transcription factors important for early neurogenesis, including Otx2,Wnt1, and Hash1. The structural proteins characteristics of neurons includingβ-tubulinIII and Microtubule-Associated Protein-2 (MAP-2, were shown byimmunocytochemistry. STS-treated CD133+ cells also expressed the astrocytespecificmarker, glial fibrillary acidic protein (GFAP by immunofluorescence.Conclusion: The human cord blood-derived CD133+ hematopoietic stem cellscould differentiate into neural cell types of neuron-like cells and astrocytes bySTS treatment.

  13. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  14. File list: DNS.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  15. File list: DNS.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  16. File list: DNS.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.05.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived... neural cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  17. File list: DNS.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.05.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived... neural cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  18. File list: Pol.PSC.20.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived... neural cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_cells.bed ...

  19. File list: NoD.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available NoD.PSC.50.AllAg.mESC_derived_neural_cells mm9 No description Pluripotent stem cell mESC derived... neural cells SRX440736,SRX440731 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  20. File list: DNS.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available DNS.PSC.50.AllAg.hESC_derived_neural_cells hg19 DNase-seq Pluripotent stem cell hESC derived... neural cells SRX121241,SRX134721 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  1. Endogenous Expression of Matriptase in Neural Progenitor Cells Promotes Cell Migration and Neuron Differentiation*

    Fang, Jung-Da; Chou, Hsiao-Chin; Tung, Hsiu-Hui; Huang, Pao-Yi; Lee, Sheau-Ling

    2010-01-01

    Recent studies show that type II transmembrane serine proteases play important roles in diverse cellular activities and pathological processes. Their expression and functions in the central nervous system, however, are largely unexplored. In this study, we show that the expression of one such member, matriptase (MTP), was cell type-restricted and primarily expressed in neural progenitor (NP) cells and neurons. Blocking MTP expression or MTP activity prevented NP cell traverse of reconstituted...

  2. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong; Cho, Yong-Beom

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was ob...

  3. Astaxanthin Improves Stem Cell Potency via an Increase in the Proliferation of Neural Progenitor Cells

    Yung-Hyun Choi; Byung-Woo Kim; Woobong Choi; Jong-Hwan Lee; Wun-Jae Kim; Soo-Wan Nam; Jeong-Hwan Kim

    2010-01-01

    The present study was designed to investigate the question of whether or not astaxanthin improves stem cell potency via an increase in proliferation of neural progenitor cells (NPCs). Treatment with astaxanthin significantly increased proliferation and colony formation of NPCs. For identification of possible activated signaling molecules involved in active cell proliferation occurring after astaxanthin treatment, total protein levels of several proliferation-related proteins, and expression l...

  4. [Transplanted epidermal neural crest stem cell in a peripheral nerve gap].

    Zhang, Lu; Zhang, Jieyuan; Li, Bingcang; Liu, Zheng; Liu, Bin

    2014-04-01

    Neural crest stem cells originated from hair follicle (epidermal neural crest stem cell, EPI-NCSC) are easy to obtain and have potentials to differentiate into various tissues, which make them eminent seed cells for tissue engineering. EPI-NCSC is now used to repair nerve injury, especially, the spinal cord injury. To investigate their effects on repairing peripheral nerve injury, EPI-NCSC from a GFP-SD rat were primarily cultured on coated dishes and on a poly lactic acid coglycolic acid copolymer (PLGA) membrane. Methyl thiazolyl tetrazolium (MTT) assay showed that the initial adhesion rate of EPI-NCSC was 89.7% on PLGA membrane, and the relative growth rates were 89.3%, 87.6%, 85.6%, and 96.6% on the 1st, 3rd, 5th, 7th day respectively. Cell cycles and DNA ploidy analysis demonstrated that cell cycles and proliferation indexes of cultured EPI-NCSC had the same variation pattern on coated dishes and PLGA membrane. Then cultured EPI-NCSC were mixed with equal amount of extracellular matrix and injected into a PLGA conduit to connect a 10 mm surgery excision gap of rat sciatic nerve, Dulbecco's Modified Eagle's medium (DMEM) was used to substitute EPI-NCSC in the control group. After four weeks of transplantation, the defected sciatic nerve achieved a histological restoration, the sensory function of rat hind limb was partly recovered and the sciatic nerve index was also improved. The above results showed that a PLGA conduit filled with EPI-NCSC has a good repair effect on the peripheral nerve injury. PMID:25195250

  5. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    Parker, Mark A.; Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, ...

  6. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  7. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel;

    2011-01-01

    OBJECTIVE: The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become...

  8. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  9. The Neural Network analysis for the single cell of Molten Carbonate Fuel cell (MCFC

    S. K. Dhakad, S.C.soni, Pankaj Agrawal, Prashant Baredaer

    2012-11-01

    Full Text Available In the present work try to trained the performance and evolution for the single cell of the MCFC by using the Neural Network tool in the MAT-Lab software. The data used for the Neural Network training are, simulated results, these are obtained for the single cell of the MCFC [1].The analysis carried out for n input vectors (known input variables i.e. temperature and load current and power as output vector. Figure 2 shown simulated powers at the different values of input variables, as load current & temperature. Figures 3 shown the trained results are obtained using model in the form of approximate feed forward neural network for the 4 layers & 2:3:2 neurons. Power as the output vector of the MCFC is well compare to the simulated results shown in figure 5.

  10. The protective effect of magnesium sulfate against irradiation injury of neural stem cells in neonatal rats

    Objective: To study the protection of magnesium sulfate against radiation-induced injury of neural stem cells. Methods: Brain tissues of new-born Sprague-Dawley (SD) rats were dissociated to culture the neural stem cells. The neural stern cells were divided into 3 groups as blank control group, experimental control group and experimental group (with magnesium sulfate). Observe neural stem cell apoptosis after being irradiated with 2 Gy of gamma rays, detect the cell cycle by FCM on 24 h and 48 h after being irradiated with 2 Gy, 4 Gy. Results: Compared with the blank control group, the apoptosis of neural stem cells in the experimental control group was obvious, and the neural stem cells were blocked in G1, G2 phase obviously. Compared with the experimental control group, the number of the apoptotic cells in the experimental group decreased and the cell cycle blocking was also reduced significantly (P<0.05). Conclusion: Magnesium sulfate can alleviate the injury of neural stem cells; ease the apoptosis and the cell cycle blocking after irradiation. (authors)

  11. Angiogenic factors stimulate growth of adult neural stem cells.

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  12. Functional integration of human neural precursor cells in mouse cortex.

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  13. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells

    Yuxin Ni; Kaizhi Zhang; Xuejuan Liu; Tingting Yang; Baixiang Wang; Li Fu; Lan A; Yanmin Zhou

    2014-01-01

    Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair folli-cles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regu-lating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.

  14. Regulation of endogenous neural stem/progenitor cells for neural repair - factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    Kimberly eChristie

    2013-01-01

    Full Text Available Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ of the lateral ventricles and the subgranular zone (SGZ of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioural outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem /precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.

  15. Folic acid supplement use in the prevention of neural tube defects.

    Delany, C

    2011-01-01

    In 2008, planned folic acid fortification for the prevention of Neural Tube Defects (NTD) was postponed. Concurrently, the economic recession may have affected dietary folic acid intake, placing increased emphasis on supplement use. This study examined folic acid supplement use in 2009. A cross-sectional survey of 300 ante-natal women was undertaken to assess folic acid knowledge and use. Associations between demographic, obstetric variables and folic acid knowledge and use were examined. A majority, 284\\/297 (96%), had heard of folic acid, and 178\\/297 (60%) knew that it could prevent NTD. Most, 270\\/297 (91%) had taken it during their pregnancy, but only 107\\/297 (36%) had used it periconceptionally. Being older, married, planned pregnancy and better socioeconomic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from economic status were associated with periconceptional use. Periconceptional folic acid use in 2009 was very low, little changed from earlier years. Continuous promotion efforts are necessary. Close monitoring of folic acid intake and NTD rates is essential, particularly in the absence of fortification.

  16. Identification and culture of neural stem cells isolated from adult rat subventricular zone following fluid percussion brain injury

    2010-01-01

    Objective To analyze proliferation and differentiation of glial fibrillary acid protein(GFAP)-and nestin-positive(GFAP+/nestin+)cells isolated from the subventricular zone following fluid percussion brain injury to determine whether GFAP+/nestin+ cells exhibit characteristics of neural stem cells.Methods Male Sprague-Dawley rats,aged 12 weeks and weighing 200-250 g,were randomly and evenly assigned to normal control group and model group.In the model group,a rat model of fluid percussion brain injury was es...

  17. Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network

    CHAI Yu-hua; PAN Wei; NING Hai-long

    2005-01-01

    In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.

  18. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    Walmod, P S; Foley, A; Berezin, A; Ellerbeck, U; Nau, H; Bock, E; Berezin, V

    1998-01-01

    Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image...

  19. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    Rajalaxmi Natarajan

    Full Text Available Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3 plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs. In vitro hNSCs primed with fibroblast growth factor 2 (FGF2 exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF, which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases.

  20. Properties of Neural Crest-Like Cells Differentiated from Human Embryonic Stem Cells

    Křivánek, J.; Švandová, Eva; Králik, J.; Hajda, S.; Fedr, Radek; Vinařský, V.; Jaroš, J.; Souček, Karel

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 30-38. ISSN 0015-5500 R&D Projects: GA ČR(CZ) GAP304/11/1418 Institutional support: RVO:68081707 Keywords : stem cell differentiation * neural crest * odontogenesis Subject RIV: BO - Biophysics; ED - Physiology (UZFG-Y) Impact factor: 1.000, year: 2014

  1. MR-based imaging of neural stem cells

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  2. Secretome analysis of human oligodendrocytes derived from neural stem cells.

    Woo Kyung Kim

    Full Text Available In this study, we investigated the secretome of human oligodendrocytes (F3.Olig2 cells generated from human neural stem cells by transduction with the gene encoding the Olig2 transcription factor. Using mRNA sequencing and protein cytokine arrays, we identified a number of biologically important secretory proteins whose expression has not been previously reported in oligodendrocytes. We found that F3.Olig2 cells secrete IL-6, PDGF-AA, GRO, GM-CSF, and M-CSF, and showed prominent expression of their corresponding receptors. Co-expression of ligands and receptors suggests that autocrine signaling loops may play important roles in both differentiation and maintenance of oligodendrocytes. We also found that F3.Olig2 cells secrete matrix metalloproteinases and matrix metalloproteinase-associated proteins associated with functional competence of oligodendrocytes. The results of our secretome analysis provide insights into the functional and molecular details of human oligodendrocytes. To the best of our knowledge, this is the first systematic analysis of the secretome of oligodendrocytes.

  3. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  4. Neural stem cells could serve as a therapeutic material forage-related neurodegenerative diseases

    Sarawut Suksuphew; Parinya Noisa

    2015-01-01

    Progressively loss of neural and glial cells is the keyevent that leads to nervous system dysfunctions anddiseases. Several neurodegenerative diseases, forinstance Alzheimer's disease, Parkinson's disease, andHuntington's disease, are associated to aging andsuggested to be a consequence of deficiency of neuralstem cell pool in the affected brain regions. Endogenousneural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cellsare responsible for the regeneration of new neurons torestore, in the normal circumstance, the functions of thebrain. Endogenous neural stem cells can be isolated,propagated, and, notably, differentiated to most celltypes of the brain. On the other hand, other types ofstem cells, such as mesenchymal stem cells, embryonicstem cells, and induced pluripotent stem cells can alsoserve as a source for neural stem cell production, thathold a great promise for regeneration of the brain. Thereplacement of neural stem cells, either endogenousor stem cell-derived neural stem cells, into impairedbrain is highly expected as a possible therapeutic meanfor neurodegenerative diseases. In this review, clinicalfeatures and current routinely treatments of agerelatedneurodegenerative diseases are documented.Noteworthy, we presented the promising evidence ofneural stem cells and their derivatives in curing suchdiseases, together with the remaining challenges toachieve the best outcome for patients.

  5. The homeostatic astroglia emerges from evolutionary specialization of neural cells.

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-08-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377722

  6. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  7. Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod

    Buckley, Clare E.; Ren, Xiaoyun; Ward, Laura C; Girdler, Gemma C; Araya, Claudio; Green, Mary J; Clark, Brian S.; Link, Brian A.; Clarke, Jonathan D. W.

    2012-01-01

    By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necess...

  8. An emerging molecular mechanism for the neural vs mesodermal cell fate decision

    Roman A Li; Kate G Storey

    2011-01-01

    @@ Understanding how primary cell fates are established and maintained in the vertebrate embryo provides important insights that inform directed in vitro differentiation of embryonic stem cells or adult cells that have undergone induced pluripotency.Neural differentiation is of particular interest as new neural cells may contribute to therapeutic approaches to nervous system injury and diseases and provide in vitro disease models for small molecule screening and for determining personalized drug treatments.

  9. Opti mal Protocols to Expand Neural Stem Cells in Rotating Wall Vessel Bioreactor

    2005-01-01

    1 IntroductionNeurodegenerative disorders exert on an enormous cost, both financially and emotionally, on afflicted individuals and their families for a long time. Fortunately, a neural stem cell (NSC) was identified in the adult central nervous system (CNS) and induced to proliferate untransformed in vitro~([1,2]). Neural stem cells are extremely primitive cells capable of self-maintenance and have the ability to generate large numbers of cells, including all of the phenotypes present in the adult CNS. The...

  10. Effect of ionizing radiation on the differentiation of neural stem cells

    In order to investigate the effect of ionizing radiation on neural stem cells differentiation, we cultured neural stem cells of newborn rat in serum-free media containing EGF or bFGF. The neural stem cells were divided into 4 groups, which were irradiated by γ-rays with doses of 0, 0.5, 1, and 2 Gy. The irradiated cells were cultured under the same condition for 7 days, and the nestin content of neural stem cell was detected by immunofluorescence. The same method was carried out with irradiated cells in the culture medium after removing EGF, bFGF for 7 days, NSE and GFAP expression content and nestin were also detected by immunofluorescence. It has been found that the irradiated neural stem cells can express less nestin and differentiate more neurons compared to that of control group. Results show that ionizing radiation can induce the differentiation of the neural stem cells and make the neural stem cells differentiate more neuron. (authors)

  11. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy. PMID:22683799

  12. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  13. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  14. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells

    Fernando, R. N.; Eleuteri, B.; Abdelhady, S.; Nussenzweig, A; Andang, M; Ernfors, P.

    2011-01-01

    Adult neural stem cell proliferation is dynamic and has the potential for massive self-renewal yet undergoes limited cell division in vivo. Here, we report an epigenetic mechanism regulating proliferation and self-renewal. The recruitment of the PI3K-related kinase signaling pathway and histone H2AX phosphorylation following GABAA receptor activation limits subventricular zone proliferation. As a result, NSC self-renewal and niche size is dynamic and can be directly modulated in both directio...

  15. Ultrastructure of human neural stem/progenitor cells and neurospheres

    Yaodong Zhao; Tianyi Zhang; Qiang Huang; Aidong Wang; Jun Dong; Qing Lan; Zhenghong Qin

    2009-01-01

    BACKGROUND: Biological and morphological characteristics of neural stern/progenitor cells (NSPCs) have been widely investigated.OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy.DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008.MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi instruments, Japan; transmission electron microscope was provided by JEOL, Japan.METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination.MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres.RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells.CONCLUSION: A large number

  16. Characterization of an individual neural crest-like cell lineage in the invertebrate chordate Ciona intestinalis

    Cone, Angela C.

    2008-01-01

    During embryogenesis, all chordate embryos undergo neurulation to form a dorsal, hollow nerve cord. Neural crest cells (NCC), considered a vertebrate innovation, arise during neurulation and later differentiate into a multitude of tissues that account for much of the structural complexity that distinguishes craniates from invertebrate chordates [1, 2]. NCCs are induced and specified at the border of the neural and non-neural ectoderm by a complex network of inductive signals and transcription...

  17. Molecular Diversity Subdivides the Adult Forebrain Neural Stem Cell Population

    Giachino, Claudio; Basak, Onur; Lugert, Sebastian; Knuckles, Philip; Obernier, Kirsten; Fiorelli, Roberto; Frank, Stephan; Raineteau, Olivier; Alvarez–Buylla, Arturo; Taylor, Verdon

    2014-01-01

    Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP+ NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP+ NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and sub-ventricular progenitors in the fetal and postnatal human brain. Loss of BLBP+ stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging. PMID:23964022

  18. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  19. Long-term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells

    Weihua Wu, Qihua He, Xiaoxia Li, Xiaoyan Zhang, Aili Lu, Ruimin Ge, HongYing Zhen, Alfred E. Chang, Qiao Li, Li Shen

    2011-01-01

    In this report, we describe the spontaneous malignant transformation of long-term cultured human fetal striatum neural stem cells (hsNSCs, passage 17). After subcutaneous transplantation of long-term cultured hsNSCs into immunodeficient nude mice, 2 out of 15 mice formed xenografts which expressed neuroendocrine tumor markers CgA and NSE. T1 cells, a cell line that we derived from one of the two subcutaneous xenografts, have undergone continuous expansion in vitro. These T1 cells showed stem ...

  20. Effects of Near-Infrared Laser on Neural Cell Activity

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19% higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5-5.0 deg. C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  1. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    Nybroe, O; Albrechtsen, M; Dahlin, J; Linnemann, D; Lyles, J M; Møller, C J; Bock, E

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...

