WorldWideScience

Sample records for acid microsphere radioembolisation

  1. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation

    To demonstrate the feasibility of MRI-based assessment of the intrahepatic Ho-PLLA-MS biodistribution after radioembolisation in order to estimate the absorbed radiation dose. Fifteen patients were treated with holmium-166 (166Ho) poly(L-lactic acid)-loaded microspheres (Ho-PLLA-MS, mean 484 mg; range 408-593 mg) in a phase I study. Multi-echo gradient-echo MR images were acquired from which R2* maps were constructed. The amount of Ho-PLLA-MS in the liver was determined by using the relaxivity r2* of the Ho-PLLA-MS and compared with the administered amount. Quantitative single photon emission computed tomography (SPECT) was used for comparison with MRI regarding the whole liver absorbed radiation dose. R2* maps visualised the deposition of Ho-PLLA-MS with great detail. The mean total amount of Ho-PLLA-MS detected in the liver based on MRI was 431 mg (range 236-666 mg) or 89 ± 19 % of the delivered amount (correlation coefficient r = 0.7; P < 0.01). A good correlation was found between the whole liver mean absorbed radiation dose as assessed by MRI and SPECT (correlation coefficient r = 0.927; P < 0.001). MRI-based dosimetry for holmium-166 radioembolisation is feasible. Biodistribution is visualised with great detail and quantitative measurements are possible. (orig.)

  2. Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver : technical aspects studied in a large animal model

    Vente, M A D; de Wit, T C; van den Bosch, M A A J; Bult, W; Seevinck, P R; Zonnenberg, B A; de Jong, H W A M; Krijger, G C; Bakker, C J G; van het Schip, A D; Nijsen, J F W

    2010-01-01

    OBJECTIVE: To assess the accuracy of a scout dose of holmium-166 poly(L-lactic acid) microspheres ((166)Ho-PLLA-MS) in predicting the distribution of a treatment dose of (166)Ho-PLLA-MS, using single photon emission tomography (SPECT). METHODS: A scout dose (60 mg) was injected into the hepatic arte

  3. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment

    Radioembolisation with 90Y-microspheres is a new locoregional treatment of hepatic lesions, usually applied as single cycle. Multi-cycle treatments might be considered as a strategy to improve the risk-benefit balance. With the aim to derive suitable information for patient tailored therapy, available patients' dosimetric data were reviewed according to the linear-quadratic model and converted into biological effective dose (BED) values. Single vs. multi-cycle approaches were compared through radiobiological perspective. Twenty patients with metastatic lesions underwent radioembolisation. The 90Y-administered activity (AA) was established in order to respect a precautionary limit dose (40 Gy) for the non-tumoral liver (NTL). BED was calculated setting α/β 2.5 Gy (NTL), 10 Gy (tumours); T1/2,eff = T1/2,phys = 64.2 h; T1/2,rep = 2.5 h (NTL), 1.5 h (tumours). The BED to NTL was considered as a constraint for multi-cycle approach. The AA for two cycles and the percent variations of AA, tumour dose, BED were estimated. In one-cycle, for a prescribed BED to NTL of 64 Gy (NTL dose = 40 Gy), AA was 1.7 (0.9-3.2) GBq, tumour dose was 130 (65-235) Gy, and tumour BED was 170 (75-360) Gy. Considering two cycles, ∝15% increase was found for AA and dose to NTL, with unvaried BED for NTL. Tumour dose increase was 20 (10-35) Gy; tumour BED increase was 10 (3-11) Gy. In different protocols allowing 80 Gy to NTL, the BED sparing estimated was ∝50 Gy (two cycles) and 65 Gy (three cycles). From a radiobiological perspective, multi-cycle treatments would allow administering higher activities with increased tumour irradiation and preserved radiation effects on NTL. Trials comparing single vs. multiple cycles are suggested. (orig.)

  4. Radioembolisation with {sup 90}Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment

    Cremonesi, Marta; Ferrari, Mahila; Pedroli, Guido [European Institute of Oncology, Unit of Medical Physics, Milan (Italy); Bartolomei, Mirco; Arico, Demetrio; De Cicco, Concetta [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Orsi, Franco; Bonomo, Guido [European Institute of Oncology, Unit of Interventistic Radiology, Milan (Italy); Mallia, Andrew [Gamma Unit, Radiology Department, St. Luke' s Hospital (Malta); Paganelli, Giovanni [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy)

    2008-11-15

    Radioembolisation with {sup 90}Y-microspheres is a new locoregional treatment of hepatic lesions, usually applied as single cycle. Multi-cycle treatments might be considered as a strategy to improve the risk-benefit balance. With the aim to derive suitable information for patient tailored therapy, available patients' dosimetric data were reviewed according to the linear-quadratic model and converted into biological effective dose (BED) values. Single vs. multi-cycle approaches were compared through radiobiological perspective. Twenty patients with metastatic lesions underwent radioembolisation. The {sup 90}Y-administered activity (AA) was established in order to respect a precautionary limit dose (40 Gy) for the non-tumoral liver (NTL). BED was calculated setting {alpha}/{beta} = 2.5 Gy (NTL), 10 Gy (tumours); T{sub 1/2,eff} = T{sub 1/2,phys} = 64.2 h; T{sub 1/2,rep} = 2.5 h (NTL), 1.5 h (tumours). The BED to NTL was considered as a constraint for multi-cycle approach. The AA for two cycles and the percent variations of AA, tumour dose, BED were estimated. In one-cycle, for a prescribed BED to NTL of 64 Gy (NTL dose = 40 Gy), AA was 1.7 (0.9-3.2) GBq, tumour dose was 130 (65-235) Gy, and tumour BED was 170 (75-360) Gy. Considering two cycles, {proportional_to}15% increase was found for AA and dose to NTL, with unvaried BED for NTL. Tumour dose increase was 20 (10-35) Gy; tumour BED increase was 10 (3-11) Gy. In different protocols allowing 80 Gy to NTL, the BED sparing estimated was {proportional_to}50 Gy (two cycles) and 65 Gy (three cycles). From a radiobiological perspective, multi-cycle treatments would allow administering higher activities with increased tumour irradiation and preserved radiation effects on NTL. Trials comparing single vs. multiple cycles are suggested. (orig.)

  5. Radioembolisation with {sup 90}Y-labelled resin microspheres in the treatment of liver metastasis from breast cancer

    Cianni, R.; Pelle, G.; Notarianni, E.; Saltarelli, A.; Rabuffi, P. [Santa Maria Goretti Hospital, Department of Diagnostic and Interventional Radiology, Latina (Italy); Bagni, O.; Filippi, L. [Santa Maria Goretti Hospital, Department of Nuclear Medicine, Latina (Italy); Cortesi, E. [University of Rome ' ' Sapienza' ' , Department of Oncology, Rome (Italy)

    2013-01-15

    Metastatic breast cancer is a heterogeneous disease, commonly affecting the liver. We report our experience with {sup 90}Y radioembolisation (RE) and its effects on the survival of patients with treatment-refractory breast cancer liver metastases. A total of 77 female patients affected by breast cancer were accepted into our department for RE. Inclusion criteria were inoperable and chemotherapy-refractory hepatic metastases, acceptable performance status, sufficient residual liver, no significant hepato-pulmonary shunts. Patients were divided in two groups: group 1 (29 patients) included those with Eastern Cooperative Oncology Group (ECOG) score 0, liver involvement (0-25 %) and no extrahepatic disease (EHD); group 2 (23 patient) included patients with ECOG score 1-2, liver involvement (26-50 %) and evidence of EHD. A total of 25 patients were considered ineligible. The median age of the remaining 52 patients was 57.5 years. The median overall survival was 11.5 months and better in those whose performance status and liver function were preserved (14.3 versus 8.2 months). According to Response Evaluation Criteria in Solid Tumor (RECIST), partial response (PR) was achieved in 29 patients (56 %), stable disease (SD) was achieved in a further 18 patients (35 %) and 5 patients showed progressive disease (PD) (10 %). {sup 90}Y RE is effective in the treatment of liver metastases from breast cancer. We demonstrated a relevant survival and encouragingly high response rate in patients with treatment-refractory disease. (orig.)

  6. Transarterial chemoembolisation and radioembolisation for the treatment of primary liver cancer and secondary liver cancer: a review of the literature

    Liver-directed therapies are continuing to evolve in the field of interventional oncology and are gaining increasing use in the treatment of unresectable primary and secondary liver cancers. In this article, we review two liver-directed therapies that are currently used for the palliative treatment of primary and secondary hepatic tumours: transcatheter arterial chemoembolisation (TACE), including a new type of TACE with drug-eluting beads (DEB-TACE), and radioembolisation. The concept of these transcatheter intraarterial therapies is to selectively deliver high doses of anticancer treatment to the tumour. While TACE delivers one or more chemotherapeutic drugs into the hepatic arteries supplying the tumour, radioembolisation uses non-embolic microspheres incorporating the radioactive isotope 90Y. In this article, we discuss some technical aspects, patient selection, current clinical evidence, and future directions of TACE, TACE with drug-eluting beads (DEB-TACE) and radioembolisation for primary and secondary liver cancer.

  7. Radioembolisation for treatment of pediatric hepatocellular carcinoma

    Transarterial radioembolisation with yttrium-90 (TARE-Y90), a catheter-directed therapy, has been used extensively in adults to treat primary and secondary hepatic malignancies. To our knowledge, the use of this palliative technique has not been described in children. We present two children with unresectable hepatocellular carcinoma (HCC) treated with TARE-Y90. (orig.)

  8. Radioembolisation for treatment of pediatric hepatocellular carcinoma

    Hawkins, Clifford Matthew; Kukreja, Kamlesh [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Geller, James I. [Cincinnati Children' s Hospital Medical Center, Department of Hematology/Oncology, Cincinnati, OH (United States); Schatzman, Carmen; Ristagno, Ross [University of Cincinnati, UC Health, Department of Radiology, Division of Interventional Radiology, Cincinnati, OH (United States)

    2013-07-15

    Transarterial radioembolisation with yttrium-90 (TARE-Y90), a catheter-directed therapy, has been used extensively in adults to treat primary and secondary hepatic malignancies. To our knowledge, the use of this palliative technique has not been described in children. We present two children with unresectable hepatocellular carcinoma (HCC) treated with TARE-Y90. (orig.)

  9. Protocell-like Microspheres from Thermal Polyaspartic Acid

    Bahn, Peter R.; Pappelis, Aristotel; Bozzola, John

    2006-12-01

    One of the most prominent amino acids to appear in monomer-generating origin-of-life experiments is aspartic acid. Hugo Schiff found in 1897 that aspartic acid polymerizes when heated to form polyaspartylimide which hydrolyzes in basic aqueous solution to form thermal polyaspartic acid which is a branched polypeptide. We recently reported at the ISSOL 2005 Conference that commercially made thermal polyaspartic acid forms microspheres when heated in boiling water and allowed to cool. In a new experiment we heated aspartic acid at 180°C for up to 100 h to form thermal polyaspartylimide which when heated in boiling water without addition of base hydrolyzed to form thermal polyaspartic acid which upon cooling formed microspheres. Thermal polyaspartic acid microspheres appear protocell-like in the sense of being prebiotically plausible lattices or containers that could eventually have been filled with just the right additions of primordial proteins, nucleic acids, lipids, and metabolites so as to constitute protocells capable of undergoing further chemical and biological evolution. Thermal polyaspartic acid microspheres are extremely simple models of protocells that are more amenable to precise quantitative experimental investigation than the proteinoid microspheres of Sidney W. Fox. We present here scanning electron microscope images of such thermal polyaspartic acid microspheres. Figure 1 shows thermal polyaspartic acid microspheres from l-aspartic acid heated at 180°C for 50 h, at a magnification of 3,500×. Figure 2 shows thermal polyaspartic acid microspheres from the same sample at a magnification of 7,000×. The thermal polyaspartic acid microspheres have a diameter of approximately 1 μm These images were viewed with a Hitachi S2460N scanning electron microscope at 20 kV acceleration voltage. [Figure not available: see fulltext.][Figure not available: see fulltext.

  10. Microspheres

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  11. Aldocyanoin microspheres: partial amino acid analysis of the microparticulates formed from simple reactants under various conditions.

    Pollock, G E; Heiderer, R

    1979-10-01

    The work of Kenyon and Nissenbaum on aldocyanoin microspheres was repeated and extended. It was determined that the microspheres contained amino acids and that specific amino acids could be incorporated into the microspheres by adding the requisite aldehyde or ketone precursor to the model mixture. Microsphere formation was found to be dependent on the availability of oxygen. Under anaerobic conditions of synthesis, no microspheres formed in the time allotted and the amino acid composition of the macromolecular material was simple. Microparticulate material synthesized by C. Folsome using a quenched spark technique was analyzed and found to contain amino acids that had a qualitative composition similar to both a Miller-Urey discharge and the Kenyon-Nissenbaum microspheres. PMID:501747

  12. Production and characterization of 166Ho polylactic acid microspheres.

    Yavari, Kamal; Yeganeh, Ehsan; Abolghasemi, Hossein

    2016-01-01

    Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization. PMID:26691104

  13. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  14. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  15. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe3O4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  16. Acidic Microclimate pH Distribution in PLGA Microspheres Monitored by Confocal Laser Scanning Microscopy

    Ding, Amy G.; Schwendeman, Steven P.

    2008-01-01

    The microclimate pH (μpH) distribution inside poly(lactic-co-glycolic acid) (PLGA) microspheres was monitored quantitatively over an acidic range as a function of several formulation variables. A ratiometric method by confocal laser scanning microscopy with Lysosensor yellow/blue® dextran was adapted from those previously reported, and μpH distribution kinetics inside PLGA microspheres was examined during incubation under physiologic conditions for 4 weeks. The effects of polymer molecular we...

  17. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  18. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. 29Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and drug

  19. Preparation and evaluation of magnetic microspheres of mesalamine (5-aminosalicylic acid) for colon drug delivery

    Satinder Kakar; Deepa Batra; Ramandeep Singh

    2013-01-01

    Objective:To study magnetic microspheres of mesalamine(5-aminosalicylic acid) for colon drug delivery.Methods:Magnetic microspheres were prepared by solvent evaporation technique for use in the application of magnetic carrier technology.An attempt was made to target mesalamine (5-aminosalicylic acid) to its site of action i.e. to colon.EudragitS-100, ethylcellulose and chitosan were used in three different drug: polymer ratios i.e.1:1,1:2 and1:3.The microspheres were characterized in terms of particle size, percentage yield, drug content, encapsulation efficiency,in vitro release pattern andex vivo study.The microspheres were uniform in size and shape.Thein vitrorelease profile was studied in pH7.4 phosphate buffer medium usingUSP dissolution apparatus.Results:Chitosan microspheres were found to be better retained in terms of percentage release of the drug.Thus chitosan microspheres could be better retained at their target site.Conclustion:Flow characteristics are also better in case of chitosan magnetic microspheres. Thus reticuloendothelial clearance can be minimized and site specificity can be increased.

  20. Preclinical studies on holmium-166 poly(L-lactic acid) microspheres for hepatic arterial radioembolization

    Vente, M.A.D.

    2009-01-01

    Hepatic arterial radioembolization with radioactive holmium-166 loaded poly(L-lactic acid) microspheres (166Ho-PLLA-MS) constitutes the subject of this thesis. This technique represents a potential treatment option for patients with unresectable liver malignancies. 166Ho-PLLA-MS are believed to be an improvement over the already clinically applied yttrium-90 microspheres (90Y-MS) due to the multimodality imaging properties of holmium, specifically its capability to be visualized by gamma scin...

  1. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. PMID:26954089

  2. SYNTHESIS OF POLY(DIVINYLBENZENE-co-ACRYLIC ACID) HOLLOW MICROSPHERES WITH GOLD NANOPARTICLES ON THE INTERIOR SURFACE

    Wei Liu; Xin-lin Yang; Xu-gang He

    2009-01-01

    Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with gold nanoparticles on the interior surfaces were prepared from the gold nanoparticles-coated poly(methacrylic acid) (PMAA@Au@poly(DVB-co-AA)) core-shell microspheres by removal of the PMAA core in water.Au nanoparticles-coated PMAA microspheres were afforded by the in-situ reduction of gold trichloride with PMAA microsphere as stabilizer via the interaction between carboxylic acid groups and Au nanoparticles.Gold nanoparticles-coated (PMAA@Au@poly(DVB-co-AA)) microspheres were formed during the distillation precipitation copolymerization of divinylbenzene and acrylic acid in acetonitrile with Au-coated PMAA microspheres as seeds.The thickness of the poly(DVB-co-AA) shell-layer was controlled by the amount of the solvent distilled off the polymerization system.The PMAA microspheres,Au nanoparticles-coated PMAA microspberes,core-shell microspheres,and hollow microspheres with Au nanoparticles on the interior surfaces were studied by transmission electron microscopy and scanning electron microscopy.The stabilization to L-cysteine and the preliminary catalytic property of the Au nanoparticles on the inner surface of hollow poly(DVB-co-AA) microspheres were investigated.

  3. Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto iron-oxide-coated sand

    This article describes an approach for quantifying microsphere deposition onto iron-oxide-coated sand under the influence of adsorbed Suwannee River Humic Acid (SRHA). The experimental technique involved a triple pulse injection of model latex microspheres (microspheres) in pulses of (1) microspheres, followed by (2) SRHA, and then (3) microspheres, into a column filled with iron-coated quartz sand as a water-saturated porous medium. A random sequential adsorption model (RSA) simulated the gradual rise in the first (microsphere) breakthrough curve (BTC). Using the same model calibration parameters a dramatic increase in concentration at the start of the second particle BTC, generated after SRHA injection, could be simulated by matching microsphere concentrations to extrapolated RSA output. RSA results and microsphere/SRHA recoveries showed that 1 μg of SRHA could block 5.90 ± 0.14 x 109 microsphere deposition sites. This figure was consistent between experiments injecting different SRHA masses, despite contrasting microsphere deposition/release regimes generating the second microsphere BTC. - This paper describes a method to quantify the influence of humic acid adsorption on particulate colloid deposition in saturated porous media.

  4. Biodegradable poly(lactic acid) microspheres containing total alkaloids of Caulis sinomenii

    Wen Zhang; Xiaojie Lin; Xingxiang Zhang

    2011-12-01

    The fabrication of biodegradable poly(lactic acid) (PLA) microspheres containing total alkaloids of Caulis sinomenii was investigated. The formation, diameter, morphology and properties of the microspheres were characterized using Fourier transform infrared spectroscopy (FT–IR), laser particle size analyser and scanning electron microscopy (SEM), etc. In vitro releasing behaviour was also investigated using UV-Vis spectrometer. As a result, the drug-loaded microspheres with a narrower distributive, rounder and smoother surface were prepared. Drug-releasing behaviour from microspheres was affected by the concentration of emulsifier and the stirring rate. The results demonstrated that a medicated system, which can be potentially applied within a drug delivery system, was designed. This system acts in a systematic manner for the treatment of rheumatoid arthritis.

  5. Preparation of Ethylcellulose Coated Gelatin Microspheres as a Multiparticulate Colonic Delivery System for 5-Aminosalicilic Acid

    Fatemeh Atyabi

    2004-01-01

    Full Text Available In the long-term management of ulcerative colitis patients, repeat dosing maybe required. Since 5-ASAis largely absorbed from the upper intestine, selective delivery of drugs into the colon may be regarded as a better method of drug delivery with fewer side effects and a higher efficacy. The aim of this study was to prepare and evaluate a double coated multiparticulate system for 5-ASA delivery using gelatin and ethylcellulose as the primary and secondarypolymer respectively. Gelatin microspheres containing 5-aminosalicylic acid was produced using the solvent evaporation method. Prepared gelatin microspheres were spherical, freeflowing, non-aggregated and showed no degradation in the acidic medium. Entrapment efficacy of microspheres was about 50%. Results showed that drug release was fast and complete and is affected by the amount of core material entrapped. Gelatin microspheres werethen coated by ethylcellulose using a coacervation phase separation technique. The idea for this approach was to prepare a delayed drug delivery system, in which, ethylcellulose protects particles for the first 6 h transit through the gastrointestinal tract. However, it was shown that this system could provide a suitable drug release pattern for colonic delivery of active agents, as 30% of the drug was released from the ethylcellulose-coated microcapsules within 6 h,while this amount was 90% of the loaded drug for gelatin microspheres under the same condition.

  6. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres

    Wright, B; Parmar, N.; Bozec, L.; Aguayo, S. D.; Day, R. M.

    2015-01-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim o...

  7. Preclinical studies on holmium-166 poly(L-lactic acid) microspheres for hepatic arterial radioembolization

    Vente, M.A.D.

    2009-01-01

    Hepatic arterial radioembolization with radioactive holmium-166 loaded poly(L-lactic acid) microspheres (166Ho-PLLA-MS) constitutes the subject of this thesis. This technique represents a potential treatment option for patients with unresectable liver malignancies. 166Ho-PLLA-MS are believed to be a

  8. Preparation and Quality Control of 166Ho Labelled Polylactic Acid Microspheres for radiotherapy

    Kropáček, Martin; Melichar, František; Klejzarová, Michaela; Ventruba, Jiří; Tomeš, Marek; Mirzajevová, Marcela

    2007-01-01

    Roč. 2, č. 332 (2007), s. 34-34. ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research pla n: CEZ:AV0Z10480505 Keywords : polylactic acid microspheres * 166Ho * liver tumour therapy Subject RIV: FR - Pharmacology ; Medidal Chemistry

  9. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    Vente, M.A.D.; Nijsen, J.F.W.; De Wit, T.C.; Seppenwoolde, J.H.; Krijger, G.C.; Seevinck, P.R.; Huisman, A.; Zonneneberg, B.A.; Van den Ingh, T.S.G.A.M.; Van het Schip, A.D.

    2008-01-01

    Purpose The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Methods Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-l

  10. Studies on the sorption of Pu(IV) on alumina microspheres from nitric acid - oxalic acid solutions

    Sorption of Pu(IV) on alumina microspheres prepared by the sol-gel procedure has been investigated for the recovery of plutonium from nitric acid-oxalic acid solutions. Distribution ratio for Pu(IV) between alumina microspheres and nitric acid-oxalic acid have been determined. The influence of the mode of preparation and heat treatment of these microspheres, on the sorption of Pu(IV) have been investigated. Pu(IV) breakthrough capacities have been determined using a 5 ml bed of alumina with solutions of Pu(IV) in 1M HNO3 + 0.05M H2C2O4 and 0.5M HNO3 + 0.05M H2C2O4. The elution behavior of Pu(IV) loaded on these microspheres were studied using nitric acid solutions containing different oxidising and reducing agents. Investigations were also carried out to fix the activity in the alumina matrix by heat treatment. (author)

  11. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid copolymer for protein delivery

    Chen X

    2014-05-01

    Full Text Available Xingtao Chen,1 Guoyue Lv,1 Jue Zhang,2 Songchao Tang,2 Yonggang Yan,1 Zhaoying Wu,2 Jiacan Su,2 Jie Wei2 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China Abstract: A multi-(amino acid copolymer (MAC based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 µm to 79.7 µm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. Keywords: poly (amino acid copolymer, release, degradation

  12. 聚乳酸微球的制备%Preparation of polylactic acid microspheres

    孟立山; 姚新建

    2011-01-01

    Using L-lactic acid as raw materials and tin as a catalyst, and through the activity of lactide ring-opening polymerization, the controlled molecular weight polylactic acid was synthesized. FTIR results showed that controlled molecular weight polylactic acid was synthesized. Using dichloromethane as solvent, polyvinyl alcohol as surfactant, polylactic acid microspheres were prepared. Effect of PVA concentration on the polylactic acid microspheres was researched. Results showed that when the PVA concentration increased,the microspheres became smaller, but the particle size distribution decreased. Concentration of PVA was 1 % , polylactic acid into the ball was better.%以L-乳酸为原料,锡粒为催化剂,实现了丙交酯的开环聚合反应,红外光谱结果表明,合成了分子量可控的聚乳酸.以二氯甲烷为溶剂,聚乙烯醇为表面活性剂,制备了聚乳酸微球,研究了聚乙烯醇浓度对聚乳酸微球的影响.结果表明,当聚乙烯醇浓度增加时,微球半径变小,但粒径分布均匀度下降,聚乙烯醇浓度为1%时,聚乳酸成球效果较好.

  13. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

    Laus, Rogério; Geremias, Reginaldo; Vasconcelos, Helder L; Laranjeira, Mauro C M; Fávere, Valfredo T

    2007-10-22

    Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated. PMID:17499431

  14. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Qun Zhao; Zhi-yue Li; Ze-peng Zhang; Zhou-yun Mo; Shi-jie Chen; Si-yu Xiang; Qing-shan Zhang; Min Xue

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro-trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site;their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro-spheres at 300-µm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta-tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve ifbers were observed and dis-tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  15. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs

    Vente, M.A.D.; Nijsen, J. F. W.; De Wit, T.C.; Seppenwoolde, J.H.; Krijger, G. C.; Seevinck, P. R.; Huisman, Albert; Zonnenberg, Bernard A.; Ingh, T.S.G.A.M. van den; Schip, A.D. van het

    2008-01-01

    Purpose: The aim of this study is to evaluate the toxicity of holmium-166 poly(L-lactic acid) microspheres administered into the hepatic artery in pigs. Methods: Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n=5) or with holmium-166-loaded microspheres (166HoMS; n=13). The microspheres’ biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and (...

  16. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    Vente, M.A.D.; Nijsen, J. F. W.; De Wit, T.C.; Seppenwoolde, J.H.; Krijger, G. C.; Seevinck, P. R.; Huisman, A.; Zonneneberg, B.A.; van den Ingh, T.S.G.A.M.; van het Schip, A. D.

    2008-01-01

    Purpose The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Methods Healthy pigs (20–30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-loaded microspheres (166HoMS; n = 13). The microspheres’ biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and...

  17. Pharmacokinetic and pharmacodynamic profiles of recombinant human erythropoietin-loaded poly(lactic-co-glycolic acid) microspheres in rats

    Xiang-lian ZHOU; in-tian HE; Hui-juan DU; Yang-yang FAN; Ying WANG; Hong-xia ZHANG; Yang JIANG

    2012-01-01

    To characterize the pharmacokinetic and pharmacodynamic profiles of the recombinant human erythropoietin (rhEPO)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres in rats.Methods:The rhEPO-loaded microspheres were prepared using a solid-in-oil-in-water emulsion method.Pharmacokinetics and pharmacodynamics of the rhEPO-loaded microspheres were evaluated in male Sprague-Dawley rats.The serum rhEPO level was determined with ELISA.The level of anti-rhEPO antibody in the serum was measured to assess the immunogenicity of rhEPO released from the microspheres.Results:rhEPO was almost completely released from the PLGA microspheres in vitro,following zero-order release kinetics over approximately 30 d.After intramuscular injection (10 000 or 30 000 IU rhEPO/kg) in the rats,the serum rhEPO concentration reached maximum levels on d 1,then decreased gradually and was maintained at nearly steady levels for approximately 4 weeks.Furthermore,the release of rhEPO from the PLGA microspheres was found to be controlled mainly by a dissolution/diffusion mechanism.A good linear correlation (R2=0.98) was obtained between the in vitro and in vivo release data.A single intramuscular injection of the rhEPO-loaded PLGA microspheres (10 000 or 30 000 IU rhEPO/kg) in the rats resulted in elevated hemoglobin and red blood cell concentrations for more than 28 d.Moreover,the immunogenicity of rhEPO released from the PLGA microspheres was comparable with that of the unencapsulated rhEPO.Conclusion:The results prove the feasibility of using the PLGA-based microspheres to deliver rhEPO for approximately 1 month.

  18. Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    Grumezescu, Valentina [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Socol, Gabriel [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Holban, Alina Maria [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest (Romania); Ficai, Anton [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Science and Engineering of Oxidic Materials and Nanomaterials, Polizu Street no 1-7, 011061 Bucharest (Romania); Truşcǎ, Roxana [S.C. Metav-CD S.A., 31Rosetti Str., 020015 Bucharest (Romania); Bleotu, Coralia [Stefan S Nicolau Institute of Virology, Bucharest (Romania); Balaure, Paul Cǎtǎlin [Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica Universitiy of Bucharest, Polizu Street no 1-7, 011061 Bucharest (Romania); Cristescu, Rodica [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, PO Box MG-36, Bucharest-Magurele, Bucharest (Romania); Chifiriuc, Mariana Carmen [Faculty of Biology, University of Bucharest, Microbiology Immunology Department, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest (Romania)

    2014-05-01

    We report the fabrication of thin coatings of PLA–PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  19. Boric acid assisted electrosynthesis of hierarchical three-dimensional cobalt dendrites and microspheres

    Sivasubramanian, R. [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036 India (India); Sangaranarayanan, M.V., E-mail: sangara@iitm.ac.in [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036 India (India)

    2012-10-15

    The use of boric acid as the structure-directing agent and supporting electrolyte is shown to lead to a simple and robust strategy of obtaining hierarchical three dimensional cobalt dendrites, flower-like crystals and microspheres on stainless steel (SS) surfaces at room temperature. The phase and morphology of the dendrites are studied using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray analysis (EDAX). The pre-dominant occurrence of cobalt(111) plane is noticed from XRD data while the magnetization studies using Vibrating Sample Magnetometer (VSM) provides a high coercivity value of {approx}574.6 Oe for cobalt dendrimers. The mechanism of formation of dendrimers is discussed using the classical Diffusion-Limited Aggregation (DLA) model. Highlights: Black-Right-Pointing-Pointer Preparation of cobalt dendrimers and microspheres using electrodeposition. Black-Right-Pointing-Pointer Boric acid acts as a structure directing agent and supporting electrolyte. Black-Right-Pointing-Pointer High coecivity values. Black-Right-Pointing-Pointer Formation of dendrites interpreted using the Diffusion-Limited Aggregation model.

  20. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. PMID:26642446

  1. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  2. Preparation of Lung-Targeting, Emodin-Loaded Polylactic Acid Microspheres and Their Properties

    Xiaohong Chen

    2014-04-01

    Full Text Available Emodin (1,3,8-trihydroxy-6-methylanthraquinone has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0 ± 1.8% and (62.2 ± 2.6%, respectively. The average particle size was 9.7 ± 0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals.

  3. Preparation of poly (L-lactic acid) microspheres by droplet-freezing process

    A recently developed process of microsphere preparation, named droplet-freezing process is introduced in this paper. The PLLA microspheres were fabricated by the droplet-freezing process, the diameter and porosity of the microspheres were measured, and the micro-morphologies of the microspheres were characterized by scanning electron microscopy (SEM). The formation process of microspheres was achieved by two steps: first, after droplets dropped off the delivery tube, they became approximately spherical in the air under the effect of the surface tension; second, droplets dropped into liquid condensate and maintained the spherical shape, and were frozen during the free settling process. Experimental results indicated that the microspheres fabricated by the droplet-freezing process have uniform diameters and the diameter can be controlled properly, along with the increase of the PLLA concentration, the size of microspheres increases, but the porosity of the microspheres decreases. The microspheres with high porosity can be obtained with a low concentration of the PLLA solution. SEM analysis revealed that the surfaces and interiors of the microsphere contain plentiful and interconnected micro pores. The microspheres are hopeful to be applied in bone tissue engineering.

  4. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    Zhao Hong; Saatchi, Katayoun [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, 6T 1Z3 (Canada); Haefeli, Urs O. [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3 (Canada)], E-mail: uhafeli@interchange.ubc.ca

    2009-05-15

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  5. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  6. The use of vancomycin-loaded poly-l-lactic acid and poly-ethylene oxide microspheres for bone repair: an in vivo study

    Débora Cristina Coraca-Huber

    2012-07-01

    Full Text Available OBJECTIVE: The aim of this study was to investigate bone repair after the implantation of vancomycin-loaded poly-L-lactic acid/poly-ethylene oxide microspheres compared with vancomycin-unloaded poly-L-lactic acid/poly-ethylene oxide microspheres. METHODS: Poly-L-lactic acid/poly-ethylene oxide microspheres were implanted in rat tibiae and evaluated for periods of 2, 4, 8, and 12 days and 4, 8, 16, and 32 weeks. The groups implanted with vancomycin-loaded and vancomycin-unloaded microspheres were compared. Histopathologic (semi-quantitative and histomorphometric analyses were performed to evaluate the bone formation process. RESULTS: During the first period (second day, fibrin and hemorrhaging areas were observed to be replaced by granulation tissue around the microspheres. Woven bone formation with progressive maturation was observed. All of the histopathological findings, evaluated by a semi-quantitative assay and a quantitative analysis (percentage of bone formation, were similar between the two groups. CONCLUSION: Vancomycin-loaded poly-L-lactic acid/poly-ethylene oxide microspheres are a good bone substitute candidate for bone repair. Local antibiotic therapy using vancomycin-loaded poly-L-lactic acid/poly-ethylene oxide microspheres should be considered after the microbiological evaluation of its efficacy.

  7. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    Vente, M.A.D.; Nijsen, J.F.W.; Wit, T.C. de; Schip, A.D. van het [University Medical Center Utrecht, Department of Nuclear Medicine, P.O. Box 85500, Utrecht (Netherlands); Seppenwoolde, J.H.; Seevinck, P.R. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Krijger, G.C. [Delft University of Technology, Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft (Netherlands); Huisman, A. [University Medical Center Utrecht, Department of Clinical Chemistry and Haematology, Utrecht (Netherlands); Zonnenberg, B.A. [University Medical Center Utrecht, Department of Internal Medicine, Utrecht (Netherlands); Ingh, T.S.G.A.M. van den [TCCI Consultancy B.V., P.O. Box 85032, Utrecht (Netherlands)

    2008-07-15

    The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Healthy pigs (20-30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres ({sup 165}HoMS; n = 5) or with holmium-166-loaded microspheres ({sup 166}HoMS; n = 13). The microspheres' biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and ({sup 166}HoMS group only) hematologically over a period of 1 month ({sup 165}HoMS group) or over 1 or 2 months ({sup 166}HoMS group). Finally, a pathological examination was undertaken. After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the {sup 166}HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n = 2), preexisting gastric ulceration (n = 1), and endocarditis (n = 1). AST levels were transitorily elevated post-{sup 166}HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the {sup 166}HoMS group, and MRI scans were performed if available. In pigs from the {sup 166}HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo {sup 166m}Ho measurements. It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with {sup 166}HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials. (orig.)

  8. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(l-lactic acid) microspheres in healthy pigs

    The aim of this study is to evaluate the toxicity of holmium-166 poly(l-lactic acid) microspheres administered into the hepatic artery in pigs. Healthy pigs (20-30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres (165HoMS; n = 5) or with holmium-166-loaded microspheres (166HoMS; n = 13). The microspheres' biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and (166HoMS group only) hematologically over a period of 1 month (165HoMS group) or over 1 or 2 months (166HoMS group). Finally, a pathological examination was undertaken. After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the 166HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n = 2), preexisting gastric ulceration (n = 1), and endocarditis (n = 1). AST levels were transitorily elevated post-166HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the 166HoMS group, and MRI scans were performed if available. In pigs from the 166HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo 166mHo measurements. It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with 166HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials. (orig.)

  9. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    Daghir, Ahmed A., E-mail: ahmeddaghir@doctors.net.uk [Imperial College Healthcare NHS Trust, Department of Radiology (United Kingdom); Gungor, Hatice [Imperial College Healthcare NHS Trust, Department of Oncology (United Kingdom); Haydar, Ali A. [Barts and the London NHS Trust, Department of Radiology (United Kingdom); Wasan, Harpreet S. [Imperial College Healthcare NHS Trust, Department of Oncology (United Kingdom); Tait, Nicholas P. [Imperial College Healthcare NHS Trust, Department of Radiology (United Kingdom)

    2012-08-15

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y{sup 90}) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y{sup 90} radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 months of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y{sup 90} radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.

  10. Embolisation of the Gastroduodenal Artery is Not Necessary in the Presence of Reversed Flow Before Yttrium-90 Radioembolisation

    Introduction: The gastroduodenal artery (GDA) is usually embolised to avoid nontarget dispersal before yttrium-90 (Y90) radioembolisation to treat liver metastases. In a minority of patients, there is retrograde flow in the GDA. The purpose of this study was to determine if there is any increased risk from maintaining a patent GDA in patients with reversed flow. Materials and Methods: A retrospective review was performed of all patients undergoing Y90 radioembolisation at our institution. The incidence of toxicities arising from nontarget radioembolisation by way of the GDA (gastric/duodenal ulceration, gastric/duodenal bleeding, and pancreatitis) and death occurring within 2 months of treatment were compared between the reversed and the antegrade GDA groups. Results: Ninety-two patients underwent preliminary angiography. Reversed GDA flow was found on angiography in 14.1% of cases; the GDA was not embolised in these patients. The GDA was coiled in 55.7% of patients with antegrade GDA flow to prevent inadvertent dispersal of radioembolic material. There was no increased toxicity related to nontarget dispersal by way of the GDA, or increased early mortality, in patients with reversed GDA flow (P > 0.05). Conclusion: In patients with reversed GDA flow, maintenance of a patent GDA before administration of Y90 radioembolisation does not increase the risk of toxicity from nontarget dispersal. Therapeutic injection, with careful monitoring to identify early vascular stasis, may be safely performed beyond the origin of the patent GDA. A patent GDA with reversed flow provides forward drive for infused particles and may allow alternative access to the hepatic circulation.

  11. Facile Preparation of Phosphotungstic Acid-Impregnated Yeast Hybrid Microspheres and Their Photocatalytic Performance for Decolorization of Azo Dye

    Lan Chen

    2013-01-01

    Full Text Available Phosphotungstic acid (HPW-impregnated yeast hybrid microspheres were prepared by impregnation-adsorption technique through tuning pH of the aqueous yeast suspensions. The obtained products were characterized by field emission scanning electron microscopy (FE-SEM, energy dispersive spectrometry (EDS, X-ray diffraction (XRD, thermogravimetry-differential scanning calorimetry (TG-DSC, and ultraviolet-visible spectrophotometry (UV-Vis, respectively. FE-SEM and EDS ascertain that the HPW has been effectively introduced onto the surface of yeast, and the resulting samples retain ellipsoid shape, with the uniform size (length 4.5 ± 0.2 μm, width 3.0 ± 0.3 μm and good monodispersion. XRD pattern indicates that the main crystal structure of as-synthesized HPW@yeast microsphere is Keggin structure. TG-DTA states that the HPW in composites has better thermal stability than pure HPW. Fourier transform infrared spectroscopy (FT-IR elucidates that the functional groups or chemical bonds inherited from the pristine yeast cell were critical to the assembling of the composites. UV-Vis shows that the obtained samples have a good responding to UV light. The settling ability indicates that the hybrid microspheres possess an excellent suspension performance. In the test of catalytic activity, the HPW@yeast microsphere exhibits a high photocatalytic activity for the decoloration of Methylene blue and Congo red dye aqueous solutions, and there are a few activity losses after four cycles of uses.

  12. Preparation of etoposide Polylactic Acid Microspheres%依托泊苷聚乳酸微球的制备

    姜素芳; 张云坤; 周学军

    2011-01-01

    目的::用生物可降解材料聚乳酸制备依托泊苷微球,并对其体外释药特性进行研究.方法:采用乳化-溶剂扩散法制备依托泊苷聚乳酸微球,通过正交试验确定最佳处方工艺;采用紫外分光光度法测定微球载药量、包封率和体外药物释放,利用光学显微镜观察微球形态和粒径分布.结果:所得微球外观圆整,平均粒径为12.87 μm,载药量为14.79%,药物包封率为61.09%,体外释药符合Higuchi方程.结论:依托泊苷聚乳酸微球制备工艺稳定,体外释药符合长效制剂特征.%Objective To prepare etoposide microspheres using thg biodegradable meterials-polylactic acid and to study its release characteristics in vitro. Methods The polylactic acid microspheres were prepared by emulsion-solvent diffusion method and the orthogonal test design was used to optimize the formulation and technology .The drug-loading,emcapsulation and release in vitro were determined by ultraviolet spectrophotometry and the appearance and particle size of microspheres was observed by light microscope. Results The shape of etoposide microspheres was spherical with mean particle size of 12.87 ujn.The drug loading and encapsulation efficiency were 14.79% and 61.09%, respectively. The in vitro release characteristics of microspheres was found to agree with Higuchi equation. Conclusion The technology of preparation was successful and etoposide polylactic acid micropheres showed significant sustained release.

  13. Metabolic microspheres

    Fox, Sidney W.

    1980-08-01

    A systematic review of catalytic activities in thermal proteinoids and microspheres aggregated therefrom yields some new inferences on the origins and evolution of metabolism. Experiments suggest that, instead of being inert, protocells were already biochemically and cytophysically competent. The emergence and refinement of metabolism ab initio is thus partly traced conceptually. When the principle of molecular self-instruction, as of amino acids in peptide synthesis, is taken into account as a concomitant of natural selection, an expanded theory of organismic evolution, including saltations, emerges.

  14. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  15. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction. PMID:19616218

  16. Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation

    Sifang Kong; Peipei Zhang; Xiufang Wen; Pihui Pi; Jiang Cheng; Zhuoru Yang; Jing Hai

    2008-01-01

    Oleic acid was used as surface modification agent to improve the hydrophobicity of magnetic strontium hexaferrite particles. The structure and properties of treated magnetic particles were characterized by scanning electronic microscopy (SEM), Fourier transform infrared spectra (FTIR), powder X-ray diffraction (XRD) and magnetic property measurement system (MPMS). The results show that oleic acid is chemically enwrapped on the surface of SrFe12O19 particles. Magnetic particles modified by oleic acid are highly dispersible and strongly responsive to magnetism but with slight decrease in saturated magnetization. The affinity between magnetic particles and monomers is improved by surface modification, resulting in increased particle incorporation in magnetic polymeric microspheres. The surface modification mechanism of magnetic particles by oleic acid is addressed in this work.

  17. The embolization effect of tanshinone II A-polylactic acid/glycolic acid microspheres on the hepatic artery in experimental rabbits

    Objective: To observe the embolization effect of tanshinone II A-polylactic acid/glycolic acid microspheres (PLGA) on the hepatic artery in experimental rabbits. Methods: Under DSA guidance, hepatic catheterization and angiography was performed in 24 New Zealand white rabbits. Via the catheter tanshinone II A-PLGA microspheres was injected into the hepatic arteries. Each time at 10 minutes and on the 1 st, 3 rd, 7 th, 14 th, 21 st, 30 th and 42 nd day after the treatment, every three rabbits were randomly selected for the re-examination with angiography to observe the embolization state of the hepatic arteries, then the animals were sacrificed and the liver, heart, spleen, lung kidney and stomach were removed and sent for pathologic exam. Simultaneously, the functional tests of liver and kidney as well as the routine blood tests were made. The results were evaluated. Results: The peripheral micro-vessels of the hepatic artery vanished away at 10 minutes after embolization, and they remained un-visualized till the 30th day after embolization. On the 42nd day after embolization the peripheral micro-vessels of the hepatic artery could be visualized again. Pathologically,signs of inflammation and necrosis appeared in the occluded areas. Blood biochemical examination showed that there was a transient elevation of white blood cells after the procedure, which fell to normal level on the 7th day (P > 0.05). Both AST and ALT reached their peaks on the 3rd day, then they decreased gradually and returned to normal on the 7th day (P > 0.05). Conclusion: Tanshinone II A-PLGA microspheres have better embolization effect on the hepatic arteries, this effect lasts for 30 to 42 days. Therefore, tanshinone II A-PLGA microsphere is an ideal embolization agent for the treatment of neoplasm. (authors)

  18. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment

    Novotná, L.; Emmerová, T.; Horák, Daniel; Kučerová, Z.; Tichá, M.

