WorldWideScience

Sample records for acid lung injury

  1. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    Chih-Cheng Lai

    2014-08-01

    Full Text Available Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI in patients with acute respiratory distress syndrome (ARDS. Here, we examined potential benefits of glutamine (GLN on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV of 15 mL/kg and zero positive end-expiratory pressure (PEEP or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology, neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory.

  2. Increased isoprostane levels in oleic acid-induced lung injury

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  3. Suspected Transfusion Related Acute Lung Injury Improving following Administration of Tranexamic Acid: A Case Report

    Stan Ryniak; Piotr Harbut; Anders Östlund; Andrzej Mysiak; Jan G. Jakobsson

    2014-01-01

    A 16-year-old woman with craniofacial injury developed severe acute respiratory failure under the primary reconstructive surgical procedure requiring several units of blood and plasma. A transfusion related acute lung injury (TRALI) was suspected and supportive treatment was initiated. Because of the severity of symptoms, acute extracorporeal membrane oxygenation (ECMO) was planned. During preparation for ECMO, a single intravenous dose, 1 g of tranexamic acid, was administered and a remarkab...

  4. Retinoic acid attenuates the mild hyperoxic lung injury in newborn mice

    Zimová-Herknerová, M.; Mysliveček, J.; Potměšil, Petr

    2008-01-01

    Roč. 57, č. 1 (2008), s. 33-40. ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50390512 Keywords : Retionic acid * Hyperoxia * Lung injury Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.653, year: 2008

  5. Effect of hypertonic saline treatment on the inflammatory response after hydrochloric acid-induced lung injury in pigs

    Carla Augusto Holms

    2015-08-01

    Full Text Available OBJECTIVES:Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid.METHODS:Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg; acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis.RESULTS:Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α, interleukin (IL-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups

  6. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    Wang, Chaoyun [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Huang, Qingxian [Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000 (China); Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Bai, Xianyong, E-mail: xybai2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  7. Effects of low potassium dextran glucose solution on oleic acid-induced acute lung injury in juvenile piglets

    LING Feng; LIU Ying-long; LIU Ai-jun; WANG Dong; WANG Qiang

    2011-01-01

    Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.

  8. The impact of sodium aescinate on acute lung injury induced by oleic acid in rats.

    Wei, Tian; Tong, Wang; Wen-ping, Sun; Xiao-hui, Deng; Qiang, Xue; Tian-shui, Li; Zhi-fang, Chen; Hong-fang, Jin; Li, Ni; Bin, Zhao; Jun-bao, Du; Bao-ming, Ge

    2011-12-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high rates of morbidity and mortality. Currently, several surfactant or anti-inflammatory drugs are under test as treatments for ALI. Sodium aescinate (SA) has been shown to exert anti-inflammatory and antiedematous effects. In the present work, the authors explored the effects of SA and the possible mechanisms of SA action in rats with ALI induced by oleic acid (OA) administration. Eight groups of rats received infusions of normal saline (NS) or OA. Rats exposed to OA were pretreated with 1 mg/kg of SA, or posttreated with SA at low (1 mg/kg), medium (2 mg/kg), or high (6 mg/kg) dose; a positive-control group received methylprednisolone. The pressure of oxygen in arterial blood (P(O(2))) levels, the pulmonary wet/dry weight (W/D) ratios, and indices of quantitative assessment (IQA) of histological lung injury were obtained 2 or 6 hours after OA injection (0.1 mL/kg, intravenously). The levels of superoxide dismutase (SOD), malondialdehyde (MDA), matrix metalloproteinase gelatinase B (MMP-9), and tissue inhibitor of metalloproteinase (TIMP-1) in both plasma and lung tissue were also determined. Both pre- and posttreatment with SA improved OA-induced pulmonary injury, increased P(O(2)) and SOD values, lowered IQA scores, and decreased the lung W/D ratio and MDA and MMP-9 levels in plasma and lung tissue. SA appeared to abrogate OA-induced ALI by modulating the levels of SOD, MDA, and MMP-9 in plasma and lung tissue. PMID:22087513

  9. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    Kuiper Jan

    2011-12-01

    Full Text Available Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV with either a low tidal volume (Vt of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis. Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of

  10. Effect of partial liquid ventilation on lung function in oleic acid-induced lung injury model of piglets

    ZHANG Ji-zhuo; LI Ling-ke; ZHANG Yan-bo; LI Gang; XU Yu-lin; ZHU Yao-bin

    2013-01-01

    Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Partial liquid ventilation (PLV) has been developed as an alternative ventilatory strategy for treating severe lung injury.The aim of this study is to investigate the effect of PLV on lung function in immature piglets.Methods Acute lung injury was induced in 12 Chinese immature piglets by oleic acid (OA).The animals were randomly assigned to two groups (n=6 each group):(1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Mean arterial blood pressure (MAP),mean pulmonary arterial pressure (MPAP),central venous pressure (CVP),left atrial pressure (LAP),systemic vascular resistance (SVR),pulmonary vascular resistance (PVR),cardiac output (CO),mean pressure of airway (Paw),dynamic lung compliance (Cydn),and arterial blood gases were measured during the observation period.Results No piglet died in either group with severe lung injury.After four hours of ventilation,pH in the MV group gradually decreased to lower than 7.20,while in the PLV group,pH also gradually decreased but remained higher than 7.20 (P <0.05).Partial pressure of oxygen in artery (PaO2) decreased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Partial pressure of carbon dioxide in artery (PaCO2) increased in both groups,but with a significant difference between the PLV group and MV group (P <0.05).Paw increased in both groups,but was not significantly different (P >0.05).Cydn decreased in both groups,but without a significant difference (P >0.05).At four hours,heart rate (HR) and MAP in both groups decreased.MPAP in both groups increased,and there was a significant difference between the two groups (P <0.05).CVP was stable in both groups.At four hours,PVR and LAP were increased in both groups.CO was decreased in both groups (P <0.05).SVR was stable during the observation time.Conclusion PLV did not

  11. Increased cardiac index due to terbutaline treatment aggravates capillary-alveolar macromolecular leakage in oleic acid lung injury in dogs

    Briot, Raphael; Bayat, Sam; Anglade, Daniel; Martiel, Jean-Louis; Grimbert, Francis

    2009-01-01

    Introduction We assessed the in vivo effects of terbutaline, a beta2-agonist assumed to reduce microvascular permeability in acute lung injury. Methods We used a recently developed broncho-alveolar lavage (BAL) technique to repeatedly measure (every 15 min. for 4 hours) the time-course of capillary-alveolar leakage of a macromolecule (fluorescein-labeled dextran) in 19 oleic acid (OA) lung injured dogs. BAL was performed in a closed lung sampling site, using a bronchoscope fitted with an infl...

  12. Acute Lung Injury Is Reduced in fat-1 Mice Endogenously Synthesizing n-3 Fatty Acids

    Mayer, Konstantin; Kiessling, Almuth; Ott, Juliane; Schaefer, Martina Barbara; Hecker, Matthias; Henneke, Ingrid; Schulz, Richard; Günther, Andreas; Wang, Jingdong; Wu, Lijun; Roth, Joachim; Seeger, Werner; Kang, Jing X.

    2009-01-01

    Rationale: Acute lung injury (ALI) remains an important cause of mortality in intensive care units. Inflammation is controlled by cytokines and eicosanoids derived from the n-6 fatty acid (FA) arachidonic acid (AA). The n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and mediators derived from EPA and DHA possess reduced inflammatory potency. Objectives: To determine whether the ability of fat-1 mice to endogenously convert n-6 to n-3 FA, and thus generate an increased ratio of n-3 to n-6 FA, impacts experimental ALI. Methods: We investigated ALI induced by intratracheal instillation of endotoxin in fat-1 and wild-type (WT) mice, assessing leukocyte numbers, protein concentration, and prostaglandin and cytokine levels in bronchoalveolar lavage fluid, as well as free FA in plasma, and lung ventilator compliance. Body temperature and motor activity of mice—markers of sickness behavior—were also recorded. Measurements and Main Results: In ALI, fat-1 mice exhibited significantly reduced leukocyte invasion, protein leakage, and macrophage inflammatory protein-2 and thromboxane B2 levels in lavage fluid compared with WT mice. Free AA levels were increased in the plasma of WT mice in response to endotoxin, whereas EPA and DHA were increased in the fat-1 group. Ventilator compliance was significantly improved in fat-1 mice. Body temperature and motor activity were decreased in ALI. fat-1 Mice recovered body temperature and motor activity faster. Conclusions: fat-1 Mice exhibited reduced features of ALI and sickness behavior. Increasing the availability of n-3 FA may thus be beneficial in critically ill patients with ALI. PMID:19136374

  13. Changes in liquid clearance of alveolar epithelium after oleic acid-induced acute lung injury in rats

    陶军; 杨天德; 陈祥瑞; 黄河

    2004-01-01

    Objective:Impaired active fluid transport of alveolar epithelium may involve in the pathogenesis and resolution of alveolar edema. Thc objective of this study was to explore the changes in alveolar epithelial liquid clearance during lung edema following acute lung injury induced by oleic acid. Methods:Forty-eight Wistar rats were randomly divided into six groups, I.e. , injured, amiloride, ouabain, amiloride plus ouabain and terbutaline groups. Twenty- four hours after the induction of acute lung injury by intravenous oleic acid (0.25 ml/kg), 5% albumin solution with 1.5 μCi 125Ⅰ-labeled albumin (5 ml/kg) was delivered into both lungs via trachea. Alveolar liquid clearance (ALC), extravascular lung water ( EVLW ) content and arterial blood gases were measured one hour thereafter.Results: At 24 h after the infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia, with EVLW increased by 47.9% and ALC decreased by 49.2%. Addition of either 2 × 10-3 M amiloride or 5 × 10-4 M ouabain to the instillation further reduced ALC and increased EVLW. ALC increased by approximately 63.7% and EVLW decreased by 46.9% with improved hypoxemia in the Terbutaline (10-4 M) group, compared those in injured rats. A significant negative correlation was found between the increment of EVLW and the reduction of ALC. Onclusions:Active fluid transport of alveolar epithelium might play a role in the pathogenesis of lung edema in acute lung injury.

  14. Effect of high dose steroids on oleic acid-induced lung injury in rabbits: CT findings

    Lee, Hwa Yeon; Yoo, Seung Min [Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2006-02-15

    The purpose of this study is to evaluate the therapeutic efficacy, on the basis of CT findings, of high dose methyl prednisolone for treating acute lung injury that was induced by oleic acid injection. A total of 30 healthy rabbits (1.8-2.2 kg) were included in this study. Group I included 10 rabbits in which 0.2 mL oleic acid was injected through their ear veins. Group IIa included 10 rabbits in which 30 mg/kg methyl prednisolone and 0.2 mL oleic acid were intravenously injected at the same time. Group IIb included 5 rabbits in which 30 mg/kg methyl prednisolone was injected 6 hours prior to the 0.2 mL oleic acid intravenous injection. The other 5 rabbits (Group III) were injected intravenously with 30 mg/kg methyl prednisolone without the oleic acid. After that, 30 mg/kg methyl prednisolone per every 12 hours was injected in the non-sacrificed rabbits of Group II and Group III. Nonenhanced Chest CT scans were performed prior to the 30 minutes, 4 hours, 24 hours, 48 hours, and 72 hours after the intravenous injection of oleic acid or methyl prednisolone. We randomly sacrificed one rabbit of groups I, II and III 30 minutes, 4 hours, 24 hours, 48 hours and 72 hours after CT scanning. The distribution, extent, and pattern of the lesions on the CT scan were analyzed. The analyzed pattern of the lesions was ground glass attenuation, consolidation and interstitial thickening. Pathologic correlation was then done. The main CT findings of Group I were peripheral, wedge shaped, ill-defined ground glass attenuations and /or consolidations. The pathologic findings of Group I were interstitial or intraalveolar edema, intraalveolar hemorrhage and coagulation necrosis. Diffuse ground glass opacities with interstitial thickening were noted in 20% (n=2/10) of Group I and in 60% (n=9/15) of Group II at the 30 minute CT; however, there was no statistical difference between the two groups ({rho} = 0.09). Consolidations with air bronchogram were noted in 22.2% (2/9) of Group I and in

  15. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    Kuiper Jan; Plötz Frans B; Groeneveld AB Johan; Haitsma Jack J; Jothy Serge; Vaschetto Rosanna; Zhang Haibo; Slutsky Arthur S

    2011-01-01

    Abstract Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 ...

  16. Preventive Effects of Dexmedetomidine on the Liver in a Rat Model of Acid-Induced Acute Lung Injury

    Velat Şen

    2014-01-01

    Full Text Available The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300–350 g were allocated randomly to four groups. In group 1, normal saline (NS was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI was found to be associated with increased malondialdehyde (MDA, total oxidant activity (TOA, oxidative stress index (OSI, and decreased total antioxidant capacity (TAC. Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P<0.05. The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  17. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI. PMID:25165710

  18. Effect of Retinoic Acid on Lung Injury in Hyperoxia-Exposed Newborn Rats

    常立文; 容志惠; 张谦慎; 钱莉玲

    2003-01-01

    To investigate whether treatment with retinoic acid (RA) could improve level of lung alveolarization and influence lung collagen in newborn rats exposed to hyperoxia, newborn SpragueDawley rats aged 2 days were randomly assigned to 8 groups: (1) air, (2) O2, (3) air+NS, (4)O2 +NS, (5) air+dex, (6) O2+dex, (7) air+RA and (8) O2+RA. Group 2, 4 6 and 8 were kept in chambers containing 85 % oxygen, the values were checked 3 times a day. The other 4 groups were exposed to room air. Level of alveolarization and lung collagen were analyzed at age of 14 or 21 days through radial alveolar counts, alveolar airspace measurements, type Ⅰ , Ⅲ collagen immunohistochemical methods (SP method) and image processing system. Transforming growth factor-β receptors and procollagen mRNA accumulation were examined at age of 14 days through immunohistochemical methods and in situ hybridization. Our results showed that radial alveolar counts were increased and distal airspace was enlarged in group 8. Type I collagen was markedly increased, and transforming growth factor-β receptors and procollagen mRNA were decreased by retinoic acid in bronchial epithelial cells, alveolar epithelial cells and alveolar intersitium. It is concluded that retinoic acid can partially reverse lung development arrest during exposure to hyperoxia by increasing lung collagen.

  19. Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets

    LIU Ai-jun; LING Feng; LI Zhi-qiang; LI Xiao-feng; LIU Ying-long; DU Jie; HAN Ling

    2013-01-01

    Background Animal models that demonstrate changes of renal function in response to acute lung injury (ALl) and mechanical ventilation (MV) are few.The present study was performed to examine the effect of ALl induced by oleic acid (OA) in combination with conventional MV strategy on renal function in piglets.Methods Twelve Chinese mini-piglets were randomly divided into two groups:the OA group (n=6),animals were ventilated with a conventional MV strategy of 12 ml/kg and suffered an ALl induced by administration of OA,and the control group (n=6),animals were ventilated with a protective MV strategy of 6 ml/kg and received the same amount of sterile saline.Results Six hours after OA injection a severe lung injury and a mild-moderate degree of renal histopathological injury were seen,while no apparent histological abnormalities were observed in the control group.Although we observed an increase in the plasma concentrations of creatinine and urea after ALl,there was no significant difference compared with the control group.Plasma concentrations of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C increased (5.6±1.3) and (7.4±1.5) times in the OA group compared to baseline values,and were significantly higher than the values in the control group.OA injection in combination with conventional MV strategy resulted in a dramatic aggravation of hemodynamic and blood gas exchange parameters,while these parameters remained stable during the experiment in the control group.The plasma expression of TNF-α and IL-6 in the OA group were significantly higher than that in the control group.Compared with high expression in the lung and renal tissue in the OA group,TNF-α and IL-6 were too low to be detected in the lung and renal tissue in the control group.Conclusions OA injection in combination with conventional MV strategy not only resulted in a severe lung injury but also an apparent renal injury.The potential mechanisms involved a cytokine response of TNF-α and

  20. Brain injury requires lung protection

    Lopez-Aguilar, Josefina; Blanch, Lluis

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is on...

  1. Partial liquid ventilation decreases tissue and serum tumor necrosis factor-α concentrations in acute lung injury model of immature piglet induced by oleic acid

    ZHU Yao-bin; FAN Xiang-ming; LI Xiao-feng; LI Zhi-qiang; WANG Qiang; SUN Li-zhong; LIU Ying-long

    2012-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury in children often results in high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study was designed to examine the hypothesis that PLV would attenuate the production of local and systemic tumor necrosis factor (TNF)-α in an immature piglet model of acute lung injury induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced acute lung injury by OA.The animals were randomly assigned to two groups of six animals,(1) conventional mechanical ventilation (MV) group and (2) PLV with 10 ml/kg FC-77 group.Results Compared with MV group,the PLV group had better cardiopulmonary variables (P <0.05).These variables included heart rate,mean blood pressure,blood pH,partial pressure of arterial oxygen (PaO2),PaO2/inspired O2 fraction (FiO2) and partial pressure of arterial carbon dioxide (PaCO2).PLV reduced TNF-α levels both in plasma and tissue compared with MV group (P <0.05).Conclusion PLV provides protective effects against TNF-a response in OA-induced acute lung injury in immature piglets.