  2. Effects of 13 developmentally toxic chemicals on the migration of rat cephalic neural crest cells in vitro.

    Usami, Makoto; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Takamatu, Mina; Kazama, Shugo; Irie, Tomohiko; Doi, Osamu; Takizawa, Tatsuya

    2016-03-01

    The inhibition of neural crest cell (NCC) migration has been considered as a possible pathogenic mechanism underlying chemical developmental toxicity. In this study, we examined the effects of 13 developmentally toxic chemicals on the migration of rat cephalic NCCs (cNCCs) by using a simple in vitro assay. cNCCs were cultured for 48 h as emigrants from rhombencephalic neural tubes explanted from rat embryos at day 10.5 of gestation. The chemicals were added to the culture medium at 24 h of culture. Migration of cNCCs was measured as the change in the radius (radius ratio) calculated from the circular spread of cNCCs between 24 and 48 h of culture. Of the chemicals examined, 13-cis-retinoic acid, ethanol, ibuprofen, lead acetate, salicylic acid, and selenate inhibited the migration of cNCCs at their embryotoxic concentrations; no effects were observed for acetaminophen, caffeine, indium, phenytoin, selenite, tributyltin, and valproic acid. In a cNCC proliferation assay, ethanol, ibuprofen, salicylic acid, selenate, and tributyltin inhibited cell proliferation, suggesting the contribution of the reduced cell number to the inhibited migration of cNCCs. It was determined that several developmentally toxic chemicals inhibited the migration of cNCCs, the effects of which were manifested as various craniofacial abnormalities. PMID:26175014

  3. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain

  4. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    Khalifa, Shaden A.M., E-mail: shaden.khalifa@ki.se [Department of Neuroscience, Karolinska Institute, Stockholm (Sweden); Medina, Philippe de [Affichem, Toulouse (France); INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); Erlandsson, Anna [Department of Public Health and Caring Sciences, Uppsala University, Uppsala (Sweden); El-Seedi, Hesham R. [Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala (Sweden); Silvente-Poirot, Sandrine [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France); Poirot, Marc, E-mail: marc.poirot@inserm.fr [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France)

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  5. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology...

  6. Differentiation of insulin-producing cells from human neural progenitor cells.

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  7. In vitro culture and differentiation of rat embryonic midbrain-derived neural stem cells

    Xingli Deng; Ruen Liu; Zhongtang Feng; Jing Guo; Wu Wang; Deqiang Lei; Hongyan Li; Zhihua Chen

    2008-01-01

    BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopamincrgic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: To isolate rat embryonic mNSCs and to observe the differentiation characteristics of mNSCs induced by cell growth-promoting factors. DESIGN, TIME AND SETTING: An in vitro cell culture study based on the molecular biology of nerve cells was carried out at the Institute of Clinical Medicine, China-Japan Friendship Hospital (China) from March to November 2007. MATERIALS: Sprague Dawley rats at embryonic day 14 were used in this study. Nestin antibody, β-Ⅲ tubulin antibody, glial fibrillary acidic protein (GFAP) antibody and cyclic nucleotide 3'-phosphohydrolase (CNPase) antibody were provided by Abeam; DMEM/F12 medium and N2 supplement were provided by Invitrogen; epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) were provided by R&D Systems. METHODS: The ventral mesencephalon was dissected from embryonic day 14 rat embryos. By trypsin digestion and mechanical separation, the brain tissue was triturated into a fine single-cell suspension. The cells were cultured in 5 mL serum-free medium containing DMEM/Fl2, 1% N2 supplement, 20 ng/mL EGF and FGF2. The mNSCs at the third generation were coated with 10 μg/mL polylysine and induced to differentiate in the DMEM/Fl2 supplemented with 1% fetal bovine serum and 1% N2. MAIN OUTCOME MEASURES: The neural spheres of the third passage were identified by nestin immunofluorescence; at the same time, the cells were induced to differentiate, and the types of differentiated cell were identified by immunofluorescence for βⅢ tubulin, GFAP and CNPase. RESULTS: Seven days after primary culture, a great many neurospheres could be obtained by successive pasage. Immunofluorescence assays showed that the neurospheres were nestin positive, and after differentiation, the cells expressed GFAP, CNPase and β -

  8. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  9. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1+ migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug+ pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1+ migrating NCCs but reduced Pax7 expression and fewer Slug+ pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly

  10. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells.

    Khalifa, Shaden,; de Medina, Philippe; Erlandsson, Anna; El-Seedi, Hesham; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-01-01

    International audience Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. T...

  11. Adult human neural stem cell therapeutics: Current developmental status and prospect

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-01

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as ce...

  12. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells

    Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Foster, Brian; Povlich, Laura K.; Kim, Dong-Hwan; Martin, David C.

    2006-01-01

    In this paper we describe interactions between neural cells and the conducting polymer poly(3,4-ethylenedioxythiophene (PEDOT) toward development of electrically conductive biomaterials intended for direct, functional contact with electrically-active tissues such as the nervous system, heart, and skeletal muscle. We introduce a process for polymerizing PEDOT around living cells and describe a neural cell-templated conducting polymer coating for microelectrodes and a hybrid conducting polymer-...

  13. Effects of melatonin and its analogues on neural stem cells.

    Chu, Jiaqi; Tu, Yalin; Chen, Jingkao; Tan, Dunxian; Liu, Xingguo; Pi, Rongbiao

    2016-01-15

    Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases. PMID:26499395

  14. Neurogenic and non neurogenic functions of endogenous neural stem cells.

    Erica eButti

    2014-04-01

    Full Text Available Adult neurogenesis is a lifelong process that occurs in two main neurogenic niches of the brain, namely in the subventricular zone (SVZ of the lateral ventricles and in the subgranular zone (SGZ of the dentate gyrus (DG in the hippocampus. In the 1960s, studies on adult neurogenesis have been hampered by the lack of established phenotypic markers. The precise tracing of neural stem/progenitor cells (NPCs was therefore, not properly feasible. After the (partial identification of those markers, it was the lack of specific tools that hindered a proper experimental elimination and tracing of those cells to demonstrate their terminal fate and commitment. Nowadays, irradia-tion, cytotoxic drugs as well as genetic tracing/ablation procedures have moved the field forward and increased our understanding of neurogenesis processes in both physiological and pathological conditions. Newly formed NPC progeny from the SVZ can replace granule cells in the olfactory bulbs of rodents, thus contributing to orchestrate sophisticated odour behaviour. SGZ-derived new granule cells, instead, integrate within the DG where they play an essential role in memory functions. Furthermore, converging evidence claim that endogenous NPCs not only exert neurogenic functions, but might also have non-neurogenic homeostatic functions by the release of different types of neuroprotective molecules. Remarkably, these non-neurogenic homeostatic functions seem to be necessary, both in healthy and diseased conditions, for example for preventing or limiting tissue damage. In this review, we will discuss the neurogenic and the non-neurogenic functions of adult NPCs both in physiological and pathological conditions.

  15. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    Daniela Annibali

    Full Text Available The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  16. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  17. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  18. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  19. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies.

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2016-02-01

    Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the "NESC-TO-NTs" system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  20. Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Forrester Jeff

    2009-09-01

    Full Text Available Abstract Background Neural differentiation of embryonic stem (ES cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming. Results Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of Oct4 and NANOG and increased expression of nestin. ES cells containing a GFP gene under the control of the Sox1 regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents. Conclusion Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.

  1. A Sox2 BAC transgenic approach for targeting adult neural stem cells.

    Wenfei Kang

    Full Text Available The transcription factor gene Sox2 is expressed in embryonic neural stem/progenitor cells and previous evidence suggests that it is also expressed in adult neural stem cells. To target Sox2-expressing neural stem/progenitor cells in a temporal manner, we generated a bacterial artificial chromosome (BAC transgenic mouse line, in which an inducible form of Cre, CreER™, is expressed under Sox2 regulatory elements. Inducible Cre activity in these mice was characterized using floxed reporters. During development, the Sox2-CreER transgenic mice show inducible Cre activity specifically in CNS stem/progenitor cells, making them a useful tool to regulate the expression of floxed genes temporally in embryonic neural stem/progenitor cells. In the adult, we examined the cell-specific expression of Sox2 and performed long-term lineage tracing. Four months after the transient induction of Cre activity, recombined GFAP+ stem-like cells and DCX+ neuroblasts were still abundant in the neurogenic regions including the subventricular zone (SVZ, rostral migratory stream (RMS, and subgranular zone (SGZ of the dentate gyrus. These results provide definitive in vivo evidence that Sox2 is expressed in neural stem cells (NSC in both the SVZ and SGZ that are capable of self-renewal and long-term neurogenesis. Therefore, Sox2-CreER mice should be useful in targeting floxed genes in adult neural stem cells.

  2. Developmental features of rat cerebellar neural cells cultured in a chemically defined medium

    We studied some aspects of the differentiation of rat cerebellar neural cells obtained from 8-day postnatal animals and cultured in a serum-free, chemically defined medium (CDM). The ability of the cells to take up radioactive transmitter amino acids was analyzed autoradiographically. The L-glutamate analogue 3H-D-aspartate was taken up by astroglial cells, but not by granule neurons, even in late cultures (20 days in vitro). This is in agreement with the lack of depolarization-induced release of 3H-D-aspartate previously observed in this type of culture. In contrast, 3H-(GABA) was scarcely accumulated by glial-fibrillary-acidic-protein (GFAP)-positive astrocytes, but taken up by glutamate-decarboxylase-positive inhibitory interneurons and was released in a Ca2+-dependent way upon depolarization: 3H-GABA evoked release progressively increased with time in culture. Interestingly, the expression of the vesicle-associated protein synapsin I was much reduced in granule cells cultured in CDM as compared to those maintained in the presence of serum. These data would indicate that in CDM the differentiation of granule neurons is not complete, while that of GABAergic neurons is not greatly affected. Whether the diminished differentiation of granule cells must be attributed only to serum deprivation or also to other differences in the composition of the culture medium remains to be established. 3H-GABA was avidly taken up also by a population of cells which were not recognized by antibodies raised against GFAP, glutamate decarboxylase, and microtubule-associated protein 2. These cells have been characterized as bipotential precursors of oligodendrocytes and of a subpopulation of astrocytes bearing a stellate shape and capable of high-affinity 3H-GABA uptake

  3. Neural network modeling and control of proton exchange membrane fuel cell

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell(PEMFC)stack. A radial basis function(RBF)neural network model was trained by the input-output data of impedance. A fuzzy neural network controller Was designed to control the impedance response.The RBF neural network model was used to test the fuzzy neural network controller.The results show that the RBF model output Can imitate actual output well, themaximal errorisnotbeyond 20 mΩ, thetrainingtime is about 1 s by using 20 neurons, and the mean squared errors is 141.9 mΩ2.The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is ahnllt 3 rain.

  4. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Shirin FARIVAR*

    2015-01-01

    fluid. J Neurol Neurosurg Psychiatry 1995 Oct;59(4:349-57.Alcazar A, Regidor I, Masjuan J, Salinas M, Alvarez- Cermeno JC. Induction of apoptosis by cerebrospinal fluid from patients with primary-progressive multiple sclerosis in cultured neurons. Neurosci Lett 1998 Oct 16;255(2:75-8.Colombo JA, Napp MI. Cerebrospinal fluid from L-dopa-treated Parkinson’s disease patients is dystrophic for various neural cell types exvivo: effects of astroglia. Exp Neurol 1998 Dec;154(2:452-63.Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Current topics in developmental biology 2005; (71: 1-52.Bachy I, Kozyraki R, Wassef M. The particles of the embryonic cerebrospinal fluid: how could they influence brain development? Brain Res Bull 2008 Mar 18;75(2- 4:289-94. doi: 10.1016/j.brainresbull.2007.10.010.Parada C, Gato A, Bueno D. Mammalian embryonic cerebrospinal fluid proteome has greater apo-lipoprotein and enzyme pattern complexity than the avian proteome. Journal of proteome research 2005; 4(6: 2420- 2428.Martin C, Bueno D, Alonso MI, Moro JA, Callejo S, Parada C, Martin P, Carnicero E, Gato A. FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuro epithelial stem cells. Dev Biol 2006 Sep 15;297(2:402-16. Epub 2006 May 19.Huttner HB, Janich P, Kohrmann M, Jaszai J, Siebzehnrubl F, Blumcke I, Suttorp M, Gahr M, Kuhnt D, Nimsky C. The stem cell markerprominin-1/CD133 on membrane particles in human cerebrospinal fluid offers novel approaches for studying central nervous system disease. Stem Cells 2008 Mar;26(3:698-705.Nordin C, Gupta RC, Sjodin I. Cerebrospinal fluid amino acids in pathological gamblers and healthy controls. Neuropsychobiology 2007;56(2-3:152-8. doi: 10.1159/000115782. Epub 2008 Feb 7.Gato A, Martin P, Alonso MI, Martin C, Pulgar MA, Moro JA. Analysis of cerebro-spinal fluid protein composition in early developmental stages in

  5. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function. PMID:26041660

  6. Neuritogenic and survival-promoting effects of the P2 peptide derived from a homophilic binding site in the neural cell adhesion molecule

    Pedersen, Martin V; Køhler, Lene B; Ditlevsen, Dorte K;

    2004-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop of...... fragmentation were lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting...

  7. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  8. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    Møller, C J; Christgau, S; Williamson, M R; Madsen, O D; Niu, Z P; Bock, E; Baekkeskov, S

    1992-01-01

    a process where cell adhesion molecules are involved. In this study we have analyzed the expression of neural cell adhesion molecule (NCAM) and cadherin molecules in neonatal, young, and adult rat islet cells as well as in glucagonomas and insulinomas derived from a pluripotent rat islet cell tumor...

  9. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Villa, Ana; Liste, Isabel; Courtois, Elise T;

    2009-01-01

    . Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of......Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro...... derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing....

  10. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    Lin, Jing-Fung; Sheu, Jer-Jia

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.

  11. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  12. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  13. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  14. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Nicolas Goffart

    2013-08-01

    Full Text Available Glioblastoma multiforme (GBM, WHO grade IV is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  15. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Goffart, Nicolas [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Kroonen, Jérôme [Human Genetics, CHU and University of Liège, Liège 4000 (Belgium); The T& P Bohnenn Laboratory for Neuro-Oncology, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht 3556 (Netherlands); Rogister, Bernard, E-mail: Bernard.Register@ulg.ac.be [Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège 4000 (Belgium); Department of Neurology, CHU and University of Liège, Liège 4000 (Belgium); GIGA-Development, Stem Cells and Regenerative Medicine, University of Liège, Liège 4000 (Belgium)

    2013-08-14

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology.

  16. Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment

    Glioblastoma multiforme (GBM, WHO grade IV) is the most common and lethal subtype of primary brain tumor with a median overall survival of 15 months from the time of diagnosis. The presence in GBM of a cancer population displaying neural stem cell (NSC) properties as well as tumor-initiating abilities and resistance to current therapies suggests that these glioblastoma-initiating cells (GICs) play a central role in tumor development and are closely related to NSCs. However, it is nowadays still unclear whether GICs derive from NSCs, neural progenitor cells or differentiated cells such as astrocytes or oligodendrocytes. On the other hand, NSCs are located in specific regions of the adult brain called neurogenic niches that have been shown to control critical stem cell properties, to nourish NSCs and to support their self-renewal. This “seed-and-soil” relationship has also been adapted to cancer stem cell research as GICs also require a specific micro-environment to maintain their “stem cell” properties. In this review, we will discuss the controversies surrounding the origin and the identification of GBM stem cells and highlight the micro-environment impact on their biology

  17. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis.

    Kamila Rosiak

    Full Text Available The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1 gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability.Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot.Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells.Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust

  18. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis

    Rosiak, Kamila; Smolarz, Maciej; Stec, Wojciech J.; Peciak, Joanna; Grzela, Dawid; Winiecka-Klimek, Marta; Stoczynska-Fidelus, Ewelina; Krynska, Barbara; Piaskowski, Sylwester; Rieske, Piotr

    2016-01-01

    Background The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. Methods Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. Results Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. Conclusions Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their

  19. Neural stem cells isolated from amyloid precursor protein-mutated mice for drug discovery

    2013-01-01

    AIM: To develop an in vitro model based on neural stem cells derived from transgenic animals, to be used in the study of pathological mechanisms of Alzheimer’s disease and for testing new molecules.

  20. Maintenance of neural stem cell regional identity in culture.

    Delgado, Ryan N; Lu, Changqing; Lim, Daniel A

    2016-01-01

    Neural stem cells (NSCs) are distributed throughout the ventricular-subventricular zone (V-SVZ) in the adult mouse brain. NSCs located in spatially distinct regions of the V-SVZ generate different types of olfactory bulb (OB) neurons, and the regional expression of specific transcription factors correlates with these differences in NSC developmental potential. In a recent article, we show that Nkx2.1-expressing embryonic precursors give rise to NKX2.1+ NSCs located in the ventral V-SVZ of adult mice. Here we characterize a V-SVZ monolayer culture system that retains regional gene expression and neurogenic potential of NSCs from the dorsal and ventral V-SVZ. In particular, we find that Nkx2.1-lineage V-SVZ NSCs maintain Nkx2.1 expression through serial passage and can generate new neurons in vitro. Thus, V-SVZ NSCs retain key aspects of their in vivo regional identity in culture, providing new experimental opportunities for understanding how such developmental patterns are established and maintained during development. PMID:27606338

  1. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  2. Id4 knockdown during zebrafish development revealed its functional role in neural stem cell survival

    Patlola, Santosh

    2010-01-01

    Id4 (Inhibitor of DNA binding 4 / Inhibitor of Differentiation 4) is one of the four members of Id protein family that antagonise the function of basic helix-loop-helix (bHLH) transcriptional regulators. In the mouse it has been shown that Id4 plays an important role in the timing of neural stem and progenitor cell differentiation and knockout mice exhibited premature neural stem cell differentiation resulting in significantly smaller brains. To further establish the molecular mechanism under...

  3. Ionic mechanisms subserving mechanosensory transduction and neural integration in statocyst hair cells of Hermissenda

    Farley, Joseph

    1988-01-01

    The neural processing of gravitational-produced sensory stimulation of statocyst hair cells in the nudibranch mollusk Hermissenda was studied. The goal in these studies was to understand how: gravireceptor neurons sense or transduce gravitational forces, gravitational stimulation is integrated so as to produce a graded receptor potential, and ultimately the generation of an action potential, and various neural adaptation phenomena which hair cells exhibit arise. The approach to these problems was primarily electrophysical.

  4. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  5. Neural progenitor cells from an adult patient with fragile X syndrome

    Nethercott Hubert E; Greco Claudia M; Tassone Flora; Schwartz Philip H; Ziaeian Boback; Hagerman Randi J; Hagerman Paul J

    2005-01-01

    Abstract Background Currently, there is no adequate animal model to study the detailed molecular biochemistry of fragile X syndrome, the leading heritable form of mental impairment. In this study, we sought to establish the use of immature neural cells derived from adult tissues as a novel model of fragile X syndrome that could be used to more fully understand the pathology of this neurogenetic disease. Methods By modifying published methods for the harvest of neural progenitor cells from the...

