WorldWideScience

Sample records for acid methyl esters

  1. A Convenient Synthesis of Amino Acid Methyl Esters

    Yaowu Sha

    2008-05-01

    Full Text Available A series of amino acid methyl ester hydrochlorides were prepared in good toexcellent yields by the room temperature reaction of amino acids with methanol in thepresence of trimethylchlorosilane. This method is not only compatible with natural aminoacids, but also with other aromatic and aliphatic amino acids.

  2. Kapok oil methyl esters

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specifications in biodiesel standards and some prior results. The kinematic viscosity of kapok oil methyl esters was greater than expected, an observation traced to the elevated amounts of methyl esters with cyclic moieties. Overall, kapok oil is a potential biodiesel feedstock. The 1H and 13C NMR spectra of kapok methyl esters are reported. - Highlights: • Methyl esters of kapok oil generally acceptable as a biodiesel fuel. • Kapok oil methyl esters a fuel with elevated content of fatty acid methyl esters containing cyclic moieties. • Kinematic viscosity of kapok oil methyl esters elevated likely due to fatty ester methyl esters with cyclic moieties. • Discusses and compares present results with prior literature

  3. Sodium borohydride reduction of aromatic carboxylic acids via methyl esters

    Aamer Saeed; Zaman Ashraf

    2006-09-01

    A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride-THF-methanol system. The alcohols are obtained in 70-92% yields in 2-5 hours, in a pure state. This two-step procedure not only provides a better alternative to aluminum hydride reduction of acids but also allows the selective reduction of esters in presence of acids, amides, nitriles or nitro functions which are not affected under these conditions.

  4. Fatty acid methyl esters production: chemical process variables

    Paulo César Narváez Rincón

    2010-06-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  5. NF EN 14103. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the ester and methylic ester content of linoleic acid; NF EN 14103. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en ester et en ester methylique de l'acide linolenique

    NONE

    2003-07-01

    This European standard aims at determining the ester and methylic ester content of fatty acids methylic esters (FAME) used as pure bio-fuels or as constituent of a heating or diesel fuel. This method allows also to determine the methylic ester content of linoleic acid. It allows to verify that the ester content of FAMEs is greater than 90% (m/m) and that the linoleic acid content is comprised between 1% (m/m) and 15% (m/m). The method is applicable to FAMEs with methylic ester contents comprised between C14 and C24. (J.S.)

  6. Fatty acid methyl ester profiles of bat wing surface lipids.

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration. PMID:25227993

  7. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20. PMID:22277892

  8. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  9. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  10. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  11. Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Medina-González, Yaocihuatl; De Caro, Pascale; Thiebaud-Roux, Sophie; Lacaze-Dufaure, Corinne

    2007-01-01

    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and ...

  12. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  13. Synthesis and Characteristics of an Aspartame Analogue, L-Asparaginyl L-3-Phenyllactic Acid Methyl Ester

    Hu TAO; Da-Fu CUI; You-Shang ZHANG

    2004-01-01

    An aspartame analogue,L-asparaginyl L-3-phenyllactic acid methyl ester was synthesized with aspartic acid replaced by asparagine and peptide bond replaced by ester bond.The aspartic acid of aspartame could be replaced by asparagine as reported in the literature.In this analogue,the hydrogen ofamide group could still form a hydrogen bond with the oxygen of ester bond and the ester bond was isosteric with peptide bond.However,the product was not sweet,showing that the peptide bond could not be replaced by ester bond.The peptide C-N bond behaves as a double bond that is not free to rotate and the C,O,N and H atoms are in the same plane.The replacement of peptide bond by ester bond destroyed the unique conformation of peptide bond,resulting in the loss of sweet taste.

  14. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  15. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  16. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 7-Oxabicyclo heptane-3-carboxylic acid... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this...

  17. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  18. Fatty acid methyl esters as reactive diluents in solvent-borne thermally cured coil-coatings

    Johansson, Katarina

    2006-01-01

    This work describes how a fatty acid methyl ester (FAME) derived from a vegetable oil can be introduced as reactive diluent in a solvent-borne thermally cured coil-coating system. The evaluated reactive diluent, rape seed methyl ester (RME), has been evaluated both in a fully formulated clear coat system and via model studies. A reactive diluent is a compound that acts as a solvent in the liquid paint, lowering the viscosity, and chemically reacts into the final film during cure. Introduction...

  19. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  20. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  1. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenyl...

  2. Fatty Acid Methyl Esters of Melon Seed Oil: Characterisation for Potential Diesel Fuel Application

    Paul M. EJIKEME

    2011-06-01

    Full Text Available Fatty acid methyl esters (FAME, biodiesel, are alternative diesel fuels usually obtained from renewable sources, mainly, vegetable and animal oils through transesterification among other processes. Melon seed oil was extracted from melon seeds bought from a local market, degummed and alkali refined using standard methods. FAME of the oil was produced using methanol in the molar ration of 1:6, 1% sodium hydroxide catalyst at the reaction temperature of 60 deg C for the duration of 1h. Results obtained showed that the fatty acid methyl esters had a specific gravity of 0.8786, viscosity of 6.24 centistokes, pH of 7.23, heating value of 36.34 J/g and flash point of 148 deg C. The FAME yield was 87.35% under the reaction conditions that applied. The infrared spectra of both the refined oil and the methyl esters from it, showed peaks at 1721.3cm-1 and 1167.8cm-1 (C=O and C-O stretches large and medium absorbance's for oils and methyl esters. Generally, the fuel properties of the FAME compared with values obtained under the same conditions for conventional petroleum diesel that was sourced from a retail outlet; suggesting that biodiesel from MSO could be used alone or in blends with petrodiesel to power compression ignition (diesel engines.

  3. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amou...

  4. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Ion Dragalin; Olga Morarescu; Maria Sedcenco; Radu Marin Rosca

    2015-01-01

    The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%), confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  5. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  6. Avocado and olive oil methyl esters

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1H and 13C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  7. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes. PMID:26969251

  8. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. PMID:26471553

  9. Preparation of sphingolipid fatty acid methyl esters for determination by gas-liquid chromatography.

    MacGee, J; Williams, M G

    1981-01-30

    Sphingolipid fatty acids are first converted to a mixture of free acids and their n-butyl esters by heating the specimen at 85 degree C in aqueous butanolic hydrogen chloride; the butyl esters are then saponified with methanolic potassium hydroxide. After acidification and extraction into hexane, the fatty acids are extracted into a very small volume of aqueous trimethyl(m-trifluorotolyl)ammonium hydroxide (TMTFTH), injection of an aliquot of the TMTFTH extract into the gas chromatograph yields the fatty acid methyl esters by pyrolytic methylation of the quaternary ammonium salts of the fatty acids. The preparation of a specimen ready for the gas--liquid chromatographic (GLC) analysis with quantitative recovery of the sphingolipid fatty acids can be accomplished in less than 2 h. By comparison, none of a number of well-accepted techniques for the release of sphingomyelin fatty acids by hydrolysis or methanolysis released the fatty acids quantitatively in less than 3 h, and all required additional manipulations before GLC analysis. PMID:7217267

  10. Thermally cured coil-coatings utilizing novel resins and fatty acid methyl esters as reactive diluents

    Johansson, Katarina

    2008-01-01

    Solvent-borne thermally cured coil-coating resins contain large amounts of volatile organic solvents in order to obtain suitable flow for film application. This work describes how the expensive and environmental hazardous volatile organic solvent content of a solvent-borne thermally cured polyester/melamine coil-coating system can be reduced by introduction of fatty acid methyl esters (FAMEs) as reactive diluents and modification of the polyester binder resin. The evaluated reactive diluents,...

  11. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M. J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimet...

  12. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  13. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L® and Novozym 388®, were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 oC and total reaction time 6 h. Lipozyme TL-100L® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  14. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g-1. The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm2 s-1 (40 oC), and 14.6 h (110 oC). The cold filter plugging and pour points were -15 oC and -19 oC, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  15. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO2 good potentials for use in esterification of high acid value oil

  16. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. PMID:23692633

  17. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  18. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  19. RENEWABLE ENERGY CONTENT OF FATTY ACID METHYL ESTERS (FAME AND GLYCEROL

    Giuseppe Toscano

    2009-12-01

    Full Text Available Fatty acid methyl esters (FAME and glycerol produced by transesterification reaction contain atoms that in the reagents belong to methanol and, therefore, are not renewable. A method to evaluate the content of the renewable and non-renewable energetic fraction, released during their combustion, was 52 Fig. 2 - Correlation between EFNR and NCM of FAME. Fig. 3 - Correlation between NCM and NS. Fig. 4 - Correlations between EFNR and NS. 07_Toscano(541_47 26-01-2010 9:35 Pagina 52 developed using a thermochemical criteria, based on bond dissociation energies and the knowledge of the molecular structure of the reagents and the products. Results show that the fraction of non-renewable energy in the most diffused FAME is lower than 1% depending on the lengths of the carbonaceous methyl esters. Meanwhile, the energetic supply for the GL of this fraction is about 1.6%. The data reported in this document can be used to develop a criteria that corrects the fiscal mechanism aspects of some renewable energy products.

  20. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  1. Study on the concentration of unsaturated fatty acid methyl esters by urea complexation

    This study was done to obtain concentrated unsaturated fatty acid methyl esters (FAME) by urea complexation from soybean derived FAME. Effects of urea-to-FAME ratio, 95% ethanol-to-FAME ratio, crystallization temperature and time on the purification of unsaturated FAME were investigated through single factor experiments. Optimum conditions to obtain maximum FAME yield of NUCF with the purity of unsaturated FAME greater than 98% were established using Box-Behnken design (BBD) method and response surface methodology (RSM). Under optimal conditions, the FAME yield was 58.08%, and the purity of unsaturated FAME was 98% at a urea-to-FAME ratio of 1.23, 95% ethanol-to-FAME ratio of 7 and crystallization temperature of 0 degree C. Verification results revealed that the predicted values were reasonably close to experimentally observed values of 56.93% and 98.01%. (author)

  2. Gas chromatography determination of fatty acid alkyl esters (methyl and ethyl in the presence of mono., di- and triglycerides

    Paulo César Narváez Rincón

    2010-04-01

    Full Text Available Determining fatty acid methyl or ethyl esters, in the presence of mono-, di- and tri glycerides, is very important when studying fatty compounds' methanolysis or ethanolysis, as well as for controlling the quality of petrochemical products. This work presents a useful technique for determining fatty acids methyl or ethyl esters by high temperature gas chromastography in the presence of mono-, di- and triglycerides. Samples were silylated with N, O-bis (trimethylsilyl trifluroacetamide (BSTFA and then passed throught a 12m HT5 column coated with a phenyl-polysiloxane-carborane film. Standard methyl and ethyl palmitate, methyl and ethyl oleate, DL-palmitin, dipalmitin, tripalmitin and triolein solutions were used for calibrating the technique, using tricaprin as internal standard. Retention times and response factors were also determined. The results were employed in following-up palm oil methanolysis and ethanolysis reactions.

  3. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  4. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  5. Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis

    Čechová, L.; Durnová, E.; Šikutová, Silvie; Halouzka, Jiří; Němec, M.

    2004-01-01

    Roč. 808, č. 2 (2004), s. 249-254. ISSN 1570-0232 R&D Projects: GA ČR GA206/03/0726 Institutional research plan: CEZ:AV0Z6093917 Keywords : spirochetes * arthropods * fatty acid methyl esters Subject RIV: EE - Microbiology, Virology Impact factor: 2.176, year: 2004

  6. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  7. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  8. Pretreatment of yellow grease for efficient production of fatty acid methyl esters

    Diaz-Felix, Walterio; Riley, Mark R.; Zimmt, Werner [Department of Agricultural and Biosystems Engineering, Shantz Building, Room 403, The University of Arizona, Tucson, AZ 85721 (United States); Kazz, Michael [Zelen Environmental, Tucson, AZ (United States)

    2009-04-15

    Biodiesel is a renewable fuel comprised of fatty acid methyl esters (FAME) derived from vegetable oils or animal fats. Comparisons between biodiesel and petroleum-based diesel have shown biodiesel to be effective in reducing exhaust emissions of carbon monoxide, hydrocarbons, particulate matter, and sulfur dioxide. While there are advantages of biodiesel over the traditional petroleum based diesel, biodiesel commercialization is limited by production cost that is dominated by the price of the feedstock (soybean oil). Yellow grease has the potential to be an effective feedstock with lower cost, but the chemical composition of these oils is variable depending on the source of collection and differs from that of virgin oil due to the presence of free fatty acids (FFA). Esterification has been previously demonstrated to reduce the FFA levels of YG; however, large quantities of methanol were required to drive the reaction to high yield. Methanol usage for processing and FFA content are the main factors affecting the economics of FAME production from YG. In this study, the relationship between composition and process variables was systematically studied. The effect of FFA ranging from 2% to 32% (w/w) was studied at three different molar ratios of methanol to FFA (4.5:1, 9:1, 18:1) and was found to have a non-linear relationship. Data obtained from this full factorial screening was used to develop a predictive statistical model to forecast the conversion based on initial FFA level and proportion of alcohol applied for esterification. (author)

  9. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  10. Ternary Liquid-Liquid Equilibrium for Systems of Fatty Acid Methyl Ester(Methyl Palmitate/Methyl Stearate)+Ethanol+Glycerol at Atmospheric Pressure

    夏淑倩; 罗慧娟; 马沛生

    2015-01-01

    Liquid-liquid equilibrium data of two ternary systems methyl palmitate+ethanol+glycerol and methyl stearate+ethanol+glycerol at(318.2 and 333.2)K and atmospheric pressure were measured. The values of distri-bution coefficient and selectivity were calculated, which indicates that glycerol can be separated from fatty acid ester by using ethanol as an extraction solvent. The consistency of the isothermal tie-line data were checked by the Othmer-Tobias equation. The correlation coefficients R2 are higher than 0.993,9 for all the fitted curves. The NRTL activity coefficient model was applied to the correlation of the measured tie-line data. The root mean square devia-tion(RMSD)values are less than 0.007 for all the systems, which shows a good predictive capability of this model for such systems.

  11. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M. [Central Arid Zone Research Institute, Jodhpur 342003 (India)

    2005-10-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel. (author)

  12. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel

  13. New eudesmenoic acid methyl esters from the seed oil of Jatropha curcas.

    Yang, Yuan-Feng; Liu, Jie-Qing; Li, Zhong-Rong; Li, Yan; Qiu, Ming-Hua

    2013-09-01

    Three new eudesmenoic acid methyl esters (1-3), as well as five known compounds, including three germacranolides (4-6) and two eudesmanolides (7 and 8), were isolated from the seed oil of Jatropha curcas. The new compounds were elucidated by means of spectroscopic methods, including extensive NMR spectra. In addition, the structure of 8 was confirmed by a single-crystal X-ray diffraction analysis. Among the isolates, compounds 4-6 were the first reported from the genus Jatropha. Using MTS viability assay, the cytotoxicity of compounds 2-8 were evaluated against HL-60, SMMC-7721, A-549, MCF-7, and SW480 human tumor cell lines. Compounds 4 and 5 showed remarkable cytotoxicity against all the tested cell lines with IC50 values from 0.5 to 3.5 μM, and the new compound 3 displayed selective cytotoxic activity against A-549 cell with an IC50 value of 7.24 μM, but slight cytotoxicity against HL-60 and MCF-7 with IC50 values of 23.77 and 22.37 μM, respectively. PMID:23811432

  14. Combustion characteristics of fatty acid methyl esters derived from recycled cooking oil

    Yo-ping Greg Wu; Ya-fen Lin; Chang-Tang Chang [National Ilan University, Ilan (Taiwan). Department of Chemical and Materials Engineering

    2007-12-15

    The goal of this study is to find out the exhaust emissions differences produced by different kinds of fatty acid methyl esters (FAME) derived from used cooking oils and animal fats, as well as the importance of the purification step in exhaust emissions production. A total of 120 L of waste vegetable oil and 30 L of waste frying oil were collected and converted into three batches of FAME. There were two batches of FAME produced from waste vegetable oil (B01 and B02), and one batch of FAME produced by mixing 2% of waste frying oil with waste vegetable oil (B03). The FAMEs used in this study had higher density, kinematic viscosity, and flash point, but a lower gross heating value, when compared to the premium diesel. The B01 engine produced higher CO formation and the diesel-fuelled engine produced higher CO than the B02 and B03 did for engine speeds higher than 1400 rpm. Most of the FAME fuels produced higher CO{sub 2} than the diesel fuel did. The FAME fuels emitted higher NOx and PM, but lower SO{sub 2}, than the diesel fuel. C{sub n}H{sub 2n+2}, diphenyl sulfone (C{sub 12}H{sub 10}O{sub 2}S), and diethyl phthalate (C{sub 12}H{sub 14}O{sub 4}) can be selected as the character index for the combustion of FAME. 26 refs., 8 figs., 1 tab.

  15. Electronic Structures and Optical Properties of Phenyl C71 Butyric Acid Methyl Esters

    Cai-Rong Zhang

    2013-01-01

    Full Text Available Phenyl C71 butyric acid methyl ester (PC71BM has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT; the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.

  16. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions

  17. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  18. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  19. Self-assembled structure of alkyloxy substituted benzoic acid methyl ester on HOPG:An STM study

    YUAN Qunhui; LU Jun; WAN Lijun; BAI Chunli

    2004-01-01

    Self-assembled structures of 3,4,5-tris-dodecy- loxy benzoic acid methyl ester (E12), 3,4,5-tris-tetradecy- loxy-benzoic acid methyl ester (E14) and their mixture (E12/E14) have been studied on HOPG by scanning tunneling microscopy (STM). Dimer-like patterns induced by dipole-dipole interaction are observed in E12 and E14 monolayers. The molecules form close-packed rows and interdigitate with the alkyl chains in adjacent molecules. The structural differences are proposed to be from the different length of substituted alkyl chains. Owing to similar adsorption energy, phase separation is observed in the E12 and E14 mixed adlayer with different domains.