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 8032-8040. ISSN 0021-9673 R&D Projects: GA AV ČR(CZ) KAN401220801; GA ČR GA203/09/0857; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : IMAC phosphopeptide separation * IDA-modified magnetic microspheres * Porcine pepsin A Subject RIV: EE - Microbiology, Virology Impact factor: 4.194, year: 2010

  19. In vitro characteristics of poly(lactic-co-glycolic acid) microspheres incorporating gelatin particles loading basic fibroblast growth factor

    Shao-hong LI; Shao-xi CAI; Bing LIU; Kai-wang MA; Zhen-ping WANG; Xiao-kun LI

    2006-01-01

    Aim: To construct a sustained drug release system for basic fibroblast growth factor (bFGF). With this special system, bFGF can be used to repair an injured peripheral nerve, injured spinal cord, or as a carrier for other drugs that need to be released over a long time. Methods: Microsphere composite was prepared by encapsulating bFGF into gelatin particles with poly(lactic-co-glycolic acid) (PLGA) as its outer-coating. The encapsulation was conducted by a phase separation method. Results: The average diameter of the gelatin particle-PLGA microsphere composite was 5-18 μm, and bFGF-loading efficiency was up to 80.5%. The bFGF releasing experiment indicated that this new composite system could release bFGF continuously and protect bFGF from denaturation. Conclusion: A modified approach was successfully employed to develop a biodegradable system for sustained release of the drug of bFGF in vitro.

  20. Protective effect of recombinant staphylococcal enterotoxin A entrapped in polylactic-co-glycolic acid microspheres against Staphylococcus aureus infection

    Chen Liben

    2012-03-01

    Full Text Available Abstract Staphylococcus aureus is an important cause of nosocomial and community-acquired infections in humans and animals, as well as the cause of mastitis in dairy cattle. Vaccines aimed at preventing S. aureus infection in bovine mastitis have been studied for many years, but have so far been unsuccessful due to the complexity of the bacteria, and the lack of suitable vaccine delivery vehicles. The current study developed an Escherichia coli protein expression system that produced a recombinant staphylococcal enterotoxin A (rSEA encapsulated into biodegradable microparticles generated by polylactic-co-glycolic acid (PLGA dissolved in methylene chloride and stabilized with polyvinyl acetate. Antigen loading and surface properties of the microparticles were investigated to optimize particle preparation protocols. The prepared PLGA-rSEA microspheres had a diameter of approximately 5 μm with a smooth and regular surface. The immunogenicity of the PLGA-rSEA vaccine was assessed using mice as an animal model and showed that the vaccine induced a strong humoral immune response and increased the percent survival of challenged mice and bacterial clearance. Histological analysis showed moderate impairment caused by the pathogen upon challenge afforded by immunization with PLGA-rSEA microspheres. Antibody titer in the sera of mice immunized with PLGA-rSEA microparticles was higher than in vaccinated mice with rSEA. In conclusion, the PLGA-rSEA microparticle vaccine developed here could potentially be used as a vaccine against enterotoxigenic S. aureus.

  1. Structural and morphological studies on poly(3-hydroxybutyrate acid) (PHB)/chitosan drug releasing microspheres prepared by both single and double emulsion processes

    Shih, W.-J. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, Y.-H. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-kung Road, Kaohsiung 80782, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, No. 100, Shih-Chuang 1st Rd., Sanmin District, Kaohsiung 80708, Taiwan (China); Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Dayeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 515, Taiwan (China); Wang, M.-C. [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-kung Road, Kaohsiung 80782, Taiwan (China) and Department of Materials Science and Engineering, National United University, 1 Lien-Da Road, Kung-ching Li, Miao Li 360, Taiwan (China)]. E-mail: mcwang@cc.kuas.edu.tw

    2007-05-31

    Drug releasing microspheres of poly(3-hydroxybutyric acid)/chitosan (PHB/CTS) with various compositions have been synthesized by both single and double emulsion methods, and collected by a freeze-drying process. In this study, gentamicin was used as an antibacterial medicine coated with PHB. The PHB/CTS microspheres of various compositions prepared by a single emulsion process (SEP) were identified as the major PHB phase together with a minor unknown Phase X by X-ray diffraction (XRD) and FT-IR. However, in the microspheres prepared using a double emulsion process (DEP) the dominant Phase was X and the minor phase was PHB. The size of the PHB/CTS microspheres prepared by SEP increased with the PHB/CTS ratio from 1 {mu}m for 1:1 to 2 {mu}m for 5:1. However, the size of the PHB/CTS microspheres prepared by DEP decreased with the PHB/CTS ratio from 1 {mu}m for 1:1 to 800 nm for 5:1.

  2. Structural and morphological studies on poly(3-hydroxybutyrate acid) (PHB)/chitosan drug releasing microspheres prepared by both single and double emulsion processes

    Drug releasing microspheres of poly(3-hydroxybutyric acid)/chitosan (PHB/CTS) with various compositions have been synthesized by both single and double emulsion methods, and collected by a freeze-drying process. In this study, gentamicin was used as an antibacterial medicine coated with PHB. The PHB/CTS microspheres of various compositions prepared by a single emulsion process (SEP) were identified as the major PHB phase together with a minor unknown Phase X by X-ray diffraction (XRD) and FT-IR. However, in the microspheres prepared using a double emulsion process (DEP) the dominant Phase was X and the minor phase was PHB. The size of the PHB/CTS microspheres prepared by SEP increased with the PHB/CTS ratio from 1 μm for 1:1 to 2 μm for 5:1. However, the size of the PHB/CTS microspheres prepared by DEP decreased with the PHB/CTS ratio from 1 μm for 1:1 to 800 nm for 5:1

  3. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer-monomer pairs

    Guo Jia; Wang Changchun; Mao Weiyong; Yang Wuli [Key Laboratory of Molecular Engineering of Polymers (Minster of Education) and Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Liu Changjia; Chen Jiyao [Department of Physics, Fudan University, Shanghai 200433 (China)], E-mail: wlyang@fudan.edu.cn

    2008-08-06

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe{sub 3}O{sub 4} and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  4. MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties

    Grumezescu, Valentina [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, Bucharest (Romania); Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Holban, Alina Maria [Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206Bucharest (Romania); Iordache, Florin [Institute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”, Department of Fetal and Adult Stem Cell Therapy, 8, B.P. Hasdeu, Bucharest 050568 (Romania); Socol, Gabriel [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, Bucharest (Romania); Mogoşanu, George Dan [Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 PetruRareş Street, 200349 Craiova (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Ficai, Anton; Vasile, Bogdan Ştefan [Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Truşcă, Roxana [S.C. Metav-CD S.A., 31Rosetti Str., 020015 Bucharest (Romania); Chifiriuc, Mariana Carmen [Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206Bucharest (Romania); and others

    2014-07-01

    This study reports the biological applications of a newly fabricated water dispersible nanostructure, based on magnetite (Fe{sub 3}O{sub 4}) and eugenol (E), prepared in a well-shaped spherical form by precipitation method. The presence of Fe{sub 3}O{sub 4}@E nanoparticles has been confirmed by transmission electron microscopy (TEM). Nanoparticles have been embedded into poly(3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol (P(3HB-3HV)–PVA) microspheres by oil-in-water emulsion technique. Functionalized P(3HB-3HV)–PVA–Fe{sub 3}O{sub 4}@E microspheres coatings have been fabricated by matrix assisted pulsed laser evaporation (MAPLE). The coatings have been characterized by infrared microscopy (IRM) and scanning electron microscopy (SEM). In vitro biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa was assessed by the viable cell counts technique. Nanomaterial biocompatibility has been investigated by analyzing the phenotypic changes of cultured eukaryotic cells. Besides their excellent anti-adherence and anti-biofilm properties, the MAPLE coatings have the advantages of using bioactive natural compounds, which are less toxic and easily biodegradable than current antibiotics. This approach could be used as a successful alternative or adjuvant method to control and prevent microbial biofilms associated infections.

  5. MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties

    This study reports the biological applications of a newly fabricated water dispersible nanostructure, based on magnetite (Fe3O4) and eugenol (E), prepared in a well-shaped spherical form by precipitation method. The presence of Fe3O4@E nanoparticles has been confirmed by transmission electron microscopy (TEM). Nanoparticles have been embedded into poly(3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol (P(3HB-3HV)–PVA) microspheres by oil-in-water emulsion technique. Functionalized P(3HB-3HV)–PVA–Fe3O4@E microspheres coatings have been fabricated by matrix assisted pulsed laser evaporation (MAPLE). The coatings have been characterized by infrared microscopy (IRM) and scanning electron microscopy (SEM). In vitro biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa was assessed by the viable cell counts technique. Nanomaterial biocompatibility has been investigated by analyzing the phenotypic changes of cultured eukaryotic cells. Besides their excellent anti-adherence and anti-biofilm properties, the MAPLE coatings have the advantages of using bioactive natural compounds, which are less toxic and easily biodegradable than current antibiotics. This approach could be used as a successful alternative or adjuvant method to control and prevent microbial biofilms associated infections.

  6. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery.

    Lautner, Gergely; Meyerhoff, Mark E; Schwendeman, Steven P

    2016-03-10

    Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission. PMID:26763376

  7. Recombinant interferon-alpha2b poly(lactic-co-glycolic acid) microspheres: pharmacokinetics.pharmacodynamics study in rhesus monkeys following intramuscular administration

    Yong-ming ZHANG; Fan YANG; Yi-qun YANG; Feng-lan SONG; An-long XU

    2008-01-01

    Aim: Investigation into pharmacokinetic-pharmacodynamic properties of interferon-alpha (IFN-α)2b-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) in rhesus monkey primates. Method: IFN-α2b was loaded with biodegradable PLGA with 3 inherent viscosities using a double emulsion and solvent evaporation method. The particle size, surface morphology, and in vitro release profiles were investigated. Two groups of rhesus monkeys (n=3) were injected intramuscularly with either 3 MIU/kg commercial IFN-a2b lyophilized powder or IFN-α2b-loaded PLGA microspheres (inherent viscosity of 0.89 dL/g). In vitro release was determined by Lowry protein assay. The serum IFN and neopterin levels were determined by the enzyme-linked immunosorbent assay (ELISA) method to evaluate biological activity of the microspheres in rhesus monkeys. Results: The IFN-α2b microspheres with 3 inherent viscosities (0.39, 0.89, and 1.13 dL/g) were entirely spherical and had a smooth surface. The average diameter of each type was 45.55, 81.23, and 110.25 μm, respectively. The in vitro release was 30 d. The pharmacokinetic-pharmacodynamic properties between the IFN-α2b microspheres and IFN-α2b lyophilized powder were significantly different (P<0.05). Conclusion: The drug residence time for the IFN-α2b of the PLGA microsphere with an inherent viscosity of 0.89 dL/g in plasma significantly increased and had a longer time of biological effects in rhesus monkeys following intramuscular administration.

  8. Uniform Pore Structure of Mesoporous Silica Microspheres by Using Di(2-ethylhexyl)phosphoric Acid

    Spherical morphology has been quite attractive in many special applications, such as display materials offering higher packing densities and lower light scattering for better performances in terms of both brightness and resolution, biosensors utilizing microspheres as an ideal dielectric cavities with high quality factors in optical domain, and standard reference particles for nuclear track analysis utilizing their simple well-defined geometry. There are tremendously a wide variety of studies focused on colloidal spheres of 1 nm - 1,000 nm in diameter although the colloidal dimension can be extended further to 100 μm. Some reports have described the sol-gel surfactant template synthesis of mesoporous silica spheres larger than 100 μm. It is necessary for us to prepare the intermediate 10 - 100 μm-sized silica microspheres for the single particle manipulation by using optical microscope, rather than electron microscope, in a microanalytical technique such as thermal ionization mass spectrometry, secondary ionization mass spectrometry, and laser ionization mass spectrometry

  9. Preparation of Uniform-Sized and Dual Stimuli-Responsive Microspheres of Poly(N-Isopropylacrylamide/Poly(Acrylic acid with Semi-IPN Structure by One-Step Method

    En-Ping Lai

    2016-03-01

    Full Text Available A novel strategy was developed to synthesize uniform semi-interpenetrating polymer network (semi-IPN microspheres by premix membrane emulsification combined with one-step polymerization. Synthesized poly(acrylic acid (PAAc polymer chains were added prior to the inner water phase, which contained N-isopropylacrylamide (NIPAM monomer, N,N′-methylene bisacrylamide (MBA cross-linker, and ammonium persulfate (APS initiator. The mixtures were pressed through a microporous membrane to form a uniform water-in-oil emulsion. By crosslinking the NIPAM in a PAAc-containing solution, microspheres with temperature- and pH-responsive properties were fabricated. The semi-IPN structure and morphology of the microspheres were confirmed by Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The average diameter of the obtained microspheres was approximately 6.5 μm, with Span values of less than 1. Stimuli-responsive behaviors of the microspheres were studied by the cloud-point method. The results demonstrated that semi-IPN microspheres could respond independently to both pH and temperature changes. After storing in a PBS solution (pH 7.0 at 4 °C for 6 months, the semi-IPN microspheres remained stable without a change in morphology or particle size. This study demonstrated a promising method for controlling the synthesis of semi-IPN structure microspheres with a uniform size and multiple functionalities.

  10. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  11. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  12. Influence of ionic strength and pH on the limitation of latex microsphere deposition sites on iron-oxide coated sand by humic acid

    Yang, X. [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, N. Ireland (United Kingdom); Flynn, R., E-mail: r.flynn@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, N. Ireland (United Kingdom); Kammer, F. von der, E-mail: frank.von.der.kammer@univie.ac.at [Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria); Hofmann, T. [Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria)

    2011-07-15

    This study, for the first time, investigates and quantifies the influence of slight changes in solution pH and ionic strength (IS) on colloidal microsphere deposition site coverage by Suwannee River Humic Acid (SRHA) in a column matrix packed with saturated iron-oxide coated sand. Triple pulse experimental (TPE) results show adsorbed SRHA enhances microsphere mobility more at higher pH and lower IS and covers more sites than at higher IS and lower pH. Random sequential adsorption (RSA) modelling of experimental data suggests 1 {mu}g of adsorbed SRHA occupied 9.28 {+-} 0.03 x 10{sup 9} sites at pH7.6 and IS of 1.6 mMol but covered 2.75 {+-} 0.2 x 10{sup 9} sites at pH6.3 and IS of 20 mMol. Experimental responses are suspected to arise from molecular conformation changes whereby SRHA extends more at higher pH and lower ionic strength but is more compact at lower pH and higher IS. Results suggest effects of pH and IS on regulating SRHA conformation were additive. - Highlights: > We quantified the coupled role of pH and IS and humic acid on colloid deposition. > Humic acid enhances microsphere mobility more at higher pH and lower IS. > pH and IS may control the behaviour of humic acid by regulating its conformation. > The effect of pH and IS on regulating humic acid conformation is additive. - This paper quantifies the impact of pH and ionic strength on the transient deposition behaviour of colloids in porous medium in the presence of humic acid.

  13. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  14. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  15. Poly(lactic-co-glycolic Acid/Nanohydroxyapatite Scaffold Containing Chitosan Microspheres with Adrenomedullin Delivery for Modulation Activity of Osteoblasts and Vascular Endothelial Cells

    Lin Wang

    2013-01-01

    Full Text Available Adrenomedullin (ADM is a bioactive regulatory peptide that affects migration and proliferation of diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. This study investigated the effects of sustained release of ADM on the modulation activity of osteoblasts and vascular endothelial cells in vitro. Chitosan microspheres (CMs were developed for ADM delivery. Poly(lactic-co-glycolic acid and nano-hydroxyapatite were used to prepare scaffolds containing microspheres with ADM. The CMs showed rough surface morphology and high porosity, and they were well-distributed. The scaffolds exhibited relatively uniform pore sizes with interconnected pores. The addition of CMs improved the mechanical properties of the scaffolds without affecting their high porosity. In vitro degradation tests indicated that the addition of CMs increased the water absorption of the scaffolds and inhibited pH decline of phosphate-buffered saline medium. The expression levels of osteogenic-related and angiogenic-related genes were determined in MG63 cells and in human umbilical vein endothelial cells cultured on the scaffolds, respectively. The expression levels of osteogenic-related and angiogenic-related proteins were also detected by western blot analysis. Their expression levels in cells were improved on the ADM delivery scaffolds at a certain time point. The in vitro evaluation suggests that the microsphere-scaffold system is suitable as a model for bone tissue engineering.

  16. Effects of poly lactic-co-glycolic acid-Nogo A antibody delayed-release microspheres on regeneration of injured spinal cord in rats

    Hai Lan; Yueming Song

    2009-01-01

    BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord.DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008.MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University.METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μL normal saline solution, 50 μL normal saline solution containing 50 μ g Nogo A antibody, and 50 μ L normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale.RESULTS: Four weeks after injury, expression of Nogo A in

  17. Fabrication of an rhBMP-2 loaded porous β-TCP microsphere-hyaluronic acid-based powder gel composite and evaluation of implant osseointegration

    Lee, Jae Hyup; Kim, Jungju; Baek, Hae-Ri; Lee, Kyung Mee; Seo, Jun-Hyuk; Lee, Hyun-Kyung; Lee, A-Young; Zheng, Guang Bin; Chang, Bong-Soon; Lee, Choon-Ki

    2014-01-01

    Methods to improve osseointegration that include implantation of rhBMP-2 with various kinds of carriers are currently of considerable interest. The present study was conducted to evaluate if the rhBMP-2 loaded β-TCP microsphere-hyaluronic acid-based powder-like hydrogel composite (powder gel) can act as an effective rhBMP-2 carrier for implantation in host bone with a bone defect or poor bone quality. The release pattern for rhBMP-2 was then evaluated against an rhBMP-2-loaded collagen sponge...

  18. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  19. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  20. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  1. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  2. MUCOADHESIVE MICROSPHERES

    A. Senthil; V.B.Narayanaswamy; I .Ajit; Galge Deepak S; Bhosale Rahul S

    2011-01-01

    Bioadhesion can be defined as the process by which a natural or synthetic polymer can adhere to a biological substrate. When the biological substrate is a mucosal layer then it is known as mucoadhesion. Mucoadhesion is a currently used in the design of drug delivery system. Mucoadhesive microspheres provide a prolonged residence time at the site of application or absorption and facilitate an intimate contact with the underlying absorption surface and improve or better to therapeutic performan...

  3. Drug-loaded biodegradable microspheres for image-guided combinatory epigenetic therapy in cells

    Xu, Ronald X.; Xu, Jeff S.; Zuo, Tao; Shen, Rulong; Huang, Tim H.; Michael F. Tweedle

    2011-01-01

    We synthesize drug-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres for image-guided combinatory epigenetic therapy in MCF-10A human mammary epithelial cells. LY294002 and Nile Red are encapsulated in microspheres for sustained drug release and fluorescence microscopic imaging. Drug-loaded microspheres target MCF-10A cells through a three-step binding process involving biotinylated antibody, streptavidin, and biotinylated microspheres. LY294002 loaded microspheres and 5-Aza-2-deoxycy...

  4. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Wen-Cheng Wang; Li-Jun Yan; Fan Shi; Xue-Liang Niu; Guo-Lei Huang; Cai-Juan Zheng; Wei Sun

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working e...

  5. Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin

    Guo, Longxia; Hu, Xiaoling; Guan, Ping; Du, Chunbao; Wang, Dan; Song, Dongmen; Gao, Xumian; Song, Renyuan

    2015-12-01

    Novel superparamagnetic surface-imprinted microspheres (SIMs) with molecularly imprinted shell layer were controllably synthesized via fragment imprinting and surface imprinting technique. The SIMs-Arg and SIMs-Lys microspheres were prepared by using L-arginine (L-Arg) and L-lysine (L-Lys) as pseudo-template molecule for specific rebinding to thymopentin (TP5), respectively. The characterization results revealed that both SIMs-Arg and SIMs-Lys were successfully prepared and possessed a high magnetic sensitivity. The rebinding-isotherm analyses of SIMs-Arg and SIMs-Lys showed that the Langmuir isotherm model was well fitted to the equilibrium data, indicating that only one kind of rebinding site was present in SIMs-Arg and SIMs-Lys. Besides, the kinetic properties of SIMs-Arg and SIMs-Lys both were well described by the pseudo-second-order kinetics model, which indicated that a chemical process may be the rate-limiting step in the rebinding process. Moreover, the magnetic imprinted microspheres were found to have a higher specificity for TP5 than that for immunostimulating peptide human (IPH). What is more, SIMs-Arg and SIMs-Lys were successfully applied for TP5 determination in urine. According to the maximum adsorption capacity, the imprinting factor and real sample experiment, it was noted that SIMs-Arg had better specific adsorption property for TP5 than SIMs-Lys.

  6. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    Yang, Chiming; Plackett, David; Needham, David;

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the mean...... diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Above a loading...... of 1% (w/w) FA phase separated from PLGA polymer and formed distinct spherical FA-rich amorphous microdomains throughout the PLGA microsphere. For FA-loaded PLGA microspheres, encapsulation efficiency and cumulative release increased with initial drug loading. Similarly, cumulative release from FA-loaded...

  7. Microradiographic microsphere manipulator

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  8. Microradiographic microsphere manipulator

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  9. Polymer microspheres carrying fluorescent DNA probes

    Chen, Xiaoyu; Dai, Zhao; Zhang, Jimei; Xu, Shichao; Wu, Chunrong; Zheng, Guo

    2010-07-01

    A polymer microspheres carried DNA probe, which was based on resonance energy transfer, was presented in this paper when CdTe quantum dots(QDs) were as energy donors, Au nanoparticles were as energy accepters and poly(4- vinylpyrindine-co-ethylene glycol dimethacrylate) microspheres were as carriers. Polymer microspheres with functional group on surfaces were prepared by distillation-precipitation polymerization when ethylene glycol dimethacrylate was as crosslinker in acetonitrile. CdTe QDs were prepared when 3-mercaptopropionic acid(MPA) was as the stabilizer in aqueous solution. Because of the hydrogen-bonding between the carboxyl groups of MPA on QDs and the pyrindine groups on the microspheres, the QDs were self-assembled onto the surfaces of microspheres. Then, the other parts of DNA probe were finished according to the classic method. The DNA detection results indicated that this novel fluorescent DNA probe system could recognize the existence of complementary target DNA or not.

  10. Sprayed microspheres of poly(lactic acid) obtained with calcium compounds; Microesferas aspergidas de poli(acido latico) obtidos com compostos de calcio

    Goncalves, Raquel P.; Picciani, Paulo H. de Souza; Dias, Marcos L., E-mail: raquelpires@ima.ufrj.br [Instituto de Macromoleculas - Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In this work PLLA and PDLA were synthesized using calcium methoxide (Ca(OMe){sub 2}) as initiator. This compound shows good activity in the bulk polymerization of L-lactide (LLA) and D-lactide (DLA) producing polymers with average molecular weight up to 22,300 g/mol, but with microstructure containing a significant amount of estereoerros, as revealed by {sup 13} C NMR. Block copolymers containing blocks of L-and D-lactic acid were also prepared, using the method of sequential addition of LLA and DLA in an attempt to obtain stereo complexes. Analyses of scanning electron microscopy (SEM) revealed that the polymers obtained with catalysts of calcium produced PLA microspheres with diameters of around 5 {mu}m via electro spray technique. (author)

  11. Pitch carbon microsphere composite

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  12. Microspheres for drug-delivery to the colon

    Watts, Peter James

    1992-01-01

    The work described in this thesis is concerned with the design and evaluation of microsphere-based systems for drug delivery into the colon. In initial experiments, techniques were devised for the preparation of microspheres from two sustained-release acrylic polymers, Eudragits RL and RS, using emulsification-solvent evaporation techniques. For Eudragit RS microspheres containing the drug 5-aminosalicylic acid, the rate of drug release could be controlled by the type and concentration of...

  13. Preparation and characterization of microspheres of albumin-heparin conjugates

    Kwon, Glen S.; Bae, You Han; Kim, Sung Wan; Cremers, Harry; Feijen, Jan

    1991-01-01

    Albumin-heparin microspheres have been prepared as a new drug carrier. A soluble albumin-heparin conjugate was synthesized by forming amide bonds between human serum albumin and heparin. After purification the albumin-heparin conjugate was crosslinked in a water-in-oil emulsion to form albumin-heparin microspheres. The composition of the conjugate was determined by amino acid analysis. The swelling properties of albumin-heparin microspheres were investigated as a function of pH and ionic stre...

  14. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release.

    Huang, Xiaozhou; Li, Na; Wang, Dajiang; Luo, Yuyan; Wu, Ziyu; Guo, Zhefei; Jin, Qixing; Liu, Zhuying; Huang, Yafei; Zhang, Yongming; Wu, Chuanbin

    2015-08-10

    The objective of this study was to investigate the use of transmission hard X-ray nano-computed-tomography (nano-CT) for characterization of the pore structure and drug distribution in poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating bovine serum albumin and to study the correlation between drug distribution and burst release. The PLGA microspheres were fabricated using a double-emulsion method. The results of pore structure analysis accessed with nano-CT were compared with those acquired by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface pore interconnectivity and surface protein interconnectivity were obtained using combined nano-CT and pixel analysis. The correlation between surface protein interconnectivity with the initial burst release across various tested formulations was also analyzed. The size, shape, and distribution of the pores and protein could be clearly observed in the whole microsphere using nano-CT, whereas only the sectional information was observed using SEM or CLSM. Interconnected pores and surface connected pores could be clearly distinguished in nano-CT, which enables the quantitative analysis of surface pore interconnectivity and surface protein interconnectivity. The surface protein interconnectivity in different formulations correlated well with the burst release at 5-10h. Nano-CT provided a nondestructive, high-resolution, and three-dimensional analysis method to characterize the porous microsphere. PMID:25951620

  15. The Process for Preparing Tartaric Acid Rivastigmine Microspheres by SoIvent Evaporation Method and Performance Measurement%溶剂挥发法制备酒石酸卡巴拉汀微球及其性能测定

    王丹丹

    2016-01-01

    以丙烯酸树脂为载体,利用O/O溶剂挥发法制备酒石酸卡巴拉汀微球,水洗微球载药量为1.424%,包覆率为78.15%。从而得出结论:利用溶剂挥发法制备酒石酸卡巴拉汀微球工艺稳定可行,微球质量较高。%The process for preparing tartaric acid rivastigmine microspheres by Solvent Evaporation Method with Acrylic resin.The amount of drug-loading was of 1.424%and the encapsulation efficiency was of 78.15%.SO,use Solvent Evaporation Method preparing tartaric acid rivastigmine microspheres was stable and practical.

  16. Combustion synthesis of porous titanium microspheres

    The synthesis of titanium porous microspheres by a combustion technique was studied under an argon atmosphere by using a TiO2 − 2.5Mg reactive mixture. The precursor, a fine TiO2 powder, was thermally treated in the range 600–1300 °C prior to the combustion experiments. TiO2 microspheres whose diameters were between 10 and 50 μm were obtained from precursor particles annealed in the range 900–1100 °C. A biphase product consisting of Ti and MgO phases was obtained when the TiO2 microspheres were reduced with Mg. The spherical morphology of the final particles was retained despite the relatively high combustion temperatures (1630–1670 °C) used in this study. Moreover, porous titanium microspheres were obtained when the MgO particles were dissolved using acid leaching. Scanning electron microscopy (SEM) images of the microspheres suggested that the spherical structure contained ∼0.5–2.0-μm-diameter porous windows. The Brunauer–Emmett–Teller (BET) surface area of the Ti microspheres was determined to be 2.8 m2 g−1. - Highlights: • TiO2 + 2.5Mg mixture was combusted under argon pressure to produce titanium microspheres. • Microspheres with a porous framework structure were obtained at 1630–1670 °C. • The microspheres exhibited 10–50 μm average diameters with porous window of ∼0.5–2.0 μm and BET surface area of 2.8 m2 g−1. - Graphical abstract: Display Omitted

  17. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  18. Metallic coating of microspheres

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  19. MUCOADHESIVE MICROSPHERES: A REVIEW

    Navita Kumari

    2014-09-01

    Full Text Available Carrier technology provides an interesting as well as an intelligent approach for the delivery of drug. It offers delivery of drug by coupling the drug to a carrier particle such as microspheres, mucoadhesive microspheres nanoparticles, liposomes, etc. Mucoadhesive microspheres constitute an important part of this particulate drug delivery system because of their small size and other efficient properties. Mucoadhesive microspheres plays a vital role in the novel drug delivery system. Some drug delivery problems are overcome by producing controlled drug delivery system which enhances the therapeutic efficacy of a drug. From various approaches one approach is to using mucoadhesive microsphere as a carrier system for drug delivery. Mucoadhesive microspheres exhibit a prolonged residence time at the site of application or absorption and facilitate an intimate contact with the underlying absorption surface and thus contribute to improved and better therapeutic performance of drugs and also mucoadhesive microspheres have advantages like efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio, a much more intimate contact with the mucus layer,controlled and sustained release of drug from dosage form and specific targeting of drugs to the absorption site. Mucoadhesive microspheres have been developed for oral, buccal, nasal, ocular, rectal and vaginal for either systemic or local effects. It is an ideal targeting system with high safty profile. This review article gives the information about mucoadhesion and theories of mucoadhesion. It also contains a number of available methods of preparation of mucoadhesive microspheres.

  20. Simultaneous oxidation of aniline and tannic acid with peroxydisulfate: self-assembly of oxidation products from nanorods to microspheres

    Janoševic, A.; Ciric-Marjanovic, G.; Šljukic Paunkovic, B.; Pašti, I.; Trifunovic, S.; Marjanovic, B.; Stejskal, Jaroslav

    2012-01-01

    Roč. 162, 9/10 (2012), s. 843-856. ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : copolymerization * anilin e * tannic acid Subject RIV: BK - Fluid Dynamics Impact factor: 2.109, year: 2012

  1. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  2. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  3. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor

  4. Polymeric Microspheres for Medical Applications

    Ketie Saralidze

    2010-06-01

    Full Text Available Synthetic polymeric microspheres find application in a wide range of medical applications. Among other applications, microspheres are being used as bulking agents, embolic- or drug-delivery particles. The exact composition of the spheres varies with the application and therefore a large array of materials has been used to produce microspheres. In this review, the relation between microsphere synthesis and application is discussed for a number of microspheres that are used for different treatment strategies.

  5. Study on the Degradation of Polylactide Microsphere In Vitro

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  6. Synthesis of mesoporous silica microspheres by using di(2-ethylhexyl)phosphoric acid as a potential sorbent for radioactive material

    Much efforts for the mesoporous inorganic synthesis by using organic or inorganic templates have been devoted to the synthesis of the mesoporous materials with various structures and shapes, thanks to the discovery of M41S silica families by Mobil scientists in 1992. Since the advantage of spherical morphology is clearly manifested in a variety of academic and industrial applications, synthesis and morphology control of spherical mesoporous silica nanoparticles less than 1 μm have been extensively investigated to discover any unexpected physical and chemical properties, generally owing to their large surface-to-volume ratios or quantum-size effect. In this study, based on Kosuge's method, tetraethyl orthosilicate (TEOS), n-dodecylamine as a structure-directing agent, and/or di-2-ethylhexyl phosphoric acid (HDEHP) as a cosurfactant, hydrochloric acid as a acid catalyst were used to prepare micrometer-sized mesoporous silica spheres. In a typical synthesis, TEOS (Acros, 98%), n-dodecylamine (Junsei, 98%), HDEHP (TCI, 95+%) and EtOH (Daejung, 99.9%) were premixed for 30 min

  7. Minimizing acylation of peptides in PLGA microspheres

    Zhang, Ying; Schwendeman, Steven P.

    2012-01-01

    The main objective of this study was to characterize and find mechanisms to prevent acylation of therapeutic peptides encapsulated in glucose-star poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. The effect of addition of divalent cation salts CaCl2, MnCl2 as well as carboxymethyl chitosan (CMCS) on inhibition of acylation of octreotide (Oct), salmon calcitonin (sCT), and human parathyroid hormone (hPTH) was evaluated. Peptide content and integrity inside the degrading microspheres was ...

  8. Polymer-functionalised microspheres for immunosensing applications

    Soria, S.; Baldini, F.; Berneschi, S.; Brenci, M.; Cosi, F.; Giannetti, A.; Nunzi conti, G.; Pelli, S.; Righini, G. C.; Tiribilli, B.

    2010-02-01

    Homogeneous polymeric thin layers have been used as functionalising agents on silica microresonators in view of immunosensing applications. We have characterised the microspheres functionalised with poly-L-lactic acid and Eudragit® L100, as an alternative to the commonly used silanes. It is shown that after polymeric functionalization the quality factor of the silica microspheres remains around 107, and that the Q factor is still about 3x105 after chemical activation and covalent binding of immunogammaglobulin. This functionalising process of the microresonator constitutes a promising step towards the achievement of a highly sensitive immunosensor.

  9. Microsphere Insulation Panels

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  10. Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity.

    Zhao, Liang; Chi, Yue; Yuan, Qing; Li, Nan; Yan, Wenfu; Li, Xiaotian

    2013-01-15

    H(3)PW(12)O(40) was successfully anchored to the surface of amino-functionalized Fe(3)O(4)@SiO(2)@meso-SiO(2) microspheres by means of chemical bonding to aminosilane groups, aiming to remove unwanted organic compounds from aqueous media. The resultant multifunctional microspheres were thoroughly characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, inductively coupled plasma, and N(2) adsorption-desorption. The as-prepared microspheres possess unique properties including high magnetization (46.8 emu g(-1)), large BET surface area (135 m(2) g(-1)), and highly open mesopores (~5.0 nm), and H(3)PW(12)O(40) loading is calculated to be ~16.8%; and as a result, the as-prepared microspheres exhibit enhanced performance in degrading dyes under UV irradiation compared with pure H(3)PW(12)O(40). Additionally, the photocatalyst can be easily recycled using an external magnetic field without losing the photocatalytic activity. PMID:23083769

  11. Microesferas de quitosana reticuladas com tripolifosfato utilizadas para remoção da acidez, ferro(III e manganês(II de águas contaminadas pela mineração de carvão Chitosan microspheres crosslinked with tripolyphosphate used for the removal of the acidity, iron (III and manganese (II in water contaminated in coal mining

    Rogério Laus

    2006-02-01

    Full Text Available Considerable attention has been paid to chitosan and derivatives as efficient adsorbents of pollutants such as metal ions and dyes in aqueous medium. Nevertheless, no report can be found on the remedial actions of chitosan microspheres crosslinked with tripolyphosphate to control acidity, iron (III and manganese (II contents in wastewaters from coal mining. In this work, chitosan microspheres crosslinked with tripolyphosphate were used for the neutralization of acidity and removal of Fe (III and Mn (II from coal mining wastewaters. The study involved static and dinamic methods. The neutralization capacity of the surface of the static system was 395 mmol of H3O+ per kilogram of microspheres, higher than that of the dynamic one (223 mmol kg-1. The removal of Fe(III in wastewater was of 100% and that of Mn(II was 90%.

  12. Organic aerogel microspheres

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Experimental Embolization of Rabbit Renal Arteries to Compare the Effects of Poly L-Lactic Acid Microspheres With and Without Epirubicin Release Against Intraarterial Injection of Epirubicin

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with 1 mg of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI 1.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemoembolizing material, maintained high local concentrations of the

  14. Experimental embolization of rabbit renal arteries to compare the effects of poly L-lactic acid microspheres with and without epirubicin release against ntraarterial injection of epirubicin

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with l m g of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI l.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemo-embolizing material, maintained high local concentrations of the

  15. Glass microspheres for brachytherapy

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author)

  16. Integration of glass microspheres and planar waveguides for microsphere lasers

    Panitchob, Yuwapat

    2008-01-01

    Microsphere resonators with sizes in the micrometer range are reported to support very high Q’s of more than 109 for a fused silica microsphere. This high Q value represents many promising characteristics such as low cavity loss, long cavity life time, and narrow band width. With their remarkable characteristics, microsphere resonators can be used in various applications such as the narrow band filter, add-drop multiplexer, microlasers, and etc. In this work, the integration of microspheres w...

  17. Integrated microsphere planar lightwave circuits

    J. S. Wilkinson; Murugan, G.S.; Hewak, D. W.; M. N. Zervas; Panitchob, Y.; Elliott, G. R.; Bartlett, P. N.; Tull, E.J.; Ryan, K R

    2010-01-01

    Multicomponent glass microspheres self-assembled on optical waveguides combine tailored optical properties with strong light/material interaction potentially leading to compact low-power photonic devices. Progress and prospects for microsphere/waveguide integration will be described

  18. Microsphere radio embolization of liver malignancies: current developments

    The worldwide incidence of hepatic malignancies, both primary and secondary, exceeds 1 000 000 new cases each year. The poor prognosis of patients suffering from hepatic malignancies has lead to the development of a liver directed therapy which consists of intra-arterial administration of radioactive particles through a catheter. Yttrium-90 (90Y) microspheres are increasingly applied for this purpose, and up to now nearly all clinical experience with radio embolization has been obtained with these microspheres. The response rate is very promising in both patients with primary and metastatic liver malignancies. Currently, two commercially available 90Y microsphere devices are in use clinically, both as a first-line treatment and in a salvage setting. Unfortunately, the use of a pure β-emitter like 90Y hampers acquisition of high quality nuclear images for pre-treatment work-up and follow-up. This issue was addressed by the development of holmium-166 (166Ho) and rhenium-188 (188Re) microspheres, which emit both b-particles for therapeutic purposes and g-photons for nuclear imaging. Moreover, since holmium is paramagnetic it allows for magnetic resonance imaging. 166Ho loaded poly(L-lactic acid) microspheres have been thoroughly investigated in a preclinical setting, and recently the first clinical results for 188Re microspheres were reported. This review provides an overview of the current status and (pre-)clinical developments of radioactive microspheres for treatment of liver malignancies.

  19. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy.

    Wang, Yujing; Molin, Daniël G M; Sevrin, Chantal; Grandfils, Christian; van den Akker, Nynke M S; Gagliardi, Mick; Knetsch, Menno L; Delhaas, Tammo; Koole, Leo H

    2016-04-30

    Poly(d,l-lactic acid) biodegradable microspheres, loaded with the drugs cisplatin and/or sorafenib tosylate, were prepared, characterized and studied. Degradation of the microspheres, and release of cisplatin and/or sorafenib tosylate from them, were investigated in detail. Incubation of the drug-carrying microspheres in phosphate buffered saline (pH=7.4) revealed slow degradation. Nevertheless, significant release of cisplatin and sorafenib tosylate from microspheres loaded with both drugs was apparent in vitro; this can be attributed to their porous structure. Supernatants from microspheres loaded with both drugs showed strong toxic effects on cells (i.e. endothelial cells, fibroblast cells and Renca tumor cells) and potent anti-angiogenic effect in the matrigel endothelial tube assay. In vivo anti-tumor effects of the microspheres were also observed, in a Renca tumor mouse model. The poly(d,l-lactic acid) microspheres containing both cisplatin and sorafenib tosylate revealed highest therapeutic efficacy, probably demonstrating that combined local administration of cisplatin and sorafenib tosylate synergistically inhibits tumor growth in situ. In conclusion, this study demonstrates the applicability of biodegradable poly(d,l-lactic acid) microspheres loaded with cisplatin and sorafenib tosylate for local drug delivery as well as the potential of these microspheres for future use in transarterial chemoembolization. PMID:26965198

  20. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis.

    Zielhuis, S W; Nijsen, J F W; Dorland, L; Krijger, G C; van Het Schip, A D; Hennink, W E

    2006-06-01

    Radioactive holmium-166 loaded poly(l-lactic acid) microspheres are promising systems for the treatment of liver malignancies. These microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method using chloroform. After preparation the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. It was observed that relatively large amounts of residual chloroform (1000-6000 ppm) remained in the microspheres before neutron irradiation. Since it is known that chloroform is susceptible for high-energy radiation, we investigated whether neutron and gamma irradiation could result in the removal of residual chloroform in HoAcAc-loaded and placebo PLLA-MS by radiolysis. To investigate this, microspheres with relatively high and low amounts of residual chloroform were subjected to irradiation. The effect of irradiation on the residual chloroform levels as well as other microsphere characteristics (morphology, size, crystallinity, molecular weight of PLLA and degradation products) were evaluated. No chloroform in the microspheres could be detected after neutron irradiation. This was also seen for gamma irradiation at a dose of 200 kGy phosgene, which can be formed as the result of radiolysis of chloroform, was not detected with gas chromatography-mass spectrometry (GC-MS). A precipitation titration showed that radiolysis of chloroform resulted in the formation of chloride. Gel permeation chromatography and differential scanning calorimetry showed a decrease in molecular weight of PLLA and crystallinity, respectively. However, no differences were observed between irradiated microsphere samples with high and low initial amounts of chloroform. In conclusion, this study demonstrates that neutron and gamma irradiation results in the removal of residual chloroform in PLLA-microspheres. PMID:16549282

  1. Arabinoxylan Microspheres: Structural and Textural Characteristics

    Yolanda López-Franco

    2013-04-01

    Full Text Available The aim of this research was to study the structural and textural characteristics of maize bran arabinoxylan (MBAX microspheres. The laccase-induced cross-linking process was monitored by storage (G' and loss (G'' moduli changes in a 4% (w/v MBAX solution. The G' and G'' values at the plateau region were 215 and 4 Pa, respectively. After gelation, the content of ferulic acid dimers decreased from 0.135 to 0.03 µg/mg MBAX, suggesting the formation of ferulated structures unreleased by mild alkaline hydrolysis. MBAX microspheres presented an average diameter of 531 µm and a swelling ratio value (q of 18 g water/g MBAX. The structural parameters of MBAX microspheres were calculated from equilibrium swelling experiments, presenting an average mesh size of 52 nm. Microstructure and textural properties of dried MBAX microspheres were studied by scanning electron microscopy and nitrogen adsorption/desorption isotherms, respectively, showing a heterogeneous mesoporous and macroporous structure throughout the network.

  2. Doppler cooling a microsphere

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  3. Preliminary results on a new method for producing yttrium phosphorous microspheres

    This paper reports on a new method to embed phosphorus particles into the matrix of yttrium aluminum silicate microspheres. Yttrium phosphorus glass microspheres about 20 µm in size were obtained when an aqueous solution of YCl3 and AlCl3 were added to tetraethyl orthosilicate (TEOS) (phosphoric acid was used to catalyze the hydrolysis and condensation of TEOS) and was pumped into silicone oil under constant stirring. The shapes of the particles produced by this method are regular and nearly spheric in shape. Paper chromatography was used to determine the radiochemical impurity of radioactive microspheres. Radionuclide purity was determined using a gamma spectrometry system and an ultra-low level liquid scintillation spectrometer. The P+ ions implantation stage was eliminated by embedding phosphorus particles in the matrix of the glass microspheres. This paper shows that a high temperature is not required to produce yttrium phosphorus aluminum silicate microspheres. The result shows that the silicone oil spheroidization method is a very suitable way to produce yttrium phosphorus glass microspheres. The topographical analysis of microspheres shows that the Y, P, Si, and Al elements are distributed in the microspheres and the distribution of elements in the samples is homogenous. - Highlights: • A new way to production of phosphorus yttrium aluminum silicate microspheres is reported. • In the new way the requiring high temperature is eliminated. • The glass plate crushing stage is eliminated. • In this paper we could eliminate P+ ion implantation stage by embedding of phosphorus particles in the matrix of glass microspheres

  4. Abiogenic photophosphorylation of ADP to ATP sensitized by flavoproteinoid microspheres.

    Kolesnikov, Michael P; Telegina, Taisiya A; Lyudnikova, Tamara A; Kritsky, Mikhail S

    2008-06-01

    A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10-20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer (F1H*) and ADP are involved. PMID:18386156

  5. Doppler Cooling a Microsphere

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The...