  6. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury*

    Xu, Kan; Chen, Qi-xin; Li, Fang-cai; Chen, Wei-Shan; Lin, Min; Wu, Qiong-hua

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Meth...

  7. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  8. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld;

    2007-01-01

    decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we......The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....

  9. Electrolyte Additives for Phosphoric Acid Fuel Cells

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.;

    1993-01-01

    Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen......, as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity....

  10. Elk3 is essential for the progression from progenitor to definitive neural crest cell.

    Rogers, Crystal D; Phillips, Jacquelyn L; Bronner, Marianne E

    2013-02-15

    Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330

  11. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. PMID:26828681

  12. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue;

    2014-01-01

    calmodulin-dependent protein kinase-2, emphasizing a possible importance of this kinase for this cell stage. Collectively, this data represent the most diverse set of post-translational modifications reported for hESCs and NSCs. This study revealed potential markers to distinguish NSCs from hESCs and will......Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important in...... cellular signaling and recognition, and their function and activity are frequently regulated by post-translational modifications such as phosphorylation and glycosylation. To obtain information about membrane-associated proteins and their modified amino acids potentially involved in changes of hESCs and...

  13. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  14. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  15. Multifunctional Nucleic Acids for Tumor Cell Treatment

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor...

  16. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han 

    2015-01-01

    Objective:Parkinson’s disease (PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods:NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers:βⅢ‐tubulin and microtubule‐associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6‐hydroxydopamine (6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results:The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions:Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  17. In Vivo Targeting of Adult Neural Stem Cells in the Dentate Gyrus by a Split-Cre Approach

    Ruth Beckervordersandforth; Aditi Deshpande; Iris Schäffner; Hagen B. Huttner; Alexandra Lepier; Dieter Chichung Lie; Magdalena Götz

    2014-01-01

    Summary We describe the labeling of adult neural stem cells (aNSCs) in the mouse and human dentate gyrus (DG) by the combinatorial expression of glial fibrillary acidic protein (GFAP) and Prominin1, as revealed by immunohistochemistry. Split-Cre-based genetic fate mapping of these double-positive cells in the adult murine DG reveals their NSC identity, as they are self-renewing and contribute to neurogenesis over several months. Their progeny reacts to stimuli such as voluntary exercise with ...

  18. Partial Dedifferentiation of Murine Radial Glia-Type Neural Stem Cells by Brn2 and c-Myc Yields Early Neuroepithelial Progenitors.

    Bung, Raffaela; Wörsdörfer, Philipp; Thier, Marc Christian; Lemke, Kathrin; Gebhardt, Martina; Edenhofer, Frank

    2016-04-10

    Direct cell conversion developed into an important paradigm for generating cells with enhanced differentiation capability. We combined a transcription-factor-based cell fate conversion strategy with the use of pharmacological compounds to derive early neuroepithelial progenitor cells from developmentally more restricted radial glia-type neural stem cells. By combining the small molecules CHIR99021, Tranylcypromine, SB431542 and valproic acid with viral transduction of the transcription factor c-Myc and the POU domain transcription factor Brn2, we dedifferentiated radial glia-type neural stem cells into an early neuroepithelial progenitor cell state within 6days. Reverse transcription PCR analyses showed a rapid down-regulation of the radial glia markers Olig2 and Vimentin during conversion, whereas the neuroepithelial markers Dach1 and Sox1 were fastly up-regulated. Furthermore, a switch from N-Cadherin to E-Cadherin indicates a mesenchymal-to-epithelial transition. The differentiation of cells converted by Brn2/c-Myc yielded smooth muscle actin- and Peripherin-positive cells in addition to the neuronal marker TUJ1 and cells that are positive for the glial marker GFAP. This differentiation potential suggests that the applied reprogramming strategy induced an early neuroepithelial cell population, which might resemble cells of the neural border or even more primitive neuroepithelial cells. PMID:26555748

  19. Bi-parental care contributes to sexually dimorphic neural cell genesis in the adult mammalian brain.

    Gloria K Mak

    Full Text Available Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.

  20. NEURAL STEM CELLS AND SPINAL CORD INJURY%神经干细胞和脊髓损伤

    李劲涛; 王廷华; 冯忠堂

    2007-01-01

    @@ Preface 1. Concept of neural stem cells Stem cells are multipotential cells that have the capacity to proliferate in an undifferentiated state, to self-renew, and to give rise to all the cell types of a particular tissue.

  1. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  2. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by alltrans retinoic acid

    Wei; Jin; Yao-Peng; Xu; An-Huai; Yang; Yi-Qiao; Xing

    2015-01-01

    AIM: To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells(h UC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid(ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis.METHODS: The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured h UC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry.RESULTS: The data showed that low concentrations of ATRA(0.5 μmol, 0.25 μmol) had no effect on the number of cells. However, treatment with 1.0 μmol or 2.0 μmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 μmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24 h. We further showed that 0.5 μmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells.CONCLUSION: Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of h UC-MSCs. These findings have implications on the use of ATRA-differentiated h UC-MSCs for the study of neural degeneration diseases.

  3. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...... the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR....

  4. Presenilins are required for maintenance of neural stem cells in the developing brain

    Kim Woo-Young

    2008-01-01

    Full Text Available Abstract The early embryonic lethality of mutant mice bearing germ-line deletions of both presenilin genes precluded the study of their functions in neural development. We therefore employed the Cre-loxP technology to generate presenilin conditional double knockout (PS cDKO mice, in which expression of both presenilins is inactivated in neural progenitor cells (NPC or neural stem cells and their derivative neurons and glia beginning at embryonic day 11 (E11. In PS cDKO mice, dividing NPCs labeled by BrdU are decreased in number beginning at E13.5. By E15.5, fewer than 20% of NPCs remain in PS cDKO mice. The depletion of NPCs is accompanied by severe morphological defects and hemorrhages in the PS cDKO embryonic brain. Interkinetic nuclear migration of NPCs is also disrupted in PS cDKO embryos, as evidenced by displacement of S-phase and M-phase nuclei in the ventricular zone of the telencephalon. Furthermore, the depletion of neural progenitor cells in PS cDKO embryos is due to NPCs exiting cell cycle and differentiating into neurons rather than reentering cell cycle between E13.5 and E14.5 following PS inactivation in most NPCs. The length of cell cycle, however, is unchanged in PS cDKO embryos. Expression of Notch target genes, Hes1 and Hes5, is significantly decreased in PS cDKO brains, whereas Dll1 expression is up-regulated, indicating that Notch signaling is effectively blocked by PS inactivation. These findings demonstrate that presenilins are essential for neural progenitor cells to re-enter cell cycle and thus ensure proper expansion of neural progenitor pool during embryonic neural development.

  5. Micro-electro-mechanical systems phosphoric acid fuel cell

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  6. Nucleic Acid Aptamers for Living Cell Analysis

    Xiong, Xiangling; Lv, Yifan; Chen, Tao; Zhang, Xiaobing; Wang, Kemin; Tan, Weihong

    2014-06-01

    Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.

  7. Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage

    Crouch, Elizabeth E.; Liu, Chang; Silva-Vargas, Violeta; Doetsch, Fiona

    2015-01-01

    Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contri...

  8. Glioblastoma recurrence patterns near neural stem cell regions

    Chen, Linda; Chaichana, Kaisorn L.; Kleinberg, Lawrence; Ye, Xiaobu; Quinones-Hinojosa, Alfredo; Redmond, Kristin

    2016-01-01

    Purpose Glioblastoma (GBM) cancer stem cells and their neural stem cell counterparts are hypothesized to contribute to tumor progression. We examined whether GBM contrast enhancement contact with neurogenic regions (NR) affect recurrence patterns, as contrast enhancement reflects regions of blood–brain barrier breakdown. Methods 102 patients with primary GBM, treated at Johns Hopkins Hospital between 2006 and 2009, were included. All patients underwent surgical resection followed by adjuvant IMRT (60 Gy/30 fractions) and concomitant temozolomide. Initial and recurrent tumor distance from the subventricular zone (SVZ) or subgranular zone (SGZ) was measured. Tumors were categorized as NR contacting or non-contacting. The chi-square test was used to analyze the association between tumor contact and recurrence pattern. Results 49 of 102 (48.0%, 95% CI: 0.386–0.576) tumors contacted NRs at initial presentation, and, of these tumors, 49/49 (100%) contacted NRs at recurrence. Of 53 tumors that were initially non-contacting, 37/53 (69.8%, 95% CI: 0.565–0.804) recurred contacting NRs. In total, 86/102 (84.3%, 95% CI: 0.760–0.901) recurrent GBM contacted NRs compared with 49/102 (48%, 95% CI: 0.386–0.576) at initial presentation. Of the recurrent tumors that did not contact NRs, 16/53 (30.1%, 95% CI: 0.195–0.435) recurred medially toward NRs with a significant decrease in distance between tumor contrast enhancement and NRs. 16/49 (32.6%, 95% CI: 0.212–0.466) initially NR-contacting GBMs recurred out-of field while 7/53 (13.2%, 95% CI: 0.0655–0.248) initially non-contacting recurred out of the radiation treatment field (p = 0.0315, Odds ratio: 3.19, 95% CI: 1.18–8.62). Conclusions GBM contrast-enhancing recurrence is significantly associated with proximity to NRs. NR-contacting initial tumors were more likely to recur out of radiation treatment fields. PMID:26276527

  9. Neural networks applied to determine the thermophysical properties of amino acid based ionic liquids.

    Cancilla, John C; Perez, Ana; Wierzchoś, Kacper; Torrecilla, José S

    2016-03-01

    A series of models based on artificial neural networks (ANNs) have been designed to estimate the thermophysical properties of different amino acid-based ionic liquids (AAILs). Three different databases of AAILs were modeled using these algorithms with the goal set to estimate the density, viscosity, refractive index, ionic conductivity, and thermal expansion coefficient, and requiring only data regarding temperature and electronic polarizability of the chemicals. Additionally, a global model was designed combining all of the databases to determine the robustness of the method. In general, the results were successful, reaching mean prediction errors below 1% in many cases, as well as a statistically reliable and accurate global model. Attaining these successful models is a relevant fact as AAILs are novel biodegradable and biocompatible compounds which may soon make their way into the health sector forming a part of useful biomedical applications. Therefore, understanding the behavior and being able to estimate their thermophysical properties becomes crucial. PMID:26899458

  10. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells.

    Komura, Takashi; Kato, Koichi; Konagaya, Shuhei; Nakaji-Hirabayashi, Tadashi; Iwata, Hiroo

    2015-11-01

    Neural progenitor cells derived from induced pluripotent stem cells have been considered as a potential source for cell-transplantation therapy of central nervous disorders. However, efficient methods to expand neural progenitor cells are further required for their clinical applications. In this study, a protein array was fabricated with nine extracellular matrices and used to screen substrates suitable for the expansion of neural progenitor cells derived from mouse induced pluripotent stem cells. The results showed that neural progenitor cells efficiently proliferated on substrates with immobilized laminin-1, laminin-5, or Matrigel. Based on this result, further attempts were made to develop clinically compliant substrates with immobilized polypeptides that mimic laminin-1, one of the most effective extracellular matrices as identified in the array-based screening. We used here recombinant DNA technology to prepare polypeptide containing the globular domain 3 of laminin-1 and immobilized it onto glass-based substrates. Our results showed that neural progenitor cells selectively proliferated on substrate with the immobilized polypeptide while maintaining their differentiated state. PMID:25943789

  11. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    Piya Prajumwongs

    2016-01-01

    Full Text Available Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation.

  12. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells

    2010-01-01

    Spinal cord and brain injuries usually lead to cavity formation.The transplantation by combining stem cells and tissue engineering scaffolds has the potential to fill the cavities and replace the lost neural cells.Both chitosan and collagen have their unique characteristics.In this study,the effects of chitosan and collagen on the behavior of rat neural stem cells (at the neurosphere level) were tested in vitro in terms of cytotoxicity and supporting ability for stem cell survival,proliferation and differentiation.Under the serum-free condition,both chitosan membranes and collagen gels had low cytotoxicity to neurospheres.That is,cells migrated from neurospheres,and processes extended out from these neurospheres and the differentiated cells.Compared with the above two materials,chitosan-collagen membranes were more suitable for the co-culture with rat neural stem cells,because,except for low cytotoxicity and supporting ability for the cell survival,in this group,a large number of cells were observed to migrate out from neurospheres,and the differentiating percentage from neurospheres into neurons was significantly increased.Further modification of chitosan-collagen membranes may shed light on in vivo nerve regeneration by transplanting neural stem cells.

  13. In vitro growth, differentiation and biological characteristics of neural stem cells

    Meijiang Yun; Lianzhong Wang; Yongcai Wang; Xiaolian Jiang

    2006-01-01

    OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification, differentiation and source of neural stem cells.DATA SOURCES: An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem ceils, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched.Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database.STUDY SELECTTON: The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: ① Articles relevant to the biological characteristics and classification of neural stem cells; ② Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded.DATA EXTRACTION: Thirty articles were selected from 203 relevant articles according to the inclusive criteria.Articles were excluded because of repetition and reviews.DATA SYNTHESTS: Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem cells by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth

  14. Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects

    Sucov Henry M

    2006-11-01

    Full Text Available Abstract Background Congenital cardiovascular diseases are the most common form of birth defects in humans. A substantial portion of these defects has been associated with inappropriate induction, migration, differentiation and patterning of pluripotent cardiac neural crest stem cells. While TGF-β-superfamily signaling has been strongly implicated in neural crest cell development, the detailed molecular signaling mechanisms in vivo are still poorly understood. Results We deleted the TGF-β type I receptor Alk5 specifically in the mouse neural crest cell lineage. Failure in signaling via ALK5 leads to severe cardiovascular and pharyngeal defects, including inappropriate remodeling of pharyngeal arch arteries, abnormal aortic sac development, failure in pharyngeal organ migration and persistent truncus arteriosus. While ALK5 is not required for neural crest cell migration, our results demonstrate that it plays an important role in the survival of post-migratory cardiac neural crest cells. Conclusion Our results demonstrate that ALK5-mediated signaling in neural crest cells plays an essential cell-autonomous role in the pharyngeal and cardiac outflow tract development.

  15. NeuroArray: A Universal Interface for Patterning and Interrogating Neural Circuitry with Single Cell Resolution

    Li, Wei; Xu, Zhen; Huang, Junzhe; Lin, Xudong; Luo, Rongcong; Chen, Chia-Hung; Shi, Peng

    2014-01-01

    Recreation of neural network in vitro with designed topology is a valuable tool to decipher how neurons behave when interacting in hierarchical networks. In this study, we developed a simple and effective platform to pattern primary neurons in array formats for interrogation of neural circuitry with single cell resolution. Unlike many surface-chemistry-based patterning methods, our NeuroArray technique is specially designed to accommodate neuron's polarized morphologies to make regular arrays...

  16. Autoradiographic quantitation of. beta. -adrenergic receptors on neural cells in primary cultures. 1. Pharmacological studies of (/sup 125/I)pindolol binding of individual astroglial cells

    Burgess, S.K.; McCarthy, K.D. (North Carolina Univ., Chapel Hill (USA). School of Medicine)

    1985-05-27

    The current investigation was undertaken to determine whether the binding of (/sup 125/I)pindolol (*IPIN) to immunocytochemically stained cultured cells, as measured by quantitative autoradiography, would fulfill the usual pharmacological criteria for specific ..beta..-adrenergic receptor binding. *IPIN binding experiments were carried out on individual astroglia obtained from neonatal rat cerebral cortex and grown as primary cultures on polylysine-coated glass slides. Autoradiographic silver grains on cells which stained for the intracellular astroglial marker, glial fibrillary acidic protein (GFAP), were quantified by a microcomputer-based video digitizing system. This study is a demonstration of receptor binding parameters derived from single cells in a known population, and represents a novel approach to the problem of assessing cell-type specific receptors on neural cells in mixed primary cultures.

  17. Apical accumulation of MARCKS in neural plate cells during neurulation in the chick embryo

    Arruti Cristina

    2001-04-01

    Full Text Available Abstract Background The neural tube is formed by morphogenetic movements largely dependent on cytoskeletal dynamics. Actin and many of its associated proteins have been proposed as important mediators of neurulation. For instance, mice deficient in MARCKS, an actin cross-linking membrane-associated protein that is regulated by PKC and other kinases, present severe developmental defects, including failure of cranial neural tube closure. Results To determine the distribution of MARCKS, and its possible relationships with actin during neurulation, chick embryos were transversely sectioned and double labeled with an anti-MARCKS polyclonal antibody and phalloidin. In the neural plate, MARCKS was found ubiquitously distributed at the periphery of the cells, being conspicuously accumulated in the apical cell region, in close proximity to the apical actin meshwork. This asymmetric distribution was particularly noticeable during the bending process. After the closure of the neural tube, the apically accumulated MARCKS disappeared, and this cell region became analogous to the other peripheral cell zones in its MARCKS content. Actin did not display analogous variations, remaining highly concentrated at the cell subapical territory. The transient apical accumulation of MARCKS was found throughout the neural tube axis. The analysis of another epithelial bending movement, during the formation of the lens vesicle, revealed an identical phenomenon. Conclusions MARCKS is transiently accumulated at the apical region of neural plate and lens placode cells during processes of bending. This asymmetric subcellular distribution of MARCKS starts before the onset of neural plate bending. These results suggest possible upstream regulatory actions of MARCKS on some functions of the actin subapical meshwork.