  20. Simultaneous microwave extraction and synthesis of fatty acid methyl ester from the oleaginous yeast Rhodotorula glutinis

    Microbial lipids have the potential to substantially reduce the use of liquid fossil fuels, though one obstacle is the energy costs associated with the extraction and subsequent conversion into a biofuel. Here we report a one-step method to produce FAME (fatty acid methyl esters) from Rhodotorula glutinis by combining lipid extraction in a microwave reactor with acid-catalysed transesterification. The microwave did not alter the FAME profile and over 99% of the lipid was esterified when using 25 wt% H2SO4 over 20 min at 120 °C. On using higher loadings of catalyst, similar yields were achieved over 30 s. Equivalent amounts of FAME were recovered in 30 s using this method as with a 4 h Soxhlet extraction, run with the same solvent system. When water was present at less than a 1:1 ratio with methanol, the main product was FAME, above this the major products were FFA (free fatty acids). Under the best conditions, the energy required for the microwave was less than 20% of the energy content of the biodiesel produced. Increasing the temperature did not change the EROI (energy return on investment) substantially; however, longer reaction times used an equivalent amount of energy to the total energy content of the biodiesel. - Highlights: • The extraction and transesterification of yeast lipid were achieved using a microwave reactor. • The lipid was extracted from Rhodotorula glutinis within 30 s under all conditions. • Addition of 25 wt% H2SO4 catalyst converted 95% glycerides to FAME over 5 min. • Water could be tolerated up to 25 wt% without high FFA production. • The temperature of the microwave had less impact on EROI than the length of extraction

  1. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  2. S-(−)-10,11-Dihydroxyfarnesoic Acid Methyl Ester Inhibits Melanin Synthesis in Murine Melanocyte Cells

    Seung-Hwa Baek; Jun-Won Ahn; Sung-Hee Nam; Cheol-Sik Yoon; Jae-Cheon Shin; Sang-Han Lee

    2014-01-01

    The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasmas, freckles, age spots, and chloasmas. In the course of screening for melanin synthesis inhibitors, we found that the culture broth from an insect morphopathogenic fungus, Beauveria bassiana CS1029, exhibits potent antimelanogenic activity. We isolated and purified an active metabolite and identified it as S-(−)-10,11-dihydroxyfarnesoic acid methyl ester (dhFAME), an insect j...

  3. Unequivocal NMR assignments: O-methoxy-methyl esters derivatives of acid chromanones from Calophyllum brasiliense CAMB. (Guanandi).

    Caneppele, D; Vieira, P C; Dall'Oglio, E L; da Silva, L E; Sousa, P T

    2008-01-01

    The present work describes the fractionation of the crude hexane extract (EBHEX) from Calophyllum brasiliense (Clusiaceae) stem bark. Derivatization of DCM(2-9) fraction with diazomethane afforded the chromanones inophylloidic acid, isobrasiliensic acid, as well as, a mixture containing isobrasiliensic and brasiliensic acids, in the form of their more stable O-methoxy-methyl esters derivatives 1, 2, and 3, respectively. The isolation of 1 from C. brasiliense is described for the first time herein. The use of two-dimensional NMR methods ((1)H-COSY, HMQC, and HMBC) allowed the precise determination of (13)C and (1)H chemical shifts of compounds 1, 2, and 3. PMID:18626818

  4. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products.

    Wasta, Ziar; Mjøs, Svein A

    2013-07-19

    Fatty acids in products claimed to contain oils with the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were analyzed as fatty acid methyl esters by gas chromatography-mass spectrometry using electron impact ionization. To cover the variation in products on the market, the 20 products that were studied in detail were selected from a larger sample set by statistical methodology. The samples were analyzed on two different stationary phases (polyethylene glycol and cyanopropyl) and the fatty acid methyl esters were identified by methodology that combines the mass spectra and retention indices into a single score value. More that 100 fatty acids had a chromatographic area above 0.1% of the total, in at least one product. Retention indices are reported as equivalent chain lengths, and overlap patterns on the two columns are discussed. Both columns were found suitable for analysis of major and nutritionally important fatty acids, but the large number of minor compounds that may act as interferents will be problematic if low limits of quantification are required in analyses of similar sample types. A database of mass spectral libraries and equivalent chain lengths of the detected compounds has been compiled and is available online. PMID:23773584

  5. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE2 production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE2 in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE2 in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  6. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Cuadrado, Irene [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Cidre, Florencia; Herranz, Sandra [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain); Estevez-Braun, Ana [Instituto Universitario de Bio-Orgánica “Antonio González”. Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2. 38206. La Laguna, Tenerife (Spain); Instituto Canario de Investigaciones del Cáncer (ICIC) (Spain); Heras, Beatriz de las, E-mail: lasheras@farm.ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain)

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  7. NF EN 14213. - Heating fuels. - Fatty acid methyl esters (FAME) - Requirements and test methods; NF EN 14213. - Fioul domestique. - Esters methyliques d'acides gras (EMAG). - Exigences et methodes d'essais

    NONE

    2004-04-01

    This standard specifies requirements and test methods for marketed and delivered fatty acid methyl ester (FAME) to be used as heating oil solely or as a blending component for the production of heating oil. At 100% concentration it is applicable to fuel for use in heating equipment designed or subsequently adapted to run on 100% FAME.

  8. Peak alignment and robust principal component analysis of gas chromatograms of fatty acid methyl esters and volatiles

    Frosch, Stina; Jørgensen, Bo

    2007-01-01

    Gas chromatograms of fatty acid methyl esters and of volatile lipid oxidation products from fish lipid extracts are analyzed by multivariate data analysis [principal component analysis (PCA)]. Peak alignment is necessary in order to include all sampled points of the chromatograms in the data set....... The ability of robust algorithms to deal with outlier problems, including both sample-wise and element-wise outliers, and the advantages and drawbacks of two robust PCA methods, robust PCA (ROBPCA) and robust singular value decomposition when analysing these GC data were investigated. The results show...

  9. Synthesis and Crystal Structure of 4-(4,6-dimethoxyl -pyrimidin-2-yl)-3-thiourea Carboxylic Acid Methyl Ester

    HUANG Jie; SONG Ji-Rong; REN Ying-Hui; XU Kang-Zhen; MA Hai-Xia

    2006-01-01

    The title compound 4-(4,6-dimethoxylpyrimidin-2-yl)-3-thiourea carboxylic acid methyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at the room temperature. The structure was characterized by elemental analysis and IR and determined by X-ray diffraction analysis. Crystallographic data: C9H12N4O4S, Mr = 272.29, monoclinic, space group C2/m with a = 1.6672(3), b = 0.66383(12), c = 1.1617(2) nm, β = 109.275(2)°, V = 1.2136(4) nm3, Dc = 1.490 g/cm3, μ = 0.281 mm-1, F(000) = 568, Z = 4, R1 = 0.0341and wR2 = 0.1042.

  10. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  11. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  12. Environmentally friendly properties of vegetable oil methyl esters

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  13. Configurational and conformational analysis of chiral molecules using IR and VCD spectroscopies: spiropentylcarboxylic acid methyl ester and spiropentyl acetate.

    Devlin, F J; Stephens, P J; Osterle, C; Wiberg, K B; Cheeseman, J R; Frisch, M J

    2002-11-15

    The chiral monosubstituted derivatives of spiropentane, spiropentylcarboxylic acid methyl ester, 1, and spiropentyl acetate, 2, have been synthesized in optically active form. Configurational and conformational analysis of 1 and 2 has been carried out using infrared (IR) and vibrational circular dichroism (VCD) spectroscopies. Analysis of the experimental IR and VCD spectra has been carried out using ab initio density functional theory (DFT). For both 1 and 2, DFT predicts two populated conformations. Comparison to experiment of the conformationally averaged IR and VCD spectra of 1 and 2, predicted using DFT, provides unequivocal evidence of the predicted conformations and yields the absolute configurations R(-)/S(+) for 1 and R(+)/S(-) for 2. These absolute configurations are consistent with the R(-)/S(+) absolute configuration of spiropentylcarboxylic acid, assigned previously via X-ray crystallography of its alpha-phenylethylammonium salt. PMID:12423137

  14. Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester: A fluorescence study in condensedphase and jet-cooled molecular beams

    Amrita Chakraborty; Samiran Kar; D N Nath; Nikhil Guchhait

    2007-03-01

    Photoinduced intramolecular charge-transfer reactions in 4-amino-3-methyl benzoic acid methyl ester (AMBME) have been investigated spectroscopically. AMBME, with its weak charge donor primary amino group, shows dual emission in polar solvents. Absorption and emission measurements in the condensed phase support the premise that the short wavelength emission band corresponds to local emission and the long wavelength emission band to the charge transfer emission. Laser-induced fluorescence excitation spectra show the presence of two low-energy conformers in jet-cooled molecular beams. Theoretical calculations using density functional theory help to determine structure, vibrational modes, potential energy surface, transition energy and oscillator strength for correlating experimental findings with theoretical results.

  15. Quantification of trace fatty acid methyl esters in diesel fuel by using multidimensional gas chromatography with electron and chemical ionization mass spectrometry.

    Webster, R L; Rawson, P M; Evans, D J; Marriott, P J

    2016-07-01

    Measurement of contamination of marine and naval diesel fuels (arising from product mixing or adulteration) with biodiesel or fatty acid methyl esters can be problematic, especially at very low levels. A suitable solution for this task for trace amounts of individual fatty acid methyl esters with resolution and quantification can be achieved by using a multidimensional gas chromatographic approach with electron and chemical ionization mass spectrometric detection. A unique column set comprising a 100 m methyl-siloxane nonpolar first dimension column and high-temperature ionic liquid column in the second dimension enabled identification of individual fatty acid methyl esters at below the lowest concentrations required to be reported in a diesel fuel matrix. Detection limits for individual fatty acid methyl esters compounds ranged from 0.5 to 5.0 mg/L, with excellent linearity up to 5000 mg/L and repeatability of the method from 1.3 to 3.2%. The method was applied to the analysis of diesel fuel samples with suspected biodiesel contamination. Contamination at 568 mg/L was calculated for an unknown sample and interpretation of the results permitted the determination of a likely source of the contamination. PMID:27159197

  16. Organic memory using [6,6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies

    We report a simple memory device in which the fullerene-derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) mixed with inert polystyrene (PS) matrix is sandwiched between two aluminum (Al) electrodes. Transmission electron microscopy (TEM) images of PCBM:PS films showed well controlled morphology without forming any aggregates at low weight percentages (th) for switching from the high-impedance state to the low-impedance state, the voltage at maximum current density (Vmax) and the voltage at minimum current density (Vmin) in the NDR regime are constant within this thickness range. The current density ratio at Vmax and Vmin is more than or equal to 10, increasing with thickness. Furthermore, the current density is exponentially dependent on the longest tunneling jump between two PCBM molecules, suggesting a tunneling mechanism between individual PCBM molecules. This is further supported with temperature independent NDR down to 240 K

  17. Morphology characterization of phenyl-C61-butyric acid methyl ester films via an electrohydrodynamic spraying route

    In this study, we fabricated a thin film layer of phenyl-C61-butyric acid methyl ester (PCBM) fine particles using electrohydrodynamic (EHD) spray and evaluated the effects of the process parameters on the film morphology. After the PCBM was dissolved in dichloromethane, the solution was sprayed onto a substrate using the stable cone-jet mode of EHD spraying at various flow rates ranging from 5 to 15 μl/min and electric potentials ranging from 3 to 5 kV. The effects of the liquid flow rate, nozzle-plate distance, solute fraction, and electrical conductivity on the spray characteristics were investigated. The sizes of the PCBM particles deposited on the substrate were calculated using a scaling law and a mass balance equation, the results of which were in agreement with those obtained by scanning electron microscopy. A thin film was obtained with the structure of PCBM particles deposited without any void or agglomeration from the EHD spraying technique. The electrical conductivity of the PCBM solution was the dominant parameter in controlling the size of the PCBM particles. As the conductivity was increased to 2.4 × 10−3 S/m from 4.3 × 10−9 S/m, the particle size decreased from 6.7 μm to 320 nm. The size distribution measured using a scanning mobility particle sizer also supported the generation of nano-scale PCBM particles. The decrease of the particle size with increasing electrical conductivity may lead to a better morphology of PCBM films. - Highlights: • The phenyl-C61-butyric acid methyl ester thin film was obtained by electrospray. • The morphology of film consisting of microparticles was investigated. • The particle size was controlled by adjusting experimental parameters. • The nanoparticle was obtained by increasing the solution conductivity. • The particle size distribution was studied using a scanning mobility particle sizer

  18. Methods of preparation of fatty acid methyl esters (FAME. Statistical assessment of the precision characteristics from a collaborative trial

    Pérez-Camino, M. C.

    2000-12-01

    Full Text Available The official regulations for the control of the olive and olive pomace oils of the European Union (EU and International Olive Oil Council (IOOC include the determination of fatty acids in order to be applied to several purity criteria. The determination of fatty acids require the preparation of the fatty acid methyl esters (FAME for the subsequent analysis by gas chromatography with good precision and reproducibility. Among the methods used in the laboratories of both the industries and the official institutions looking after the olive oil control, the ones selected were: 1 cold methylation with methanolic potash and 2 hot methylation with sodium methylate followed by acidification with sulphuric acid in methanol and heating. A statistical assessment of the precision characteristics were performed on the determination of fatty acids using both methods by a collaborative trial following the directions included in the AOAC regulation (AOAC 1995. In oils with low acidities, the results obtained for both methylation methods were equivalent. However, the olivepomace oil sample (acidity 15.5% showed significative differences between the fatty acid compositions obtained using both methylation methods. Finally, the methylation with the acidic+basic method did not yield an increase of the trans-isomers of the fatty acids.Los métodos oficiales para el control del aceite de oliva y de orujo de oliva de la Unión Europea (UE y del Comité Oleícola Internacional (COI incluyen la determinación de ácidos grasos en la aplicación de varios criterios de pureza. La determinación de ácidos grasos requiere la preparación de los ésteres metílicos de los ácidos grasos (FAME y su posterior análisis mediante cromatografía de gases con una buena repetibilidad y reproducibilidad. Entre los muchos métodos usados por los laboratorios de la industria y de los organismos oficiales de control, se seleccionaron los siguientes: 1 metilación en frío con potasa

  19. Synthesis and Crystal Structure of 2-[(4-Methoxy- 6-methylthio-2-pyrimidinyl)aminocarbonyl-aminosulfonyl] Benzoic Acid Methyl Ester

    黄明智; 王晓光; 毛春晖; 黄路; 宋海斌

    2004-01-01

    The title compound 2-[(4-methoxy-6-methylthio-2-pyrimidinyl)aminocarbonyl-aminosulfonyl]benzoic acid methyl ester (C15H16N4O6S2,Mr = 412.44) was obtained by the reaction of (4-methoxy-6-methylthio-2-pyrimidinyl)amine with 2-methoxylcarbonylbenzene-sulfonylisocya-nate.The crystal is of monoclinic,space group P21/c with a =11.169(3),b = 9.508(3),c = 17.690(5)(A),β = 91.593(5)o,Z = 4,V = 1877.9(10)(A)3,Dc = 1.459 g/cm3,F(000) = 856,μ(MoKα) = 0.324 mm-1,R = 0.0690 and Wr = 0.1368 for 3301 observed reflections (I > 2((I)).The N(1)-H…N(3) and N(2)-H…O(4) hydrogen bonds can be observed.In the molecule the phenyl plane(I),pyrimi-din-2-yl-urea bridge plane(Ⅱ) and ester plane(Ⅲ) form three conjugated systems.

  20. NF EN 14104. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the acid index; NF EN 14104. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de l'indice d'acide

    NONE

    2003-07-01

    This European standard describes a titration method for the determination of the acid index of slightly colored fatty acids methylic esters (FAME). This method allows the determination of the acid index over a concentration range comprised between 0.10 mg of KOH/g and 1 mg of KOH/g. (J.S.)

  1. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content.

    Kim, Jieun; Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Choi, Tae O; Kim, Jae-Kon; Jeon, Young Jae; Kwon, Eilhann E

    2016-07-01

    This study fundamentally investigated the pseudo-catalytic transesterification of dried Nannochloropsis oceanica into fatty acid methyl esters (FAMEs) without oil extraction, which was achieved in less than 5min via a thermo-chemical pathway. This study presented that the pseudo-catalytic transesterification reaction was achieved in the presence of silica and that its main driving force was identified as temperature: pores in silica provided the numerous reaction space like a micro-reactor, where the heterogeneous reaction was developed. The introduced FAME derivatization showed an extraordinarily high tolerance of impurities (i.e., pyrolytic products and various extractives). This study also explored the thermal cracking of FAMEs derived from N. oceanica: the thermal cracking of saturated FAMEs was invulnerable at temperatures lower than 400°C. Lastly, this study reported that N. oceanica contained 14.4wt.% of dried N. oceanica and that the introduced methylation technique could be applicable to many research fields sharing the transesterification platform. PMID:27082269

  2. Fatty Acid Methyl Ester (FAME Succession in Different Substrates as Affected by the Co-Application of Three Pesticides.

    Alessandra Cardinali

    Full Text Available In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality.In this study the fatty acid methyl esters (FAMEs evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole, with two extraction methods, and two incubation times (0 and 58 days. FAMEs extraction followed the microbial identification system (MIDI and ester-linked method (EL.The pesticides showed high persistence, as revealed by half-life (t1/2 values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time.Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.

  3. Mitigating crystallization of saturated FAMEs (fatty acid methyl esters) in biodiesel: 2. The phase behavior of 2-stearoyl diolein–methyl stearate binary system

    The phase behavior of a model binary system made of OSO (2-stearoyl diolein) and MeS (methyl stearate) was investigated with differential scanning calorimetry and X-ray diffraction. The study is part of a series of investigations of unconventional additives such as TAGs (triacylglycerols) and dimers of TAGs with a demonstrated potential to significantly alter the crystallization of biodiesel. The TAG (triacylglycerol) was found to be effective in depressing the crystallization onset of the FAME (fatty acid methyl ester) significantly even at low concentration. OSO was shown to affect the crystallization of the mixtures strongly, and to dramatically alter their polymorphism. The system's phase diagram involved marked transformation lines including eutectics and solid–solid transitions. The molecular interactions were evaluated using a simple thermodynamic model. A mechanism for disruption of crystallization was proposed to be dependent on the peculiar geometry of OSO: the “straight” stearic acid participates easily in the lamellar packing of the equally “straight” FAME, whilst its kinked oleic acids effectively halt additional saturated FAMEs from participating due to steric hindrances. The findings of the study indicate that judicious loadings of TAGs which would target biodiesel's saturated FAMEs will have a substantial beneficial effect on the low temperature performance of the fuel. - Highlights: • 2-Steroyl diolein/methyl stearate (OSO/MeS) binary system investigated comprehensively. • OSO/MeS mixtures presented very complex phase trajectories and behavior. • OSO alters crystallization at both nucleation and growth stages profoundly. • Mechanism for disruption of crystallization proposed and verified. • OSO and homologues formulations can be effectives cold flow additives for biodiesel

  4. Fuel properties of highly polyunsaturated fatty acid methyl esters: Prediction of fuel properties of algal biodiesel

    Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats, can be derived from other triacylglycerol-containing feedstocks. Especially algae are being considered for this purpose due to their claimed high production potential. However, there are no comprehensive reports regarding...