  6. Method for preparing hollow metal oxide microsphere

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  7. 可生物降解型高分子材料聚乳酸及其微球制备研究%Study on Synthesis of Poly Lactic Acid as Biodegradable Polymer Material and Preparation of Its Microspheres

    马喜峰

    2016-01-01

    分析了直接聚合法、开环化聚合法合成聚乳酸的优缺点,综述了PLA微球的三种制备方法:相分离法、溶剂挥发法和喷雾干燥法,并对各种方法进行了比较分析。%Advantages and disadvantages of the direct polymerization method and open-loop polymerization method for synthesis of poly (lactic acid) were analyzed; three preparation methods of PLA microspheres were reviewed, including phase separation method, solvent evaporation method and spray drying method. And these methods were compared and analyzed.

  8. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-02-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature.

  9. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials.

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-12-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature. PMID:26925862

  10. Microsphere insulation systems

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  11. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug. PMID:26160668

  12. Synthesis and characterization of Supeparamagnetics Microspheres (PMMA via suspension polymerization

    Paulo Emilio Feuser

    2014-02-01

    Full Text Available Magnetics nanoparticles (NPMs has found many applications in biomedical and technological areas. The objective of this work is the preparation and characterization of PMMA microspheres containing NPMs coated with oleic acid (NPMs-AO. For the preparation of MNPs-AO was used the coprecipitation method in an aqueous medium. For the preparation of the superparamagnetic microspheres used in suspension polymerization technique. The microspheres showed a size distribution particles of approximately 150um and a spherical morphology. From the analysis of gel permeation chromatography (GPC determined the number average molecular weight (Mw of the magnetics microspheres and there was a variation in the Mw depending on the concentration of MNPs-AO in this reaction. To analyze the magnetic properties used the vibrating sample magnetometer (MAV. The microspheres showed superparamagnetic properties and a value of saturation magnetization (Ms of about 8 emu/g MNPs. Therefore you can conclude that it is possible to obtain superparamagnetics microspheres for a particular application, either, biomedical or technological.

  13. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity. PMID:27378617

  14. Chalcogenide glass microsphere laser

    Elliott, Gregor R.; Murugan, G.Senthil; Wilkinson, James S.; Zervas, Michalis N.; Hewak, Daniel W.

    2010-01-01

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When...

  15. Ranitidine hydrochloride-loaded ethyl cellulose and eudragit Rs 100 buoyant microspheres: Effect of ph modifiers

    N R Kotagale

    2011-01-01

    Full Text Available A floating type of dosage form of ranitidine hydrochloride in the form of microspheres capable of floating on simulated gastric fluid was prepared by solvent evaporation technique. Microspheres prepared with ethyl cellulose, Eudragit® RS100 alone or in combination were evaluated for percent yield, drug entrapment, percent buoyancy and drug release and the results demonstrated satisfactory performance. Microspheres exhibited ranitidine hydrochloride release influenced by changing ranitidine hydrochloride-polymer and ranitidine hydrochloride-polymer-polymer ratio. Incorporation of a pH modifier has been the usual strategy employed to enhance the dissolution rate of weakly basic drug from floating microspheres. Further citric acid, fumaric acid, tartaric acid were employed as pH modifiers. Microspheres prepared with ethyl cellulose, Eudragit® RS100 and their combination that showed highest release were utilized to study the effect of pH modifiers on ranitidine hydrochloride release from microspheres which is mainly affected due to modulation of microenvironmental pH. In vitro release of ranitidine hydrochloride from microspheres into simulated gastric fluid at 37° showed no significant burst effect. However the amount of release increased with time and significantly enhanced by pH modifiers. 15% w/w concentration of fumaric acid provide significant drug release from ranitidine hydrochloride microspheres prepared with ranitidine hydrochloride:ethyl cellulose (1:3, ranitidine hydrochloride:Eudragit® RS100 (1:2 and ranitidine hydrochloride:ethyl cellulose:Eudragit® RS100 (1:2:1 whereas citric acid, tartaric acid showed significant cumulative release at 20% w/w. In all this study suggest that ethyl celluose, Eudragit® RS100 alone or in combination with added pH modifiers can be useful in floating microspheres which can be proved beneficial to enhance the bioavailability of ranitidine hydrochloride.

  16. 负载丝裂霉素C的聚乳酸微球制备及对成纤维细胞生长抑制作用研究%Fabrication of Mitomycin C Loaded Polylactic Acid Microspheres and Its Inhibition on Fibroblast Cell Growth

    朱继翔; 彭晔; 田秀梅; 阳范文; 陈晓明

    2014-01-01

    利用单乳化溶剂挥发法制备负载丝裂霉素C( MMC)的聚乳酸( PLA)载药微球.优化载药微球的制备条件,当药物与载体聚合物比例为10∶90时,微球的实际载药量与包封率分别达到最高值5.62%与49.1%;采用SEM对微球形貌进行了表征;对载药微球的体外释药进行研究,结果表明载药微球无明显暴释现象,可有效缓释MMC达30 d以上,累计释放量为84.8%;细胞实验结果表明,载药微球可以有效抑制小鼠NIH-3T3成纤维细胞的增殖.%Mitomycin C ( MMC) loaded polylactic acid ( PLA) microspheres were fabricated by oil-in-water ( O/W) single-emulsion solvent evaporation technique .The preparation conditions were optimized .The results indica-ted that the drug loading rate and encapsulation rate reached maximal values ( 5.62%and 49.1%) when the ratio of MMC to PLA was 10/90.The morphology of microspheres was observed by scanning electron microscopy .The release tests showed that the microspheres could control release MMC over 30 days and the cumulative release was 84.8%in vitro .Microspheres were co-cultured with mouse NIH-3 T3 fibroblast cells and the MTT results showed that the MMC loaded microspheres could effectually inhibit the NIH -3T3 cell growth.

  17. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres

    Guo, Zheng; Bai, Shu; Sun, Yan

    2003-01-01

    A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized with...

  18. 甲壳素神经再生室注入聚乳酸-聚乙醇酸-重组人促红细胞生成素微球促进缺损周围神经的修复%Injection of polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres into chitin nerve regeneration chamber can promote sciatic nerve regeneration

    黄亚洲; 陈清汉; 任明明

    2012-01-01

    背景:促红细胞生成素除了具有造血的作用以外,对神经系统损伤的修复也起着重要作用.目的:观察聚乳酸-聚乙醇酸-重组人促红细胞生成素微球对大鼠坐骨神经再生的作用.方法:雌性SD大鼠60只,随机分为3组.制备大鼠双侧坐骨神经缺损模型(1 cm缺损)以及可吸收甲壳素神经再生室.实验组室内注入聚乳酸-聚乙醇酸-重组人促红细胞生成素微球;对照组室内注入聚乳酸-聚乙醇酸微球;空白对照组室内注入等渗生理盐水.结果与结论:实验组再生神经的传导速度优于对照组及空白对照组,且12周优于6周,差异有显著性意义(P < 0.05).S-100 免疫组织化学及Loyez氏神经染色法显示:实验组神经纤维数量多于对照组及空白对照组,12周多于6周,差异有显著性意义(P < 0.05).结果提示聚乳酸-聚乙醇酸-重组人促红细胞生成素微球能够促进实验性坐骨神经缺损的再生和功能的恢复.%BACKGROUND: Erythropoietin (EPO) plays an important role in hematopoiesis as well as in the repair of nervous system injury. OBJECTIVE: To observe the effect of polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres on sciatic nerve regeneration. METHODS: Sixty female SD rats were randomly divided into three groups, 20 rats in each group. The bilateral sciatic nerve defect model was prepared (1 cm defect) and the absorbable chitin nerve regeneration chamber was prepared. The chambers of the rats in the experimental group were injected with polylactic acid-polyglycolic acid-recombinant human erythropoietin microspheres, chambers of the rats in the control group were injected with polylactic acid-polyglycolic acid microspheres and chambers of the rats in the blank control group were injected with normal saline in the same dose. RESULTS AND CONCLUSION: The conduction velocity of the regeneration nerve in the experimental group was better than that in the control group and

  19. Microspheres with an ultra high holmium content for brachytherapy of malignancies

    Lira, Raphael A.; Myamoto, Douglas M.; Souza, Jaime R.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia; Martinelli, Jose R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais

    2011-07-01

    The overall objective of this work is to develop biodegradable microspheres intended for internal radiation therapy which provides an improved treatment for hepatic carcinomas. The most studied brachytherapy system employing microspheres made of holmium-biopolymer system is composed by poly(L-lactic acid) (PLLA) and holmium acetylacetonate (HoAcAc). The importance of the holmium high content in the microspheres can be interpreted as follow from a therapeutic standpoint, to achieve an effective use of microspheres loaded with HoAcAc, a high content of holmium is required to yield enough radioactivity with a relatively low amount of microspheres.The usual amounts of holmium that are incorporated in the microspheres composed by poly(L-lactic acid) and HoAcAc are 17.0 {+-} 0.5% (w/w) of holmium, which corresponds to a loading of about 50% of HoAcAc. Different approaches have been investigated to increase that value. One updated approach towards this direction is the production of microspheres with ultrahigh holmium as matrix using HoAcAc crystals as the sole starting material without the use of biopolymer. Likewise, in the search of microspheres with increased holmium content , it has been demonstrated that by changing the HoAcAc crystal structure by its recrystallization from crystal phase to the amorphous there is lost of acetylacetonate and water molecules causing the increasing of the holmium content. Microspheres were prepared by solvent evaporation, using holmium acetylacetonate (HoAcAc) crystals as the sole ingredient. Microspheres were characterized by using light and scanning electron microscopy, infrared and Raman spectroscopy, differential scanning calorimetry, X-rays diffraction, and confocal laser scanning microscopy. (author)

  20. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres.

    Shen, Jie; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2015-11-28

    The objective of the present study was to determine whether an in vitro-in vivo correlation (IVIVC) can be established for polymeric microspheres that are equivalent in formulation composition but prepared with different manufacturing processes. Risperidone was chosen as a model therapeutic and poly(lactic-co-glycolic acid) (PLGA) with similar molecular weight as that used in the commercial product Risperdal® Consta® was used to prepare risperidone microspheres. Various manufacturing processes were investigated to produce the risperidone microspheres with similar drug loading (approx. 37%) but distinctly different physicochemical properties (e.g. porosity, particle size and particle size distribution). In vitro release of the risperidone microspheres was investigated using different release testing methods (such as sample-and-separate and USP apparatus 4). In vivo pharmacokinetic profiles of the risperidone microsphere formulations following intramuscular administration were determined using a rabbit model. Furthermore, the obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method and the calculated in vivo release was compared with the in vitro release of these microspheres. Level A IVIVCs were established and validated for the compositionally equivalent risperidone microspheres based on the in vitro release data obtained using USP apparatus 4. The developed IVIVCs demonstrated good predictability and were robust. These results showed that the developed USP apparatus 4 method was capable of discriminating PLGA microspheres that are equivalent in formulation composition but with manufacturing differences and predicting their in vivo performance in the investigated animal model. PMID:26423236

  1. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes. PMID:24845476

  2. Synthesis of polymer/zirconium hydroxide core–shell microspheres and the hollow porous zirconium oxide microspheres

    Narrow-disperse poly(N,N′-methylenebisacryamide-co-methacrylic acid)/zirconium hydroxide (P(MBA-co-MAA)/Zr(OH)4) core–shell composite microspheres were synthesized by the controlled sol–gel hydrolysis of inorganic zirconium n-butoxide (Zr(OBu)4) precursor in ethanol and acetonitrile mixed solvent with P(MBA-co-MAA) microspheres as templates. The thickness of the outer inorganic Zr(OH)4 shell-layer was well-controlled via altering the mass ratio of Zr(OBu)4 to P(MBA-co-MAA) core particles as well as the water used for the hydrolysis. The corresponding hollow porous zirconium oxide (ZrO2) microspheres were obtained after the selective removal of P(MBA-co-MAA) core via the calcination of P(MBA-co-MAA)/Zr(OH)4 core–shell microspheres under 550 °C for 4 h in air. The structure and morphology of the resultant core–shell microspheres and the hollow porous ZrO2 microspheres were characterized by transmission electron microscopy (TEM), STEM together with EDX spectrum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, micromeritic analyzer, and thermogravimetric (TGA) analysis. -- Graphical abstract: Monodisperse P(MBA-co-MAA)/(ZrOH)4 core–shell microspheres with amorphous zirconium hydroxide shell-layer were prepared by the controlled hydrolysis of Zr(OBu)4 in acetonitrile/ethanol (4/1, V/V) mixed solvent. The mechanism of the encapsulation of zirconium hydroxide shell-layer over P(MBA-co-MAA) templates were performed via the efficient hydrogen-bonding interaction between the carboxylic acid groups as well as the amide groups on the surface of P(MBA-co-MAA) templates and the hydroxyl groups of the zirconium hydroxide molecules during the controlled hydrolysis. Highlights: ► Synthesis of P(MBA-co-MAA)/Zr(OH)4 core-shell composite microspheres. ► Controlled thickness of Zr(OH)4 shell-layer via altering loadings of Zr(OBu)4. ► Preparation of hollow ZrO2 microspheres with body-centered tetragonal phase.

  3. Preparation and characterization of PS/pAPBA core-shell microspheres

    Changling YAN; Yan LU; Shuyan GAO

    2009-01-01

    Polystyrene microspheres with an average diameter of 55 μm were prepared by suspension polymerization via oxidation of the monomer by ammonium persulfate. Poly-3-aminophenylboronic acid was grafted onto the surfaces of the polystyrene microspheres to form polystyrene/poly-3-aminophenylboronic acid core- shell micospheres. The samples were characterized by scanning electron microscopy, Raman spectroscopy, X-ray photo-electron spectroscopy and nitrogen adsorption/desorption method. The results show that poly-3-aminophenylboronic acid was successfully grafted to the surfaces of the polystyrene microspheres by aromatic ring electron-pairing interaction. The surfaces of the core-shell micro-spheres possessed a porous structure, with the average pore diameter of 30.2 nm and the BET surface area of 193.26 m2/g.

  4. Particle Tracking of Fluorescent Microspheres

    Kaminski, Zofia; Mueller, Joachim; Berk, Serkan

    2010-10-01

    In this research, the diffusion coefficients of the fluorescent microspheres and the relation of those coefficients to particle radius were investigated. An additional focus was to see how well the measured radius of the microspheres compared to the radius as reported by the manufacturer and to measure the distribution of radii in a sample. This study further developed the critical process of ensuring particle movement within the sample volume and made preliminary sample measurements.The methods developed for tracking microspheres will later be used to determine the radii of virus like particles (VLPs), which are a non-infectious model system of the HIV virus. Results from our measurements will be reported.

  5. Review: microspheres for radioembolization therapy

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  6. Mucoadhesive Microsphere - Review

    Ratnaparkhi M P

    2014-06-01

    Full Text Available Several approaches have been immerged to prolong the residence time of the dosage forms at the absorption site and one of them is the development of oral controlled release mucoadhesive system. Mucoadhesive drug delivery systems are used to enhance drug absorption in a site-specific manner. Bioadhesion has been defined as the attachment of synthetic or biological macromolecules to a biological tissue. The biological surface can be epithelial tissue or the mucous coat on the surface of a tissue. If adhesive attachment is to a mucous coat, the phenomenon is referred to as mucoadhesion. Mucus is a thin blanket covering all epithelia that are in contact with the external environment in the gastrointestinal, respiratory, and urogenital tracts. This approach involves the use of mucoadhesive polymers, which can adhere to the epithelial surface in the stomach. Carrier technology offers an intelligent approach for drug delivery by coupling the drug to a carrier particle such as microspheres, nanospheres, liposomes, nanoparticles, etc., which modulates the release and absorption of the drug. Microspheres constitute an important part of these particulate drug delivery systems by virtue of their small size and efficient carrier capacity.

  7. Glass microsphere lubrication

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  8. Microsphere Super-resolution Imaging

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) sampl...

  9. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres

    Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg−1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg−1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. Highlights: • Rhizomucor miehei lipase was immobilized on PVA microspheres (PVA4, PVA12, PVA25). • Polymer-enzyme complex was characterized by XDR, SEM, ATR-FTIR, 13C-CPMAS-NMR, 23Na-MAS-NMR. • Polymer-enzymes (PVA12 and PVA25) enzymes yielded considerable amount of ethyl esters. • Synergistic effect was observed for the polymer-enzyme complexes with high

  10. Preparation, Characterization and Adsorption Performance of a Novel Anionic Starch Microsphere

    Yati Yang; Xiuzhi Wei; Peng Sun; Juanmin Wan

    2010-01-01

    Neutral starch microspheres (NSMs) were synthesized by an inverse microemulsion technology with epichlorohydrin as a crosslinker and soluble starch as starting material. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic etherifying agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and laser diffraction particle size analyzer were used to characterize the anionic starch micro...

  11. Effect of particle size and charge on the network properties of microsphere-based hydrogels

    van Tomme, S.R.; van Nostrum, C.F.; Dijkstra, M.; de Smedt, S.C.; Hennink, W.E.

    2008-01-01

    This work describes the tailorability of the network properties of self-assembling hydrogels, based on ionic crosslinking between dextran microspheres. Copolymerization of hydroxyethyl methacrylate-derivatized dextran (dex-HEMA), emulsified in an aqueous poly(ethylene glycol) (PEG) solution, with methacrylic acid (MAA) or dimethylaminoethyl methacrylate (DMAEMA) resulted in negatively or positively charged microspheres, respectively, at physiological pH. The monomer/HEMA ratio ranged between ...

  12. Poly(glycidyl methacrylate) microspheres: preparation by poly(acrylic acid)-stabilized dispersion polymerization and effect of some reaction parameters

    Koubková, Jana; Horák, Daniel

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-225. ISSN 2164-9634 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * dispersion polymerization * poly(acrylic acid) Subject RIV: CD - Macromolecular Chemistry

  13. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  14. Development of UO2 microsphere production process by external gelation method

    Experiments on production of uranium dioxide microspheres by external gelation method were conducted. This method, gel microspheres were formed by compressing sol prepared by using uranyl nitrate solution, methocel, tetrahydrofurfuryl alcohol and nitric acid through a capillary nozzle. The studies included : Gel microsphere size distribution from various pore sizes of capillary nozzles and sol concentration, method of drying and sintering of microspheres, carbon contents, O/U ratio and density of the microsphere products after calcining and sintering. The results revealed that for the sol concentration of 0.86 mole U/litre, capillary nozzle diameter of 0.6 - 1.0 mm dropped sol into concentrated ammonium hydroxide solution in a glass column of 3 cm diameter, 100 cm high, sol drop size between 2.1 - 3.0 mm were obtained. After washing drying and finally sintering in Ar-4% H2 at 1200 c, 2 - 3 hrs, the microspheres sizes obtained were 0.8 - 1.1 mm in diameter, the average carbon contents of microspheres were reduced from 1.251% before sintering to 0.164%, the ratio of O/U were 2.00 - 2.19 and densities were in the range of 73.18% to 85.86% of theoretical density

  15. 21 CFR 870.1360 - Trace microsphere.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a) Identification. A trace microsphere is a radioactively tagged nonbiodegradable particle that is intended to...

  16. Floating microspheres: a review

    Jagtap Yogesh Mukund

    2012-03-01

    Full Text Available Gastric emptying is a complex process, one that is highly variable and that makes in vivo performance of drug delivery systems uncertain. A controlled drug delivery system with prolonged residence time in the stomach can be of great practical importance for drugs with an absorption window in the upper small intestine. The main limitations are attributed to the inter- and intra-subject variability of gastro-intestinal (GI transit time and to the non-uniformity of drug absorption throughout the alimentary canal. Floating or hydrodynamically controlled drug delivery systems are useful in such applications. Various gastroretentive dosage forms are available, including tablets, capsules, pills, laminated films, floating microspheres, granules and powders. Floating microspheres have been gaining attention due to the uniform distribution of these multiple-unit dosage forms in the stomach, which results in more reproducible drug absorption and reduced risk of local irritation. Such systems have more advantages over the single-unit dosage forms. The present review briefly addresses the physiology of the gastric emptying process with respect to floating drug delivery systems. The purpose of this review is to bring together the recent literature with respect to the method of preparation, and various parameters affecting the performance and characterization of floating microspheres.O esvaziamento gástrico é um processo complexo, com elevada variabilidade e responsável pela incerteza do desempenho dos medicamentos in vivo. Dessa forma, os sistemas de liberação modificada de fármacos, com tempo de residência prolongado no estômago, em especial, considerando aqueles fármacos com janela de absorção na porção superior do intestino delgado, apresentam fundamental importância. As principais limitações relativas à absorção do fármaco são, no geral, atribuídas à variabilidade inter e intra-paciente do tempo de trânsito gastro-intestinal (GI e

  17. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins.

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Brown, Roger F

    2011-03-01

    Hollow hydroxyapatite (HA) microspheres were prepared by reacting solid microspheres of Li(2)O-CaO-B(2)O(3) glass (106-150 μm) in K(2)HPO(4) solution, and evaluated as a controlled delivery device for a model protein, bovine serum albumin (BSA). Reaction of the glass microspheres for 2 days in 0.02 M K(2)HPO(4) solution (pH = 9) at 37°C resulted in the formation of biocompatible HA microspheres with a hollow core diameter equal to 0.6 the external diameter, high surface area (~100 m(2)/g), and a mesoporous shell wall (pore size ≈ 13 nm). After loading with a solution of BSA in phosphate-buffered saline (PBS) (5 mg BSA/ml), the release kinetics of BSA from the HA microspheres into a PBS medium were measured using a micro bicinchoninic acid (BCA) protein assay. Release of BSA initially increased linearly with time, but almost ceased after 24-48 h. Modification of the BSA release kinetics was achieved by modifying the microstructure of the as-prepared HA microspheres using a controlled heat treatment (1-24 h at 600-900°C). Sustained release of BSA was achieved over 7-14 days from HA microspheres heated for 5 h at 600°C. The amount of BSA released at a given time was dependent on the concentration of BSA initially loaded into the HA microspheres. These hollow HA microspheres could provide a novel inorganic device for controlled local delivery of proteins and drugs. PMID:21290170

  18. Electrosprayed 4-carboxybenzenesulfonamide-chitosan microspheres for acetazolamide delivery.

    Suvannasara, Phruetchika; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-03-01

    4-Carboxybenzensulfonamide-chitosan (4-CBS-chitosan) microspheres were prepared by electrospraying with acetazolamide (ACZ) as a model drug. The obtained 4-CBS-chitosan microspheres with or without ACZ-loading were characterized by Fourier transform infrared spectroscopy, differential scanning colorimetry, scanning electron microscopy and particle size analyses. The crystalline form and the stability of ACZ in a basic solution was determined using X-ray single crystal analysis. 4-CBS-chitosan had 90% encapsulation efficiency for ACZ compared to 47% of encapsulation efficiency (EE) obtained from native chitosan, forming 3.1 μm diameter microspheres with a low polydispersity index (0.4). After an initial burst release (58% in 5 min), ACZ-loaded 4-CBS-chitosan gave a sustained release of ACZ (∼ 100% over 3h) in simulated gastric fluid (0.1N HCl; pH 1.2), which was better than that seen for the release from ACZ-loaded chitosan (44% over 1.5h). Thus, 4-CBS-chitosan microspheres are a possible drug carrier in acidic conditions, such as at the gastric mucosal wall. PMID:24360896

  19. Polarization Dependent Whispering Gallery Modes in Microspheres

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  20. Porous microsphere and its applications

    Cai Y

    2013-03-01

    Full Text Available Yunpeng Cai,1,2* Yinghui Chen,3* Xiaoyun Hong,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 2School of Pharmacy, Shanghai JiaoTong University, 3Department of Neurology Jinshan Hospital, Fudan University, Shanghai, People's Republic of China *These authors contributed equally to this workAbstract: Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies.Keywords: pore, porosity, porogen, suspension polymerization, seed swelling, pulmonary drug delivery, tissue regeneration

  1. Development and evaluation of biodegradable microspheres embedded in in situ gel for controlled delivery of hydrophilic drug for treating oral infections: In vitro and in vivo studies

    Neha Manish Munot

    2014-01-01

    Full Text Available Present investigation was aimed at developing biodegradable polymeric microspheres of Tetracycline hydrochloride to treat oral infections by using Poly (D, L lactic-co-glycolic acid (50:50 as polymer. Microspheres were prepared using oil-in-oil (O/O and water-in-oil-in-water (W/O/W double emulsion solvent evaporation method. Microspheres prepared by W/O/W were spherical in shape compared those prepared with O/O method. Thus, the microspheres formulated by W/O/W method were further evaluated for particle size, morphology, entrapment efficiency, and percent drug release. Effects of salt addition, polymer concentration on the characteristics of microspheres and tetracycline release profile were investigated. An increase in polymer concentration decreased drug release and increased entrapment efficiency of drug. In vitro studies indicated that release of drug from microspheres could be controlled for 10-15 days depending on drug: Polymer concentration. Formulation E released 99.10% of drug from microspheres in 10 days. Addition of sodium chloride to outer aqueous phase produced spherical microspheres with smooth surface and also increased entrapment efficiency. Microspheres were further dispersed in optimized formulation of mucoadhesive in situ gel of Pluronic F127, which acts as carrier for microspheres. In vivo studies were conducted on patients who underwent molar tooth extraction to check efficacy of designed formulation.

  2. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  3. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  4. Polyacrolein microspheres: preparation and characteristics

    Polyacrolein microspheres can be prepared by means of ionizing radiation. Acrolein polymerized quite readily under cobalt 60 radiation. The irradiation dose of 0.5 Mrad was found to be sufficient to obtain over 90% conversion. The polymer is obtained in the form of a stable dispersion of cross-linked microspheres. The size of the spheres can be controlled by the type of surfactant, surfactant concentration, monomer concentration, and radiation dosage rate. A Fourier transform spectrophotometer and solid-phase NMR equipped with cross-polarization magic angle was employed to elucidate the structure difference

  5. Fiber-coupled microsphere laser

    Cai, M.; Painter, O.; Vahala, K. J.; Sercel, P. C.

    2000-01-01

    We demonstrate a 1.5-mm-wavelength fiber laser formed by placement of glass microsphere resonators along a fiber taper. The fiber taper serves the dual purpose of transporting optical pump power into the spheres and extracting the resulting laser emission. A highly doped erbium:ytterbium phosphate glass was used to form microsphere resonant cavities with large gain at 1.5 mm. Laser threshold pump powers of 60 mW and fiber-coupled output powers as high as 3 mW with single-mode operation were o...

  6. Microsphere Super-resolution Imaging

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  7. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine

    Cui, Chengji; Stevens, Vernon C.; Schwendeman, Steven P.

    2006-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid, C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide ...

  8. Solid state radiolysis of drugs-polyester microspheres

    A concise description is given of the free radical chemistry lying behind the radiolytic degradation of a microsphere drug release polyester matrix based on the polylactide-co-glycolide 50/50 copolymer (PLGA) and its composites with the active principles bupivacaine and clonazepam. For the sake of comparison also the radiolytic behaviour of the corresponding homopolymers polylactic (PLA) and polyglycolic acids( PGA) were investigated and presented in this report. (author)

  9. Photonic detection and characterization of DNA using sapphire microspheres

    Serpengüzel, Ali; Murib, Mohammed Sharif; Yeap, Weng-Siang; Martens, Daan; Bienstman, Peter; De Ceuninck, Ward; van Grinsven, Bart; Schoening, Michael J.; Michiels, Luc; Haenen, Ken; Ameloot, Marcel; Wagner, Patrick

    2014-01-01

    A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500 mu m, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immob...

  10. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation

    Ghanbar, Hanif; Luo, C.J.; Bakhshi, Poonam [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Day, Richard [Division of Medicine, University College London, Rockefeller Building, 21 University Street, London, WC1E 6JJ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150–300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. Highlights: ► EHDA is a unique method for production of the desired size of microspheres. ► Polymer solution properties are used to tailor the size distribution of spheres. ► Process control parameters (flow rate and applied voltage) are key in size control. ► Combination of EHDA with TIPS provides porous microspheres for assembly of scaffold.

  11. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150–300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. Highlights: ► EHDA is a unique method for production of the desired size of microspheres. ► Polymer solution properties are used to tailor the size distribution of spheres. ► Process control parameters (flow rate and applied voltage) are key in size control. ► Combination of EHDA with TIPS provides porous microspheres for assembly of scaffold

  12. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process.

    Han, Pingping; Shi, Jiafu; Nie, Teng; Zhang, Shaohua; Wang, Xueyan; Yang, Pengfei; Wu, Hong; Jiang, Zhongyi

    2016-03-01

    In this study, multifunctional chitin microspheres are synthesized and utilized as a platform for multiple potential applications in enzyme immobilization, catalytic reduction and adsorption. Porous chitin microspheres with an average diameter of 111.5 μm and a porous architecture are fabricated through a thermally induced phase separation method. Then, the porous chitin microspheres are conferred with surface multifunctionality through facile coordination-enabled self-assembly of tannic acid (TA) and titanium (Ti(IV)) bis(ammonium lactate)dihydroxide (Ti-BALDH). The multipoint hydrogen bonds between TA and chitin microspheres confer the TA-Ti(IV) coating with high adhesion capability to adhere firmly to the surface of the chitin microspheres. In view of the biocompatibility, porosity and surface activity, the multifunctional chitin microspheres are used as carriers for enzyme immobilization. The enzyme-conjugated multifunctional porous microspheres exhibit high catalytic performance (102.8 U·mg(-1) yeast alcohol dehydrogenase). Besides, the multifunctional chitin microspheres also find potential applications in the catalytic reduction (e.g., reduction of silver ions to silver nanoparticles) and efficient adsorption of heavy metal ions (e.g., Pb(2+)) taking advantages of their porosity, reducing capability and chelation property. PMID:26963907

  13. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    Gao, Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China); Fang, Li [School of Chemistry and Chemical engineering, Shanxi University, Taiyuan 030006 (China); Men, Jiying; Zhang, Yanyan [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China)

    2013-04-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior.

  14. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior

  15. Development of Risperidone PLGA Microspheres

    Susan D’Souza

    2014-01-01

    Full Text Available The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25 were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.

  16. Cu2+吸附用Fe3O4/淀粉接枝聚丙烯酸磁性微球的制备%Preparation of magnetic microsphere based on Fe3O4/starch grafted by polyacrylic acid for adsorption on Cu2+

    杨小玲; 张卫红

    2012-01-01

    With starch as raw material, A A (acrylic acid) as grafting monomer, and MBAA(N,N'-methylene-bis-acrylamide) as cross linker,Span-60/Tween-60 as composite emulsifier,and cyclohexane/trichloromethane as oil phase, a starch-g-PA A (starch grafted by polyacrylic acid) hydrogel microsphere was synthesized by inverse emulsion polymerization. Then,with self-made magnetic fluid as functional modifier of hydrogel,a magnetic starch-g-PAA hydrogel was prepared by dispersion polymerization. The results showed that the adsorption process of magnetic microspheres on Cu2+ could be described by Lagergren one-level adsorption kinetic equation. The adsorption capability of magnetic microsphere on Cu2+ was increased with increasing Cu2+ concentration,and its adsorption capability was 24.98 mg/g when Cu2 + concentration was 50 mg/L. The adsorption capability of magnetic microsphere on Cu2+ was increased with increasing pH.%以淀粉为原料、丙烯酸(AA)为接枝单体、N,N′-亚甲基双丙烯酰胺(MBAA)为交联剂、司盘-60/吐温-60为复合乳化剂和环己烷/三氯甲烷为油相,采用反向乳液聚合法合成了淀粉-g-PAA(淀粉接枝聚丙烯酸)水凝胶;然后以自制磁流体对该水凝胶进行功能化改性,并采用分散聚合法制得磁性淀粉-g-PAA水凝胶微球.结果表明:磁性微球对Cu2+的吸附过程可用Lagergren一级吸附动力学方程进行描述;磁性微球对Cu2+的吸附容量随Cu2+浓度增加而增大,并且其吸附容量在Cu2+浓度为50 mg/L时达到24.98 mg/g;磁性微球对Cu2+的吸附容量随pH增加而增大.

  17. Synthesis and radiolabelling of DMSA-PLGA microspheres with 188rhenium replacing 99mtechnetium: an experimental radio therapeutic approach

    99mTc(V) Dimercaptosuccinic acid (DMSA), a well known tumor seeking agent, has been well documented. The attachment of a β-emitter /higher energy γ- emitter in lieu of Tc-99m .in its position. DMSA (labeled/unlabeled) loaded polymeric microspheric delivery system may be utilized theoretically as therapeutic agent for neurogenic/neuroendocrine tumors and some other types of tumors. The aim of our studies was to deliver the loaded drug to tumors and to irradiate the tumor tissue for the extended period. The bioabsorbable poly lactic-co-glycolic acid (75:25) microspheres ranging between 200 nm-2.00 μm were developed using double emulsion solvent evaporation method. The known amount of dimercaptosuccinic acid was loaded and tagged with freshly prepared Re-188 eluted from W-188 Generator. For microsphere characterization unlabelled and 99mTc(V) DMSA labeled microspheres were also prepared. Microspheres of different sizes were prepared. Size and morphology was studied by SEM. Drug (labeled/unlabeled DMSA) loading was dependent on the size of microspheres. In vitro drug loading and drug release was recorded. Thermal analysis demonstrated that the drug inside the microspheres was amorphous crystalline state, as melting endothermic peak of DMSA could not be detected in the drug loaded microspheres. The morphology based glioma cell kinetics using electron microscopy, demonstrated the in-vitro ability of radiolabelled DMSA to enter within the cell and block the cell growth; potentially by enhancing the radiation doses to cultured cells, when incubated with a microsphere-based drug delivery system.

  18. High Resolutions Obtained by Microspheres, and Phase Contrast Microscope with a Microsphere

    Ben-Aryeh, Y.

    2015-01-01

    High resolutions obtained in optical systems with microspheres are studied by Helmholtz equation and boundary conditions for the EM fields, which are emitted from the object and incident on the microsphere surface. We develop the condition under which the evanescent waves are converted at the microsphere surface into propagating waves which conserve the fine structures of the object. The enhancement of the resolution limit with microspheres relative to the Abbe resolution limit is developed i...

  19. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.

    Wang, Shanshan; Chen, Yuying; Liang, Hao; Chen, Yiming; Shi, Mengxuan; Wu, Jiande; Liu, Xianwu; Li, Zuseng; Liu, Bin; Yuan, Qipeng; Li, Yuan

    2015-10-01

    An intestine-specific delivery system for hydrophobic bioactives with improved stability was developed. It consists of oxidized potato starch polymers, where the carboxyl groups were physically cross-linked via ferric ions. The model hydrophobic ingredients (β-carotene) were incorporated inside the starch microspheres via a double-emulsion method. Confocal laser scanning microscopy images showed that β-carotene were distributed homogeneously in the inner oil phase of the starch microspheres. The negative value of the ζ-potential of microspheres increased with increasing pH and decreasing ionic strength. In vitro release experiments showed that the microspheres were stable at acidic stomach conditions (pH < 2), whereas at neutral intestinal conditions (pH 7.0), they rupture to release the loaded β-carotene. The 1,1-diphenyl-2-picrylhydrazyl radical, 2,2-diphenyl-1-(2,4,6-trinitriphenyl), scavenging activity results suggested that microsphere-encapsulated β-carotene had an improved activity after thermal treatment at 80 °C. The storage stability of encapsulated β-carotene at room temperature was also enhanced. The starch microspheres showed potential as intestine-specific carriers with an enhanced stability. PMID:26414436

  20. Study of neutron absorbing microspheres in research reactors - Neutronic analyse

    Now-a-days, it is increasingly common for nuclear power plants, as well as research reactors, to be designed and built with an alternative safety system aside from control rods. The acids and/or salts in solution injection systems is most frequently used. However, these systems present several implementation and operation problems due to the physical and chemical properties of the used compounds. After analyzing these drawbacks, we developed a new alternative safety system that contains the absorbing element isolated from the aqueous medium. In this context, it's proposed the use of aluminum borosilicate microspheres. The current paper presents erosion wear experiments to determine under which conditions microspheres can be considered as a potential component of a secondary shut down system in a nuclear facility (author)

  1. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    Podzus, P.E. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); LAFMACEL, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.a [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Jacobo, S.E., E-mail: sjacobo@fi.uba.a [LAFMACEL, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2009-10-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 mum. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  2. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  3. Design and Evaluation of Niacin Microspheres

    Maravajhala Vidyavathi; Dasari Nirmala; Sepuri Asha; Joginapalli S

    2009-01-01

    Present study aims to prepare and evaluate niacin microspheres. Niacin-ethyl cellulose microspheres were prepared by water-in-oil-in-oil double emulsion solvent diffusion method. Spherical, free flowing microspheres having an entrapment efficiency of 72% were obtained. The effect of polymer-drug ratio, surfactant concentration for secondary emulsion process and stirring speed of emulsification process were evaluated with respect to entrapment efficiency, in vitro drug release behavior ...

  4. Nanostructuring GaN using microsphere lithography

    Ng, WN; Leung, CH; Lai, PT; Choi, HW

    2008-01-01

    The authors report on the fabrication and characterization of nanopillar arrays on GaN substrates using the technique of microsphere lithography. Self-assembled hexagonally packed silica microsphere arrays were formed on GaN wafers by spin coating and tilting. By precision control of process parameters, a monolayer can be formed over a wide region. The silica microspheres act as a hard mask for pattern transfer of the nanostructures. After dry etching, arrays of nanopillars were formed on the...

  5. Laser-Induced Spallation of Microsphere Monolayers

    Hiraiwa, Morgan; Stossel, Melicent; Khanolkar, Amey; Wang, Junlan; Boechler, Nicholas

    2016-01-01

    The detachment of a semi-ordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained from interferometric measurement of the out-...

  6. Microsphere coated substrate containing reactive aldehyde groups

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  7. Formulation and evaluation of mucoadhesive glipizide microspheres

    Patel, Jayvadan K.; Patel, Rakesh P.; Amin, Avani F; Madhabhai M Patel

    2005-01-01

    The purpose of this research was to formulate and system-atically evaluate in vitro and in vivo performances of mucoadhesive microspheres of glipizide. Glipizide microspheres containing chitosan were prepared by simple emulsification phase separation technique using glutaraldehyde as a cross-linking agent. Results of preliminary trials indicate that volume of cross-linking agent, time for cross-linking, polymer-to-drug ratio, and speed of rotation affected characteristics of microspheres. Mic...

  8. Preparation of radio-therapeutical glass microspheres for curing malignant tumor. Pt.3: Study on the transformation from gel microspheres to glass microspheres

    The heat-treatment schedule for transforming gel microspheres to glass microspheres is determined based on the result of DTA; the change relationship of glass microspheres density with heating rate is investigated and the effects of heating rate, treatment atmosphere on the quality of glass microspheres are discussed. It is shown from there experiments that low heating rate and oxygen flow can prevent breaking microsphere and carbonizing organic materials before 400 degree C, and that higher heating rate can lead to low density of microsphere after 400 degree C. Therefore desirable size of glass microspheres can be obtained by adjusting heating rate in the heating heat-treatment process

  9. Aceclofenac microspheres: Quality by design approach

    The purpose of this study was to prepare polymeric microspheres containing aceclofenac by single emulsion [oil-in-water (o/w)] solvent evaporation method. Two biocompatible polymers, ethylcellulose, and Eudragit® RS100 were used in combination. Seven processing factors were investigated by Plackett–Burman design (PBD) in order to enhance the encapsulation efficiency of the microspheres. A Plackett–Burman design was employed by using the Design-Expert® software (Version-8.0.7.1). The resultant microspheres were characterized for their size, morphology, encapsulation efficiency, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffractometry (XRPD). Graphical and mathematical analyses of the design showed that Eudragit® RS100, and polyvinyl alcohol (PVA) were significant negative effect on the encapsulation efficiency and identified as the significant factor determining the encapsulation efficiency of the microspheres. The low magnitudes of error and the significant values of R2 in the present investigation prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency (70.15% to 83.82%). The microspheres were found to be discrete, oval with smooth surface. The FTIR analysis confirmed the compatibility of aceclofenac with the polymers. The XRPD revealed the dispersion of drug within microspheres formulation. Perfect prolonged drug release profile over 12 h was achieved by a combination of ethylcellulose, and Eudragit® RS100 polymers. In conclusion, polymeric microspheres containing aceclofenac can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for encapsulation efficiency of microspheres. - Graphical abstract: The polymeric microspheres, containing

  10. Aceclofenac microspheres: Quality by design approach

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2014-03-01

    The purpose of this study was to prepare polymeric microspheres containing aceclofenac by single emulsion [oil-in-water (o/w)] solvent evaporation method. Two biocompatible polymers, ethylcellulose, and Eudragit® RS100 were used in combination. Seven processing factors were investigated by Plackett–Burman design (PBD) in order to enhance the encapsulation efficiency of the microspheres. A Plackett–Burman design was employed by using the Design-Expert® software (Version-8.0.7.1). The resultant microspheres were characterized for their size, morphology, encapsulation efficiency, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffractometry (XRPD). Graphical and mathematical analyses of the design showed that Eudragit® RS100, and polyvinyl alcohol (PVA) were significant negative effect on the encapsulation efficiency and identified as the significant factor determining the encapsulation efficiency of the microspheres. The low magnitudes of error and the significant values of R{sup 2} in the present investigation prove the high prognostic ability of the design. The microspheres showed high encapsulation efficiency (70.15% to 83.82%). The microspheres were found to be discrete, oval with smooth surface. The FTIR analysis confirmed the compatibility of aceclofenac with the polymers. The XRPD revealed the dispersion of drug within microspheres formulation. Perfect prolonged drug release profile over 12 h was achieved by a combination of ethylcellulose, and Eudragit® RS100 polymers. In conclusion, polymeric microspheres containing aceclofenac can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for encapsulation efficiency of microspheres. - Graphical abstract: The polymeric microspheres

  11. Compression molding of aerogel microspheres

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  12. Compression molding of aerogel microspheres

    Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  13. Compression molding of aerogel microspheres

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m3 (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs

  14. Design of polypeptide-functionalized polystyrene microspheres.

    Bousquet, A; Perrier-Cornet, R; Ibarboure, E; Papon, E; Labrugère, C; Héroguez, V; Rodríguez-Hernández, J

    2008-07-01

    In this contribution, the principle of spontaneous surface segregation has been applied for the preparation of polypeptide-functionalized polystyrene microspheres. For that purpose, an amphiphilic diblock copolymer was introduced in the mixture styrene/divinylbenzene and polymerized using AIBN as initiator. During the polymerization, cross-linked particles were obtained in which the diblock copolymer was encapsulated. The amphiphilic diblock copolymers used throughout this study contain a hydrophilic polypeptide segment, either poly(L-lysine) or poly(L-glutamic acid) and a hydrophobic polystyrene block. After 4 h of polymerization, rather monodisperse particles with sizes of approximately 3-4 microm were obtained. Upon annealing in hot water, the hydrophilic polypeptides migrate to the interface, hence, either positively charged or neutral particles were obtained when poly(L-lysine) is revealed at the surface and exposed to acidic or basic pH, respectively. On the opposite, negatively charged particles were achieved in basic pH water by using poly(L-glutamic acid) as additive. The surface chemical composition was modified by changing the environment of the particles. Thus, exposure in toluene provoked a surface rearrangement, and due to its affinity, the polystyrene block reorients toward the interface. PMID:18517246

  15. Porous microsphere and its applications

    Cai Y; Chen Y; Hong X; Liu Z; Yuan W

    2013-01-01

    Yunpeng Cai,1,2* Yinghui Chen,3* Xiaoyun Hong,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 2School of Pharmacy, Shanghai JiaoTong University, 3Department of Neurology Jinshan Hospital, Fudan University, Shanghai, People's Republic of China *These authors contributed equally to this workAbstract: Porous microspheres have drawn great attention in the last two decades for their potential applications ...