  18. Interplay between autophagy and programmed cell death in mammalian neural stem cells

    Kyung Min Chung

    2013-08-01

    Full Text Available Mammalian neural stem cells (NSCs are of particular interestbecause of their role in brain development and function. Recentfindings suggest the intimate involvement of programmed celldeath (PCD in the turnover of NSCs. However, the underlyingmechanisms of PCD are largely unknown. Although apoptosis isthe best-defined form of PCD, accumulating evidence hasrevealed a wide spectrum of PCD encompassing apoptosis,autophagic cell death (ACD and necrosis. This mini-reviewaims to illustrate a unique regulation of PCD in NSCs. Theresults of our recent studies on autophagic death of adulthippocampal neural stem (HCN cells are also discussed. HCNcell death following insulin withdrawal clearly provides areliable model that can be used to analyze the molecularmechanisms of ACD in the larger context of PCD. Moreresearch efforts are needed to increase our understanding of themolecular basis of NSC turnover under degenerating conditions,such as aging, stress and neurological diseases. Efforts aimed atprotecting and harnessing endogenous NSCs will offer novelopportunities for the development of new therapeutic strategiesfor neuropathologies. [BMB Reports 2013; 46(8: 383-390

  19. Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina biifda aperta in rat%反式维甲酸诱导显性脊柱裂胎鼠骶尾部神经前体细胞凋亡和增殖的变化规律研究

    魏晓伟; 袁正伟

    2015-01-01

    目的观察大鼠胚胎脊柱裂发生早期,细胞凋亡与细胞增殖的变化规律。方法孕鼠随机分为对照组和实验组。胚胎10天时,实验组1次性经胃管注入致畸量反式维甲酸诱导产生脊柱裂动物模型,对照组胃饲等量溶剂,分别在妊娠11、12、13天(E11, E12, E13)时剖宫取胚胎,一部分胚胎固定后进行全胚胎TUNEL染色观察其整体凋亡情况;另一部分胚胎常规制作石蜡切片,采用TUNEL切片染色和免疫荧光染色技术,检测胚胎脊部神经管组织中细胞凋亡和细胞增殖的变化。结果与对照组相比,细胞凋亡于多个发育部位明显增多,集中表现在颅面原基、颅部神经管的背外侧、骶尾部神经管的背部中线。免疫荧光染色显示,与对照组相比,脊柱裂组胚胎畸形发生部位的神经前体细胞的凋亡率升高[E11(2.02±0.52)%与(0.57±0.23)%, E12(3.56±0.33)%与(0.93±0.14)%,E13(3.76±0.37)%与(1.24±0.21)%,P<0.001]。而细胞增殖降低[E11(65.17±2.30)%与(81.76±2.17)%, E12(63.97±3.03)%与(76.98±5.14)%,E13(56.86±2.80)%与(73.43±1.99)%,P <0.001]。结论反式维甲酸诱导的大鼠脊柱裂胚胎骶尾部神经管中神经前体细胞凋亡增多,而细胞增殖减少,这可能是脊柱裂胚胎神经元发育异常的主要原因之一。%Objective To investigate the cell apoptosis in the whole embryosand proliferation of neural progenitor cells in the spinal neural tube during neurulation in all-trans retinoic acid (atRA)-induced spina biifda in fetal rats.MethodSpina biifda was induced by atRA in fetal rats. Cell apoptosis and cell proliferation were assessed using TUNEL labeling technique on both whole-mount and serially sectioned embryos and mitotic markers (Ki67) assay, respectively.ResultsAn excess of apoptosis in the neuroepithelium of embryos with spina bifida was found, which became more marked as embryos

  20. Reprogramming of adult human neural stem cells into induced pluripotent stem cells

    XIE Li-qian; SUN Hua-ping; WANG Tian; TANG Hai-liang; WANG Pu; ZHU Jian-hong; YAO Zheng-wei

    2013-01-01

    Background Since an effective method for generating induced pluripotent stem cells (iPSCs) from human neural stem cells (hNSCs) can offer us a promising tool for studying brain diseases,here we reported direct reprogramming of adult hNSCs into iPSCs by retroviral transduction of four defined factors.Methods NSCs were successfully isolated and cultured from the hippocampus tissue of epilepsy patients.When combined with four factors (OCT3/4,SOX2,KLF4,and c-MYC),iPSCs colonies were successfully obtained.Results Morphological characterization and specific genetic expression confirmed that these hNSCs-derived iPSCs showed embryonic stem cells-like properties,which include the ability to differentiate into all three germ layers both in vitro and in vivo.Conclusion Our method would be useful for generating human iPSCs from NSCs and provide an important tool for studying neurological diseases.

  1. File list: Oth.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.20.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived...52996,SRX213763,SRX213758 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  2. File list: Unc.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Unc.PSC.50.AllAg.mESC_derived_neural_cells mm9 Unclassified Pluripotent stem cell mESC derived...,SRX213761,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  3. File list: Oth.PSC.10.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.10.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived...13763,SRX213758,SRX352996 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.mESC_derived_neural_cells.bed ...

  4. File list: Unc.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Unc.PSC.20.AllAg.mESC_derived_neural_cells mm9 Unclassified Pluripotent stem cell mESC derived...,SRX213761,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  5. File list: Oth.PSC.05.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.05.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived...10563,SRX213763,SRX352996 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.AllAg.mESC_derived_neural_cells.bed ...

  6. File list: ALL.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available ALL.PSC.50.AllAg.mESC_derived_neural_cells mm9 All antigens Pluripotent stem cell mESC derived...3762,SRX213759,SRX276676,SRX018672,SRX352995,SRX276677,SRX298194,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  7. File list: ALL.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available ALL.PSC.10.AllAg.iPS_derived_neural_cells hg19 All antigens Pluripotent stem cell iPS derived...hive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  8. File list: Oth.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_cells hg19 TFs and others Pluripotent stem cell hESC derived...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  9. File list: ALL.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available ALL.PSC.20.AllAg.mESC_derived_neural_cells mm9 All antigens Pluripotent stem cell mESC derived...3762,SRX352996,SRX604259,SRX213763,SRX213761,SRX213764,SRX213758,SRX213757 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  10. File list: His.PSC.20.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Full Text Available His.PSC.20.AllAg.iPS_derived_neural_cells hg19 Histone Pluripotent stem cell iPS derived...archive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.iPS_derived_neural_cells.bed ...

  11. File list: ALL.PSC.05.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available ALL.PSC.05.AllAg.mESC_derived_neural_cells mm9 All antigens Pluripotent stem cell mESC derived...8051,SRX810565,SRX810562,SRX810563,SRX810564,SRX213763,SRX352996,SRX604259 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.05.AllAg.mESC_derived_neural_cells.bed ...

  12. File list: Oth.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.50.AllAg.mESC_derived_neural_cells mm9 TFs and others Pluripotent stem cell mESC derived...13762,SRX213759,SRX352995 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  13. File list: InP.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available InP.PSC.50.AllAg.mESC_derived_neural_cells mm9 Input control Pluripotent stem cell mESC derived...65,SRX1214070,SRX810564,SRX101693,SRX604259,SRX018672,SRX276677 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  14. File list: Oth.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_cells hg19 TFs and others Pluripotent stem cell hESC derived...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  15. File list: His.PSC.05.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Full Text Available His.PSC.05.AllAg.mESC_derived_neural_cells mm9 Histone Pluripotent stem cell mESC derived...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.mESC_derived_neural_cells.bed ...

  16. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells

    Dirks, Peter B.

    2007-01-01

    Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence poin...

  17. A new role for interferon gamma in neural stem/precursor cell dysregulation

    Hartung Hans-Peter

    2011-03-01

    Full Text Available Abstract Background The identification of factors that compromise neurogenesis is aimed at improving stem cell-based approaches in the field of regenerative medicine. Interferon gamma (IFNγ is a main pro-inflammatory cytokine and up-regulated during several neurological diseases. IFNγ is generally thought to beneficially enhance neurogenesis from fetal or adult neural stem/precursor cells (NSPCs. Results We now provide direct evidence to the contrary that IFNγ induces a dysfunctional stage in a substantial portion of NSPC-derived progeny in vitro characterized by simultaneous expression of glial fibrillary acid protein (GFAP and neuronal markers, an abnormal gene expression and a functional phenotype neither typical for neurons nor for mature astrocytes. Dysfunctional development of NSPCs under the influence of IFNγ was finally demonstrated by applying the microelectrode array technology. IFNγ exposure of NSPCs during an initial 7-day proliferation period prevented the subsequent adequate differentiation and formation of functional neuronal networks. Conclusions Our results show that immunocytochemical analyses of NSPC-derived progeny are not necessarily indicating the correct cellular phenotype specifically under inflammatory conditions and that simultaneous expression of neuronal and glial markers rather point to cellular dysregulation. We hypothesize that inhibiting the impact of IFNγ on NSPCs during neurological diseases might contribute to effective neurogenesis and regeneration.

  18. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

    2010-01-01

    To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs.

  19. Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down.

    Esmaeili, M; Ghaedi, K; Shoaraye Nejati, A; Nematollahi, M; Shiralyian, H; Nasr-Esfahani, M H

    2016-01-15

    Peroxisomes constitute special cellular organelles which display a variety of metabolic functions including fatty acid oxidation and free radical elimination. Abundance of these flexible organelles varies in response to different environmental stimuli. It has been demonstrated that PEX11β, a peroxisomal membrane elongation factor, is involved in the regulation of size, shape and number of peroxisomes. To investigate the role of PEX11β in neural differentiation of mouse embryonic stem cells (mESCs), we generated a stably transduced mESCs line that derives the expression of a short hairpin RNA against Pex11β gene following doxycycline (Dox) induction. Knock-down of Pex11β, during neural differentiation, significantly reduced the expression of neural progenitor cells and mature neuronal markers (p<0.05) indicating that decreased expression of PEX11β suppresses neuronal maturation. Additionally, mRNA levels of other peroxisome-related genes such as PMP70, Pex11α, Catalase, Pex19 and Pex5 were also significantly reduced by Pex11β knock-down (p<0.05). Interestingly, pretreatment of transduced mESCs with peroxisome proliferator-activated receptor γ agonist (pioglitazone (Pio)) ameliorated the inhibitory effects of Pex11β knock down on neural differentiation. Pio also significantly (p<0.05) increased the expression of neural progenitor and mature neuronal markers besides the expression of peroxisomal genes in transduced mESC. Results elucidated the importance of Pex11β expression in neural differentiation of mESCs, thereby highlighting the essential role of peroxisomes in mammalian neural differentiation. The observation that Pio recovered peroxisomal function and improved neural differentiation of Pex11β knocked-down mESCs, proposes a potential new pharmacological implication of Pio for neurogenesis in patients with peroxisomal defects. PMID:26562432

  20. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats

    Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-01-01

    Study Design This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. Purpose The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Overview of Literature Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. Methods The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Results Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Conclusions Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in

  1. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  2. Generation and properties of a new human ventral mesencephalic neural stem cell line

    Villa, Ana; Liste, Isabel; Courtois, Elise T.; Seiz, Emma G.; Ramos, Milagros [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain); Meyer, Morten [Department of Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21,st, DK-500, Odense C (Denmark); Juliusson, Bengt; Kusk, Philip [NsGene A/S, Ballerup (Denmark); Martinez-Serrano, Alberto, E-mail: amserrano@cbm.uam.es [Center of Molecular Biology ' Severo Ochoa' , Autonomous University of Madrid-C.S.I.C., Campus Cantoblanco 28049-Madrid (Spain)

    2009-07-01

    Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH{sup +}) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.

  3. Protective effects of paroxetine on the lipopolysaccharide injured hippocampal-derived neural stem cell

    彭正午

    2013-01-01

    Objective To investigate the effects of paroxetine on the cell viability and expression of the phosphorylated ERK1/2 in lipopolysaccharide LPS injured hippocampalderived neural stem cells (NSCs) .Methods The NSCs were derived from hippocampus of fetal rats,after the

  4. Cysteine: A Novel Neural Inducer for Rat Bone Marrow Mesenchymal Stem Cells

    Malek Soleimani Mehranjani

    2014-06-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs can differentiate into various cell types. Since cysteine has structural similarities to neuronal inducers β-mercaptoethanol and glutathione, we examined its effect on neural induction of rat bone marrow MSCs. Materials and Methods: In this experimental study, cells were treated in a medium containing 1mM cysteine for 24 hours prior to treatment with neuron inducing medium containing 10 mM cysteine for 1, 2 and 3 hours. Cell viability and morphology were assessed by 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT assay and, Hoechst, propidium iodide and acridine orange staining respectively. Expression of nestin and β-Tubulin III genes, as neural cell-specific markers, was studied reverse transcription polymerase chain reaction (RT-PCR. The data was statistically analyzed using One-Way ANOVA and Tukey’s test and p<0.05 was considered significant. Results: After 3 hours of treatment, neuron like morphology with a considerable expression of nestin and β-Tubulin III genes was apparent. The mean cell viability was not significantly different at 1, 2 and 3 hours following induction, compared with the control cells. Conclusion: Cysteine can induce neural features in rat bone marrow MSCs without reducing cell viability. Therefore, it can be considered as a safer alternative to toxic neural inducer agents such as β-mercaptoethanol.

  5. Stem Cells from Human Exfoliated Deciduous Tooth Exhibit Stromal-Derived Inducing Activity and Lead to Generation of Neural Crest Cells from Human Embryonic Stem Cells

    Khadijeh Karbalaie

    2015-04-01

    Full Text Available Objective: The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs. These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. Materials and Methods: In this experimental study, we cultured human embryonic stem cells (hESCs on stromal stem cells from human exfoliated deciduous teeth (SHED for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs and NCCs. Results: In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. Conclusion: SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.

  6. Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis

    Hall, Vanessa Jane; Jacobsen, J.; Gunnarsson, A.;

    2011-01-01

    Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis......Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis...

  7. Dimethyloxalylglycine may be enhance the capacity of neural-like cells in treatment of Alzheimer disease.

    Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara

    2016-06-01

    Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats. PMID:27005959

  8. Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure.

    Darabi, Shahram; Tiraihi, Taki; Ruintan, Atefeh; Abbaszadeh, Hojatt Allah; Delshad, AliReza; Taheri, Taher

    2013-09-01

    Bone marrow stromal cells (BMSCs) were reported to form floating aggregation of cells with expression of nestin, a marker for neural stem cells (NSCs). The purpose of this investigation is to evaluate the morphology and the molecular markers expressed by NSCs derived from these neurospheres. The BMSCs were isolated from Sprague Dawley rats and evaluated for osteogenesis, lipogenesis, and expression of fibronectin, CD90, CD106, CD31, and Oct4. The BMSCs were cultured with Dulbecco's modified Eagle's medium (DMEM)/F12 containing 15% fetal bovine serum, then with DMEM/F12 containing 2% B27, basic fibroblast growth factor, and epidermal growth factor. The cell aggregates or spheres were stained with acridine orange, which showed that the neurospheres comprised aggregated cells at either premitotic/postsynthetic (PS), postmitotic/presynthetic (PM) phases of cell cycle, or a mixture of both. The NSCs harvested from the neurospheres were polar with eccentric nucleus, and at either a PS or a PM cell cycle phases, some cells at the latter phase tended to form rosette-like structures. The cells were immunostained for molecular markers such as nestin, neurofilament 68 (NF68), NF160, and NF200 and glial fibrillary acidic protein (GFAP). Myelin basic protein (MBP), the pluripotency (Oct4, Nanog, and SOX2), and the differentiation genes (NeuroD1, Tubb4, and Musashi I) were also evaluated using reverse transcription polymerase chain reaction (RT-PCR). Nestin, NF68, NF160, NF200, GFAP, O4, and N-cadherin were expressed in the NSCs. The percentage of immunoreactive cells to nestin was significantly higher than that of the other neuronal markers. MBP was not expressed in BMSCs, neurospheres, and NSCs. The neurospheres were immunoreactive to GFAP. RT-PCR showed the expression of NeuroD1 and Musashi I. The pluripotency gene (SOX2) was expressed in NSCs. Oct4 and Nanog were expressed in BMSCs, while Oct4 and SOX2 were expressed in the neurosphere. This indicates that a pluripotency

  9. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injur y

    Dong Wang; Jinhua Liang; Jianjun Zhang; Shuhong Liu; Wenwen Sun

    2014-01-01

    Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differenti-ation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previ-ous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells+PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve ifbers were increased in the group treated with the NgR-silenced cell scaffold+mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviv-ing cells and nerve ifbers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.

  10. State of available capacity estimation for lead-acid batteries in electric vehicles using neural network

    This paper reviews recent definitions of the state of charge (SOC) that are often used to estimate the battery residual available capacity (BRAC) for lead-acid batteries in electric vehicles (EVs) and identifies their shortcomings. Then, the state of available capacity (SOAC), instead of the SOC, is defined to denote the BRAC in EVs, which refers to the percentage of the battery available capacity (BAC) of the discharge current profile for the EV battery at the fully charged state. Based on the experimentation of different discharge current profiles, including theoretical current profiles and practical current profiles under EV driving cycles, the discharged and regenerative capacity distribution is proposed to describe discharge current profiles for the SOAC estimation. Because of the complexity and nonlinearity of the relationship between the SOAC and the capacity distribution at different temperatures, a neural network (NN) is applied to this SOAC estimation. Comparisons between the estimated SOACs by the NN and the calculated SOACs from the experimental data are used for verification. The results confirm that the proposed approach can provide an accurate and effective estimation of the BRAC for lead-acid batteries in EVs

  11. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133. PMID:17575139

  12. Expression of nestin by neural cells in the adult rat and human brain.

    Michael L Hendrickson

    Full Text Available Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs. Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ of the lateral ventricle and the subgranular zone (SGZ of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions.

  13. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  14. Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology

    Qi Zhidong; Zhu Xinjian; Cao Guangyi

    2006-01-01

    Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.

  15. MYC Expression Promotes the Proliferation of Neural Progenitor Cells in Culture and In Vivo

    Dan Fults

    2002-01-01

    Full Text Available Primitive neuroectodermal tumors. (20PNETs are pediatric brain tumors that result from defects in signaling molecules governing the growth and differentiation of neural progenitor cells. We used the RCAS-TVA system to study the growth effects of three genetic alterations implicated in human PNETs on a subset of neural progenitor cells that express the intermediate filament protein, nestin. The genetic alterations tested were: 1 overexpression of the cellular oncoprotein, MYC; 2 activation of transcription factor, β-catenin; and 3 haploinsufficiency of Ptc, the hedgehog receptor gene. The RCAS-TVA system uses an avian retroviral vector, RCAS, to target gene expression to specific cell types in transgenic mice. To express exogenous genes in neural progenitor cells, we used Ntv-a mice. In these mice, the Nestin gene promoter drives expression of TVA, the cell surface receptor for the virus. Ectopic expression of MYC, but not activated β-catenin, promoted the proliferation of neural progenitor cells in culture and in the cerebral leptomeninges in vivo. These effects were equally penetrant in mice with Ptc+/− and Ptc+/+ genetic backgrounds. Although overexpression of MYC is not sufficient to cause intraparenchymal tumors, it may facilitate PNET formation by sustaining the growth of undifferentiated progenitor cells.