  5. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  6. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification

    Laurens, Lieve M.L.; Quinn, Matthew; Wychen, Stefanie van; Templeton, David W.; Wolfrum, Edward J. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2012-04-15

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process. (orig.)

  7. Design and preliminary results of an NMR tube reactor to study the oxidative degradation of fatty acid methyl ester

    Biodiesel is the fatty acid alkyl esters produced by the transesterification of vegetable, animal or microbial lipids. After ethanol, it accounts for the largest proportion of global biofuel production. Yet, due to the level of polyunsaturation, biodiesel is also oxidatively unstable. When biodiesel oxidises the viscosity increases, which leads to reduced fuel performance and in extreme cases can lead to engine failure. To aid in understanding the process of this degradation a specialist NMR tube rig was designed to assess the oxidation of biodiesel. The NMR tube rig allowed the in situ1H NMR measurement of the sample while air was bubbled through at fixed intervals. The methyl esters of linolenic acid (18:3), linoleic acid (18:2) and oleic acid (18:1) were oxidised at 110 °C over a 24 h period. The decomposition of biodiesel is complex, and there is more than one mechanism involved in the degradation. Using this rig the onset of oxidation for 18:3 and 18:2 was found to be almost instantaneous. The rate of oxidation was found to be slightly less for 18:2 than 18:3 while the maximum rate was observed for 18:3 from the beginning of the oxidation, this was only observed after 280 min for 18:2. The oxidation of 18:1 started at approximately 500 min and, slowly degraded during the remaining reaction time. The formation of a number of secondary oxidation products such as aldehydes, ketones, alcohols and formates were also quantified. -- Highlights: ► A specialist NMR rig was designed to measure the oxidation of FAME in situ. ► Oxidation of 18:1, 18:2 and 18:3 was observed over 24 h at 110 °C. ► The maximum rate was found at the start of the reaction for 18:3. ► The rate was highest for 18:2 after 300 min but never reached a maximum for 18:1.

  8. Evaluation of the separation characteristics of application-specific (fatty acid methyl esters) open-tubular columns for gas chromatography.

    Kiridena, Waruna; Qian, Jing; Koziol, Wladyslaw W; Poole, Colin F

    2007-03-01

    The solvation parameter model is used to characterize the separation properties of the polar stationary phases EC-Wax and PAG with a poly(ethylene oxide) backbone (substituted with propylene oxide in the case of PAG) and the cyanopropyl-substituted polysilphenylene-siloxane stationary phase BPX90 at five equally spaced temperatures between 60 and 140 degrees C. The separation characteristics of these stationary phases are compared to four PEG and two poly(cyanopropylsiloxane) stationary phases (HP-20M, HP-Innowax, SolGel-Wax, DB-WAXetr, HP-88, and SP-2340) characterized in the same way. The database of system constants for these polar stationary phases is used to provide insight into the separation mechanism for fatty acid methyl esters and to determine selectivity differences that can be expected for generically similar stationary phase types. The discussion is not structured to indicate which stationary phase should be used for a particular separation but to provide a general framework to demonstrate the relationship between the retention mechanism and stationary phase chemistry. PMID:17461115

  9. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    Wagutu, Agatha W.; Chhabra, Sumesh C.; Lang' at-Thoruwa, Caroline C. [Department of Chemistry, Kenyatta University, P.O. Box 43844-0100, Nairobi (Kenya); Thoruwa, Thomas F.N. [Department of Energy Engineering, Kenyatta University, P.O. Box 43844, Nairobi (Kenya); Mahunnah, R.L.A. [University of Dar-es Salaam, Muhimbili College of Medicine, P.O. Box 53486, Dar-es Salaam (Tanzania)

    2010-08-15

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L{sup -1} (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries. (author)

  10. Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties

    Canoira, Laureano; Garcia Galean, Juan; Alcantara, Ramon [Department of Chemical Engineering and Fuels, ETS Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Lapuerta, Magin; Garcia-Contreras, Reyes [Maquinas y Motores Termicos, ETS Ingenieros Industriales, Universidad de Castilla La Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-01-15

    Fatty acid methyl esters (FAMEs) from castor oil have been synthesized by methanolysis catalyzed by sodium methoxide and the optimal transesterification conditions have been found. However, some properties of the castor FAME render it unsuitable in pure state for its direct use as fuel in internal combustion engines. Thus, blends with reference diesel have been prepared and their properties have been evaluated. Among these properties, the oxidative stability of the blends shows a negative anti-synergistic effect, that is, all the blends have an induction period lower than the pure reference diesel and the pure castor FAME. On the contrary, the lubricity shows a positive synergistic effect, the wear scar of the blends being always lower than those of the pure components. The cold-filter plugging point of the blends shows also a singular effect, since the filterability remains identical to that of the reference diesel until around 50 vol% of castor FAME has been blended with it. The blends of castor FAME and reference diesel until approximately 40 vol% of castor FAME meet most of the specifications of the EN 590 standard. (author)

  11. Performance of a domestic cooking wick stove using fatty acid methyl esters (FAME) from oil plants in Kenya

    With depletion of solid biomass fuels and their rising costs in recent years, there has been a shift towards using kerosene and liquefied petroleum gas (LPG) for domestic cooking in Kenya. However, the use of kerosene is associated with health and safety problems. Therefore, it is necessary to develop a clean, safe and sustainable liquid bio-fuel. Plant oil derivatives fatty acid methyl esters (FAME) present such a promising solution. This paper presents the performance of a wick stove using FAME fuels derived from oil plants: Jatropha curcus L. (Physic nut), Croton megalocarpus Hutch, Calodendrum capense (L.f.) Thunb., Cocos nucifera L. (coconut), soyabeans and sunflower. The FAME performance tests were based on the standard water-boiling tests (WBT) and compared with kerosene. Unlike kerosene all FAME fuels burned with odorless and non-pungent smell generating an average firepower of 1095 W with specific fuel consumption of 44.6 g L-1 (55% higher than kerosene). The flash points of the FAME fuels obtained were typically much higher (2.3-3.3 times) than kerosene implying that they are much safer to use than kerosene. From the results obtained, it was concluded that the FAME fuels have potential to provide safe and sustainable cooking liquid fuel in developing countries.

  12. Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61-Butyl Acid Methyl Ester (PCBM)

    Tummala, Naga Rajesh

    2015-11-24

    High-boiling-point solvent additives, employed during the solution processing of active-layer formulations, impact the efficiency of bulk hetero-junction (BHJ) organic solar cells by influencing the morphological / topological features of the multicomponent thin film. Here, we aim at a better understanding of how these additives change the aggregation landscape in the casting solution prior to film deposition via a multi-scale computational study of the aggregation phenomena of phenyl-C61-butyric-acid methyl ester (PCBM) in various solutions. The energetic landscape of PCBM-solvent / solvent-additive intermolecular interactions is evaluated at the electronic-structure level through symmetry-adapted perturbation theory to determine the nature and strength of non-covalent forces important to aggregation. Molecular dynamics simulations highlight how the choice of solvent and solvent additives control the formation of molecular aggregates. Our results indicate that high-boiling-point solvent additives change the effective interactions among the PCBM and casting-solvent molecules and alter the equilibrium PCBM aggregate sizes in solution.

  13. S-(−-10,11-Dihydroxyfarnesoic Acid Methyl Ester Inhibits Melanin Synthesis in Murine Melanocyte Cells

    Seung-Hwa Baek

    2014-07-01

    Full Text Available The development of antimelanogenic agents is important for the prevention of serious aesthetic problems such as melasmas, freckles, age spots, and chloasmas. In the course of screening for melanin synthesis inhibitors, we found that the culture broth from an insect morphopathogenic fungus, Beauveria bassiana CS1029, exhibits potent antimelanogenic activity. We isolated and purified an active metabolite and identified it as S-(−-10,11-dihydroxyfarnesoic acid methyl ester (dhFAME, an insect juvenile hormone. To address whether dhFAME inhibits melanin synthesis, we first measured the size of the melanin biosynthesis inhibition zone caused by dhFAME. dhFAME also showed inhibitory activity against mushroom tyrosinase in Melan-a cells. Intracellular, dose-dependent tyrosinase inhibition activity was also confirmed by zymography. In addition, we showed that dhFAME strongly inhibits melanin synthesis in Melan-a cells. Furthermore, we compared levels of TYR, TRP-1, TRP-2, MITF, and MC1R mRNA expression by reverse-transcription polymerase chain reaction and showed that treatment of Melan-a cells with 35 μM dhFAME led to an 11-fold decrease in TYR expression, a 6-fold decrease in TRP-2 expression, and a 5-fold decrease in MITF expression. Together, these results indicate that dhFAME is a potent inhibitor of melanin synthesis that can potentially be used for cosmetic biomaterial(s.

  14. Biocatalytic Resolution of Rac-α-Ethyl-2-Oxo-Pyrrolidineacetic Acid Methyl Ester by Immobilized Recombinant Bacillus cereus Esterase.

    Zheng, Jian-Yong; Liu, Yin-Yan; Luo, Wei-Feng; Zheng, Ren-Chao; Ying, Xiang-Xian; Wang, Zhao

    2016-04-01

    A new esterase-producing strain (Bacillus cereus WZZ001) which exhibiting high hydrolytic activity and excellent enantioselectivity on rac-α-ethyl-2-oxo-pyrrolidineacetic acid methyl ester (R, S-1) has been isolated from soil sample by our laboratory. In this study, the stereoselective hydrolysis of (R, S-1) was performed using the recombinant Bacillus cereus esterase which expressed in Escherichia coli BL21 (DE3). Under the optimized conditions of pH 8.0, 35 °C, and concentration of substrate 400 mM, a successful enzymatic resolution was achieved with an e.e. s of 99.5 % and conversion of 49 %. Immobilization considerably increased the reusability of the recombinant esterase; the immobilized enzyme showed excellent reusability during 6 cycles of repeated 2 h reactions at 35 °C. Thereby, it makes the recombinant B. cereus esterase a usable biocatalyst for industrial application. PMID:26695776

  15. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  16. Silane Reduction of 5-Hydroxy-6-methyl-pyridine-3,4-dicarboxylic Acid Diethyl Ester: Synthesis of Vitamin B6

    Andrew G. Gum

    2003-12-01

    Full Text Available Alternative methods for the synthesis of pyridoxine have been investigated. The key intermediate, 5-hydroxy-6-methyl-pyridine-3,4-dicarboxylic acid diethyl ester (5, was reduced with either a silane monomer (MeSiH(OEt2 or a polysiloxane (polymethylhydrosiloxane, PMHS to afford crude pyridoxine. An isolation technique utilizing a commercially available resin was devised, affording the desired product, vitamin B6, in an overall yield of 38-54 % and a purity of 76%.

  17. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  18. Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids

    Highlights: • Vapor pressures and energies of combustion of two methyl benzoates were measured. • Standard molar ΔH, ΔS and ΔG of sublimation and vaporization were derived. • Standard molar ΔH, ΔS and ΔG of formation in crystal and gas phases were calculated. • Gas phase ΔH of formation was also estimated by quantum chemical calculations. • ΔH of the intermolecular hydrogen bond O–H⋯O was estimated. - Abstract: The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free

  19. Fractionation of fish oil fatty acid methyl esters by means of argentation and reversed-phase high-performance liquid chromatography, and its utility in total fatty acid analysis

    Özcimder, M.; Hammers, W.E.

    1980-01-01

    The utility of reversed-phase and argentation high-performance liquid chromatography (HPLC) as pre-fractionation methods in fatty acid analysis is discussed. Both HPLC modes were applied to cod liver oil fatty acid methyl esters. Apart from positional isomers, the fractions obtained by reversed-phas

  20. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  1. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C61-butyric acid methyl ester composite

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P+/C60- charge transfer complex was not completely ruled out. The large exciton binding energy (Eb = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (g state in both PTV010 and PTV55 cases, whereas excitons generated on PCBM molecules undergo energy transfer only to PTV55 in the blend film. Thus, the addition of PCBM increases the photoluminescence yield with respect to neat polymer yield. The efficiency of the energy transfer process is shown to depend on the degree of polymer and PCBM intermixing within the film, which in turn is governed by the polymer chain orders. The effect of such intermixing on the resulting kinetics of photo-induced excitations is also discussed. Our results show limited effect of polymer crystallinity of PTV to its excitonic properties, much the contrary of the case with poly (3-hexylthiophene) which has similar chemical structure with PTV.

  2. Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    Sung-Suk; Suh; So; Jung; Kim; Jinik; Hwang; Mirye; Park; Taek-Kyun; Lee; Eui-Joon; Kil; Sukchan; Lee

    2015-01-01

    Objecive:To screen the fatty acid(FA) composition of 20 marine microalgae species,including seven Diophyceae,six Bacillariophyeae four Chlorophyceae,two Haptophyceae and one Raphidophyceae species.Methods:Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed.Results:The FA composition of microalgae was speciesspecific.For example,seven different species of Dinophyceae were composed primarily of C14:0,C16:0.C18:0.C20:4n-6.C20:5n-3 and C22:6n-3.while C14:0.C16:0,C16:1.C18:0.C20:5n-3 and C22:6n-3 were abundant FAs in six species of Bacillariophyceae.In addition,four Chlurophyceae,two Haptopkyeeae and one Raphidophyceae species all contained a high degree of C16:1 n-7[(9.2R-34.91)%and(34.48-35.04)%].C14:0[(13.34-25.96)%]and[(26.69-Z8.24)%],and C16:0[(5.89-29.15)%]and[(5.70-16.81)%].Several factors contribute to the nutritional value of microalgae.including the polyunsaturated FA content and n-3 to n-6 FA ratio,which could be used to assess the nutritional quality of microalgae.Conclusions:This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea,and identifies the potential utility of FAs as species-specific biomarkers.

  3. Fatty acid methyl ester profiles and nutritive values of 20 marine microalgae in Korea

    Sung-Suk Suh; So Jung Kim; Jinik Hwang; Mirye Park; Taek-Kyun Lee; Eui-Joon Kil; Sukchan Lee

    2015-01-01

    Objective:To screen the fatty acid (FA) composition of 20 marine microalgae species, including sevenDiophyceae, sixBacillariophyceae, fourChlorophyceae, twoHaptophyceae and oneRaphidophyceae species.Methods: Microalgal cells cultured at the Korea Institute of Ocean Science & Technology were harvested during the late exponential growth phase and the FA composition analyzed.Results:The FA composition of microalgae was species-specific. For example, seven different species ofDinophyceae were composed primarily of C14:0, C16:0, C18:0, C20:4n-6, C20:5n-3 and C22:6n-3, while C14:0, C16:0, C16:1, C18:0, C20:5n-3 and C22:6n-3 were abundant FAs in six species ofBacillariophyceae. In addition, fourChlorophyceae, twoHaptophyceae and oneRaphidophyceae species all contained a high degree of C16:1n-7 [(9.28-34.91)% and (34.48-35.04)%], C14:0 [(13.34-25.96)%] and [(26.69-28.24)%], and C16:0 [(5.89-29.15)%] and [(5.70-16.81)%]. Several factors contribute to the nutritional value of microalgae, including the polyunsaturated FA content and n-3 to n-6 FA ratio, which could be used to assess the nutritional quality of microalgae.Conclusions:This study is the first comprehensive assessment of the FA composition and nutritional value of microalgae species in South Korea, and identifies the potential utility of FAs as species-specific biomarkers.

  4. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  5. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved

  6. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru E-mail: katsu@taka.jaeri.go.jp

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by {gamma}-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  7. Regioselective Nitration of Nα,N1-Bis(trifluoroacetyl)-L-Tryptophan Methyl Ester: Efficient Synthesis of 2-Nitro and 6-Nitro-N-Trifluoroacetyl-L-Tryptophan Methyl Ester

    Osborne, Andrew S.; Som, Phanneth; Metcalf, Jessica L.; Phillips, Robert S.

    2008-01-01

    Nitration of Nα,N1-bis(trifluoroacetyl)-L-tryptophan methyl ester with HNO3 in acetic anhydride at 0° C provides Nα-trifluoroacetyl-2-nitro-L-tryptophan methyl ester in 67% yield, whereas nitration in trifluoroacetic acid at 0° C gives Nα-trifluoroacetyl-6-nitro-L-tryptophan methyl ester in 69% yield.

  8. Sintesis Metil Ester Sulfonat Dari Asam Stearat Dan Metil Ester Sulfonat Dari Asam Oleat

    Samosir, Yustina

    2011-01-01

    The Synthesis of Methyl Ester Sulfonate (MES) from stearic acid and from oleic acid through the stages of esterification reaction, that are esterification from stearic acid and oleic acid that forms methyl ester stearic acid and methyl ester oleic acid next stage was sulfonating the two of methyl esters to form a methyl ester sulfonate stearic acid and methyl ester oleic acid sulfonate. Furthermore, both fatty acid methyl ester sulfonate is neutralized with NaOH to obtain sulfonate salt. ...