  16. Controllable synthesis of CuS-P(AM-co-MAA) composite microspheres with patterned surface structures.

    Zhang, Ying; Liu, Huijin; Zhao, Ya; Fang, Yu

    2008-09-15

    Copper sulfide-poly(acrylamide-co-methacrylic acid) (CuS-P(AM-co-MAA)) composite microspheres with patterned surface structures have been synthesized in a controllable manner by means of the polymer microgel template method. The formation of CuS particles can be regulated by controlling the decomposition of thioacetamide (TAA) in acidic solution. Compared with the microgel template, the surface morphologies of the composite microspheres are characterized by compact and creased textures. The surface morphology of the composite microspheres has been found to be mainly influenced by the amount of copper sulfide precipitated and hence by the rate of H(2)S gas generation. This study might provide a potential route for controlling the synthesis of various metal sulfide-polymer composites with patterned surface structures. PMID:18649893

  17. Surface functionalized magnetic PVA microspheres for rapid naked-eye recognizing of copper(II) ions in aqueous solutions

    Highlights: • The functionalized groups were immobilized onto surface of magnetic PVA microspheres via a series of reaction. • The PAR-MPVA microspheres had excellent detection for copper ions by nake-eye. • The PAR-MPVA microspheres could be conveniently separated by a magnet. • The PAR-MPVA microspheres had preeminent reusability and stability. - Abstract: We proposed a robust method for surface-functionalizing magnetic polyvinyl alcohol microspheres to detect heavy metal ions in aqueous solutions. The prepared chemosensor (PAR-MPVA) was characterized through scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectra (XPS). In neutral solutions, PAR-MPVA selectively recognized diatomic heavy metal ions, as indicated with a color change from earth yellow to red; in strong acidic solutions, the chemosensor only selectively detected Cu2+. PAR-MPVA microspheres had a detection limit as low as 0.5 μM by naked-eye and 0.16 μM by UV–vis spectrometer for Cu2+. Moreover, the sensor possessed magnetism for effective recovery, could easily be regenerated by a solution of EDTA, and also displayed perferable stability. The PAR-MPVA microspheres possessed preeminent properties of detecting copper (II) ions in aqueous solutions

  18. A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: fabrication, physical properties, and cell responsiveness.

    Zhao, Haiguang; Ma, Lie; Gao, Changyou; Shen, Jiacong

    2009-01-01

    A composite scaffold of poly(L-lactic-co-glycolic acid) (PLGA) microspheres and fibrin gel was fabricated by blending fibrinogen-immobilized PLGA microspheres with fibrinogen and thrombin solution. The PLGA microspheres with a size of 70 approximately 100 microm were aminolyzed in a hexanediamine/n-propanol solution to introduce free amino groups on their surface. The fibrinogen immobilization was achieved by glutaraldehyde coupling. When the --NH(2) content on the microsphere surface was increased from approximately 2 x 10(-8) mol/mg to approximately 4 x 10(-8) mol/mg, the fibrinogen amount was correspondingly increased from approximately 35 microg/mg to approximately 70 microg/mg. Measured by UV-VIS spectroscopy, the clotting time of the composite was less influenced by the microsphere amount, but mainly controlled by the thrombin concentration. When the thrombin concentration was higher than 15 U/mL, the gelation could be finished within 1 min and yielded a composite with evenly suspended and distributed PLGA microspheres. Blending with the microspheres could significantly improve the elastic modulus of the hydrogel as well, whereas less influence on the chondrocyte proliferation and extracellular matrix production. PMID:18683225

  19. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres

    DONG XiaoQing; XU Jun; WANG WeiCai; Luo Hao; LIANG XiaoFei; Zhang Lei; Wang HanJie; Wang PengHua; CHANG Jin

    2008-01-01

    In this study the w/o/w extraction-evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The micro-spheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-Ioaded PLGA microspheres were all studied. The results showed that these spherical micro-spheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-ioaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the mi-crosphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.

  20. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres

    2008-01-01

    In this study the w/o/w extraction–evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The micro-spheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical micro-spheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the mi-crosphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.

  1. POROUS WALL, HOLLOW GLASS MICROSPHERES

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  2. Polarization conversion in a silica microsphere

    Bianucci, Pablo; Fietz, Chris; Robertson, John W.; Shvets, Gennady; Shih, Chih-Kang

    2007-01-01

    We experimentally demonstrate controlled polarization-selective phenomena in a whispering gallery mode resonator. We observed efficient ($\\approx 75 %$) polarization conversion of light in a silica microsphere coupled to a tapered optical fiber with proper optimization of the polarization of the propagating light. A simple model treating the microsphere as a ring resonator provides a good fit to the observed behavior.

  3. Spectrally resolved resonant propulsion of dielectric microspheres

    Li, Yangcheng; Limberopoulos, Nicholaos I; Urbas, Augustine M; Astratov, Vasily N

    2015-01-01

    Use of resonant light forces opens up a unique approach to high-volume sorting of microspherical resonators with much higher uniformity of resonances compared to that in coupled-cavity structures obtained by the best semiconductor technologies. In this work, the spectral response of the propulsion forces exerted on polystyrene microspheres near tapered microfibers is directly observed. The measurements are based on the control of the detuning between the tunable laser and internal resonances in each sphere with accuracy higher than the width of the resonances. The measured spectral shape of the propulsion forces correlates well with the whispering-gallery mode resonances in the microspheres. The existence of a stable radial trap for the microspheres propelled along the taper is demonstrated. The giant force peaks observed for 20-{\\mu}m spheres are found to be in a good agreement with a model calculation demonstrating an efficient use of the light momentum for propelling the microspheres.

  4. U3O8 microspheres sintering kinetics

    U3O8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 13500C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U3O8 at 6000C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U3O8 micrographs compared with published results for UO2, indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author)

  5. Gas foamed open porous biodegradable polymeric microspheres.

    Kim, Taek Kyoung; Yoon, Jun Jin; Lee, Doo Sung; Park, Tae Gwan

    2006-01-01

    Highly open porous biodegradable polymeric microspheres were fabricated for use as injectable scaffold microcarriers for cell delivery. A modified water-in-oil-in-water (W1/O/W2) double emulsion solvent evaporation method was employed for producing the microspheres. The incorporation of an effervescent salt, ammonium bicarbonate, in the primary W1 droplets spontaneously produced carbon dioxide and ammonia gas bubbles during the solvent evaporation process, which not only stabilized the primary emulsion, but also created well inter-connected pores in the resultant microspheres. The porous microspheres fabricated under various gas foaming conditions were characterized. The surface pores became as large as 20 microm in diameter with increasing the concentration of ammonium bicarbonate, being sufficient enough for cell infiltration and seeding. These porous scaffold microspheres could be potentially utilized for cultivating cells in a suspension manner and for delivering the seeded cells to the tissue defect site in an injectable manner. PMID:16023197

  6. Biofunctionalization of silica microspheres for protein separation

    Li, Binjie [Institute of Immunology, Henan University, Kaifeng 475004 (China); Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zou, Xueyan [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhao, Yanbao, E-mail: yanbaozhao@126.com [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Sun, Lei [Institute of Immunology, Henan University, Kaifeng 475004 (China); Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Li, Shulian [Institute of Immunology, Henan University, Kaifeng 475004 (China)

    2013-07-01

    Mercapto-silica (SiO{sub 2}–SH) microspheres were prepared via direct hydrolysis of 3-mercaptopropyltrimethoxysilane (MPS) in a basic aqueous solution. The content of surface thiol group (-SH) of SiO{sub 2}–SH microspheres was measured by Ellman's reagent method and X-ray photoelectron spectroscopy (XPS) and the content of surface thiol group of SiO{sub 2}–SH microspheres is strongly dependent on the reaction conditions. The thermal stability of SiO{sub 2}–SH microspheres was evaluated by thermogravimetric (TG) analysis, which tended to reduce with the increase of content of surface thiol groups. SiO{sub 2}–SH microspheres can be easily modified with reduced glutathione (GSH) to generate SiO{sub 2}–GSH microspheres for the affinity separation of Glutathione S-transferase (GST). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to examine the validity of the separation procedure. The results showed that SiO{sub 2}–GSH microspheres were efficient in GST affinity separation from mixed proteins. - Graphical abstract: The prepared SiO{sub 2}–SH microsphere binding reduced glutathione (SiO{sub 2}–GSH) as affinity precipitation support can capture selectively Glutathione S-transferase (GST) from mixed protein solution. Highlights: ► SiO{sub 2}–SH microspheres were prepared in water using one-pot synthesis. ► The content of surface -SH was investigated by Ellman method and XPS spectra. ► The ratio of -SH to mass strongly depends on the reaction conditions. ► SiO{sub 2}–SH microspheres were biofunctionalized by glutathione. ► SiO{sub 2}–GSH can be used to capture selectively Glutathione S-transferase.

  7. Biofunctionalization of silica microspheres for protein separation

    Mercapto-silica (SiO2–SH) microspheres were prepared via direct hydrolysis of 3-mercaptopropyltrimethoxysilane (MPS) in a basic aqueous solution. The content of surface thiol group (-SH) of SiO2–SH microspheres was measured by Ellman's reagent method and X-ray photoelectron spectroscopy (XPS) and the content of surface thiol group of SiO2–SH microspheres is strongly dependent on the reaction conditions. The thermal stability of SiO2–SH microspheres was evaluated by thermogravimetric (TG) analysis, which tended to reduce with the increase of content of surface thiol groups. SiO2–SH microspheres can be easily modified with reduced glutathione (GSH) to generate SiO2–GSH microspheres for the affinity separation of Glutathione S-transferase (GST). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to examine the validity of the separation procedure. The results showed that SiO2–GSH microspheres were efficient in GST affinity separation from mixed proteins. - Graphical abstract: The prepared SiO2–SH microsphere binding reduced glutathione (SiO2–GSH) as affinity precipitation support can capture selectively Glutathione S-transferase (GST) from mixed protein solution. Highlights: ► SiO2–SH microspheres were prepared in water using one-pot synthesis. ► The content of surface -SH was investigated by Ellman method and XPS spectra. ► The ratio of -SH to mass strongly depends on the reaction conditions. ► SiO2–SH microspheres were biofunctionalized by glutathione. ► SiO2–GSH can be used to capture selectively Glutathione S-transferase

  8. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres

    Polystyrene- and albumin-based magnetic microspheres for red blood cell separation were modified and characterized by scanning electron and atomic force microscopy. Albumin microspheres show higher coupling efficiency with the protein, and protein-modified albumin microspheres bind the red blood cells more efficiently than the polystyrene-based microspheres

  9. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres

    Chatterjee, Jhunu; Haik, Yousef E-mail: haik@eng.fsu.edu; Chen Chingjen

    2001-07-01

    Polystyrene- and albumin-based magnetic microspheres for red blood cell separation were modified and characterized by scanning electron and atomic force microscopy. Albumin microspheres show higher coupling efficiency with the protein, and protein-modified albumin microspheres bind the red blood cells more efficiently than the polystyrene-based microspheres.

  10. Solid ceramic SiCO microspheres and porous rigid siloxane microspheres from swellable polysiloxane particles

    Fortuniak, Witold [Center of Molecular and Macromolecular Studies, Polish Academy of Science, 112 Sienkiewicza, 90-363 Łódź (Poland); Chojnowski, Julian, E-mail: jchojnow@cbmm.lodz.pl [Center of Molecular and Macromolecular Studies, Polish Academy of Science, 112 Sienkiewicza, 90-363 Łódź (Poland); Slomkowski, Stanislaw [Center of Molecular and Macromolecular Studies, Polish Academy of Science, 112 Sienkiewicza, 90-363 Łódź (Poland); Nyczyk-Malinowska, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Pospiech, Piotr; Mizerska, Urszula [Center of Molecular and Macromolecular Studies, Polish Academy of Science, 112 Sienkiewicza, 90-363 Łódź (Poland)

    2015-04-01

    Solid silicon oxycarbide (SiCO) ceramic microspheres and rigid porous siloxane microspheres were obtained in a two step process. First, polysiloxane microspheres with a large number of Si–OH groups in their bulk and on their surface were synthesized from polyhydromethylsiloxane (PHMS) using a recently developed process. The process included a combination of three reactions of Si–H groups of PHMS occurring in aqueous emulsion and catalyzed by the same Karstedt Pt(0) complex: (i) hydrosilylation of 1,3-divinyltetramethyldisiloxane (DVTMDS), (ii) hydrolysis, (iii) dehydrogenocondensation involving the SiOH groups formed during the hydrolysis. DVTMDS was grafted on PHMS prior to emulsification. Microspheres had a loose structure and were able to absorb a significant amount of organic solvents. In the second step the microspheres were subjected to pyrolysis with heating in the argon atmosphere at following temperatures: 400, 700 and 1000 °C. These heated at 400 °C had micro and mezopores, while those heated at 700 and 1000 °C gave spherical solid SiCO ceramic particles. Polysiloxane microspheres and microspheres obtained by pyrolysis of the former were analyzed by {sup 29}Si and {sup 13}C MAS NMR, FTIR, SEM, and N{sub 2} gas adsorption. - Highlights: • Thermal properties of cross-linked polysiloxane microspheres are studied. • New route to solid silicon oxycarbide microspheres is worked out. • New method of preparation of mezoporous siloxane microspheres is shown. • Role of silanol side groups on polysiloxane in its ceramization is explained.

  11. Solid ceramic SiCO microspheres and porous rigid siloxane microspheres from swellable polysiloxane particles

    Solid silicon oxycarbide (SiCO) ceramic microspheres and rigid porous siloxane microspheres were obtained in a two step process. First, polysiloxane microspheres with a large number of Si–OH groups in their bulk and on their surface were synthesized from polyhydromethylsiloxane (PHMS) using a recently developed process. The process included a combination of three reactions of Si–H groups of PHMS occurring in aqueous emulsion and catalyzed by the same Karstedt Pt(0) complex: (i) hydrosilylation of 1,3-divinyltetramethyldisiloxane (DVTMDS), (ii) hydrolysis, (iii) dehydrogenocondensation involving the SiOH groups formed during the hydrolysis. DVTMDS was grafted on PHMS prior to emulsification. Microspheres had a loose structure and were able to absorb a significant amount of organic solvents. In the second step the microspheres were subjected to pyrolysis with heating in the argon atmosphere at following temperatures: 400, 700 and 1000 °C. These heated at 400 °C had micro and mezopores, while those heated at 700 and 1000 °C gave spherical solid SiCO ceramic particles. Polysiloxane microspheres and microspheres obtained by pyrolysis of the former were analyzed by 29Si and 13C MAS NMR, FTIR, SEM, and N2 gas adsorption. - Highlights: • Thermal properties of cross-linked polysiloxane microspheres are studied. • New route to solid silicon oxycarbide microspheres is worked out. • New method of preparation of mezoporous siloxane microspheres is shown. • Role of silanol side groups on polysiloxane in its ceramization is explained

  12. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    The aim of this study was to use CO2 at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO2 sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO2-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO2 sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO2-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO2 required manipulation of both temperature and pressure. • PLGA may be

  13. Tungsten Oxide Nanofibers Self-assembled Mesoscopic Microspheres as High-performance Electrodes for Supercapacitor

    Highlights: • WO3 mesoscopic microspheres self-assembled by nanofibers. • Inorganic solvent H2O2 play an integral role in the process of self-assembly. • WO3 mesoscopic microspheres exhibit specific capacitance value of 797.05 F g−1 at a constant density of 0.5 A g−1 in 2 M H2SO4 aqueous solution. • The WO3 //AC asymmetric supercapacitor displays a maximum energy density of 97.61 Wh kg−1 and power density of 28.01 kW kg−1. - Abstract: Mesoscopic WO3 microspheres composed of self-assembly nanofibers were prepared by hydrothermal reaction of tungsten acid potassium and H2O2. The mesoscopic WO3 microspheres offer desired porous properties and large effective active areas provided by intertwining nanofibers, thereby resulting in excellent supercapacitive properties due to facile electrolyte flow and fast reaction kinetics. In three electrode configuration, mesoscopic WO3 microspheres exhibit specific capacitance value of 797.05 F g−1 at the current density of 0.5 A g−1 and excellent cycling stability without decay after 2000 cycles in 2 M H2SO4 aqueous solution. These values are superior to other reported WO3 composites. An asymmetric supercapacitor is constructed using the as-prepared WO3 mesoscopic microspheres as the positive electrode and the activated carbon as the negative electrode, which displays excellent electrochemical performance with a maximum energy density of 97.61 Wh kg−1 and power density of 28.01 kW kg−1. These impressive performances suggest that the mesoscopic WO3 microspheres are promising electrode materials for supercapacitor

  14. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N′-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application. - Highlights: • The magnetic poly(GMA-MBAA-NVP) microspheres were successfully synthesized. • Formamide served as a modifier, a dispersant and a porogen to form microspheres. • The magnetic microspheres were highly efficient carriers for immobilizing PGA. • Immobilized PGA

  15. Characterization of a Polyamine Microsphere and Its Adsorption for Protein

    Huixian Wei; Zhenggang Cui; Tingting Nie; Pei Liu; Feng Wang

    2012-01-01

    A novel polyamine microsphere, prepared from the water-in-oil emulsion of polyethylenimine, was characterized. The investigation of scanning electron microscopy showed that the polyamine microsphere is a regular ball with a smooth surface. The diameter distribution of the microsphere is 0.37–4.29 μm. The isoelectric point of the microsphere is 10.6. The microsphere can adsorb proteins through the co-effect of electrostatic and hydrophobic interactions. Among the proteins te...

  16. Surfactant-Free Solvothermal Method for Synthesis of Mesoporous Nanocrystalline TiO2 Microspheres with Tailored Pore Size

    Yajing Zhang

    2013-01-01

    Full Text Available TiO2 mesoporous microspheres self-assembled from nanoparticles were synthesized by a surfactant-free solvothermal route. The TiO2 precursors were fabricated by tetrabutyl titanate, glacial acetic acid, and urea in the ethanol solution at 140°C for 20 h, and TiO2 mesoporous microspheres were obtained by a postcalcination at temperatures of 450°C for promoting TiO2 crystallization and the removal of residual organics. The phase structure, morphology, and pore nature were characterized by XRD, SEM, and nitrogen adsorption-desorption measurements. The as-prepared TiO2 microspheres are in anatase phase, with 2-3 μm in diameter, and narrow pore distribution range is 3-4 nm. The adjustments of the synthetic parameters lead to the formation of the mesoporous TiO2 microspheres with tuned pore size distributions and morphology.

  17. Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation

    Přikryl, P.; Horák, Daniel; Tichá, M.; Kučerová, Z.

    2006-01-01

    Roč. 29, č. 16 (2006), s. 2541-2549. ISSN 1615-9306 R&D Projects: GA ČR GA203/05/0241 Institutional research plan: CEZ:AV0Z40500505 Keywords : human IgG * hydrophilic magnetic microspheres * iminodiacetic acid Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.535, year: 2006

  18. Multimodal imaging of holmium-loaded microsphere for internal Radiation therapy

    Seevinck, P.R.

    2009-01-01

    In this dissertation, the qualitative and quantitative multimodal imaging possibilities of holmium-166 loaded poly(L-lactic acid) microspheres (166Ho-PLLA MS) are explored and exploited to improve biodistribution assessment and dose calculations for planning, image-guidance and evaluation of hepatic

  19. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  20. Subcritical CO2 Sintering of Microspheres of Different Polymeric Materials to Fabricate Scaffolds for Tissue Engineering

    Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Detamore, Michael S.

    2013-01-01

    The aim of this study was to use CO2 at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage Tissue Engineering Porous scaffolds composed of ~200 µm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO2 sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for...

  1. Nuclear fuel microsphere gamma analyzer

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  2. Solvothermal synthesis of three-dimensional microspherical bismuth oxychloride self-assembled by microspheres

    Li, Tengfei; Lin, Liyang; Wei, Hongmei; Liang, Guoqiang; Kuang, Xinliang; Liu, Tianmo

    2016-02-01

    Uniform BiOCl microspheres have been synthesized via a facile solvothermal route. The structural features of the as-prepared BiOCl samples were systematically characterized by the X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The SEM characterization results indicated that BiOCl microspheres possessed a superstructure composed of several hierarchical microspheres, which were assembled by numerous two dimensional nanosheets. This kind of special BiOCl 3D microstructure exhibited a large BET surface area of about 14.24 m2 g-1. Besides, the photocatalytic properties of BiOCl hollow microsphere sample and sheet-like sample were investigated in detail. Significantly, BiOCl hollow microsphere sample presented faster degradation rate toward RhB even under visible light, which should be attributed to the unique BiOCl nanosheets self-assembled hollow microspheres.

  3. Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation

    Our objective was to determine if microspheres made from the biodegradable polymer poly(lactic acid) that contained rhenium could withstand the conditions of direct neutron activation necessary to produce therapeutic amounts of radioactive rhenium. The radiation damage of the polymer produced by γ-doses of up to 1.05 MGy from Re-186 and Re-188 was examined by scanning electron microscopy and size exclusion chromatography. At a thermal neutron flux of 1.5x1013 n/cm2/s the microspheres melted after 3 h in the nuclear reactor, but suffered little damage after 1 h of radiation and released less than 5% of the radioactivity during incubation in buffer at 37 deg. C. The radioactive microspheres produced in this manner have a specific activity too low for radioembolization for treatment of liver tumors, but could be injected directly into tumors or applied topically to the wound bed of partially resected tumors

  4. Bisphosphonate release profiles from magnetite microspheres.

    Miyazaki, Toshiki; Inoue, Tatsuya; Shirosaki, Yuki; Kawashita, Masakazu; Matsubara, Takao; Matsumine, Akihiko

    2014-10-01

    Hyperthermia has been suggested as a novel, minimally invasive cancer treatment method. After implantation of magnetic nano- or microparticles around a tumour through blood vessels, irradiation with alternating magnetic fields facilitates the efficient in situ hyperthermia even for deep-seated tumours. On the basis of this idea, if the microspheres are capable of delivering drugs, they could be promising multifunctional biomaterials effective for chemotherapy as well as hyperthermia. In the present study, magnetite microspheres were prepared by aggregation of the iron oxide colloid in water-in-oil (W/O) emulsion. The release behaviour of alendronate, a typical bisphosphonate, from the microspheres was examined in vitro as a model of the bone tumour prevention and treatment system. The alendronate was successfully incorporated onto the porous magnetite microspheres in vacuum conditions. The drug-loaded microspheres maintained their original spherical shapes even after shaking in ultrapure water for 3 days, suggesting that they have sufficient mechanical integrity for clinical use. It was attributed to high aggregation capability of the magnetite nanoparticles through van der Waals and weak magnetic attractions. The microspheres showed slow release of the alendronate in vitro, resulting from tight covalent or ionic interaction between the magnetite and the alendronate. The release rate was diffusion-controlled type and well controlled by the alendronate concentration in drug incorporation to the microspheres. PMID:24854985

  5. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  6. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  7. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10−2 mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  8. Brain-targeted nasal clonazepam microspheres

    Shaji J

    2009-01-01

    Full Text Available Gelatin-chitosan mucoadhesive microspheres of clonazepam were prepared using the emulsion cross linking method. Mirospheres were evaluated using the in vitro and ex vivo drug release patterns. In vivo CNS drug distribution studies were carried out in rats by administering the clonazepam microspheres intra-nasally and clonazepam solution intravenously. From the drug levels in plasma and CSF, drug targeting index and drug targeting efficiency were calculated. Results obtained indicated that intranasally administered clonazepam microspheres resulted in higher brain levels with a drug targeting index of 2.12. Gelatin-chitosan cross linked mucoadhesive microspheres have the potential to be developed as a brain-targeted drug delivery system for clonazepam.

  9. Uniform and Robust Peptoid Microsphere Coatings

    Shannon L. Servoss

    2013-06-01

    Full Text Available Peptoids that are helical and partially water soluble have been shown to self-assemble into microspheres when the peptoid solution is dried on a silicon substrate. Such microsphere coatings have great potential for use in biosensor technologies, specifically to increase the surface area for binding. However, in order to be useful, the peptoids must consistently form uniform coatings. In this study we investigated the effects of various coating protocol parameters on the uniformity of the resulting peptoid microsphere coatings, including (i solvent, (ii administration technique, and (iii drying environment. In addition, we investigated the robustness of the coatings as well as the potential for using a glass substrate. These studies show that uniform, robust peptoid microsphere coatings can be formed using protic solvents, a full coverage administration technique, and drying in open air on silicon or glass substrates.

  10. Simultaneous nano- and micro-scale control of nanofibrous microspheres self-assembled from star-shaped polymers

    Zhang, Zhanpeng; Marson, Ryan L.; Ge, Zhishen; Glotzer, Sharon C.; Ma, Peter X.

    2015-01-01

    The mechanism underlying the multi-scale self-assembly of star-shaped polymers into non-hollow, hollow, and spongy nanofibrous microspheres is reported. Star-shaped poly(L-lactic acid) polymers with varying arm-numbers and arm-lengths are synthesized, dissolved in tetrahydrofuran, emulsified in glycerol, and thermally-induced to phase separate, resulting in microspheres that are either smooth or fibrous on the nano-scale, and either non-hollow, hollow, or spongy on the micro-scale. Molecular architecture and the hydroxyl density are shown to control assembly and morphology at both nano- and micro-scales. Nanofibers form only when the arm length is sufficiently long, while an increase in hydroxyl density causes the microspheres to change from non-hollow to hollow to spongy. We demonstrate via both experiments of capping or doubling the hydroxyl end groups and dissipative particle dynamics simulations that the affinity of hydroxyl to glycerol is critical to stabilizing the micro-scale structure. A “phase diagram” was constructed for the six types of microspheres in relation to the molecular structures of the star-shaped polymers. The proposed mechanism explains how star-shaped polymers self-assemble into various microspheres, and guides us to simultaneously control both nano- and micro-features of the microspheres. PMID:26009995

  11. Effects of different organic additives on the formation of YVO 4:Eu 3+ microspheres under hydrothermal conditions

    Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua

    2011-07-01

    In this study, the effects of different organic additives on the formation of europium-doped yttrium orthovanadate (YVO 4:Eu 3+) microspheres under hydrothermal conditions were investigated. The organic additives employed were sodium dodecyl sulfate (SDS) as an ionic surfactant, polyvinylpyrrolidone (PVP) and ethylene glycol (EG) as nonionic surfactants, disodium ethylenediaminetetraacetic acid (Na 2EDTA) as an organic salt, and acetone as an organic solvent. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The experimental results demonstrated that the organic additives in the hydrothermal system played an important role in the formation of YVO 4:Eu 3+ powders with different morphologies and sizes, as follows: ellipsoids (SDS) → irregular microspheres (acetone) → inhomogeneous microspheres (EG) → uniform microspheres with the diameter of 4-5 μm (PVP) → uniform microspheres with the diameter of 1-3 μm (Na 2EDTA). The luminescence properties were greatly affected by the morphologies and sizes of the as-synthesized samples. The highest emission intensity was observed in the sample hydrothermally synthesized with Na 2EDTA due to the formation of uniform microspheres with less aggregation.

  12. Brain-Targeted Nasal Clonazepam Microspheres

    Shaji J; Poddar A; Iyer S

    2009-01-01

    Gelatin-chitosan mucoadhesive microspheres of clonazepam were prepared using the emulsion cross linking method. Mirospheres were evaluated using the in vitro and ex vivo drug release patterns. In vivo CNS drug distribution studies were carried out in rats by administering the clonazepam microspheres intra-nasally and clonazepam solution intravenously. From the drug levels in plasma and CSF, drug targeting index and drug targeting efficiency were calculated. Results obtained indicated that int...

  13. Hydrogen transport and storage in engineered microspheres

    Rambach, G. [Lawrence Livermore National Lab., CA (United States); Hendricks, C. [W.J. Schafer Associates, Livermore, CA (United States)

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  14. Uniform and Robust Peptoid Microsphere Coatings

    Servoss, Shannon L.; Phillip Blake; Melissa L. Hebert; Dhaval S. Shah

    2013-01-01

    Peptoids that are helical and partially water soluble have been shown to self-assemble into microspheres when the peptoid solution is dried on a silicon substrate. Such microsphere coatings have great potential for use in biosensor technologies, specifically to increase the surface area for binding. However, in order to be useful, the peptoids must consistently form uniform coatings. In this study we investigated the effects of various coating protocol parameters on the uniformity of the resu...

  15. Atomic entanglement near a realistic microsphere

    Dung, Ho Trung; Scheel, S.; Welsch, D-G; Knöll, L

    2001-01-01

    We study a scheme for entangling two-level atoms located close to the surface of a dielectric microsphere. The effect is based on medium-assisted spontaneous decay, rigorously taking into account dispersive and absorptive properties of the microsphere. We show that even in the weak-coupling regime, where the Markov approximation applies, entanglement up to 0.35 ebits between two atoms can be created. However, larger entanglement and violation of Bell's inequality can only be achieved in the s...

  16. Germanium Microsphere High-Q Resonator

    Wang, Pengfei; Lee, Timothy; Ding, Ming; Dhar, Anirban; Hawkins, Thomas; Foy, Paul; Semenova, Yuliya; Wu, Qiang; Sahu, Jayanta; Farrell, Gerald; Ballato, John; Brambilla, Gilberto

    2012-01-01

    In this Letter, the fabrication and characterization of a microsphere resonator from the semiconductor germanium is demonstrated. Whispering gallery modes are excited in a 46 μm diameter germanium microsphere resonator using evanescent coupling from a tapered silica optical fiber with a waist diameter of 2 μm. Resonances with Q factors as high as 3.8×104 at wavelengths near 2 μm are observed. Because of their ultrahigh optical nonlinearities and extremely broad transparency window, germanium ...

  17. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Xudong Fan; White, Ian M.; Suter, Jonathan D.; Hongying Zhu

    2006-01-01

    We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of the microsphere's whispering gallery mode resonances. A detection limit on the order of 1 NIH Unit/mL is demonstrated. Control experiments...

  18. Carbon microsphere-filled Pyrrone foams.

    Kimmel, B. G.

    1973-01-01

    Syntactic foam formulations were prepared from mixtures of Pyrrone prepolymers and hollow carbon microspheres. Very low curing shrinkages were obtained for high volume loadings of microspheres. The resulting syntactic foams were found to be remarkably stable over a wide range in temperature. A technique was developed for the emplacement of these foam formulations in polyimide-fiberglass, titanium alloy and stainless steel honeycomb without sacrificing low curing shrinkage or thermal stability.

  19. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    Jonathan M Behrendt

    Full Text Available The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide. Following internal labeling, bioconjugation of green fluorescent protein (GFP to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630 and shells (GFP. In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular

  20. Albumin microspheres for oral delivery of iron.

    Shivakumar, H N; Vaka, Siva Ram Kiran; Murthy, S Narasimha

    2010-01-01

    Bovine serum albumin (BSA) microspheres of ferric pyrophosphate (FPP) intended for passive targeting to the Peyer's patches has been proposed for oral iron supplementation. Microspheres prepared by emulsification chemical cross linking method were characterized for surface topography, entrapment efficiency, particle size, particle charge and in vitro drug release. Microspheres of batch C with FPP to BSA ratio of 1:5 were found to be most suitable for targeting as they exhibited high entrapment (83.88 +/- 4.31), high monodispersity (span = 1.24 +/- 0.01), and least particle size (d(vm) = 4.40 +/- 0.01). In addition the amount of iron retained in these microspheres despite exposure to simulated gastrointestinal conditions for 5 h was found to be 83.72 +/- 4.22%, the highest in the three batches. The in vivo serum iron profiles in normal rats following oral administration displayed a reduced T(max) (2 h), elevated C(max) (106.06 +/- 12.18 mug/dL) and increased AUC (0-16 h) (647.44 +/- 52.33 mug.h/dL) for these microspheres which significantly differed (P <0.05) from FPP solution indicating a higher iron repletion potential of the BSA microspheres. PMID:19635031

  1. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine.

    Cui, Chengji; Stevens, Vernon C; Schwendeman, Steven P

    2007-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid (TT), C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide to provide a depot effect, with MgCO(3) co-encapsulated in the polymer to neutralize acidity from the biodegrading PLGA polyester. A single immunization of encapsulated peptide in rabbits elicited a stronger antibody response with equivalent duration relative to a positive control--three injections of the peptide administered in a squalene-based water-in-oil emulsion. Surface-conjugated peptide was less effective but enhanced antibody levels at 1/5 the dose, relative to soluble antigen. Most remarkable and unexpected was the finding that co-encapsulation of base was essential to attain the powerful adjuvant effect of the PLGA-MgCO(3) system, as the MgCO(3)-free microspheres were completely ineffective. A promising contraceptive hCG peptide vaccine with acceptable side effects (i.e., local tissue reactions) was achieved by minimizing PLGA and MgCO(3) doses, without significantly affecting antibody response. PMID:16996662

  2. Preparation and characterization of phosphorus yttrium glass microspheres for radiotherapy applications

    Full text:Phosphorus yttrium microspheres show promising results in the treatment of cancers. However, phosphorus can be a problem in some types of glasses because it usually plays an important role in the nucleation of crystalline phases, as observed for some silicate glasses.In the previous works P+ ions were implanted in Y2O3-Al2O3-SiO2 glasses at 50-200 keV by an ion implanter. In this paper the novel method to embedding of phosphorus particles into the matrix of yttrium aluminum silicate microspheres is reported. Yttrium phosphorus glass microspheres around 20 μm in size when aqueous solution of YCl3 and AlCl3 was added in to TEOS, phosphoric acid was used to catalyze the hydrolysis and condensation of tetraethyl orthosilicate and pumped in to stirred silicon oil were obtained. The shapes of particles produced by this method are regular and very close to spheres. The amorphous structure, PO43- and Si-O bands, spherical shapes and composition investigated by using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and the Carbon / Sulfur Determinator, respectively. The result shows that the silicone oil spherodization method can be greatly suitable way to production of yttrium phosphorus glass microspheres. In this paper we could eliminate P+ ion implantation stage by embedding of phosphorus particles in the matrix of glass microspheres. Also this paper shows that the high temperature is not required to production of yttrium phosphorus aluminum silicate microspheres.

  3. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy.

    Liu, Yajun; Schwendeman, Steven P

    2012-05-01

    The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to as microclimate pH (μpH), is often uncontrolled, ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The coincorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two week incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO(3), acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins. PMID:22428586

  4. Hierarchical bismuth phosphate microspheres with high photocatalytic performance

    Pei, Lizhai; Wei, Tian; Lin, Nan; Yu, Haiyun [Anhui University of Technology, Ma' anshan (China). Key Laboratory of Materials Science and Processing of Anhui Province

    2016-05-15

    Hierarchical bismuth phosphate microspheres have been prepared by a simple hydrothermal process with polyvinyl pyrrolidone. Scanning electron microscopy observations show that the hierarchical bismuth phosphate microspheres consist of nanosheets with a thickness of about 30 nm. The diameter of the microspheres is about 1 - 3 μm. X-ray diffraction analysis shows that the microspheres are comprised of triclinic Bi{sub 23}P{sub 4}O{sub 44.5} phase. The formation of the hierarchical microspheres depends on polyvinyl pyrrolidone concentration, hydrothermal temperature and reaction time. Gentian violet acts as the pollutant model for investigating the photocatalytic activity of the hierarchical bismuth phosphate microspheres under ultraviolet-visible light irradiation. Irradiation time, dosage of the hierarchical microspheres and initial gentian violet concentration on the photocatalytic efficiency are also discussed. The hierarchical bismuth phosphate microspheres show good photocatalytic performance for gentian violet removal in aqueous solution.

  5. Intra-arterial injection of radioactive microspheres in neoplasm treatment

    A laboratory methods to obtain microspheres with 90Y was developed. In the experiment on animals a possibility of the microspheres application for intraarterial injection for radiation treatment of highly vascularized neoplasms was shown

  6. Micropositioning of microsphere resonators on planar optical waveguides

    Murugan, Ganapathy Senthil; Panitchob, Yuwapat; Tull, Elizabeth J.; Bartlett, Philip N.; Wilkinson, James S.

    2006-01-01

    Topographical structures to position microsphere resonators accurately upon planar optical waveguides have been designed and fabricated. The methods being employed to assemble the microspheres on the patterned planar waveguides are discussed.

  7. Preparation of patterned surfaces and microspheres using radiation processing techniques

    The Biomaterials group of the Department of Radiation Chemistry uses radiation for synthesis and modification of polymers to create new biomaterials. In this report, the work carried out during the period of the Co-ordinated Research Programme and involving synthesis of functional microspheres and surface modifications is described, and future plans are identified. The main polymerization methods available to prepare such spheres are the nonaqueous dispersion polymerization, aqueous emulsion polymerization, seeded suspension polymerization and precipitation polymerization. Precipitation polymerization is unique from the point of view that it can lead to monodisperse microspheres without added surfactant or stabilizer. We are synthesizing them by a radiation initiated precipitation polymerization of a monomer (usually diethyleneglycol dimethacrylate) solution. We report the incorporation of carboxy (AAc) and epoxy (GMA) functionality by this method. The carboxy groups could provide bioadhesion, while the epoxy groups are sufficiently stable in aqueous solutions and react readily with a number of functional groups, thus enabling a covalent binding of a wide range of bioactive materials to the microspheres. Several techniques have been used to tailor the properties of polymer surfaces. These include surface functionalization by physical deposition/adsorption, chemical modifications, gamma-, electron- and ion irradiation, and glow discharge techniques. We used the method of surface oxidation by electron beam irradiation to prepare ELISA plates with improved sensitivity for early detection of tropical diseases. Micropatterning of small molecules, macromolecules and cells on matrix surfaces has a wide range of potential applications in molecular electronics, biosensing, diagnostics, tissue engineering and micromachining. To achieve this micropatterning several methods are in use such as photolithography, ion implantation, electron beam and ion beam irradiation

  8. Albumin microspheres as carriers for the antiarthritic drug celecoxib

    Thakkar, Hetal; Sharma, Rakesh Kumar; Mishra, Anil Kumar; Chuttani, Krishna; Murthy, Rayasa Ramchandra

    2005-01-01

    The present study investigates the preparation of celecoxib-loaded albumin microspheres and the biodistribution of technetium-99m (99mTc)-labeled celecoxib as well as its microspheres after intravenous administration. Microspheres were prepared using a natural polymer BSA using emulsification chemical cross-linking method. The prepared microspheres were characterized for entrapment efficiency, particle size, and in vitro drug release. Surface morphology was studied by scanning electron micros...

  9. Fluorescent Microspheres as Point Sources: A Localization Study

    Chao, Jerry; Lee, Taiyoon; Ward, E Sally; Ober, Raimund J.

    2015-01-01

    The localization of fluorescent microspheres is often employed for drift correction and image registration in single molecule microscopy, and is commonly carried out by fitting a point spread function to the image of the given microsphere. The mismatch between the point spread function and the image of the microsphere, however, calls into question the suitability of this localization approach. To investigate this issue, we subject both simulated and experimental microsphere image data to a ma...

  10. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres

    Ford Versypt, Ashlee N.; Arendt, Paul D.; Pack, Daniel W.; Braatz, Richard D.

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  11. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

    Ashlee N Ford Versypt

    Full Text Available A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid (PLGA that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction.

  12. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  13. Preparation, Irradiation and Clinical Use of Holmium Containing Microspheres Obtained by Neutron Irradition in TRIGA Reactor

    Sedda, A.F.; Rossi, G. [UTTMAT-IRR, ENEA Casaccia, Rome (Italy)

    2011-07-01

    A radioactive composition for use in therapy, containing radioisotopes immobilized on biocompatible and bioabsorbable poly(lactic acid)-based microspheres was prepared, and internationally patented. A 10% of an holmium organic complex was previously embedded within the matrix of the microspheres, that were successively irradiated in a TRIGA reactor for 1- to 3 hours 2 hours at a flux of 1,25.10{sup 13} n cm{sup -2} s{sup -1}, obtaining a total activity of 5-200 mCi of {sup 166}Ho per irradiation. The irradiated microspheres were certified sterile at the end of the irradiation, due to the gamma and neutron flux of the reactor. The radioactive microsphere were dispersed in a biocompatible and bioabsorbable matrix consisting of a hypotonic gel, and were used in the therapy of neoplastic diseases, by application of radioactive sources in direct contact with the tumor tissues or within the same (brachytherapy). Patients with II and III grade glioblastoma multiforme were treated, by hypodermic injection in the Ommaya reservoir placed under the patient's scalp, visualising the introduction of the microparticle-containing gel in the brain cavity by computed tomography (CT) and gamma scintigraphy. It has thus been ascertained that the introduced substance forms, at the outset, an approximately spherical deposit, and that the gel is later gradually absorbed in the surrounding tissue, thus leaving the dispersed radioactive particles in contact with all of the interstices of the brain cavity. Patients with solid hepatic or splenic tumours, that were considered untreatable by surgery due to bad general conditions or advanced age, have been treated by injecting intratissue the microspheres in the tumour lesions, under stereotaxy and ultrasound or radiographic visualisation. Patients with solid hepatic, adrenal or renal tumours, that were considered untreatable by surgery due to bad general conditions or advanced age, have been treated by injecting intra-arterially the

  14. Preparation, Irradiation and Clinical Use of Holmium Containing Microspheres Obtained by Neutron Irradition in TRIGA Reactor

    A radioactive composition for use in therapy, containing radioisotopes immobilized on biocompatible and bioabsorbable poly(lactic acid)-based microspheres was prepared, and internationally patented. A 10% of an holmium organic complex was previously embedded within the matrix of the microspheres, that were successively irradiated in a TRIGA reactor for 1- to 3 hours 2 hours at a flux of 1,25.1013 n cm-2 s-1, obtaining a total activity of 5-200 mCi of 166Ho per irradiation. The irradiated microspheres were certified sterile at the end of the irradiation, due to the gamma and neutron flux of the reactor. The radioactive microsphere were dispersed in a biocompatible and bioabsorbable matrix consisting of a hypotonic gel, and were used in the therapy of neoplastic diseases, by application of radioactive sources in direct contact with the tumor tissues or within the same (brachytherapy). Patients with II and III grade glioblastoma multiforme were treated, by hypodermic injection in the Ommaya reservoir placed under the patient's scalp, visualising the introduction of the microparticle-containing gel in the brain cavity by computed tomography (CT) and gamma scintigraphy. It has thus been ascertained that the introduced substance forms, at the outset, an approximately spherical deposit, and that the gel is later gradually absorbed in the surrounding tissue, thus leaving the dispersed radioactive particles in contact with all of the interstices of the brain cavity. Patients with solid hepatic or splenic tumours, that were considered untreatable by surgery due to bad general conditions or advanced age, have been treated by injecting intratissue the microspheres in the tumour lesions, under stereotaxy and ultrasound or radiographic visualisation. Patients with solid hepatic, adrenal or renal tumours, that were considered untreatable by surgery due to bad general conditions or advanced age, have been treated by injecting intra-arterially the microspheres in the tumour lesions

  15. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions

    T S Pradeesh; M C Sunny; H K Varma; P Ramesh

    2005-08-01

    Hydroxyapatite (HAP) microspheres with peculiar spheres-in-sphere morphology were prepared by using oil-in-water emulsions and solvent evaporation technique. Ethylene vinyl acetate co-polymer (EVA) was used as the binder material. Preparation of HAP/EVA microspheres was followed by the thermal debinding and sintering at 1150°C for 3 h to obtain HAP microspheres. Each microsphere of 100–1000 m was in turn composed of spherical hydroxyapatite granules of 2–15 m size which were obtained by spray drying the precipitated HAP. The parameters such as percentage of initial HAP loading, type of stabilizer, concentration of stabilizer, stirring speed and temperature of microsphere preparation were varied to study their effect on the particle size and geometry of the microspheres obtained. It was observed that these parameters do have an effect on the size and shape of the microspheres obtained, which in turn will affect the sintered HAP microstructure. Of the three stabilizers used viz. polyoxyethylene(20) sorbitan monopalmitate (Tween-40), sodium laurate and polyvinyl alcohol (PVA), only PVA with a concentration not less than 0.1 wt% showed controlled stabilization of HAP granules resulting in spherical microspheres of required size. Morphologically better spherical microspheres were obtained at 20°C. Increasing the stirring speed produced smaller microspheres. Smaller microspheres having size < 50 m were obtained at a stirring speed of 1500 ± 50 rpm. A gradual decrease in pore size was observed in the sintered microspheres with increase in HAP loading.