  2. Protective effect of raloxifene on lipopolysaccharide and acid- induced acute lung injury in rats

    Guang-ju ZHOU; Hong ZHANG; Sheng-de ZHI; Guo-ping JIANG; Jing WANG; Mao ZHANGI; Jian-xin GAN; Shao-wen XU; Guan-yu JIANG

    2007-01-01

    Aim: To evaluate the protective effect of oral raloxifene on acute lung injury.Methods: Thirty adult, male Sprague-Dawley rats each weighing 180-210 g were used and divided into 3 groups: the raloxifene-lipopolysacchadde (LPS)-HC1 group(n=10), the LPS-raloxifene-HCl group (n=10), and the placebo group (n=10). All the rats were injected intraperitoneally (ip) with 5 mg/kg LPS, and raloxifene (30mg/kg) was orally administered 1 h before and 14 h after LPS injection into the raloxifene-LPS-HCl and the LPS-raloxifene-HCl groups, respectively; the placebo group received nothing. Sixteen hours after LPS injection, all the animals were anesthetized and the femoral artery was cannulated. All the rats received a direct intratracheal (IT) injection ofHCl (pH 1.2; 0.5 mL/kg). The mean arterial pressure(MAP) and blood gas concentrations were measured. Fifteen rats (5 in each group, respectively) underwent a micro positron emission to mography (microPET)scan of the thorax 4 h after HC1 instillation. The wet/dry (W/D) weight ratio determination and histopathological examination were also performed. Results:The rats in the LPS-raloxifene-HC1 group had a lower [18F]fluorodeoxyglucose uptake compared with the rats in the placebo group (4.67±1.33 vs 9.01±1.58,respectively, P<0.01). The rats in the LPS-raloxifene-HC1 group also had a lower histological lung injury score (8.20±1.23 vs 12.6±0.97, respectively, P<0.01) and W/D weight ratio (5.335±0.198 vs 5.886±0.257, respectively, P<0.01) compared to the placebo group. The rats in this group also showed better pulmonary gas exchange and more stable mean arterial pressure (MAP) compared to the placebo group. Conclusion: Raloxifene provides a significant protective effect on acute lung injury in rats induced first by LPS ip injection and then by HC1 IT instillation.

  3. Atrial natriuretic peptide attenuates inflammatory responses on oleic acid-induced acute lung injury model in rats

    ZHU Yao-bin; ZHANG Yan-bo; LIU Dong-hai; LI Xiao-feng; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui

    2013-01-01

    Background An inflammatory response leading to organ dysfunction and failure continues to be a major problem after injury in many clinical conditions such as sepsis,severe burns,and trauma.It is increasingly recognized that atrial natriuretic peptide (ANP) possesses a broad range of biological activities,including effects on endothelial function and inflammation.A recent study has revealed that ANP exerts anti-inflammatory effects.In this study we tested the effects of human ANP (hANP) on lung injury in a model of oleic acid (OA)-induced acute lung injury (ALl) in rats.Methods Rats were randomly assigned to three groups (n=6 in each group).Rats in the control group received a 0.9% solution of NaCl (1 ml.kg1.h-1) by continuous intravenous infusion,after 30 minutes a 0.9% solution of NaCl (1 ml/kg) was injected intravenously,and then the 0.9% NaCl infusion was restarted.Rats in the ALl group received a 0.9% NaCl solution (1 ml·kg-1·h-1) intravenous infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the 0.9% NaCl infusion was restarted.Rats in the hANP-treated ALI group received a hANP (0.1μg·kg-1·min-1) infusion,after 30 minutes OA was injected intravenously (0.1 ml/kg),and then the hANP infusion was restarted.The anti-inflammation effects of hANP were evaluated by histological examination and determination of serum cytokine levels.Results Serum intedeukin (IL)-1β,IL-6,IL-10 and tumor necrosis factor (TNF) α were increased in the ALI group at six hours.The levels of all factors were significantly lower in the hANP treated rats (P <0.005).Similarly,levels of IL-1β,IL-6,IL-10 and TNF-α were higher in the lung tissue in the ALI group at six hours.hANP treatment significantly reduced the levels of these factors in the lungs (P <0.005).Histological examination revealed marked reduction in interstitial congestion,edema,and inflammation.Conclusion hANP can attenuate inflammation in an OA-induced lung injury in rat model.

  4. Lung Injury in Acute Pancreatitis

    Raffaele Pezzilli; Lara Bellacosa; Cristina Felicani

    2009-01-01

    Most knowledge has been accumulated on the mechanisms involved in the development of distant organ injuries during the course of severe acute pancreatitis. Among the various distant organ dysfunctions, both the development of acute lung injury and acute respiratory distress syndrome represent serious complications. In the following paragraphs the pathophysiological mechanisms capable of determining lung injury during the course of acute pancreatitis will be reviewed. Pancreatic Enzymes and...

  5. A novel and stable "two-hit" acute lung injury model induced by oleic acid in piglets

    Lv Xiaodong

    2009-03-01

    Full Text Available Abstract Background Children are susceptible to pulmonary injury, and acute lung injury (ALI often results in a high mortality and financial cost in pediatric patients. Evidence has showed that oleic acid (OA plays an important role in ALI. Therefore, it has special significance to study ALI in pediatric patients by using OA-induced animal models. Unfortunately, the animal model hs a high mortality due to hemodynamic instability. The aim of this study was to establish a novel hemodynamically stable OA-induced ALI model in piglets with two hits. Methods 18 Chinese mini-piglets were randomized into three groups: group C (received saline-ethanol solution, group T (received OA-ethanol solution in routine administration manner and group H (received OA-ethanol solution in two-hit manner. Hemodynamic and pulmonary function data were measured. Histopathological assessments were performed. Results Two piglets in group T died of radical decline of systemic blood pressure. Group T showed more drastic hemodynamic changes than group H especially during the period of 5 to 30 minutes after OA administration. Both Group T and group H all produced severe lung injury, while group C had no significant pathologic changes. OA-induced hypotension might be caused by pulmonary hypertension rather than comprised left ventricular function. Conclusion OA leads to severe pulmonary hypertension which results in hemodynamic fluctuation in OA-induced ALI model. It is the first report on hemodynamic stable ALI animal model in piglets using two-hit method. The two-hit ALI animal model fulfils the ALI criteria and has the following characteristics: hemodynamic stability, stable damage to gas exchange and comparability with pediatric patients in body weight and corresponding age. The two-hit ALI animal model can be used to study the basic mechanism and the therapeutic strategies for pediatric ALI.

  6. The Protective Effect of Alpha-Lipoic Acid in Lipopolysaccharide-Induced Acute Lung Injury Is Mediated by Heme Oxygenase-1

    Yu-Chieh Lin; Yuan-Shu Lai; Tz-Chong Chou

    2013-01-01

    Alpha-lipoic acid (ALA), occurring naturally in human food, is known to possess antioxidative and anti-inflammatory activities. Induction of heme oxygenase-1 (HO-1) has been reported to exhibit a therapeutic effect in several inflammatory diseases. The aim of study was to test the hypothesis that the protection of ALA against lipopolysaccharide-(LPS-) induced acute lung injury (ALI) is mediated by HO-1. Pre- or posttreatment with ALA significantly inhibited LPS-induced histological alteration...

  7. Protective effect of low potassium dextran solution on acute kidney injury following acute lung injury induced by oleic acid in piglets

    WU Rui-ping; LIANG Xiu-bin; GUO Hui; ZHOU Xiao-shuang; ZHAO Li; WANG Chen; LI Rong-shan

    2012-01-01

    Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALI).However,LPD solution for treating acute kidney injury secondary to ALI has not been reported.The present study was performed to examine the renoprotective effect of LPD solution in ALI induced by oleic acid (OA) in piglets.Methods Twelve animals that suffered an ALI induced by administration of OA into the right atrium were divided into two groups:the placebo group (n=6) pretreated with normal saline and the LPD group (n=6),pretreated with LPD solution.LPD solution was injected intravenously at a dose of 12.5 ml/kg via the auricular vein 1 hour before OA injection.Results All animals survived the experiments with mild histopathological injury to the kidney.There were no significant differences in mean arterial pressure (MAP),creatinin and renal damage scores between the two groups.Compared with the placebo group,the LPD group had better gas exchange parameters at most of the observation points ((347.0±12.6)mmHg vs.(284.3±11.3) mmHg at 6 hours after ALI,P<0.01).After 6 hours of treatment with OA,the plasma concentrations of NGAL and interleukin (IL)-6 in both groups increased dramatically compared to baseline ((6.0±0.6) and (2.50±0.08) folds in placebo group; and (2.5±0.5) and (1.40±0.05) folds in LPD group),but the change of both parameters in the LPD group was significantly lower (P <0.01) than in the placebo group.And 6 hours after ALl the kidney tissue concentration of IL-6 in the LPD group ((165.7 ± 22.5) pg.ml-1.g-1 protein) was significantly lower (P <0.01) than that in placebo group ((67.2± 25.3) pg.ml-1.g-1 protein).Conclusion These findings suggest that pretreatment with LPD solution via systemic administration might attenuate acute kidney injury and the cytokine response of IL-6 in the ALl piglet model induced by OA injection.

  8. Taurine modulation of hypochlorous acid-induced lung epithelial cell injury in vitro. Role of anion transport.

    Cantin, A M

    1994-01-01

    Airway secretions of cystic fibrosis patients were found to contain high concentrations of taurine, which decreased with antibiotic therapy during acute respiratory exacerbations. Taurine, in a 1:1 molar ratio with HOCl/OCl-, caused a 10-fold increase in the amount of HOCl/OCl- needed to induce cytotoxicity to the cat lung epithelial cell line, AKD. Although DMSO protected cells against HOCl/OCl(-)-mediated injury, the presence of an equimolar concentration of taurine with HOCl/OCl- prevented...

  9. Biomarkers in Acute Lung Injury

    Bhargava, Maneesh; Wendt, Chris

    2012-01-01

    Acute Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) result in high permeability pulmonary edema causing hypoxic respiratory failure with high morbidity and mortality. As the population ages, the incidence of ALI is expected to rise. Over the last decade, several studies have identified biomarkers in plasma and bronchoalveolar lavage fluid providing important insights into the mechanisms involved in the pathophysiology of ALI. Several biomarkers have been validated in subjec...

  10. Transfusion related acute lung injury

    Sharma Ratti; Bhattacharya Prasun; Thakral Beenu; Saluja Karan; Marwaha Neelam

    2009-01-01

    Transfusion related acute lung injury (TRALI) is an uncommon but potentially fatal adverse reaction to transfusion of plasma containing blood components. We describe a case of 10-year-old male child with aplastic anemia, platelet count of 7800/΅l, B positive blood group who developed fever (39.2΀C), difficulty in breathing and cyanosis within 2 hrs after transfusion of a random platelet concentrate. Despite the best resuscitative efforts, the child died within next 24 hrs. The prese...

  11. Cell kinetics and acute lung injury

    In order to estimate whether acute lung injury is followed by a stereotype pattern of cell proliferation in the lungs, mice were treated with three cytostatic drugs: cyclophosphamide, busulfan, or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). The alveolar labeling index was measured following drug administration with a pulse of 3H-labeled thymidine and autoradiography. In cyclophosphamide treated animals, peak alveolar cell proliferation was seen 5 days after injection of the drug. In animals treated with busulfan or BCNU, proliferation was even more delayed (occurring 2 to 3 wks after administration). In contrast, with oleic acid, the highest alveolar cell labeling was found 2 days after intravenous administration. In animals exposed to a cytostatic drug, proliferation of type II alveolar cells was never a prominent feature; whereas, in animals treated with oleic acid there was an initial burst of type II cell proliferation. It was concluded that the patterns of pulmonary repair vary between chemical designed to interfere with DNA replication as compared to agents which produce acute lung damage such as oleic acid

  12. Rabbit lung injury induced by explosive decompression

    2000-01-01

    Objective: To study the mechanism of rabbit lunginjury caused by explosive decompression. Methods: A total of 42 rabbits and 10 rats were served as the experimental animals. A slow recompressiondecompression test and an explosive decompression test were applied to the animals, respectively. And the effects of the given tests on the animals were discussed. Results: The slow recompression-decompression did not cause an obvious lung injury, but the explosive decompression did cause lung injuries in different degrees. The greater the decompression range was, the shorter the decompression duration was, and the heavier the lung injuries were. Conclusions: Explosive decompression can cause a similar lung injury as shock wave does. The primary mechanical causes of the lung injury might be a tensile strain or stress in the alveolar wall and the pulmonary surface's impacts on the inside wall of the chest.

  13. Vascular injury in lung disease

    Inhaled particulates which stimulate a 'delayed', cellular mode of alveolar clearance are excreted to the airways through lymphoid foci in the bronchial bifurcations. The anatomic relations and developing pathology of the tissues adjacent to these foci, including the divisions of accompanying arteries, were studied by serial sectioning and photomicrographic modelling of rat lungs. The changes are typical of classic 'delayed' inflammatory reactions and, in the rat, the fully developed stage is characterised by fibrinoid necrosis involving all three layers of the arterial wall in a linear lesion across the leading edge of the flow divider. An hypothesis was developed to relate the injury to pulsatile forces. Recent published findings indicate that similarly placed lesions, with species-specific changes in development, are universal in both cerebral and extra-cranial arterial forks of man and animals. Possible associations of the microvascular changes with human atherosclerosis and their further significance in pulmonary and systemic effects arising from industrial and environmental contaminants are explored. (author)

  14. Disseminated tuberculosis presenting as acute lung injury

    Mary Grace

    2014-01-01

    Full Text Available Tuberculosis presenting as acute lung injury is distinctly uncommon, even in India where tuberculosis an endemic disease. Simultaneously, acute lung injury is a highly fatal complication of tuberculosis. A high index of suspicion is needed to diagnose tuberculosis in such cases. Failure to initiate early treatment can have disastrous consequences as exemplified in this case report. This case attempts to highlight the need to consider tuberculosis as one of the likely causative factors for acute lung injury and the importance of starting empirical antituberculous therapy in suspected cases early.

  15. Lung injury in patients following thoracotomy

    1995-01-01

    BACKGROUND--Postoperative lung injury is a recognised complication of thoracotomy for which there are few data regarding incidence and outcome. METHODS--In a case controlled study the notes of all adult patients who developed acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) following thoracotomy between 1991 and 1994 were examined and classified according to the guidelines of the American Thoracic Society/European Respiratory Society for ALI/ARDS. The predictive value of ...

  16. Disseminated tuberculosis presenting as acute lung injury

    Mary Grace; V K Shameer; Renjith Bharathan; Kavitha Chandrikakumari

    2014-01-01

    Tuberculosis presenting as acute lung injury is distinctly uncommon, even in India where tuberculosis an endemic disease. Simultaneously, acute lung injury is a highly fatal complication of tuberculosis. A high index of suspicion is needed to diagnose tuberculosis in such cases. Failure to initiate early treatment can have disastrous consequences as exemplified in this case report. This case attempts to highlight the need to consider tuberculosis as one of the likely causative factors for acu...

  17. Bleomycin-Induced Lung Injury

    Tomás Reinert

    2013-01-01

    Full Text Available Bleomycin is a chemotherapeutic agent commonly used to treat curable diseases such as germinative tumors and Hodgkin’s lymphoma. The major limitation of bleomycin therapy is pulmonary toxicity, which can be life threatening in up to 10% of patients receiving the drug. The mechanism of bleomycin-induced pneumonitis (BIP involves oxidative damage, relative deficiency of the deactivating enzyme bleomycin hydrolase, genetic susceptibility, and the elaboration of inflammatory cytokines. Ultimately, BIP can progress to lung fibrosis. The diagnosis of BIP is established by the combination of systemic symptoms, radiological and histological findings, and respiratory function tests abnormalities, while other disorders should be excluded. Although the diagnosis and pathophysiology of this disease have been better characterized over the past few years, there is no effective therapy for the disease. In general, the clinical picture is extremely complex. A greater understanding of the BIP pathogenesis may lead to the development of new agents capable of preventing or even treating the injury already present. Physicians who prescribe bleomycin must be aware of the potential pulmonary toxicity, especially in the presence of risk factors. This review will focus on BIP, mainly regarding recent advances and perspectives in diagnosis and treatment.

  18. Transfusion related acute lung injury

    Sharma Ratti

    2009-10-01

    Full Text Available Transfusion related acute lung injury (TRALI is an uncommon but potentially fatal adverse reaction to transfusion of plasma containing blood components. We describe a case of 10-year-old male child with aplastic anemia, platelet count of 7800/΅l, B positive blood group who developed fever (39.2΀C, difficulty in breathing and cyanosis within 2 hrs after transfusion of a random platelet concentrate. Despite the best resuscitative efforts, the child died within next 24 hrs. The present case highlights the fact that TRALI should be kept as a differential diagnosis in all patients developing acute respiratory discomfort within 6 hrs of transfusion. Without a ′gold standard′ the diagnosis of TRALI relies on a high index of suspicion and on excluding other types of transfusion reactions. Notification to transfusion services is crucial to ensure that a proper investigation is carried out and at-risk donor and recipients can be identified, and risk reduction measures can be adopted.