  9. Commercial- and whitewashing-grade limestone as a heterogeneous catalyst for synthesis of fatty acid methyl esters from used frying oil (UFO)

    Agrawal, Shweta; Singh, Bhaskar; Sharma, Yogesh C. [Banaras Hindu University, Department of Applied Chemistry, Institute of Technology, Varanasi (India); Frometa, Amado Enrique N. [Universidad Tecnologica de Izucar de Matamoros, Puebla (Mexico)

    2012-12-15

    Commercial-grade limestone used in whitewashing which is a low-cost material has been used as a catalyst for the synthesis of fatty acid methyl esters. The catalyst was characterized by differential thermal analysis/thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy for the study of its physicochemical nature. The catalyst was calcined at 900 C for 2.5 h for the decomposition of calcium carbonate to calcium oxide. The catalyst was further activated by dissolving 1.5 wt% of catalyst in 30 ml methanol (7.5:1, methanol to used frying oil molar ratio) and stirred at 25 C for 1 h on a magnetic stirrer. The transesterification reaction was performed using calcium oxide as a catalyst and then with the ''activated calcium oxide.'' The conversion obtained was 94.4 % with calcium oxide and was found to be lower for the ''activated calcium oxide'' (i.e., 87.36 %). The conversion increased to 96.8 % on increasing the catalyst amount to 2.0 wt% in 5 h. A high yield (>95 %) of fatty acid methyl esters was observed when either calcium oxide or ''activated calcium oxide'' was taken as catalyst. The catalytic activity of calcium oxide obtained from low-grade limestone has been found to be comparable with the laboratory-grade CaO. (orig.)

  10. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  11. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). PMID:23294646

  12. The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation - gas chromatography

    Vapor pressures and vaporization enthalpies for methyl heptadecanoate and methyl heneicosanoate to methyl octacosanoate exclusive of methyl tricosanoate are evaluated as a function of temperature over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an extrapolative process using literature values for methyl tetradecanoate to methyl eicosanoate as standards. Relationships for calculating vapor pressures of the title compounds from T = 298.15 to 450 K are provided. Experimental fusion enthalpies are also reported for the methyl esters from methyl hexadecanoate to methyl octacosanoate excluding methyl tridecanoate. Vaporization enthalpies and fusion enthalpies adjusted for temperature to T = 298.15 K are combined to provide sublimation enthalpies. The results are compared to available literature values. A rationale for the linear relationship observed between enthalpies of vaporization and enthalpies of transfer from solution to the vapor is also provided

  13. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  14. NF EN 14109. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the potassium content by atomic absorption spectroscopy; NF EN 14109. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en potassium par spectrometrie d'absorption atomique

    NONE

    2003-07-01

    This European standard specifies a method of determination of sodium contents for concentrations equal or greater than 0.5 mg/kg. This method is applicable to fatty acids methylic esters (FAME) intended to be incorporated to mineral oils. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  15. NF EN 14108. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the sodium content by atomic absorption spectroscopy; NF EN 14108. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en sodium par spectrometrie d'obsorption atomique

    NONE

    2003-07-01

    This European standard specifies a method of determination of sodium contents for concentrations equal or greater than 1 mg/kg. This method is applicable to fatty acids methylic esters (FAME) intended to be incorporated to mineral oils. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  16. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase

    Gao, Yin-yu; Liu, Yuhuan; Lin, Xiangyang [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China); Chen, Wen-wei [College of Life Science, China Jiliang University, Hangzhou 310018 (China); Lei, Hanwu [Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 (United States); Ruan, Roger [Key Laboratory of Food Science, Ministry of Education, Nanchang University, Nanchang 330047 (China)]|[Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108-6005 (United States)

    2009-02-15

    Surfactant-coated lipase was used as a catalyst in preparing fatty acid methyl ester (FAME) from Chinese tallow kernel oil from Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) small. FAME transesterification was analyzed using response surface methodology to find out the effect of the process variables on the esterification rate and to establish prediction models. Reaction temperature and time were found to be the main factors affecting the esterification rate with the presence of surfactant-coated lipase. Developed prediction models satisfactorily described the esterification rate as a function of reaction temperature, time, dosage of surfactant-coated lipase, ratio of methanol to oil, and water content. The FAME mainly contained fatty acid esters of C16:0, C18:0, C18:1, C18:2, and C18:3, determined by a gas chromatograph. The optimal esterification rate was 93.86%. The optimal conditions for the above esterification ratio were found to be a reaction time of 9.2 h, a reaction temperature of 49 C, dosage of surfactant-coated lipase of 18.5%, a ratio of methanol to oil of 3:1, and water content of 15.6%. Thus, by using the central composite design, it is possible to determine accurate values of the transesterification parameters where maximum production of FAME occurs using the surfactant-coated lipase as a transesterification catalyst. (author)

  17. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae

    Amin Abedini

    2013-01-01

    Full Text Available Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae, a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL. Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.

  18. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae).

    Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François; Neut, Christel; Hennebelle, Thierry

    2013-01-01

    Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically. PMID:24348709

  19. The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms.

    Heyrman, J; Mergaert, J; Denys, R; Swings, J

    1999-12-01

    Mural paintings in Carmona (Spain), Herberstein (Austria) and Greene (Germany), showing visible deterioration by microorganisms, were sampled to investigate the biodiversity of the heterotrophic bacteria present. Four hundred twenty-eight bacterial strains were isolated from which 385 were characterized by fatty acid methyl ester analysis (FAME). The isolates were grouped into 41 clusters on the basis of their FAME profiles, 20 isolates remained ungrouped. The majority (94%) of the isolates comprised the gram-positive bacteria and the main clusters were identified as Bacillus sp., Paenibacillus sp., Micrococcus sp., Arthrobacter sp. and Staphylococcus sp. Other clusters contain nocardioform actinomycetes and gram-negative bacteria, respectively. A cluster of the latter contained extreme halotolerant bacteria isolated in Herberstein. The FAME profiles of this cluster showed a high similarity with Halomonas. PMID:10564789

  20. Modeling of Open-Circuit Voltage of Phenyl-C61-Butyric Acid Methyl Ester-Like Based Bulk-Heterojunction Solar Cells.

    Ferreira, Rodrigo M; Batagin-Neto, Augusto; Lavarda, Francisco C

    2015-12-01

    New materials are currently being sought for use in active layers of bulk-heterojunction organic solar cells, and computational modeling plays an important role in this search. Although open circuit voltage (V(oc)) is one of the fundamental quantities that determine the efficiency of a solar cell, there is no consensus on the best way to estimate this magnitude for new materials from calculations of the electronic structure. In this paper, we compare ways of predicting V(oc) values employing a diverse group of blends and conclude that it is possible to have a good prediction tool for organic solar cells based on phenyl-C61-butyric acid methyl ester (PCBM) acceptor molecules. PMID:26682440

  1. In vitro release control of ketoprofen from pH-sensitive gels consisting of poly(acryloyl- L-proline methyl ester) and saturated fatty acid sodium salts

    Negishi, M.; Hiroki, A.; Miyajima, M.; Yoshida, M.; Asano, M.; Katakai, R.

    1999-06-01

    The effect of saturated fatty acid sodium salts (C n), sodium laurate (C 12), sodium myristate (C 14), sodium palmitate (C 16), and sodium stearate (C 18), on the swelling of poly(acryloyl- L-proline methyl ester) (A-ProOMe) gel was investigated in different pH solutions. The C n-loaded gels collapsed in a buffer solution with pH 3.0, while they expanded in a buffer solution with pH 6.5. This effect was strongly influenced by the number of methylene units in C n, as the threshold for causing this sensitivity existed between C 12 and C 14. On the other hand, a pulsatile release of ketoprofen occurred when the gel was cycled in buffer solutions between pH 3.0 and pH 6.5. This behavior may be attributable to the surface-regulated mechanism.

  2. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C71 butyric acid methyl ester polymer solar cells

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C71 butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport

  3. On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM).

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel; Blumberger, Jochen

    2013-03-21

    Phenyl-C61-butyric acid methyl ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron-transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remain unclear. Here we use density functional theory to calculate electronic-coupling matrix elements, reorganization energies, and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in the order body-centered-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently of the type of dispersion correction used. Our results indicate that the coupled electron-ion dynamics needs to be solved explicitly to obtain a realistic description of charge transfer in this material. PMID:26291369

  4. Experimental (liquid + liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil

    Highlights: • Innovative technique for quantification of compounds involved in the biodiesel production. • Easy and quick determination from NIR combined with multivariate calibration. • Reliable LLE correlation and predictions can be attained from the technique. -- Abstract: This work is aimed at providing an easy and quick determination of the biodiesel products using near infrared spectroscopy (NIR) by combination with the multivariate calibration in the analysis of (liquid + liquid) equilibrium (LLE) data for ternary and quaternary mixtures containing soybean fatty acid methyl (FAME) and ethyl (FAEE) esters, glycerol, ethanol, methanol and water, at various temperatures. The mass balance for the compositions obtained for each phase was carried out so as to demonstrate the reliability of the models generated by the multivariate calibration. Two distinct phases are observed, a glycerol-rich and the other ester-rich, while ethanol is dissolved among the phases hence reducing the partial mutual miscibility between glycerol and ester. Through (liquid + liquid) equilibrium (LLE) results, systems containing FAEE at T = 318.15 K and 303.15 K (calibration using data obtained at temperature of 318.15 K), a good agreement is verified among the values determined using conventional and NIR technique for alcoholic phase (AP) or aqueous phase (WP) and biodiesel phase (BP). Likewise in the systems containing FAME at 318.15 K, 303.15 K and 333.15 K (calibration using data obtained at temperature of 318.15 K), the LLE results were reproduced at the upper and lower temperature to the tests of the reproducibility of the models generated by the multivariate calibration

  5. Technical performance of vegetable oil methyl esters with a high iodine number

    Prankl, H.; Woergetter, M.; Rathbauer, J. [Federal Institute of Agricultural Engineering, Wieselburg (Austria)

    1999-07-01

    The Federal Institute of Agricultural Engineering in Austria has been gaining more experience about the technical performance of biodiesel with a high iodine number. Long-term bench tests evaluated rape seed oil methyl ester, sunflower oil methyl ester and camelina oil methyl ester with an iodine number of 107 to 150. The oil viscosity was observed and the engine parts were inspected after each run. To demonstrate the suitability of a methyl ester with a high iodine number, a fleet of nine vehicles and one stationary engine was tested for one to three engine oil drain intervals. Camelina oil methyl ester, with a content of 37% linolenic acid (C18:3), was used. No unusual deposits were observed after dismantling the engines. (author)

  6. Application of Factorial Design of Experiments for the Continuous Hydrogenation of Enriched Castor Oil Methyl Esters

    Tulasi Sri Venkata Ramana Neeharika; Karna Narayana Prasanna Rani; Kasturi Venkata Sesha Adinarayana Rao; Thella Prathap Kumar; Rachapudi Badari Narayana Prasad

    2013-01-01

    Castor oil methyl esters contains nearly 90% ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid). Hydrogen-ated castor oil methyl esters finds several applications in coating, lubricants formulations and pharmaceu-tical areas. The present study reports a fast, simple, efficient and continuous hydrogenation of enriched castor oil methyl ester (ECME) using 10% Pd/C catalyst at different pressures and temperatures. The range of process conditions for this study varied from 30-60 °C, 5-15 bar wi...

  7. NF EN 14214. - Automotive fuels. - Fatty acid methyl esters (FAME) for diesel engines. - Requirements and test methods; NF EN 14214. - Carburants pour automobiles. - Esters methyliques d'acides gras (EMAG) pour moteurs Diesel. - Exigences et methodes d'essais

    NONE

    2004-04-01

    This standard specifies requirements and test methods for marketed and delivered fatty acid methyl esters (FAME) to be used either as automotive fuel for diesel engines, at 100% concentration, or as an extender for automotive fuel for diesel engines, in accordance with the requirements of EN 590. At 100% concentration it is applicable to fuel for use in diesel engine vehicles designed or subsequently adapted to run on 100% FAME.

  8. NF EN 14110. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the methanol content; NF EN 14110. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en methanol

    NONE

    2003-07-01

    This European standard describes a method of methanol dosimetry in fatty acids methylic esters (FAME) which can be applied to gas-oil and domestic fuel oil. This method is applicable over a large spectrum of methanol concentrations comprised between 0.01% (m/m) and 0.5% (m/m). It is not applicable to FAME mixtures containing low boiling point compounds. (J.S.)

  9. Two-stage continuous process of methyl ester from high free fatty acid mixed crude palm oil using static mixer coupled with high-intensity of ultrasound

    Highlights: • Mixed crude palm oil was used in the two-step continuous process. • Two-step continuous process was performed using static mixer coupled with ultrasound. • The maximum obtained yield was 92.5 vol.% after the purification process. • The residence time less than 20 s was achieved in ultrasonic reactors. - Abstract: The two-stage continuous process of methyl ester from high free fatty acid (FFA) mixed crude palm oil (MCPO) was performed by using static mixer coupled with high-intensity of ultrasound. The 2 × 1000 W ultrasonic homogenizers were operated at 18 kHz frequency in the 2 × 100 mL continuous reactors. For the first-step, acid-catalyzed esterification was employed with 18 vol.% of methanol, 2.7 vol.% of sulfuric acid, 60 °C of temperature, and 20 L h−1 of MCPO flow rate, for reducing the acid value from 28 mg KOH g−1 to less than 2 mg KOH g−1. For the second-step, base-catalyzed transesterification was carried out under 18 vol.% of methanol, 8 g KOH L−1 of oil, and 20 L h−1 of esterified oil flow rate at 30 °C. The high yields of esterified oil and crude biodiesel were attained within the residence time of less than 20 s in the ultrasonic reactors. The yields of each stage process were: 103.3 vol.% of esterified oil, 105.4 vol.% of crude biodiesel, and 92.5 vol.% of biodiesel when compared with 100 vol.% MCPO. The quality of the biodiesel meets the specification of biodiesel standard in Thailand

  10. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  11. Synthesis, crystal structure and local anti-inflammatory activity of the L-phenylalanine methyl ester derivative of dexamethasone-derived cortienic acid

    Dobričić Vladimir

    2015-01-01

    Full Text Available L-phenylalanine methyl ester derivative of dexamethasone - derived cortienic acid (DF was synthesized and its crystal structure was characterized by X-ray diffraction method. The crystal system is orthorhombic with space group P212121 and cell constants a = 8.2969 (3 Å, b = 18.9358 (8 Å, c = 20.0904 (6 Å, V = 3156.4 (2 Å3 and Z = 4. Ring A of the steroid nucleus and phenyl ring in the 17β-side chain are almost planar. Rings B and C have a slightly distorted chair conformation, whereas ring D has an envelope conformation. The packing of DF is characterized by a network of intermolecular hydrogen bonds involving the O4 atom from one side of the steroid nucleus and O1 and F1 atoms from the other side as hydrogen bond acceptors. Apart from the intermolecular hydrogen bonds in the crystal packing, there are also numerous intramolecular hydrogen bonds of the N-H...O, C-H...O and C-H...F type. Local anti-inflammatory activity of DF was evaluated by use of croton oil-induced ear edema test. This derivative achieved maximal inhibition of ear edema at significantly lower concentration in comparison with dexamethasone. [Projekat Ministarstva nauke Republike Srbije, br. 172041, 172014 i 172035

  12. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C61-butyric acid methyl ester and its bis-adduct

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C60-backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM

  13. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.

    Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn

    2011-09-23

    The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. PMID:21851946

  14. Effect of temperature and composition on density, viscosity and thermal conductivity of fatty acid methyl esters from soybean, castor and Jatropha curcas oils

    Highlights: ► Thermophysical properties of soybean, castor and Jatropha curcas oils and related systems. ► Effect of temperature and composition on density, viscosity and thermal conductivity of the systems studied. ► Density, dynamic viscosity and thermal conductivity data were correlated using empirical equations. -- Abstract: This work is focused on experimental determination of density, viscosity and thermal conductivity as a function of temperature and composition for fatty acid methyl esters (FAME) from soybean, castor and Jatropha curcas oils. Results show that an increase in temperature, over the range of (273 to 363) K, resulted in a decrease of all properties studied. FAME from soybean and J. curcas oils presented similar rheological behaviour, while FAME from castor oil presented higher values for density and viscosity. Density, dynamic viscosity and thermal conductivity data for all systems obtained here were correlated using empirical equations with good agreement between experimental and calculated values. Experimental data presented here may be useful as a database for specification purposes and equipment design and plant operation in the biodiesel industry

  15. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  16. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    We fabricate a pentacene/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO2 gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time

  17. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    Babu, K.; N. K. Maurya; Mandal, A.; Saxena, V. K.

    2015-01-01

    AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES) was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited go...

  18. Co-solvents transesterification of cotton seed oil into biodiesel: Effects of reaction conditions on quality of fatty acids methyl esters

    Highlights: • Using co-solvent systems reduce reaction time by 60%. • Only small volume of co-solvent is required to improve the process. • Greater than 90% yields were obtained within the first 10 min. • Physico-chemical and fuel properties of FAMEs were within standard limits. • Acetone was found to be the best co-solvent for the transesterification. - Abstract: Solvent Technology, is gaining the interest of researchers in improving transesterification process recently. Transesterification of cotton seed oil into biodiesel using different mixtures of methanol with Diethyl Ether (DEE), Dichlorobenzene (CBN) or Acetone (ACT) co-solvent systems was conducted. Potassium hydroxide (KOH) was used as the catalyst all through. The reaction conditions optimized include; the molar ratio of co-solvent in methanol, reaction temperature and time. The catalyst concentration was also optimized. The optimization was based on the percentage yields of Fatty Acids Methyl Esters (FAMEs) produced. In addition, the effects of co-solvent systems on physico-chemical properties (Acid value and fatty acids composition) and fuel properties (viscosity, density and calorific value) were investigated as well. The result obtained, indicated 10% (v/v) addition of co-solvents CBN and ACT in methanol was the optimal volume. The optimal reaction temperature was 55 °0C for 10 min when the catalyst concentration of 0.75% (w/w) weight of oil was used. Fuel properties were within the acceptable limit of ASTM and not significantly affected by the co-solvent systems except for the calorific value. It was concluded that the addition of co-solvent reduced the reaction time and improved some fuel properties of the biodiesel produced

  19. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, l-Valines, Polyethylenes, and Oils.

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)HVSMOW-SLAP values from -210.8 to +397.0 mUr or ‰, for δ(13)CVPDB-LSVEC from -40.81 to +0.49 mUr and for δ(15)NAir from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  20. Methyl Esters for Tumor Drug Delivery

    José Portilla-Arias

    2010-01-01

    Full Text Available New copolyesters derived from poly(β,L-malic acid have been designed to serve as nanoconjugate platforms in drug delivery. 25% and 50% methylated derivatives (coPMLA-Me25H75 and coPMLA-Me50H50 with absolute molecular weights of 32 600 Da and 33 100 Da, hydrodynamic diameters of 3.0 nm and 5.2 nm and zeta potential of −15 mV and −8.25 mV, respectively, were found to destabilize membranes of liposomes at pH 5.0 and pH 7.5 at concentrations above 0.05 mg/mL. The copolymers were soluble in PBS (half life of 40 hours and in human plasma (half life of 15 hours but they showed tendency to aggregate at high levels of methylation. Fluorescence-labeled copolymers were internalized into MDA-MB-231 breast cancer cells with increased efficiency for the higher methylated copolymer. Viability of cultured brain and breast cancer cell lines indicated moderate toxicity that increased with methylation. The conclusion of the present work is that partially methylated poly(β,L-malic acid copolyesters are suitable as nanoconjugate platforms for drug delivery.