  16. Preparation of polymer microspheres by radiation-induced polymerization

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  17. Computational dynamics of acoustically driven microsphere systems

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B.

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  18. Computational dynamics of acoustically driven microsphere systems.

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188

  19. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Guo, Longhai; Ren, Shanshan; Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [Ministry of Education, Beijing University of Chemical Technology, Key Laboratory of Carbon Fiber and Functional Polymer (China)

    2015-01-15

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag{sup +} and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA){sub 2}]{sup +}) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO{sub 3} and Py, the introduction of [Ag(TEA){sub 2}]{sup +} ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA){sub 2}]{sup +} ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10{sup 5} – 9×10{sup 5} cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract.

  20. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag+ and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA)2]+) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO3 and Py, the introduction of [Ag(TEA)2]+ ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA)2]+ ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 105 – 9×105 cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract

  1. Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres.

    Selek, H; Sahin, S; Ercan, M T; Sargon, M; Hincal, A A; Kas, H S

    2003-01-01

    Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres. The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting. PMID:12554379

  2. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  3. THE COMBUSTION PERFORMANCE OF MEDIUM DENSITY FIBERBOARD TREATED WITH FIRE RETARDANT MICROSPHERES

    Lichao Sun,

    2011-12-01

    Full Text Available Fire retardant particles (guanylurea phosphate and boric acid with a morphological characteristic of large crystal or fine microsphere, were respectively applied to wood fibers to make medium density fiberboard (MDF. The effects of particle size of the fire retardant on the combustion performance of the resulting MDF samples were determined using a thermogravimetric (TG analyzer and cone calorimeter (CONE. The scanning electron microscopy and laser particle size analysis showed that the microspheric particles of fire retardant had a mean size of approximately 20 µm, which was smaller than the crystal (260 um. Incorporation of the fire retardant either in the crystal or microsphere shape reduced the weight loss of the resulting MDF, as evidenced by the TG analysis and the CONE test; the release rate and total amount of both the heat and smoke were apparently inhibited as compared to the untreated MDF samples. Treatments caused an increase in both the ignition time and charring ratio of the MDF. Compared with the fire retardant crystals, the fine microspheric particles exhibited greater ability in inhibiting the release of heat and smoke through the combustion processes.

  4. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  5. Spherical and polygonal shape of Au nanoparticles coated functionalized polymer microspheres

    Xu, Ting; Li, Yingzhi; Zhang, Junxian; Qi, Yalong; Zhao, Xin; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn

    2015-08-01

    Highlights: • PS/PPy with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PPy by the fixation and continuous growth process. • Mercapto-groups played a role in the number and morphology of Au shell. • PS/PPy/Au had homogeneous and dense Au coatings with different shape. - Abstract: Uniform polystyrene (PS)/polypyrrole (PPy) composite microspheres with well-defined core/shell structures are synthesized by chemical oxidative polymerization. Gold nanoparticles (Au NPs) are successfully coated on the surface of PS/PPy microspheres by means of electrostatic interactions due to the functionalized PPy coatings supplying sufficient amino groups and the additive of mercapto acetic acid. Furthermore, the as-prepared PS/PPy/Au microspheres serving as seeds facilitate Au NPs further growth by in situ reduction in HAuCl{sub 4} solution to obtain PS/PPy/Au spheres with the core/shell/shell structure. Morphology observation demonstrates that the monodisperse PS/PPy/Au microspheres compose of uniform cores and the compact coatings containing distinct two layers. X-ray diffraction and X-ray photoelectron spectroscope confirm the existence of PPy and Au on the surface of the composite spheres. This facile approach to preparing metal-coated polymer spheres supplies the potential applications in biosensors, electronics and medical diagnosis.

  6. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells.

    Kuang, Rong; Zhang, Zhanpeng; Jin, Xiaobing; Hu, Jiang; Gupte, Melanie J; Ni, Longxing; Ma, Peter X

    2015-09-16

    Dentin regeneration is challenging due to its complicated anatomical structure and the shortage of odontoblasts. In this study, a novel injectable cell carrier, nanofibrous spongy microspheres (NF-SMS), is developed for dentin regeneration. Biodegradable and biocompatible poly(l-lactic acid)-block-poly(l-lysine) are synthesized and fabricated into NF-SMS using self-assembly and thermally induced phase separation techniques. It is hypothesized that NF-SMS with interconnected pores and nanofibers can enhance the proliferation and odontogenic differentiation of human dental pulp stem cells (hDPSCs), compared to nanofibrous microspheres (NF-MS) without pore structure and conventional solid microspheres (S-MS) with neither nanofibers nor pore structure. During the first 9 d in culture, hDPSCs proliferate significantly faster on NF-SMS than on NF-MS or S-MS (p SMS group than in the control groups. Furthermore, 6 weeks after subcutaneous injection of hDPSCs and microspheres into nude mice, histological analysis shows that NF-SMS support superior dentin-like tissue formation compared to NF-MS or S-MS. Taken together, NF-SMS have great potential as an injectable cell carrier for dentin regeneration. PMID:26138254

  7. FORMULATION AND OPTIMIZATION OF FLOATING PULSATILE ACECLOFENAC MICROSPHERES USING RESPONSE SURFACE METHODOLOGY

    Shaji Jessy

    2012-01-01

    Full Text Available The purpose of present work is to develop aceclofenac microspheres for floating pulsatile release intended for chronopharmacotheraphy. Floating pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. The floating pulsatile microspheres were prepared by emulsion solvent diffusion technique. A 32 factorial design was employed to study the effect of independent variables, drug to polymer ratio and stirring speed, on dependent variables, particle size and drug entrapment efficiency. The best batch exhibited a high entrapment efficiency of 90.1% and mean particle size 118.66 μm. Polymers used for the preparation were Eudragit L100 and Eudragit S100 which gets solubilized at pH above 6 and 7 respectively. The floating microsphere provides two phase release pattern with initial lag time during floating in acidic medium followed by rapid release in phosphate buffer. This approach suggested the use of floating pulsatile microsphere as promising drug delivery for site and time specific release of aceclofenac for chronotheraphy of rheumatoid arthritis.

  8. Biosensing by WGM Microspherical Resonators

    Righini, Giancarlo C.; Soria, Silvia

    2016-01-01

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed. PMID:27322282

  9. Acrolein Microspheres Are Bonded To Large-Area Substrates

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  10. Nasal administration of ondansetron using a novel microspheres delivery system.

    Mahajan, Hitendra S; Gattani, Surendra G

    2009-01-01

    Gellan gum microspheres of ondansetron hydrochloride, for intranasal delivery, were prepared to avoid the first pass metabolism as an alternative therapy to parentral, and to improve therapeutic efficiency in treatment of nausea and vomiting. The microspheres were prepared using conventional spray-drying method. The microspheres were evaluated for characteristics like particle size, incorporation efficiency, swelling ability, zeta potential, in-vitro mucoadhesion, thermal analysis, XRD study and in-vitro drug release. Treatment of in-vitro data to different kinetic equations indicated diffusion controlled drug delivery from gellan gum microspheres. The results of DSC and XRD studies revealed molecular amorphous dispersion of ondansetron into the gellan gum microspheres. PMID:19519195

  11. Biologically formed hollow cuprous oxide microspheres

    Hollow cuprous oxide (Cu2O) microspheres with a diameter of ca. 1.8 μm are prepared by using yeast as template. The possible mechanism for the formation of the hollow Cu2O spheres is revealed. The biotemplated sample is investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) absorption spectra. The sample consists of the crystalline Cu2O microspheres with diameters of about 59.5 nm and lattice parameter of 4.264 A. The observed optical band gap of the product indicates that the blue-shift effect occurs, which is attributed to the hollow Cu2O microspheres.

  12. Improving photoprotection: 4-methylbenzylidene camphor microspheres.

    Centini, Marisanna; Miraglia, Giovanna; Quaranta, Valeria; Buonocore, Anna; Anselmi, Cecilia

    2014-05-22

    Abstract We propose a new approach for photoprotection. 4-Methylbenzylidene camphor (4-MBC), one of the most widely used UV filters, was encapsulated in microspheres, with a view to overcoming problems (percutaneous absorption, photodegradation and lack of lasting effect) arising with organic sunscreens, and to achieve safe photoprotection. We focused on this filter in the light of the Cosmetics Europe opinion concerning its possible effects on the thyroid gland. Microspheres were prepared by emulsification-solvent evaporation, using different amounts of 4-MBC and characterized for morphology, encapsulation efficiency and particle size. The particles were then mixed in O/W emulsions. The in vitro sun protection factors, in vitro release and photostability were investigated and compared with emulsions containing the free sunscreen. The new microspheres offer good morphology and loading (up to 40%), and the same photoprotection as the free filter while at the same time protecting it from photodegradation. The systems also give a slower release from the emulsions. PMID:24854342

  13. pH-sensitive interpenetrating polymer network microspheres of poly(vinyl alcohol) and carboxymethyl cellulose for controlled release of the nonsteroidal anti-inflammatory drug ketorolac tromethamine.

    Kondolot Solak, Ebru; Er, Akın

    2016-05-01

    In this study, we aimed to produce pH-sensitive microspheres for the controlled release of the nonsteroidal anti-inflammatory drug, ketorolac tromethamine (KT). For this purpose, an interpenetrating polymer network (IPN) of microspheres of poly(vinyl alcohol) (PVA)/sodium carboxymethyl cellulose (NaCMC) were prepared, based on different formulations using glutaraldehyde (GA) (0.66 M) and hydrochloric acid (HCl) (3%, v/v). The preparation conditions of the microspheres were optimized by considering the percentage of entrapment efficiency and swelling capacity of the microspheres, and their release data. The effects of PVA and NaCMC ratio on the release of KT for over a period of 6 h, at three pH values (1.2, 6.8, and 7.4), have been discussed. PMID:25619756

  14. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system

    Desorption behavior of a model protein (bovine serum albumin, BSA) on commercial hydroxyapatite (HAp) microspheres and its control were investigated for protein delivery system. The desorption behavior related strongly to the phosphate concentration in phosphate buffer solution: the amount of desorbed BSA increased when the phosphate concentration increased. In physiological buffer solution, which contains 10 mM phosphate, the initial burst release of BSA was observed: 70% of BSA was rapidly desorbed after 0.5 h, and 80% after 24 h. In contrast, the extremely low release profile of BSA was observed in distilled water. For the controlled release of BSA in physiological condition, the BSA-loaded HAp microspheres were encapsulated with a biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA) by a solid-in oil-in water (S/O/W) emulsion solvent evaporation method. The initial burst was significantly reduced, and the BSA release was remarkably prolonged by the encapsulation

  15. Study on immobilization of lipase onto magnetic microspheres with epoxy groups

    Magnetic microspheres were synthesized by the suspension polymerization of glycidyl methacrylate (GMA), methacrylic acid (MAA) and divinyl benzene (DVB) in the presence of oleic acid-coated Fe3O4 nanoparticles. Triacylglycerol lipase from porcine pancreas was covalently immobilized on the magnetic microspheres via the active epoxy groups with the activity yield up to 63% (±2.3%) and enzyme loading of 39 (±0.5) mg/g supports. The resulting immobilized lipase had higher optimum temperature compared with those of free lipase and exhibited better thermal, broader pH stability and excellent reusability. Furthermore, the catalyzed capability of immobilized lipase was also investigated by catalyzing synthesis of hexyl acetate and the esterification conversion rate reached to 83% (±2.5%) after 12 h in nonaqueous solvent

  16. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 370C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  17. Preparation of hollow silver microspheres and their characterization

    Hollow silver microspheres have been prepared using modified polystyrene microspheres as hard template. The process of preparation is as follows: polystyrene microspheres with a layer of silver coated on their surface by the chemical planting method were dissolved in tetrahydrofuran, then the hollow silver microspheres were prepared. The properties of silver microspheres were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The optical properties of silver microspheres were studied using UV-Vis spectrophotometer. The inside diameter of silver hollow microspheres is 250 nm, the shell thickness is 15 nm, and the absorption peak of nanoparticles can red-shift from 600 nm to 900 nm at the range of UV-Vis spectra. These routes realize a facile method that tuning of the absorption band of Ag nanostructures within the visible-near-infrared region. (authors)

  18. Variance in multiplex suspension array assays: microsphere size variation impact

    Cheng R Holland

    2007-08-01

    Full Text Available Abstract Background Luminex suspension microarray assays are in widespread use. There are issues of variability of assay readings using this technology. Methods and results Size variation is demonstrated by transmission electron microscopy. Size variations of microspheres are shown to occur in stepwise increments. A strong correspondence between microsphere size distribution and distribution of fluorescent events from assays is shown. An estimate is made of contribution of microsphere size variation to assay variance. Conclusion A probable significant cause of variance in suspended microsphere assay results is variation in microsphere diameter. This can potentially be addressed by changes in the manufacturing process. Provision to users of mean size, median size, skew, the number of standard deviations that half the size range represents (sigma multiple, and standard deviation is recommended. Establishing a higher sigma multiple for microsphere production is likely to deliver a significant improvement in precision of raw instrument readings. Further research is recommended on the molecular architecture of microsphere coatings.

  19. Formulation and evaluation of nasal mucoadhesive microspheres of sumatriptan succinate.

    Jain, Snehal A; Chauk, Dheeraj S; Mahajan, Hitendra S; Tekade, Avinash R; Gattani, Surendra G

    2009-12-01

    The purpose of present research work was to develop mucoadhesive microspheres for nasal delivery with the aim to avoid hepatic first-pass metabolism, improve therapeutic efficacy and enhance residence time. For the treatment of migraine, hydroxypropyl methylcellulose (HPMC) K4M and K15M based microspheres containing sumatriptan succinate (SS) were prepared by spray-drying technique. The microspheres were evaluated with respect to the yield, particle size, incorporation efficiency, swelling property, in vitro mucoadhesion, in vitro drug release, histological study and stability. Microspheres were characterized by differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study. It was found that the particle size, swelling ability and incorporation efficiency of microspheres increases with increasing drug-to-polymer ratio. HPMC-based microspheres show adequate mucoadhesion and do not have any destructive effect on nasal mucosa. On the basis of these results, SS microspheres based on HPMC may be considered as a promising nasal delivery system. PMID:19888880

  20. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    Romero-Isart, O; Navau, C; Sanchez, A; Cirac, J I

    2011-01-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is experimentally feasible to perform ground state cooling and to prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be extremely well isolated from the environment. Hence, we propose to combine the technology of magnetic mictrotraps and superconducting qubits to bring relatively large objects to the quantum regime.

  1. A taper-fused microspherical laser source

    Jonathan M. Ward; Féron, Patrice; Nic Chormaic, Síle

    2008-01-01

    We report on the realization of an integrated lasing device consisting of a microsphere optical resonator fused to a tapered optical fiber. A microsphere fabricated from Er: Yb-codoped phosphate glass is heated above its glass transition temperature of 375degC by pumping it at 977 nm with 70 mW via a tapered optical fiber. The onset of thermal stress in the glass at a maximum pumping power results in the sphere melting and fusing to the taper coupler, without inhibition of whispering gallery ...

  2. Continuous conversion of U3O8 microspheres into UO2 microspheres using a rotary reduction unit

    The paper describes details of rotary reduction unit and the optimization of conditions used for the conversion of U3O8 microspheres to UO2 microspheres and its subsequent stabilization to UO2+x. The product obtained is suitable for pelletization. Under the optimised conditions, continuous conversion of U3O8 microspheres into soft UO2 microspheres has been achieved with a throughput of ∼1 kg of UO2 microspheres/hour. The continuous conversion operation has overcome the limitations encountered in the batch type reduction and resulted in good quality UO2 product. (author)

  3. Preparation of ratio-therapeutical glass microspheres for curing malignant tumor. Pt.4: The study on properties of glass microspheres

    The density and chemical resistance of medical glass microspheres produced through Sol-Gel process are measured. The results shown that the densities value of there microspheres in small, and the both of them are 2.6 g/cm3 and 2.0 g/cm3 for yttrium-contained and phosphorous-contained microspheres respectively. Beside, chemical resistance of glass microspheres is moderate. The dissolution rates in physiological simulation solution are within the medical permitting limit of nuclide. Therefore the glass microspheres carrying radio-isotope produced through Sol-Gel process can be used for medical in tervenient treatment

  4. Sustained Release of TGFβ3 from PLGA Microspheres and Its Effect on Early Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Moioli, Eduardo K.; Hong, Liu; GUARDADO, JESSE; Clark, Paul A.; Mao, Jeremy J.

    2006-01-01

    Despite the widespread role of transforming growth factor-β3 (TGFβ3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFβ3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFβ3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was enca...

  5. High Resolutions Obtained by Microspheres, and Phase Contrast Microscope with a Microsphere

    Ben-Aryeh, Y

    2015-01-01

    High resolutions obtained in optical systems with microspheres are studied by Helmholtz equation and boundary conditions for the EM fields. The large lateral spatial wave vectors of the evanescent waves, which include information on the fine structures of the object, are converted at the microsphere surface to smaller spatial wave vectors. Due to reduction in the magnitudes of these spatial wave vectors a part of the EM waves propagate in the microsphere without decay, but preserve the fine structures which can be recovered in the image plane. A new method for measuring phase objects, like those of semi-transparent biological tissues, with high resolutions is described by an optical system composed of a combination of the microsphere with an interferometer.

  6. Preparation of Micron-size Functional Fluorescent Microspheres

    WANG Di-qiang; LIU Bai-ling; LI He; HU Jie

    2004-01-01

    As a kind of special functional microspheres, fluorescent polymer microspheres could be used in cell label and separation, blood flow assay, flow cytometer marking, chemical reaction assay,and in analyst of the transform and diffusion of particles in soil 1. However, one of the most important applications of fluorescent microspheres is in the high-throughput screening of drugs (HTS) 2. Through affinity interaction, radioactive ligands (latent drugs) are bound to fluorescent microspheres covered by receptor, and luminescence is produced by radioactivity, so ligands can be assayed and screened.In this study, we developed a technique for preparing micron-size fluorescent microspheres with different functional groups. The methods included the synthesis of micron-size polystyrene microspheres through the dispersion polymerization of styrene in different media such as ethanol,ethanol-water, and isopropanol; the functional polystyrene microspheres were prepared by introduction of functional monomers into the reaction system of styrene; the functional fluorescent microspheres were obtained by the way of dying functional microspheres in the fluorescent material's ethanol solvent.The average diameter of microspheres was in the range of 1~10 μm, and the distribution was normal distribution. The functional groups included -OH, -CHO, -COOH, -CONH2, and SO3H. The absorbing spectrum and exciting spectrum were tested, the results showed that the maximal absorbance of fluorescent microsphere was near 306.5 nm, and its maximal excitation was near 362 nm. The excitation spectrum of fluorescent material (DPO) and fluorescent microspheres were shown in figure 1, and it indicated that the developed fluorescent microspheres showed the same excitation behavior like DPO, which related to the fluorescent microspheres had stable luminescence property.

  7. Preparation of biodegradable porous poly(butylene succinate microspheres

    Pepić Dragana

    2008-01-01

    Full Text Available The aim of this study was to determine the optimal conditions for the fabrication of porous microspheres based on poly(butylene succinate, PBS. The biodegradable non-porous PBS microspheres were prepared by the oil-in-water (o/w emulsion solvent evaporation method using poly(vinyl alcohol, PVA, as the surfactant. Fabrication conditions, such as stirring rate, organic/aqueous ratio, PBS concentration and surfactant (PVA concentration, which have an important influence on both the particle size and the morphology of the microspheres, were varied. Scanning electron microscopy, SEM, observations confirmed the size, size distribution and surface morphology of the microspheres. The optimal conditions for the preparation of the non-porous microspheres were found to be: concentration the PBS solution, 10 mass%; PVA concentration, 1 mass%; the organic/ aqueous ratio CHCl3/H2O = 1/20 and stirring rate 800 rpm. Porous PBS microspheres were fabricated under the optimal conditions using various amounts of hexane and poly(ethylene oxide, PEO, as porogens. The influence of the amount of porogen on the pore size and the particle size was investigated using SEM and the apparent density. The microspheres exhibited various porosities and the pore sizes. The average particle size of the microspheres with PEO as the porogen was from 100 to 122μm and that of the microspheres with hexane as the porogen was from 87 to 97μm. The apparent density of the porous microspheres with PEO as the porogen, from 0.16 to 0.23 g/cm3, was much smaller than the non-porous microspheres, 0.40 g/cm3. In the in vitro degradation experiments, the porous microspheres were incubated in phosphate buffer solution (pH 7 at 37°C. After incubating for one month, the microspheres showed significant extent of the hydrolytic degradation of the porous PBS microspheres.

  8. THE COMBUSTION PERFORMANCE OF MEDIUM DENSITY FIBERBOARD TREATED WITH FIRE RETARDANT MICROSPHERES

    Lichao Sun; Fengqiang Wang,; Yanjun Xie,; Jianwen Feng; Qingwen Wang

    2011-01-01

    Fire retardant particles (guanylurea phosphate and boric acid) with a morphological characteristic of large crystal or fine microsphere, were respectively applied to wood fibers to make medium density fiberboard (MDF). The effects of particle size of the fire retardant on the combustion performance of the resulting MDF samples were determined using a thermogravimetric (TG) analyzer and cone calorimeter (CONE). The scanning electron microscopy and laser particle size analysis showed that the m...

  9. Tunable Hydrogel-Microsphere Composites that Modulate Local Inflammation and Collagen Bulking

    Tous, Elena; Weber, Heather M.; Lee, Myung Han; Koomalsingh, Kevin J.; Shuto, Takashi; Kondo, Norihiro; Gorman, Joseph H.; Lee, Daeyeon; Gorman, Robert C; Burdick, Jason A.

    2012-01-01

    Injectable biomaterials alone may alter local tissue responses, including inflammatory cascades and matrix production (e.g., stimulatory dermal fillers are used as volumizing agents that induce collagen production). To expand upon the available material compositions and timing of presentation, a tunable hyaluronic acid (HA) and poly(lactide-co-glycolide) (PLGA) microsphere composite system was formulated and assessed in subcutaneous and cardiac tissues. HA functionalized with hydroxyethyl met...

  10. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differ...

  11. EDTA-assisted hydrothermal synthesis and magnetic properties of urchin-like YbMn2O5 microspheres

    Urchin-like YbMn2O5 microspheres have been fabricated by EDTA (ethylene diamine tetra acetic acid)-assisted hydrothermal method. The results demonstrated that EDTA played key roles in growth of urchin-like YbMn2O5 microspheres. Magnetic measurement indicated that YbMn2O5 showed a weak ferromagnetic at low temperature due to incomplete spin compensation on the surface. The divagation between field cooling and zero field cooling curves could be reasonably ascribed to the collaboration result of spin-glass behavior and the antiferromagnetic (AFM) ordering of the Yb3+ magnetic moments. Exchange bias (a shift in the hysteresis loop toward negative axis) could be observed in both YbMn2O5 microspheres and nanorods (without EDTA). With the increasing particle size, the exchange bias field and the coercivity increased. - Highlights: • Urchin-like YbMn2O5 microspheres were synthesized with EDTA-assisted hydrothermal method. • Orientated growth of nanorods on the surface of aggregates forms the urchin-like YbMn2O5 microspheres. • YbMn2O5 shows complicated series of magnetic transitions involving the Mn and Yb ions on cooling below Néel temperature

  12. In vitro/in vivo evaluation of procera gum-ethylcellulose microspheres for colonic delivery of budesonide.

    Lalduhsanga Pachuau

    2014-09-01

    Full Text Available The objective of the present research was to a develop colonic delivery system for budesonide based on polymer blends of natural polysaccharides from Albizia procera and the GI-insoluble polymer ethylcellulose. An emulsion solvent evaporation method was used for the preparation of the microspheres. In vitro drug release was studied in a medium simulating gastrointestinal fluid and the mechanism of drug release was determined using the Korsemeyer-Peppas equation. In vivo performance of the microsphere was evaluated in acetic acid induced colitis in rats. Drug release studies showed that the microspheres with a procera gumethylcellulose coating were able to resist premature drug release in the upper GI tract and yet were susceptible to enzyme effects in the colon. Treatment of rats with a budesonide test formulation for five days significantly attenuated the extent and severity of the cell damage and could thus be a promising system for the treatment of ulcerative colitis.

  13. One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application.

    Dong, Hua; Tang, Guannan; Ma, Ting; Cao, Xiaodong

    2016-01-01

    In this paper, we report one-step fabrication of poly(lactide-co-glycolic acid)/titanium oxide (PLGA/TiO2) hybrid microspheres with tunable surface texture via droplet-based microfluidics. Surface texture of microspheres can be continuously tuned by changing the mass ratio between titanium tetraisopropoxide (TTIP) and PLGA in the dispersed phase. The fast hydrolysis of TTIP on the droplet surface can generate a thin shell membrane, resulting in a wrinkled surface after extraction of organic solvent. In vitro drug release monitoring of tanshinone IIA-loaded PLGA/TiO2 hybrid microsphere reveals that surface texture can affect the drug release rate to a large extent without sacrificing the drug encapsulation efficiency. Our finding might benefit the sustained drug delivery where variable drug release rate and high drug encapsulation efficiency are both required. PMID:26610930

  14. Constructing carbon-coated Fe₃O₄ microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications.

    Kong, Lirong; Lu, Xiaofeng; Bian, Xiujie; Zhang, Wanjin; Wang, Ce

    2011-01-01

    Fe₃O₄ microsphere is a good candidate as support for catalyst because of its unique magnetic property and large surface area. Coating Fe₃O₄ microspheres with other materials can protect them from being dissolved in acid solution or add functional groups on their surface to adsorb catalyst. In this paper, a carbon layer was coated onto Fe₃O₄ microspheres by hydrothermal treatment using polyethylene glycol as the connecting agents between glucose and Fe₃O₄ spheres. Through tuning the added amounts of reactants, the thickness of the carbon layer could be well-controlled. Because of the abundant reductive groups on the surface of carbon layer, noble metal ions could be easily adsorbed and in situ reduced to nanoparticles (6-12 nm). The prepared catalyst not only had unique antiacid and magnetic properties, but also exhibited a higher catalytic activity toward the reduction of methyl orange than commercially used Pd/C catalyst. PMID:21155532

  15. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.

    Gupta, Vineet; Lyne, Dina V; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-07-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  16. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres

    Sharina Abu Hanifah

    2012-04-01

    Full Text Available An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 ´ 10−8 M with a lower limit of detection (LOD of 9.46 ´ 10−17 M (R2 = 0.97. This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation (n = 3. Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  17. Effects of formulation and process variables on Aceclofenac Loaded Ethyl Cellulose Microspheres

    Gupta Jitendra*

    2014-03-01

    Full Text Available Now a day an attempt had been made for treatment ofdrug effectively employed if drug intercalating in microsphere as a sustain release drug delivery systems by micro-technology. Aceclofenac, chemically phenyl acetic acid derivative, effective anti-inflammatory and analgesic drug used in treatment of pain, fever and inflammation in rheumatoid arthritis, ankylosing spondylitis and osteoarthritis and diarrhoea, dyspepsia, abdominal pain, nausea, indigestion,pancreatitis, constipation the most common side effects. So the aim of the present research work was to develop ethyl cellulose microspheres of aceclofenac by oil-in-water (o/w emulsion solvent diffusion evaporation technique and investigated the effect of internal phase volume (IPV, poly vinyl alcohol (PVA concentration and external phase volume (EPV formulation variables and revolution per minute (RPM process variables on percent yield, size, percent entrapment efficiency and percent in vitrodrug release profile of aceclofenac microsphere formulations. The size of microspheres formulations were obtained in range of 5±1.3 to 51±2.7 μm, percent yield 75.32±2.21 to 97.87±1.43% and percentdrug entrapment efficiency 55.87±2.03 to 89.53±0.93%. Microspheres also investigated for in vitro drug release profile and observed t50and t70value in the range of 2.5-10 hrs and 4-12 hrs respectively. Finally concluded, that process and formulation variables play a significant role in particle size and ultimately affect in vitrodrug release study.

  18. Making of U3O8 Microsphere as a Preliminary Material for Manufacturing UO2 Kernel of HTR

    The making of U3O8 microsphere as a preliminary material for manufacturing UO2 kernel of HTR on various feed solution with internal gelation method use of paraffin gelation medium has been done. The aim of this research is to make U3O8 microsphere as preliminary material for making UO2 kernel which has good characteristic and for knowing to some extent the feed solution influence on U3O8 microsphere. Uranyl nitrate solution was used as a feed solution with acidity 1 M and some various of ADUN solution. ADUN solution was made by adding various of ammonia solution on the solution of uranyl nitrate. Each of the feed solution was added urea + HMTA solution and then it was dropped to a column containing hot paraffin solution at the temperature 95°Celsius in order to get UO3 gel. UO3 gel was dipped and washed with NH4OH, dried and calcined at the temperature of 800°Celsius . The obtained product was analyzed its surface area, radius of pore, total volume of pore and distribution of pore size of Surface Area Analyzer NOVA-1000. The density was analyzed with pycnometer and the form of microsphere was analyzed with SEM. The obtained product shows that U3O8 microsphere with less ammonium nitrate gave U3O8 much better and vice versa. The best U3O8 obtained from the with ratio mole nitrate/uranium = 1.9, namely uranyl nitrate solution with the feed acidity of 1 N which was added by the lest amount of NH4OH. U3O8 microsphere has density 7.06 g/cc (85.62% theoretical density), specific surface area = 6.77 m2/g, mean pore radius 20.52 Å, and also total pore volume 6.91x10-3 cc/g. (author)

  19. Design and evaluation of niacin microspheres

    Maravajhala Vidyavathi

    2009-01-01

    Full Text Available Present study aims to prepare and evaluate niacin microspheres. Niacin-ethyl cellulose microspheres were prepared by water-in-oil-in-oil double emulsion solvent diffusion method. Spherical, free flowing microspheres having an entrapment efficiency of 72% were obtained. The effect of polymer-drug ratio, surfactant concentration for secondary emulsion process and stirring speed of emulsification process were evaluated with respect to entrapment efficiency, in vitro drug release behavior and particle size. FT-IR and DSC analyses confirmed the absence of drug-polymer interaction. The in vitro release profile could be altered significantly by changing various processing and formulation parameters to give a controlled release of drug from the microspheres. The percentage yield was 85%, particle size range was 405 to 560 µm. The drug release was controlled for 10 h. The in vitro release profiles from optimized formulations were applied on various kinetic models. The best fit with the highest correlation coefficient was observed in Higuchi model, indicating diffusion controlled principle. The in vitro release profiles of optimized formulation was studied and compared with commercially available niacin extended release formulation.

  20. Structuring of diamond films using microsphere lithography

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324. ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  2. Encapsulated PDMS microspheres with reactive handles

    Gonzalez, Lidia; Ma, Baoguang; Li, Li;

    2014-01-01

    stabilizers (sodium dodecyl sulphate and polyvinylalcohol). The temperature is subsequently increased to accelerate the rate of cross-linking and prevent the prepolymer droplets from coalescing. The particle size distribution of cured PDMS microspheres is determined by Mastersizer (laser diffraction). Finally...

  3. Bilayer Tablet via Microsphere: A Review

    Piyushkumar Vinubhai Gundaraniya

    2013-01-01

    Full Text Available The aim of the present work is to develop bilayer tablets containing sustained release microspheres as one layer and immediate release as another layer. The proposed dosage form is intended to decrease the dosing frequency and the combined administration of an anti-diabetic agent. Several pharmaceutical companies are currently developing bi-layer tablets, for a variety of reasons: patent extension, therapeutic, marketing to name a few. To reduce capital investment, quite often existing but modified tablet presses are used to develop and produce such tablets. One such approach is using microspheres as carriers for drugs also known as micro particles. It is the reliable means to deliver the drug to the target site with specificity, if modified, and to maintain the desired concentration at the site of interest. Microspheres received much attention not only for prolonged release, but also for targeting of anti-diabetic drugs. Bilayer tablet via microsphere is new era for the successful development of controlled release formulation along with various features to provide a way of successful drug delivery system. Especially when in addition high production output is required. An attempt has been made in this review article to introduce the society to the current technological developments in bilayer and floating drug delivery system.

  4. Preparation of Hollow Porous HAP Microspheres as Drug Delivery Vehicles

    WANG Qing; HUANG Wenhai; WANG Deping

    2007-01-01

    Hollow HAP microspheres in sub-millimeter size were prepared and investigated as a drug delivery vehicle. The LCB (lithium-calcium borate) glass microspheres, which were made through flame spray process, were chosen as precursor for hollow HAP microspheres. The LCB glass microspheres reacted with phosphate buffer (K2HPO4) solution for 5 days at 37 ℃. During the reaction the Ca-P-OH compound precipitated on the surface of LCB glass microspheres and formed porous shells. Then the microspheres turned to be hollow ones with the same diameter as the glass microspheres after LCB glass run out in the chemical reaction. After heat-treated at 600 ℃ for 4 h, the Ca-P-OH compound became HAP, thus the hollow HAP microspheres were produced. The mechanism of forming hollow HAP microspheres through the chemical reaction between phosphate buffer and LCB glass was confirmed by the XRD analysis. The microstructure characteristics of the hollow, porous microspheres were observed by SEM.

  5. Assembly of functional gold nanoparticle on silica microsphere.

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics. PMID:26874272

  6. Formulation, characterization and evaluation of the effect of polymer concentration on the release behavior of insulin-loaded Eudragit®-entrapped mucoadhesive microspheres

    Kenechukwu, Franklin C.; Momoh, Mumuni A.

    2016-01-01

    Introduction: The aim of this study was to use Eudragit® RL 100 (pH-independent polymer) and magnesium stearate (a hydrophobic droplet stabilizer) in combination to improve the controlled release effect of insulin-loaded Eudragit® entrapped microspheres prepared by the emulsification-coacervation technique. Materials and Methods: Mucoadhesive insulin-loaded microspheres containing magnesium stearate and varying proportions of Eudragit® RL 100 were prepared by the emulsification-coacervation technique and evaluated for thermal properties, physicochemical performance, and in vitro dissolution in acidic and subsequently basic media. Results: Stable, spherical, brownish, discrete, free-flowing and mucoadhesive insulin-loaded microspheres with size range of 14.20 ± 0.30-19.80 ± 0.60 μm and loading efficiency of 74.55 ± 1.05-75.90 ± 1.94% were formed. After 3 h, microspheres prepared with insulin: Eudragit® RL 100 ratios of 1:4, 1:6, and 1:8 released 73.40 ± 1.38, 66.20 ± 1.59, and 71.30 ± 1.27 (%) of insulin, respectively. Conclusion: The physicochemical and physico-technical properties of the microspheres developed in this study demonstrated the effectiveness of the Eudragit® RL entrapped mucoadhesive microspheres (prepared by the emulsification-coacervation technique using varying polymer concentration) as a carrier system for oral insulin delivery. PMID:27051626

  7. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    Albumin microspheres have been synthesized eith EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +/- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +/- 16)% of the activity localizes in the lungs at 5 min, with (60 +/- 7)% remaining after 2 hr. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  8. Method of detecting luminescent target ions with modified magnetic microspheres

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  9. Optically Levitated Microspheres as a Probe for New Interactions

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  10. Controlled morphology of conducting polymers: Formation of nanorods and microspheres of polyindole

    Gupta, Bhavana; Chauhan, Dheeraj Singh [School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi, UP 221005 (India); Prakash, Rajiv, E-mail: rajivprakash12@yahoo.com [School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi, UP 221005 (India)

    2010-04-15

    One-dimensional nanotubes and nanowires have attracted attention because of their unique electronic and mechanical properties, resulting in the promising applications in electrical, electronic and nanodevices or three-dimensional hollow spheres because of drug delivery, encapsulations and biosensor applications. For the first time we report the formation of nanorods and microspheres of polyindole conducting polymer based on chemical synthesis using two immiscible (interfacial) and two miscible solvents respectively (without surfactant). Interfacial polymerization of polyindole is carried out by taking oxidizing agent in mild acid (HCl) and monomer in dichloromethane phases and polymerization in two miscible solvents is carried out by taking monomer in ethanol and oxidizing agent in mild acidic solution. Scanning electron microscope and atomic force microscope images of polyindole confirmed the formation of hollow spheres and nanorods. The possible mechanism for controlled morphologies is discussed based on formation of metastable micelles (for microspheres) and unstable micelles (for nanorods) in absence of surfactant. The mechanism is also supported by in-situ AFM studies. FT-IR data supported the 2,3 position polymerization of polyindole in both the morphologies. XRD data revealed that nanorod are more crystalline than microspheres, however, quite different from the amorphous conventional polymer obtained by electrochemical polymerization technique.

  11. Polystyrene Microspheres Coated with Smooth Polyaniline Shells:Preparation and Characterization

    YUAN Yi; LIAN Yanqing

    2009-01-01

    Polystyrene/polyaniline core-shell structure microspheres were synthesized in the presence of poly(sodium 4-styrenesulfonate) as stabilizer and hydrochloric acid as dopant to improve the processibility of conducting polyaniline. After the one-pot reacting process, the product was easily purified by washing with water. The polyaniline shell covering the polystyrene sphere surface was confirmed with FT-IR and X-ray photoelectron spectroscopy. The conductivity of the polyaniline-coated polystyrene particles was 0.0017 S/cm and increased to 0.1 S/cm after being doped in the HCI vapor. The morphology of the microspheres was characterized by TEM and SEM. The particles show a more uniform and smooth surface than previous particles.

  12. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  13. Locomotion of microspheres for super-resolution imaging

    Krivitsky, Leonid A.; Jia Jun Wang; Zengbo Wang; Boris Luk'yanchuk

    2013-01-01

    Super-resolution imaging using sub-diffraction field localization by micron sized transparent beads (microspheres) was recently demonstrated [1]. Practical applications in microscopy require control over the positioning of the microspheres. We present a simple method of positioning and controllable movement of a microsphere by using a glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are...

  14. DEVELOPMENT AND OPTIMIZATION OF FLOATING MICROSPHERES OF GLICLAZIDE

    Shardendu Prakash; Akanksha Bhandari; Raghav Mishra; Pramod Kumar Sharma

    2015-01-01

    The objective of the present study was to develop floating microspheres of Gliclazide in order to achieve an extended retention in the upper gastrointestinal tract, which may result in enhanced absorption and thereby improved bioavailability. The present study involves preparation and evaluation of floating microspheres using Gliclazide as a model drug for prolongation of the gastric retention time. As gliclazide is mainly absorbed from stomach, thus using floating microspheres as a mode o...

  15. Liquid-crystal tunable filter based on sapphire microspheres.

    Gilardi, Giovanni; Donisi, Domenico; Serpengüzel, Ali; Beccherelli, Romeo

    2009-11-01

    We design an integrated optoelectronic device based on the whispering-gallery modes of a sapphire microsphere integrated with a liquid-crystal tuning medium to produce a narrowband, electrically tunable, channel-dropping filter. The sapphire microsphere is glued over a diffused waveguide in a glass substrate. At the base of the microsphere, a small volume of liquid crystal is infiltrated. We numerically evaluate the performance of the device and demonstrate a voltage tuning of the narrowband resonances. PMID:19881558

  16. Variance in multiplex suspension array assays: microsphere size variation impact

    Cheng R Holland; Xing Li; Hanley Brian P

    2007-01-01

    Abstract Background Luminex suspension microarray assays are in widespread use. There are issues of variability of assay readings using this technology. Methods and results Size variation is demonstrated by transmission electron microscopy. Size variations of microspheres are shown to occur in stepwise increments. A strong correspondence between microsphere size distribution and distribution of fluorescent events from assays is shown. An estimate is made of contribution of microsphere size va...

  17. Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres

    Du Le, Vinh Nguyen; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; Fang, Qiyin

    2014-01-01

    The fluorescence of Intralipid and polystyrene microspheres with sphere diameter of 1 µm at a representative lipid and microsphere concentration for simulation of mucosal tissue scattering has not been a subject of extensive experimental study. In order to elucidate the quantitative relationship between lipid and microsphere concentration and the respective fluorescent intensity, the extrinsic fluorescence spectra between 360 nm and 650 nm (step size of 5 nm) were measured at different lipid ...

  18. Clickable Poly(ethylene glycol)-Microsphere-Based Cell Scaffolds

    Nguyen, Peter K.; Snyder, Christopher G.; Shields, Jason D.; Smith, Amanda W.; Elbert, Donald L.

    2013-01-01

    Clickable poly(ethylene glycol) (PEG) derivatives are used with two sequential aqueous two-phase systems to produce microsphere-based scaffolds for cell encapsulation. In the first step, sodium sulfate causes phase separation of the clickable PEG precursors and is followed by rapid geleation to form microspheres in the absence of organic solvent or surfactant. The microspheres are washed and then deswollen in dextran solutions in the presence of cells, producing tightly packed scaffolds that ...

  19. Super-resolution optical microscopy using a glass microsphere nanoscope

    Hui Yang; Gijs, Martin A.M.