  19. Irradiation lung injury in lung cancer patients

    The effect of chest irradiation on pulmonary function was studied in 16 patients with lung cancer and one with malignant thymoma. Radiation pneumonitis was detected by chest radiography in 15 cases (88%), 35 days (average) after the completion of radiation therapy. In these cases the radiation field included the lungs, and the hilar and mediastinal regions. No radiation pneumonitis occurred in the other two patients, receiving only lung field irradiation. Various pulmonary functions were measured in all patients following radiation therapy. Inspiratory reserve volume, inspiratory capacity and diffusing capacity were significantly reduced 1 month and 3 months after the completion of radiotherapy. Furthermore, reduction of vital capacity was found 3 months after treatment. It may be concluded that pulmonary function tests are not useful in predicting the onset of radiation pneumonitis, as chest radiography revealed inflammatory changes before the reduction of pulmonary function was detected. (author)

  20. Stem cells and repair of lung injuries

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  1. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial

    Wrigge, Hermann; Zinserling, Jörg; Neumann, Peter; Muders, Thomas; Magnusson, Anders; Putensen, Christian; Hedenstierna, Göran

    2005-01-01

    Introduction Experimental and clinical studies have shown a reduction in intrapulmonary shunt with spontaneous breathing during airway pressure release ventilation (APRV) in acute lung injury. This reduction was related to reduced atelectasis and increased aeration. We hypothesized that spontaneous breathing will result in better ventilation and aeration of dependent lung areas and in less cyclic collapse during the tidal breath. Methods In this randomized controlled experimental trial, 22 pi...

  2. Acute and subacute chemical-induced lung injuries: HRCT findings

    Akira, Masanori, E-mail: Akira@kch.hosp.go.jp [Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, Osaka 591-8555 (Japan); Suganuma, Narufumi [Department of Environmental Medicine, Kochi Medical School (Japan)

    2014-08-15

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals.

  3. Role of Airway Recruitment and Derecruitment in Lung Injury

    Ghadiali, S. N.; Huang, Y.

    2011-01-01

    The mechanical forces generated during the ventilation of patients with acute lung injury causes significant lung damage and inflammation. Low-volume ventilation protocols are commonly used to prevent stretch-related injury that occurs at high lung volumes. However, the cyclic closure and reopening of pulmonary airways at low lung volumes, i.e., derecruitment and recruitment, also causes significant lung damage and inflammation. In this review, we provide an overview of how biomedical enginee...

  4. Acute and subacute chemical-induced lung injuries: HRCT findings

    Lung injury caused by chemicals includes bronchitis, bronchiolitis, chemical pneumonitis, pulmonary edema, acute respiratory distress syndrome, organizing pneumonia, hypersensitivity pneumonitis, acute eosinophilic pneumonia, and sarcoid-like granulomatous lung disease. Each chemical induces variable pathophysiology and the situation resembles to the drug induced lung disease. The HRCT features are variable and nonspecific, however HRCT may be useful in the evaluation of the lung injuries and so we should know about HRCT features of lung parenchymal abnormalities caused by chemicals

  5. Transfusion related acute lung injury (TRALI)

    TAJANA ZAH; JASNA MESARIC; VISNJA MAJERIC-KOGLER

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is a complication following transfusion of blood products and is potentially a life-threatening adverse event of transfusion. The first case of fatal pulmonary edema following transfusion was reported in the 1950s. In recent time, TRALI has developed from an almost unknown transfusion reaction to the most common cause of transfusion related major morbidities and fatalities. A clinical definition of TRALI was established in 2004, based on acute res...

  6. Radiation-induced lung injury

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references

  7. Role of Chemokines in the Pathogenesis of Acute Lung Injury

    Bhatia, Madhav; Zemans, Rachel L.; Jeyaseelan, Samithamby

    2012-01-01

    Acute lung injury (ALI) is due to an uncontrolled systemic inflammatory response resulting from direct injury to the lung or indirect injury in the setting of a systemic process. Such insults lead to the systemic inflammatory response syndrome (SIRS), which includes activation of leukocytes—alveolar macrophages and sequestered neutrophils—in the lung. Although systemic inflammatory response syndrome is a physiologic response to an insult, systemic leukocyte activation, if excessive, can lead ...

  8. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    LI Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, Dandan; Han, Jianzhong; Huang, Yanhong; Luo, Siwei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang,Xiaoting; Luo, Ziqiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were ra...

  9. Injury to the Developing Lung: experimental and clinic al aspects

    I.K.M. Reiss (Irwin)

    2008-01-01

    textabstractInjury to the developing lung or disturbance of normal lung development may lead to a chronic lung disease, bronchopulmonary dysplasia (BPD), which may have long-term effects. BPD is characterized by an arrest of development of the lung and the pulmonary vascular system and occurs in aro

  10. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy.

    Shields, Conor J

    2012-02-03

    Lung injury is the most pertinent manifestation of extra-abdominal organ dysfunction in pancreatitis. The propensity of this retroperitoneal inflammatory condition to engender a diffuse and life-threatening lung injury is significant. Approximately one third of patients will develop acute lung injury and acute respiratory distress syndrome, which account for 60% of all deaths within the first week. The variability in the clinical course of pancreatitis renders it a vexing entity and makes demonstration of the efficacy of any specific intervention difficult. The distinct pathologic entity of pancreatitis-associated lung injury is reviewed with a focus on etiology and potential therapeutic maneuvers.

  11. Human models of acute lung injury

    Alastair G. Proudfoot

    2011-03-01

    Full Text Available Acute lung injury (ALI is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.

  12. Transfusion-related acute lung injury

    Dixit Ramakant; Sharma Sidharth; Parmez A

    2010-01-01

    Transfusion-related acute lung injury (TRALI) is related to the transfusion of blood components. Typically, it is a clinical syndrome, characterized by the sudden onset of dyspnea, hypoxemia and bilateral non-cardiogenic pulmonary edema. A 83-year-old female patient with a history of AML developed TRALI after receiving 6 units of platelets. TRALI symptoms was started 10 min later the transfusion. AML is a risky group for TRALI. While giving transfusion to the risky groups of TRALI one must be...

  13. Pathogenesis of acute lung injury in severe acute pancreatitis

    SHI Lei; YUE Yuan; ZHANG Mei; PAN Cheng-en

    2005-01-01

    Objective:To study the pathogenesis of acute lung injury in severe acute pancreatitis (SAP). Methods:Rats were sacrificed at 1, 3, 5, 6, 9 and 12 h after establishment of inducing model. Pancreas and lung tissues were obtained for pathological study, microvascular permeability and MPO examination. Gene expressions of TNF-α and ICAM-1 in pancreas and lung tissues were detected by RT-PCR. Results:After inducing SAP model, the injury degree of the pancreas and the lung increased gradually, accompanied with gradually increased MPO activity and microvascular permeability. Gene expressions of TNF-α and ICAM-1 in pancreas rose at 1 h and reached peak at 7 h. Relatively, their gene expressions in the lungs only rose slightly at 1 h and reached peak at 9-12 h gradually. Conclusion:There is an obvious time window between SAP and lung injury, when earlier protection is beneficial to prevent development of acute lung injury.

  14. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation.

    Hoyle, Gary W; Chen, Jing; Schlueter, Connie F; Mo, Yiqun; Humphrey, David M; Rawson, Greg; Niño, Joe A; Carson, Kenneth H

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. PMID:26952014

  15. Transfusion-Related Acute Lung Injury: The Work of DAMPs*

    Land, Walter G.

    2013-01-01

    Current notions in immunology hold that not only pathogen-mediated tissue injury but any injury activates the innate immune system. In principle, this evolutionarily highly conserved, rapid first-line defense system responds to pathogen-induced injury with the creation of infectious inflammation, and non-pathogen-induced tissue injury with ‘sterile’ tissue inflammation. In this review, evidence has been collected in support of the notion that the transfusion-related acute lung injury induces ...

  16. Ventilator-induced lung injury in preterm infants

    Carvalho, Clarissa Gutierrez; Rita C. Silveira; Procianoy, Renato Soibelmann

    2013-01-01

    In preterm infants, the need for intubation and mechanical ventilation is associated with ventilator-induced lung injuries and subsequent bronchopulmonary dysplasia. The aim of the present review was to improve the understanding of the mechanisms of injury that involve cytokine-mediated inflammation to contribute to the development of new preventive strategies. Relevant articles were retrieved from the PubMed database using the search terms "ventilator-induced lung injury preterm", "continuou...

  17. 一种新颖的油酸诱导乳猪急性肺损伤动物模型%A stable and reproducible piglet model of acute lung injury induced by injecting low-dose oleic acid

    朱耀斌; 刘迎龙; 李晓锋; 王强; 张燕搏; 范祥明; 李志强; 许耀强; 凌峰; 刘爱军

    2011-01-01

    Objective To develop a hemodynamically stable and reproducible piglet model of acute lung injury by injecting low-dose oleic acid. Methods Six Chinese mini-piglets were injected with oleic acid-alcohol mixture (0. 1 mL/kg) via right atrial appendage cannula. The dose of each injection was 0. 1 mL and the interval was 90 seconds. Arterial oxygen pressure and the fraction of inspired oxygen were dynamically monitored. Circulation and respiratory function data were monitored. Right lower lung was histopathologically detected. Results There were significant differences in heart rate, mean arterial pressure, mean pulmonary arterial pressure, cardiac output, arterial oxygen pressure, arterial partial pressure of carbon dioxide, pH value, and arterial blood gas and oxygenation index between pre- and post-injection of oleic acid(Plung changes. Conclusion A stable and reproducible piglet model of acute lung injury can be achieved by injecting low-dose oleic acid.%目的 采用间断小剂量油酸注射方法,构建符合肺损伤标准、血流动力学稳定的乳猪急性肺损伤动物模型.方法 中华小型猪6只,经右心耳插管注射油酸-乙醇溶液0.1 mL/kg,0.1 mL/次,间隔90 s直至注射完毕.注射过程中监测循环、呼吸参数;实验结束取右下肺组织标本行组织病理检查.结果 油酸注射前、后心率、平均动脉压、平均肺动脉压、心输出量、动脉血氧分压、动脉血二氧化碳分压、pH值、氧合指数差异均有统计学意义(P<0.05).组织病理显示双肺呈弥漫性改变.结论 小剂量间断注射油酸可构建血流动力学稳定并符合肺损伤诊断标准的急性肺损伤动物模型.

  18. Lung Injury Combined with Loss of Regulatory T Cells Leads to De Novo Lung-Restricted Autoimmunity.

    Chiu, Stephen; Fernandez, Ramiro; Subramanian, Vijay; Sun, Haiying; DeCamp, Malcolm M; Kreisel, Daniel; Perlman, Harris; Budinger, G R Scott; Mohanakumar, Thalachallour; Bharat, Ankit

    2016-07-01

    More than one third of patients with chronic lung disease undergoing lung transplantation have pre-existing Abs against lung-restricted self-Ags, collagen type V (ColV), and k-α1 tubulin (KAT). These Abs can also develop de novo after lung transplantation and mediate allograft rejection. However, the mechanisms leading to lung-restricted autoimmunity remain unknown. Because these self-Ags are normally sequestered, tissue injury is required to expose them to the immune system. We previously showed that respiratory viruses can induce apoptosis in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), the key mediators of self-tolerance. Therefore, we hypothesized that lung-tissue injury can lead to lung-restricted immunity if it occurs in a setting when Tregs are impaired. We found that human lung recipients who suffer respiratory viral infections experienced a decrease in peripheral Tregs. Pre-existing lung allograft injury from donor-directed Abs or gastroesophageal reflux led to new ColV and KAT Abs post respiratory viral infection. Similarly, murine parainfluenza (Sendai) respiratory viral infection caused a decrease in Tregs. Intratracheal instillation of anti-MHC class I Abs, but not isotype control, followed by murine Sendai virus infection led to development of Abs against ColV and KAT, but not collagen type II (ColII), a cartilaginous protein. This was associated with expansion of IFN-γ-producing CD4(+) T cells specific to ColV and KAT, but not ColII. Intratracheal anti-MHC class I Abs or hydrochloric acid in Foxp3-DTR mice induced ColV and KAT, but not ColII, immunity, only if Tregs were depleted using diphtheria toxin. We conclude that tissue injury combined with loss of Tregs can lead to lung-tissue-restricted immunity. PMID:27194786

  19. Injury to the Developing Lung: experimental and clinic al aspects

    Reiss, Irwin

    2008-01-01

    textabstractInjury to the developing lung or disturbance of normal lung development may lead to a chronic lung disease, bronchopulmonary dysplasia (BPD), which may have long-term effects. BPD is characterized by an arrest of development of the lung and the pulmonary vascular system and occurs in around 20% of ventilated newborns. In the first part of this thesis, different factors that influence the development of BPD are studied, both in an experimental and a clinical setting. We found that ...

  20. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury.

    Yang Li

    Full Text Available Glutamate is a major neurotransmitter in the central nervous system (CNS. Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR, causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice.C57BL/6 mice were intratracheally injected with bleomycin (BLM to induce lung injury. Mice were randomized to receive saline, memantine (Me, BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation.BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils.Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice.

  1. Effects of overinflation on procollagen type III expression in experimental acute lung injury

    de Carvalho, Maria-Eudóxia Pilotto; Dolhnikoff, Marisa; Meireles, Sibele Inácio; Reis, Luiz Fernando Lima; Martins, Milton Arruda; Deheinzelin, Daniel

    2007-01-01

    Introduction In acute lung injury (ALI), elevation of procollagen type III (PC III) occurs early and has an adverse impact on outcome. We examined whether different high-inflation strategies of mechanical ventilation (MV) in oleic acid (OA) ALI alter regional expression of PC III. Methods We designed an experimental, randomized, and controlled protocol in which rats were allocated to two control groups (no injury, recruited [alveolar recruitment maneuver after tracheotomy without MV; n = 4 ra...

  2. Transfusion Related Acute Lung Injury -A Case Report

    Anamika,; Vasanth Nayak; Jose Chacko; G Parameswara

    2008-01-01

    Transfusion related acute lung injury (TRALI) is a rare but life threatening complication of blood transfusion which is being increasingly recognized. It is caused by cross reaction between donor antibodies and host leucocytes or between donor leucocytes with host antibodies. TRALI usually presents as an Acute Lung Injury (ALI) resulting in pulmonary congestion and edema, often leading to Acute Respiratory Distress Syndrome (ARDS). We report a case of TRALI in a patient who underwent laparoto...

  3. Experimental Models of Transfusion-Related Acute Lung Injury (TRALI)

    Gilliss, Brian M.; Looney, Mark R.

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we will discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approache...

  4. Antenatal infection/inflammation and postnatal lung maturation and injury

    Ikegami Machiko

    2001-01-01

    Full Text Available Abstract Chorioamnionitis is frequently associated with preterm deliveries before 30 weeks gestation. Chorioamnionitis correlates both with an increased risk of bronchopulmonary dysplasia and with a decreased risk of respiratory distress syndrome. Both interleukin-1α and endotoxin can induce inflammation in the fetal lungs and lung maturation after preterm birth when given by intra-amniotic injection. Inflammation can also result in an arrest of alveolarization, and this lung developmental abnormality is prominent in the lungs of preterm infants that die of bronchopulmonary dysplasia. The mechanisms by which infection/inflammation can have both beneficial and injurious effects on the preterm lung remain to be characterized.

  5. Transfusion related acute lung injury (TRALI

    TAJANA ZAH

    2009-10-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a complication following transfusion of blood products and is potentially a life-threatening adverse event of transfusion. The first case of fatal pulmonary edema following transfusion was reported in the 1950s. In recent time, TRALI has developed from an almost unknown transfusion reaction to the most common cause of transfusion related major morbidities and fatalities. A clinical definition of TRALI was established in 2004, based on acute respiratory distress which has temporal association with transfusion of blood components. In 2008 a distinction between classic and delayed syndrome was proposed. However, pathophysiology of TRALI still remains controversial. A number of different models were proposed to explain the pathogenesis. The two, presently most accepted models, are not mutually exclusive. The first is the antibody mediated model and the second is the two-event model.In this review article the definition of TRALI, patient predisposition, treatment, prevention and reporting guidelines are examined. The current knowledge on the topic TRALI is summarized.

  6. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury

    Shaver, Ciara M.; Grove, Brandon S.; Clune, Jennifer K.; Nigel Mackman; Lorraine B. Ware; Bastarache, Julie A

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-indu...

  7. Partial liquid ventilation improves lung function in ventilation-induced lung injury

    Vazquez de Anda, G.F.; Lachmann, R A; Verbrugge, Serge; Gommers, Diederik; Haitsma, J.J.; Lachmann, Burkhard

    2001-01-01

    textabstractDisturbances in lung function and lung mechanics are present after ventilation with high peak inspiratory pressures (PIP) and low levels of positive end-expiratory pressure (PEEP). Therefore, the authors investigated whether partial liquid ventilation can re-establish lung function after ventilation-induced lung injury. Adult rats were exposed to high PIP without PEEP for 20 min. Thereafter, the animals were randomly divided into five groups. The first group was killed immediately...

  8. Pathophysiology of pulmonary hypertension in acute lung injury

    Price, Laura C.; Mcauley, Danny F.; Marino, Philip S; Finney, Simon J; Griffiths, Mark J.; Wort, Stephen John

    2012-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome are characterized by protein rich alveolar edema, reduced lung compliance, and acute severe hypoxemia. A degree of pulmonary hypertension (PH) is also characteristic, higher levels of which are associated with increased morbidity and mortality. The increase in right ventricular (RV) afterload causes RV dysfunction and failure in some patients, with associated adverse effects on oxygen delivery. Although the introduction of lung p...

  9. Simvastatin attenuates ventilator-induced lung injury in mice

    Müller, Holger C; Hellwig, Katharina; Rosseau, Simone; Tschernig, Thomas; Schmiedl, Andreas; Gutbier, Birgitt; Schmeck, Bernd; Hippenstiel, Stefan; Peters, Harm; Morawietz, Lars; Suttorp, Norbert; Witzenrath, Martin

    2010-01-01

    Introduction Mechanical ventilation (MV) is a life saving intervention in acute respiratory failure without alternative. However, particularly in pre-injured lungs, even protective ventilation strategies may evoke ventilator-induced lung injury (VILI), which is characterized by pulmonary inflammation and vascular leakage. Adjuvant pharmacologic strategies in addition to lung protective ventilation to attenuate VILI are lacking. Simvastatin exhibited anti-inflammatory and endothelial barrier s...