  1. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were eq) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively

  2. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Hauff, Simone [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany); Vetter, Walter [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany)], E-mail: w-vetter@uni-hohenheim.de

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was {approx}90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC{sub eq}) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese

  3. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface

    El-Ballouli, AlA'A O.

    2014-05-14

    Quantum dot (QD) solar cells have emerged as promising low-cost alternatives to existing photovoltaic technologies. Here, we investigate charge transfer and separation at PbS QDs and phenyl-C61-butyric acid methyl ester (PCBM) interfaces using a combination of femtosecond broadband transient absorption (TA) spectroscopy and steady-state photoluminescence quenching measurements. We analyzed ultrafast electron injection and charge separation at PbS QD/PCBM interfaces for four different QD sizes and as a function of PCBM concentration. The results reveal that the energy band alignment, tuned by the quantum size effect, is the key element for efficient electron injection and charge separation processes. More specifically, the steady-state and time-resolved data demonstrate that only small-sized PbS QDs with a bandgap larger than 1 eV can transfer electrons to PCBM upon light absorption. We show that these trends result from the formation of a type-II interface band alignment, as a consequence of the size distribution of the QDs. Transient absorption data indicate that electron injection from photoexcited PbS QDs to PCBM occurs within our temporal resolution of 120 fs for QDs with bandgaps that achieve type-II alignment, while virtually all signals observed in smaller bandgap QD samples result from large bandgap outliers in the size distribution. Taken together, our results clearly demonstrate that charge transfer rates at QD interfaces can be tuned by several orders of magnitude by engineering the QD size distribution. The work presented here will advance both the design and the understanding of QD interfaces for solar energy conversion. © 2014 American Chemical Society.

  4. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae. PMID:26993642

  5. Combustion characteristics of the mustard methyl esters

    Mustard Methyl Esters (further bio diesel) and regular diesel fuel were tested in direct injection diesel engine. Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with bio diesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. Increase in fuel consumption was attributed to lesser heating value of bio diesel and partially to decreased fuel conversion efficiency. Analysis of combustion characteristics revealed earlier start of injection and shorter ignition delay period of bio diesel. Resulting decrease in maximum rate of heat release and cylinder pressure was the most probable reason for reduced emission of nitrogen oxides. Analysis of combustion characteristics also showed that cetane index determined by ASTM Method D976 is not a proper measure of ignition quality of bio diesel. Conclusion was made on applicability of mustard oil as a source for commercial production of bio diesel in Pakistan. Potentialities of on improving combustion and emissions characteristics of diesel engine by reformulating bio diesel were discussed. (author)

  6. Determination of the antioxidant activity based on the content changes in fatty acid methyl esters in vegetable oils

    Housam Haj Hamdo; Zaid Al-Assaf; Warid Khayata

    2014-01-01

    Free radicals,which are generated in several biochemical reactions in the body,have been implicated as mediators of many diseases,including cancer,atherosclerosis and heart diseases.Although the endogenous antioxidants can scavenge these free radicals,they are often insufficient to maintain the in vivo redox balance.The antioxidant activity (AOA) was examined by addition of each tested antioxidants [alpha-tocopherol (a-T),beta-tocopherol (β-T),gamma-tocopherol (γ-T),delta-tocopherol (δ-T),butylated hydroxyanisole (BHA),2,6-di-tert-butyl-4-methylphenol (BHT),and ascorbyle palmitate (AP)] to four types of different vegetable oils (sunflower oil,soybean oil,corn oil and olive oil).Moreover,content changes in fatty acids were then investigated every 3 months during the storage period.The results showed that the AOA was different among the tested antioxidants.The AOA for BHA was the most for different types of oil compared with other antioxidants,whereas the δ-T possessed the lowest AOA.

  7. NF EN 14106. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the free glycerol content; NF EN 14106. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en glycerol libre

    NONE

    2003-07-01

    This European standard specifies a gas chromatography method of determination of the free glycerol content of fatty acids methylic esters (FAME) for concentrations comprised between 0.005% and 0.070%. The objective of this method is to evaluate the quality of the FAMEs in terms of trans-esterification of their by-products content, such as glycerol, which can change the fuel combustion properties. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  8. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  9. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    Hohl, G.H. [Military Technology Agency, Vienna (Austria)

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  10. 一锅法合成4-甲基-5-咪唑甲酸乙酯工艺%The Preparation of 4-Methyl-5-imidazole-carboxylic Acid Ethyl Ester by One-pot Reaction

    朱驯; 魏运洋

    2012-01-01

    [Aims] The aim is to look for a new preparation method of 4-methyl-5-imidazole-carboxylic acid ethyl ester. [Methods] 4-Methyl-5-imidazole-carboxylic acid ethyl ester with versatility was prepared from 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide by one-pot reaction. [Results] The effect on yield of the mole ratio of materials, reaction temperature, different solvent were discussed by experiments. We could receive the optimal reaction condition, the mole ratio of 3-oxo-butyric acid ethyl ester, sulfuryl chloride and formamide is 1:1:2 (in mol), the reaction temperature is 120 ℃, the solvent is dioxane. And the syntheses yield of 4-methyl-5-imidazole-carboxylic acid ethyl ester is 70% under this condition. [Conclusions] The new route is simple and the raw materials are easily obtained, which is suitable for industrial production.%[目的]寻找一条合成4-甲基-5-咪唑甲酸乙酯的新工艺路线。[方法]以乙酰乙酸乙酯、磺酰氯与甲酰胺为原料,采用一锅法合成一种用途广泛的多功能单体4-甲基-5-咪唑甲酸乙酯。[结果]通过实验,确定了一条合成4-甲基-5-咪唑甲酸乙酯的新工艺:以二氧六环为溶剂,环化时反应温度为120℃,反应时间为4 h,n(乙酰乙酸乙酯)∶n(磺酰氯)∶n(甲酰胺)为1∶1∶2,在该条件下,4-甲基-5-眯唑甲酸乙酯的产率为70%。[结论]该方法路线简单,原料易得,适合工业化生产。

  11. Effect of reaction temperature and time on neem methyl ester yield in a batch reactor

    Highlights: • Fatty acid profile and molecular mass of neem oil were determined. • Main effects of the factors and interaction were successfully quantified and compared. • Six (6) regression models were developed for methyl ester yield using NLREG software. • Results showed that the models can predict the methyl ester yield within 7% of experimental values. - Abstract: Experimental investigation of neem methyl ester yield in a batch reactor at different process conditions of temperature and reaction duration was carried out using a 2-factor, 5-level full factorial experimental design. Reaction temperature was varied between 40 °C and 60 °C, while reaction time was studied in the range of 30–120 min. The study, which was carried out using 1% w/w catalyst amount and alcohol to oil ratio of 6:1, showed that reaction temperature had a highly significant effect (p < 0.01) in comparison with reaction time, which had a significant effect (p < 0.05) on methyl ester yield. Six (6) empirical models were developed for the response variable of methyl ester yield using a non-linear regression analysis method, facilitated by NLREG version 6.3 software. Results showed that the mean predicted ester yield values and mean experimental values were not statistically different at the 95% confidence level, whereas the maximum deviation observed was 6.9%

  12. Effect of temperature stress on protein methyl esters

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with [methyl-3H]methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released [3H]methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress

  13. Preparation and characterization oF Ru-Sn/Al2O3 catalysts for the hydrogenation of fatty acid methyl esters

    Vanina A. Mazzieri

    2010-01-01

    Full Text Available Ru-Sn/Al2O3 catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity.

  14. Preparation and characterization of Ru-Sn/Al{sub 2}O{sub 3} catalysts for the hydrogenation of fatty acid methyl esters

    Mazzieri, Vanina A.; Sad, Mario R.; Vera, Carlos R.; Pieck, Carlos L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe (Argentina). Universidad Nacional del Litoral. Inst. de Investigaciones en Catalisis y Petroquimica; Grau, Ricardo [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Santa Fe (Argentina). Universidad Nacional del Litoral. Inst. de Desarrollo Tecnologico para la Industria Quimica

    2010-07-01

    Ru-Sn/Al{sub 2}O{sub 3} catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity. (author)

  15. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl- L-proline methyl ester)- graft-poly(acrylic acid) for selective permeation of metal ions

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl- L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30°C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  16. Reaction of gallocyanine methyl ester with uranyl ions

    The reaction of gallocyanine methyl ester with uranyl ions was studied spectrophotometrically in slightly acid or neutral solutions of 40% (m/m) ethanol. A violet complex of UO2L2 is formed at pH>5. The conditional stability constants of the complex in the pH range 6-7.4 and the equilibrium constants of the coordination reaction were derived from the concentration curves and the continuous variations curves. The optimum conditions were sought for the spectrophotometric determination of uranium based on the occurrence of the UO2L2 complex. The relative standard deviation obtained for a uranium concentration of 106 μg.l-1 was ssub(r)=2.13%. (author)

  17. Reaction of gallocyanine methyl ester with uranyl ions

    Kotoucek, M.; Hrbkova, M. (Palackeho Univ., Olomouc (Czechoslovakia). Prirodovedecka Fakulta)

    1984-09-01

    The reaction of gallocyanine methyl ester with uranyl ions was studied spectrophotometrically in slightly acid or neutral solutions of 40% (m/m) ethanol. A violet complex of UO/sub 2/L/sub 2/ is formed at pH>5. The conditional stability constants of the complex in the pH range 6-7.4 and the equilibrium constants of the coordination reaction were derived from the concentration curves and the continuous variations curves. The optimum conditions were sought for the spectrophotometric determination of uranium based on the occurrence of the UO/sub 2/L/sub 2/ complex. The relative standard deviation obtained for a uranium concentration of 106 ..mu..g.l/sup -1/ was ssub(r)=2.13%.

  18. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. PMID:27136612

  19. Enhanced power conversion efficiency in bulk heterojunction solar cell based on new polyazomethine with vinylene moieties and [6,6]-phenyl C61 butyric acid methyl ester by adding 10-camphorsulfonic acid

    A polyazomethine (PPV-PAZ-DMB) containing vinylene and aliphatic side chains was synthesized by polycondensation method. The structure of polymer was characterized by means Fourier transform infrared (ATR-FTIR), proton and carbon nuclear magnetic resonance (1H, 13C NMR) spectroscopy and the results show an agreement with the proposed structure. Photovoltaic properties of PPV-PAZ-DMB were studied by constructing bulk heterojunction (BHJ) solar cells with the architecture ITO/PEDOT:PSS/PPV-PAZ-DMB:PCBM/Al, where ITO: indium tin oxide, PEDOT:PSS: poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Photovoltaic parameters were analyzed taking into account amount of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) added to PPV-PAZ-DMB and presence of 10-camphorsulfonic acid (CSA) in active layer. With the weight ratio PPV-PAZ-DMB:PCBM of 1:3 and the presence of CSA, the power conversion efficiency (PCE) of the device reached 0.32% with open circuit voltage Voc = 0.47 V, short circuit current density Jsc = 2.91 mA/cm2 and fill factor (FF) 0.25 under simulated 100 mW/cm2 AM 1.5 G irradiation. It is showed that the PCE of device with CSA was 40 times higher than that of the device without CSA. Devices were additionally tested by electrochemical impedance spectroscopy. An influence of CSA as a dopant on absorption wavelengths, energy gap and HOMO-LUMO levels was investigated

  20. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Lucyna Łękawska-Andrinopoulou; Vasiliou, Efstathios G.; Georgakopoulos, Dimitrios G.; Yialouris, Constantinos P.; Georgiou, Constantinos A.

    2013-01-01

    Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is...

  1. EXPERIMENTAL INVESTIGATION OF LINSEED AND NEEM METHYL ESTERS AS BIODIESEL ON CI ENGINE

    V.DHANA RAJU; P.RAVINDRA KUMAR

    2012-01-01

    An experimental investigations were carried out on C.I.engine with Bio Diesel blends of Linseed Methyl Esters and Neem Oil Methyl Esters .The engine used for the experiments was single cylinder Four Stroke water cooled, constant speed diesel engine . Linseed Methyl ester (LSOME) and Neem oil methyl ester (NOME) are derived through transesterification process and parameters of transesterification were optimized. The blends of various proportions of the LSOME & NOME with diesel were prepared, a...

  2. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  3. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  4. Carboxylic Acid Esters as Substrates of Cholinesterases

    Brestkin, A. P.; Rozengart, E. V.; Abduvakhabov, A. A.; Sadykov, A. A.

    1983-10-01

    Data on the kinetics of the hydrolysis of various carboxylic acid esters by two main types of cholinesterases — acetylcholinesterase from human erythrocytes and butyrylcholinesterase from horse blood serum — are surveyed. It is shown that the rate of enzyme hydrolysis depends significantly on the structure of the acyl part of the ester molecule, the nature of the ester heteroatom, the structure of the alcohol component, and particularly the structure of the onium group. Esters based on natural products are of special interest as specific substrates of these enzymes. The role of the productive and non-productive sorption of the substrates in enzyme catalysis is demonstrated. The bibliography includes 81 references.

  5. Binary diffusion coefficients of L-histidine methyl ester dihydrochloride in aqueous solutions

    Highlights: • Mutual diffusion coefficients of L-histidine methyl ester dihydrochloride in aqueous solutions. • Influence of the thermodynamic and kinetic factors on the variation of the mutual diffusion coefficients. • Estimation of the hydrodynamic radius of L-histidine methyl ester dihydrochloride. - Abstract: The Taylor dispersion technique has been used for measuring mutual diffusion coefficients of L-histidine methyl ester as its dihydrochloride at T = 298.15 K and finite concentrations from (0.001 to 0.100) mol · dm−3. On the basis of experimental mutual diffusion coefficients, the hydrodynamic radii, Rh, the diffusion coefficient at infinite dilution D0 and the dependence of thermodynamic factors, FT, on the concentration, have been estimated using the Onsager–Fuoss equation. Further insight on the diffusion has been obtained from 1H and 13C NMR spectroscopy and DFT calculations, which suggest that the L-histidine methyl ester is present as its dication in acidic solution in a fully extended conformation, with considerable charge delocalization over the imidazolium ring. These experimental and computational results allow us to have a better understanding of the thermodynamic and kinetic behavior of this amino acid derivative in aqueous solutions

  6. Synthesis of Dipeptide Benzoylalanylglycine Methyl Ester and Corrosion Inhibitor Evaluation by Tafel Equation

    Corrosion is one of the major problems in petroleum mining and processing industry. The pipelines used to transport crude oil from reservoir to the processing installation were made from carbon steel that is susceptible towards corrosion. One of the best methods to prevent corrosion that occurred at the inner parts of carbon steel pipelines is to use organic corrosion inhibitor. One of the potent organic corrosion inhibitors is amino acids derivatives. In this study, dipeptide compound namely benzoylalanylglycine methyl ester and benzoylalanylglycine have been synthesized. The structure elucidation of the products was performed by IR, MS and NMR spectroscopy. The determination of corrosion inhibition activity utilized the Tafel method. The corrosion inhibition efficiency of glycine methyl ester, benzoyl alanine, dipeptide benzoylalanylglycine methyl ester and dipeptide benzoylalanylglycine were 63.34 %, 35.86 %, 68.40 % and 27.72 %, respectively. These results showed that the formation of dipeptide benzoylalanylglycine methyl ester, derived from carboxylic protected glycine and amine protected alanine, increased the corrosion inhibition activity due to the loss of acidity center in the structure of glycine and L-alanine that would induce the corrosive environment towards carbon steel. (author)

  7. ZrOCl2·8H2O:An Efifcient and Cheap Catalyst for Esteriifcation of Free Fatty Acids to Methyl Esters

    Cai Jie; Zhang Qiuyun; Huang Congmin; Zhou Kaizhi; Ma Peihua

    2014-01-01

    The esteriifcation of lauric acid with methanol could be efifciently catalyzed by ZrOCl2·8H2O, and this reaction was studied to develop a green method for biodiesel production. The inlfuencing factors, such as amount of catalyst, reac-tion time and molar ratio of acid to methanol, were investigated. The results indicated that the ZrOCl2·8H2O catalyst showed high catalytic activity, and gave a 97.0%methyl laurate conversion rate under the following optimized conditions, viz.:a lauric acid/methanol molar ratio of 1:10, a catalyst dosage of 4%, and a reaction duration of 2 h at methanol relfuxing tem-perature. The catalyst could be easily recovered while its activity could be well retained after three cycles. The ZrOCl2·8H2O catalyst also exhibited excellent catalytic activity for the esteriifcation of different free long-chain fatty acids (including non-edible oils with high acid value) with different short carbon chain alcohols. Therefore, the ZrOCl2·8H2O catalyst has good potential for the synthesis of biodiesel from low-cost feedstocks such as waste vegetable oils and non-edible oils.

  8. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  9. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  10. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  11. 3-溴-4-羟基-5-甲氧基苯甲酸甲酯的合成%Synthesis of 3-bromo-4-hydroxy-5-methoxy-benzoic Acid Methyl Ester

    闫慧丽; 张立新; 张慧芳; 马甲民

    2011-01-01

    以香兰素为主要原料,经溴水溴代得溴代香兰素,再经氧化银氧化制取溴代香兰酸,最后与甲醇发生酯化反应,成功制得3-溴-4-羟基-5-甲氧基苯甲酸甲酯,总收率66.4%.各步反应的生成物提纯后经过1H-NMR、IR进行表征.%3-bromo4-hydroxy-5-methoxy-benzoic acid methyl ester in total yield of 66.4% is synthesized from vanillin via bromation by bromide, oxidation over silver oxide and esterification with methanol.The products from different steps are identified by 1H-NMR and IR.