    2014-01-01

    A technique that allows direct optical imaging of nanostructures and determines quantitatively geometric nanofeatures beyond the classical diffraction limit by using high-refractive index glass microspheres is introduced. The glass microsphere is put on the nanostructure that is immersed in oil. When illuminated by conventional oil-immersion microscope objective, a magnified virtual image of the sample is projected by the microsphere and recorded by the same objective. The image reveals the s...

  20. Preparation and evaluation of delayed release aceclofenac microspheres

    Radhika Parasuram; Luqman Moidutty; Borkhataria Chetan

    2008-01-01

    Delayed release microspheres of aceclofenac were formulated using an enteric polymer, cellulose acetate phthalate (CAP) prepared by solvent evaporation technique. The effects of various other modern enteric polymers such as hydroxyl propyl methyl cellulose phthalate (HPMCP), Eudragit L 100, and Eudragit S -100 on the release of aceclofenac from the CAP microspheres have been evaluated. The microspheres were characterized for particle size, scanning electron microscopy (SEM), percentage yield,...

  1. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy

    The microscopic distribution of microspheres in human liver following hepatic infusion of 32 μm diameter resin microspheres labelled with 90Y as treatment for an 80 millimetre diameter liver cancer has been investigated. Microspheres were found to deposit inhomogeneously in tissues, preferentially lodging in a region approximately 6 mm wide around the periphery of the tumour. A relative concentration of microspheres of 50 to 70 times that of normal hepatic parenchyma and 65 to 94 times that in the tumour centre was measured in this region. The deposition of spheres in the tumour periphery was not uniform, and cluster analysis showed that the spheres could be classified into clusters. The number of microspheres in a cluster was skewed towards low numbers and cluster sizes varied from 20 to 1500 μm. The observed deposition patterns indicate that the vascular tumour periphery will receive much greater radiation doses from radioactive microspheres than both normal tissue and the avascular tumour centre. (author)

  2. Preparation of polystyrene microsphere with emulsion microencapsulation method

    The preparation of hollow polystyrene microspheres that are used as inner shell of multi-shell plastic microspheres in the ICF experiments is focused on. The effects of surfactants, water-soluble polymer and electrolyte on the properties of resultant microspheres are studied. Based on these experiments, a fabricating procedure was established with which hollow microspheres were prepared with diameter about 150-3000 μm, wall thickness 0.8-15 μm and toughness Ra less than 4 nm. (authors)

  3. Controlled Delivery of Gentamicin Using Poly(3-hydroxybutyrate Microspheres

    Ipsita Roy

    2011-07-01

    Full Text Available Poly(3-hydroxybutyrate, P(3HB, produced from Bacillus cereus SPV using a simple glucose feeding strategy was used to fabricate P(3HB microspheres using a solid-in-oil-water (s/o/w technique. For this study, several parameters such as polymer concentration, surfactant and stirring rates were varied in order to determine their effect on microsphere characteristics. The average size of the microspheres was in the range of 2 µm to 1.54 µm with specific surface areas varying between 9.60 m2/g and 6.05 m2/g. Low stirring speed of 300 rpm produced slightly larger microspheres when compared to the smaller microspheres produced when the stirring velocity was increased to 800 rpm. The surface morphology of the microspheres after solvent evaporation appeared smooth when observed under SEM. Gentamicin was encapsulated within these P(3HB microspheres and the release kinetics from the microspheres exhibiting the highest encapsulation efficiency, which was 48%, was investigated. The in vitro release of gentamicin was bimodal, an initial burst release was observed followed by a diffusion mediated sustained release. Biodegradable P(3HB microspheres developed in this research has shown high potential to be used in various biomedical applications.

  4. Microspherical inorganic ion-exchangers based on cenospheres of coal fly ash

    T.A. Vereshchagina; E.V. Fomenko; S.N. Vereshchagin; N.N. Shishkina; N.G. Vasilieva; E.N. Paretskov; D.M. Kruchek; T.J. Tranter; A.G. Anshits [Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk (Russian Federation)

    2005-07-01

    Coal fly ash cenospheres are very promising for a variety of applications, such as production of porous materials, sensitisers of emulsion explosives, adsorbents, catalysts, etc. One of the interesting areas of cenosphere application is generation of microspherical ion-exchangers for immobilization of liquid radioactive waste, which are active in trapping radionuclides from radioactive solutions and, at a final step, can serve as a matrix for radionuclide disposal in the form of stable mineral-like compounds. It was demonstrated that two types of microspherical ion-exchangers, such as (I) encapsulated inorganic ion-exchangers and (ii) cenosphere-derived zeolites, could be prepared on cenospheres. It was shown that chemical modification of cenospheres by etching with mineral acids results in formation of open pores in the cenosphere wall. Depending on the nature of acid, one can obtain hollow microspheres with porous walls of different specific surface area (30-50 m{sup 2}/g for HCl etched cenospheres and 1-2 m{sup 2}/g for HF etched ones) and morphology. Cenosphere species with a macroporous permeable wall is a suitable support for encapsulation of active additives inside the perforated spheres. In this work a number of encapsulated sorbents of {sup 137}Cs{sup +}, such as ammonium molybdophosphate, copper, nickel and iron-ferrocyanides, zirconium phosphate, were obtained. Cenosphere-derived zeolites of NaP, NaX and NaA types were obtained by the hydrothermal treatment of cenospheres in the presence of alkaline solutions. Properties of the encapsulated ion-exchangers and microspherical zeolites were studied in Cs{sup +} and Sr{sup 2+} sorption from simulant solutions of different composition. Sorbents impregnated with radionuclides were shown to convert into stable crystalline compounds under thermal and thermobaric treatment. 19 refs., 5 figs., 3 tabs.

  5. Neutron transmission measurements on hydrogen filled microspheres

    Hollow microspheres are promising candidates for future hydrogen storage technologies. Although the physical process for hydrogen diffusion through glass is well understood, measurements of static quantities (e.q. hydrogen pressure inside the spheres) as well as dynamic properties (e.g. diffusion rate of hydrogen through glass) are still difficult to handle due to the small size of the spheres (d≈15μm). For diffusion rate measurements, the long-term stability of the experiment is also mandatory due to the relatively slow diffusion rate. In this work, we present an accurate and long-term stable measurement technique for static and dynamic properties, using neutron radiography. Furthermore, possible applications for hydrogen filled microspheres within the scope of radiation issues are discussed

  6. Optical Microspherical Resonators for Biomedical Sensing

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  7. Fluorescence dynamics of microsphere-adsorbed sunscreens

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  8. Optimization of microfluidic microsphere-trap arrays

    Xu, Xiaoxiao; Sarder, Pinaki; Li, Zhenyu; Nehorai, Arye

    2013-01-01

    Microarray devices are powerful for detecting and analyzing biological targets. However, the potential of these devices may not be fully realized due to the lack of optimization of their design and implementation. In this work, we consider a microsphere-trap array device by employing microfluidic techniques and a hydrodynamic trapping mechanism. We design a novel geometric structure of the trap array in the device, and develop a comprehensive and robust framework to optimize the values of the...

  9. Preparation and application of magnetic microsphere carriers

    ZHANG Bo; XING Jianmin; LIU Huizhou

    2007-01-01

    Magnetic microsphere carriers have received considerable attention,primarily because of their wide applications in the fields of biomedicine and bioengineering.In this paper,preparation methods,surface modification and application of magnetic carriers are reviewed.Emphasis will be placed on recent biological and biomedical developments and trends such as enzyme immobilization,cell isolation,protein purification,target drugs and DNA separation.

  10. Improved bioavailability through floating microspheres of lovastatin

    Kumar, S.; K Nagpal; Singh SK; DN Mishra

    2011-01-01

    "n Background and the purpose of the study: Lovastatin is an antihyperlipidemic agent which has low bioavailability due to the extensive first pass metabolism. It was sought to increase gastric retention of lovastatin by development of a sustained release gastroretentive drug delivery system leading to reduced fluctuation in the plasma concentration and improved bioavailability. "nMethods: Floating microspheres were prepared by emulsion solvent diffusion technique, using va...

  11. Sputter coating of microspherical substrates by levitation

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  12. Yttrium-90 microsphere induced gastrointestinal tract ulceration

    Rikabi Ali A

    2008-09-01

    Full Text Available Abstract Background Radiomicrosphere therapy (RT utilizing yttrium-90 (90Y microspheres has been shown to be an effective regional treatment for primary and secondary hepatic malignancies. We sought to determine a large academic institution's experience regarding the extent and frequency of gastrointestinal complications. Methods Between 2004 and 2007, 27 patients underwent RT for primary or secondary hepatic malignancies. Charts were subsequently reviewed to determine the incidence and severity of GI ulceration. Results Three patients presented with gastrointestinal bleeding and underwent upper endoscopy. Review of the pretreatment angiograms showed normal vascular anatomy in one patient, sclerosed hepatic vasculature in a patient who had undergone prior chemoembolization in a second, and an aberrant left hepatic artery in a third. None had undergone prophylactic gastroduodenal artery embolization. Endoscopic findings included erythema, mucosal erosions, and large gastric ulcers. Microspheres were visible on endoscopic biopsy. In two patients, gastric ulcers were persistent at the time of repeat endoscopy 1–4 months later despite proton pump inhibitor therapy. One elderly patient who refused surgical intervention died from recurrent hemorrhage. Conclusion Gastrointestinal ulceration is a known yet rarely reported complication of 90Y microsphere embolization with potentially life-threatening consequences. Once diagnosed, refractory ulcers should be considered for aggressive surgical management.

  13. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  14. The clearance of albumin microspheres from an intramuscular injection site

    Human serum albumin microspheres of three different diameters were radiolabelled with indium-111, and a suspension injected into rabbit thigh muscle. Clearance from the intramuscular site was monitored for 2 weeks using gamma scintigraphy. The clearance rates were compared with the injection site clearance of non-biodegradable polystyrene microspheres. (U.K.)

  15. MAGNETIC MICROSPHERES: A LATEST APPROACH IN NOVEL DRUG DELIVERY SYSTEM

    Mukherjee S

    2012-10-01

    Full Text Available Magnetic microspheres are at the forefront of the rapidly developing field of pharmaceutical technology with several potential applications in drug delivery, clinical medicine and research as well as in other varied sciences. Due to their unique size-dependent properties, magnetic microspheres offer the possibility to develop new therapeutics. The ability to incorporate drugs into carriers offers a new prototype in drug delivery that could be used for secondary and tertiary levels of drug targeting. Hence, magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery and hence have attracted wide attention of researchers. This review presents a broad treatment of magnetic microspheres discussing their advantages, limitations and their possible remedies. Different production methods which are suitable for large scale production and applications of magnetic microspheres are described. Appropriate analytical techniques for characterization of magnetic microspheres like Photon correlation spectroscopy, scanning electron microscopy, differential scanning calorimetry are highlighted. Aspects of magnetic microspheres route of administration and their biodistribution are also incorporated. If appropriately investigated, magnetic microspheres may open new vistas in therapy of complex diseases.

  16. Controlling silk fibroin microspheres via molecular weight distribution

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  17. DEVELOPMENT AND OPTIMIZATION OF FLOATING MICROSPHERES OF GLICLAZIDE

    Shardendu Prakash

    2015-05-01

    Full Text Available The objective of the present study was to develop floating microspheres of Gliclazide in order to achieve an extended retention in the upper gastrointestinal tract, which may result in enhanced absorption and thereby improved bioavailability. The present study involves preparation and evaluation of floating microspheres using Gliclazide as a model drug for prolongation of the gastric retention time. As gliclazide is mainly absorbed from stomach, thus using floating microspheres as a mode of drug delivery helps in increasing its residence time and hence increasing the bioavailability of drug. The microspheres were prepared by the Ionic gelation method. The average diameter and surface morphology of the prepared microspheres were characterized by optical microscope and scanning electron microscopic methods respectively. The prepared microspheres were evaluated for particle size, micromeritic study, drug entrapment efficiency, in vitro buoyancy, swelling index and in vitro release. The effect of various formulation variables on the size and drug release was also investigated. All the formulated microspheres were found to possess good flow properties. Scanning electron microscopy confirmed spherical structure of the prepared microspheres. The best formulation F3 drug release kinetics were evaluated using Zero order, First order, Higuchi model, Korsmeyer - Peppas model. After the interpretation of data that was based on the value of a resulting regression coefficient, it was observed that the Korsmeyer- Peppas model has a highest regression coefficient values indicating that the drug release was based on the erosion of polymeric chain matrix.

  18. Microsphere laser developments for potential gas sensing applications

    This paper presents preliminary results obtained from research into the development of a microsphere fibre laser designed for use in a compact gas sensor system. In this paper the focus is on achieving the optimum coupling between the microsphere and the tapered fibre used and obtaining the potential ultra-low threshold of the laser system

  19. Formulation, optimization and evaluation of sustained release microsphere of ketoprofen

    V Chirag Prajapati

    2012-01-01

    Full Text Available The objective of this study is to formulate ketoprofen loaded microspheres of Acrycoat S100 by an o/w emulsion solvent evaporation method. It potently inhibits the enzyme cyclooxygenase resulting in prostaglandin synthesis inhibition. Ketoprofen causes an irritation in the gastrointestinal mucous membrane and possesses a bitter taste and aftertaste. The half-life in plasma is about 1-2hrs. This makes ketoprofen a very good candidate for the formulation of controlled release dosage forms. Ketoprofen microspheres help to protect the gastric mucous membrane from drug irritation and to mask its taste. The prepared microspheres were evaluated for micromeritic properties, particle size, effect of surfactant concentration, percentage yield, incorporation efficiency, drug polymer compatibility (IR and DSC study, scanning electron microscopy and in vitro drug release. The microspheres produced exhibited good encapsulation efficiencies and micromeritic properties. Encapsulation efficiency of microsphere is around 78%. The mean diameters of microspheres were found in required micrometer range. The results of optimized formulations showed a narrow size distribution and smooth surface. The DSC and the FTIR analysis showed the absence of any potent incompatibility between the drug and the polymer. In-vitro release showed 86.4% drug release after 12 hours. Results of present study suggest that Acrycoat S100 loaded microsphere of ketoprofen can be successfully designed to develop sustained drug delivery system. The solvent evaporation method is a suitable technique for the preparation of Acrycoat S100 microspheres for controlling the release of Ketoprofen for a prolonged duration.

  20. Controlling silk fibroin microspheres via molecular weight distribution

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4–KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  1. Pectin/zein microspheres as a sustained drug delivery system

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  2. Optically switchable molecular device using microsphere based junctions

    Faramarzi, V.; Raimondo, C.; Reinders, F.; Mayor, M.; Samorı, P.; Doudin, B.

    2011-12-01

    Metallic planar electrodes are bridged using microspheres coated with chemisorbed azobenzene self-assembled monolayers. The circuit exhibits light-induced switching, with reproducibility over 90%, as statistically determined and compared to junctions incorporating photo-insensitive alkanethiol layers. Microsphere interconnects provide direct access to molecular transport properties, with reliability and stability, making multifunctional molecular electronics devices possible.

  3. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  4. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  5. PREPARATION AND ADSORBABILITY OF DEXTRAN MICROSPHERES WITH UNIFORM DIAMETER

    Ri-sheng Yao; Wen-xia Gao; Jing Sun; Ya-hua You

    2005-01-01

    The method of preparing uniform dextran microspheres with a narrow diameter distribution was introduced and the adsorbability of these microspheres was evaluated. The microspheres were prepared in W/O microemulsion using 0.5% dextran solution as the aqueous phase and n-hexane as the oil phase. Characteristics of the prepared dextran microspheres were examined with laser light blocking technique, optical microscope and ultraviolet spectrometer. The results show that the prepared dextran microspheres have uniform morphology and narrow diameter distribution, nearly 92% of them having a diameter of 56.6 μm. In vitro evaluation of adsorbability, wet dextran microspheres have good adsorption of 98.32 mg/g of model drug methylene blue in 20.86 mg/L methylene blue solution at 25℃. The adsorption of dried dextran microspheres under the same condition is 132.15 mg/g, which is even higher. And the adsorbability of dextran microspheres has significant relationship with the concentration of methylene blue and temperature. The adsorbability is better at lower temperature and higher concentration of methylene blue.

  6. Internal gelation studies for the preparation of TiO2 microspheres

    Nuclear fuel in the reactor is not consumed fully in a single cycle. Therefore, it is important to recycle the unused fuel and fed back to reactor. Conventionally solvent extraction process named as PUREX process is used for reprocessing spent fuel. Tributyl phosphate (TBP) is used as an extraction agent. Chemical and radiolytic degradation of TBP takes place during the process. It is important to remove these degradation products (mainly Di-n-butyl phosphoric acid (HDBP)) from TBP to improve the extraction efficiency in further reprocessing cycles. 0.25 M Na2CO3 solution is used for this purpose. During this step, small amounts of Pu get extracted along with the Na2CO3 solution. Removal of Pu from the carbonate solution is important for the safe disposal of the wash solution. Titania in the form of porous microspheres finds application in the removal of Pu from the carbonate medium by column chromatography. Internal gelation process is an excellent route for the preparation of mono-dispersed microspheres. There is no systematic study on the gelation chemistry for the preparation of TiO2 microspheres and therefore taken up in the current study

  7. Experimental and Computational Studies on Non-Covalent Imprinted Microspheres as Recognition System for Nicotinamide Molecules

    Giuseppe Vasapollo

    2009-07-01

    Full Text Available Molecularly imprinted microspheres obtained by precipitation polymerization using nicotinamide (nia as template have been prepared and characterised by SEM. How various experimental parameters can affect microsphere morphology, reaction yield and re-binding capacity have been evaluated. Pre-polymerization interactions between template and functional monomer in chloroform and MeCN have been studied by 1H-NMR. The results suggest that the interaction between nia and methacrylic acid (MAA is mainly based on hydrogen-bonding between amide protons and MAA. Computational density functional theory (DFT studies on MAA-nia complexes have been also performed to better understand hydrogen-bonding interactions. The imprinted activity of the microspheres, synthesized in chloroform or acetonitrile (MeCN, has been evaluated by spectrophotometric analysis of nia solutions when chloroform or MeCN are used as incubation solvents. The results suggest that MeCN interferes with hydrogen bonding between template and MAA during either the polymerization step or re-binding process as also observed from theoretical results. Finally, the selectivity towards selected nia analogues has been also confirmed.

  8. Microsphere-Incorporated Hybrid Thermogel for Neuronal Differentiation of Tonsil Derived Mesenchymal Stem Cells.

    Patel, Madhumita; Moon, Hyo Jung; Jung, Bo Kyung; Jeong, Byeongmoon

    2015-07-15

    Neuronal differentiation of tonsil-derived mesenchymal stem cells (TMSCs) is investigated in a 3D hybrid system. The hybrid system is prepared by increasing the temperature of poly(ethylene glycol)-poly(l-alanine) aqueous solution to 37 °C through the heat-induced sol-to-gel transition, in which TMSCs and growth factor releasing microspheres are suspended. The in situ formed gel exhibits a modulus of 800 Pa at 37 °C, similar to that of brain tissue, and it is robust enough to hold the microspheres and cells during the 3D culture of TMSCs. The neuronal growth factors are released over 12-18 d, and the TMSCs in a spherical shape initially undergo multipolar elongation during the 3D culture. Significantly higher expressions of the neuronal biomarkers such as nuclear receptor related protein (Nurr-1), neuron specific enolase, microtubule associated protein-2, neurofilament-M, and glial fibrillary acidic protein are observed in both mRNA level and protein level in the hybrid systems than in the control experiments. This study proves the significance of a controlled drug delivery concept in tissue engineering or regenerative medicine, and a 3D hybrid system with controlled release of growth factors from microspheres in a thermogel can be a very promising tool. PMID:26033880

  9. Konjac glucomannan microspheres for low-cost desalting of protein solution.

    Xiong, Zhidong; Zhou, Weiqing; Sun, Lijing; Li, Xiunan; Zhao, Dawei; Chen, Yi; Li, Juan; Ma, Guanghui; Su, Zhiguo

    2014-10-13

    In this study, low-cost konjac glucomannan (KGM) microspheres used for desalting were developed by an inverse dispersion method. High concentration of KGM was pretreated to reduce viscosity by acid hydrolysis method under the condition of high temperature and pressure. The selectivity of the obtained cross-linked KGM gels with different degree of crosslinking was studied by constructing calibration curves (K(av)) of standard molecular weight substances. The stability of the gels was investigated, which showed that the KGM microspheres are tolerant to a wide range of pH and stable in all commonly used aqueous buffers, and insensitive to autoclaving as well. Furthermore, protein-desalting performances of GM-1250, a cross-linked KGM microsphere, were evaluated with two proteins, bovine serum albumin and filamentous hemagglutinin, which turned out that GM-1250 is comparable to the widely used commercial product--Sephadex G25 Fine. From economic considerations, KGM gel is a prospective alternative for dextran gels in protein desalting process. PMID:25037329

  10. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software.

    Hooda, Aashima; Nanda, Arun; Jain, Manish; Kumar, Vikash; Rathee, Permender

    2012-12-01

    The current study involves the development and optimization of their drug entrapment and ex vivo bioadhesion of multiunit chitosan based floating system containing Ranitidine HCl by ionotropic gelation method for gastroretentive delivery. Chitosan being cationic, non-toxic, biocompatible, biodegradable and bioadhesive is frequently used as a material for drug delivery systems and used to transport a drug to an acidic environment where it enhances the transport of polar drugs across epithelial surfaces. The effect of various process variables like drug polymer ratio, concentration of sodium tripolyphosphate and stirring speed on various physiochemical properties like drug entrapment efficiency, particle size and bioadhesion was optimized using central composite design and analyzed using response surface methodology. The observed responses were coincided well with the predicted values given by the optimization technique. The optimized microspheres showed drug entrapment efficiency of 74.73%, particle size 707.26 μm and bioadhesion 71.68% in simulated gastric fluid (pH 1.2) after 8 h with floating lag time 40s. The average size of all the dried microspheres ranged from 608.24 to 720.80 μm. The drug entrapment efficiency of microspheres ranged from 41.67% to 87.58% and bioadhesion ranged from 62% to 86%. Accelerated stability study was performed on optimized formulation as per ICH guidelines and no significant change was found in drug content on storage. PMID:22903013

  11. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  12. Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil

    Biodiesel fuel, produced by transesterification of vegetable oils or animal fats with methanol, is a promising alternative diesel fuel due to the limited resources of fossil fuels and the environmental concerns. An environmentally benign process for the transesterification reaction using immobilized lipase has attracted considerable attention for biodiesel production. In the work, magnetic chitosan microspheres were prepared by the chemical co-precipitation approach using glutaraldehyde as cross-linking reagent for lipase immobilization. The immobilization of lipase onto the magnetic particles was confirmed by magnetic measurements, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectra. Using the immobilized lipase, the conversion of soybean oil to fatty acid methyl esters reached 87% under the optimized conditions of methanol/oil amount-of-substance ratio 4:1 with the three-step addition of methanol, reaction temperature 35 °C, and reaction duration 30 h. Moreover, the immobilized lipase could be used for four times without significant decrease of the activity. -- Highlights: ► The lipase bound on magnetic chitosan microsphere can give 87% biodiesel conversion. ► The immobilization had no significant change in the property of magnetic microsphere. ► The immobilized lipase had a better reusability.

  13. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R2 in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres were

  14. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  15. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Vineet eGupta

    2015-07-01

    Full Text Available Extracellular matrix (ECM components such as chondroitin sulfate (CS and tricalcium phosphate (TCP serve as raw materials and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(D,L-lactic-co-glycolic acid (PLGA microsphere-based scaffolds would enhance differentiation of rat bone marrow stromal cells (rBMSCs. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized extracellular matrix by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG, collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  16. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  17. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres

    Horák, Daniel; Petrovský, Eduard; Kapička, Aleš; Frederichs, Theodor

    2007-04-01

    Magnetic nanoparticles encapsulated in poly(glycidyl methacrylate) microspheres were prepared and their detailed structural and magnetic characteristics given. Iron oxide nanoparticles were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts and stabilized with dextran, (carboxymethyl)dextran or tetramethylammonium hydroxide. The microspheres were prepared by emulsion or dispersion polymerization of glycidyl methacrylate in the presence of ferrofluid. The microspheres were uniform both in shape and usually also in size; their size distribution was narrow. All the magnetic parameters confirm superparamagnetic nature of the microspheres. Blocking temperature was not observed, suggesting the absence of magnetic interactions at low temperatures. This is most probably caused by complete encapsulation and the absence of agglomeration. Such microspheres can be used in biomedical applications.

  18. Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres

    Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Sq. 2, 162 06 Prague 6 (Czech Republic)]. E-mail: horak@imc.cas.cz; Petrovsky, Eduard [Geophysical Institute, Academy of Sciences of the Czech Republic, Bocni II/1401, 141 31 Prague 4 (Czech Republic); Kapicka, Ales [Geophysical Institute, Academy of Sciences of the Czech Republic, Bocni II/1401, 141 31 Prague 4 (Czech Republic); Frederichs, Theodor [University of Bremen, Department of Geosciences, GEO I, Klagenfurter Strasse, 28359 Bremen (Germany)

    2007-04-15

    Magnetic nanoparticles encapsulated in poly(glycidyl methacrylate) microspheres were prepared and their detailed structural and magnetic characteristics given. Iron oxide nanoparticles were obtained by chemical coprecipitation of Fe(II) and Fe(III) salts and stabilized with dextran, (carboxymethyl)dextran or tetramethylammonium hydroxide. The microspheres were prepared by emulsion or dispersion polymerization of glycidyl methacrylate in the presence of ferrofluid. The microspheres were uniform both in shape and usually also in size; their size distribution was narrow. All the magnetic parameters confirm superparamagnetic nature of the microspheres. Blocking temperature was not observed, suggesting the absence of magnetic interactions at low temperatures. This is most probably caused by complete encapsulation and the absence of agglomeration. Such microspheres can be used in biomedical applications.

  19. Computational dynamics of acoustically-driven microsphere systems

    Glosser, Connor A; Dault, Daniel L; Piermarocchi, Carlo; Shanker, Balasubramaniam

    2015-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the inter-particle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of non-dissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities, and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation ...

  20. Novel sustained release microspheres for pulmonary drug delivery.

    Cook, Robert O; Pannu, Rupi K; Kellaway, Ian W

    2005-05-01

    A novel process for generating sustained release (SR) particles for pulmonary drug delivery is described. High purity nanoparticles of a hydrophilic, ionised drug are entrapped within hydrophobic microspheres using a spray-drying approach. Sustained release of the model drug, terbutaline sulphate (TS), from the microspheres was found to be proportional to drug loading and phospholipid content. Microspheres with a 33% drug loading exhibited sustained release of 32.7% over 180 min in phosphate buffer. Release was not significantly different in simulated lung fluids. No significant burst release was observed which suggested that nanoparticles were coated effectively during spray-drying. The absence of nanoparticles at the microsphere surface was confirmed with confocal microscopy. The sustained release microspheres were formulated as a carrier-free dry powder for inhalation, and exhibited a favourable Fine Particle Fraction (FPF) of 46.5+/-1.8% and Mass Median Aerodynamic Diameter (MMAD) of 3.93+/-0.12 microm. PMID:15866336

  1. Development of an electrochemical biosensor methods based on acrylic microsphere for the determination of Arowana DNA hybridization

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh

    2015-09-01

    An electrochemical method of Arowana DNA determination based of N-acrylosuccinimide (NAS) modified acrylic microsphere was fabricated. Hydrophobic succinimide functional group containing poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized with a simple one-step photopolymerization pocedure. Aminated DNA probe was covalently bonded to the succinimde functional group of the acrylic microspheres. The hybridization of the immobilized DNA probe with the complementary DNA was determined by the differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a wide linear response range to target DNA is 1.0 × 10-16 and 1.0 × 10-8 M with a lower limit of detection (LOD) of 9.46 × 10-17 M (R2 = 0.99) were calculated. This biosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  2. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties.

    Boni, Fernanda Isadora; Prezotti, Fabíola Garavello; Cury, Beatriz Stringhetti Ferreira

    2016-08-01

    Gellan gum microspheres were obtained by ionotropic gelation technique, using the trivalent ion Al(3+). The percentage of entrapment efficiency ranged from 48.76 to 87.52% and 2(2) randomized full factorial design demonstrated that both the increase of polymer concentration and the decrease of crosslinker concentration presented a positive effect in the amount of encapsulated drug. Microspheres size and circularity ranged from 700.17 to 938.32 μm and from 0.641 to 0.796 μm, respectively. The increase of polymer concentration (1-2%) and crosslinker concentration (3-5%) led to the enlargement of particle size and circularity. However, the association of increased crosslinker concentration and reduced polymer content made the particles more irregular. In vitro and ex vivo tests evidenced the high mucoadhesiveness of microspheres. The high liquid uptake ability of the microspheres was demonstrated and the pH variation did not affect this parameter. Drug release was pH dependent, with low release rates in acid pH (42.40% and 44.93%) and a burst effect in phosphate buffer pH (7.4). The Weibull model had the best correlation with the drug release data, demonstrating that the release process was driven by a complex mechanism involving the erosion and swelling of the matrix or by non-Fickian diffusion. PMID:26616390

  3. Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study

    Intra-arterial administration of beta-emitting particles that become trapped in the vascular bed of a tumour and remain there while delivering high doses, represents a unique approach in the treatment of both primary and metastatic liver tumours. Studies on selective internal radiation therapy of colorectal liver metastases using yttrium-90 glass microspheres have shown encouraging results. This study describes the biodistribution of 40-μm poly lactic acid microspheres loaded with radioactive holmium-166, after intra-arterial administration into the hepatic artery of rats with implanted liver tumours. Radioactivity measurements showed >95% retention of injected activity in the liver and its resident tumour. The average activity detected in other tissues was ≤0.1%ID/g, with incidental exceptions in the lungs and stomach. Very little 166Ho activity was detected in kidneys (10) and medium-sized (4-9) clusters of microspheres were present within tumour and peritumoural tissue, compared with normal liver. Single microspheres were equally dispersed throughout the tumour, as well as normal liver parenchyma. (orig.)

  4. Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres

    Jiang Hong-Yuan; Ren Yu-Kun; Tao Ye

    2011-01-01

    Microspheres coated with a perfectly conductive surface have many advantages in the applications of biosensors and micro-electromechanical systems. Polystyrene microspheres with the diameter of 10 μm were coated with a 50 nmthick gold layer using an electroless gold plating approach. Dielectrophoresis (DEP) for bare microspheres and shelled microspheres was theoretically analysed and the real part of the Clausius-Mossotti factor was calculated for the two kinds of microspheres. The experiments on the dielectrophoretic characterisation of the uncoated polystyrene microspheres and gold coated polystyrene microspheres (GCPMs) were carried out. Experimental results showed that the gold coated polystyrene microspheres were only acted by a positive dielectrophoretic force when the frequency was below 40M Hz,while the uncoated polystyrene microspheres were governed by a negative dielectrophoretic force in this frequency range.The gold coated polystyrene microspheres were exploited to form the microwire automatically according to their stable dielectrophoretic and electric characterisations.

  5. Incorporation of drug-resin complex to improve microsphere performance

    Namdeo R Jadhav

    2012-01-01

    Full Text Available The objective of present work was to incorporate drug-resin complex (DRC to microspheres to achieve improved drug loading, less leakage, and extended zero order release. Ondensetron hydrochloride (ODH, a model drug was complexed with Indion 244, and incorporated to microspheres of hydroxypropyl methyl cellulose (HPMC, and ethyl cellulose (EC. A 32 full factorial design was used to prepare microspheres using HPMC and EC as independent variables, X1 and X2 respectively. The microspheres obtained were evaluated for yield, topology, micromeritics, drug entrapment, and drug release kinetics. Complexation of ODH with Indion 244 was found to be 28% wt/wt. The incorporation efficiency of DRC to microspheres (DRC1-DRC9 was in the range of 70.41 ΁ 2.18 to 95.08 ΁ 0.76% wt/wt. The trend of increase in the drug entrapment (DRC with high amounts of HPMC and EC was noted for all microspheres. Yield of DRC9 was maximum (84.87% wt/wt, and was lowest for DRC1. Acceptable Hausner′s ratio, Carr′s compressibility index and angle of repose demonstrated the excellent flowability of microspheres (DRC1 to DRC9. Drug release kinetic studies showed that, ODH dissociation from DRC, and its diffusion through HPMC and EC, both, have contributed for extended zero order release. Especially, from DRC2, maximum extended release was noted up to 19.10 hrs (zero order, R2 = 0.9239. Hence, it can be concluded that, incorporation of DRC to microspheres can overcome poor drug loading, high drug leakage, and poor drug sustainability problems of microspheres. Especially, the zero order release can be achieved by incorporation of DRC to microspheres.

  6. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres

    Du, Xuemin [Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123 (China); Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Centre for Functional Photonics, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lei, Ngai-Yu; Hu, Peng [Centre for Functional Photonics, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lei, Zhang; Ong, Daniel Hock-Chun [Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong (China); Ge, Xuewu [Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123 (China); Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhicheng, E-mail: zczhang@ustc.edu.cn [Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123 (China); Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lam, Michael Hon-Wah, E-mail: bhmhwlam@cityu.edu.hk [Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123 (China); Centre for Functional Photonics, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-07-17

    Graphical abstract: -- Highlights: •Fabrication of pH-responsive photonic colloidal crystalline microspheres. •Specific photonic band-gap responses occurred in the pH range of 4–5. •Remarkably low in vivo toxicity to Japanese medaka (Oryzia latipes). •In vivo imaging of the morphology and pH along GI tract of Japanese medaka. •Demonstrates bio-imaging potentials of stimuli-responsive photonic materials. -- Abstract: Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core–shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N′-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4–5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core–shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism – Japanese medaka, Oryzia latipes – in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging.

  7. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres

    Graphical abstract: -- Highlights: •Fabrication of pH-responsive photonic colloidal crystalline microspheres. •Specific photonic band-gap responses occurred in the pH range of 4–5. •Remarkably low in vivo toxicity to Japanese medaka (Oryzia latipes). •In vivo imaging of the morphology and pH along GI tract of Japanese medaka. •Demonstrates bio-imaging potentials of stimuli-responsive photonic materials. -- Abstract: Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core–shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N′-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4–5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core–shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism – Japanese medaka, Oryzia latipes – in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging

  8. 氨基酸磁性分子印迹微球的制备及吸附性能研究%Preparation and adsorption characteristics of amino acids magnetic molecularly imprinted plymer microspheres

    程绍玲; 杨迎花; 梁峰杰; 魏树梅

    2012-01-01

    Two amino acids magnetic molecularly imprinted polymers, Ala-MMIPs and Phe-MMIPs were prepared by using Ata and Phe as template molecules, styrene and methacrylic acid as functional monomers, divinylbenzene as cross-linking agent and Fe3O4 as magnetic fluid. Adsorption properties of these two imprinted polymers were researched. Adsorption mechanism was also discussed. The maximum adsorption capacity (qmax) and the adsorption equilibrium constant (K) of Phe on Phe-MMIPs were 231. 62μmol/g and 0. 21L/ mmol respectively. The maximum adsorption capacity and the adsorption equilibrium constant of Ala on AlaMMIPs were 179. 16μmol/g and 0. 12L/mmol respectively. The results exhibit that three site interaction between Phe and Phe-MMIPs was stronger than the two-site interaction between Ala and Ala-MMIPs.%采用分子印迹技术,以Ala和Phe为模板分子,苯乙烯和甲基丙烯酸为共聚单体,二乙烯苯为交联剂,Fe3O4为磁性载体,制备了对两种氨基酸有特异性识别的磁性分子印迹聚合物Ala-MMIPs和Phe-MMIPs。研究了两种印迹聚合物的吸附特性,并探讨了吸附机理。结果表明,Phe在其印迹聚合物上的最大吸附量和吸附平衡常数分别为231.62μmol/g和0.21L/mmol;而Ala在它的印迹微球上的最大吸附量和吸附平衡常数分别为179.16μmol/g和0.12L/mmol。说明Phe与Phe-MMIPs有3个作用位点,Ala与Ala-MMIPs之间有2个作用位点,因此吸附能力前者大于后者。

  9. Optical method for measurement of magnetophoretic mobility of individual magnetic microspheres in defined magnetic field

    The magnetophoretic mobility of magnetic microspheres, nanospheres and particles depends not only on type and amount of encapsulated magnetic compound, but also on microsphere-internal distribution, solvent system, porosity and other factors. Using a microscopic setup with automated digital image processing, different magnetic microspheres were investigated for size, acceleration and velocity of each single microsphere in the suspension. The overall magnetophoretic mobility (responsiveness to an external magnetic field) was not directly proportional to the saturation magnetization of the magnetic microspheres

  10. Hydrazide functionalized monodispersed silica microspheres: a novel probe with tunable selectivity for a versatile enrichment of phosphopeptides with different numbers of phosphorylation sites in MS analysis.

    Xu, Linnan; Ma, Wen; Shen, Sensen; Li, Liping; Bai, Yu; Liu, Huwei

    2016-01-21

    Hydrazide functionalized monodispersed silica microspheres (HFMSM) were developed for the enrichment of phosphopeptides for the first time. With the aid of the tunable selectivity of HFMSM, global enrichment or fractionation of phosphopeptides with different numbers of phosphorylation sites could be realized by a simple modulation of the concentrations of formic acid in buffers. PMID:26596900

  11. On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Li, Yan; Yan, Bo; Xu, Xiuqing; Deng, Chunhui; Yang, Pengyuan; Shen, Xizhong; Zhang, Xiangmin

    2007-01-01

    Peptide mapping analysis, utilizing an easily replaceable and regenerable on-column enzymatic microreactor with metal-ion-chelated adsorption of enzyme on magnetic silica microspheres, combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), was developed. Firstly, magnetic microspheres of small size and strong magnetism were prepared through solvothermal reaction. Thereafter, by introducing tetraethyl orthosilicate (TEOS), magnetic silica (MS) microspheres were formed. Trypsin could then be immobilized onto the MS microspheres based on the Lewis acid-base interaction through the divalent cation chelators such as iminodiacetic acid (IDA), which was chemically bound to the microspheres through the introduction of glycidoxypropyltrimethoxysilane (GLYMO). The trypsin-immobilized MS microspheres were then locally packed into the capillary by the application of a strong magnetic field using a magnet. The performance of the method was exemplified with digestion of bovine serum albumin for 5 min at 50 degrees C and the result was comparable to the 12 h in-solution digestion. The ability of regeneration of the prepared on-column microreactor and good reproducibility of microreactor before and after regeneration were also demonstrated. PMID:17577873

  12. Synthesis, properties, and in vivo evaluation of sustained release albumin-mitoxantrone microsphere formulations for nonsystemic treatment of breast cancer and other high mortality cancers

    Hadba, Ahmad Robert

    Methods for preparing mitoxantrone (MXN)-loaded albumin microspheres for the treatment of breast cancer were developed. The effect of processing conditions on the particle size of unloaded and MXN-loaded microspheres was evaluated using multivariate analyses. The data suggested that the particle size of unloaded microspheres increased as protein concentration increased or the steric stabilizer concentration decreased. In addition, synergy between these two variables was observed. In situ-loading of MXN achieved loading efficiencies in excess of 80%. Comparable efficiencies were achieved with postsynthesis loading when the microsphere were prepared from albumin-poly(glutamic acid) blends. In vitro release of MXN in phosphate buffered saline under infinite sink conditions showed that the total amount of drug released increased as the glutaraldehyde concentration decreased. This trend was reversed when the microspheres were incubated in plasma. Nanoparticles were also prepared using ethanol desolvation. These particles were dispersible in saline and easily modified with amino acids. In addition, particle size could be varied by use of different non-ionic surfactants in the preparation. The effect of intratumoral (IT) versus intravenous (IV) drug administration on tumor response and systemic toxicity was investigated in vivo using the 16/C murine mammary adenocarcinoma tumor model. The data suggested that IT-treated animals had significantly smaller tumors and lower weight loss when compared to IV-treated animals. Furthermore, the addition of surgery to the chemotherapy further improved the survival of the animals. Pilot studies using MXN-albumin microspheres suggested that microspheres could be safely administered IT in doses up to 48 mg/kg. However, there was no evidence that this higher dose resulted in improved long term survival when compared to the 32 mg/kg dose. The maximum tolerated dose of MAN given IT was approximately 12 mg/kg. The animal studies suggested

  13. Fabrication of self-assembled microsphere monolayers

    Domonkos, Mária; Ižák, Tibor; Kromka, Alexander

    Bratislava: Slovenská vákuová spoločnosť, 2014 - (Michalka, M.; Vincze, A.; Veselý, M.), s. 125-128 ISBN 978-80-971179-4-8. [School of Vacuum Technology /17./. Štrbské Pleso (SK), 02.10.2014-05.10.2014] R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : self-assembly * monolayer * microspheres * spin-coating Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Reactive ion etching of polystyrene microspheres

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander

    Praha: ČVUT, 2013 - (Nežerka, V.; Rácová, Z.; Ryparová, P.; Tesárek, P.), s. 24-28 ISBN 978-80-01-05334-8. [Nanomateriály a nanotechnologie ve stavebnictví 2013. Praha (CZ), 12.06.2013-12.06.2013] R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanosphere lithography * reactive ion etching * polystyrene microspheres * Langmuir-Blodgett monolayer s Subject RIV: BL - Plasma and Gas Discharge Physics

  15. PREPARATION AND CHARACTERIZATION OF TRAMADOL HYDROCHLORIDE MICROSPHERES

    Patel Keyur

    2015-10-01

    Full Text Available Tramadol HCl was microencapsulated with Ethylcellulose using multiple emulsion solvent evaporation method. A 32 factorial design employed to study the effect of drug: polymer ratio and volume of External phase (1% PVA on % yield, % encapsulation efficiency, particle size, % drug release rate. The drug: polymer ratio and volume of continuous phase were significant effect on % yield, % entrapment efficiency, particle size, % drug release rate. % drug release was Biphasic system first initially bursting effect and finally sustained. Higher Percentage yield (77.4% and Higher Percentage Encapsulation Efficiency(31.1% were observed in Batch EC3. All the microspheres were spherical in nature its surface was smooth observed in SEM report.

  16. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine–loaded microspheres against dengue 2 virus

    Huang SS

    2013-08-01

    Full Text Available Shih-shiung Huang,1 I-Hsun Li,2,3 Po-da Hong,1 Ming-kung Yeh1,2 1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, and Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan; 2School of Pharmacy, National Defence Medical Center and Bureau of Pharmaceutical Affairs, Military of National Defence Medical Affairs Bureau, Taipei, Taiwan; 3Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan Abstract: Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic acid/polyethylene glycol (PLGA/PEG microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1 in deoxyribonucleic acid (DNA vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w, yield (85.2%, and entrapment efficiency (39%, the mean particle size 4.8 µm, and a controlled in vitro release profile with a low initial burst (18.5%, lag time (4 days, and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 µg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 µg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 µg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was

  17. EDTA-assisted hydrothermal synthesis and magnetic properties of urchin-like YbMn{sub 2}O{sub 5} microspheres

    Liu, Yunhao; Wu, Songping, E-mail: chwsp@scut.edu.cn; Ge, Rongyun

    2015-11-15

    Urchin-like YbMn{sub 2}O{sub 5} microspheres have been fabricated by EDTA (ethylene diamine tetra acetic acid)-assisted hydrothermal method. The results demonstrated that EDTA played key roles in growth of urchin-like YbMn{sub 2}O{sub 5} microspheres. Magnetic measurement indicated that YbMn{sub 2}O{sub 5} showed a weak ferromagnetic at low temperature due to incomplete spin compensation on the surface. The divagation between field cooling and zero field cooling curves could be reasonably ascribed to the collaboration result of spin-glass behavior and the antiferromagnetic (AFM) ordering of the Yb{sup 3+} magnetic moments. Exchange bias (a shift in the hysteresis loop toward negative axis) could be observed in both YbMn{sub 2}O{sub 5} microspheres and nanorods (without EDTA). With the increasing particle size, the exchange bias field and the coercivity increased. - Highlights: • Urchin-like YbMn{sub 2}O{sub 5} microspheres were synthesized with EDTA-assisted hydrothermal method. • Orientated growth of nanorods on the surface of aggregates forms the urchin-like YbMn{sub 2}O{sub 5} microspheres. • YbMn{sub 2}O{sub 5} shows complicated series of magnetic transitions involving the Mn and Yb ions on cooling below Néel temperature.