  16. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependent and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy

  17. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Christine Cheung

    2014-10-01

    Full Text Available There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden.

  18. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells.

    Shu, Tao; Wu, Tao; Pang, Mao; Liu, Chang; Wang, Xuan; Wang, Juan; Liu, Bin; Rong, Limin

    2016-06-01

    Melatonin, a lipophilic molecule mainly synthesized in the pineal gland, has properties of antioxidation, anti-inflammation, and antiapoptosis to improve neuroprotective functions. Here, we investigate effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells (iPSCs). iPSCs were induced into neural stem cells (NSCs), then further differentiated into neurons in medium with or without melatonin, melatonin receptor antagonist (Luzindole) or Phosphatidylinositide 3 kinase (PI3K) inhibitor (LY294002). Melatonin significantly promoted the number of neurospheres and cell viability. In addition, Melatonin markedly up-regulated gene and protein expression of Nestin and MAP2. However, Luzindole or LY294002 attenuated these increase. The expression of pAKT/AKT were increased by Melatonin, while Luzindole or LY294002 declined these melatonin-induced increase. These results suggest that melatonin significantly increased neural differentiation of iPSCs via activating PI3K/AKT signaling pathway through melatonin receptor. PMID:27130826

  19. Inhibition of Ectodermal-Neural Cortex 1 Protects Neural Cells from Apoptosis Induced by Hypoxia and Hypoglycemia.

    Lei, Hongtao; Li, Jing; Zhao, Zhi; Liu, Li

    2016-05-01

    Ectodermal-neural cortex 1 (Enc1), a member of the KELCH family, is widely expressed in the nervous system and plays an important role in nervous system development. However, the function of Enc1 in neural survival following apoptosis induced by hypoxia and hypoglycemia remains unclear. In this study, we aimed to investigate the role of Enc1 in the cell survival of neurons subjected to apoptosis induced by oxygen-glucose deprivation (OGD) and the potential underlying mechanism. The in vitro cell model of neuron OGD was established by anoxia/hypoglycemic injury. Real-time quantitative PCR and Western blot analyses showed that Enc1 was significantly reduced in neurons under anoxia/hypoglycemic injury. Knockdown of Enc1 by small interfering RNA markedly promoted the survival of neurons under anoxia/hypoglycemia. Moreover, knockdown of Enc1 inhibited neuronal apoptosis. Conversely, overexpression of Enc1 showed the opposite effect. Further, data demonstrated that Enc1 might regulate neuron survival through heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2). Taken together, our study suggests that knockdown of Enc1 protects newborn neurons from apoptosis induced by OGD associated with Nrf2 and HO-1, providing a novel molecular target for the treatment of neonatal apoptosis induced by hypoxia and hypoglycemia brain injury. PMID:27039095

  20. ERK-dependent and -independent pathways trigger human neural progenitor cell migration

    Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways

  1. Reinnervation of hair cells by neural stem cell-derived neurons

    Yuan Yasheng; Wang Yang; Chi Fanglu

    2014-01-01

    Background Replacement of spiral ganglion neurons would be one prioritized step in an attempt to restore sensory neuronal hearing loss.However,the possibility that transplanted neurons could regenerate new synaptic connections to hair cells has not been explored.The objective of this study was to test whether neural stem cell (NSC)-derived neurons can form synaptic connections with hair cells in vitro.Methods NSCs were mechanically separated from the hippocampus in SD rat embryos (E12-E14) and cultured in a serum-free medium containing basic fibroblast growth factor and epidermal growth factor.Rat NSCs were co-cultured with explants of cochlea sensory epithelia obtained from postnatal Day 3 rats under transway filter membrane.Results At Day 3,the NSCs began to show chemotactic differentiation and grew toward cochlea sensory epithelia.After 9-day co-culture,neurites of NSC-derived neurons predominantly elongated toward hair cells.Immunohistochemical analyses revealed the fibers overlapped with synapsin and hair cells,indicating the formation of new synaptic connections.After 14-day culture,triple staining revealed the fibers overlapped with PSD95 (postsynaptic density) which is juxtaposed with CtBP2 (presynaptic vesicle),indicating the formation of new ribbon synapse.Conclusions NSC-derived neurons can make synaptic connections with hair cells and provide a model for studying synaptic plasticity and regeneration.Whether the newly forming synapse is functional merits further electrophysiological study.

  2. Medium-intensity acute exhaustive exercise induces neural cell apoptosis in the rat hippocampus★

    Li, Shanni; Jin LIU; Yan, Hengmei

    2013-01-01

    The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particularly the medium-intensity acute exhaustive exercise, when compared ...

  3. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration.

    Yao, Li; Li, Yongchao

    2016-06-01

    Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS. PMID:27108005

  4. In vivo evaluation of a neural stem cell-seeded prosthesis

    Purcell, E. K.; Seymour, J. P.; Yandamuri, S.; Kipke, D. R.

    2009-04-01

    Neural prosthetics capable of recording or stimulating neuronal activity may restore function for patients with motor and sensory deficits resulting from injury or degenerative disease. However, overcoming inconsistent recording quality and stability in chronic applications remains a significant challenge. A likely reason for this is the reactive tissue response to the devices following implantation into the brain, which is characterized by neuronal loss and glial encapsulation. We have developed a neural stem cell-seeded probe to facilitate integration of a synthetic prosthesis with the surrounding brain tissue. We fabricated parylene devices that include an open well seeded with neural stem cells encapsulated in an alginate hydrogel scaffold. Quantitative and qualitative data describing the distribution of neuronal, glial, and progenitor cells surrounding seeded and control devices are reported over four time points spanning 3 months. Neuronal loss and glial encapsulation associated with cell-seeded probes were mitigated during the initial week of implantation and exacerbated by 6 weeks post-insertion compared to control conditions. We hypothesize that graft cells secrete neuroprotective and neurotrophic factors that effect the desired healing response early in the study, with subsequent cell death and scaffold degradation accounting for a reversal of these results later. Applications of this biohybrid technology include future long-term neural recording and sensing studies.

  5. Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1.

    Gioia, Ubaldo; Di Carlo, Valerio; Caramanica, Pasquale; Toselli, Camilla; Cinquino, Antonella; Marchioni, Marcella; Laneve, Pietro; Biagioni, Stefano; Bozzoni, Irene; Cacci, Emanuele; Caffarelli, Elisa

    2014-01-01

    Musashi1 is an RNA binding protein that controls the neural cell fate, being involved in maintaining neural progenitors in their proliferative state. In particular, its downregulation is needed for triggering early neural differentiation programs. In this study, we profiled microRNA expression during the transition from neural progenitors to differentiated astrocytes and underscored 2 upregulated microRNAs, miR-23a and miR-125b, that sinergically act to restrain Musashi1 expression, thus creating a regulatory module controlling neural progenitor proliferation. PMID:25483045

  6. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis

    Yoko Arai

    2015-08-01

    Full Text Available Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane’s lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS, among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the cerebrospinal fluid of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point towards that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.

  7. Vascular Endothelial Growth Factor Receptor 3 Controls Neural Stem Cell Activation in Mice and Humans

    Jinah Han

    2015-02-01

    Full Text Available Neural stem cells (NSCs continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs, VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.

  8. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels

    Jiang, Yindi; Hsieh, Jenny

    2014-01-01

    Cell cycle regulation is one of the most fundamental mechanisms to control various biological processes, including the proliferation of neural stem/progenitor cells (NSPCs) in adult mouse brain. This study shows that histone deacetylase 3 (HDAC3), a well-studied epigenetic factor, is required for the proliferation of neural stem cells. We also demonstrate that HDAC3 controls gap 2 and mitosis phase of cell cycle through stabilization of cell cycle protein cyclin-dependent kinase 1. These find...

  9. Expression and function of neural cell adhesion molecule during limb regeneration.

    Maier, C E; Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Singer, M.; McQuarrie, I G; Sunshine, J.; Rutishauser, U.

    1986-01-01

    The neural cell adhesion molecule (NCAM) has been detected in regenerating limb bud of adult newts in addition to brain and peripheral nerves. In the regenerating tissue, NCAM was found primarily on mesenchymal cells and also in wound epidermis. Infusion of Fab fragments of antibodies to NCAM into limb buds at the early blastema stage delayed the regenerative process. Previous studies have indicated that NCAM serves as a homophilic ligand for adhesion among cells that express this molecule an...

  10. Molecular effect of ethanol during neural differentiation of human embryonic stem cells in vitro

    Kim, Jeffrey J.; Lewei Duan; Tu, Thanh G.; Omid Elie; Yiyoung Kim; Nathan Mathiyakom; David Elashoff; Yong Kim

    2014-01-01

    Potential teratogenic effects of alcohol on fetal development have been documented. Especially studies have demonstrated deleterious effect of ethanol exposure on neuronal development in animal models and on the maintenance and differentiation of neuronal precursor cells derived from stem cells. To better understand the molecular effect of alcohol on the process of neural differentiation, we have performed gene expression microarray analysis on human embryonic stem cells being directed to neu...

  11. Adult human neural stem cells : Properties in vitro and as xenografts in the spinal cord

    Westerlund, Ulf

    2005-01-01

    Though the presence of stem cells in the adult human brain has been presented earlier, much has yet to be discovered about these cells. However, the mere potential of these cells has had a significant impact of how we today evaluate the regenerative capacity of the central nervous system and, importantly, on the possible means for science to provide insights in neural repair. In this thesis a series of in vitro studies, based on the formation of neurospheres, was used to...

  12. An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells In Vitro.

    Heng, Boon Chin; Lim, Lee Wei; Wu, Wutian; Zhang, Chengfei

    2016-06-01

    To date, various adult stem cells have been identified within the oral cavity, including dental pulp stem cells, dental follicle stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and mesenchymal stem cells from the gingiva. All of these possess neurogenic potential due to their common developmental origin from the embryonic neural crest. Besides the relative ease of isolation of these adult stem cells from readily available biological waste routinely produced during dental treatment, these cells also possess the advantage of immune compatibility in autologous transplantation. In recent years, much interest has been focused on the derivation of neural lineages from these adult stem cells for therapeutic applications in the brain, spinal cord, and peripheral nerve regeneration. In addition, there are also promising nontherapeutic applications of stem cell-derived neurons in pharmacological and toxicological screening of neuroactive drugs, and for in vitro modeling of neurodevelopmental and neurodegenerative diseases. Hence, this review will critically examine the diverse array of in vitro neural induction protocols that have been devised for dental and oral-derived stem cells. These protocols are defined not only by the culture milieu comprising the basal medium plus growth factors, small molecules, and other culture supplements but also by the substrata/surface coatings utilized, the presence of multiple culture stages, the total culture duration, the initial seeding density, and whether the spheroid/neurosphere formation is being utilized to recapitulate the three-dimensional neural differentiation microenvironment that is naturally present physiologically in vivo. PMID:26757369

  13. Neural Stem Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy

    Hattiangady, Bharathi; Shetty, Ashok K.

    2011-01-01

    Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ~30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the effica...

  14. In vivo bioluminescence imaging for viable human neural stem cells incorporated within in situ gelatin hydrogels

    Hwang, Do Won; Park, Kyung Min; Shim, Hye-kyung; Jin, Yeona; Oh, Hyun Jeong; Oh, So Won; Lee, Song; Youn, Hyewon; Joung, Yoon Ki; Lee, Hong J.; Kim, Seung U.; Park, Ki Dong; Lee, Dong Soo

    2014-01-01

    Background Three-dimensional (3D) hydrogel-based stem cell therapies contribute to enhanced therapeutic efficacy in treating diseases, and determining the optimal mechanical strength of the hydrogel in vivo is important for therapeutic success. We evaluated the proliferation of human neural stem cells incorporated within in situ-forming hydrogels and compared the effect of hydrogels with different elastic properties in cell/hydrogel-xenografted mice. Methods The gelatin-polyethylene glycol-ty...

  15. Neural induction from ES cells portrays default commitment but instructive maturation.

    Nibedita Lenka

    Full Text Available The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.

  16. Bio compatibility of FGL Peptide Self-assembly Nanofibers with Neural Stem Cells in vitro

    ZHANG Zhenxing; ZHENG Qixin; WU Yongchao; LIU Yudong

    2009-01-01

    In order to study the biocompatibility of self-assembled FGL peptide nanofibers scaffold with neural stem cells(NSCs),FGL pepitide-amphiphile(FGL-PA)was synthesized by solid-phase peptide synthesis technique.The diluted hydrochloric acid was added into FGL-PA solu-tion to reduce the PH value and accordingly induce self-assembly.The morphological features of the assembled material were studied by transmission electron microscope.NSCs were cultured and added with self-assembled FGL-PA.CCK-8 kit was used to test its effect on the proliferation of NSCs.The differentiation of NSCs was also tested after FGL-PA assembled material added.The experimental results showed that FGL-PA could be self-assembled to form a hydrogel.TEM analysis showed the self-assembled hydrogel was nanofibers with diameter of 10-20 nm and length of hundreds nanometers.FGL-PA with concentrations of 50,100,or 200 mg/L could promote the proliferation of NSCs,and absorbance of them was increased(P<0.05).The rate of neurons differentiated from NSCs was im-proved greatly by FGL-PA assembled material compared with control(P<0.05).The findings suggested that FGL-PA could self-assemble to nanofiber hydrogel,which had good biocompatibility with NSCs.

  17. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.

    Daniela M Santos

    Full Text Available Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP. Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.

  18. Acupuncture Induces the Proliferation and Differentiation of Endogenous Neural Stem Cells in Rats with Traumatic Brain Injury

    Jiang, Shuting; Chen, Weihao; Zhang, Yimin; Zhang, Yujuan; Chen, Ailian; Dai, Qiufu; Lin, Shujun; Lin, Hanyu

    2016-01-01

    Purpose. To investigate whether acupuncture induced the proliferation and differentiation of endogenous neural stem cells (NSCs) in a rat model of traumatic brain injury (TBI). Methods. 104 Sprague-Dawley rats were randomly divided into normal, model, and acupuncture groups. Each group was subdivided into three-day (3 d), seven-day (7 d), and fourteen-day (14 d) groups. The rat TBI model was established using Feeney's freefall epidural impact method. The rats in the acupuncture group were treated at acupoints (Baihui, Shuigou, Fengfu, Yamen, and bilateral Hegu). The normal and model groups did not receive acupuncture. The establishment of the rat TBI model and the therapeutic effect of acupuncture were assessed using neurobehavioral scoring and hematoxylin-eosin staining. The proliferation and differentiation of NSCs in TBI rats were analyzed using immunofluorescence microscopy. Results. The levels of nestin-expressing cells and bromodeoxyuridine/glial fibrillary acidic protein- (BrdU/GFAP-) and BrdU/S100 calcium-binding protein B-positive and BrdU/microtubule-associated protein 2- and BrdU/galactocerebrosidase-positive cells were more significantly increased at various time points in the acupuncture group than in the model group (P Acupuncture induced the proliferation and differentiation of NSCs, thereby promoting neural repair in the TBI rats. PMID:27313641

  19. Xenotransplantation of human neural progenitor cells to the subretinal space of nonimmunosuppressed pigs

    Warfvinge, Karin; Schwartz, Philip H; Kiilgaard, Jens Folke;

    2011-01-01

    To investigate the feasibility of transplanting human neural progenitor cells (hNPCs) to the retina of nonimmunosuppressed pigs, cultured hNPCs were injected into the subretinal space of 5 adult pigs after laser burns were applied to promote donor cell integration. Postoperatively, the retinal......-specific antibodies revealed donor cells in the subretinal space at 10-13 days and smaller numbers within the retina on days 12 and 13, with evidence suggesting a limited degree of morphological integration; however, no cells remained at 4 weeks. The strong mononuclear cell reaction and loss of donor cells indicate...

  20. PPARγ Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells

    Rolland, Maude; Li, Xiaojun; Perez-Berezo, Teresa; Rauwel, Benjamin; Benchoua, Alexandra; Bessières, Bettina; Aziza, Jacqueline; Cenac, Nicolas; Luo, Minhua; Casper, Charlotte; Peschanski, Marc; Gonzalez-Dunia, Daniel; Leruez-Ville, Marianne; Davrinche, Christian; Chavanas, Stéphane

    2016-01-01

    Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARγ levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARγ agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARγ activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARγ was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARγ inhibitor T0070907 restored a normal rate of differentiation. The role of PPARγ in the disease phenotype was strongly supported by the immunodetection of nuclear PPARγ in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARγ in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARγ gene targets in the infected brain. PMID:27078877

  1. Toxoplasma gondii inhibits differentiation of C17.2 neural stem cells through Wnt/β-catenin signaling pathway.

    Gan, Xiaofeng; Zhang, Xian; Cheng, Zhengyang; Chen, Lingzhi; Ding, Xiaojuan; Du, Jian; Cai, Yihong; Luo, Qingli; Shen, Jilong; Wang, Yongzhong; Yu, Li

    2016-04-22

    Toxoplasma gondii is a major cause of congenital brain disease. T. gondii infection in the developing fetus frequently results in major neural developmental damage; however, the effects of the parasite infection on the neural stem cells, the key players in fetal brain development, still remain elusive. This study is aiming to explore the role of T. gondii infection on differentiation of neural stem cells (NSCs) and elucidate the underlying molecular mechanisms that regulate the inhibited differentiation of NSCs induced by the infection. Using a differentiation medium, i.e. , DMEM: F12 (1:1 mixture) supplemented with 2% N2, C17.2 neural stem cells (NSCs) were able to differentiate to neurons and astrocytes, respectively evidenced by immunofluorescence staining of differentiation markers including βIII-tubulin and glial fibrillary acidic protein (GFAP). After 5-day culture in the differentiation medium, the excreted-secreted antigens of T. gondii (Tg-ESAs) significantly down-regulated the protein levels of βIII-tubulin and GFAP in C17.2 NSCs in a dose-dependent manner. The protein level of β-catenin in the nucleus of C17.2 cells treated with both wnt3a (a key activator for Wnt/β-catenin signaling pathway) and Tg-ESAs was significantly lower than that in the cells treated with only wnt3a, but significantly higher than that in the cells treated with only Tg-ESAs. In conclusion, the ESAs of T. gondii RH blocked the differentiation of C17.2 NCSs and downregulated the expression of β-catenin, an essential component of Wnt/β-catenin signaling pathway. The findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection, i.e. inhibition of the differentiation of NSCs via blockade of Wnt/β-catenin signaling pathway, such as downregulation of β-catenin expression by the parasite ESAs. PMID:27012204

  2. Mast cell degranulation induced by chlorogenic acid

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  3. Construction of an immortalized neural progenitor cell strain and analysis of its immunogenicity

    Feng GAO; Yuke TIAN; Hui YANG; Ke AN; Ying XU; Xuebi TIAN; Chuanhan ZHANG

    2008-01-01

    Neural progenitor cells (NPC) are those that are the source of neural cells for cell transplantation and gene therapy. The shortage in quantity and the limited life spans of primary cultured cells limit its widespread use in basic research. Immortalized NPC, which also possess the capacity of self-renewal and can proliferate infinitely, can produce a large number of NPCs with stable phenotype and genotype. Here we report that an immortalized neural progenitor cell strain, which we named as INPC, was suc-cessfully established by gene-transfer of simian virus 40 large T antigen gene mediated by liposomes. The INPC retained the biological characteristics of its original cells and provided a safe and reliable cell platform for the treat-ment of central nervous system diseases and transgenic cell transplantation. INPC could express low levels of MHC antigens which was down-regulated after differentiation. This indicates that INPC possesses poor immunogenicity. The immortalized cells may show good long-term survival and do not elicit an acute immunological response follow-ing transplantation.