  10. Smoking water pipe is injurious to lungs

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...... have a higher risk of developing malignancies, particularly lung cancer than cigarette smokers....

  11. Rabbit model of radiation-induced lung injury

    Zhen-Zong Du; Hua Ren; Jian-Fei Song; Li-Fei Zhang; Feng Lin; Hai-Yong Wang

    2013-01-01

    Objective:To explore the feasibility of establishing an animal model of chronic radiation-induced lung injury.Methods:Twenty-eightNewZealand white rabbits were randomly divided into3 groups(the right lung irradiation group, the whole lung irradiation group and the control group).Animal model of radiation-induced lung injury was established by high-does radiotherapy in the irradiation groups, then all rabbits underwentCT and pathological examinations at1,2,4,8,12,16 weeks, respectively after radiation.Results:Within4 weeks of irradiation, some rabbits in the right lung irradiation group and whole lung irradiation group died. CT and pathological examinations all showed acute radiation pneumonitis.At8-12 weeks after irradiation,CT scanning showed ground glass samples signs, patchy shadows and fibrotic stripes. Pathological examination showed the fibrosis pulmonary alveolar wall thickened obviously. Conclusions:The clinical animal model of chronic radiation-induced lung injury which corresponds to practical conditions in clinic can be successfully established.

  12. Interactive effects of hypoxia, carbon monoxide and acute lung injury on oxygen transport and aerobic capacity.

    Crocker, George H; Jones, James H

    2016-05-01

    This study determined how breathing hypoxic gas, reducing circulatory capacitance for O2 by breathing CO, and impairing pulmonary gas exchange by acutely injuring the lungs interact to limit cardiopulmonary O2 delivery, O2 extraction and maximal aerobic capacity (VO2max). Five goats ran on a treadmill at VO2max following oleic-acid induced acute lung injury that impaired pulmonary gas exchange, after partial recovery or with no acute lung injury. Goats breathed normoxic or hypoxic inspired gas fractions (FIO2 0.21 or 0.12) with and without small amounts of CO to maintain carboxyhemoglobin fractions (FHbCO) of 0.02 or 0.30. With the exception of elevated FHbCO with acute lung injury (P=0.08), all combinations of hypoxia, elevated FHbCO and acute lung injury attenuated the reduction in VO2max by 15-27% compared to the sum of each treatment's individual reduction in VO2max when administered separately. Simultaneous administration of two treatments attenuated the reduction in VO2max by attenuating the decrease in cardiopulmonary O2 delivery, not synergistically increasing O2 extraction. PMID:26845454

  13. Smoking water pipe is injurious to lungs

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  14. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic finding...

  15. Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome

    Raghavendran, Krishnan; Pryhuber, Gloria S.; Chess, Patricia R.; Davidson, Bruce A.; Paul R. Knight; Notter, Robert H.

    2008-01-01

    Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, a...

  16. Thionyl-chloride-induced lung injury and bronchiolitis obliterans

    Konichezky, S.; Schattner, A.; Ezri, T.; Bokenboim, P.; Geva, D. (Kaplan Hospital, Rehovot (Israel))

    1993-09-01

    Thionyl-chloride (TCl) is used in the manufacture of lithium batteries, producing SO2 and HCl fumes on contact with water. We report two cases of accidental TCl exposure resulting in lung injury that may vary from a relatively mild and reversible interstitial lung disease to a severe form of bronchiolitis obliterans causing, after a latent period, an acute/chronic respiratory failure as well as other complications (spontaneous pneumothorax and bronchopleural fistula), previously unreported in TCl fume inhalation.

  17. Evolution of endotoxin induced acute lung injury in the rat.

    Domenici-Lombardo, L.; C. Adembri; Consalvo, M.; Forzini, R.; Meucci, M.; Romagnoli, P; Novelli, G.P.

    1995-01-01

    To clarify the evolution of acute lung injury induced by endotoxin, the progression of lung damage in 26 rats submitted to intratracheal instillation of 5 mg/kg body weight endotoxin was examined by blood gas analysis, computerized tomography, light and electron microscopy. Hypoxaemia, hypercapnia, acidosis and inhomogeneous bilateral infiltrates developed gradually within 48 hours. Monocytes appeared within blood capillaries and the instertitium by 12 hours after treatment, then migrated int...

  18. Adult Stem Cells for Acute Lung Injury: Remaining Questions & Concerns

    Zhu, Ying-Gang; Hao, Qi; Monsel, Antoine; Feng, Xiao-mei; Lee, Jae W.

    2013-01-01

    Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary edema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple pre-clinical studies, adult stem cells h...

  19. Independent lung ventilation in a newborn with asymmetric acute lung injury due to respiratory syncytial virus: a case report

    Di Nardo Matteo; Perrotta Daniela; Stoppa Francesca; Cecchetti Corrado; Marano Marco; Pirozzi Nicola

    2008-01-01

    Abstract Introduction Independent lung ventilation is a form of protective ventilation strategy used in adult asymmetric acute lung injury, where the application of conventional mechanical ventilation can produce ventilator-induced lung injury and ventilation-perfusion mismatch. Only a few experiences have been published on the use of independent lung ventilation in newborn patients. Case presentation We present a case of independent lung ventilation in a 16-day-old infant of 3.5 kg body weig...

  20. Neutrophils contain cholesterol crystals in transfusion-related acute lung injury (TRALI)

    Van Ness, Michael; Jensen, Hanne; Adamson, Grete N; Kysar, Patricia E; Holland, Paul

    2013-01-01

    Intracellular components of transfusion-related acute lung injury (TRALI) were investigated by transmission electron microscopy.......Intracellular components of transfusion-related acute lung injury (TRALI) were investigated by transmission electron microscopy....

  1. Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice

    Koeppen, Michael; Eckle, Tobias; Eltzschig, Holger K.

    2011-01-01

    Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exch...

  2. Retinoic acid signaling after nerve injury

    Schrage, Kirsten

    2005-01-01

    Experiments with sciatic nerve lesions and spinal cord contusions have demonstrated that retinoic acid is involved in the physiological reactions after PNS and CNS injuries. The aim of this thesis was to identify the cellular targets of injury-related RA signals in the peripheral and central nervous system and to investigate the functional significance of RA in this context.I discovered that crucial components of the RA signal transduction cascade (retinoic acid receptors, retinoid X receptor...

  3. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  4. Tissue plasminogen activator attenuates ventilatorinduced lung injury in rats

    Liang-ti HUANG; Hsiu-chu CHOU; Leng-fang WANG; Chung-ming CHEN

    2012-01-01

    Aim:To test the hypothesis that the tissue plasminogen activator (tPA) may counteract the inhibitory effect ot plasminogen activator inhibitors (PAI) and attenuate lung injury in a rat model of ventilator-induced lung injury (VILI).Methods:Adult male Sprague-Dawley rats were ventilated with a HVZP (high-volume zero PEEP) protocol for 2 h at a tidal volume of 30 ml/kg,a respiratory rate of 25 breaths/min,and an inspired oxygen fraction of 21%.The rats were divided into 3 groups (n=7 for each):HVZP+tPA group receiving tPA (1.25 mg/kg,iv) 15 min before ventilation,HVZP group receiving HVZP+vehicle injection,and a control group receiving no ventilation.After 2 h of ventilation,the rats were killed; blood and lungs were collected for biochemical and histological analyses.Results:HVZP ventilation significantly increased total protein content and the concentration of macrophage inflammatory protein-2 (MIP-2) in the bronchoalveolar lavage fluid (BALF) as well as the lung injury score.Rats that received HVZP ventilation had significantly higher lung PAI-1 mRNA expression,plasma PAI-1and plasma D-dimer levels than the control animals,tPA treatment significantly reduced the BALF total protein and the lung injury score as compared to the HVZP group,tPA treatment also significantly decreased the plasma D-dimer levels and the HVZP ventilation-induced lung vascular fibrin thrombi,tPA treatment showed no effect on MIP-2 level in BALF.Conclusion:These results demonstrate that VILI increases lung PAI-1 mRNA expression,plasma levels of PAI-1 and D-limers,lung injury score and vascular fibrin deposition,tPA can attenuate VILI by decreasing capillary-alveolar protein leakage as well as local and systemic coagulation as shown by decreased lung vascular fibrin deposition and plasma D-dimers.

  5. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  6. Transfusion-related acute lung injury in multiple traumatized patients

    Alijanpour, Ebrahim; Jabbari, Ali; Hoseini, Fahimeh; Tabasi, Shabnam

    2012-01-01

    Background: Many of the multiple traumatized patients who refer to the hospital need transfusion. Transfusion-related acute lung injury (TRALI) is a serious clinical syndrome associated with the transfusion of plasma-containing blood components. In the article, we present a case of TRALI following transfusion of packed red blood cells

  7. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping; Wang, Guozheng; Toh, Cheng-Hock

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology.

  8. Independent lung ventilation in a newborn with asymmetric acute lung injury due to respiratory syncytial virus: a case report

    Di Nardo Matteo

    2008-06-01

    Full Text Available Abstract Introduction Independent lung ventilation is a form of protective ventilation strategy used in adult asymmetric acute lung injury, where the application of conventional mechanical ventilation can produce ventilator-induced lung injury and ventilation-perfusion mismatch. Only a few experiences have been published on the use of independent lung ventilation in newborn patients. Case presentation We present a case of independent lung ventilation in a 16-day-old infant of 3.5 kg body weight who had an asymmetric lung injury due to respiratory syncytial virus bronchiolitis. We used independent lung ventilation applying conventional protective pressure controlled ventilation to the less-compromised lung, with a respiratory frequency proportional to the age of the patient, and a pressure controlled high-frequency ventilation to the atelectatic lung. This was done because a single tube conventional ventilation protective strategy would have exposed the less-compromised lung to a high mean airways pressure. The target of independent lung ventilation is to provide adequate gas exchange at a safe mean airways pressure level and to expand the atelectatic lung. Independent lung ventilation was accomplished for 24 hours. Daily chest radiograph and gas exchange were used to evaluate the efficacy of independent lung ventilation. Extubation was performed after 48 hours of conventional single-tube mechanical ventilation following independent lung ventilation. Conclusion This case report demonstrates the feasibility of independent lung ventilation with two separate tubes in neonates as a treatment of an asymmetric acute lung injury.

  9. Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation

    Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Based on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has

  10. Lipocalin-2 Test in Distinguishing Acute Lung Injury Cases from Septic Mice Without Acute Lung Injury

    Gao Zeng; Cong-wei Jia; Jie Liu; Shu-bin Guo

    2014-01-01

    Objective To explore whether the amount of lipocalin-2 in the biofluid could reflect the onset of sepsis-induced acute lung injury (ALI) in mice. Methods Lipopolysaccharide (LPS, 10 mg/kg) injection or cecal ligation and puncture (CLP) was performed to induce severe sepsis and ALI in C57 BL/6 male mice randomly divided into 5 groups (n=10 in each group):group A (intraperitoneal LPS injection), group B (intravenous LPS injection via tail vein), group C (CLP with 25%of the cecum ligated), group D (CLP with 75%of the cecum ligated), and the control group (6 sham-operation controls plus 4 saline controls). All the mice received volume resuscitation. Measurements of pulmonary morphological and functional alterations were used to identify the presence of experimental ALI. The expressions of lipocalin-2 and interleukin (IL)-6 in serum, bronchoalveolar lavage fluid (BALF), and lung tissue were quantified at both protein and mRNA levels. The overall abilities of lipocalin-2 and IL-6 tests to diagnose sepsis-induced ALI were evaluated by generating receiver operator characteristic curves (ROC) and computing area under curve (AUC). Results In both group B and group D, most of the“main features”of experimental ALI were reproduced in mice, while group A and group C showed septic syndrome without definite evidence for the presence of ALI. Compared with septic mice without ALI (group A+group C), lipocalin-2 protein expression in septic mice with ALI (group B+group D) was significantly up-regulated in BALF (P Conclusions Lipocalin-2 expression is significantly up-regulated in septic ALI mice compared with those without ALI. Lipocalin-2 tests with a dual cutoff system could be an effective tool in distinguishing experimental ALI cases.

  11. Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury.

    Tsokos, Michael; Paulsen, Friedrich; Petri, Susan; Madea, Burkhard; Puschel, Klaus; Turk, Elisabeth E

    2003-09-01

    The objective of this autopsy-based study was to investigate the pathology of human blast lung injury using histology, Fat Red 7B staining, immunohistochemistry, and scanning electron microscopy on lung specimens from eight medicolegal autopsy cases of fatal close-range detonations of chemical explosives. The micromorphologic equivalents of human blast lung injury can be summarized as follows: diffuse alveolar overdistension, circumscribed interstitial hemorrhages showing a cufflike pattern around pulmonary vessels, venous air embolism, bone marrow embolism, and pulmonary fat embolism. Hemorrhages within the lung parenchyma that were present in this study in blast victims without coexisting blunt or penetrating chest trauma must be regarded as potentially life-threatening intrapulmonary bleeding sites in survivors. In addition, the potential clinical importance of the presence of massive pulmonary fat embolism, which has, to the best of our knowledge, not been described previously in human blast lung injury, must be emphasized because pulmonary fat embolism may be a leading cause of the rapid respiratory deterioration with progressive hypoxia and development of acute respiratory distress syndrome in blast victims who survive. Furthermore, this study provides evidence that air embolism presenting in blast victims is not a mere ventilation-induced artifact. PMID:12842857

  12. Mesenchymal stem cells reduce the irradiation induced lung injury

    Objective: To evaluate the role of mesenchymal stem cells (MSCs) derived from mouse bone and embryo dorsal aorta (DA) area in the treatment of irradiation induced lung injury of mouse model. Methods: The mice were divided into four groups as normal control group, irradiation group,bone MSCs treatment group and DA MSCs treatment group. Immunohistochemical Analysis of lung tissue was observed after 9 months of treatment. Results: Fibrosis and alveolar infiltration were scored in each group. The score for fibrosis and alveolar is 0. 17 in normal control group, 2 in irradiation group, 1 in bone MSCs treat group and 1.38 in DA MSCs treat group. Conclusion: The extent of irradiation Induced Lung Injury could be reduced thorough the treatment of MSCs derived from mouse bone and embryos dorsal aorta ( DA ) area. (authors)

  13. Spontaneous Transient Lateral Thoracic Lung Herniation Resulting in Systemic Inflammatory Response Syndrome (SIRS) and Subsequent Contralateral Lung Injury

    Antony Kaliyadan; Amal Kebede; Tabassum Ali; Michael Karchevsky; Bernard Vasseur; Nirav Patel

    2011-01-01

    Lung herniation is a relatively rare clinical entity that is most commonly either congenital or acquired traumatically. We describe a case of spontaneous lung herniation secondary to acute cough in an obese male smoker complicated by contralateral acute lung injury and systemic inflammatory response syndrome (SIRS). Mechanisms of lung herniation, classification, diagnosis, and management will be discussed.

  14. Pulmonary clearance of radiotracers after positive end-expiratory pressure or acute lung injury

    In anesthetized rabbits we measured clearance from lung to blood of eight aerosolized technetium-99m-labeled compounds: diethylenetriaminepentaacetate (99mTc-DTPA); cytochrome c; myoglobin; a myoglobin polymer; albumin; and anionic, cationic, and neutral dextrans of equivalent molecular size. We investigated the effect of applying positive end-expiratory pressure (PEEP) and, on a subsequent occasion, of injecting oleic acid intravenously to produce acute lung injury on the pulmonary clearance rate. Base-line clearance rates were monoexponential and varied with the molecular weights of the radiotracers. For each tracer the rate of clearance was increased a similar degree by either PEEP or oleic acid. However, with PEEP, clearance remained monoexponential, whereas after oleic acid, smaller molecular-weight radiotracers had multiexponential clearance curves. This suggests that after oleic acid the alveolar epithelium breaks down in a nonuniform fashion. We conclude that differentiation of the effect of PEEP from that of severe lung injury caused by oleic acid is not readily accomplished by either increasing the size of the tracer molecule or by varying the molecular charge

  15. Liver cold preservation induce lung surfactant changes and acute lung injury in rat liver transplantation

    An Jiang; Chang Liu; Feng Liu; Yu-Long Song; Quan-Yuan Li; Liang Yu; Yi Lv

    2012-01-01

    AIM: To investigate the relationship between donor liver cold preservation, lung surfactant (LS) changes and acute lung injury (ALI) after liver transplantation. METHODS: Liver transplantation models were established using male Wistar rats. Donor livers were preserved in University of Wisconsin solution at 4  °C for different lengths of time. The effect of ammonium pyrrolidinedithiocarbamate (PDTC) on ALI was also detected. All samples were harvested after 3 h reperfusion. ...

  16. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  17. Marked Recovery From Paraquat-Induced Lung Injury During Long-Term Follow-up

    Lee, Kwon-Hyun; Gil, Hyo-Wook; Kim, Young-Tong; Yang, Jong-Oh; Lee, Eun-Young; Hong, Sae-Yong

    2009-01-01

    Background/Aims Paraquat-induced lung injury has been considered a progressive and irreversible disease. The purpose of this study was to report the long-term evolution of lung lesions in eight survivors with significant paraquat-induced lung injuries who could be followed-up for longer than 6 months. Methods We retrospectively examined high-resolution computed tomography and pulmonary function test of eight survivors with significant paraquat-induced lung injurys. Results High-resolution com...

  18. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.