  12. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    Arti Kumari

    Full Text Available One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5% caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  13. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  14. Acrylic Acid and Esters Will Be Oversupply

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  15. Production and Characterization of Jatropha Oil Methyl Ester

    P. Venkateswara Rao, G. Srinivasa Rao

    2013-04-01

    Full Text Available Biodiesel is emerging as a promising substitute of an alternative fuel and has gained significant attention due to the predicted depletion of conventional fuels availability in near future and environmental pollution concern. Utilization of biodiesel produced from Jatropha oil by transesterification process is one of the most promising options to replace conventional fossil diesel fuel. The physical properties such as density, Kinematic viscosity, flash point, carbon residue, Pour point and Cetane number were found out for diesel, Jatropha oil and Jatropha Oil Methyl Ester (JOME produced in the laboratory. Properties obtained for the Jatropha oil methyl ester are very closely matched with the values of conventional diesel fuel and can be used without any modification in the existing diesel engine.

  16. Identification of rapeseed oil fatty acid esters in transesterification reactions by gas chromatography - mass spectrometry method

    Rapeseed oil transesterification with different alcohols - methyl, ethyl, n-propyl and isopropyl alcohol - has been carried out. Yields of fatty acid alkyl esters obtained from rapeseed oil were determined using the internal standard method. Results of interpretation of the obtained ester mass spectra are reported. The specimen of Latvian rape oil contains: 57.6% of oleic acid, 18.2% of linoleic acid, 8.2% linolenic acid, 3.3% palmitic acid, 2% of stearic acid and less than 1% of arachidic acid. Values of Kovats retention indices of the rapeseed oil fatty acid esters on the capillary columns DB-5 MS and DB-17 MS have been compared. More selective separation of fatty acid alkyl esters has been achieved on the stationary phase with higher content of phenyl groups (DB-17 MS). (authors)

  17. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut...

  18. NF EN 14107. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the phosphorus content by high frequency induced plasma emission spectroscopy (ICP method); NF EN 14107. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en phosphore par spectrometrie d'emission de plasma induit par haute frequence (methode ICP)

    NONE

    2003-07-01

    This European standard specifies a method of phosphorus content dosimetry in fatty acids methylic esters (FAME) using high frequency induced plasma emission spectroscopy and for concentrations comprised between 4 mg/kg and 20 mg/kg. The objective of this method is to evaluate the quality of the FAMEs in terms of trans-esterification of their by-products content, such as phosphorus, which can change the fuel combustion properties. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  19. NF EN 14105. July 2003. Fatty compounds derived products. Fatty acids methylic esters (FAME). Determination of the free- and total-glycerol content and of the mono-, di-, and triglycerides content. Reference method; NF EN 14105. Juillet 2003. Produits derives des corps gras. Esters methyliques d'acides gras (EMAG). Determination de la teneur en glycerols libre et total et en mono-, di- et triglycerides. Methode de reference

    NONE

    2003-07-01

    This European standard specifies a method of determination of the free glycerol and of the residual mono-, di-, and triglycerides content in fatty acids methylic esters (FAME) which will be incorporated in mineral oils. The total glycerol content is then determined from the obtained results. This method is adapted to colza, sunflower and soja oil FAMEs but not to copra or palm oil-based FAMEs because of the risk of peak superimposition. This method involves dangerous compounds, operations and equipments which are not considered in the text of the standard. (J.S.)

  20. Synthesis and hydrolysis resisting capacity of ethoxylated ricinoleic acid methyl esters%蓖麻油酸甲酯乙氧基化物的合成与耐酸耐碱性研究

    张谦; 孙永强; 王万绪; 智丽飞; Martino Di Serio; 刘伟

    2015-01-01

    Ethoxylated ricinoleic acid methyl esters (ECAME - 10)obtained directly from castor oil acid methyl esters by the use of a special homogeneous catalyst. The average ethylene oxide (EO)adduct number of ECAME - 10 was determined by saponification value,gas chromatography (GC)and 1 HNMR. The hydrolysis resisting capacity of ECAME - 10 was investigated under different pH value conditions. The appearance changes of ECAME - 10 solution under different storing time periods was tracked and photographed and surface tension of different stages of the solution at different stages was measured. Results showed that the hydrolysis resisting capacity of ECAME - 10 is rather strong. The hydrolysis rate of ECAME - 10 is below 40% in pH value range of 4 - 9 after eight weeks. Surface tension of solutions can be kept stable after the hydrolysis reaction.%在一定的温度和压力条件下,以及特制的均相催化剂作用下,直接由蓖麻油酸甲酯得到了产物蓖麻油酸甲酯乙氧基化物(ECAME -10)。通过皂化值、气相色谱(GC)和1 HNMR 测定了ECAME -10的平均环氧乙烷(EO)加合数,在不同pH条件下测定了ECAME -10的耐酸耐碱性,并跟踪拍摄了不同pH溶液不同阶段的外观照片,同时测定了不同阶段溶液的表面张力。结果显示:ECAME -10有较强的抗水解能力,当pH =4~9时,ECAME -10的水解较慢,8周后其水解率在40%以下;水解后的表面张力数据表明,水解后溶液的表面张力可保持稳定。

  1. 磺酸功能化离子液体催化不饱和脂肪酸甲酯的环氧化研究%Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Br(o)nsted Acidic Ionic Liquid as Catalyst

    蔡双飞; 王利生

    2011-01-01

    The epoxidation of unsaturated fatty acid methyl esters (FAMEs) by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Br(o)nsted acidic ionic liquid (IL) [C3SO3HMIM][HSO4] as catalyst. The effects of hydrogen peroxide/ethylenic unsaturation ratio, acetic acid concentration, IL concentration, recycling of the IL catalyst, and temperature on the conversion to oxirane were studied. The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied. The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane, and the rate of hydrolysis (oxirane cleavage) were higher by using the IL catalyst.

  2. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. PMID:24583221

  3. Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells.

    So, Yangkang; Lee, Seung Young; Han, Ah-Reum; Kim, Jin-Baek; Jeong, Hye Gwang; Jin, Chang Hyun

    2016-01-01

    In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. PMID:27548124

  4. Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals

    Reshak, A. H.; Kamarudin, H.; Alahmed, Z. A.; Auluck, S.; Chyský, Jan

    2014-06-01

    A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C15H12N4O2S2) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K2 for the local density approximation (Engel-Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C-H…O, C-H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C-H…O interaction while B molecule exhibit C-H…N interaction. We should emphasis that there is π-π interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å).

  5. Synergetic Enhancement of Device Efficiency in Poly(3-hexylthiophene-2,5-diyl/[6,6]-phenyl C61 Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells by Glycerol Addition in the Active Layer

    Bobins Augustine

    2015-01-01

    Full Text Available Poly(3-hexylthiophene-2,5-diyl(P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM is the widely used active layer for the bulk heterojunction solar cells. Annealing is essential for P3HT:PC60BM active layer, since it facilitates the creation of better network for the transfer of the charge carriers. However, the PC60BM in the active layer can crystallize excessively during annealing treatments and disrupt the favorable morphology by forming crystallites in micrometer ranges, thus reducing device efficiency. In this paper we used glycerol as an additive in the active layer. Due to high boiling point of glycerol, it makes slow drying of the active layer possible during the annealing. It thus gives enough time to both electron donor (P3HT and electron acceptor (PC60BM components of the active layer to self-organize and also restrict the crystal overgrowth of PC60BM. Further, the glycerol additive makes the active layer smoother, which may also improve adhesion between the electrode and the active layer. The devices with the pristine active layer showed a power conversion efficiency (PCE of about 2.1% and, with the addition of 30 vol% of glycerol in the active layer, the PCE value increased to 3%.

  6. Evidence for excited state intramolecular charge transfer reaction in donor-acceptor molecule 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester: Experimental and quantum chemical approach

    Intramolecular charge transfer (ICT) reaction has been investigated in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester (DPDAME) using spectroscopic techniques. The molecule DPDAME shows local emission in non-polar solvent and dual emission in polar solvents. Solvatochromic effects on the Stokes shifted emission band clearly demonstrate the charge transfer character of the excited state. Quantum chemical calculations have been performed at Hartree-Fock (HF) and density functional theoretical (DFT) levels to correlate the experimental findings. Potential energy curves (PECs) for the ICT reaction have been evaluated along the donor twist angle at DFT and time dependent density functional theory (TDDFT) levels for the ground and excited states, respectively, using B3LYP hybrid functional and 6-31G** basis set. The solvent effects on the spectral properties have been explored theoretically at the same level with time dependent density functional theory-polarized continuum model (TDDFT-PCM) and the theoretical results are found to well substantiate the solvent polarity dependent Stokes shifted emission of DPDAME. Huge enhancement of dipole moment (Δμ=16.42 D) of the molecule following photoexcitation dictates the highly polar character of the excited state. Although elucidation of PECs does not exactly predict the operation of ICT according to twisted intramolecular charge transfer (TICT) model in DPDAME, lowering of vertical transition energy as a function of the donor twist coordinate scripts the occurrence of red shifted emission as observed experimentally.

  7. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    Knudsen, P; Kofod, Hans; Lernmark, A;

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine O...

  8. Enzymatic synthesis and application of fatty acid ascorbyl esters

    Stojanović Marija M.

    2013-01-01

    Full Text Available Fatty acid ascorbyl esters are liposoluble substances that possess good antioxidative properties. These compounds could be synthesized by using various acyl donors for acylation of vitamin C in reaction catalyzed by chemical means or lipases. Enzymatic process is preferred since it is regioselective, performed under mild reaction conditions, with the obtained product being environmentally friendly. Polar organic solvents, ionic liquids, and supercritical fluids has been successfully used as a reaction medium, since commonly used solvents with high Log P values are inapplicable due to ascorbic acid high polarity. Acylation of vitamin C using fatty acids, their methyl-, ethyl-, and vinyl esters, as well as triglycerides has been performed, whereas application of the activated acyl donors enabled higher molar conversions. In each case, majority of authors reported that using excessive amount of the acyl donor had positive effect on yield of product. Furthermore, several strategies have been employed for shifting the equilibrium towards the product by water content control. These include adjusting the initial water activity by pre-equilibration of reaction mixture, enzyme preparation with water vapor of saturated salt solutions, and the removal of formed water by the addition of molecular sieves or salt hydrate pairs. The aim of this article is to provide a brief overview of the procedures described so far for the lipase-catalyzed synthesis of fatty acid ascorbyl esters with emphasis on the potential application in food, cosmetics, and pharmaceutics. Furthermore, it has been pointed out that the main obstacles for process commercialization are long reaction times, lack of adequate purification methods, and high costs of lipases. Thus, future challenges in this area are testing new catalysts, developing continuous processes for esters production, finding cheaper acyl donors and reaction mediums, as well as identifying standard procedures for

  9. 脂肪酸甲酯磺酸盐中二钠盐来源分析及改进%Source analysis of dio-sodium salt in fatty acid methyl ester sulfonate and amelioration

    蒋惠亮; 王相明

    2012-01-01

    实验考察了脂肪酸甲酯磺酸盐(MES)合成的各工序中α-磺基脂肪酸二钠(二钠盐)的变化量。其中再酯化阶段二钠盐减少最多,中和阶段二钠盐产生最多,这是由于再酯化阶段引入了部分甲醇以及中和阶段的强碱性环境和较高温度引起的。同时提出了各阶段的改进方法。经过优化实验,得到二钠盐含量最低时,各阶段最佳条件为:漂白温度75℃,再酯化时间6 h,甲醇与脂肪酸甲酯磺酸摩尔比30∶1,中和方式为以碳酸钠粉末干法中和。%The content ofdi-sodium salt ( DSS ) in every step of MES's synthesis was measured, the maximal decrease of DSS is in reesterification stage, the maximal increase of DSS is in neutralization stage. It could be resulted from the methanol introduction in reesterification stage, strong alkaline environment and higher temperature in neutralization stage. Meanwhile, improvement is also proposed for every stage in ameliorated method. By optimizing the experiment, the optimal condition for every stage was obtained as, bleaching temperature 75 ℃, reesterification time 6h, the mole ratio of methanol to fatty acid methyl ester sulfonic acid 30 : 1, neutralization pattern, dry neutralization by sodium carbonate powder when the content of di-sodium salt is the lowest.

  10. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  11. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three m...

  12. Use of calcium oxide in palm oil methyl ester production

    Kulchanat Prasertsit

    2014-04-01

    Full Text Available Introducing an untreated calcium oxide (CaO as a solid heterogeneous catalyst for biodiesel production from palm oil by transesterification was studied in this work. The four studied parameters were methanol to oil molar ratio, CaO catalyst concentration, reaction time, and water content. The results for palm oil show that when the water content is higher than 3%wt and the amount of CaO greater than 7%wt soap formation from saponification occurs. A higher methanol to oil molar ratio requires a higher amount of CaO catalyst to provide the higher product purity. The appropriate methanol to CaO catalyst ratio is about 1.56. Commercial grade CaO gives almost the same results as AR grade CaO. In addition, reusing commercial grade CaO for about 5 to 10 repetitions without catalyst regeneration drops the percentage of methyl ester purity approximately 5 to 10%, respectively.

  13. Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics

    There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was trans esterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions. (Author)

  14. Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics

    Puhan, Sukumar; Vedaraman, N.; Ram, Boppana V.B. [Central Leather Research Inst., Chemical Engineering Div., Chennai (India); Sankarnarayanan, G.; Jeychandran, K. [Anna Univ., Dept. of Mechanical Engineering, Chennai (India)

    2005-01-01

    There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was trans esterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions. (Author)

  15. Discrimination of Pulp Oil and Kernel Oil from Pequi (Caryocar brasiliense) by Fatty Acid Methyl Esters Fingerprinting, Using GC-FID and Multivariate Analysis

    Faria-Machado, A.F.; Tres, Alba; Ruth, Van S.M.; Antoniassi, Rosemar; Junqueira, N.T.V.; Lopes, P.S.N.; Bizzo, H.R.

    2015-01-01

    Pequi is an oleaginous fruit whose edible oil is composed mainly by saturated and monounsaturated fatty acids. The biological and nutritional properties of pequi oil are dependent on its composition, which can change according to the oil source (pulp or kernel). There is little data in the scient

  16. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry

    Vrkoslav, Vladimír; Cvačka, Josef

    2012-01-01

    Roč. 1259, 12 Oct (2012), s. 244-250. ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : APCI * double-bond localisation * fatty acids Subject RIV: CC - Organic Chemistry Impact factor: 4.612, year: 2012

  17. Epoxidation of methyl esters derived from Jatropha oil: An optimization study

    Mushtaq, M.; Tan, I. M.; Nadeem, M.; Devi, C.; Lee, S. Y. C.; Sagir, M.; Radhid, U.

    2013-05-01

    The optimization of the epoxidation reaction of methyl esters obtained from Jatropha oil was appraised. Response surface methodology (RSM) based on a central composite rotatable design (CCRD) was employed for the experimental design. Four reaction variables namely hydrogen peroxide/ C=C mole ratio, formic acid/C=C mole ratio, reaction temperature and reaction time were evaluated. The optimum epoxidation conditions calculated by the quadratic model were 3.12 moles of hydrogen peroxide/C=C moles, 0.96 moles of formic acid/C=C moles, a reaction temperature of 70.0 degree centigrade and a reaction time of 277 minutes. A reaction optimized by the proposed process parameters provided a yield of 92.89 {+-} 1.29 wt.% with relatively improved reaction time. Hydrogen peroxide concentration and reaction temperature were found to be the most significant variables while reaction temperature and hydrogen peroxide showed strong interactions. The epoxidized methyl esters were analyzed using FT-IR, 1H NMR and {sup 1}3C NMR techniques. This study suggested relatively higher molar ratio of formic acid required than was proposed in the literature. (Author) 33 refs.

  18. Morphological and spectroscopic characterizations of inkjet-printed poly(3-hexylthiophene-2,5-diyl): Phenyl-C61-butyric acid methyl ester blends for organic solar cell applications

    The most exploited active material for photovoltaic devices is the regioregular poly(3-hexylthiophene) (P3HT), p-type conjugated polymer, blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), n-type material. The deposition methods and the induced morphology strongly influence the functionality of the active material and in turn the final charge generation performances of a photoactive layer. In the present work, we studied the influence of PCBM concentration on the morphological and spectroscopic properties of the inkjet printed P3HT:PCBM blends through atomic force microscopy (AFM), Raman spectroscopy and transient absorption spectroscopy. The aim is to value the charge formation yield in the blends, prepared by inkjet technology, as function of the acceptor concentrations in correlation with morphology and intermixing of the two components. For the inkjet printed samples the blends composition that corresponds to the best intermixing between P3HT and PCBM and the higher charges formation yield should be between 20% and 45% in weight (wt)., differently for what has been found previously for spin-coated samples. Indeed, for inkjet prepared film, the 45 wt.% blend ratio leads to much bigger domains with respect to the spin-coated samples as shown from the AFM measurements. - Highlights: • Inkjet-printed P3HT:PCBM blends for organic solar cell applications • Coarser morphology of inkjet P3HT:PCBM films with respect to the spin-coated film • Inkjet P3HT:PCBM films showed charge formation maximum for PCBM wt.% lower than 45

  19. Purification and Characterization of a New Antifungal Compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic Acid Methyl Ester from Streptomyces hydrogenans Strain DH16.

    Kaur, Talwinder; Kaur, Amarjeet; Sharma, Vishal; Manhas, Rajesh K

    2016-01-01

    In agriculture, biocontrol agents have been emerged as safe alternative to chemical pesticides where Streptomyces spp. and their metabolites constitute a great potential for their exploration as potent agents for controlling various fungal phytopathogens. The present study reports an antifungal compound purified from Streptomyces hydrogenans strain DH16, a soil isolate, using silica gel chromatography and semi preparative HPLC. The compound was characterized using various spectroscopic techniques (IR, (1)H and (13)C NMR) and named 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester (SH2). Compound (SH2) showed significant inhibitory activity against fungal phytopathogens and resulted in severe morphological aberrations in their structure. Minimal inhibitory and minimal fungicidal concentrations of the compound ranged from 6.25 to 25 μg/ml and 25 to 50 μg/ml, respectively. In vivo evaluation of the compound showed strong control efficacy against Alternaria brassicicola, a seed borne pathogen, on radish seeds. In comparison to mancozeb and carbendazim, the compound was more effective in controlling damping off disease. Additionally, it promoted plant growth with increased rate of seed germination, and displayed no phytotoxicity. The compound retained its antifungal activity after its exposure to temperature of 100°C and sunlight for 1 h. Furthermore, the compound (SH2) when tested for its biosafety was found to be non-cytotoxic, and non-mutagenic against Salmonella typhimurium TA98 and TA100 strains. This compound from S. hydrogenans strain DH16 has not been reported earlier, so this new compound can be developed as an ideal safe and superior biofungicide for the control of various fungal plant diseases. PMID:27446043

  20. Synthesis of stearic acid triethanolamine ester over solid acid catalysts

    Tao Geng; Qiu Xiao Li; Ya Jie Jiang; Wei Wang

    2010-01-01

    The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm)is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).