  4. A ginkgo biloba extract promotes proliferation of endogenous neural stem cells in vascular dementia rats

    Jiwei Wang; Wen Chen; Yuliang Wang

    2013-01-01

    The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease model mice and in the hippocampal zone of young epileptic rats. However, it remains unclear whether EGb761 enhances proliferation of endogenous neural stem cells in the brain of rats with vascular dementia. In this study, a vascular dementia model was established by repeatedly clipping and reperfusing the bilateral common carotid arteries of rats in combination with an intraperitoneal injection of a sodium nitroprusside solution. Seven days after establishing the model, rats were intragastrically given EGb761 at 50 mg/kg per day. Learning and memory abilities were assessed using the Morris water maze and proliferation of endogenous neural stem cells in the subventricular zone and dentate gyrus were labeled by 5-bromo-2-deoxyuridine immunofluorescence in all rats at 15 days, and 1, 2, and 4 months after model establishment. The escape latencies in Morris water maze tests of rats with vascular dementia after EGb761 treatment were significantly shorter than the model group. Immunofluorescence staining showed that the number and proliferation of 5-bromo-2-deoxyuridine-positive cells in the subventricular zone and dentate gyrus of the EGb761-treated group were significantly higher than in the model group. These experimental findings suggest that EGb761 enhances proliferation of neural stem cells in the subventricular zone and dentate gyrus, and significantly improves learning and memory in rats with vascular dementia.

  5. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  6. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    Sun, Jinqiao, E-mail: jinqiao1977@163.com [Institute of Pediatrics, Children' s Hospital of Fudan University (China); Sha, Bin [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Zhou, Wenhao, E-mail: zhou_wenhao@yahoo.com.cn [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Yang, Yi [Institute of Pediatrics, Children' s Hospital of Fudan University (China)

    2010-03-26

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  7. Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware

    Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner

    2001-03-01

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  8. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Shi-lei Guo; Zhi-ying Zhang; Yan Xu; Yun-xia Zhi; Chang-jie Han; Yu-hao Zhou; Fang Liu; Hai-yan Lin; Chuan-sen Zhang

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were...

  9. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  10. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  11. World wide IFC phosphoric acid fuel cell implementation

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  12. Pharmacological blockade of the fatty acid amide hydrolase (FAAH alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    Patricia eRivera

    2015-03-01

    Full Text Available Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+, astroglia (GFAP+, and microglia (Iba1+ cells were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day at one dose/4-days resting or 5 doses (1 dose/day. Repeated URB597 treatment increased the plasma levels of the endocannabinoids oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expressions of cannabinoid CB1 receptor and FAAH. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in FAAH and/or CB1 receptor expressions and a negative energy context.

  13. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3(+) and BrdU(+) subgranular cells as well as GFAP(+), Iba1(+) and cleaved caspase-3(+) cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3(+), GFAP(+) and 3-weeks-old BrdU(+) cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  14. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

    Køhler, Lene B; Christensen, Claus; Rossetti, Clara; Fantin, Martina; Sandi, Carmen; Bock, Elisabeth; Berezin, Vladimir

    2010-01-01

    Neural cell adhesion molecule (NCAM)-mediated cell adhesion results in activation of intracellular signaling cascades that lead to cellular responses such as neurite outgrowth, neuronal survival, and modulation of synaptic activity associated with cognitive processes. The crystal structure of the...... between Ig1 and Ig3 and between Ig2 and Ig2, respectively, observed in the crystal structure. Although the two dennexin peptides differed in amino acid sequence, they both modulated cell adhesion, reflected by inhibition of NCAM-mediated neurite outgrowth. Both dennexins also promoted neuronal survival...... immunoglobulin (Ig) 1-2-3 fragment of the NCAM ectodomain has revealed novel mechanisms for NCAM homophilic adhesion. The present study addressed the biological significance of the so called dense zipper formation of NCAM. Two peptides, termed dennexinA and dennexinB, were modeled after the contact interfaces...

  15. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects

    Andrew E. Czeizel

    2013-11-01

    Full Text Available Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled trials indicated that periconceptional folic acid (FA-containing multivitamin supplementation prevented the major proportion (about 90% of neural-tube defects (NTD as well as a certain proportion (about 40% of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i dietary intake; (ii periconceptional supplementation; and (iii flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin’s statement: “An ounce of prevention is better than a pound of care”.

  16. The alteration of H4-K16ac and H3-K27met influences the differentiation of neural stem cells.

    An, Mingrui; Shen, Hongyan; Cao, Jun; Pei, Xiucong; Chang, Yanxu; Ma, Shuaipeng; Bao, Jintao; Zhang, Xuefei; Bai, Xue; Ma, Yuanhui

    2016-09-15

    The neural stem cell therapy provides a promising future for patients with central nerve system damage, thus an insight into its differentiation mechanism is urgently needed. Herein, we aimed to identify various histone modifications and reveal their impact on the differentiation of neural stem cells (NSCs) toward neurons. Firstly, we labeled primary NSCs using the stable isotope labeling with amino acids in cell culture (SILAC) technique. Then we induced these NSCs to differentiate by all-trans retinoic acid (atRA) or SB216763. Next, we identified the alteration of histone modifications in early-differentiated NSCs by mass spectrometry and verified them by Western blot. Interestingly, these modification alterations and phenotype changes were found similar in NSCs induced by the two different drugs. More interestingly, during the differentiation process H3-K27met was significantly up-regulated while H4-K16ac was not altered at the global level but down-regulated in some low-abundance combinatorial codes. We inhibited the methyltransferase of H3-K27 and deacetylase of H4-K16 simultaneously and found the differentiation procedure was obviously delayed. The function of H4-K16ac and H3-K27met in NSCs differentiation would be useful to reveal the differentiation mechanism and valuable for further neural stem cell therapy. PMID:27396496

  17. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    Breau, Marie A; Pietri, Thomas; Eder, Olivier;

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural...... integrins are required for the villi innervation in the small intestine. Our findings highlight the crucial roles played by beta1 integrins at various steps of enteric nervous system development....

  18. Combined MSC-Secreted Factors and Neural Stem Cell Transplantation Promote Functional Recovery of PD Rats.

    Yao, Yuan; Huang, Chen; Gu, Ping; Wen, Tieqiao

    2016-01-01

    Stem cell transplantation has enormous potential for the treatment of neurodegenerative disorders like Parkinson's disease (PD). Mesenchymal stem cells (MSCs) have attracted much attention because they can secrete a wide variety of cellular factors that promote cell growth. In this study, we prepared a conditioned medium (CM) using lyophilized MSC culture medium that contained the secretome of MSCs and applied this CM to the culture of neural stem cells (CM-NSCs) for the transplantation of PD model rats. Quantitative real-time PCR, Western blot, and immunocytochemistry were used to identify cell differentiation and expression of dopaminergic neuron-specific genes in vitro. Behavioral tests including rotational behavior and MWM training tests were also performed to assess the recovery. Our results indicated that combined treatment of CM and neural stem cell transplantation can significantly reduce apomorphine-induced rotational asymmetry and improve spatial learning ability. The CM-NSCs were able to differentiate into dopaminergic neurons in the ventral tegmental area (VTA) and medial forebrain bundle (MFB), and migrated around the lesion site. They showed a higher activity than untreated NSCs in cell survival, migration, and behavior improvement in the dopa-deficit rat model. These findings suggest that the neural stem cells treated with conditioned medium possess a great potential as a graft candidate for the treatment of Parkinson's disease. PMID:26607204

  19. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  20. Principal component articial neural network calibration models for the simultaneous spectrophotometric estimation of mefenamic acid and paracetamol in tablets

    RAJAPPAN MANAVALAN; KAMARAJAN KANNAN; DONDETI SATYANARAYANA

    2006-01-01

    Simultaneous estimation of all drug components in a multicomponent analgesic dosage form with artificial neural networks calibration models using UV spectrophotometry is reported as a simple alternative to using separate models for each component. Anovel approach for calibration using a compund spectral dataset derived from three spectra of each component is described. The spectra of mefenamic acid and paracetamol were recorded as several concentrations within their linear range and used to c...

  1. Neural Stem Cell Gene Therapy Ameliorates Pathology and Function in a Mouse Model of Globoid Cell Leukodystrophy

    Neri, Margherita; Ricca, Alessandra; di Girolamo, Ilaria; Alcala'-Franco, Beatriz; Cavazzin, Chiara; Orlacchio, Aldo; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2011-01-01

    Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with re...

  2. Noncoding RNA in the Transcriptional Landscape of Human Neural Progenitor Cell Differentiation

    Patrick eHecht

    2015-10-01

    Full Text Available Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8% and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer’s disease. Weighted gene co-expression network analysis (WGCNA was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7% to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.

  3. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation.

    Hecht, Patrick M; Ballesteros-Yanez, Inmaculada; Grepo, Nicole; Knowles, James A; Campbell, Daniel B

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders. PMID:26557050

  4. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2

    Christensen, Claus; Lauridsen, Jes B; Berezin, Vladimir; Bock, Elisabeth; Kiselyov, Vladislav V

    2006-01-01

    The neural cell adhesion molecule (NCAM) can bind to and activate fibroblast growth factor receptor 1 (FGFR1). However, there are four major FGFR isoforms (FGFR1-FGFR4), and it is not known whether NCAM also interacts directly with the other three FGFR isoforms. In this study, we show by surface...

  5. Neural cell adhesion molecule (NCAM) and prealbumin in cerebrospinal fluid from depressed patients

    Jørgensen, Ole Steen

    1988-01-01

    The size of the soluble form of the human cerebrospinal fluid (CSF) neural cell adhesion molecule, NCAM-sol, was by gel permeation chromatography estimated to 160-250 kDa. Within the CSF the concentration of NCAM-sol was found about 15-25% increased in lumbar fluid and 25% increased in ventricular...

  6. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis

    Kiryushko, Darya; Korshunova, Irina; Berezin, Vladimir; Bock, Elisabeth

    2006-01-01

    The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been...

  7. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes

    Copray, Sjef; Balasubramaniyan, Veerakumar; Levenga, Josien; Liem, Robert; Boddeke, Erik; de Bruijn, Joost D.

    2006-01-01

    Differentiation induction of neural stem cells (NSCs) into oligodendrocytes during embryogenesis is the result of a complex interaction between local induction factors and intracellular transcription factors. At the early stage of differentiation, in particular, the helix-loop-helix transcription fa

  8. New Concept of Neural Stem Cell Transplantation: Anti-inflammatory Role

    Lee, Soon-Tae; Chu, Kon; Park, Hee-Kwon; Jung, Keun-Hwa; Kim, Manho; Lee, Sang Kun; Roh, Jae-Kyu

    2008-01-01

    Neural stem cells (NSCs) transplantation has been studied as a promising tool for replacing damaged neurons in various neurological disorders. However, recent growing data showed new therapeutic benefits of NSCs, which is that transplanted NSCs can modulate cerebral inflammation and protect the brain from further degeneration. We review recent discoveries regarding to the anti-inflammatory effects of NSCs and their future perspectives.

  9. DISP3 promotes proliferation and delays differentiation of neural progenitor cells

    Zíková, Martina; Konířová, Jana; Ditrychová, Karolína; Corlett, Alicia; Kolář, Michal; Bartůněk, Petr

    2014-01-01

    Roč. 588, č. 21 (2014), s. 4071-4077. ISSN 0014-5793 R&D Projects: GA ČR GAP301/12/1478; GA MŠk LO1220 Keywords : Cancer * Proliferation * Neural cells * Differentiation * Lipids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.169, year: 2014

  10. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  11. The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles

    Chan, C. C.; Lo, E. W. C.; Weixiang, Shen

    The available capacity computation model based on the artificial neural network (ANN) for lead-acid batteries in an electric vehicle (EV) is presented. Comparing with the methods based on the Peukert equation, which is often used for the calculation of the available capacity for lead-acid batteries in EVs, this model is more accurate. The results of the experiment have proven the accuracy of the proposed model; the computation values are in good agreement with experimental data, the associated error has been considered acceptable from an engineering point of view.

  12. Neural tube defects in Costa Rica, 1987-2012: origins and development of birth defect surveillance and folic acid fortification.

    Barboza-Argüello, María de la Paz; Umaña-Solís, Lila M; Azofeifa, Alejandro; Valencia, Diana; Flores, Alina L; Rodríguez-Aguilar, Sara; Alfaro-Calvo, Thelma; Mulinare, Joseph

    2015-03-01

    Our aim was to provide a descriptive overview of how the birth defects surveillance and folic acid fortification programs were implemented in Costa Rica-through the establishment of the Registry Center for Congenital Anomalies (Centro de Registro de Enfermedades Congénitas-CREC), and fortification legislation mandates. We estimated the overall prevalence of neural tube defects (i.e., spina bifida, anencephaly and encephalocele) before and after fortification captured by CREC. Prevalence was calculated by dividing the total number of infants born with neural tube defects by the total number of live births in the country (1987-2012).A total of 1,170 newborns with neural tube defects were identified from 1987 to 2012 (1992-1995 data excluded); 628 were identified during the baseline pre-fortification period (1987-1991; 1996-1998); 191 during the fortification period (1999-2002); and 351 during the post-fortification time period (2003-2012). The overall prevalence of neural tube defects decreased from 9.8 per 10,000 live-births (95 % CI 9.1-10.5) for the pre-fortification period to 4.8 per 10,000 live births (95 % CI 4.3-5.3) for the post-fortification period. Results indicate a statistically significant (P < 0.05) decrease of 51 % in the prevalence of neural tube defects from the pre-fortification period to the post-fortification period. Folic acid fortification via several basic food sources has shown to be a successful public health intervention for Costa Rica. Costa Rica's experience can serve as an example for other countries seeking to develop and strengthen both their birth defects surveillance and fortification programs. PMID:24952876

  13. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1.

    Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St J; Wend, Peter; Purfürst, Bettina; Nuber, Ulrike A; Gurok, Ulf; Matyash, Vitali; Wälzlein, Joo-Hee; Chirasani, Sridhar R; Dittmar, Gunnar; Cravatt, Benjamin F; Momma, Stefan; Lewin, Gary R; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

    2012-08-01

    Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics. PMID:22820645

  14. Quantitative analysis of signaling mechanisms controlling adult neural progenitor cell proliferation.

    Schaffer, David V; O'Neill, Analeah; Hochrein, Lisa; McGranahan, Tresa

    2004-01-01

    Tools of systems engineering and signal dynamics were employed to develop a quantitative model of the intracellular signaling systems involved in adult neural stem cell proliferation, based on pathways elucidated in our experimental systems. Neural progenitors isolated from the adult rat hippocampus are dependent on the basic fibroblast growth factor (FGF-2) and extracellular matrix (ECM) proteins. However, the intracellular effects of these stimuli were previously undetermined. We employed chemical inhibitors of known signal transduction molecules to identify important players in the FGF-2/ECM signal cascade, such as the cyclic AMP responsive element binding protein (CREB), protein kinase B/Akt, and several related molecules. Genetic mutants of these proteins were used to confirm their role in adult neural progenitor proliferation. Proliferation was assayed using the incorporation of a thymidine analog to determine cell doubling rate under various stimuli. Such assays have also uncovered novel synergistic signaling between FGF-2 and ECM components. This research is, to our knowledge, the first to elucidate intracellular signaling pathways for adult neural stem cell proliferation. Upon determination of the pertinent intracellular signaling pathways, quantitative immunoblots were employed to examine the dynamics of these systems. These data, as well as enzyme kinetics information from the literature, are being used to parameterize a dynamic mathematical model of progenitor proliferation events induced by FGF-2. This computational model will be used to predict the biochemical and mechanical signaling inputs necessary to achieve a desired proliferative output from the cells, based on specific extracellular stimuli. It is our hope that this essential quantitative understanding will facilitate the use of adult neural stem cells in medical applications. PMID:17271428

  15. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons.