    Fletcher, Marianne E; Boshier, Piers R; Wakabayashi, Kenji; Keun, Hector C; Smolenski, Ryszard T; Kirkham, Paul A; Adcock, Ian M; Barton, Paul J; Takata, Masao; Marczin, Nandor

    2015-06-15

    Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-μ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications. PMID:26078397

  19. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Siminelakis Stavros N

    2010-01-01

    Full Text Available Abstract During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB, hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved.

  20. Neutrophil Elastase Contributes to Acute Lung Injury Induced by Bilateral Nephrectomy

    Ishii, Tomoko; DOI, Kent; Okamoto, Koji; Imamura, Mitsuru; Dohi, Makoto; Yamamoto, Kazuhiko; Fujita, Toshiro; Noiri, Eisei

    2010-01-01

    Acute kidney injury (AKI) is a serious problem in critically ill patients of intensive care units. It has been reported previously that AKI can induce acute lung injury (ALI), as well as cause injuries to other remote organs, including the lungs. Patients with AKI complicated by ALI show remarkably high mortality. ALI is characterized by neutrophil infiltration into the lung. Neutrophil elastase (NE) is a key enzyme for tissue injury caused by activated neutrophils, such as occurs in ALI. The...

  1. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis.

    Meiners, Silke; Hilgendorff, Anne

    2016-12-01

    Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood. PMID:27406259

  2. Effect of lung injuries on [14C]urea permeability-surface area product in dogs

    To determine whether [14C]urea permeability-surface area product (PS) is a reliable indicator of changes in permeability in various injuries and its relationship to indicator-dilution and gravimetric lung water contents, we studied six groups of anesthetized, paralyzed, and mechanically ventilated dogs (5 animals each). The groups consisted of control dogs, those injured by intravenous alloxan, oleic acid, or glass beads, and those exposed to acute hypoxia or increased left atrial pressure from volume loading (Pla). Interanimal variation of PS was large (3.0-15.0 ml/s), but successive hourly values in individual animals were stable for 2 h in experimental groups and for 4 h in controls. The PS increased after alloxan, elevated Pla, and 2 h of hypoxia; PS decreased after oleic acid and micremboli. The gravimetric lung water increased after alloxan, oleic acid, and microemboli, and indicator-dilution lung water increased only after alloxan. We conclude (1) that intersubject variability requires normalization to enable detection of significant deviation from base line, and (2) that decreased PS after oleic acid and microvascular injury occurred because vascular obstruction, which decreased surface area, masked probable coexisting increases in capillary permeability

  3. Transfusion Related Acute Lung Injury -A Case Report

    Anamika

    2008-01-01

    Full Text Available Transfusion related acute lung injury (TRALI is a rare but life threatening complication of blood transfusion which is being increasingly recognized. It is caused by cross reaction between donor antibodies and host leucocytes or between donor leucocytes with host antibodies. TRALI usually presents as an Acute Lung Injury (ALI resulting in pulmonary congestion and edema, often leading to Acute Respiratory Distress Syndrome (ARDS. We report a case of TRALI in a patient who underwent laparotomy for ruptured corpus luteal cyst requiring blood transfusion. She presented with acute pulmonary edema about an hour after commencing a blood transfusion .This was managed conservatively with oxygen, steroids and diuretics. Patient improved rapidly and later discharged without any residual complications.

  4. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2016-02-01

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  5. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    Hu, Pingzhao; Wang, Xinchen; Haitsma, Jack J; Furmli, Suleiman; MASOOM, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S; Beyene, Joseph; Greenwood, Celia M. T.; Dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and groupe...

  6. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    Jian WANG; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; LI, XIAOFEI; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematox...

  7. Transfusion-Related Acute Lung Injury Following Upper Extremity Replantation

    Celalettin Sever; Yalçın Külahçı; Cihan Şahin; Sinan Öksüz; Haluk Duman; Fuat Yüksel

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a common adverse effect of blood transfusion that is often underrecognised and underreported. We would like to report a case of TRALI after the replantation and transfusion of blood components in a male patient who had sustained a complete amputation of the right upper extremity. The level of amputation was just proximal to the humeral condyles. Replantation was performed 5 hours after the accident and 36 units of blood products were transfused...

  8. Transfusion-related acute lung injury: incidence and risk factors

    Toy, Pearl; Gajic, Ognjen; Bacchetti, Peter; Looney, Mark R.; Gropper, Michael A.; Hubmayr, Rolf; Lowell, Clifford A.; Norris, Philip J; Murphy, Edward L; Weiskopf, Richard B.; Wilson, Gregory; Koenigsberg, Monique; Lee, Deanna; Schuller, Randy; Wu, Ping

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. To determine TRALI incidence by prospective, active surveillance and to identify risk factors by a case-control study, 2 academic medical centers enrolled 89 cases and 164 transfused controls. Recipient risk factors identified by multivariate analysis were higher IL-8 levels, liver surgery, chronic alcohol abuse, shock, higher peak airway pressure while being mechanically ventilated, current s...

  9. A suspected case of transfusion-related acute lung injury

    Lulu Sherif; Srikantu, J.; Prithi Jain; Kishan Shetty; Brijesh Khandige

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is a rare but serious complication of blood transfusion. We present a suspected case of TRALI in a 39-year-old female patient who underwent total abdominal hysterectomy under uneventful general anesthesia. The patient developed acute desaturation due to noncardiogenic pulmonary edema while receiving compatible blood transfusion on the second postoperative day. As her symptoms were refractory to supportive treatment, she was mechanically ventilated...

  10. Transfusion-related acute lung injury; clinical perspectives.

    Kim, Jeongmin; Na, Sungwon

    2015-04-01

    Transfusion-related acute lung injury (TRALI) was introduced in 1983 to describe a clinical syndrome seen within 6 h of a plasma-containing blood products transfusion. TRALI is a rare transfusion complication; however, the FDA has suggested that TRALI is the leading cause of transfusion-related mortality. Understanding the pathogenesis of TRALI will facilitate adopting preventive strategies, such as deferring high plasma volume female product donors. This review outlines the clinical features, pathogenesis, treatment, and prevention of TRALI. PMID:25844126

  11. Transfusion-related acute lung injury; clinical perspectives

    Kim, Jeongmin; Na, Sungwon

    2015-01-01

    Transfusion-related acute lung injury (TRALI) was introduced in 1983 to describe a clinical syndrome seen within 6 h of a plasma-containing blood products transfusion. TRALI is a rare transfusion complication; however, the FDA has suggested that TRALI is the leading cause of transfusion-related mortality. Understanding the pathogenesis of TRALI will facilitate adopting preventive strategies, such as deferring high plasma volume female product donors. This review outlines the clinical features...

  12. Transfusion-related acute lung injury: Incidence and risk factors

    Toy, P; Gajic, O; Bacchetti, P; Looney, MR; Gropper, MA; Hubmayr, R; Lowell, CA; Norris, PJ; Murphy, EL; Weiskopf, RB; Wilson, G; Koenigsberg, M; Lee, D.; Schuller, R.; Wu, P.

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion- related mortality. To determine TRALI incidence by prospective, active surveillance and to identify risk factors by a case-control study, 2 academic medical centers enrolled 89 cases and 164 transfused controls. Recipient risk factors identified by multivariate analysis were higher IL-8 levels, liver surgery, chronic alcohol abuse, shock, higher peak airway pressure while being mechanically ventilated, current ...

  13. Acute lung injury during antithymocyte globulin therapy for aplastic anemia

    Goligher, Ewan Christopher; Cserti-Gazdewich, Christine; Balter, Meyer; Gupta, Vikas; Joseph E Brandwein

    2009-01-01

    The case of a 33-year-old man with aplastic anemia who experienced recurrent episodes of hypoxemia and pulmonary infiltrates during infusions of antithymocyte globulin (ATG) is described. With the use of high-dose corticosteroids, the patient’s original episodes resolved, and were subsequently prevented before additional administrations of ATG. Rare reports of an association between ATG and acute lung injury are found in the literature, but this is the first report of successful steroid-suppo...

  14. APRV Mode in Ventilator Induced Lung Injury (VILI)

    Ata Mahmoodpoor; Samad EJ Golzari

    2014-01-01

    Ventilator-Induced Lung Injury (VILI), being a significant iatrogenic complication in the ICU patients, is associated with high morbidity and mortality. Numerous approaches, protocols and ventilation modes have been introduced and examined to decrease the incidence of VILI in the ICU patients. Airway pressure release ventilation (APRV), firstly introduced by Stock and Downs in 1987, applies higher Continuous Positive Airway Pressure (CPAP) levels in prolonged periods (P and T high) in order t...

  15. Pattern Recognition Receptor–Dependent Mechanisms of Acute Lung Injury

    Xiang, Meng; Fan, Jie

    2009-01-01

    Acute lung injury (ALI) that clinically manifests as acute respiratory distress syndrome is caused by an uncontrolled systemic inflammatory response resulting from clinical events including sepsis, major surgery and trauma. Innate immunity activation plays a central role in the development of ALI. Innate immunity is activated through families of related pattern recognition receptors (PRRs), which recognize conserved microbial motifs or pathogen-associated molecular patterns (PAMPs). Toll-like...

  16. Lung Surfactant Protein D (SP-D) Response and Regulation During Acute and Chronic Lung Injury

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F.;

    2013-01-01

    lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized......BACKGROUND: Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in...... three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS: Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS: In lipopolysaccharide-challenged mice, the level of SP-D in...

  17. [Protective effect of curcumin on oleic-induced acute lung injury in rats].

    Zhu, Rui-fang; Zhou, Min; He, Jian-lin; Ding, Fu-yun; Yu, Shu-qin; Xu, Guang-lin

    2008-09-01

    To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects. PMID:19066061

  18. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PM...

  19. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury

    Silva, Pedro L; Cruz, Fernanda F.; Fujisaki, Livia C; Gisele P. Oliveira; Samary, Cynthia S; Ornellas, Debora S; Maron-Gutierrez, Tatiana; Rocha, Nazareth N.; Goldenberg, Regina; Garcia, Cristiane SNB; MARCELO M. MORALES; Vera L. Capelozzi; Gama de Abreu, Marcelo; Pelosi, Paolo; Rocco, Patricia RM

    2010-01-01

    Introduction Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury ...

  20. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2 > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure

  1. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits. PMID:17629529

  2. The role of the acute phase protein PTX3 in the ventilator-induced lung injury

    JM Real; MM. Marques; GMGT Spilborghs; EM Negri; MM Matzuk; RP Moura; AA Camargo; Deheinzelin, D; AAM Dias

    2008-01-01

    The pentraxin 3 (PTX3) is an acute phase proinflammatory protein produced by fibroblasts and alveolar epithelial cells. We have previously demonstrated that PTX3 is a key modulator of inflammation. Mechanical ventilation (MV) is a life saving therapeutic approach for patients with acute lung injury that, nevertheless could lead to an inflammatory response and tissue injury (ventilator-induced lung injury: VILI), representing a major cause of iatrogenic lung damage in intensive units. Our obje...

  3. The progress in research on the mechanism, prevention and treatment of radiation-induced lung injury

    During radiotherapy of chest tumor,many patients often develop radiation-induced lung injury (including radiation induced interstitial pneumonia or pulmonary fibrosis), which significantly affects their quality of life. Therefore, it is very important to study the mechanism, prevention, and treatment of radiation-induced lung injury. Herein a review of recent research advances in radiation-induced lung injury is made, in order to provide theoretical basis for further research. (authors)

  4. Extravascular lung water index as an indicator of lung injury in septic patients

    Željko Drvar

    2015-06-01

    Full Text Available Introduction. Transpulmonary thermodilution using PiCCO (Pulse-induced Contour Cardiac Output is a standard minimally invasive method used for haemodynamic monitoring. Objectives. The goal of this paper is to examine the correlation and dynamics of the ExtraVascular Lung Water Index (EVLWI as an indicator of acute lung injury in septic patients who underwent major abdominal surgery. Two groups of patients were selected: the ones with ALI (Acute Lung Injury: ALI patient group, and the ones without ALI: non-ALI patient group. A correlation between EVLWI and other haemodynamic and respiratory data in both groups were analyzed. Materials and methods. The study included 48 patients. Throughout the seven-day period EVLWI, GEDVI (Global End-Diastolic Volume Index, ITBVI (IntraThoracic Blood Volume Index, CI (Cardiac Index, SVRI (Systemic Vascular Resistance Index were measured in both groups using PiCCO monitoring over 8-hour intervals as well as heart rate, mean arterial pressure, serum albumin concentration, PaCO2 (arterial partial pressure of carbon dioxide, PaO2 (arterial partial pressure of oxygen, PaO2/FiO2 (arterial partial pressure of oxygen/fraction of inspired oxygen ratio, lung compliance, lung resistance and ScvO2 (central venous oxygen saturation. All patients were analgosedated, intubated, mechanically ventilated, in sinus cardiac rhythm. Circulatory unstable patients had vasoactive support and Sequential Organ Failure Assessment (SOFA scores calculated. Ventilator settings and dosage of vasoactive drugs were kept constant during the study. Results. EVLWI was significantly higher in ALI patients group compared to non-ALI patients group. In patients with ALI group 11/22 patients died (50%, in the non-ALI patients group 6/26 patients died (23%. EVLWI was significantly higher in patients that died compared to ones who survived. Conclusion. EVLWI is a good indicator of early acute lung injury in surgical patients with sepsis.

  5. Differential effects of kidney-lung cross-talk during acute kidney injury and bacterial pneumonia

    Singbartl, Kai; Bishop, Jeffery; Wen, Xiaoyan; Murugan, Raghavan; Chandra, Saurabh; Filippi, Marie-Dominique; John A Kellum

    2011-01-01

    Acute kidney injury (AKI) and acute lung injury (ALI) represent serious, complex clinical problems. The combination of AKI and ALI drastically decreases survival. However, detailed knowledge about the interactions between these two organs is scarce.

  6. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients

    Slutsky Arthur S; Zhang Haibo; Haitsma Jack J; Royakkers Annick ANM; Determann Rogier M; Ranieri V Marco; Schultz Marcus J

    2010-01-01

    Abstract Background Preventing ventilator-associated lung injury (VALI) has become pivotal in mechanical ventilation of patients with acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). In the present study we investigated whether plasma levels of lung-specific biological markers can be used to evaluate lung injury in patients with ALI/ARDS and patients without lung injury at onset of mechanical ventilation. Methods Plasma levels of surfactant protein ...

  7. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites.

    Till, G O; Johnson, K J; R. Kunkel; Ward, P. A.

    1982-01-01

    Intravascular activation of the complement system with cobra venom factor results in acute lung injury, which has been quantitated by increases in lung vascular permeability. Cobra venom factor preparations devoid of phospholipase A2 activity retain full lung-damaging capacity. The lung injury is associated with the preceding appearance of chemotactic activity in the serum coincident with the development of a profound neutropenia. The chemotactic activity is immunochemically related to human ...

  8. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    Jia, Yanlin; Chen, Ken; Lin, Peihui; Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; LI Yu; Bryan A Whitson; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellula...

  9. KL-6 in acute lung injury: will it leave its mark?

    Shyamsundar, Murali; Danny F McAuley

    2008-01-01

    Studies have indicated that measuring biochemical measures of epithelial injury in plasma and alveolar fluid may be useful in predicting outcome in acute lung injury. The present commentary briefly reviews the evidence supporting the use of these biochemical biomarkers of epithelial injury in acute lung injury, and in particular KL-6, as well as their limitations. The article additionally proposes the need for physiological markers of epithelial function to complement current biochemical biom...

  10. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  11. A case of miriplatin-induced lung injury.

    Kumasawa, Fumio; Miura, Takao; Takahashi, Toshimi; Endo, Daisuke; Ohki, Takashi; Nakagawara, Hiroshi; Maruoka, Shuichiro; Tsujino, Ichiro; Masahiro, Ogawa; Gon, Yasuhiro; Takahashi, Noriaki; Moriyama, Mitsuhiko; Hashimoto, Shu

    2016-07-01

    A 69-year-old man with an 8-year history of hepatocellular carcinoma (HCC) was hospitalized for treatment of recurrent tumour. In 2010, the first transcatheter arterial chemoembolization (TACE) using miriplatin with agents (Lipiodol Ultra-Fluid) was performed and did not occur any adverse events. In 2014, since his HCC recurred, the TACE using miriplatin with agents was performed. Following this therapy, pyrexia occurred on day 3, followed by respiratory failure with cough and dyspnea on day 5. Chest radiography revealed scattered infiltration in the right upper lung fields, and chest computed tomography revealed ground grass attenuations, indicating fibrotic non-specific interstitial pneumonia. These findings progressively deteriorated, and a diagnosis of miriplatin-induced lung injury was made. His respiratory failure also progressively deteriorated. Treatment with pulse methylprednisolone therapy resulted in a dramatic improvement in both patient symptoms and radiological abnormalities. PMID:26867794

  12. Lung function

    2005-01-01

    2005200 The effect of body position changes on lung function, lung CT imaging and pathology in an oleic acid induced acute lung injury model. JI Xin-ping (戢新平), et al. Dept Emergency, 1st Affili Hosp, China Med Univ, Shenyang 110001. Chin J Tuberc Respir Dis, 2005;28(1) :33-36. Objective: To study the effect of body position changes on lung mechanics, oxygenation, CT images and pathology in an oleic acid-induced acute lung injury (ALl) model. Methods: The study groups con-

  13. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    Seung Jun Lee

    Full Text Available Radiation-induced lung injury (RILI is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day. Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis.

  14. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  15. Epithelial cell apoptosis causes acute lung injury masquerading as emphysema.