  1. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  2. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeA

  3. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  4. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  5. Production and Optimization of Oleic Acid Ethyl Ester Synthesis Using Lipase From Rice Bran (Oryza sativa L.) and Germinated Jatropha Seeds (Jatropha curcas L.) by Response Surface Methodology

    Indro Prastowo; Chusnul Hidayat; Pramudji Hastuti

    2015-01-01

    Recently, the fatty acid ethyl ester has been synthesized in place of fatty acid methyl ester since ethanol has been more renewable. In this research, oleic acid ethyl ester (OAEE) was synthesized using germinated jatropha seeds (Jatropha curcas.L) and rice bran (Oryza sativa) as source of lipase. The objective of the research was to optimize the synthesis conditions using Response Surface Methodology. Factors, such as crude enzyme concentration, molar ratio of oleic acid to ethanol, and the...

  6. The Effect of Prickly Poppy Methyl Ester Blends on Ci Engine Performance and Emission Characteristics

    P. Lawrence

    2011-01-01

    Full Text Available Problem statement: The aim of this research was to investigate the effect of using Prickly poppy methyl ester as a fuel blend on Diesel engine (CI engine performance and exhaust emission. Approach: Short-term engine performance tests were conducted to evaluate and compare the use of various diesel fuel supplements at blend rations of 60/40, 70/30, 80/20, 90/10, in a standard, fully instrumented, four stroke, Direct Injection (DI, Kirlosker comet Diesel engine located at the authors’ laboratory. The prickly poppy oil with high free fatty acid is not used as edible oil, it can be considered as a potential source of non edible oil for utilization as a feed stock vegetable oil for bio diesel production. The prickly poppy oil was subjected to esterification and transesterification processes and the Prickly Poppy Methyl Ester (PPME obtained was tested as supplement. Results: The test showed that PPME blends with diesel could be conveniently used as a diesel substitute in a diesel engine. The test further showed increase in break thermal efficiency, brake power and reduction of specific fuel consumption for PPME and its blends with diesel generally, but the most significant conclusion from the study is that the 80% Diesel/20% PPME blend produced maximum values of the brake power, brake thermal efficiency and minimum values of the specific fuel consumption and also yielded minimum values of NOx, CO and HC emission. Conclusion: Using Prickly Poppy Methyl Ester (PPME as a bio fuel blend with Diesel shows an improvement in performance and significant reduction in exhaust emission for the generation of cleaner environment.

  7. Experimental Analysis of Performance of Diesel Engine Using Kusum Methyl Ester With Diethyl Ether as Additive

    Sandip S. Jawre,

    2014-05-01

    Full Text Available The fossile fuels are widely used in diesel engine and continually depleting with increasing consumption and prices day by day. The fatty acid methyl ester has become an effective alternative to diesel. Various types of vegetable oil such as Jatropha, karanja, cottonseed, neem, sunflower, palm, mahuva, coconut etc. can be used as fuel in diesel engine. Kusum oil is one of the fuel used in present work. The viscosity of kusum oil is very high, so it was reduced by Transesterification process. This study presents effect of diethyl ether as additive to biodiesel of kusum (schliechera oleosa methyl ester on the performance and emission of diesel engine at different load and constant speed and two different injection pressure (170 and 190 bar. From literature it was observed that very few studies had been conducted on use of neat biodiesel and diethyl ether blends and use of kusum methyl ester (KME in diesel engine found to be very less as compared to different biodiesel. Hence this topic was taken under study. The fuels and its blends used are 100% diesel, B100 (100% KME, BD-1 (95% KME, 5% DEE, BD-2 (90% KME, 10% DEE, BD-3 (85% KME, 15% DEE respectively. It was observed that the performance of engine increases at high injection pres-sure. The results indicate that lower BSFC was observed with BD-3 as compared to B100, BD-1 and BD-2. Brake thermal efficiency of BD-3 decreased at 170 bar injection pressure but it increase at 190 bar. Drastic re-duction in smoke is observed with all blends at higher engine loads. DEE addition to biodiesel reflects better engine performance compared to neat biodiesel.

  8. 40 CFR 721.2950 - Carboxylic acid glycidyl esters.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carboxylic acid glycidyl esters. 721... Substances § 721.2950 Carboxylic acid glycidyl esters. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as carboxylic acid glycidyl...

  9. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues

    A group of 23-29-kDa polypeptides in the membranes of bovine rod outer segments are substrates for S-adenosylmethionine-dependent methylation reactions. The bulk of the methyl group incorporation is in base-labile ester-like linkages, and does not appear to be due to the widespread D-aspartyl/L-isoaspartyl methyltransferase. To determine the site(s) of methylation, 3H-methylated proteins separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate were eluted and digested with papain, leucine aminopeptidase-M, and prolidase. After performic acid oxidation of the digest, a base-labile radioactive material was recovered that coeluted with a synthetic standard of cysteic acid methyl ester upon cation exchange and G-15 gel filtration chromatography, as well as in two thin-layer electrophoresis and two thin-layer chromatography systems. These results provide direct evidence for the methylation of the alpha-carboxyl group of a carboxyl-terminal cysteinyl residue, a modification that has been proposed for the 21-kDa Ha-ras product and other cellular proteins

  10. Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters

    Highlights: • Nozzle flow and spray characteristics of methyl esters have been studied. • A new hybrid spray model was implemented into KIVA4 CFD code. • Nozzle flow simulation shows methyl stearate has less cavitation. • Methyl linoleate atomization is comparable with diesel atomization. • Methyl stearate has poor atomization compared to other methyl esters. - Abstract: In compression ignition engines, the quality of the spray atomization significantly affects the performance and emissions of the engine. The differences in thermo-physical properties of biodiesel have significant effect on both the internal nozzle flow and spray characteristics. In this study, the internal nozzle flow and spray characteristics of three major methyl esters found in various biodiesels, namely methyl oleate, methyl stearate, and methyl linoleate were studied as a representative of different biodiesels. A new hybrid spray model developed by coupling cavitation induced spray model with KHRT model in KIVA4 CFD code was used in this study. The model was validated against diesel spray characteristics obtained from the experiments conducted in house using constant volume spray chamber and good agreement was found. The internal flow simulations shows that methyl stearate cavitates the least followed by methyl oleate and linoleate. The spray simulations shows that spray tip penetration of methyl stearate is higher than other methyl esters and diesel because of its high viscosity and large droplet diameter. Methyl linoleate was found to atomize better than other esters and comparable to diesel. However at high ambient temperature, liquid length is highly dominated by both latent heat of vaporization and viscosity

  11. EXPERIMENTAL INVESTIGATION OF LINSEED AND NEEM METHYL ESTERS AS BIODIESEL ON CI ENGINE

    V.DHANA RAJU

    2012-06-01

    Full Text Available An experimental investigations were carried out on C.I.engine with Bio Diesel blends of Linseed Methyl Esters and Neem Oil Methyl Esters .The engine used for the experiments was single cylinder Four Stroke water cooled, constant speed diesel engine . Linseed Methyl ester (LSOME and Neem oil methyl ester (NOME are derived through transesterification process and parameters of transesterification were optimized. The blends of various proportions of the LSOME & NOME with diesel were prepared, analyzed and compared with diesel fuel,and comparison was made to suggest the better option among the bio diesel. Various Tests have been carried out to examine properties, performance of different blends (B05, B10, B15, and B20 of LSOME and NOME in comparison to diesel. From the experimental Results it is indicated that B20 have closer performance to diesel. However, its diesel blends showed reasonable efficiencies. From the experimental results it is observed that Linseed methyl ester gives better performance compared to Neem methyl esters and also the emissions and smoke for these diesel blends are less as compare to the pure diesel.

  12. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    K. Babu

    2015-09-01

    Full Text Available AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited good surface activity, reducing the surface tension of surfactant solution up to 38.4 mN/m and 27.6 mN/m without and with NaCl, respectively. During the thermal analysis of SMES, a 31.2% mass loss was observed from 70 ˚C to 500 ˚C. The phase behavior of the cosurfactant/SMES-oil-water system plays a key role in interpreting the performance of enhanced oil recovery by microemulsion techniques. Flooding experiments were performed using a 0.5 pore volume of synthesized SMES solutions at three different concentrations. In each case chase water was used to maintain the pressure gradient. The additional recoveries in surfactant flooding were found to be 24.53%, 26.04% and 27.31% for 0.5, 0.6 and 0.7 mass% of surfactant solutions, respectively.

  13. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  14. Hepatotoxicity, Nephrotoxicity and Oxidative Stress in Rat Testis Following Exposure to Haloxyfop-p-methyl Ester, an Aryloxyphenoxypropionate Herbicide

    Ebenezer Tunde Olayinka; Ayokanmi Ore

    2015-01-01

    Haloxyfop-p-methyl ester (HPME) ((R)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid), is a selective aryloxyphenoxypropionate (AOPP) herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170–210 g) were randomized into four groups (I–IV). Group I (control) received 1 mL of distilled water, whil...

  15. 15th International Sunflower Conference Synthesis of new derivatives from vegetable sunflower oil methyl esters via epoxydation and oxirane opening

    Pages Xavier

    2001-03-01

    Full Text Available Recently, epoxides have received increased attention because they are of interest both as end-products and as chemical intermediates; epoxidized oils, mainly High Oleic Sunflower Oil, and their ester derivatives have thus found important applications as plasticizers and additives for polyvinyl chloride (PVC. Epoxidized esters have been produced classically from High Oleic Sunflower Methyl Esters (HOSME using H2O2 and formic acid. The epoxidation reaches 90% on pilot scale (5kg. Epoxidized esters produced from HOSME have respectively hydroxyl values of 0, oxirane values of 5.2/4.5 and iodine values of 1.7/1.5. Cleavage trials of the oxirane group of the epoxidized esters with different reactants have been undertaken in order to produce on pilot scale new derivatives to be characterized and tested in different fields of application (lubrication, detergency and as chemical intermediates. Reaction of Epoxy-HOSME with an excess of oleic acid was conducted under atmospheric pressure without any catalyst and solvent. The oxirane opening leads to complete estolide formation: after neutralization, analytical controls (chemical values, GC and HPLC analysis indicate that the estolides are composed of a mixture of C36 (oleate of methyl hydroxystearate and C54 (di-oleate of methyl dihydroxystearate. Oxirane opening with alcohols (ethanol and octanol was preferentially performed by acid catalysis at 100°C under atmospheric pressure. Analytical controls show the formation of different etheralcohols and secondary products resulting from dehydration, transesterification and dimerization side-reactions. Cleavage reaction of Epoxy-HOSME with a primary amine (butylamine was conducted under pressure, at high temperature (180/200°C. Both transesterification and opening of the oxirane group occur under these conditions. Reaction products are composed of amides formed by transesterification and a mixture of fatty amines/imines obtained by ring opening as established

  16. Synthesis of (2R,3aR,8aR)-6-Chloro-3a-hydroxy-1,2,3,3a,8,8a- hexahydropyrrolo[2,3-b]indole-2-carboxylic Acid Methyl Ester by Reductive Cyclization

    HONG,Wen-Xu(洪文旭); YAO,Zhu-Jun(姚祝军)

    2004-01-01

    A synthesis of(2R,3aR,8aR)-6-chloro-3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid methyl ester(1)was achieved.An aldol reaction with Garner aldehyde,a hydroxyl introduction by Davis reagent,and a reductive intramolecular ring-closure reaction were served as the key steps.This piece of work provides a new way to synthesize the analogues of hexahydropyrrolo[2,3-b]indole,starting from readily available chemical substrates and inexpensive reagents.

  17. A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters

    A lumped kinetic model of methyl butanoate pyrolysis and oxidation is presented and discussed in this work. The hierarchical approach first required the development and validation of sub-mechanisms of small esters such as methyl formate, methyl acrylate and methyl crotonate. A broad-ranging validation of the whole kinetic scheme of methyl butanoate oxidation was then carried out through comparisons with experimental data obtained in shock tube devices, plug flow and jet stirred reactors, rapid compression machines and premixed laminar flames. A detailed analysis of laminar flame speeds complements and extends this kinetic study. The lumped model predicts a wide range of experiments well, thus constituting a flexible and reliable kinetic scheme despite the reduced number of species involved. Moreover, this lumped approach and the proposed model lay the foundation for an extension to biodiesel fuel modeling.

  18. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    D. Subramaniam, A. Murugesan, A. Avinashy

    2013-01-01

    Full Text Available In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME, neem oil methyl esters (NOME, and Waste Cooking Oil Methyl Esters (WCOME were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel a reduction in performance, combustion, and emission characteristics were clear from the study.

  19. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  20. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil

    Ramadhas, A.; Muraleedharan, C.; Jayaraj, S. [National Institute of Technology, Calicut (India). Dept. of Mechanical Engineering

    2005-10-01

    Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel. (author)

  1. Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester

    N.W.M. Zulkifli

    2014-06-01

    Full Text Available Many studies have been undertaken with a view to using chemically modified vegetable oil as a bio-based lubricant. This research focused on tribological properties of trimethylolpropane (TMP ester, which is derived from renewable resource. This TMP ester was produced from jatropha methyl ester; it is biodegradable and has high lubricity properties. Two different conditions of lubrication are being investigated: extreme pressure and anti-wear. It was found that the TMP ester (Jatropha has better lubricity in terms of wear and friction compared to paraffin oil under extreme pressure conditions. TMP ester (Jatropha has similar characteristics to fully formulated lubricant (FFL, in terms of the coefficient of friction (CoF. In terms of the anti-wear condition, TMP ester (Jatropha has the lowest CoF; however it also has the high wear scar diameter. This is due to corrosion and chemical attack.

  2. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3.

    Li, Ye; Wang, Wenjing; Xu, Xiaoxue; Sun, Shiyue; Xu, Xiaoyu; Qu, Xian-jun

    2015-01-01

    {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) is a novel indole compound, which possessed high efficacy against many cancers xenografted in mice without obvious toxicity. In this study, we aimed to investigate the effects of MIAM on human hepatocellular carcinoma (HCC) Bel-7402 cells and its resistant variants Bel-7402/5FU. MIAM inhibited the growth of HCC more potent in Bel-7402/5FU cells than its parent cells. MIAM increased cellular reactive oxygen species (ROS) levels, induced cell apoptosis, and arrested cell cycle in G0/G1 phase. MIAM might exert its action on Bel-7402/5FU cells through activation of NADPH oxidase 4 (NOX4)/p22(phox), Sirtuin3 (SIRT3)/SOD2, and SIRT3/p53/p21(Waf1/Cip) pathways. MIAM might inhibit HCC growth through the modulation of SIRT3. When SIRT3 was silenced, the inhibitory effect of MIAM on Bel-7402/5FU was lowered, showing the characteristic of resistance against MIAM, whereas Bel-7402/5FU cells with high expression of SIRT3 by SIRT3 adenovirus infection demonstrated the high sensitivity to MIAM. These results suggested that MIAM might exert its action against Bel-7402/5FU growth through upregulation of SIRT3. We suggested that MIAM might be a promising candidate compound which could develop as a potent anticancer agent targeting NOX4 and SIRT3 activation. PMID:25961022

  3. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3

    Ye Li

    2015-01-01

    Full Text Available {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM is a novel indole compound, which possessed high efficacy against many cancers xenografted in mice without obvious toxicity. In this study, we aimed to investigate the effects of MIAM on human hepatocellular carcinoma (HCC Bel-7402 cells and its resistant variants Bel-7402/5FU. MIAM inhibited the growth of HCC more potent in Bel-7402/5FU cells than its parent cells. MIAM increased cellular reactive oxygen species (ROS levels, induced cell apoptosis, and arrested cell cycle in G0/G1 phase. MIAM might exert its action on Bel-7402/5FU cells through activation of NADPH oxidase 4 (NOX4/p22, Sirtuin3 (SIRT3/SOD2, and SIRT3/p53/p21 pathways. MIAM might inhibit HCC growth through the modulation of SIRT3. When SIRT3 was silenced, the inhibitory effect of MIAM on Bel-7402/5FU was lowered, showing the characteristic of resistance against MIAM, whereas Bel-7402/5FU cells with high expression of SIRT3 by SIRT3 adenovirus infection demonstrated the high sensitivity to MIAM. These results suggested that MIAM might exert its action against Bel-7402/5FU growth through upregulation of SIRT3. We suggested that MIAM might be a promising candidate compound which could develop as a potent anticancer agent targeting NOX4 and SIRT3 activation.