    Takahiro Ishimoto

    Full Text Available The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs. These cells exhibited time-dependent [(3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [(3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP, with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits

  16. Updated estimates of neural tube defects prevented by mandatory folic Acid fortification - United States, 1995-2011.

    Williams, Jennifer; Mai, Cara T; Mulinare, Joe; Isenburg, Jennifer; Flood, Timothy J; Ethen, Mary; Frohnert, Barbara; Kirby, Russell S

    2015-01-16

    In 1992, the U.S. Public Health Service recommended that all women capable of becoming pregnant consume 400 µg of folic acid daily to prevent neural tube defects (NTDs). NTDs are major birth defects of the brain and spine that occur early in pregnancy as a result of improper closure of the embryonic neural tube, which can lead to death or varying degrees of disability. The two most common NTDs are anencephaly and spina bifida. Beginning in 1998, the United States mandated fortification of enriched cereal grain products with 140 µg of folic acid per 100 g. Immediately after mandatory fortification, the birth prevalence of NTD cases declined. Fortification was estimated to avert approximately 1,000 NTD-affected pregnancies annually. To provide updated estimates of the birth prevalence of NTDs in the period after introduction of mandatory folic acid fortification (i.e., the post-fortification period), data from 19 population-based birth defects surveillance programs in the United States, covering the years 1999-2011, were examined. After the initial decrease, NTD birth prevalence during the post-fortification period has remained relatively stable. The number of births occurring annually without NTDs that would otherwise have been affected is approximately 1,326 (95% confidence interval = 1,122-1,531). Mandatory folic acid fortification remains an effective public health intervention. There remain opportunities for prevention among women with lower folic acid intakes, especially among Hispanic women, to further reduce the prevalence of NTDs in the United States. PMID:25590678

  17. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  18. Investigation of close interactions between sympathetic neural fibres and the follicular dendritic cells network in the mouse spleen

    C Demonceau; AS Marshall; Sales, J.; Heinen, E

    2009-01-01

    In this study, co-localization between sympathetic neural fibres and the follicular dendritic cells (FDCs) network was observed within the mouse spleen by confocal technology. Immunohistochemical techniques were used to reveal the rare interactions between the FDCs network and sympathetic neural fibres.We estimated the frequency of three kinds of close interactions which could be defined as overlaps, contacts or neural fibres closer than 10 ?m from a FDCs network. Using these estimates, a com...

  19. CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance.

    Schulz, Yvonne; Wehner, Peter; Opitz, Lennart; Salinas-Riester, Gabriela; Bongers, Ernie M H F; van Ravenswaaij-Arts, Conny M A; Wincent, Josephine; Schoumans, Jacqueline; Kohlhase, Jürgen; Borchers, Annette; Pauli, Silke

    2014-08-01

    Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the

  20. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  1. Influence of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived neural stem cells

    Zhengrong Peng; Sue Wang; Pingtian Xiao

    2009-01-01

    BACKGROUND: It has been previously shown that hyperbaric oxygen may promote proliferation of neural stem cells and reduce death of endogenous neural stem cells (NSCs).OBJECTIVE: To explore the effects of hyperbaric oxygen on the differentiation of hypoxic/ischemic brain-derived NSCs into neuron-like cells and compare with high-concentration oxygen and high pressure.DESIGN, TIME AND SETTING: An in vitro contrast study, performed at Laboratory of Neurology,Central South University between January and May 2006.MATERIALS: A hyperbaric oxygen chamber (YLC 0.5/1A) was provided by Wuhan Shipping Design Research Institute; mouse anti-rat microtubute-associated protein 2 monoclonal antibody by Jingmei Company, Beijing; mouse anti-rat glial fibrillary acidic protein monoclonal antibody by Neo Markers,USA; mouse anti-rat galactocerebroside monoclonal antibody by Santa Cruz Biotechnology Inc.,USA; and goat anti-mouse fluorescein isothiocyanate-labeled secondary antibody by Wuhan Boster Bioengineering Co., Ltd., China.METHODS: Brain-derived NSCs isolated from brain tissues of neonatal Sprague Dawiey rats werecloned and passaged, and assigned into five groups: normal control, model, high-concentration oxygen, high pressure, and hyperbaric oxygen groups. Cells in the four groups, excluding the normal control group, were incubated in serum-containing DMEM/F12 culture medium. Hypoxic/ischemic models of NSCs were established in an incubator comprising 93% N2, 5% CO2, and 2% O2.Thereafter, cells were continuously cultured as follows: compressed air (0.2 MPa, 1 hour, once a day)in the high pressure group, compressed air+a minimum of 80% O2 in the hyperbaric oxygen group,and a minimum of 80% O2 in the high-concentration oxygen group. Cells in the normal control and model groups were cultured as normal.MAIN OUTCOME MEASURES: At day 7 after culture, glial fibrillary acidic protein,microtubule-associated protein 2, and galactocerebroside immunofluorescence staining were examined to

  2. Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer’s Disease Model Mice

    Koon, Noah A.; Itokazu, Yutaka; Yu, Robert K.

    2015-01-01

    The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer’s disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltra...

  3. Culture bag systems for clinical applications of adult human neural crest-derived stem cells

    Greiner, Johannes F. W.; Grunwald, Lena-Marie; Müller, Janine; Sudhoff, Holger; Widera, Darius; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2014-01-01

    Introduction Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grad...

  4. Neural Stem Cell Regulation, Fibroblast Growth Factors, and the Developmental Origins of Neuropsychiatric Disorders

    Hanna E Stevens; Smith, Karen M.; Brian Rash; Vaccarino, Flora M.

    2010-01-01

    There is increasing appreciation for the neurodevelopmental underpinnings of many psychiatric disorders. Disorders that begin in childhood such as autism, language disorders or mental retardation as well as adult-onset mental disorders may have origins early in neurodevelopment. Neural stem cells (NSCs) can be defined as self-renewing, multipotent cells that are present in both the embryonic and adult brain. Several recent research findings demonstrate that psychiatric illness may begin with ...

  5. Neural network analysis of electrodynamic activity of yeast cells around 1 kHz

    This paper deals with data analysis of electrodynamic activity of two mutants of yeast cells, cell cycle of which is synchronized and non-synchronized, respectively. We used data already published by Jelinek et al. and treat them with data mining method based on the multilayer neural network. Intersection of data mining and statistical distribution of the noise shows significant difference between synchronized and non-synchronized yeasts not only in total power, but also discrete frequencies.

  6. Morphine Inhibited the Rat Neural Stem Cell Proliferation Rate by Increasing Neuro Steroid Genesis.

    Feizy, Navid; Nourazarian, Alireza; Rahbarghazi, Reza; Nozad Charoudeh, Hojjatollah; Abdyazdani, Nima; Montazersaheb, Soheila; Narimani, Mohamadreza

    2016-06-01

    Up to present, a large number of reports unveiled exacerbating effects of both long- and short-term administration of morphine, as a potent analgesic agent, on opium-addicted individuals and a plethora of cell kinetics, although contradictory effect of morphine on different cells have been introduced until yet. To address the potent modulatory effect of morphine on neural multipotent precursors with emphasis on endogenous sex-related neurosteroids biosynthesis, we primed the rat neural stem cells isolated from embryonic rat telencephalon to various concentrations of morphine including 10, 20, 50 and 100 µM alone or in combination with naloxone (100 µM) over period of 72 h. Flow cytometric Ki-67 expression and Annexin-V/PI based necrosis and apoptosis of exposed cells were evaluated. The total content of dihydrotestosterone and estradiol in cell supernatant was measured by ELISA. According on obtained data, both concentration- and time-dependent decrement of cell viability were orchestrated thorough down-regulation of ki-67 and simultaneous up-regulation of Annexin-V. On the other hand, the addition of naloxone (100 µM), as Mu opiate receptor antagonist, could blunt the morphine-induced adverse effects. It also well established that time-course exposure of rat neural stem cells with morphine potently could accelerate the endogenous dihydrotestosterone and estradiol biosynthesis. Interestingly, naloxone could consequently attenuate the enhanced neurosteroidogenesis time-dependently. It seems that our results discover a biochemical linkage between an accelerated synthesis of sex-related steroids and rat neural stem cells viability. PMID:26830291

  7. Isolation and Characterization of Neural Crest-Derived Stem Cells from Dental Pulp of Neonatal Mice

    Janebodin, Kajohnkiart; Horst, Orapin V; Ieronimakis, Nicholas; Balasundaram, Gayathri; Reesukumal, Kanit; Pratumvinit, Busadee; Reyes, Morayma

    2011-01-01

    Dental pulp stem cells (DPSCs) are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s) have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neo...

  8. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain

    Riquelme, Patricio A; Drapeau, Elodie; Doetsch, Fiona

    2007-01-01

    Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell–cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affect...

  9. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    Abraham, Ariel B; Robert Bronstein; Avanish S Reddy; Mirjana Maletic-Savatic; Adan Aguirre; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/-) mice exhibit SVZ hyperproliferation...

  10. Adipose Stromal Cells Contain Phenotypically Distinct Adipogenic Progenitors Derived from Neural Crest

    Yoshihiro Sowa; Tetsuya Imura; Toshiaki Numajiri; Kosuke Takeda; Yo Mabuchi; Yumi Matsuzaki; Kenichi Nishino

    2013-01-01

    Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contain...

  11. Comparison of Different Culture Mode for Long-term Expansion of Neural Stem Cells

    2005-01-01

    1 Introduction The mammalian central nervous system(CNS) is incredibly complex and possesses only a limited ability to recover from damage~([1]). Fortunately, the discovery of self-renewing stem cell populations within the fetal and adult CNS has opened promising lines of inquiry. Neural stem cells (NSCs) can be cultured in two modes in vitro, suspension and monolayer. Reynolds~([2]) and other groups culture NSCs as neurospheres in suspension. Alternatively Gage cultured NSCs in monolayer. There is little s...

  12. Tailoring morphologies of diamond thin films for neural stem cells culturing

    Babchenko, Oleg; Romanyuk, Nataliya; Jendelová, Pavla; Kromka, Alexander

    2013-01-01

    Roč. 250, č. 12 (2013), s. 2717-2722. ISSN 0370-1972 R&D Projects: GA ČR GAP108/12/0996; GA MŠk(CZ) LM2011026; GA ČR GAP108/10/1560 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : diamond films morphology * surface treatment * neural stem cells * cells culturing Subject RIV: BO - Biophysics Impact factor: 1.605, year: 2013

  13. Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    Yuan Liu; Li Wang; Zaiyun Long; Lin Zeng; Yamin Wu

    2012-01-01

    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific...

  14. Acid stress adaptation protects saccharomyces cerevisiae from acetic acid-induced programme cell death

    Giannattasio, Sergio; Guaragnella, Nicoletta; Côrte-Real, Manuela; Passarella, Salvatore; Marra, Ersilia

    2005-01-01

    In this work evidence is presented that acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-mediated programmed cell death. Exponential-phase yeast cells, non-adapted or adapted to acid stress by 30 min incubation in rich medium set at pH 3.0 with HCl, have been exposed to increasing concentrations of acetic acid and time course changes of cell viability have been assessed. Adapted cells, in contrast to non-adapted cells, when exposed to 80 mM acetic acid for 200 min ...

  15. Artificial Neural Network System in Evaluating Cervical Lymph Node Metastasis of Squamous Cell Carcinoma

    The purpose of this study was to evaluate cervical lymph node metastasis of oral squamous cell carcinoma patients by MRI film and neural network system. The oral squamous cell carcinoma patients(21 patients, 59 lymph nodes) who have visited SNU hospital and been taken by MRI, were included in this study. Neck dissection operations were done and all of the cervical lymph nodes were confirmed with biopsy. In MR images, each lymph node were evaluated by using 6 MR imaging criteria(size, roundness, heterogeneity, rim enhancement, central necrosis, grouping) respectively. Positive predictive value, negative predictive value, and accuracy of each single MR imaging criteria were calculated. At neural network system, the layers of neural network system consisted of 10 input layer units, 10 hidden layer units and 1 output layer unit. 6 MR imaging criteria previously described and 4 MR imaging criteria (site I-node level 2, site II-other node level, shape I-oval, shape II-bean) were included for input layer units. The training files were made of 39 lymph nodes(24 metastatic lymph nodes, 10 non-metastatic lymph nodes) and the testing files were made of other 20 lymph nodes(10 metastatic lymph nodes, 10 non-metastatic lymph nodes). The neural network system was trained with training files and the output level (metastatic index) of testing files were acquired. Diagnosis from neural network was decided according to 4 different standard metastatic index-68, 78, 88, 98 respectively and positive predictive values, negative predictive values and accuracy of each standard metastatic index were calculated. In the diagnosis of using single MR imaging criteria, the rim enhancement criteria had the highest positive predictive value, 0.95 and the size criteria showed the highest at negative predictive value, 0.77. The highest accurate criteria was heterogeneity with the accuracy of 0.81 and the lowest one was central necrosis with accuracy of 0.59. In the diagnosis of using neural network

  16. Species-dependent differences of embryonic stem cell-derived neural stem cells after Interferon gamma treatment

    Janine Walter

    2012-11-01

    Pluripotent stem cell (pSC-derived, neural stem cells (NSCs are actually extensively explored in the field of neuroregeneration and to clarify disease mechanisms or model neurological diseases in vitro. Regarding the latter, proliferation and differentiation of pSC-derived NSCs are investigated under the influence of a variety of different substances among them key players of inflammation. However, results generated on a murine genetic background are not always representative for the human situation which increasingly leads to the application of human cell culture systems derived from human pSCs. We investigated here, if the recently described interferon gamma (IFNɣ-induced dysregulated neural phenotype characterized by simultaneous expression of glial and neuronal markers on murine NSCs [1,2] can also be found on a human genetic background. For this purpose, we performed experiments with human embryonic stem cell-derived NSCs. We could show that the IFNɣ-induced dysregulated neural phenotype cannot be induced in human NSCs. This difference occurs, although typical genes like signal transducers and activators of transcription 1 (Stat 1 or interferon regulatory factor 9 (IRF-9 are similarly regulated by IFNɣin both, murine and human populations. These results illustrate that fundamental differences between murine and human neural populations exist in vitro, independent of anatomical system-related properties.

  17. Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration.

    Pallocca, Giorgia; Grinberg, Marianna; Henry, Margit; Frickey, Tancred; Hengstler, Jan G; Waldmann, Tanja; Sachinidis, Agapios; Rahnenführer, Jörg; Leist, Marcel

    2016-01-01

    The in vitro test battery of the European research consortium ESNATS ('novel stem cell-based test systems') has been used to screen for potential human developmental toxicants. As part of this effort, the migration of neural crest (MINC) assay has been used to evaluate chemical effects on neural crest function. It identified some drug-like compounds in addition to known environmental toxicants. The hits included the HSP90 inhibitor geldanamycin, the chemotherapeutic arsenic trioxide, the flame-retardant PBDE-99, the pesticide triadimefon and the histone deacetylase inhibitors valproic acid and trichostatin A. Transcriptome changes triggered by these substances in human neural crest cells were recorded and analysed here to answer three questions: (1) can toxicants be individually identified based on their transcript profile; (2) how can the toxicity pattern reflected by transcript changes be compacted/dimensionality-reduced for practical regulatory use; (3) how can a reduced set of biomarkers be selected for large-scale follow-up? Transcript profiling allowed clear separation of different toxicants and the identification of toxicant types in a blinded test study. We also developed a diagrammatic system to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. activation of KEGG pathways or overrepresentation of gene ontology terms). The transcript data were mined for potential markers of toxicity, and 39 transcripts were selected to either indicate general developmental toxicity or distinguish compounds with different modes-of-action in read-across. In summary, we found inclusion of transcriptome data to largely increase the information from the MINC phenotypic test. PMID:26705709

  18. A mechanism for the inhibition of neural progenitor cell proliferation by cocaine.

    Chun-Ting Lee

    2008-06-01

    Full Text Available BACKGROUND: Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation. METHODS AND FINDINGS: Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER stress response, as indicated by increased phosphorylation of eIF2alpha and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A. CONCLUSIONS: Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of

  19. Principal component articial neural network calibration models for the simultaneous spectrophotometric estimation of mefenamic acid and paracetamol in tablets

    RAJAPPAN MANAVALAN

    2006-11-01

    Full Text Available Simultaneous estimation of all drug components in a multicomponent analgesic dosage form with artificial neural networks calibration models using UV spectrophotometry is reported as a simple alternative to using separate models for each component. Anovel approach for calibration using a compund spectral dataset derived from three spectra of each component is described. The spectra of mefenamic acid and paracetamol were recorded as several concentrations within their linear range and used to compute a calibration mixture between the wavelengths 220 to 340 nm. Neural networks trained by a Levenberg–Marquardt algorithm were used for building and optimizing the calibration models using MATALAB® Neural Network Toolbox and were compared with the principal component regression model. The calibration models were throughly evaluated at several concentration levels using 104 spectra obtained for 52 synthetic binary mixtures prepared using orthogonal designs. The optimized model showed sufficient robustness even when the calibration sets were constructed from a different set of pure spectra of the components. The simultaneous prediction of both components by a single neural netwook with the suggested calibration approach was successful. The model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage with no interference from excipients as indicated by the results of a recovery study.

  20. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  1. Transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury A Web of Science-based literature analysis

    Xing Zhang; Fei Yin; Li Guo; Dongxu Zhao; Gu Gong; Lei Gao; Qingsan Zhu

    2012-01-01

    OBJECTIVE: To identify global research trends in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury.DATA RETRIEVAL: We performed a bibliometric analysis of studies on transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury published from 2002 to 2011 and retrieved from the Web of Science, using the key words spinal cord injury along with either neural stem cell, Schwann cell or olfactory ensheathing cell.SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on neural stem cells, Schwann cells or olfactory ensheathing cells for spinal cord injury indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial materials and news items; and (c) published between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers.MAIN OUTCOME MEASURES: (1) Annual publication output, distribution by journal, distribution by institution and top-cited articles on neural stem cells; (2) annual publication output, distribution by journal, distribution by institution and top-cited articles on Schwann cells; (3) annual publication output, distribution by journal, distribution by institution and top-cited articles on olfactory ensheathing cells.RESULTS: This analysis, based on articles indexed in the Web of Science, identified several research trends among studies published over the past 10 years in transplantation of neural stem cells, Schwann cells and olfactory ensheathing cells for spinal cord injury. The number of publications increased over the 10-year period examined. Most papers appeared in journals with a focus on neurology, such as Journal of Neurotrauma, Experimental Neurology and Glia. Research institutes publishing on the use of neural stem cells to

  2. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  3. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  4. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells

    Koehler Karl R

    2011-08-01

    Full Text Available Abstract Background The use of induced pluripotent stem cells (iPSCs for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC neural induction protocol to test whether iPSCs (1 have the competence to give rise to functional neurons with similar efficiency as ESCs and (2 whether the extent of neural differentiation could be altered or enhanced by increased passaging. Results Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs. Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable. Conclusions These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.

  5. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  6. Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube.