    Mouded, Majd; Egea, Eduardo E; Brown, Matthew J; Hanlon, Shane M; Houghton, A McGarry; Tsai, Larry W; Ingenito, Edward P; Shapiro, Steven D

    2009-10-01

    Theories of emphysema traditionally revolved around proteolytic destruction of extracellular matrix. Models have recently been developed that show airspace enlargement with the induction of pulmonary cell apoptosis. The purpose of this study was to determine the mechanism by which a model of epithelial cell apoptosis caused airspace enlargement. Mice were treated with either intratracheal microcystin (MC) to induce apoptosis, intratracheal porcine pancreatic elastase (PPE), or their respective vehicles. Mice from all groups were inflated and morphometry was measured at various time points. Physiology measurements were performed for airway resistance, tissue elastance, and lung volumes. The groups were further analyzed by air-saline quasistatic measurements, surfactant staining, and surfactant functional studies. Mice treated with MC showed evidence of reversible airspace enlargement. In contrast, PPE-treated mice showed irreversible airspace enlargement. The airspace enlargement in MC-treated mice was associated with an increase in elastic recoil due to an increase in alveolar surface tension. PPE-treated mice showed a loss of lung elastic recoil and normal alveolar surface tension, a pattern more consistent with human emphysema. Airspace enlargement that occurs with the MC model of pulmonary epithelial cell apoptosis displays physiology distinct from human emphysema. Reversibility, restrictive physiology due to changes in surface tension, and alveolar enlargement associated with heterogeneous alveolar collapse are most consistent with a mild acute lung injury. Inflation near total lung capacity gives the appearance of enlarged alveoli as neighboring collapsed alveoli exert tethering forces. PMID:19188661

  16. Transfusion-Related Acute Lung Injury Following Upper Extremity Replantation

    Celalettin Sever

    2012-09-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a common adverse effect of blood transfusion that is often underrecognised and underreported. We would like to report a case of TRALI after the replantation and transfusion of blood components in a male patient who had sustained a complete amputation of the right upper extremity. The level of amputation was just proximal to the humeral condyles. Replantation was performed 5 hours after the accident and 36 units of blood products were transfused intraoperatively. Subsequently, during the early postoperative period, TRALI was revealed. In this case report, the circumstances of this injury and preventive measures are discussed to understand and recognise this condition in order to reduce the morbidity and mortality of TRALI. It is important to distinguish TRALI from other causes of pulmonary oedema because early diagnosis and management are associated with a favourable outcome.

  17. Triptolide ameliorates lipopolysaccharide-induced acute lung injury in rats

    Gao, Jianling; Zhan, Ying; Chen, Jun; Wang, Lina; Yang, Jianping

    2013-01-01

    Background Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. In this study, the effects of triptolide on lipopolysaccharide (LPS)-induced ALI in rats were investigated. Methods Sixty-five male Sprague Dawley rats(approved by ethics committee of the First Affiliated Hospital of Soochow University) were randomly divided into five groups. The control group was injected with 2.5 mL saline/kg body weight via the tail vein and intraperitoneally with 1% dimethyl s...

  18. Animal study on lung injury caused by simulant segmented shock waves

    2001-01-01

    Objective: To study the lung injury caused by se gmented shock waves.   Methods: A total of 60 rabbits and 20 rats were used in this st udy. The process of transmission of shock waves was divided into three phases, i .e., the recompression phase (RP), the decompression phase (DP) and the underpre ssure phase (UP). And the recompression wave (RW), the decompression wave (DW) a nd the underpressure wave (UW) simulated the three phases, respectively, generat ed by the equipment designed by us. The RW test, DW test and UW test were respec tively applied to the animals. And lung injuries caused by segmented shock waves were discussed.   Results: Under the experimental conditions, the RW did not caus e obvious lung injury, but the DW could cause different severities of lung injur ies. The greater the decompression ranged and the shorter the decompression dura tion was adopted, the more severe the lung injury was observed. The UW, to some extent, could cause obvious lung injury.   Conclusions: It suggests that lung injury under shock waves pro bably occurs during the DP primarily. It probably does not cause direct obvious lung injury during the RP, but significantly influences the capability of causin g lung injury during the DP.

  19. Regulation and repair of the alveolar-capillary barrier in acute lung injury.

    Bhattacharya, Jahar; Matthay, Michael A

    2013-01-01

    Considerable progress has been made in understanding the basic mechanisms that regulate fluid and protein exchange across the endothelial and epithelial barriers of the lung under both normal and pathological conditions. Clinically relevant lung injury occurs most commonly from severe viral and bacterial infections, aspiration syndromes, and severe shock. The mechanisms of lung injury have been identified in both experimental and clinical studies. Recovery from lung injury requires the reestablishment of an intact endothelial barrier and a functional alveolar epithelial barrier capable of secreting surfactant and removing alveolar edema fluid. Repair mechanisms include the participation of endogenous progenitor cells in strategically located niches in the lung. Novel treatment strategies include the possibility of cell-based therapy that may reduce the severity of lung injury and enhance lung repair. PMID:23398155

  20. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  1. Melatonin reduces acute lung injury in endotoxemic rats

    SHANG You; XU San-peng; WU Yan; JIANG Yuan-xu; WU Zhou-yang; YUAN Shi-ying; YAO Shang-long

    2009-01-01

    Background Treatment with melatonin significantly reduces lung injury induced by bleomycin, paraquat and ischemia reperfusion. In the present study, we investigated the possible protective roles of melatonin in pulmonary inflammation and lung injury during acute endotoxemia.Methods Thirty-two male Sprague-Dawley rats were randomly assigned to four groups: vehicle + saline group, melatonin + saline group, vehicle + lipopolysaccharide group, melatonin + lipopolysaccharide group. The rats were treated with melatonin (10 mg/kg, intraperitoneal injection (I.p.)) or vehicle (1% ethanol saline), 30 minutes prior to lipopolysaccharide administration (6 mg/kg, intravenous injection). Four hours after lipopolysaccharide injection, samples of pulmonary tissue were collected. Blood gas analysis was carried out. Optical microscopy was performed to examine pathological changes in lungs and lung injury score was assessed. Wet/dry ratios (W/D), myeloperoxidase activity, malondialdehyde concentrations and tumor necrosis factor-alpha (TNF-a) and interleukin-10 (IL-10) levels in lungs were measured. The pulmonary expression of nuclear factor-kappa B (NF-KB) p65 was evaluated by Western blotting. Results PaO2 in the vehicle + lipopolysaccharide group decreased compared with that in the vehicle + saline group. This decrease was significantly reduced in the melatonin + lipopolysaccharide group. The lung tissues from the saline + lipopolysaccharide group were significantly damaged, which were less pronounced in the melatonin + lipopolysaccharide group. The W/D ratio increased significantly in the vehicle + lipopolysaccharide group (6.1±0.18) as compared with that in the vehicle + saline group (3.611±0.3) (P <0.01), which was significantly reduced in the melatonin + lipopolysaccharide group (4.8±0.25) (P <0.01). Myeloperoxidase activity and malondialdehyde levels increased significantly in the vehicle + lipopolysaccharide group compared with that in the vehicle + saline group, which

  2. A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury

    Rector Edward S

    2004-11-01

    Full Text Available Abstract Background Biologically variable ventilation (return of physiological variability in rate and tidal volume using a computer-controller was compared to control mode ventilation with and without a recruitment manoeuvre – 40 cm H2O for 40 sec performed hourly; in a porcine oleic acid acute lung injury model. Methods We compared gas exchange, respiratory mechanics, and measured bronchoalveolar fluid for inflammatory cytokines, cell counts and surfactant function. Lung injury was scored by light microscopy. Pigs received mechanical ventilation (FIO2 = 0.3; PEEP 5 cm H2O in control mode until PaO2 decreased to 60 mm Hg with oleic acid infusion (PaO2/FIO2 2O was added after injury. Animals were randomized to one of the 3 modes of ventilation and followed for 5 hr after injury. Results PaO2 and respiratory system compliance was significantly greater with biologically variable ventilation compared to the other 2 groups. Mean and mean peak airway pressures were also lower. There were no differences in cell counts in bronchoalveolar fluid by flow cytometry, or interleukin-8 and -10 levels between groups. Lung injury scoring revealed no difference between groups in the regions examined. No differences in surfactant function were seen between groups by capillary surfactometry. Conclusions In this porcine model of acute lung injury, various indices to measure injury or inflammation did not differ between the 3 approaches to ventilation. However, when using a low tidal volume strategy with moderate levels of PEEP, sustained improvements in arterial oxygen tension and respiratory system compliance were only seen with BVV when compared to CMV or CMV with a recruitment manoeuvre.

  3. Preemptive mechanical ventilation can block progressive acute lung injury.

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  4. Nebulized anticoagulants limit pulmonary coagulopathy, but not inflammation, in a model of experimental lung injury

    Hofstra, Jorrit J; Vlaar, Alexander P; Cornet, Alexander D; Dixon, Barry; Roelofs, Joris J; Choi, Goda; van der Poll, Tom; Levi, Marcel; Schultz, Marcus J

    2010-01-01

    BACKGROUND: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. METHODS: Male Sprague-Dawley rats were intravenously challenge

  5. Nebulized Anticoagulants Limit Pulmonary Coagulopathy, But Not Inflammation, in a Model of Experimental Lung Injury

    J.J. Hofstra; A.P. Vlaar; A.D. Cornet; B. Dixon; J.J. Roelofs; G. Choi; T. van der Poll; M. Levi; M.J. Schultz

    2010-01-01

    Background: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. Methods: Male Sprague-Dawley rats were intravenously challenge

  6. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature.

    Halbertsma, F.J.; Vaneker, M.; Scheffer, G.J.; Hoeven, J.G. van der

    2005-01-01

    BACKGROUND: Mechanical ventilation is known to induce and aggravate lung injury. One of the underlying mechanisms is biotrauma, an inflammatory response in which cytokines play a crucial role. OBJECTIVE: To review the literature on the role of cytokines in ventilator-induced lung injury (VILI) and m

  7. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  8. Protective effect of salvianolate on lung injury induced by ischemia reperfusion injury of liver in mice

    Zheng-xin WANG

    2011-11-01

    Full Text Available Objective To evaluate the protective effect of salvianolate on lung injury induced by hepatic ischemia reperfusion(IR injury in mice and its underlying mechanisms.Methods A hepatic IR model of mice was reproduced,and 24 animals were assigned into 3 groups(8 each: sham operation(SO group,control group and salvianolate(SV group.Just before ischemia induction,animals in SV group received salvianolate injection at a dose of 60 mg/kg via tail vein,while in control group the mice received normal saline with an equal volume,and in SO group the mice received the same operation as in SV group but without producing liver ischemia.Four hours after reperfusion,the serum,liver and lung tissue were collected.The alanine aminotransferase(ALT and aspartate aminotransferase(AST levels in serum were detected and the histological changes in liver and lung were examined.The wet-to-dry weight ratio of pulmonary tissue was measured.The contents of tumor necrosis factor α(TNF-α,interleukin(IL-6,IL-1β and IL-10 in bronchoalveolar lavage fluid(BALF were detected by enzyme linked immunosorbent assay(ELISA,and the relative mRNA levels of TNF-α,IL-6,IL-1β and IL-10 in pulmonary tissue were analyzed by real-time reverse transcription PCR(RT-PCR.The activaty of transcription factor NF-κB was measured with Western blotting analysis.Results No significant pathologic change was found in mice of SO group.Compared with the mice in control group,those in SV group exhibited lower levels of ALT and AST(P < 0.01,lighter histological changes in liver and lung(P < 0.05,lower levels of wet-to-dry weight ratio of lung tissue(P < 0.05,lower expression levels of TNF-α,IL-6,IL-1β and IL-10 in BALF and lung tissue(P < 0.05 or P < 0.01.Further examination demonstrated that the activity of NF-κB in SV group was significantly down-regulated as compared with that in control group.Conclusion Salvianolate can attenuate lung injury induced by hepatic IR in mice,the mechanism may inclade

  9. Matrix Metalloproteinase Activity in Pediatric Acute Lung Injury

    Michele YF Kong, Amit Gaggar, Yao Li, Margaret Winkler, J Edwin Blalock, JP Clancy

    2009-01-01

    Full Text Available Pediatric Acute Lung Injury (ALI is associated with a high mortality and morbidity, and dysregulation of matrix metalloproteinases (MMPs may play an important role in the pathogenesis and evolution of ALI. Here we examined MMP expression and activity in pediatric ALI compared with controls. MMP-8, -9, and to a lesser extent, MMP-2, -3, -11 and -12 were identified at higher levels in lung secretions of pediatric ALI patients compared with controls. Tissue Inhibitor of Matrix metalloproteinase-1 (TIMP-1, a natural inhibitor of MMPs was detected in most ALI samples, but MMP-9:TIMP-1 ratios were high relative to controls. In subjects who remained intubated for ≥10 days, MMP-9 activity decreased, with > 80% found in the latent form. In contrast, almost all MMP-8 detected at later disease course was constitutively active. Discriminating MMP-9:TIMP-1 ratios were found in those who had a prolonged ALI course. These results identify a specific repertoire of MMP isoforms in the lung secretions of pediatric ALI patients, and demonstrate inverse changes in MMPs -8 and -9 with protracted disease.

  10. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  11. Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury.

    Preuss, Stefanie; Stadelmann, Sabrina; Omam, Friede D; Scheiermann, Julia; Winoto-Morbach, Supandi; von Bismarck, Philipp; Knerlich-Lukoschus, Friederike; Lex, Dennis; Adam-Klages, Sabine; Wesch, Daniela; Held-Feindt, Janka; Uhlig, Stefan; Schütze, Stefan; Krause, Martin F

    2012-08-01

    D-myo-inositol-1,2,6-trisphosphate (IP3) is an isomer of the naturally occurring second messenger D-myo-inositol-1,4,5-trisphosphate, and exerts anti-inflammatory and antiedematous effects in the lung. Myo-inositol (Inos) is a component of IP3, and is thought to play an important role in the prevention of neonatal pulmonary diseases such as bronchopulmonary dysplasia and neonatal acute lung injury (nALI). Inflammatory lung diseases are characterized by augmented acid sphingomyelinase (aSMase) activity leading to ceramide production, a pathway that promotes increased vascular permeability, apoptosis, and surfactant alterations. A novel, clinically relevant triple-hit model of nALI was developed, consisting of repeated airway lavage, injurious ventilation, and lipopolysaccharide instillation into the airways, every 24 hours. Thirty-five piglets were randomized to one of four treatment protocols: control (no intervention), surfactant alone, surfactant + Inos, and surfactant + IP3. After 72 hours of mechanical ventilation, lungs were excised from the thorax for subsequent analyses. Clinically, oxygenation and ventilation improved, and extravascular lung water decreased significantly with the S + IP3 intervention. In pulmonary tissue, we observed decreased aSMase activity and ceramide concentrations, decreased caspase-8 concentrations, reduced alveolar epithelial apoptosis, the reduced expression of interleukin-6, transforming growth factor-β1, and amphiregulin (an epithelial growth factor), reduced migration of blood-borne cells and particularly of CD14(+)/18(+) cells (macrophages) into the airspaces, and lower surfactant surface tensions in S + IP3-treated but not in S + Inos-treated piglets. We conclude that the admixture of IP3 to surfactant, but not of Inos, improves gas exchange and edema in our nALI model by the suppression of the governing enzyme aSMase, and that this treatment deserves clinical evaluation. PMID:22403805

  12. Clinical review: The implications of experimental and clinical studies of recruitment maneuvers in acute lung injury

    Piacentini Gómez, Enrique; Villagrá, Ana; López Aguilar, Josefina; Blanch Torra, Lluís

    2003-01-01

    Mechanical ventilation can cause and perpetuate lung injury if alveolar overdistension, cyclic collapse, and reopening of alveolar units occur. The use of low tidal volume and limited airway pressure has improved survival in patients with acute lung injury or acute respiratory distress syndrome. The use of recruitment maneuvers has been proposed as an adjunct to mechanical ventilation to re-expand collapsed lung tissue. Many investigators have studied the benefits of recruitment maneuvers in ...

  13. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F.

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  14. Time profile of oxidative stress and neutrophil activation in ovine acute lung injury and sepsis

    Lange, Matthias; Szabo, Csaba; Traber, Daniel L.; Horvath, Eszter; Hamahata, Atsumori; Nakano, Yoshimitsu; Traber, Lillian D.; Cox, Robert A.; Schmalstieg, Frank C.; Herndon, David N.; Enkhbaatar, Perenlei

    2012-01-01

    The formation of oxidative stress in the lung and activation of neutrophils are major determinants in the development of respiratory failure following acute lung injury (ALI) and sepsis. However, the time changes of these pathogenic factors have not been sufficiently described. Twenty-four chronically instrumented sheep were subjected to cotton smoke inhalation injury and instillation of live Pseudomonas aeruginosa into both lungs. The sheep and were euthanized at 4, 8, 12, 18, and 24 hours p...

  15. Short women with severe sepsis-related acute lung injury receive lung protective ventilation less frequently: an observational cohort study

    Han, SeungHye; Martin, Greg S.; Maloney, James P.; Shanholtz, Carl; Barnes, Kathleen C.; Murray, Stacey; Sevransky, Jonathan E.

    2011-01-01

    Introduction Lung protective ventilation (LPV) has been shown to improve survival and the duration of mechanical ventilation in acute lung injury (ALI) patients. Mortality of ALI may vary by gender, which could result from treatment variability. Whether gender is associated with the use of LPV is not known. Methods A total of 421 severe sepsis-related ALI subjects in the Consortium to Evaluate Lung Edema Genetics from seven teaching hospitals between 2002 and 2008 were included in our study. ...