  4. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  5. Process optimization for methyl ester production from waste cooking oil using activated carbon supported potassium fluoride

    Hameed, B.H.; Goh, C.S.; Chin, L.H. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-12-15

    This paper presents the transesterification of waste cooking palm oil (WCO) using activated carbon supported potassium fluoride catalyst. A central composite rotatable design was used to optimize the effect of molar ratio of methanol to oil, reaction period, catalyst loading and reaction temperature on the transesterification process. The reactor was pressurized up to 10 bar using nitrogen gas. All the variables were found to affect significantly the methyl ester yield where the most effective factors being the amount of catalyst and reaction temperature, followed by methanol to oil ratio. A quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis using response surface methodology (RSM). The optimum condition for transesterification of WCO to methyl ester was obtained at 3 wt.% amount of catalyst, 175 C temperature, 8.85 methanol to oil molar ratio and 1 h reaction time. At the optimum condition, the predicted methyl ester yield was 83.00 wt.%. The experimental value was well within the estimated value of the model. The catalyst showed good performance with a high yield of methyl ester and the separation of the catalyst from the liquid mixture is easy. (author)

  6. Stimulation of 125I-3-iodo-α-methyl-L-tyrosine uptake in Chinese hamster ovary (CHO-K1) cells by tyrosine esters

    Introduction: Transport of the amino acid analog 123I-3-iodo-α-methyl-L-tyrosine, which is used in clinical SPECT imaging, occurs mainly via L-type amino acid transporter type 1 (LAT1; an amino acid exchanger). As LAT1 is highly expressed in actively proliferating tumors, we made a preliminary investigation of the effects of amino acid esters on enhancement of 125I-3-iodo-α-methyl-L-tyrosine (IMT) uptake via LAT1 in Chinese hamster ovary (CHO-K1) cells. Methods: Because the sequence of the CHO-K1 LAT1 gene is not available, we confirmed LAT1 expression through IMT (18.5 kBq) uptake mechanisms using specific inhibitors. L-Gly, L-Ser, L-Leu, L-Phe, L-Met, L-Tyr, D-Tyr, L-Val and L-Lys ethyl/methyl esters were tested in combination with IMT. Time-course studies over a 3-h period were conducted, and the concentration dependence of L-Tyr ethyl and methyl esters (0.001 to 10 mM) in combination with IMT was also examined. For a proof of de-esterification of L- and D-Tyr ethyl and methyl esters in the cells (by enzymatic attack or other cause), the concentration of L- and D-Tyr was analyzed by high-performance liquid chromatography of the esters in phosphate buffer (pH 7.4) and cell homogenates at 37 deg. C or under ice-cold conditions. Results: Inhibition tests suggested that LAT1 is involved in IMT uptake by CHO-K1 cells. Co-administration of 1 mM of L-Tyr ethyl or methyl ester with IMT produced the greatest enhancement. The de-esterification reaction was stereo selective and temperature dependent in the homogenate. De-esterification kinetics were very fast in the homogenate and very slow in the phosphate buffer. Conclusions: The L-Tyr ethyl or methyl esters were the most effective enhancers of IMT uptake into CHO-K1 cells and acted by trans-stimulation of the amino acid exchange function of LAT1. This result suggests that de-esterification in the cells may be caused by enzymatic attack. We will use IMT and L-Tyr ethyl or methyl esters to examine LAT1 function in tumor

  7. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  8. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  9. Possibilities of the use of camelina and mustard methyl esters and their mixtures with diesel as a fuel for compression ignition engines

    Marta Ambrosewicz-Walacik

    2015-03-01

    Full Text Available The aim of the study was to evaluate the use of camelina and mustard methyl esters and their mixtures with diesel (in 95:5 and 80:20 proportion as fuels for compression ignition engines. Esters prepared with acid-base transesterification process methyl were characterized in terms of the lipid composition, kinematic viscosity at 40°C, density at 15°C, acid value, particulate matter content, sulphur content, flash point, cold filter plugging point and oxidative stability at 110°C. It has been shown that the majority of the analysed methyl esters discriminates, with the exception of the particulate matter content, meet the requirements of PN-EN 14214 (2012. In case of methyl ester and ON mixtures it has been found that the 5% addition of esters slightly contributed to the changes in physic-chemical properties, compared to diesel fuel, while 20% addition resulted in an increase of value of the tested discriminates. In general, it has been also found that the only discriminates disqualifying the usage of those samples as fuels for diesel engines was too high particulate matter content.

  10. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  11. The CGC enantiomer separation of 2-arylcarboxylic acid esters by using β-cyclodextrin derivatives as chiral stationary phases.

    Shi, Xueyan; Liu, Feipeng; Mao, Jianyou

    2016-03-17

    Chiral 2-arylcarboxylic acid esters are important intermediates in preparation of enantioenriched 2-arylpropionic acids type Non-steroidal anti-inflammatory drugs (NSAIDs). Enantiomer separation of 2-arylcarboxylic acid esters is crucial for evaluation of the asymmetric synthesis efficiency and the enantiomer excess of chiral 2-arylcarboxylic acid derivatives. The capillary gas chromatography (CGC) enantiomer separation of 17 pairs of 2-arylcarboxylic acid esters enantiomers was conducted by using seven different β-cyclodextrin derivatives (CDs) as chiral stationary phases. It was found that for the 7 pairs of 2-phenylpropionates enantiomers, CDs with both alkyl and acyl substituents especially 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin exhibited better enantiomer separation abilities than the other CDs examined. For the 7 pairs of 2-(4-substituted phenyl)propionates enantiomers, 2,3,6-tri-O-methyl-β-cyclodextrin possessed better enantiomer separation abilities than the other CDs. Among the 3 pairs of 2-phenylbutyrates enantiomers examined, only methyl 2-phenylbutyrate enantiomers could be separated by three CDs among the 7 CDs tested, while enantiomers of ethyl 2-phenylbutyrate and isopropyl 2-phenylbutyrate couldn't be separated by any of the 7 CDs tested. Besides the structures of CDs, the structures of 2-arylcarboxylic acid esters including different ester moieties, substituents of phenyl, and different carboxylic acids moieties in 2-arylcarboxylic acid esters also affected the enantiomer separation results greatly. The CGC enantiomer separation results of 2-arylcarboxylic acid esters on different CDs are useful for solving the enantiomer separation problem of 2-arylcarboxylic acid esters. PMID:26920785

  12. Theoretical study of cocaine and ecgonine methyl ester in gas phase and in aqueous solution

    Rincón, David A.; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.; Borges, Fernanda

    2009-01-01

    The conformational preferences of cocaine and ecgonine methyl ester were determined through ab initio and density functional theory calculations. They share the same preferred orientation of the acetate group with a hydrogen bond between the amine and carbonyl groups, and s- cis conformation for the methoxyl group. The benzoyloxy group of cocaine defines a specific accessible conformational region. In solution the most stable conformers are stabilized by internal hydrogen bonds in contrast to the lesser stables, which are stabilized by solute/solvent interactions. Overall, these conformational features explain why ecgonine methyl ester is the principal metabolite of cocaine in a human environment.

  13. Oxidation stability of biofuel containing Camelina sativa oil methyl esters and its impact on energy and environmental indicators of diesel engine

    Highlights: ► We present the results of the engine tests when fueling with biodiesel containing Camelina sativa methyl esters. ► We examine dependence of the engine and environmental characteristics on storage of biodiesel fuel. ► Characteristics of fuel with C. sativa methyl esters after storage are presented. - Abstract: This report includes assessments of comparative studies on the physical, chemical, and motor properties of stored biofuels produced from Camelina sativa oil. The properties of biofuel containing C. sativa oil methyl esters (CMEs) were compared with the properties of fossil diesel fuel and standardized rapeseed oil methyl ester (RME) and fossil diesel fuel blends. To ensure compliance with the requirements for fatty acid methyl esters established by the EN 14214 standard, pure CMEs were blended with methyl esters of animal origin, the content of which accounted for 32% of the blend. Motor studies were carried out in the VALMET 320 DMG diesel engine while using fuel blends consisting of 30% of a mixture of C. sativa oil and pork lard methyl esters and 70% fossil diesel fuel. Environmental and energy indicators were compared with indicators related to RME and fossil diesel fuel. In the course of the experiments, it was established that when no anti-oxidant was used, the C. sativa oil and pork lard methyl ester mixtures met the requirements of the oxidation standard only during the first month of storage, whereas the physical properties did not change considerably during the whole storage period. Due to the properties of fuels containing C. sativa oil methyl esters, they can be used in cold climate areas in summertime. As a result of performing measurements of emissions of hazardous components, it was observed that throughout the storage period, the maximum reduction of CO reached 7–10%, whereas the decrease in HC was – 5–8% and that of NOx was approximately 4%. The most significant effect was detected in the case of smoke intensity

  14. 蓖麻籽脂质提取与甲酯化衍生优化及其脂肪酸组成分析%Optimization of Castor Bean Lipid Extraction and Methyl Ester Derivation and Analysis of Fatty Acid Composition

    楼乔明; 杨文鸽; 徐大伦; 金淼; 吴东晓; 郑贤孟

    2012-01-01

    The effects on lipid extraction and methyl ester derivation of castor seeds were studied using different methods, and the fatty acid composition was also analyzed in this paper. The results indicated that significant differenees existed in the effects of different methods on the lipid extraction and methyl ester derivation(P <0. 05). The method of dichlormethane - methanol was effective in lipid extraction and the extraction level was 58. 25% , which had the great advantages of low toxicity, good solubility and complete extraction of lipids. Acid - alkali combined method had virtues of entire derivatization and less side effects, which could better reflect the fatty acid composition of castor seeds, and was a ideal method for the derivatization of castor seeds lipid. Meanwhile, castor oil mainly consisted of ricinoleic acid (76.43%~86. 50% ), linolic acid (4. 88%~6.27% ) and oleic acid (2.70%~4. 18%) , and also contained small amounts of palmitic acid, stearic acid, linolenic acid and dodecenoic acid.%采用不同方法对蓖麻籽的脂质提取和甲酯化衍生效果进行研究,并对其脂肪酸组成进行分析.结果表明:不同方法对蓖麻籽的脂质提取和衍生化效果存在显著差异(P<0.05);二氯甲烷-甲醇法的脂质提取率为58.25%,且具有低毒、溶解性强和提取完全的优点,是蓖麻籽脂质提取的有效方法;酸碱结合法具有衍生完全且副反应少等优点,能更好地反映蓖麻籽脂肪酸的真实组成,是蓖麻籽脂质甲酯化衍生的理想方法.同时蓖麻籽脂肪酸以蓖麻油酸(76.43%~86.50%)、亚油酸(4.88%~6.27%)和油酸(2.70%~4.18%)为主,并含有少量的棕榈酸、硬脂酸以及亚麻酸和二十碳烯酸.

  15. Stereoselective semi-hydrogenation and deuteration of a diacetylenic precursor of leukotriene B4 methyl ester

    [6,7,14,15-2H4]-Leukotriene B4 methyl ester was prepared by reduction with deuterium gas of a suitable precursor (deuterium incorporation > 90%). Several catalytic semi-hydrogenations were affected in order to determine the best conditions for the labeling step. (author)

  16. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten;

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing an...

  17. Conversion of Oleum papaveris seminis oil into methyl esters via esterification process: Optimization and kinetic study

    A.M. Syam; Rashid, U.; Yunus, R.; Hamid, H.A.; Al-Resayes, S. I.; Nehdi, I. A.; Al-Muhtaseb, A. H.

    2016-01-01

    This paper presents an acid pre-treatment process and a kinetic study for the esterification reaction of Oleum papaveris seminis oil with methanol in the presence of amberlite 120 as a solid catalyst to convert the oil into methyl esters. Response surface methodology (RSM) was applied to optimize the reaction parameters, i.e. reaction time, percentage of the catalyst and volume ratio of methanol to oil. The results revealed that 0.87% w/w of catalyst concentration and 44.70% v/v of methanol t...

  18. Extraction, Methylation and Quantification of Fatty Acids in Fast Food Items and Its Health Implications

    Ayesha Wasti; Uzaira Rafique

    2013-01-01

    The research is designed to study the relationship of intake of fatty acids through fast food items, consumption trends and related health issues. Fried food products most commonly consumed at restaurants were selected. Food outlets of both branded and non-branded vendors were included in the study for comparison. Total fat content, Fatty acids and Fatty Acid Methyl Esters (FAME’s) in food samples were determined experimentally using titrimetric and spectrophotometric methods. Fatty acids of...

  19. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    Adewuyi Adewale

    2011-12-01

    Full Text Available Abstract Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP. The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition.

  20. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  1. Rheological behavior, chemical and physical characterization of soybean and cottonseed methyl esters submitted to thermal oxidation process

    Silva, Adriano Sant' ana; Silva, Flavio Luiz Honorato da; Lima, Ezenildo Emanuel de; Carvalho, Maria Wilma N.C. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencia e Tecnologia; Dantas, Hemeval Jales; Farias, Paulo de Almeida [Universidade Federal de Campina Grande (CTRN/UFCG), PB (Brazil). Centro de Tecnologia e Recursos Naturais

    2008-07-01

    In this study the effect of antioxidant terc-butylhydroxyanisol (BHA) on the oxidative stability of soybean and cottonseed methyl esters subjected to thermal degradation at 100 deg C was studied. Soybean and cottonseed methyl esters specific mass, dynamic viscosity and rheological behavior were evaluated. According to results, antioxidant degraded samples specific mass and dynamic viscosity did not showed alterations, remaining statistically equal. Soybean and cottonseed methyl esters showed a Newtonian rheological behavior and degraded samples without adding BHA showed rheological behavior alterations. (author)

  2. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    Guan, Weiye; Michael, Alicia K.; McIntosh, Melissa L.; Koren-Selfridge, Liza; Scott, John P.; Clark, Timothy B.

    2014-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling re...

  3. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  4. Stable isotope determination of ester and ether methyl moieties in plant methoxyl groups.

    Greule, Markus; Keppler, Frank

    2011-12-01

    Plant methoxyl groups of lignin and pectin have both distinct stable hydrogen isotope (δ(2)H) and carbon isotope (δ(13)C) values that can be used for studying environmental processes and for investigating the origin and authenticity of biomaterials. Up to now, the reported methods have been applied only to determine isotope values of the bulk plant methoxyl pool. In this work, we have applied several methods to distinguish between stable isotope ratios of methoxyl groups of pectin and the bulk plant methoxyl pool. Our results demonstrate that by applying alkaline hydrolysis to specifically cleave off the ester methyl moiety (pectin-like), we can distinguish δ(2)H and δ(13)C values of the pectin methoxyl pool from the bulk methoxyl pool. No measureable isotope discrimination was observed either during sample preparation or during analytical measurement. Furthermore, using this method, no major isotope difference in either the hydrogen or carbon isotope signature of the methoxyl groups of plant pectin and bulk matter from plant species such as leaves from trees, apples, carrots and potatoes was noted. We show the methanol released during alkaline hydrolysis of plant material and subsequently treated with hydriodic acid to be an excellent procedure to measure specifically and precisely the δ(13)C and δ(2)H isotope values of plant pectin-like methoxyl groups. This method is particularly advantageous when plant matter with a low methoxyl content has to be analysed. PMID:22004278

  5. Solvent-free Synthesis of Long Chain Aliphatic Acid Methyl Esters in Br(o)nsted Acidic Ionic Liquids at Room Temperature%在Br(o)nsted酸性功能化离子液体中室温无溶剂合成长链脂肪酸甲酯

    李心忠; 林棋

    2009-01-01

    SO_3H-functionalized Br(o)nsted acidic ionic liquid:1-(4-sulfonic benzyl)-3-methyl-imidazolium hydrogen sulfate was synthesized and characterized.The synthesis of these ionic liquids by using N-methylimidazole,benzyl chloride,sulphuric acid,chlorosulfonic acid as the starting material via quaternarization,ion-exchange,and sulfonation reaction,their structures were confirmed by IR and 1HNMR.It was investigated that these ionic liquids could act as reaction media and the catalyst for the Fischer esterification of the long chain aliphatic acids with methanol.The optimum reaction conditions were:n(acids):n(methol):n(ionic liquids)=1:1:0.1,reaction temperature 25 ℃,reaction time 3~4.5 h,the isolated yields 84%~98%.This approach has advantages such as:it can be carried out smoothly at room temperature under solvent-free conditions,without heating and separating water,esters can be separated easily and high yields.The ionic liquid could be recovered easily and recycled three times without any significant loss in catalytic activity.%该文以N-甲基咪唑、苄基氯、硫酸、氯磺酸为原料,经季铵化、离子交换、磺化3步反应合成了磺酸型Br(o)nsted 酸性离子液体:1-(4-磺酸基苄基)-3-甲基-咪唑硫酸氢根盐,通过FTIR、1HNMR对其结构进行了确证.以其作为反应介质与催化剂,考察了C4~C16的直链脂肪酸与甲醇的Fischer酯化反应,确定了最佳反应条件:n(酸):n(醇):n(离子液体)=1:1:0.1,反应温度25 ℃、反应时间3~4.5 h,产率84%~98%,产物气相色谱纯度≥96%.该法无需加热、分水,产物分离简便,离子液体经真空除水后可重复使用,循环使用3次,催化活性保持不变.

  6. Performance evaluation of a diesel engine fueled with methyl ester of pongamia oil

    A. Haiter Lenin, K. Thyagarajan

    2012-01-01

    Full Text Available In this study pongamia methyl ester was prepared by transesterification using potassium hydroxide (KOH as catalyst and was used as fuel in a four stroke, water cooled, single cylinder, direct injection diesel engine. Pongamia methyl ester fuel blends (75% and 100% were used for conducting the engine performance tests at varying loads (20%, 40%, 60%, 80%, and 100%. Tests were carried out over entire range of engine operation at varying conditions of load. The performance, combustion and emission characteristics were determined. Based on these, the parameters such as brake thermal efficiency, specific fuel consumption, exhaust gas temperature, emissions in exhaust such as CO, CO2, O2, HC and NOx were recorded. The results show that the blend of pongamia oil with diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification.

  7. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  8. τ-regioselective addition of (-)-Nα -tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate

    López-Larrubia, Pilar; García-Amo, María; Mayoral, Elena P.; Robert J. Gillies; Cerdán, Sebastián; Ballesteros, Paloma

    2004-01-01

    Addition of (-)-Nα-tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate regioselectively yielded diethyl 2-[4-(2-methoxycarbonyl-2-tert-butoxycarbonylaminoethyl) imidazol-1-yl] succinate as a 1:1 mixture of diastereomers. These compounds were identified by NMR using (Eu(fod)3 as a stereospecific shift reagent, but were impossible to separate and characterise independently. Neutral hydrolysis of the mixture yielded the corresponding deprotected diastereomeric N τ-(2-ethoxycarbonyl-...

  9. The Pharmacological Activities of the Metabolites of N-[(Trimethylamineboryl)-Carbonyl]-L-Phenylalanine Methyl Ester

    Miller, M. C.III; Sood, A.; Spielvogel, B. F.; Shrewsbury, R. P.; Hall, I. H.

    1996-01-01

    The metabolites of N-[(trimethylamineboryl)-carbonyl]-L-phenylalanine methyl ester 1 proved to be active in a number of pharmacological screens where the parent had previously demonstrated potent activity. The proposed metabolites demonstrated significant activity as cytotoxic, hypolipidemic, and anti-inflammatory agents. In cytotoxicity screens several of the proposed metabolites afforded better activity than the parent compound against the growth of suspended and solid tumor cell lines. Eva...

  10. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Y.Ashok Kumar Reddy; B. V. Appa Rao

    2014-01-01

    Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME) are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the dir...