    Johnson, Kimberly; Moriarty, Chelsea; Tania, Nessy; Ortman, Alissa; DiPietrantonio, Kristina; Edens, Brittany; Eisenman, Jean; Ok, Deborah; Krikorian, Sarah; Barragan, Jessica; Golé, Christophe; Barresi, Michael J F

    2014-03-01

    Radial glia serve as the resident neural stem cells in the embryonic vertebrate nervous system, and their proliferation must be tightly regulated to generate the correct number of neuronal and glial cell progeny in the neural tube. During a forward genetic screen, we recently identified a zebrafish mutant in the kif11 loci that displayed a significant increase in radial glial cell bodies at the ventricular zone of the spinal cord. Kif11, also known as Eg5, is a kinesin-related, plus-end directed motor protein responsible for stabilizing and separating the bipolar mitotic spindle. We show here that Gfap+ radial glial cells express kif11 in the ventricular zone and floor plate. Loss of Kif11 by mutation or pharmacological inhibition with S-trityl-L-cysteine (STLC) results in monoastral spindle formation in radial glial cells, which is characteristic of mitotic arrest. We show that M-phase radial glia accumulate over time at the ventricular zone in kif11 mutants and STLC treated embryos. Mathematical modeling of the radial glial accumulation in kif11 mutants not only confirmed an ~226× delay in mitotic exit (likely a mitotic arrest), but also predicted two modes of increased cell death. These modeling predictions were supported by an increase in the apoptosis marker, anti-activated Caspase-3, which was also found to be inversely proportional to a decrease in cell proliferation. In addition, treatment with STLC at different stages of neural development uncovered two critical periods that most significantly require Kif11 function for stem cell progression through mitosis. We also show that loss of Kif11 function causes specific reductions in oligodendroglia and secondary interneurons and motorneurons, suggesting these later born populations require proper radial glia division. Despite these alterations to cell cycle dynamics, survival, and neurogenesis, we document unchanged cell densities within the neural tube in kif11 mutants, suggesting that a mechanism of

  7. The Effect of Layer-by-Layer Assembly Coating on the Proliferation and Differentiation of Neural Stem Cells.

    Li, Wenyan; Guan, Teng; Zhang, Xiaosha; Wang, Ziyuan; Wang, Meng; Zhong, Wen; Feng, Hua; Xing, Malcolm; Kong, Jiming

    2015-02-11

    Nanocoating of a single-cell with biocompatible materials creates a defined microenvironment for cell differentiation and proliferation, as well as a model for studies in cell biology. In addition, the acidic environment in the tissue of stroke victims necessitates drug release upon pH stimuli. Here, we report the encapsulation of single neural stem cells (NSCs) using a layer-by-layer (LbL) self-assembly technique with polyelectrolytes gelatin and alginate. Analysis of the NSCs showed that the LbL encapsulation would not affect the viability, proliferation, or differentiation of the cells. When insulin-like growth factor-1 (IGF-1) was loaded on the coating material alginate, its release from alginate into the medium presented in a time-dependent and pH-dependent way. IGF-1 significantly enhanced the proliferation of the encapsulated NSCs, demonstrating a drug-carrier function of the LbL single-cell nanocoating. It provided a potential treatment strategy for nervous system disorders such as stroke. PMID:25347385

  8. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  9. Temporal order of bipolar cell genesis in the neural retina

    Chen C-M Amy

    2008-01-01

    Full Text Available Abstract Background Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo. Results Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0, P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse. Conclusion Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types.

  10. When folic acid fails: Insights from 20 years of neural tube defect surveillance in South Carolina.

    Bupp, Caleb P; Sarasua, Sara M; Dean, Jane H; Stevenson, Roger E

    2015-10-01

    Neural tube defects (NTDs) are the most common of the severe malformations of the brain and spinal cord. Increased maternal intake of folic acid (FA) during the periconceptional period is known to reduce NTD risk. Data from 1046 NTD cases in South Carolina were gathered over 20 years of surveillance. It was possible to determine maternal periconceptional FA use in 615 NTD-affected pregnancies. In 163 occurrent (26.9%) and two recurrent (22%) NTD cases, the mothers reported periconceptional FA use. These women were older and more likely to be white. Maternal periconceptional FA usage was reported in 40.4% of cases of spina bifida with other anomalies but in only 25.2% of isolated spina bifida cases (P = 0.02). This enrichment for associated anomalies was not noted among cases of anencephaly or of encephalocele. Among the 563 subsequent pregnancies to mothers with previous NTD-affected pregnancies, those taking FA had a 0.4% NTD recurrence rate, but the recurrence without FA was 8.5%. NTDs with other associated findings were less likely to be prevented by FA, suggesting there is a background NTD rate that cannot be further reduced by FA. Nonetheless, the majority (73.9%) of NTDs in pregnancies in which the mothers reported periconceptional FA use were isolated NTDs of usual types. Cases in which FA failed in prevention of NTDs provide potential areas for further study into the causation of NTDs. The measures and techniques implemented in South Carolina can serve as an effective and successful model for prevention of NTD occurrence and recurrence. PMID:26108864

  11. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  12. A Galvanotaxis Assay for Analysis of Neural Precursor Cell Migration Kinetics in an Externally Applied Direct Current Electric Field

    Babona-Pilipos, Robart; Popovic, Milos R.; Morshead, Cindi M.

    2012-01-01

    The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are fou...

  13. Biodegradable Cell-Seeded Nanofiber Scaffolds for Neural Repair

    Karen C. Cheung

    2011-10-01

    Full Text Available Central and peripheral neural injuries are traumatic and can lead to loss of motor and sensory function, chronic pain, and permanent disability. Strategies that bridge the site of injury and allow axonal regeneration promise to have a large impact on restoring quality of life for these patients. Engineered materials can be used to guide axonal growth. Specifically, nanofiber structures can mimic the natural extracellular matrix, and aligned nanofibers have been shown to direct neurite outgrowth and support axon regeneration. In addition, cell-seeded scaffolds can assist in the remyelination of the regenerating axons. The electrospinning process allows control over fiber diameter, alignment, porosity, and morphology. Biodegradable polymers have been electrospun and their use in tissue engineering has been demonstrated. This paper discusses aspects of electrospun biodegradable nanofibers for neural regeneration, how fiber alignment affects cell alignment, and how cell-seeded scaffolds can increase the effectiveness of such implants.

  14. Estimating Of Etchant Copper Concentration In The Electrolytic Cell Using Artificial Neural Networks

    Muzher M. Ibrahem

    2013-05-01

    Full Text Available      In  this paper, Artificial Neural Networks (ANN, which are known for their ability to model nonlinear systems, provide accurate approximations of system behavior and are typically much more computationally efficient than phenomenological models  are used to predict the etchant copper concentration in the electrolytic cell in terms of electric potential, operating time, temperature of the electrolytic cell , ratio of surface area of poles per unit volume of solution  and the distance between poles. In this paper 350 sets of data are used to trained and test the network.. The best results were achieved using a model based on a feedforword Artificial Neural Network (ANN with one hidden layer and fifteen neurons in the hidden layer gives a very close prediction of the copper concentration in the electrolytic cell.

  15. Transplantation of cholinergic neural stem cells in a mouse model of Alzheimer's disease

    WANG Qing-hua; XU Ru-xiang; Seigo Nagao

    2005-01-01

    @@ It is believed that the degeneration of cholinergic cells in the nucleus basalis of Meynert (NBM) and the loss of cortical cholinergic innervation cause dementia of Alzheimer's disease (AD).1 Currently available therapeutic interventions are mainly aimed at alleviating the cholinergic deficits. Unfortunately, these strategies do not prevent the disease, but instead offer limited symptomatic improvement.2 A recent study demonstrated that transplantation of in vitro expanded neural stem cells (NSCs) in an animal model of Parkinson's disease (PD) resulted in functional recovery of the animals to some extent,2 suggesting that such neural precursors might offer a useful future therapy for AD. In this study, we tried to find whether mouse embryonic stem (ES) cell derived cholinergic NSCs grafted in the prefrontal and parietal cortex have effects on the disruption of spatial memory following development of lesion in NBM.

  16. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months. PMID:27362338

  17. Dynamically constrained pipeline for tracking neural progenitor cells

    Vestergaard, Jacob Schack; Dahl, Anders; Holm, Peter;

    2013-01-01

    . A mitosis detector constructed from empirical observations of cells in a pre-mitotic state interacts with the graph formulation to dynamically allow for cell mitosis when appropriate. Track consistency is ensured by introducing pragmatic constraints and the notion of blob states. We validate the...

  18. Viscoelastic response of neural cells governed by the deposition of amyloid-β peptides (Aβ)

    Gong, Ze; You, Ran; Chang, Raymond Chuen-Chung; Lin, Yuan

    2016-06-01

    Because of its intimate relation with Alzheimer's disease (AD), the question of how amyloid-β peptide (Aβ) deposition alters the membrane and cytoskeltal structure of neural cells and eventually their mechanical response has received great attention. In this study, the viscoelastic properties of primary neurons subjected to various Aβ treatments were systematically characterized using atomic force microrheology. It was found that both the storage ( G ') and loss ( G ″) moduli of neural cells are rate-dependent and grow by orders of magnitude as the driving frequency ω varies from 1 to 100 Hz. However, a much stronger frequency dependence was observed in the loss moduli (with a scaling exponent of ˜0.96) than that in G ' ( ˜ ω 0.2 ). Furthermore, both cell moduli increase gradually within the first 6 h of Aβ treatment before steady-state values are reached, with a higher dosage of Aβ leading to larger changes in cell properties. Interestingly, we showed that the measured neuron response can be well-explained by a power law structural damping model. Findings here establish a quantitative link between Aβ accumulation and the physical characteristics of neural cells and hence could provide new insights into how disorders like AD affect the progression of different neurological processes from a mechanics point of view.

  19. A regulatory transcriptional loop controls proliferation and differentiation in Drosophila neural stem cells.

    Tetsuo Yasugi

    Full Text Available Neurogenesis is initiated by a set of basic Helix-Loop-Helix (bHLH transcription factors that specify neural progenitors and allow them to generate neurons in multiple rounds of asymmetric cell division. The Drosophila Daughterless (Da protein and its mammalian counterparts (E12/E47 act as heterodimerization factors for proneural genes and are therefore critically required for neurogenesis. Here, we demonstrate that Da can also be an inhibitor of the neural progenitor fate whose absence leads to stem cell overproliferation and tumor formation. We explain this paradox by demonstrating that Da induces the differentiation factor Prospero (Pros whose asymmetric segregation is essential for differentiation in one of the two daughter cells. Da co-operates with the bHLH transcription factor Asense, whereas the other proneural genes are dispensible. After mitosis, Pros terminates Asense expression in one of the two daughter cells. In da mutants, pros is not expressed, leading to the formation of lethal transplantable brain tumors. Our results define a transcriptional feedback loop that regulates the balance between self-renewal and differentiation in Drosophila optic lobe neuroblasts. They indicate that initiation of a neural differentiation program in stem cells is essential to prevent tumorigenesis.

  20. Neonatal Neural Progenitor Cells and Their Neuronal and Glial Cell Derivatives Are Fully Permissive for Human Cytomegalovirus Infection▿

    Luo, Min Hua; Philip H. Schwartz; Fortunato, Elizabeth A.

    2008-01-01

    Congenital human cytomegalovirus (HCMV) infection causes central nervous system structural abnormalities and functional disorders, affecting both astroglia and neurons with a pathogenesis that is only marginally understood. To better understand HCMV's interactions with such clinically important cell types, we utilized neural progenitor cells (NPCs) derived from neonatal autopsy tissue, which can be differentiated down either glial or neuronal pathways. Studies were performed using two viral i...

  1. Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium

    Alunni, A.; Krecsmarik, M.; A Bosco; Galant, S.; Pan, L.; Moens, C.B.; Bally-Cuif, L.

    2013-01-01

    Maintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescenc...

  2. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  3. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  4. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  5. Orphan nuclear receptor TLX activates Wnt/β-catenin signalling to stimulate neural stem cell proliferation and self-renewal

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T.; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2009-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin...

  6. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. PMID:26105052

  7. Neural network modeling of the photocatalytic degradation of 2,4-di-hydroxybenzoic acid in aqueous solution

    Oliveros, E. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fur Umweltmesstechnik, Engler-Bunte-Institut; Benoit-Marquie, F.; Puech-Costes, E.; Maurette, M.T. [Universite Paul Sabatier, 31 - Toulouse (France). Laboratoire des IMRCP; Nascimento, C.A.O. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1998-10-01

    Artificial neural networks have been used for modeling the TiO{sub 2} photocatalytic degradation of 2,4-di-hydroxybenzoic acid, chosen as a model water contaminant, as a function of the concentrations of substrate and catalyst. The experimental design methodology was applied to the choice of an appropriate set of experiments well distributed in the experimental region (Doehlert uniform array). Contrary to a classical treatment of the data, based on apparent rate constants modeled by a quadratic polynomial function, neural network analysis of the same experimental data does not require the use of an kinetic or phenomenological equations and allows the simulation and the prediction of the pollutant degradation as a function of irradiation time, as well as prediction of reaction rates, under varying conditions within the experimental region. (authors) 31 refs.

  8. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  9. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients

    Klassen, Henry; Kiilgaard, Jens Folke; Zahir, Tasneem;

    2007-01-01

    immune suppression. Grafted cells expressed transducin, recoverin, and rhodopsin in the pig subretinal space, suggestive of differentiation into photoreceptors or, in a few cases, migrated into the neural retina and extended processes, the latter typically showing radial orientation. These results......Work in rodents has shown that cultured retinal progenitor cells (RPCs) integrate into the degenerating retina, thus suggesting a potential strategy for treatment of similar degenerative conditions in humans. To demonstrate the relevance of the rodent work to large animals, we derived progenitor...... cells from the neural retina of the domestic pig and transplanted them to the laser-injured retina of allorecipients. Prior to grafting, immunocytochemical analysis showed that cultured porcine RPCs widely expressed neural cell adhesion molecule, as well as markers consistent with immature neural cells...

  10. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  11. Exploring neural cell dynamics with digital holographic microscopy

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  12. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold.

    Binan, Loïc; Tendey, Charlène; De Crescenzo, Gregory; El Ayoubi, Rouwayda; Ajji, Abdellah; Jolicoeur, Mario

    2014-01-01

    Neural stem cells (NSCs) provide promising therapeutic potential for cell replacement therapy in spinal cord injury (SCI). However, high increases of cell viability and poor control of cell differentiation remain major obstacles. In this study, we have developed a non-woven material made of co-electrospun fibers of poly L-lactic acid and gelatin with a degradation rate and mechanical properties similar to peripheral nerve tissue and investigated their effect on cell survival and differentiation into motor neuronal lineages through the controlled release of retinoic acid (RA) and purmorphamine. Engineered Neural Stem-Like Cells (NSLCs) seeded on these fibers, with and without the instructive cues, differentiated into β-III-tubulin, HB-9, Islet-1, and choactase-positive motor neurons by immunostaining, in response to the release of the biomolecules. In addition, the bioactive material not only enhanced the differentiation into motor neuronal lineages but also promoted neurite outgrowth. This study elucidated that a combination of electrospun fiber scaffolds, neural stem cells, and controlled delivery of instructive cues could lead to the development of a better strategy for peripheral nerve injury repair. PMID:24161168

  13. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  14. Calponin 2 Acts As an Effector of Noncanonical Wnt-Mediated Cell Polarization during Neural Crest Cell Migration

    Bärbel Ulmer; Cathrin Hagenlocher; Silke Schmalholz; Sabrina Kurz; Axel Schweickert; Ayelet Kohl; Lee Roth; Dalit Sela-Donenfeld; Martin Blum

    2013-01-01

    Neural crest cells (NCCs) migrate throughout the embryo to differentiate into cell types of all germ layers. Initial directed NCC emigration relies on planar cell polarity (PCP), which through the activity of the small GTPases RhoA and Rac governs the actin-driven formation of polarized cell protrusions. We found that the actin binding protein calponin 2 (Cnn2) was expressed in protrusions at the leading edge of migratory NCCs in chicks and frogs. Cnn2 knockdown resulted in NCC migration defe...

  15. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. PMID:24240104

  16. Expression of sodium/iodide symporter transgene in neural stem cells

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions

  17. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Zhu, Liang [East Hospital, Tongji University School of Medicine, Shanghai (China); Dong, Chuanming [East Hospital, Tongji University School of Medicine, Shanghai (China); Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong (China); Sun, Chenxi; Ma, Rongjie; Yang, Danjing [East Hospital, Tongji University School of Medicine, Shanghai (China); Zhu, Hongwen, E-mail: hongwen_zhu@hotmail.com [Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin (China); Xu, Jun, E-mail: xunymc2000@yahoo.com [East Hospital, Tongji University School of Medicine, Shanghai (China)

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  18. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy

  19. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation.

    Shirazi, Hasti Atashi; Rasouli, Javad; Ciric, Bogoljub; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2015-04-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has recently been found to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Although its effect was attributed to an anti-inflammatory mechanism, it is not clear whether this treatment can also directly act on neural cells to promote CNS recovery. The present study investigates the effect of various concentrations of 1,25(OH)2D3 on neural stem cell (NSC) proliferation and their differentiation to oligodendrocytes, the myelinating cells. We have, for the first time, shown that NSCs constitutively express vitamin D receptor (VDR), which can be upregulated by 1,25(OH)2D3. This vitamin significantly enhanced proliferation of NSCs, and enhanced their differentiation into neurons and oligodendrocytes, but not astrocytes. NSCs treated with 1,25(OH)2D3 showed increased expression of NT-3, BDNF, GDNF and CNTF, important neurotrophic factors for neural cell survival and differentiation. Overall, we demonstrated that 1,25(OH)2D3 has a direct effect on NSC proliferation, survival, and neuron/oligodendrocyte differentiation, thus representing a novel mechanism underlying its remyelinating and neuroprotective effect in MS/EAE therapy. PMID:25681066

  20. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene;

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... source for treatment of neurological diseases such as Parkinson´s disease. Membrane proteins are very important in cellular signaling and they are regulated by post-translational modifications such as phosphorylation and glycosylation. In order to obtain more information about important membrane proteins...... identified phosphorylated and SA glycosylated proteins, respectively. This study allowed us to identify several significantly regulated proteins during the differentiation process, including proteins involved in the early embryonic development as well as in the neural development. In the latter group of...