  16. Titrating Open Lung PEEP in Acute Lung Injury : A clinical method based on changes in dynamic compliance

    Suarez Sipmann, Fernando

    2008-01-01

    The recognition that supportive mechanical ventilation can also damage the lung, the so called ventilation induced lung injury (VILI), has revived the more than 40 year long debate on the optimal level of PEEP to be used. It is established that the prevention of VILI improves patient outcome and that PEEP exerts protective effects by preventing unstable diseased alveoli from collapsing. Therefore, the term “open lung PEEP” (OL-PEEP) has been introduced as the end-expiratory pressure that keep...

  17. Ventilator „Chirana Aura V“ In Two Models Of Neonatal Acute Lung Injury - A Pilot Study

    Tomclkova L.

    2014-05-01

    Full Text Available In severe respiratory insufficiency, neonatal and pediatric patients should be ventilated artificially by a ventilator. Aim of this experimental study was to evaluate whether the newly developed ventilator Chirana Aura V may effectively ventilate the lungs of animals with two different models of acute lung injury: acute respiratory distress syndrome (ARDS induced by repetitive saline lavage and meconium aspiration syndrome (MAS induced by intratracheal instillation of neonatal meconium. The experiments were performed on 10 adult rabbits (New Zealand white. In ARDS group (n=5, the lungs were repetitively lavaged with saline (30 ml/kg until partial pressure of oxygen (PaO2 in arterial blood was under 26.7 kPa at inspiratory fraction of oxygen FiO2=1.0. In MAS group (n=5, animals were instilled 4 ml/kg of suspension of human meconium (25 mg/ml. When the model of acute lung injury was developed, animals were ventilated for additional 2 hours with pressure control ventilation (PCV regime by ventilator Chirana Aura V. Ventilatory parameters, blood gases, acid-base balance, end-tidal CO2, O2 saturation of hemoglobin, oxygenation indexes, ventilation efficiency index, dynamic lung compliance, and right-to-left pulmonary shunts were measured and calculated in regular time intervals. In both experimental groups, used ventilatory settings provided acceptable gas exchange within the period of observation. Thus, the results indicate that ventilator Chirana Aura V might be suitable for ventilation of animal models of acute lung injury. However, further pre-clinical investigation is needed before its use may be recommended in neonatal and/or pediatric patients with acute lung injury.

  18. Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor.

    Shaver, Ciara M; Grove, Brandon S; Putz, Nathan D; Clune, Jennifer K; Lawson, William E; Carnahan, Robert H; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2015-11-01

    Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI. PMID:25884207

  19. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment.

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F; Kolliputi, Narasaiah

    2015-09-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  20. Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury.

    Shaver, Ciara M; Grove, Brandon S; Clune, Jennifer K; Mackman, Nigel; Ware, Lorraine B; Bastarache, Julie A

    2016-01-01

    Tissue factor (TF) is a critical mediator of direct acute lung injury (ALI) with global TF deficiency resulting in increased airspace inflammation, alveolar-capillary permeability, and alveolar hemorrhage after intra-tracheal lipopolysaccharide (LPS). In the lung, TF is expressed diffusely on the lung epithelium and intensely on cells of the myeloid lineage. We recently reported that TF on the lung epithelium, but not on myeloid cells, was the major source of TF during intra-tracheal LPS-induced ALI. Because of a growing body of literature demonstrating important pathophysiologic differences between ALI caused by different etiologies, we hypothesized that TF on myeloid cells may have distinct contributions to airspace inflammation and permeability between direct and indirect causes of ALI. To test this, we compared mice lacking TF on myeloid cells (TF(∆mye), LysM.Cre(+/-)TF(flox/flox)) to littermate controls during direct (bacterial pneumonia, ventilator-induced ALI, bleomycin-induced ALI) and indirect ALI (systemic LPS, cecal ligation and puncture). ALI was quantified by weight loss, bronchoalveolar lavage (BAL) inflammatory cell number, cytokine concentration, protein concentration, and BAL procoagulant activity. There was no significant contribution of TF on myeloid cells in multiple models of experimental ALI, leading to the conclusion that TF in myeloid cells is not a major contributor to experimental ALI. PMID:26924425

  1. Acute Lung Injury Due To Carbon Monoxide Exposure

    Uzkeser M et al.

    2012-10-01

    Full Text Available A 20-year-old woman, who was found unconscious in the bed by the morning, was brought to emergency department. Her carboxyhemoglobin level was 20.2%. The portable chest X-ray showed bilaterally alveolar and interstitial infiltration. Initial pO 2 /FIO 2 ratio was calculated as 119 mmHg. Acute lung injury due to carbon monoxide intoxication was considered. She was intubated and mechanical ventilation was applied. In the second day of hospitalization, a clear improvement was observed on the chest X-ray. She was discharged without any complication on the seventh day of hospitalization. Early diagnosis and treatment may prevent progression of ARDS and progression of permanent damage, and may lead to complete recovery.

  2. A suspected case of transfusion-related acute lung injury

    Lulu Sherif

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a rare but serious complication of blood transfusion. We present a suspected case of TRALI in a 39-year-old female patient who underwent total abdominal hysterectomy under uneventful general anesthesia. The patient developed acute desaturation due to noncardiogenic pulmonary edema while receiving compatible blood transfusion on the second postoperative day. As her symptoms were refractory to supportive treatment, she was mechanically ventilated for 3 days and successfully extubated on the fourth day. By exclusion, a clinical diagnosis of TRALI was made. The treatment for TRALI requires discontinuing transfusion and giving respiratory and cardiovascular support. Most cases show clinical improvement in first few hours and resolve completely within 96 h.

  3. Biomarkers of acute lung injury: worth their salt?

    Proudfoot Alastair G

    2011-12-01

    Full Text Available Abstract The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy.

  4. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Tian-Shun Lai

    2015-01-01

    Full Text Available Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN]-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI, and mesenchymal stem cell (MSC can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg. MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2 in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  5. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background:Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI),and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury,reduce lung impairs,and enhance the repair of VILI.However,whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown.This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI.Methods:Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg).MSCs were given before or after ventilation.The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation,and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation.Results:Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration,inflammatory chemokines (tumor necrosis factor-alpha,interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid,and injury score of the lung tissue.These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity,production of radical oxygen series.MSC intervention especially pretreatment attenuated subsequent lung injury,systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation.Conclusions:MV causes profound lung injury and PMN-predominate inflammatory responses.The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  6. Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury

    M. Corbel

    2000-07-01

    Full Text Available Acute lung injury is characterized by a severe disruption of alveolo-capillary structures and includes a variety of changes in lung cell populations. Evidence suggests the occurrence of rupture of the basement membranes and interstitial matrix remodeling during acute lung injury. The dynamic equilibrium of the extracellular matrix (ECM under physiological conditions is a consequence of the balance between the regulation of synthesis and degradation of ECM components. Matrix metalloproteinases (MMPs represent a group of enzymes involved in the degradation of most of the components of the ECM and therefore participate in tissue remodeling associated with pathological situations such as acute lung injury. MMP activity is regulated by proteolytic activation of the latent secreted proenzyme and by interaction with specific tissue inhibitors of metalloproteinases. This review details our knowledge of the involvement of MMPs, namely MMP-2 and MMP-9, in acute lung injury and acute respiratory distress syndrome.

  7. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment

    Degryse, Amber L.; Tanjore, Harikrishna; Xu, Xiaochuan C.; Polosukhin, Vasiliy V.; Jones, Brittany R.; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P.; McMahon, Frank B.; Gleaves, Linda A.; Blackwell, Timothy S.; Lawson, William E.

    2011-01-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice tha...

  8. High bias gas flows increase lung injury in the ventilated preterm lamb.

    Katinka P Bach

    Full Text Available BACKGROUND: Mechanical ventilation of preterm babies increases survival but can also cause ventilator-induced lung injury (VILI, leading to the development of bronchopulmonary dysplasia (BPD. It is not known whether shear stress injury from gases flowing into the preterm lung during ventilation contributes to VILI. METHODS: Preterm lambs of 131 days' gestation (term = 147 d were ventilated for 2 hours with a bias gas flow of 8 L/min (n = 13, 18 L/min (n = 12 or 28 L/min (n = 14. Physiological parameters were measured continuously and lung injury was assessed by measuring mRNA expression of early injury response genes and by histological analysis. Control lung tissue was collected from unventilated age-matched fetuses. Data were analysed by ANOVA with a Tukey post-hoc test when appropriate. RESULTS: High bias gas flows resulted in higher ventilator pressures, shorter inflation times and decreased ventilator efficiency. The rate of rise of inspiratory gas flow was greatest, and pulmonary mRNA levels of the injury markers, EGR1 and CTGF, were highest in lambs ventilated with bias gas flows of 18 L/min. High bias gas flows resulted in increased cellular proliferation and abnormal deposition of elastin, collagen and myofibroblasts in the lung. CONCLUSIONS: High ventilator bias gas flows resulted in increased lung injury, with up-regulation of acute early response genes and increased histological lung injury. Bias gas flows may, therefore, contribute to VILI and BPD.

  9. Transfusion related acute lung injury presenting with acute dyspnoea: a case report

    Haji Altaf

    2008-10-01

    Full Text Available Abstract Introduction Transfusion-related acute lung injury is emerging as a common cause of transfusion-related adverse events. However, awareness about this entity in the medical fraternity is low and it, consequently, remains a very under-reported and often an under-diagnosed complication of transfusion therapy. Case presentation We report a case of a 46-year old woman who developed acute respiratory and hemodynamic instability following a single unit blood transfusion in the postoperative period. Investigation results were non-specific and a diagnosis of transfusion-related acute lung injury was made after excluding other possible causes of acute lung injury. She responded to symptomatic management with ventilatory and vasopressor support and recovered completely over the next 72 hours. Conclusion The diagnosis of transfusion-related acute lung injury relies on excluding other causes of acute pulmonary edema following transfusion, such as sepsis, volume overload, and cardiogenic pulmonary edema. All plasma containing blood products have been implicated in transfusion-related acute lung injury, with the majority being linked to whole blood, packed red blood cells, platelets, and fresh-frozen plasma. The pathogenesis of transfusion-related acute lung injury may be explained by a "two-hit" hypothesis, involving priming of the inflammatory machinery and then activation of this primed mechanism. Treatment is supportive, with prognosis being substantially better than for most other causes of acute lung injury.

  10. Protective effect of albumin on lung injury in traumatic/hemorrhagic shock in rats

    DING Chen-yan; CHEN Zuo-bing; ZHENG Shu-sen; GAO Yuan; ZHANG Yun; ZHAO Xue-hong; NI Ling-mei

    2005-01-01

    Objective: To determine the effect of albumin administration on lung injury in traumatic/hemorrhagic shock (T/HS) in rats. Methods: Forty-eight adult Sprague-Dawley rats were divided into three groups randomly (n=16 in each group): Group A, Group B, Group C. In Group A, rats underwent laparotomy without shock. In Group B, rats undergoing T/HS were resuscitated with their blood plus lactated Ringer's (twice the volume of shed blood). In Group C, rats undergoing T/HS were resuscitated with their shed blood plus additional 3 ml of 5% human albumin. The expression of polymorphonuclear neutrophils CD18/CD11b in jugular vein blood was evaluated. The main lung injury indexes (the activity of myeloperoxidase and lung injury score) were measured. Results: Significant differences of the expression of CD18/11b and the severity degree of lung injury were found between the three groups.(P<0.05). The expression of CD18/CD11b and the main lung injury indexes in Group B and Goup C incresed significantly compared with those in Group A(P<0.05).At the same time, the expression of CD18/CD11b and the main lung injury indexes in Group C decreased dramatically, compared with those in Group B (P<0.05). Conclusions: The infusion of albumin during resuscitation period can protect lungs from injury and decrease the expression of CD18/CD11b in T/HS rats.

  11. Ultrafine particles in the airway aggravated experimental lung injury through impairment in Treg function.

    Li, Guanggang; Cao, Yinghua; Sun, Yue; Xu, Ruxiang; Zheng, Zhendong; Song, Haihan

    2016-09-01

    Acute lung injury (ALI) is a life-threatening condition characterized by rapid-onset alveolar-capillary damage mediated by pathogenic proinflammatory immune responses. Since exposure to airway particulate matter (PM) could significantly change the inflammatory status of the individual, we investigated whether PM instillation in the airway could alter the course of ALI, using a murine model with experimental lung injury induced by intratracheal LPS challenge. We found that PM-treated mice presented significantly aggravated lung injury, which was characterized by further reductions in body weight, increased protein concentration in the bronchoalveolar lavage (BAL), and higher mortality rate, compared to control saline-treated mice. The PM-treated mice also presented elevated lung and systemic type 1 T helper cell (Th1) frequency as well as reduced lung regulatory T cell (Treg) frequency, which was associated with severity of lung injury. Further examinations revealed that the Treg function was impaired in PM-treated mice, characterized by significantly repressed transforming growth factor beta production. Adoptive transfer of functional Tregs from control mice to PM-treated mice significantly improved their prognosis after intratracheal LPS challenge. Together, these results demonstrated that first, PM in the airway aggravated lung injury; second, severity of lung injury was associated with T cell subset imbalance in PM-treated mice; and third, PM treatment induced quantitative as well as qualitative changes in the Tregs. PMID:27179778

  12. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway

  13. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  14. Ventilator-associated lung injury during assisted mechanical ventilation.

    Saddy, Felipe; Sutherasan, Yuda; Rocco, Patricia R M; Pelosi, Paolo

    2014-08-01

    Assisted mechanical ventilation (MV) may be a favorable alternative to controlled MV at the early phase of acute respiratory distress syndrome (ARDS), since it requires less sedation, no paralysis and is associated with less hemodynamic deterioration, better distal organ perfusion, and lung protection, thus reducing the risk of ventilator-associated lung injury (VALI). In the present review, we discuss VALI in relation to assisted MV strategies, such as volume assist-control ventilation, pressure assist-control ventilation, pressure support ventilation (PSV), airway pressure release ventilation (APRV), APRV with PSV, proportional assist ventilation (PAV), noisy ventilation, and neurally adjusted ventilatory assistance (NAVA). In summary, we suggest that assisted MV can be used in ARDS patients in the following situations: (1) Pao(2)/Fio(2) >150 mm Hg and positive end-expiratory pressure ≥ 5 cm H(2)O and (2) with modalities of pressure-targeted and time-cycled breaths including more or less spontaneous or supported breaths (A-PCV [assisted pressure-controlled ventilation] or APRV). Furthermore, during assisted MV, the following parameters should be monitored: inspiratory drive, transpulmonary pressure, and tidal volume (6 mL/kg). Further studies are required to determine the impact of novel modalities of assisted ventilation such as PAV, noisy pressure support, and NAVA on VALI. PMID:25105820

  15. 17β-estradiol protects the lung against acute injury: possible mediation by vasoactive intestinal polypeptide.

    Hamidi, Sayyed A; Dickman, Kathleen G; Berisha, Hasan; Said, Sami I

    2011-12-01

    Beyond their classical role as a class of female sex hormones, estrogens (e.g. 17β-estradiol) exert important biological actions, both protective and undesirable. We have investigated the ability of estradiol to protect the lung in three models of acute injury induced by 1) oxidant stress due to the herbicide paraquat; 2) excitotoxicity, caused by glutamate agonist N-methyl-d-aspartate; and 3) acute alveolar anoxia. We also assessed the role of estrogen receptors (ER) ERα and ERβ and the neuropeptide vasoactive intestinal peptide (VIP) in mediating this protection. Isolated guinea pig or rat lungs were perfused in situ at constant flow and mechanically ventilated. The onset and severity of lung injury were monitored by increases in pulmonary arterial and airway pressures, wet/dry lung weight ratio, and bronchoalveolar lavage fluid protein content. Estradiol was infused into the pulmonary circulation, beginning 10 min before induction of injury and continued for 60-90 min. Lung injury was marked by significant increases in the above measurements, with paraquat producing the most severe, and excitotoxicity the least severe, injury. Estradiol significantly attenuated the injury in each model. Both ER were constitutively expressed and immunohistochemically demonstrable in normal lung, and their selective agonists reduced anoxic injury, the only model in which they were tested. As it protected against injury, estradiol rapidly and significantly stimulated VIP mRNA expression in rat lung. Estradiol attenuated acute lung injury in three experimental models while stimulating VIP gene expression, a known mechanism of lung protection. The up-regulated VIP expression could have partially mediated the protection by estrogen. PMID:22009726

  16. RITUXIMAB TREATMENT FOR INTERSTITIAL LUNG INJURY IN SCLERODERMA SYSTEMATICA

    Lidia Petrovna Ananieva

    2013-12-01

    Full Text Available Objective: to study the efficiency and tolerance of rituximab (RTM treatment in patients with scleroderma systematica (SDS with interstitial lung injury (ILI.Subjects and methods. The trial included 27 patients (26 women and 1 man (mean age 45.7±13.0 years, with diffuse (n=13 and circumscribed (n = 14 forms and a disease duration of > 5 years in 63%. All the patients underwent chestcomputed tomography; examination of external respiratory function, including forced vital capacity (FVC and diffusing capacity of the lung (DCL, as well as echocardiographic study. The efficiency of the treatment was evaluated from changes in FVC, skin score, and disease activity index. The indicators were compared prior to the treatment and one year after the first administration of RTM. The latter was injected with premedication (125–500 mg of methylprednisolone intravenously 500–1000 mg per administration. The mean dose of RTM was low and amounted to 1.3 g per year.Results. As estimated by the physician, good, satisfactory, no effects were seen in 81.5, 14.8, and 3.7% of the patients, respectively. There was a significant increase in mean FVC one year after the first administration of RTM and a reduction in the total activity of the disease, including skin syndrome. DCL was substantially unchanged in the entire group. In the diffuse and circumscribed forms of the disease, FVC increased significantly and to the same extent. A clinically significant increase in FVC (by 11% was achieved in patients with a disease duration of ≤5 years and mild lung injury. In people with a more than 5-year disease duration, FVC was initially decreased to a greater extent and the treatment-induced increase was only 3.7%. A significant and permanent decline in peripheral blood B lymphocytes was noted when both the standard dose (2 g of RTM and its lower doses (0.5–1 g were administered. RTM treatment was well tolerated, but complicated by mild intercurrent infections