  18. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  19. A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres.

    Schlottmann, Sonela A; Jain, Neil; Chirmule, Narendra; Esser, Mark T

    2006-02-20

    Here we describe a novel method to conjugate pneumococcal polysaccharides (PnPS) to Luminex microspheres for use in serological assays. 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methyl-morpholinium (DMTMM) modification of PnPS and conjugation to carboxyl functional groups on Luminex microspheres (COOH-DMTMM method) was shown to be a reproducible chemistry that efficiently conjugated PnPS to Luminex microspheres without affecting the antigenicity of a broad set of PnPS. The COOH-DMTMM method was compared to three other methods for robustness, reproducibility and effect on PnPS antigenicity in a multiplexed assay format. The other methods examined included adsorption of the unmodified PnPS to Luminex microspheres, oxidation of the PnPS to conjugate them to amino-modified microspheres using carbodiimide chemistry and poly-l-lysine modification of the PnPS before conjugating to carboxy Luminex microspheres using carbodiimide chemistry. Of the four methods, the COOH-DMTMM chemistry was shown to be a robust methodology, producing stable PnPS coupled microspheres with a 4-log dynamic range and low cross-reactivity when used in a PnPS-specific IgG serology assay. This novel chemistry should be useful for developing serological assays to measure antibodies to polysaccharides for use in vaccine and epidemiology studies. PMID:16448665

  20. Measurement of thermal diffusivity of depleted uranium metal microspheres

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  1. HPLC method for estimation of metformin hydrochloride in formulated microspheres and tablet dosage form

    Kar Mousumi

    2009-01-01

    Full Text Available A simple, accurate, economical and reproducible HPLC method has been developed for quantitative estimation of metformin hydrochloride from tablet dosage form and formulated microspheres. The developed HPLC method is a reverse phase chromatographic method using phenomenex C 18 column and acetonitrile:phosphate buffer (65:35 pH adjusted to 5.75 with o-phosphoric acid as mobile phase and glipizide as internal standard. The linearity was observed in concentration range of 0-25 μg/ml for metformin hydrochloride. Results of analysis were validated statistically and by recovery studies.

  2. HPLC Method for Estimation of Metformin Hydrochloride in Formulated Microspheres and Tablet Dosage Form

    Kar Mousumi; Choudhury P

    2009-01-01

    A simple, accurate, economical and reproducible HPLC method has been developed for quantitative estimation of metformin hydrochloride from tablet dosage form and formulated microspheres. The developed HPLC method is a reverse phase chromatographic method using phenomenex C 18 column and acetonitrile:phosphate buffer (65:35) pH adjusted to 5.75 with o-phosphoric acid as mobile phase and glipizide as internal standard. The linearity was observed in concentration range of 0-25 μg/ml for me...

  3. Facile Synthesis and Photocatalytic Property of Titania/Carbon Composite Hollow Microspheres with Bimodal Mesoporous Shells

    Guohong Wang; Bei Cheng; Jun Zhang; Lin Xu; Tingting Yin

    2012-01-01

    Titania/carbon composite hollow microspheres with bimodal mesoporous shells are one-pot fabricated by hydrothermal treatment of the acidic (NH4)2TiF6 aqueous solution in the presence of glucose at 180∘C for 24 h and then calcined at 450∘C. The as-prepared samples were characterized by XRD, SEM, TEM, HRTEM, UV-visible spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by daylight-induced photocatalytic decolorization...

  4. Mucoadhesivity Characterization of Isabgol Husk Mucilage Microspheres Crosslinked by Glutaraldehyde.

    Sharma, Vipin Kumar; Sharma, Prince Prashant; Mazumder, Bhasker; Bhatnagar, Aseem; Singh, Thakuri

    2015-01-01

    The microspheres of Isabgol husk were prepared by emulsification-crosslinking technique and the gastrointestinal transition behavior of the formulation was studied by gamma scintigraphy. The impact of different process variables such as amount of glutaraldehyde, concentration of Isabgol husk and temperature was studied on surface morphology and mucoadhesion. In vitro mucoadhesive testing of formulations was performed by determination of zeta potential, mucus glycoprotein assay and mucus adsorption isotherms. The effect of feeding on retention of microspheres in the gastrointestinal track (GIT) was studied in albino rabbits by gamma scintigraphy study. The results indicated the formation of microspheres as observed by scanning electron microscopy. The smooth and round surfaces of microspheres were obtained on increasing Isabgol husk and glutaraldehyde amount. The positive zeta potential of all formulations indicated the electrostatic interaction as a mechanism of mucoadhesion between the mucus of GIT membranes and the microspheres surfaces. The influence of electrostatic interaction on mucoadhesion of microspheres was again ascertained when the mucin equilibrium adsorption on preparations indicated well fitness in Langmuir and Freundlich adsorption isotherms. During gamma scintigraphy, the stability of (99m)Tc-sodium pertechnetate was found 98.82% at pH 6.8 and 96.78% at pH 7.2, respectively. It indicated the minimal leaching of bound radionuclide from microspheres during gastrointestinal transition as observed in gamma scintigraphic images of the rabbits. The microspheres retained in GIT even after 24 hrs of oral administration. The results indicated the applicability of Isabgol husk mucilage in the development of mucoadhesive microspheres. PMID:25675337

  5. Differential regulation of angiogenesis using degradable VEGF-binding microspheres.

    Belair, David G; Miller, Michael J; Wang, Shoujian; Darjatmoko, Soesiawati R; Binder, Bernard Y K; Sheibani, Nader; Murphy, William L

    2016-07-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  6. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites. (paper)

  7. Preparation and Comparative Characterization of Alginate-Made Microcapsules and Microspheres Containing Tomato, Seabuckthorn Juices and Pumpkin Oil

    Florina Csernatoni

    2015-05-01

    Full Text Available Recent studies have shown the benefits of tomatoes, seabuckthorn juices and pumpkin oil, rich in bioactives with antioxidant capacity, in the prevention of prostate diseases. To stabilize their antioxidant activity, microencapsulation represent a good technological alternative, improving the stability and bioavailability of bioactive molecules ( phenolic derivatives, carotenoids, phytosterols, vitamins.   The aim of the study was to prepare and characterize microspheres and microcapsules based on emulsions made of natural polymers like Natrium alginate mixed with tomato and/or seabuckthorn juices, with or without pumpkin oil.  The viscosity of emulsions, the morphology of microcapsules and microspheres were characterized comparatively and the bioactives were monitored by UV-Vis spectrometry.  In the lipophilic extract there were identified, before and after encapsulation, different classes of compounds, from lipids, to phenolic acid derivatives, flavonoids and carotenoids. Carotenoids were the major components having concentrations from 9.16 up to 19.71 mg/100 g sample. The viscosity of  each emulsion including juices, oil and natrium alginate 2%, before encapsulation, showed differences, dependent on the oil addition and speed of homogenization. The macroscopic and microscopic structure of microspheres and microcapsules were comparatively evaluated. Both microspheres and microcapsules had external diameters  ranging from 750 to 900 μm and the microcapsules’ oily core of 150-180 μm. The results obtained from emulsion’s viscosity will be correlated with the rigidity and optimal release rate of bioactive molecules from microcapsules and microspheres.  Further studies are directed towards these aspects.

  8. Subcritical CO{sub 2} sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering

    Bhamidipati, Manjari; Sridharan, BanuPriya [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Scurto, Aaron M. [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States); Detamore, Michael S., E-mail: detamore@ku.edu [Bioengineering Graduate Program, University of Kansas, Lawrence, KS (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS (United States)

    2013-12-01

    The aim of this study was to use CO{sub 2} at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ∼ 200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO{sub 2} sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO{sub 2} sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. - Highlights: • The first long-term culture of CO{sub 2}-sintered microsphere-based scaffolds. • Established important thermodynamic differences between sintering PLGA and PCL. • PCL sintering with CO{sub 2} required manipulation of both

  9. Comparative activity of TiO{sub 2} microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    Wang, Chuan [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Liu, Hong, E-mail: liuhong@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); Liu, Yuan [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122 (China); He, Guang’an [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Jiang, Chengchun [School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055 (China)

    2014-11-15

    Highlights: • Adsorption of TiO{sub 2} microspheres was stronger than P25, while less active. • P25 was more active owing to its oxygen vacancy and Ti(III). • Difference in the adsorption abilities of TiO{sub 2} microspheres varied kinetic models. - Abstract: TiO{sub 2} microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO{sub 2} is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO{sub 2} samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO{sub 2} dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO{sub 2} microspheres in terms of the concentration–time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO{sub 2} microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO{sub 2} microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO{sub 2} surface.

  10. Preparation of paclitaxel-loaded microspheres with magnetic nanoparticles

    CUI Sheng; SHEN Xiaodong; SHI Ruihua; LIN Benlan; CHEN Ping

    2007-01-01

    The objective of this paper was to prepare paclitaxel-loaded microspheres,a kind of target-orientation anticancer drug.The paclitaxel-loaded microspheres were prepared with magnetic Fe3O4 nanoparticles and taxo1.The morphology was characterized by scanning electron microscopy(SEM),and the average size and the size distribution were determined by a laser-size distributing instrument.High performance liquid chromatography(HPLC)was used to measure the paclitaxel content.Experimental results indicated that the effective drug loading and the entrapment ratio of paclitaxel-loaded microspheres were 1.83% and 92,62%,respectively.

  11. Locomotion of microspheres for imaging and light focusing applications

    Krivitsky, Leonid A; Wang, Zengbo; Lukiyanchuk, Boris

    2013-01-01

    Super-resolution imaging using sub-diffraction field localization by micron sized transparent beads (microspheres) was recently demonstrated [1]. Practical applications in microscopy require control over the positioning of the microspheres. We present a simple method of positioning and controllable movement of a microsphere by using a glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are relevant to a broad scope of applications, including sample inspection, and bio-imaging.

  12. Locomotion of microspheres for super-resolution imaging

    Krivitsky, Leonid A.; Wang, Jia Jun; Wang, Zengbo; Luk'yanchuk, Boris

    2013-12-01

    Super-resolution virtual imaging by micron sized transparent beads (microspheres) was recently demonstrated by Wang et al. Practical applications in microscopy require control over the positioning of the microspheres. Here we present a method of positioning and controllable movement of a microsphere by using a fine glass micropipette. This allows sub-diffraction imaging at arbitrary points in three dimensions, as well as the ability to track moving objects. The results are relevant to a broad scope of applications, including sample inspection, microfabrication, and bio-imaging.

  13. Confocal epifluorescence detection for microspheres delivered on disposable microfluidic chip

    Honghua Hu; Xiyun Hou; Guoguang Yang

    2006-01-01

    @@ The laser induced fluorescence (LIF) detection system for 5-μm microspheres delivered on microfluidic chip is presented employing confocal optical scheme. The parameters of the optical system are specifically optimized for single microsphere detection. With the excitation laser spot size of 4.6 μm and optical sectioning power of 27 μm, the lowest concentration detection limit is 0.45 nmol/L, corresponding to only 122 molecules in probe volume. The microsphere detection is carried on successfully with the maximum signal-to-noise ratio (SNR) of 55.7, which provides good detection sensitivity.

  14. Preparation and properties of polyvinyl alcohol microspheres

    Polyvinyl alcohol (PVA) microspheres, having a size range of ∼150- to 250-μm diameter with 1- to 5-μm wall thickness, have been fabricated using a solution droplet technique. The spheres were developed for possible use on the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program. PVA, a polymer chosen based on earlier survey work carried out at KMS Fusion, Inc., has good strength, low hydrogen permeability, is optically transparent, and water soluble. The latter property makes it safe and easy to use in our droplet generator system. A unique dual-orifice droplet generator was used to prepare the spheres. The droplet generator operating conditions and the column processing parameters were chosen using results from our 1-D model calculations as a guide. The polymer microsphere model is an extension of the model we developed to support the glass sphere production. After preparation, the spheres were physically characterized for surface quality, sphericity, wall thickness (and uniformity), and size. We also determined the buckling pressure for both uncoated and CH-coated spheres. Radiation stability to beta decay (from tritium) was evaluated by exposing the spheres to a 7-keV electron beam. The results from these and other physical property measurements are presented in this report

  15. Improved bioavailability through floating microspheres of lovastatin

    S Kumar

    2011-03-01

    Full Text Available "n Background and the purpose of the study: Lovastatin is an antihyperlipidemic agent which has low bioavailability due to the extensive first pass metabolism. It was sought to increase gastric retention of lovastatin by development of a sustained release gastroretentive drug delivery system leading to reduced fluctuation in the plasma concentration and improved bioavailability. "nMethods: Floating microspheres were prepared by emulsion solvent diffusion technique, using various polymers and their blends. The in vitro performance was evaluated for drug-polymer compatibility, percent yield, particle size, drug entrapment efficiency, in vitro onset and duration of floatation, in vitro drug release as well as in vivo determination of serum cholesterol level. "nResults: The mean particle size of microspheres was observed to be between 6.9 to 9.5 μm and the maximum particle size was around 50 μm. In vivo studies of the selected batches indicated lower level of serum cholesterol compared to the marketed tablet at the same dose but was not significant. Major conclusion: The data obtained in this study suggested that a microparticulate floating dosage form of lovastatin can be successfully designed to yield controlled delivery with improved therapeutic efficacy.

  16. Release of a Wound-Healing Agent from PLGA Microspheres in a Thermosensitive Gel

    H. A. Machado

    2013-01-01

    Full Text Available The purpose of this research was to develop a topical microsphere delivery system in a thermosensitive 20% poloxamer 407 gel (Pluronic F127 to control release of KSL-W, a cationic antimicrobial decapeptide, for a period of 4–7 days for potential application in combat related injuries. KSL-W loaded microsphere formulations were prepared by a solvent extraction-evaporation method (water-oil-water, with poly (D,L-lactic-co-glycolic acid (PLGA (50 : 50, low-weight, and hydrophilic end as the polymeric system. After optimization of the process, three formulations (A, B, and C were prepared with different organic to water ratio of the primary emulsion while maintaining other components and manufacturing parameters constant. Formulations were characterized for surface morphology, porous nature, drug loading, in vitro drug release, and antimicrobial activity. Microspheres containing 20% peptide with porous surfaces and internal structure were prepared in satisfactory yields and in sizes varying from 25 to 50 μm. Gels of 20% Pluronic F127, which were liquid at or below 24.6°C and formed transparent films at body temperature, were used as carriers for the microspheres. Rheological studies showed a gelation temperature of 24.6°C for the 20% Pluronic F127 gel alone. Gelation temperature and viscosity of formulations A, B, and C as a function of temperature were very close to those of the carrier. A Franz diffusion cell system was used to study the release of peptide from the microspheres suspended in both, phosphate-buffered saline (PBS and a 20% Pluronic F127 gel. In vitro release of greater than 50% peptide was found in all formulations in both PBS and the gel, and in one formulation there was a release of 75% in both PBS and the gel. Fractions collected from the release process were also tested for bactericidal activity against Staphylococcus epidermidis using the broth microdilution method and found to provide effective antimicrobial activity

  17. Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography.

    Qu, Chuang; Kinzel, Edward C

    2016-08-01

    Microsphere photolithography (MPL) is a practical, cost-effective nanofabrication technique. It uses self-assembled microspheres in contact with the photoresist as microlenses. The microspheres focus incident light to a sub-diffraction limited array of photonic jets in the photoresist. This Letter explores the MPL technique to pattern metal-insulator-metal metasurfaces with near-perfect absorption at mid-wave infrared (MWIR) frequencies. Experimental results are compared to electromagnetic simulations of both the exposure process and the metasurface response. The microsphere self-assembly technique results in a polycrystalline metasurface; however, the metal-insulator-metal structure is shown to be defect tolerant. While the MPL approach imposes geometric constraints on the metasurface design, once understood, the technique can be used to create functional devices. In particular, the ability to tune the resonant wavelength with the exposure dose raises the potential of hierarchical structures. PMID:27472578

  18. Strings of polymer microspheres stabilized by oxidized carbon nanotubes.

    Yin, Guannan; Zheng, Zheng; Wang, Haitao; Du, Qiangguo; Zhang, Hongdong

    2014-07-15

    Oxidized carbon nanotubes (CNTOs) with hydrophilic oxygen-containing functional groups and hydrophobic conjugated structure are prepared by the oxidation of carbon nanotubes (CNTs). After the polymerization of styrene with CNTOs dispersed in aqueous phase, polystyrene (PS) microspheres with string-like structure are obtained. Thermogravimetic analysis (TGA), differential scanning calorimeter (DSC) and Raman results indicate the strong interaction between the separated PS chains from the oil phase and CNTOs during the initial stage of the polymerization. These adsorbed PS chains on the surface of CNTOs are quickly swollen by the monomer and they grow in size during the further polymerization. The pH value and the ion strength of aqueous phase obviously affect the stability of PS microspheres. The particle size of microspheres is also determined by the pH. We demonstrate that the one-dimensional structure of CNTOs is responsible for the formation of polymer microspheres with special architecture. PMID:24863776

  19. Preparation and characterization of nickel hydroxide microspheres assembled by nanoribbons

    This article describes a facile green strategy for preparing the Ni(OH)2 microsphere assembled by nanoribbons by the template of the squama inner coat of onion at mild condition. The method is simple and effective. The results of SEM show the products are Ni(OH)2 microspheres with diameters in the range of 500-2,500 nm. The results of TEM show the microsphere is assembly by nanoribbons, with thickness in the range of 30-50 nm. The products were characterized by powder X-ray diffraction, IR, and thermogravimetric analysis. A possible formation mechanism was also proposed.Graphical AbstractThis paper describes a facile green strategy for preparing the Ni(OH)2 microspheres assembly by nanoribbons by the template of the squama inner coat of onion at mild condition.

  20. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  1. Silicon microspheres for near-IR communication applications

    Serpengüzel, Ali; Demir, Abdullah

    2008-06-01

    We have performed transverse electric and transverse magnetic polarized elastic light scattering calculations at 90° and 0° in the o-band at 1.3 µm for a 15 µm radius silicon microsphere with a refractive index of 3.5. The quality factors are on the order of 107 and the mode/channel spacing is 7 nm, which correlate well with the refractive index and the optical size of the microsphere. The 90° elastic light scattering can be used to monitor a dropped channel (drop port), whereas the 0° elastic scattering can be used to monitor the transmission channel (through port). The optical resonances of the silicon microspheres provide the necessary narrow linewidths that are needed for high-resolution optical communication applications. Potential telecommunication applications include filters, modulators, switches, wavelength converters, detectors, amplifiers and light sources. Silicon microspheres show promise as potential building blocks for silicon-based electrophotonic integration.

  2. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  3. Development of biodegradable starch microspheres for intranasal delivery

    Yadav A

    2008-01-01

    Full Text Available Domperidone microspheres for intranasal administration were prepared by emulsification crosslinking technique. Starch a biodegradable polymer was used in preparation of microspheres using epichlorhydrine as cross-linking agent. The formulation variables were drug concentration and polymer concentration and batch of drug free microsphere was prepared for comparisons. All the formulations were evaluated for particle size, morphological characteristics, percentage drug encapsulation, equilibrium swelling degree, percentage mucoadhesion, bioadhesive strength, and in vitro diffusion study using nasal cell. Spherical microspheres were obtained in all batches with mean diameter in the range of above 22.8 to 102.63 μm. They showed good mucoadhesive property and swelling behaviour. The in vitro release was found in the range of 73.11% to 86.21%. Concentration of both polymer and drug affect in vitro release of drug.

  4. Self-assembled microsphere gratings on rib waveguides

    Tai, Chao-Yi; Unal, Bayram; Wilkinson, James S.; Mohamed A. Ghanem; Bartlett, Philip N.

    2003-01-01

    We report the spectral transmission of a rib waveguide side-coupled to a self-assembled polystyrene microsphere array. A transmission stopband was observed at ? ~ 1590nm, showing the potential for realising wavelength-selective devices

  5. A novel method for producing microspheres with semipermeable polymer membranes

    Lin, K. C.; Wang, Taylor G.

    1992-01-01

    A new and systematic approach for producing polymer microspheres has been demonstrated. The membrane of the microsphere is formed by immersing the polyanionic droplet into a collapsing annular sheet, which is made of another polycation polymer solution. This method minimizes the impact force during the time when the chemical reaction takes place, hence eliminating the shortcomings of the current encapsulation techniques. The results of this study show the feasibility of this method for mass production of microcapsules.

  6. Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods

    Kim, Jason S.; Taitt, Chris R.; Frances S. Ligler; Anderson, George P.

    2010-01-01

    Foodstuffs have traditionally been challenging matrices for conducting immunoassays. Proteins, carbohydrates, and other macromolecules present in food matrices may interfere with both immunoassays and PCR-based tests, and removal of particulate matter may also prove challenging prior to analyses. This has been found true when testing for bacterial contamination of foods using the standard polystyrene microspheres utilized with Luminex flow cytometers. Luminex MagPlex microspheres are encoded ...

  7. Formulation and evaluation of gliclazide loaded controlled release microspheres

    Dey, Sanjay; Mohanta, Bibhash C.; Das Gupta, Sandipan; Mazumder, Bhaskar

    2011-01-01

    The aim of this study was to formulate gliclazide loaded controlled release microspheres. Microspheres were prepared by quasi emulsion solvent diffusion technique using eudragit RLPO, eudragit RSPO and with their various combinations. The effect of different formulation variables (drug-polymer ratio and polymer-polymer ratio) on percent yield, mean particle size, encapsulation efficiency and in vitro release of drug were evaluated. In vivo test of the optimized formulation was performed on st...

  8. Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia

    Miyazaki, Toshiki; Anan, Shota; Ishida, Eiichi; Kawashita, Masakazu

    2013-01-01

    Recently, organic–inorganic hybrids composed of derivatives of dextran, a polysaccharide, and magnetite nanoparticles have attracted much attention as novel thermoseeds. If they can be fabricated into microspheres of size 20–30 μm, they are expected to show not only hyperthermia effects but also embolization effects in human liver and kidney cancers. In this study, we examined the fabrication of carboxymethyldextran/magnetite microspheres using a water/oil emulsion as the reaction medium. Imp...

  9. In vitro model alveoli from photodegradable microsphere templates†

    Lewis, Katherine J. R.; Tibbitt, Mark W.; Zhao, Yi; Branchfield, Kelsey; Sun, Xin; Balasubramaniam, Vivek; Anseth, Kristi S.

    2015-01-01

    Recreating the 3D cyst-like architecture of the alveolar epithelium in vitro has been challenging to achieve in a controlled fashion with primary lung epithelial cells. Here, we demonstrate model alveoli formed within a tunable synthetic biomaterial platform using photodegradable microspheres as templates to create physiologically relevant, cyst structures. Poly(ethylene glycol) (PEG)-based hydrogels were polymerized in suspension to form microspheres on the order of 120 μm in diameter. The g...

  10. Packaged Chalcogenide Microsphere Resonator with High Q-factor

    Wang, Pengfei; Ding, Ming; Lee, Timothy; Murugan, Ganapathy Senthil; Bo, Lin; Semenova, Yuliya; Wu, Qiang; Hewak, Dan; Brambilla, Gilberto

    2013-01-01

    The fabrication and characterization of a packaged As2S3 microsphere resonator coupled to a tapered fiber using a low refractive index UV-curable polymer are reported. Embedding provides an efficient means to remove the highest order whispering gallery modes in the microsphere resonator, thus cleaning the resonator spectrum. The device photosensitivity, useful for tuning, is still present and useable after the packaging process

  11. Highly efficient hybrid fiber taper coupled microsphere laser

    Ming CAI; Vahala, Kerry

    2001-01-01

    A novel hybrid fiber taper is proposed and demonstrated as the coupler in a microsphere laser system. The pump wave and the laser emission, respectively, are more efficiently coupled to and from the sphere modes with this taper structure. A 980-nm pumped erbium–ytterbium codoped phosphate microsphere laser is demonstrated in the 1550-nm band. As much as 112 µW of single-frequency laser output power was measured, with a differential quantum efficiency of 12%.

  12. Biocompatibility of Bletilla striata Microspheres as a Novel Embolic Agent

    ShiHua Luo; SongLin Song; ChuanSheng Zheng; Yong Wang; XiangWen Xia; Bin Liang; GanSheng Feng

    2015-01-01

    We have prepared Chinese traditional herb Bletilla striata into microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility of Bletilla striata microspheres (BSMs). After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT) assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation ...

  13. 分散聚合法合成含有环氧基的无孔超顺磁性微球及其表征%Preparation and Characterization of Non-porous Superparamagnetic Microspheres with Epoxy Groups by Dispersion Polymerization

    马志亚; 官月平; 刘先桥; 刘会洲

    2005-01-01

    Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3 O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP)and 2,2'-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of have extensive potential uses in magnetic bioseparation and biotechnology.

  14. Absorbance characterization of microsphere-based ion-selective optodes

    Ye Nan [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Wygladacz, Katarzyna [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Bakker, Eric [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: bakkere@purdue.edu

    2007-07-23

    Ionophore-based microsphere sensors are characterized here in transmission mode. These sensors contain a lipophilic ionophore for the analyte cation, a chromoionophore for recognizing H{sup +}, and a lipophilic cation-exchanger. They function on the basis of an ion-exchange equilibration step where an increased concentration of analyte ion leads to increased level of extraction into the bulk of the microsphere, expelling protons in return and deprotonating the chromoionophore. Since the path length is variable across the microsphere, such bead-based sensors are normally characterized in fluorescence mode. In this paper, the response of the sensing microspheres is calculated from the ratio of transmitted light intensities at the absorbance peak maxima of the protonated and unprotonated forms of the chromoionophore. At a fixed position of the particle, the resulting responses are found to be independent of light scattering, incident light intensity and the shape or size of the microsphere. The responses of potassium-selective microspheres obtained by this method agree quantitatively with corresponding fluorescence-based data.

  15. Preparation and preclinical evaluation of aceclofenac loaded pectinate mucoadhesive microspheres

    Santanu Chakraborty

    2012-03-01

    Full Text Available The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. In vitro drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t50% values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.

  16. Load partitioning in aluminum syntactic foams containing ceramic microspheres

    Syntactic foams were fabricated by pressure-infiltrating liquid aluminum (commercial purity and 7075-Al) into a packed preform of silica-mullite hollow microspheres. These foams were subjected to a series of uniaxial compression stresses while neutron or synchrotron X-ray diffraction measurements of elastic strains in the matrix and the microspheres were obtained. As for metal matrix composites with monolithic ceramic reinforcement, load transfer in the pure aluminum foams is apparent between the two phases during elastic deformation, and is affected at higher stresses by matrix plasticity. Calculating effective stresses from the lattice strains shows that the microspheres unload the pure aluminum matrix by a factor of about 2. In the aluminum alloy foams, an in situ reaction between silica and the melt leads to the conversion of silica to alumina in the microsphere walls and the precipitation of silicon particles in the matrix. This affects the load transfer between the matrix and the reinforcement (microspheres and particles), and increases the macroscopic foam stiffness by over 40%, as compared to the pure aluminum foams. Composite micromechanical modeling provides good predictions of the elastic moduli of the syntactic foams, capturing the effects of load transfer and suggesting that significant stiffness improvements can be achieved in syntactic foams by the use of microspheres with stiff walls and/or by the incorporation of a stiff reinforcing phase within the metallic matrix

  17. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes

    Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin

    2015-11-01

    Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.

  18. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity.

    Chen, Yuemei; Deng, Yuanming; Pu, Yitao; Tang, Bijun; Su, Yikun; Tang, Jiaoning

    2016-08-01

    We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres. The effect of AgNO3 and HAc on the morphology of Ag/TiO2 was investigated. The Ag/TiO2 with various Ag content showed excellent antibacterial activities with extremely low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus when compared with colloidal Ag NPs. PMID:27157724

  19. Microspheres and Nanotechnology for Drug Delivery.

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. PMID:26501994

  20. Nonstationary photonic jet from dielectric microsphere

    Geints, Yu; Zemlyanov, A

    2014-01-01

    A photonic jet commonly denotes the specific spatially localized region in the near-field forward scattering of a light wave at a dielectric micron-sized particle. We present the detailed calculations of the transient response of an airborne silica microsphere illuminated by a femtosecond laser pulse. The spatial area constituting the photonic jet is theoretically investigated and the temporal dynamics of jet dimensions as well as of jet peak intensity is analyzed. The role of morphology-dependent resonances in jet formation is highlighted. The evolution scenario of a nonstationary photonic jet generally consists of the non-resonant and resonant temporal phases. In every phase, the photonic jet can change its spatial form and intensity.

  1. Permeability of Hollow Microspherical Membranes to Helium

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  2. Toxicity of Magnetic Albumin Microspheres Bearing Adriamycin

    2000-01-01

    Magnetic albumin microspheres bearing adriamycin (ADM-MAM) is a novel chemotherapeutic compound with site-specific drug delivery characteristics. The acute and subacute toxic tests of the compound, local irritating test and anaphylactic test were performed on mice and guinea pigs. The results showed there was no macroscopically and microscopically direct cytotoxic injuries of the compound to the animal organs or to the cells. The LD50 value of the compound was higher than that of the single used adriamycin, indicating that the compound was less toxic than the single adriamycin and quite safe in its therapeutic dosage. Furthermore, there was also no side effects or toxic reactions to be observed on clinical patients with advanced carcinoma or gastric cancer.

  3. Heuristic modeling of macromolecule release from PLGA microspheres

    Szlęk J

    2013-12-01

    Full Text Available Jakub Szlęk,1 Adam Pacławski,1 Raymond Lau,2 Renata Jachowicz,1 Aleksander Mendyk11Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland; 2School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU, SingaporeAbstract: Dissolution of protein macromolecules from poly(lactic-co-glycolic acid (PLGA particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs, feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP networks with a root-mean-square error (RMSE of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE of 14.3. The equation was characterized by four parameters, thus feasible (applicable to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with

  4. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.

    Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei

    2016-04-01

    Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40°C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40°C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20°C. PMID:26803008

  5. Comparative activity of TiO2 microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    Wang, Chuan; Liu, Hong; Liu, Yuan; He, Guang'an; Jiang, Chengchun

    2014-11-01

    TiO2 microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO2 is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO2 samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO2 dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO2 microspheres in terms of the concentration-time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO2 microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO2 microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO2 surface.

  6. Fluorocarbon-bonded magnetic mesoporous microspheres for the analysis of perfluorinated compounds in human serum by high-performance liquid chromatography coupled to tandem mass spectrometry

    Highlights: • New SPE method was developed for analysis of PFCs in human serum. • Fluorocarbon-bonded magnetic mesoporous microspheres were used as SPE absorbents. • PFCs in serum were directly extracted without any other pretreatment procedure. • The PFCs-adsorbed microspheres were simply and rapidly isolated by using a magnet. - Abstract: We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe3O4@mSiO2-F17). Thanks to the unique properties of the Fe3O4@mSiO2-F17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe3O4@mSiO2-F17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe3O4@mSiO2-F17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL−1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples

  7. Investigation of targeting of gelatin microsphere coated clodronate in reticuloendothelial system

    Objectives: To investigate the targeting of gelatin microsphere coated clodronate in reticuloendothelial system for its application in treatment of immune thrombocytopenic purpura (ITP). Methods: (1) Gelatin microspheres (GNS) were prepared by dissolving it in acetone solutions with proper condition including temperature, time and pH value. The characteristics of gelatin microspheres were analyzed by Methods of TEM and Zeta-potential. Clodronate(Clod) was coated into gelatin microspheres by electricity adsorption. Its encapsulation rate and release rate in vitro were tested by 99mTC labeled clodronate(99mTc-Clod). (2) In vivo biodistribution, γ scintigraphy was conducted in SD rats at 1,4,24 hours after GNS-99mTc-Clod injection. Companson was performed by intravenous injection of 99mTc-Clod. The counts per minute (cpm) in different tissue of SD rats were measured at 1,4,24 hours. In another group, the targeting specificity of gelatin microsphere was examined. The SD rats were pre-injected with sodium phytic acid to block the reticuloendothelial cells of liver and spleen, then injected with same radioactivity dose of GNS-99mTc-Clod. γ scintigraphy was taken to examine the uptake lever of GNS in liver and spleen. (3) In vitro, mice macrophages were cultured with GNS-99mTc-Clod and 99mTc-Clod. Specificity uptake of gelatin microsphere by mice macrophages was tested. (4) In SD rat model of ITP, which induced by rabbit antimouse platelet antiserum, treatment was conducted by intravenously injected GNS-Clod. The bleeding time was measured by making a incision in tail vein of SD rat and platelet count in peripheral blood sample of SD rat was measured 24 hours after treatment. Results (1) The optimal conditions for preparing GNS were set included dissolving time 10 min, dissolving temperature 0 degree, fixing time 30 mm and pH 2.0-4.0. The size of GNS prepared under these conditions was about 300-500nm. In vitro, encapsulation rate of clodronate was about 13%±2.4% and

  8. In Vitro Cytotoxicity and Protein Drug Release Properties of Chitosan/Heparin Microspheres

    2007-01-01

    Chitosan/heparin microspheres were prepared using the water-in-oil emulsification solvent evaporation technique. The microsphere diameters were controlled by selecting the fabrication process parameters. Scanning electron micrographs showed that the chitosan/heparin microspheres were regular and the surface morphology was smooth. Fourier transform infrared showed that the chitosan amino groups reacted with heparin carboxylic groups to form acylamides in the microspheres. Analysis of the microsphere cytotoxicity showed that they had no cytotoxic effect and behaved very similar to the negative control (polystyrene).To analyze the protein drug release profiles of the microspheres, bovine serum albumin was loaded as a model drug into the microspheres and released in vitro. Marked retardation was observed in the BSA release profiles. The results show that chitosan/heparin microspheres may provide a useful controlled release protein drug system for used in pharmaceutics.

  9. Hierarchical porous polycaprolactone microspheres generated via a simple pathway combining nanoprecipitation and hydrolysis.

    Fan, Hailong; Jin, Zhaoxia

    2015-10-21

    We demonstrated a one-pot, soap-free fabrication of porous polycaprolactone microspheres by combining nanoprecipitation and hydrolysis. The obtained porous polycaprolactone microspheres show great advantages for application in drug delivery. PMID:26324843

  10. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  11. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Ke; Ye, Zhaoyang [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)

    2012-12-01

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 {mu}m to 80 {mu}m and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: Black-Right-Pointing-Pointer The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. Black-Right-Pointing-Pointer The microspheres exhibited porous surface and inter-connective pore structure. Black-Right-Pointing-Pointer The surface and internal pore size and porosity of microsphere could be controlled. Black-Right-Pointing-Pointer The porous microspheres exhibited an improved cell adhesion and proliferation. Black

  12. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification o...

  13. Incorporation of Iron Oxide Nanoparticles and Quantum Dots into Silica Microspheres

    Insin, Numpon; Tracy, Joseph B.; Lee, Hakho; Zimmer, John P.; Westervelt, Robert M.; Bawendi, Moungi G.

    2008-01-01

    We describe the synthesis of magnetic and fluorescent silica microspheres fabricated by incorporating maghemite (γ-Fe2O3) nanoparticles (MPs) and CdSe/CdZnS core/shell quantum dots (QDs) into a silica shell around preformed silica microspheres. The resultant 500 nm microspheres have a narrow size distribution and show uniform incorporation of QDs and MPs into the shell. We have demonstrated manipulation of these microspheres using an external magnetic field with real-time fluorescence microsc...

  14. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 μm to 80 μm and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: ► The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. ► The microspheres exhibited porous surface and inter-connective pore structure. ► The surface and internal pore size and porosity of microsphere could be controlled. ► The porous microspheres exhibited an improved cell adhesion and proliferation. ► Mesenchymal stem cells survived and proliferated in microsphere/hydrogel composite.

  15. Fabrication and characterization of porous hydroxyapatite microspheres by spray-drying method

    Rui-xue SUN; Yu-peng LU

    2008-01-01

    In the present paper, porous hydroxyapatite (HA) microspheres were fabricated using gelatin as a pore-forming agent by spray-drying method. The mean particle size of the microspheres is about 7 μm and the surface area is about 53.4 m2/g. The experimental results showed that the porosity of the prepared microspheres is higher and the pores are more interconnected compared with the microspheres obtained without any additives.

  16. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization

    Hidehiro Kumazawa; Wang Zhifeng; Zhou Lanxiang; Zhang Hong; Li Yourong; Zhang Ming

    2005-01-01

    Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability.

  17. In vitro model alveoli from photodegradable microsphere templates.

    Lewis, Katherine J R; Tibbitt, Mark W; Zhao, Yi; Branchfield, Kelsey; Sun, Xin; Balasubramaniam, Vivek; Anseth, Kristi S

    2015-06-01

    Recreating the 3D cyst-like architecture of the alveolar epithelium in vitro has been challenging to achieve in a controlled fashion with primary lung epithelial cells. Here, we demonstrate model alveoli formed within a tunable synthetic biomaterial platform using photodegradable microspheres as templates to create physiologically relevant, cyst structures. Poly(ethylene glycol) (PEG)-based hydrogels were polymerized in suspension to form microspheres on the order of 120 μm in diameter. The gel chemistry was designed to allow erosion of the microspheres with cytocompatible light doses (≤15 min exposure to 10 mW cm(-2) of 365 nm light) via cleavage of a photolabile nitrobenzyl ether crosslinker. Epithelial cells were incubated with intact microspheres, modified with adhesive peptide sequences to facilitate cellular attachment to and proliferation on the surface. A tumor-derived alveolar epithelial cell line, A549, completely covered the microspheres after only 24 hours, whereas primary mouse alveolar epithelial type II (ATII) cells took ∼3 days. The cell-laden microsphere structures were embedded within a second hydrogel formulation at user defined densities; the microsphere templates were subsequently removed with light to render hollow epithelial cysts that were cultured for an additional 6 days. The resulting primary cysts stained positive for cell-cell junction proteins (β-catenin and ZO-1), indicating the formation of a functional epithelial layer. Typically, primary ATII cells differentiated in culture to the alveolar epithelial type I (ATI) phenotype; however, each cyst contained ∼1-5 cells that stained positive for an ATII marker (surfactant protein C), which is consistent with ATII cell numbers in native mouse alveoli. This biomaterial-templated alveoli culture system should be useful for future experiments to study lung development and disease progression, and is ideally suited for co-culture experiments where pulmonary fibroblasts or endothelial

  18. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  19. Effect of Plasticizers on Various Characteristics of Eudragit Microspheres formulated By Solvent Evaporation Method

    Sahoo, S. K.; BEHERA A. L; Mallik, B.; S. V. Patil

    2011-01-01

    Glipizide microspheres were prepared by solvent evaporation method using different concentrations of Eudragit RS 100 as matrix polymer along with dibutyl phthalate and diethyl phthalate as plasticizers. Prepared microspheres were evaluated for percent drug content, encapsulation efficiency, micromeritic properties, in vitro drug release and characterized for scanning electron microscopy and fourier transforms infrared spectroscopy. Microspheres formed were spherical with smooth surface showin...

  20. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability

    Yu, Changlin; Yang, Kai; Xie, Yu; Fan, Qizhe; Yu, Jimmy C.; Shu, Qing; Wang, Chunying

    2013-02-01

    Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals.Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as

  1. Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth.

    Adhirajan, N; Shanmugasundaram, N; Shanmuganathan, S; Babu, Mary

    2009-02-15

    An attempt was made to develop a new therapeutic delivery system which would play a dual role of attenuating MMP activity in the wounds and also prevent infection by controlled delivery of antimicrobials. A catechol type MMP inhibitor 2,3-dihydroxybenzoic acid (DHBA) was conjugated to gelatin microspheres using EDC/NHS as coupling agents. The potential of the modified gelatin microspheres (DHB-MS) to attenuate the proteases such as MMP 2 and MMP 9 in the diabetic wound tissues was investigated by gelatin zymography. Further the modified microspheres were loaded with doxycycline and impregnated in a reconstituted collagen scaffold as novel wound dressing. The in vitro release behavior of doxycycline from both DHB-MS and DHB-MS impregnated collagen scaffold was investigated. DHB-MS when incubated with the tissue lysate for 6h displayed the complete inhibition of the MMPs in the tissue lysate. The in vitro drug release studies from the collagen scaffold exhibited the burst release of 44%, exerted immediate chemo prophylaxis and sustained delivery for 72 h. The MTT assay and fluorescent labeling with calcein AM indicated that the DHB-MS is biocompatible to human foreskin fibroblasts. Thus the system developed provides wider scope to control the pathogens involved in infection and also the excess matrix degradation. PMID:18952165

  2. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. PMID:27110910

  3. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications. PMID:16579687

  4. Research progress of fabricating polyvinyl alcohol coating on plastic microsphere

    In the procedures of designing polystyrene-polyvinyl alcohol-CH (carbon and hydrogen elements) (PS-PVA-CH) triple-layer microspheres, there are many methods such as drop-tower technique, emulsion micro-encapsulation, dip (spin) coating, interfacial polycondensation, and spraying technique to prepare the PVA coating. Drop-tower technique, emulsion micro-encapsulation and dip (spin) coating are most-commonly used. The advantages, disadvantages and the research progress of the three methods are summarized in this paper. Emulsion micro-encapsulation is suitable for preparing double-layer microspheres of sizes smaller then 500 μm, with high survival ratio and good quality. However, the preparation process is easily influenced by artificial factors. Small-sized double-layer microspheres can also be prepared by the drop-tower technique, and the preparation period is short. But there are still some problems such as the difficulty in designing the droplet generator, uneven PVA coating and the difficulty in preparing large-sized microspheres. Dip (spin) coating technique can be used to prepare PS-PVA microspheres with sizes larger than 1000 μm, but the spread of PVA coating is affected by many factors in this method, and the prepared PVA coating is too thin and not uniform. (authors)

  5. Mesoporous carbon microspheres with high capacitive performances for supercapacitors

    Highlights: • Small mesopores-enriched porous carbon microspheres were easily synthesized. • Small mesopores offer high ion-accessible surface area and facilitated ion diffusion. • The porous carbon exhibited a high specific capacitance and a good power property. - Abstract: Novel small-mesopores-enriched porous carbon microspheres have been synthesized from carbonaceous polysaccharide microspheres, by using the associated lithium acetate treating and heat treating strategies. X-ray diffraction, scanning electron microscope, transmission electron microscopy and nitrogen adsorption-desorption techniques have been employed to investigate the as-prepared samples. The analysis results indicate that the porous carbon microspheres has a high specific surface area of 1163 m2 g−1 and a satisfactory small mesoporous texture (2∼5 nm), with the mean pore size of 3.24 nm and the pore volume ratio of 2∼5 nm pores up to 92%. The capacitive performances of the samples in 6 mol L−1 KOH aqueous electrolyte, have been tested by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge techniques. A specific capacitance of 171.5 F/g is obtained for the porous carbon microspheres via charge-discharge at a current density of 1000 mA/g. It also displayed a very high cycle stability of 97.8%, compared with the initial capacitance, after 1000 cycles at the high current density of 1000 mA/g

  6. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  7. FORMULATION AND EVALUATION OF MUCOADHESIVE MICROSPHERES OF NIFEDIPINE

    G.V. Radha

    2012-10-01

    Full Text Available In the present study, an attempt has been made to evaluate mucoadhesive microspheres of nifedipine by orifice ionic gelation method employing sodium alginate and different mucoadhesive polymers (HPMC, carbopol alone and in combination of different proportions. The compatibility study was done between drug and polymer by FTIR which shows no interaction between the drug and polymer. The prepared microspheres were evaluated for particle size ,angle of repose, carrs index, swelling index, microencapsulation efficiency, percent drug content, drug release, kinetics and mechanism of drug release. The microspheres were found discrete, spherical, free flowing and the particle size was found in the range of 765 to 792µ. The encapsulation efficiency was found in the range of 55 to 69 %. Percent drug content was found to be in the range of 96 to 99 %. All the microspheres showed good muco adhesive property in the in vitro wash off test. Drug release from the microspheres was found slow, followed first order kinetics with non fickian release mechanism and release dependent on nature and concentration of polymers.

  8. Colored microspheres reveal interarterial microvascular anastomoses in canine myocardium.

    Cicutti, N; Rakusan, K; Downey, H F

    1992-01-01

    While the presence of microvascular intercommunication within an individual myocardial arterial bed is well documented, there is a paucity of data to support the existence of anastomoses emanating from independent arterial beds. Simultaneous in-vivo infusion of two different colored microsphere suspensions into the left anterior descending (LAD) and left circumflex (LCx) coronary arteries identified a specific interface region of canine myocardium that was perfused by both arterial branches. Subsequent microscopic/morphometric analysis of 40 microns serial sections in eight hearts revealed clustering of microspheres in their respective perfusion territories (red microspheres in the LAD region away from the interface, blue microspheres in the LCx field away from the interface), along with a mutually perfused borderzone. In each tissue section, two regions within this zone were identified and their maximum widths measured. One region was defined as the Interface Transition Zone (ITZ) (mean width = 5251 +/- 770 microns; mean +/- SD). This region was formed by an intermingling of microvessels supplied by the parent arteries of the adjacent perfusion territories; it separated tissue containing only one or the other colored microspheres. The second region was defined as the Boundary Watershed Zone (BWZ) (mean zone width = 3151 +/- 611 microns; mean +/- SD). This region was formed by capillaries containing sphere aggregates of both colors; it was located exclusively within the ITZ. In addition, the ITZ and BWZ were significantly wider in subepicardial than in subendocardial regions (p less than 0.001). PMID:1417709

  9. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits

    Zhuo; Ye; Yan-Li; Ji; Xiang; Ma; Jian-Guo; Wen; Wei; Wei; Shu-Man; Huang

    2015-01-01

    · AIM: To investigate the pharmacokinetics and distributions of bevacizumab by intravitreal injection of prepared bevacizumab-poly(L-lactic-co-glycolic acid)(PLGA) microspheres in rabbits, to provide evidence for clinical application of this kind of bevacizumab sustained release dosage form.·METHODS: Bevacizumab was encapsulated into PLGA microsphere via the solid- in- oil- in- hydrophilic oil(S/O/h O) method. Fifteen healthy New Zealand albino-rabbits were used in experiments. The eyes of each rabbit received an intravitreal injection. The left eyes were injected with prepared bevacizumab-PLGA microspheres and the right eyes were injected with bevacizumab solution. After intravitreal injection, rabbits were randomly selected at day 3, 7, 14, 28 and 42 respectively, three animals each day. Then we used immunofluorescence staining to observe the distribution and duration of bevacizumab in rabbit eye tissues, and used the sandwich ELISA to quantify the concentration of free bevacizumab from the rabbit aqueous humor and vitreous after intravitreal injection.·RESULTS: The results show that the concentration of bevacizumab in vitreous and aqueous humor after administration of PLGA formulation was higher than thatof bevacizumab solution. The T1/2of intravitreal injection of bevacizumab-PLGA microspheres is 9.6d in vitreous and 10.2d in aqueous humor, and the T1/2of intravitreal injection of soluble bevacizumab is 3.91 d in vitreous and4.1d in aqueous humor. There were statistical significant difference for comparison the results of the bevacizumab in vitreous and aqueous humor between the left and right eyes(P <0.05). The AUC0-tof the sustained release dosage form was 1-fold higher than that of the soluble form. The relative bioavailability was raised significantly.The immunofluorescence staining of PLGA-encapsulated bevacizumab(b-PLGA) in rabbit eye tissues was still observed up to 42 d. It was longer than that of the soluble form.· CONCLUSION: The result of this

  10. Heuristic modeling of macromolecule release from PLGA microspheres.

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model. PMID:24348037

  11. Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure

    Highlights: • An excellent multiple conductive network is constructed in the microspheres. • The multiple conductive network contain a carbon layer on the surface of primary nanoparticles and interconnected carbon frames among them. • The appropriate content of PAA layer and sucrose play an important role in construction of multiple conductive network. • The multiple conductive network facilitates transfer of electrons and lithium ions simultaneously. - Abstract: Lithium iron phosphate/carbon (LiFePO4/C) microspheres with an excellent multiple conductive network are synthesized using iron (III) acrylate as both iron and carbon sources. The innermost network is constructed by a uniform carbon layer on the surface of LiFePO4 primary nanoparticles, which derives from the carbonation of in-situ polymerized polyacrylic acid (PAA) layer. Moreover, the acetylene black added in spay drying process fills the voids among primary nanoparticles to construct the second conductive network. Finally, the carbon from optimized content sucrose used as binder and linker can interconnect primary nanoparticles together to form the third network. In addition, subtle mesoporous structure is formed inside the multiple carbon conductive network. The highly speed electron transfer and lithium ion transportation can be achieved simultaneously for LiFePO4/C microspheres. All these features contribute to their great rate performance (163.1 mAh g−1 at 0.1 C and 126.5 mAh g−1 at 5 C) and outstanding cycling stability (95.3% of capacity retention after 1000 cycles at 5 C/5C). The well-designed LiFePO4/C microspheres with unique structure are very promising cathode materials for rechargeable lithium ion power batteries

  12. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres

    The efficiency and effects of using Bisphenol A-molecularly imprinted polymeric microspheres (MIPMs) to remove phenolic estrogens from different sources of water were evaluated. MIPMs prepared by precipitation polymerization removed a group of phenolic estrogens from different kinds of water selectively and effectively. The highest removal efficiency was observed at pH = 5. Fifty millimoles per litre ions or 10 mg/L humid acid improved removal efficiency. MIPMs were more suitable to remove trace estrogens in large volume than high concentration of estrogens in small volume. The removal efficiency of spiked tap water, lake water and river water were better than that of distilled water. Hundred milligrams of MIPMs had higher removal selectivity and efficiency than those of 100 mg or 300 mg activated carbons. Moreover, MIPMs can be re-used for at least 30 times without losing any removal efficiency. MIPMs provided a selective, simple, reliable and practicable solution to remove trace phenolic estrogens from different sources of water. - Bisphenol A imprinted polymeric microspheres were used as absorbent and could remove phenolic estrogen pollutants from water effectively

  13. Lower biological efficacy of 90Y-loaded glass microspheres results from microspheres transport in the arterial hepatic tree

    Full text of publication follows. Aim: 90Y resin and glass microspheres liver radio-embolization delivering liver dose of 40 and of 120 Gy, respectively, display similar hepatic toxicity risk than 40 Gy fractionated EBRT. We investigated why. Materials and methods: the microscopic dose distribution was assessed in the realistic liver model developed by Gulec et al., but using the Russels dose deposition kernel: D(r) = 0.989*A*(1-r/8)*r2 (1) where r: radial distance in mm, D: dose in Gy and A: microsphere activity in kBq. A lattice of hexagonal prisms represented the hepatic lobules. The central vein and the six portal tracts were located in the hexagon centre and corners, respectively. Each branch segment of the arterial tree was assumed to split in two smaller branch daughters owing different curvatures which results in a 40-60% microspheres distribution as derived by Kennedy et al. from computer modelling. We performed four 120 Gy to liver simulations. Two uniform: 1 and 6 glass microspheres trapped in all and in only 1 portal tract per lobule, respectively. Two random: glass microspheres trapping assuming an equal probability for all the portal tracts or a variable probability depending on the successions of artery connections leading to the portal tract. Results: Eq. 1 fitted well the 90Y dose kernel obtained from Monte Carlo simulation by Gulec et al. For the two uniform simulations all hepatic structures received at least 110 Gy. The fast decrease of the 90Y kernel (eq. 1) as the inverse of the square distance r is counter-balanced by the number of contributing microspheres that increases as the square of this distance r. The major part of a dose everywhere in a lobule does not arise from the microsphere tapped in the portal tracts of this lobule, but arises from the farther lobules (75%) as already pointed out by Gulec et al. The Russels law clearly explains this observation. The first random simulation gave for the less irradiated tissue a dose distribution

  14. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. (paper)

  15. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation.

    Yao, Rui; Zhang, Renji; Luan, Jie; Lin, Feng

    2012-06-01

    Human adipose-derived stem cells (hADSC) encapsulated in alginate and alginate/gelatin microspheres with adjustable properties were fabricated via an improved microsphere generating device. The mechanism of the device, porous property, swelling behavior of the microspheres and hADSC proliferation as well as adipogenic differentiation were studied extensively. Microspheres with high-ratio evenly distributed adipocytes could be obtained by utilizing the proper matrix material and manufacturing parameters. The adipocyte/hADSC microspheres were a sound in vitro mimicking of a natural fat lobule and therefore a good candidate for adipose tissue engineering and regenerative medicine. PMID:22556122

  16. Development of activity standard for {sup 90}Y microspheres

    Mo, L. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia) and Institute of Medical Physics, University of Sydney, NSW 2006 (Australia)]. E-mail: lmx@ansto.gov.au; Avci, B. [SIRTeX Medical Limited, Unit F6 Parkview, 16 Mars Road, Lane Cove, NSW 2066 (Australia); James, D. [SIRTeX Medical Limited, Unit F6 Parkview, 16 Mars Road, Lane Cove, NSW 2066 (Australia); Simpson, B. [CSIR National Metrology Laboratory, 15 Lower Hope Road, Rosebank, Cape Town 7700 (South Africa); Van Wyngaardt, W.M. [CSIR National Metrology Laboratory, 15 Lower Hope Road, Rosebank, Cape Town 7700 (South Africa); Cessna, J.T. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Baldock, C. [Institute of Medical Physics, University of Sydney, NSW 2006 (Australia)

    2005-08-01

    {sup 90}Y microspheres are important therapeutic radiopharmaceuticals used in the treatment of liver cancer through a process known as selective internal radiation therapy. SIR-spheres[reg] is a radiopharmaceutical product that is comprised of {sup 90}Y microspheres suspended in sterile, pyrogen-free water for injection into patients. It is necessary to establish for the SIR-spheres[reg] production the capability of accurately measuring the activity of this product to a traceable national measurement standard. An activity standard for SIR-spheres[reg] was developed from a standard for {sup 90}Y solution, employing a highly quantifiable chemical digestion process. Calibration factors for the manufacturer's ionisation chambers were determined for 1 and 5 ml of the SIR-spheres[reg] product placed in Wheaton vials, for both 34% and 44% of {sup 90}Y microsphere concentration.

  17. Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia.

    Miyazaki, Toshiki; Anan, Shota; Ishida, Eiichi; Kawashita, Masakazu

    2013-05-01

    Recently, organic-inorganic hybrids composed of derivatives of dextran, a polysaccharide, and magnetite nanoparticles have attracted much attention as novel thermoseeds. If they can be fabricated into microspheres of size 20-30 μm, they are expected to show not only hyperthermia effects but also embolization effects in human liver and kidney cancers. In this study, we examined the fabrication of carboxymethyldextran/magnetite microspheres using a water/oil emulsion as the reaction medium. Improvement of the chemical stability of the microcapsules by coating with silica using a sol-gel process was also investigated. The obtained hollow microspheres contained particles of size 20-30 μm. Silica coating using an appropriate catalyst for hydrolysis and polycondensation of alkoxysilanes was found to be effective for preventing dissolution and collapse in simulated body environments. PMID:23371771

  18. Understanding the nanoindentation mechanisms of a microsphere for biomedical applications

    Nanoindentation techniques have proven effective to characterize nanomaterials and soft biomaterials. Using microfabricated wells to hold microspheres will enable automated indentation of microspheres. However, the existing contact mechanics based models such as the Hertz model and other modified models (e.g. thin layer models) only deal with indenting the specimen placed on a flat surface (i.e. the bottom surface is constrained vertically) without lateral constraint. Therefore, new mathematical models have been developed in this study to investigate the nanoindentation responses for a microsphere sitting in a well. Finite element simulation was employed to determine the empirical correction parameter in the mathematical model to account for the constraint imposed by the well. Utilization of this new model can also enrich the experimental contact mechanics. (paper)

  19. Synthesis of hollow polymer microspheres by dynamic swelling method

    Hollow polymer microspheres about 5 μm in diameter were synthesized by dynamic swelling method using micron- sized polystyrene spheres with positive charges on surfaces as seeds. The synthesis process included swelling by organic solvents such as toluene and divinylbenzene, polymerizing and coating. The influences of variety and dosage of organic solvents on diameter, size distribution and hole structure of hollow microspheres were investigated, and the formation mechanism of hollow microspheres was discussed. It is indicated that some volatile organic solvents, such as toluene and dimethylbenzene, are crucial to hollow structure formation. Experimental results show that, more toluene leads to larger hollow structure after swelling, and dimethylbenzene is good for hollow structure formation, owing to its low solubility. (authors)

  20. Multifrequency transverse Faraday effect in single magneto-dielectric microspheres

    Maksymov, Ivan S

    2014-01-01

    We propose using a single magneto-dielectric microsphere as a device for enhancing the transverse Faraday effect at multiple wavelengths at the same time. Although the diameter of the sphere can be $<1$ $\\mu$m, the numerically predicted strength of its magneto-optical (MO) response can be an order of magnitude stronger than in MO devices based on thick magnetic plates. The MO response of a microsphere is also comparable with that of subwavelength magneto-dielectric gratings which, however, operate at a single wavelength and occupy a large area. In contrast to gratings and thick plates, the compact size of the microsphere and its capability to support spin-wave excitations make it suitable for applications in nanophotonics, imaging systems, and magnonics.

  1. Biologically erodable microspheres as potential oral drug delivery systems

    Mathiowitz, Edith; Jacob, Jules S.; Jong, Yong S.; Carino, Gerardo P.; Chickering, Donald E.; Chaturvedi, Pravin; Santos, Camilla A.; Vijayaraghavan, Kavita; Montgomery, Sean; Bassett, Michael; Morrell, Craig

    1997-03-01

    Biologically adhesive delivery systems offer important advantages1-5 over conventional drug delivery systems6. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.

  2. Preparation of monodisperse, superparamagnetic, luminescent, and multifunctional PGMA microspheres with amino-groups

    WANG WeiCai; ZHANG Qi; ZHANG BingBo; LI DeNa; DONG XiaoQing; ZHANG Lei; CHANG Jin

    2008-01-01

    Micron-sized, monodisperse, superparamagnetic, luminescent composite poly(glycidyl methacrylate) (PGMA) microspheres with functional amino-groups were successfully synthesized in this study. The process of preparation was as follows: preparation of monodisperse poly(glycidyl methacrylate) mi-crospheres by dispersion polymerization method; modification of poly(glycidyl methacrylate) micro-spheres with ethylene diamine to form amino-groups; impregnation of iron ions (Fe2+ and Fe3+) inside the microspheres and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O,4>) nanoparticles within the polymer microspheres; infusion of CdSe/CdS core-shell quantum dots (QDs) into magnetic polymer microspheres. Scanning electron microscopy (SEM) was used to char-acterize surface morphology and size distribution of composite microspheres. The average size of mi-crospheres was 1.42μm with a size variation of 3.8%, The composite microspheres were bright enough and easily observed using a conventional fluorescence microscope, The composite microspheres were easily separated from solution by magnetic decantation using a permanent magnet. The new multi-functional composite microspheres are promising to be used in a variety of bioanalytical assays in-volving luminescence detection and magnetic separation.

  3. Preparation and surface modification of magnetic poly(methyl methacrylate) microspheres

    YANG Chengli; GUAN Yueping; XING Jianmin; LIU Junguo; AN Zhentao; LIU Huizhou

    2004-01-01

    A novel method for preparation of magnetic polymer microspheres by spraying suspension polymerization (SSP) was developed. Relatively uniform magnetic poly(methyl methacrylate) microspheres were prepared by the spraying suspension polymerization (SSP)using methyl methacrylate (MMA) as monomer, divinylbenzene (DVB) as cross-linking agent,benzoyl peroxide (BPO) as initiator and polyvinyl alcohol (PVA) as stabilizer in the presence of hydrophobic Fe3O4 magnetic fluid. The microspheres prepared were modified by surface chemical reaction. The magnetic properties and morphology of the microspheres were examined by SEM and VSM respectively. The active functional groups of microspheres were examined by infrared spectra. The results showed that microspheres with saturation magnetization of 16.8emu/g showed distinct superparamagnetic characteristics and the magnetic microspheres with a size of 10 μm were relatively uniform.

  4. Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery

    Highlights: ► Hierarchical LiFePO4 microspheres were prepared by simple hydrothermal process. ► Sucrose plays important role in formation of hierarchical LiFePO4 microspheres. ► Hierarchical LiFePO4 microspheres displayed improved electrochemical performance. -- Abstract: Hierarchical LiFePO4 microspheres were prepared by hydrothermal process in the sucrose solution. The microspheres showed a uniform size distribution of about 10 μm and were assembled by many rough sheets. Moreover, these sheets were consist of densely aggregated 300 nm particles. The presence of sucrose played an important role in the formation of hierarchical LiFePO4 microspheres. Compared with the spindle-like shape LiFePO4 particles obtained in deionized water, the hierarchical LiFePO4 microspheres displayed enhanced tap density, improved rate capability and cycling stability, which can be potential cathode material for lithium ion batteries

  5. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    Hu, Xixue [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Shen, Hong, E-mail: shenhong516@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Fei [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liang, Xinjie [CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Wang, Shenguo, E-mail: wangsg@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Decheng, E-mail: dcwu@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  6. Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent.

    Zhang, Huanyu; Yong, Xueyong; Zhou, Jinyong; Deng, Jianping; Wu, Youping

    2016-02-01

    The contribution reports the first polymeric microspheres derived from a biomass, vanillin. It reacted with methacryloyl chloride, providing monomer vanillin methacrylate (VMA), which underwent suspension polymerization in aqueous media and yielded microspheres in high yield (>90 wt %). By controlling the N2 bubbling mode and by optimizing the cosolvent for dissolving the solid monomer, the microspheres were endowed with surface pores, demonstrated by SEM images and mercury intrusion porosimetry measurement. Taking advantage of the reactive aldehyde groups, the microspheres further reacted with glycine, thereby leading to a novel type of Schiff-base chelating material. The functionalized microspheres demonstrated remarkable adsorption toward Cu(2+) (maximum, 135 mg/g) which was taken as representative for metal ions. The present study provides an unprecedented class of biobased polymeric microspheres showing large potentials as adsorbents in wastewater treatment. Also importantly, the reactive aldehyde groups may enable the microspheres to be used as novel materials for immobilizing biomacromolecules, e.g. enzymes. PMID:26752344

  7. Alginate-Casein Microspheres as Bioactive Vehicles for Nutrients

    何志敏; 张茜青; 齐崴; 黄仁亮; 苏荣欣

    2015-01-01

    The aim of this work was to develop an alginate-casein composite microsphere as a bioactive vehicle for oral administration of nutrients by a simple extrusion dripping method. Riboflavin was selected as a model drug, and the microencapsulation efficiency was raised to 97.94%after optimizing the preparation conditions by response surface methodology. In vitro release studies showed that riboflavin was released completely from alginate-casein microspheres in simulated intestinal fluids. Meanwhile, the morphology, structure and interaction between alginate and casein were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectra.

  8. Synthesis of hollow carbon nitride microspheres by an electrodeposition method

    Hollow carbon nitride microspheres have been synthesized using a novel liquid phase electrodeposition technique. The microspheres are composed of numerous nanoparticles with size of about 5-30 nm. The diameters of the spheres range from 800 nm to 1.1 μm, and shell thickness is about 80-250 nm. This is the first attempt to synthesize carbon nitride with specific nanostructure by the electrodeposition method, which is proved to be facile and effective, and can be performed in an atmospheric environment and at a rather low temperature. The hollow carbon nitride may have potential applications as lubrication, catalysis, biomolecule adsorption, drug delivery, electronic materials, etc. in the future.

  9. Electrostatic self-assembly of microsphere lens arrays

    Matteo Cornaglia; Hui Yang; Thomas Lehnert; Gijs, Martin A.M.

    2014-01-01

    We propose a novel versatile method for the rapid and low-cost fabrication of microsphere arrays to be used as lenses of desired geometry and optical properties. Our method is based on the electrostatic self-assembly of dielectric microspheres in Parylene-C/glass well templates, with the array geometry patterned in the Parylene-C layer via standard clean room techniques. While different particle sizes and materials can be used to tune the light focusing properties of the microlenses, we demon...

  10. Optical Fiber Excitation of Fano Resonances in a Silicon Microsphere

    Sabahattin Gökay, Ulaş; Zakwan, Muhammad; Demir, Abdullah; Serpengüzel, Ali

    2016-01-01

    In this article, Fano lineshape whispering gallery modes were observed in the light scattering spectrum of a silicon microsphere in near-infrared telecommunication wavelengths. A simple model is presented to explain the transition from Lorentzian lineshape to the Fano lineshape resonances with the coupled-mode theory of multiple whispering gallery modes. Polar mode spacing of 0.23 nm is observed in the spectra, which correlates well with the calculated value. The quality factor of the Lorentzian and Fano resonances are on the order of 105. By using an appropriate interface design for the microsphere coupling geometries, Fano lineshape optical resonances herald novel device applications for silicon volumetric lightwave circuits.

  11. High-Q bismuth silicate nonlinear glass microsphere resonators

    Wang, Pengfei; Murugan, Ganapathy; Lee, Timothy; Ding, Ming; Brambilla, Gilberto; Semenova, Yuliya; Wu, Qiang; Koizumi,Fumihito; Farrell, Gerald

    2012-01-01

    The fabrication and characterization of a bismuth-silicate glass microsphere resonator has been demonstrated. At wavelengths near 1550 nm, high-modes can be efficiently excited in a 179-μm diameter bismuth-silicate glass microsphere via evanescent coupling using a tapered silica fiber with a waist diameter of circa 2 μm. Resonances with Q-factors as high as were observed. The dependence of the spectral response on variations in the input power level was studied in detail to gain an insight in...

  12. Lead Silicate Glass Microsphere Resonators With Absorption-Limited Q

    Wang, Pengfei; Murugan, Genapathy; Lee, Timothy; Feng, Xian; Semenova, Yuliya; Wu, Qiang; Loh, Wei; Brambilla, Gilberto; Wilkinson, James; Farrell, Gerald

    2011-01-01

    We report the fabrication and characterization of a lead-silicate glass microsphere resonator. We show that at the wavelengths near 1555 nm high Q modes can be efficiently excited from a 109 μm diameter lead-silicate glass microsphere via evanescent coupling using a tapered silica fiber with a waist diameter of 2 μm. Resonances with Q-factors as high as 0.9×107 were observed. This is very close to the theoretical material-limited Q-factor and is the highest Q-factor reported so far from a non...

  13. Search for Millicharged Particles Using Optically Levitated Microspheres

    Moore, David C; Gratta, Giorgio

    2014-01-01

    We report results from a search for stable particles with charge > $10^{-5}$ e in bulk matter using levitated dielectric microspheres in high vacuum. No evidence for such particles was found in a total sample of 1.4 ng, providing an upper limit on the abundance per nucleon of 2.5 x $10^{-14}$ at the 95% confidence level for the material tested. These results provide the first direct search for single particles with charge < 0.1 e bound in macroscopic quantities of matter and demonstrate the ability to perform sensitive force measurements using optically levitated microspheres in vacuum.

  14. UO2 microspheres obtainment through the internal gelation methods

    UO2 microspheres obtainment process through the internal gelation method which allows the spheres' obtainment of uniform size is detailed herein, varying the same among 0.3 and 1.7 mm of diameter. The sintered density reaches 10.78 g/cm3, permitting the fuels fabrication dispersed and vibro-compacted fuels. The trichloroethylene use implementation as gelation agent is described, thus reducing the number of stages in the microspheres fabrication. At the same time, the uranium sun composition has been modified so as to be compatible with the use solvent. (Author)

  15. SOL-Gel microspheres and nanospheres for controlled release applications

    We present a novel approach to the synthesis of inorganic sol-gel microspheres for encapsulating organic and bioactive molecules, and controlling their subsequent release kinetics. The bioactive species are incorporated, at ambient temperature, into the inorganic particles using an emulsion gelation process. Independent control of the release rate (by adapting the nanostructure of the internal pore network to the physico-chemical properties of the bioactive molecules) and particle size (by tailoring the emulsion chemistry) is demonstrated. Sol-gel chemistry has been shown to be a flexible technique for producing inorganic silica matrices with tailored microstructures, which can be used for the encapsulation and controlled release of organic and bioactive molecules. The present paper extends this concept by combining sol-gel chemistry with an emulsion approach for producing inorganic particles with controlled dimensions, and demonstrates how the particle size and microstructure can be independently controlled. Sol-Gel Chemistry and Encapsulation of Model Compounds. A stock solution of 4-(2-hydroxy-l-naphthylazo) benzene sulfonic acid (Orange II) was produced by dissolving Orange II in water (0.1 wt%), and adjusting the pH to the required value. Sol-gel solutions were subsequently prepared by mixing the aqueous solution with tetramethylorthosilicate (TMOS) and methanol (MeOH), to achieve H2O:TMOS (W] and MeOH:TMOS mole ratios (D) of four. The resulting solution was stirred and left to age at ambient temperature for one day. A transparent emulsion was prepared by mixing selected surfactants and organic solvents. The surfactants used included sorbitan monooleate, sorbitan monolaurate and bis-2-ethylhexylsulfo-succinate (AOT), while the organic phase was typically chosen from the group consisting of kerosene, hexane, heptane, octane, decane, dodecane and cyclohexane. The sol-gel solution was added to the emulsion, and the resulting mixture was stirred at 500 rpm for one

  16. Setting up of a sol-gel demonstration facility for the preparation of soft (Th, U)O2 microspheres for sol-gel microsphere pelletization

    A sol-gel demonstration facility is set up in Fuel Chemistry Division (FCD) with an objective to employ Sol-Gel Microsphere Pelletization (SGMP) process for the fabrication of AHWR fuel, at a laboratory scale in collaboration with Radio Metallurgy Division (RMD). In this collaborative program, soft mixed oxide microspheres (1 kg/day scale) were prepared in FCD and pelletization of the microspheres and sintering was carried out in RMD. This report describes the details of the equipment used in the sol-gel assembly and the process parameters optimised for obtaining good quality crack free (Th, U)O2 microspheres containing 4 mole % uranium suitable for pelletization. (author)

  17. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    Byeon HJ

    2015-01-01

    Full Text Available Hyeong Jun Byeon,1 Insoo Kim,1 Ji Su Choi,1 Eun Seong Lee,2 Beom Soo Shin,3 Yu Seok Youn11Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 2Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea; 3Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of KoreaAbstract: The aim of the current study was to investigate the antitumor potential of poly(D,L-lactic-co-glycolic acid microspheres (PLGA MSs containing polyethylene glycol (PEG-conjugated (PEGylated tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL. PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 µm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively. The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.Keywords: Poly(D,L-lactic-co-glycolic acid, controlled release, PEGylation, TRAIL, pancreatic cancer

  18. Perfusion measurements with radioactively labelled microspheres

    The technique and the evaluation of the microsphere-method are comprehensively represented in theory and practice. Some changes and new concepts are discussed, besides the known foundations and techniques, that assure an essential methodic improvement resp. practical simplifications. Two new formulas are derived within the frame of the theoretical principles, by which the absolute flux of shorts can be calculated, i.e. on the one hand in the case of known and on the other hand in the case of unknown applied amount of indicator. The determination of the optimal indicator dose is defined and formulated mathematically with respect to the experimental conditions to be expected. The matrix method was designed for the analysis of complex gamma spectra. Hereby there is no selective error accumulation in the case of low energy radio nuclids contrary to the so far exclusively used stripping technique. The number of possible error quantities was reduced by one resp. two variables. The error of particular radio nuclid components is quantitatively computed as standard deviation by means of the theory of approximated systems of linear equations. The external measurement of distance was developed. This technique is less susceptible for errors as the aliquota i.e. whole body measurement technique. Additionally less measurement time is needed. A flexible computer program for a desk top computer was developped for the evaluation. The data from the gamma spectrometer are recorded on tipe and automatically read in by the computer. The manual input are limited to the weights of the organs and some control parameter. The output is made by a clearly arranged table by means of a lineprinter. (orig./MG)

  19. Regional pulmonary distribution of iodine-125-labeled oleic acid. Its relationship to the pattern of oleic acid edema and pulmonary blood flow

    Oleic acid infusion in dogs produces a patchy, predominantly peripheral lesion on CT scans. This study correlates the pattern of oleic acid injury with the distribution of infused oleic acid and pulmonary blood flow. Radiolabeled oleic acid (I-125, 0.05 ml/kg) and radiolabeled 15-micron microspheres (Co-57) were infused into the right atria of 11 dogs. Oleic acid was given after the microspheres in six dogs and before microspheres in five dogs. Ten minutes after infusion, the lungs were removed. Four transverse slices (0.5 cm thick) of the lower lobes were taken from each dog and cubed. Samples were grouped into three regions of the transverse slice: outer, middle, and inner concentric rings. In both groups, I-125 (oleic acid) activity was greater in the outer than the middle and inner concentric layers (P less than 0.001). When Cobalt-57 microspheres were given before oleic acid, Cobalt-57 activity was marginally lower in the outer layer compared with the middle and inner layers. However, when oleic acid was given first, microsphere activity in the outer layer was significantly lower (P less than 0.001) than the middle layer. Thus, oleic acid was preferentially distributed to the peripheral regions of the lung, similar to the regions of injury on CT. This distribution did not correspond to the pattern of pulmonary blood flow as indicated by the microspheres. Immediately after oleic acid infusion, pulmonary blood flow to the periphery was reduced, reflecting a response to the predominantly peripheral injury by oleic acid

  20. 弱酸型聚合物微球固相萃取填料的制备及水中杀虫剂的测定%Preparation of weak acid cation exchange polymer microspheres solid-phase extraction packing and determination of pesticides in river water

    申书昌; 徐雅雯; 马柏凤

    2015-01-01

    The polymer microspheres with lipotropy and weak cation exchange performance were prepared through suspension poly-merization method using styrene and divinyl benzene and methyl acrylate as monomers,PVA as dispersant,benzoyl peroxide as the initiator. The structure and morphology of microspheres were examined by infrared spectrum and scanning electron micro-scope. While observing the structure and morphology of the filler. The composite microspheres were used as solid-phase extraction ( SPE) sorbents for selective extraction nitroclofene,bithionol,praziquantel and albendazole in the river water. Acetonitrile was used as eluent,and the eluate was determined by high performance liquid chromatography. The effects of the sample flow rate and pH, volume and flow rate of eluent on adsorption ratios were investigated,the best solid phase extraction conditions were obtained. The best HPLC condition was chosen. The results show that SiO2/PS composite microspheres have a uniform monodispersity in particle size. The SPE sorbents have good adsorption performance to nitroclofene,bithionol,praziquantel and albendazole in water,and the method of SPE-HPLC for determining the four pesticides has good reproducibility, the detection limits for nitroclofene, bithionol, praziquantel and albendazole were 0. 26μg·L-1 ,0. 31μg·L-1 ,0. 42μg·L-1 and 0. 63μg·L-1 respectively.%本文制备了聚合物基质弱酸型阳离子交换固相萃取填料,以甲基丙烯酸和苯乙烯为原料,二乙烯基苯为交联剂,聚乙烯醇为分散剂,过氧化苯甲酰为引发剂,采用悬浮聚合法制备了具有亲脂和弱阳离子交换性能的球形固相萃取填料,并对其结构和形貌进行了表征。以该聚合物微球作为填料制备固相萃取小柱,萃取水中联硝氯酚、硫双二氯酚、吡喹酮和丙硫苯咪唑4种杀虫剂,乙腈为洗脱剂,洗脱液采用液相色谱分析。分别考察了样品的pH值和流速、洗脱剂的体积和流

  1. Development of solid phase radioimmunoassay system using new polymeric magnetic micro-spheres

    Magnetic particles were locally prepared by co-precipitation of Fe2+ and Fe3+ in an ammonia solution. The prepared microsphere were grafted with polyacrylamide acrylic acid by using gamma irradiation polymerization in presence of MBA as a cross linker. AFP antibody was immobilized on these beads and used as a solid phase in radioimmunoassay technique. The immunoreactivity of the developed assay was found to be influenced by different factors such as solid phase volume, incubation time, incubation temperature and storage period. A comparative study was performed between the developed assay system and others two ones. The maximum binding percent attained the value of 19.5% while the sensitivity was observed to be 1.3 IU/mL. The developed assay displayed acceptable precision estimated by repeated analysis of the quality control samples and the clinical samples analyzed by this assay showed a good correlation with that commercial kit (r = 0.998). (author)

  2. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  3. Porous metal oxide microspheres from ion exchange resin

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  4. Modulated Photon Emission of Eu3+ in Microsphere Cavity

    YANG Yong; HAN Zheng-Fu; DONG Chun-Hua; XIAO Yun-Feng; GUO Guang-Can

    2006-01-01

    @@ Fused silica microsphere with a few Eu3+ ions on the equator is fabricated. The photon emission sharply modulated by whispering gallery (WG) modes is observed under excitation of 395 nm laser, which is in agreement with the prediction in theory.

  5. Porous metal oxide microspheres from ion exchange resin

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletizing (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of the ability to flow for the filling of the compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 Celsius degrees and temperature rate lower than 2 Celsius degrees/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner. (authors)

  6. Acrylic microspheres-based optosensor for visual detection of nitrite.

    Noor, Nur Syarmim Mohamed; Tan, Ling Ling; Heng, Lee Yook; Chong, Kwok Feng; Tajuddin, Saiful Nizam

    2016-09-15

    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6 μm up to 1.8 μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100 ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples. PMID:27080889

  7. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong; Hong, Ruoyu

    2015-12-01

    Hollow titania microspheres (HTS) were fabricated via a sol-gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (-NH2) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO2 microspheres. Then the TiO2 particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m2/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  8. Use of molecular beams to support microspheres during plasma coating

    Spherical targets can be levitated on beams of Ar or other gas atoms. This is an especially useful technique for supporting microspheres during plasma coating and processing. Measurements of gas flow and pressure indicate that the levitation device operates in the regime of Knudsen's flow. This device is currently being used in the development of future generation laser targets

  9. Monodisperse poly(glycidyl methacrylate) microspheres coated with zwitterionic polymers

    Koubková, Jana; Proks, Vladimír; Trchová, Miroslava; Horák, Daniel

    Leuven : KU Leuven, 2014. s. 14-15. [Novel Technologies for In Vitro Diagnostics - DIATECH2014. 06.10.2014-08.10.2014, Leuven] R&D Projects: GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : PGMA microspheres * RAFT polymerization * zwitterions Subject RIV: CD - Macromolecular Chemistry

  10. Fabrication of periodically ordered diamond nanostructures by microsphere lithography

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2587-2592. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : CVD growth * diamond * microsphere lithography * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  11. Mucoadhesive microspheres of propranolol hydrochloride for nasal delivery

    Dandagi P

    2007-01-01

    Full Text Available Gelatin A microspheres of propranolol hydrochloride for intranasal systemic delivery were developed with the aim to avoid first pass metabolism, to improve the patient compliance, to use an alternative therapy to conventional dosage form, to achieve controlled blood level profiles, and to improve the therapeutic efficacy of propranolol hydrochloride in the treatment of various cardiovascular disorders and as a prophylactic for migraine. Gelatin A microspheres were prepared by emulsion crosslinking method using glutaradehyde as a crosslinking agent. Gelatin and chitosan were used as polymer and co polymer respectively. All the prepared microspheres were evaluated for physical characteristics, such as particle size, incorporation efficiency, swelling index, in vitro bioadhesion using rat jejunum and in vitro drug release in pH 6.6 phosphate buffer. Average particle size of microspheres was found to be in the size range 1-50 mm. Increase in drug and polymer concentration in the formulation increased incorporation efficiency. All the microsphers showed good bioadhesive properties and swelling indices and good sustained release of drug. The data indicates that propranolol hydrochloride release followed Higuchi′s matrix and Peppa′s model. Stability studies showed stability of formulation at all the conditions to which they were subjected.

  12. Process for fabricating doped zinc oxide microsphere gel

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  13. Hydrogel microspheres from biodegradable polymers as drug delivery systems

    A series of hydrogel microspheres were prepared from pectin, a hydrophilic biopolymer, and zein, a hydrophobic biopolymer, at varying weight ratios. The hydrogel formulation was conducted in the presence of calcium or other divalent metal ions at room temperature under mild conditions. Studies of ...

  14. Genotyping of Chlamydia trachomatis by Microsphere Suspension Array▿

    Huang, Chung-Ter; Wong, Wing-Wai; Li, Lan-Hui; Chiang, Chien-Chou; Chen, Bor-Dong; Li, Shu-Ying

    2008-01-01

    The identification of Chlamydia trachomatis genotypes is important for both the study of molecular epidemiology and infection control. We have developed a microsphere suspension array assay that can identify C. trachomatis genotypes rapidly and accurately and also discriminate among multiple genotypes in one clinical specimen.

  15. Remediation of coal mining wastewaters using chitosan microspheres.

    Geremias, R; Pedrosa, R C; Benassi, J C; Fávere, V T; Stolberg, J; Menezes, C T B; Laranjeira, M C M

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating with tetrasulphonated copper (II) phthalocyanine (CTS/PVA/TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples colleted from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS/PVA/TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining. PMID:14977147

  16. Development of a roundness measuring system for microspheres

    Fan, Kuang-Chao; Wang, Na; Wang, Zhi-Wei; Zhang, Hui

    2014-06-01

    In the field of micro/nano technology, microspheres are often used as the tip-ball of a measuring stylus, such as in micro/nano coordinate measuring machines (CMMs). Conventional tactile probes adopt ruby or steel balls with diameters in the range of several millimeters to 0.3 mm. For a micro-CMM, the required probing ball is as small as possible in order to be inserted into a small groove for side wall measurement. The exact diameter of the tip-ball has to be calibrated for radius compensation and its roundness error has to be qualified. A roundness measuring system for microspheres is developed in this study. Two small Michelson interferometers are designed for direct measurement of microsphere diameter from both sides, being a two-point method. By rotating the measured sphere and reading the displacement shifts of the two interferometers, the run-out of the sphere can be eliminated. The resolution of the developed system can reach 1 nm and the accuracy can reach 10 nm. Two microspheres are tested with good repeatability. This system can also be used for macrosphere measurement.

  17. Novel fluorescent poly(glycidyl methacrylate) - silica microspheres

    Grama, Silvia; Boiko, N.; Bilyy, R.; Klyuchivska, O.; Antonyuk, V.; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 56, July (2014), s. 92-104. ISSN 0014-3057 R&D Projects: GA MŠk EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : microspheres * silica * poly(glycidyl methacrylate) Subject RIV: CE - Biochemistry Impact factor: 3.005, year: 2014

  18. Janus microspheres for visual assessment of molecular interconnects.

    Fliedel, Christophe; Faramarzi, Vina; Rosa, Vitor; Doudin, Bernard; Braunstein, Pierre

    2014-01-27

    A rigid S-functionalized metalloligand is used to pair Janus Au-coated silica microspheres and the resulting assemblies are assessed with optical microscopy. New Pd complexes provide stable molecular interconnects, and the metal centre controls the structure of the linker and provides the desired rigidity, by virtue of its well-established coordination chemistry. PMID:24382696

  19. FORMULATION AND EVALUATION OF METFORMIN HYDROCHLORIDE LOADED CHITOSAN MICROSPHERES

    Sutar P.S

    2012-04-01

    Full Text Available The aim of proposed work is to obtain a sustained release of metformin hydrochloride by loading it into chitosan. Microspheres were prepared by emulsion cross linking method. Five batches of microspheres with different concentration polymer (F-1, F-2, F-3, F- 4 and F-5 were prepared. The prepared microspheres were evaluated for size analysis, drug loading, drug entrapment efficiency, SEM and in vitro drug release. FTIR studies revealed that there was no interaction between drug and polymer. In vitro release profile of all formulations showed slow controlled release up to 12 hrs. Formulation F-3 in the ratio 1:4 of drug and polymer showed best drug release of 78.78% in 12 hrs. Kinetic studies indicate that formulation F-3 followed first order release profile The size of the microspheres was found to increase with increase in concentration of polymers. Drug loading and drug entrapment efficiency was found to be in acceptable range. The dosing frequency was reduced and efficacy of the drug in treatment of diabetes was enhanced.

  20. Remediation of coal mining wastewaters using chitosan microspheres

    Geremias, R.; Pedrosa, R.C.; Benassi, J.C.; Favere, V.T.; Stolberg, J.; Menezes, C.T.B.; Laranjeira, M.C.M. [Federal University of Santa Catarina, Florianopolis (Brazil)

    2003-12-01

    This study aimed to evaluate the potential use of chitosan and chitosan/poly(vinylalcohol) microspheres incorporating tetrasulphonated copper (II) phthalocyanine (CTS / PVA / TCP) in the remediation of coal mining wastewaters. The process was monitored by toxicity tests both before and after adsorption treatments with chitosan and microspheres. Physicochemical parameters, including pH and trace-metal concentration, as well as bioindicators of water pollution were used to that end. Wastewater samples collected from drainage of underground coal mines, decantation pools, and contaminated rivers were scrutinized. Acute toxicity tests were performed using the Brine Shrimp Test (BST) in order to evaluate the remediation efficiency of different treatments. The results showed that the pH of treated wastewater samples were improved to values close to neutrality. Chitosan treatments were also effective in removing trace-metals. Pre-treatment with chitosan followed by microsphere treatment (CTS / PVA / TCP) was more effective in decreasing toxicity than the treatment using only chitosan. This was probably due to the elimination of pollutants other than trace-metals. Thus, the use of chitosan and microspheres is an adequate alternative towards remediation of water pollution from coal mining.