  17. Ventilation-induced lung injury is not exacerbated by growth restriction in preterm lambs.

    Allison, Beth J; Hooper, Stuart B; Coia, Elise; Zahra, Valerie A; Jenkin, Graham; Malhotra, Atul; Sehgal, Arvind; Kluckow, Martin; Gill, Andrew W; Sozo, Foula; Miller, Suzanne L; Polglase, Graeme R

    2016-02-01

    Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation. PMID:26608532

  18. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    李春盛; 桂培春; 何新华

    2000-01-01

    Objeaive. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury. Methods. Lipopolysaeeharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasoue group.Macroscopic and histopathological e~aminatiom were performed and biological markers were measured for the lung specimem. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA. Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P < 0.01),demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasoue and rhubarb emfld decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P< 0.01, P < 0.05) ; the correslxmding pathologic changes of lung tissues and the biological markers of the lung injury were simifieantlv decreased or ameliorated. Conclusions. The increase of the expression d ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI.The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM-1 m

  19. EXPRESSION OF INTERCELLULAR ADHESION MOLECULE IN LUNG TISSUES OF EXPERIMENTAL ACUTE LUNG INJURY AND THE AFFECT OF RHUBARB ON IT

    2000-01-01

    Objective. To approach the relation and the possible mechanism between the expression of intercellular adhesion molecule (ICAM-1) mRNA and acute lung injury (ALI) and the mechanisms of rhubarb in the prevention and treatment of the lung injury.Methods. Lipopolysaccharide (LPS) was injected into the sublingual vein of male Wistar rats to perform ALI animal model. The rats were divided into 4 groups: LPS group, control group, rhubarb group and dexamethasone group. Macroscopic and histopathological examinations were performed and biological markers were measured for the lung specimens. The markers included lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary vascular permeability and pulmonary alveolar permeability index. Molecular hybridization method was used to determine the expression of ICAM-1 mRNA.Results. In the lung tissues, the ICAM-1 mRNA expression was increased in the endothelial cells of pulmonary veins and capillaries, rhubarb and dexamethasone had the action of decreasing the expression. The light reflex value in the gray scale scanning showed that in the comparison between the LPS and the control group, the gray scale value of the lung tissues in ALI was significantly increased, thus the light reflex value was markedly decreased (P<0.01), demonstrating the expression of ICAM-1 mRNA was increased. In comparison with the LPS group, dexamethasone and rhubarb could decrease the gray scale value of the lung tissue significantly, thus the light reflex value was elevated (P<0.01, P<0.05); the corresponding pathologic changes of lung tissues and the biological markers of the lung injury were significantly decreased or ameliorated.Conclusions. The increase of the expression of ICAM-1 mRNA in the lung tissues of ALI plays the roles in ALI. The application of rhubarb and dexamethasone can decrease the expression and ameliorate the lung damage; its mechanism is possibly via the inhibition of ICAM

  20. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury

    Mabalirajan, Ulaganathan; Rehman, Rakhshinda; Ahmad, Tanveer; Kumar, Sarvesh; Singh, Suchita; Leishangthem, Geeta D.; Aich, Jyotirmoi; Kumar, Manish; Khanna, Kritika; Singh, Vijay P.; Dinda, Amit K; Biswal, Shyam; Agrawal, Anurag; Ghosh, Balaram

    2013-01-01

    Airway epithelial injury is the hallmark of various respiratory diseases, but its mechanisms remain poorly understood. While 13-S-hydroxyoctadecadienoic acid (13-S-HODE) is produced in high concentration during mitochondrial degradation in reticulocytes little is known about its role in asthma pathogenesis. Here, we show that extracellular 13-S-HODE induces mitochondrial dysfunction and airway epithelial apoptosis. This is associated with features of severe airway obstruction, lung remodeling...

  1. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  2. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  3. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)

    Afshari, Arash; Brok, Jesper; Møller, Ann;

    2010-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions that are associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far....

  4. Transfusion-related Acute Lung Injury in the Critically Ill: Prospective Nested Case-Control Study

    Gajic, Ognjen; Rana, Rimki; Winters, Jeffrey L.; Yilmaz, Murat; Mendez, Jose L.; Rickman, Otis B.; O'Byrne, Megan M.; Evenson, Laura K; Malinchoc, Michael; DeGoey, Steven R.; Afessa, Bekele; Hubmayr, Rolf D.; Moore, S. Breanndan

    2007-01-01

    Rationale: Acute lung injury (ALI) that develops 6 hours after transfusion (TRALI) is the leading cause of transfusion-related mortality. Several transfusion characteristics have been postulated as risk factors for TRALI, but the evidence is limited to retrospective studies.

  5. Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice

    Qiao, Ying-Ying; Liu, Xiao-Qin; Xu, Chang-Qin; Zhang, Zheng; Xu, Hong-wei

    2016-01-01

    AIM: To investigate the potential protective effect of exogenous recombinant interleukin-22 (rIL-22) on L-arginine-induced acute severe pancreatitis (SAP)-associated lung injury and the possible signaling pathway involved.

  6. Toxic Lung Injury in a Patient Addicted to “Legal Highs” – Case Study

    Toxic lung injury may manifest itself in many different ways, ranging from respiratory tract irritation and pulmonary edema in severe cases to constrictive bronchiolitis, being a more distant consequence. It is most often the result of accidental exposure to harmful substances at work, at home, or a consequence of industrial disaster. This article presents a case of toxic lung injury which occurred after inhalation of legal highs, the so-called “artificial hashish” and at first presented itself radiologically as interstitial pneumonia with pleural effusion and clinically as hypoxemic respiratory insufficiency. After treatment with high doses of steroids, it was histopathologically diagnosed as organizing pneumonia with lipid bodies. Due to the lack of pathognomonic radiological images for toxic lung injury, information on possible etiology of irritants is very important. As novel psychoactive substances appeared in Europe, they should be considered as the cause of toxic lung injury

  7. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-01-01

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury. PMID:27053543

  8. Potential Effects of Medicinal Plants and Secondary Metabolites on Acute Lung Injury

    Daniely Cornélio Favarin

    2013-01-01

    Full Text Available Acute lung injury (ALI is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.

  9. Amino acids and metal ions protect endothelial cells from lethal injury

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  10. Measuring dead-space in acute lung injury.

    Kallet, R H

    2012-11-01

    Several recent studies have advanced our understanding of dead-space ventilation in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). They have demonstrated the utility of measuring physiologic dead-space-to-tidal volume ratio (VD/VT) and related variables in assessing outcomes as well as therapeutic interventions. These studies have included the evaluation of mortality risk, pulmonary perfusion, as well as the effectiveness of drug therapy, prone positioning, positive end-expiratory pressure (PEEP) titration, and inspiratory pattern in improving gas exchange. In patients with ALI/ARDS managed with lung-protective ventilation a significant relationship between elevated VD/VT and increased mortality continues to be reported in both early and intermediate phases of ALI/ARDS. Some clinical evidence now supports the suggestion that elevated VD/VT in part reflects the severity of pulmonary vascular endothelial damage. Monitoring VD/VT also appears useful in assessing alveolar recruitment when titrating PEEP and may be a particularly expedient method for assessing the effectiveness of prone positioning. It also has revealed how subtle manipulations of inspiratory time and pattern can improve CO(2) excretion. Much of this has been accomplished using volumetric capnography. This allows for more sophisticated measurements of pulmonary gas exchange function including: alveolar VD/VT, the volume of CO(2) excretion and the slope of the alveolar plateau which reflects ventilation: perfusion heterogeneity. Many of these measurements now can be made non-invasively which should only increase the research and clinical utility of volumetric capnography in studying and managing patients with ALI/ARDS. PMID:22858884

  11. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Beck-Schimmer, B; Schwendener, R.; Pasch, T; Reyes, L.; Booy, C; Schimmer, R C

    2005-01-01

    BACKGROUND: Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. METHODS: Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation an...

  12. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Reyes Livia; Pasch Thomas; Schwendener Reto; Beck-Schimmer Beatrice; Booy Christa; Schimmer Ralph C

    2005-01-01

    Abstract Background Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. Methods Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumula...

  13. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)

    Afshari, Arash; Brok, Jesper; Møller, Ann;

    2010-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions that are associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far.......Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are critical conditions that are associated with high mortality and morbidity. Aerosolized prostacyclin has been used to improve oxygenation despite the limited evidence available so far....

  14. Mitigation of chlorine-induced lung injury by low-molecular-weight antioxidants

    Leustik, Martin; Doran, Stephen; Bracher, Andreas; Williams, Shawn; Squadrito, Giuseppe L.; Schoeb, Trenton R.; Postlethwait, Edward; Matalon, Sadis

    2008-01-01

    Chlorine (Cl2) is a highly reactive oxidant gas used extensively in a number of industrial processes. Exposure to high concentrations of Cl2 results in acute lung injury that may either resolve spontaneously or progress to acute respiratory failure. Presently, the pathophysiological sequelae associated with Cl2-induced acute lung injury in conscious animals, as well as the cellular and biochemical mechanisms involved, have not been elucidated. We exposed conscious Sprague-Dawley rats to Cl2 g...

  15. Inflammation and lung maturation from stretch injury in preterm fetal sheep

    Hillman, Noah H.; Graeme R Polglase; Jane Pillow, J.; Saito, Masatoshi; Suhas G Kallapur; Alan H Jobe

    2010-01-01

    Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (Vt) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n...

  16. Surfactant alterations and treatment of lung transplant ischemia-reperfusion injury

    Kaaij, Niels; Lachmann, Robert; Bogers, Ad; Lachmann, Burkhard

    2006-01-01

    textabstractThis review addresses surfactant alterations and treatment in lung transplant ischemia-reperfusion injury. Lung ischemia-reperfusion injury damages the endogenous surfactant system as a result of the production of reactive oxygen species, proteolytic enzymes and (phospho)lipases. Surfactant is composed of phospholipids and proteins and its main function is to reduce the surface tension inside the alveolus. Impairment of surfactant will cause atelectasis, influx of serum proteins, ...

  17. Prospective study on the clinical course and outcomes in transfusion-related acute lung injury

    Looney, MR; Roubinian, N; Gajic, O; Gropper, MA; Hubmayr, RD; Lowell, CA; Bacchetti, P.; Wilson, G.; Koenigsberg, M; Lee, DC; Wu, P; Grimes, B; Norris, PJ; Murphy, EL; Gandhi, MJ

    2014-01-01

    OBJECTIVE:: Transfusion-related acute lung injury is the leading cause of transfusion-related mortality. A prospective study using electronic surveillance was conducted at two academic medical centers in the United States with the objective to define the clinical course and outcomes in transfusion-related acute lung injury cases. DESIGN:: Prospective case study with controls. SETTING:: University of California, San Francisco and Mayo Clinic, Rochester. PATIENTS:: We prospectively enrolled 89 ...

  18. Fatal transfusion related acute lung injury following coronary artery by-pass surgery: a case report

    Bawany, Fauzia Ahmad; Sharif, Hasanat

    2008-01-01

    Background Transfusion related acute lung injury (TRALI) is a potentially fatal Acute Lung Injury following transfusion of blood components. Hypotheses implicate donor-derived anti-human leukocyte antigen or granulocyte antibodies reacting with recipients' leukocytes, releasing inflammatory mediators. Lack of agreement on underlying cellular and molecular mechanisms renders improving transfusion safety difficult and expensive. Case Presentation Literature search has not revealed any case of T...

  19. 5-Lipoxygenase Deficiency Prevents Respiratory Failure during Ventilator-induced Lung Injury

    Caironi, Pietro; Ichinose, Fumito; Liu, Rong; Jones, Rosemary C; Bloch, Kenneth D.; Zapol, Warren M.

    2005-01-01

    Rationale: Mechanical ventilation with high VT (HVT) progressively leads to lung injury and decreased efficiency of gas exchange. Hypoxic pulmonary vasoconstriction (HPV) directs blood flow to well-ventilated lung regions, preserving systemic oxygenation during pulmonary injury. Recent experimental studies have revealed an important role for leukotriene (LT) biosynthesis by 5-lipoxygenase (5LO) in the impairment of HPV by endotoxin. Objectives: To investigate whether or not impairment of HPV ...

  20. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    Sepehr, Reyhaneh; Audi, Said H.; Maleki, Sepideh; Staniszewski, Kevin; EIS, ANNIE L.; Konduri, Girija G.; Ranji, Mahsa

    2013-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damag...

  1. Recruitment Maneuver Does not Increase the Risk of Ventilator Induced Lung Injury

    Akıncı, İbrahim Özkan; Atalan, Korkut; Tuğrul, Simru; Özcan, Perihan Ergin; Yılmazbayhan, Dilek; Kıran, Bayram; Basel, Ahmet; Telci, Lutfi; Çakar, Nahit

    2013-01-01

    Background: Mechanical ventilation (MV) may induce lung injury. Aims: To assess and evaluate the role of different mechanical ventilation strategies on ventilator-induced lung injury (VILI) in comparison to a strategy which includes recruitment manoeuvre (RM). Study design: Randomized animal experiment. Methods: Thirty male Sprague-Dawley rats were anaesthetised, tracheostomised and divided into 5 groups randomly according to driving pressures; these were mechani...

  2. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Masahiro Hashizume; Marc Mouner; Joshua M. Chouteau; Gorodnya, Olena M.; Ruchko, Mykhaylo V.; Wilson, Glenn L.; Gillespie, Mark N.; Parker, James C.

    2014-01-01

    The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA) damage and ventilator induced lung injury (VILI). In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII) which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP) was reversed by EndoIII pret...

  3. Penetrating injury of the lungs and multiple injuries of lower extremities caused by aircraft bombs splinters

    Golubović Zoran

    2010-01-01

    Full Text Available Introduction. Injuries caused by aircraft bombs cause severe damages to the human body. They are characterized by massive destruction of injured tissues and organs, primary contamination by polymorph bacterial flora and modified reactivity of the body. Upon being wounded by aircraft bombs projectiles a victim simultaneously sustains severe damages of many organs and organ systems due to the fact that a large number of projectiles at the same time injure the chest, stomach, head and extremities. Case report. We presented a patient, 41 years of age, injured by aircraft bomb with hemo-pneumothorax and destruction of the bone and soft tissue structures of the foot, as well as the treatment result of such heavy injuries. After receiving thoracocentesis and short reanimation, the patient underwent surgical procedure. The team performed thoracotomy, primary treatment of the wound and atypical resection of the left lung. Thoracic drains were placed. The wounds on the lower leg and feet were treated primarily. Due to massive destruction of bone tissue of the right foot by cluster bomb splinters, and impossibility of reconstruction of the foot, guillotine amputation of the right lower leg was performed. Twelve days after the wounding caused by cluster bomb splinters, soft tissue of the left lower leg was covered by Tirsch free transplantant and the defect in the area of the left foot was covered by dorsalis pedis flap. The transplant and flap were accepted and the donor sites were epithelized. Twenty-six days following the wounding reamputation was performed and amputation stump of the right lower leg was closed. The patient was given a lower leg prosthesis with which he could move. Conclusion. Upon being wounded by aircraft bomb splinters, the injured person sustains severe wounds of multiple organs and organ systems due to simultaneous injuries caused by a large number of projectiles. It is necessary to take care of the vital organs first because they

  4. APRV Mode in Ventilator Induced Lung Injury (VILI

    Ata Mahmoodpoor

    2014-01-01

    Full Text Available Ventilator-Induced Lung Injury (VILI, being a significant iatrogenic complication in the ICU patients, is associated with high morbidity and mortality. Numerous approaches, protocols and ventilation modes have been introduced and examined to decrease the incidence of VILI in the ICU patients. Airway pressure release ventilation (APRV, firstly introduced by Stock and Downs in 1987, applies higher Continuous Positive Airway Pressure (CPAP levels in prolonged periods (P and T high in order to preserve satisfactory lung volume and consequently alveolar recruitment. This mode benefits a time-cycled release phase to a lower set of pressure for a short period of time (P and T low i.e. release time (1,2. While some advantages have been introduced for APRV such as efficiently recruited alveoli over time, more homogeneous ventilation, less volutrauma, probable stabilization of patent alveoli and reduction in atelectrauma, protective effects of APRV on lung damage only seem to be substantial if spontaneous breathing responds to more than 30% of total minute ventilation (3. APRV in ARDS patients should be administered cautiously; T low<0.6 seconds, for recruiting collapsed alveoli; however overstretching of alveoli especially during P high should not be neglected and appropriate sedation considered. The proposed advantages for APRV give the impression of being outstanding; however, APRV, as a non-physiologic inverse ratio mode of ventilation, might result in inflammation mainly due to impaired patient-ventilator interaction explaining the negative or minimally desirable effects of APRV on inflammation (4. Consequently, continuous infusion of neuromuscular blocking drugs during ARDS has been reported to reduce mortality (5. There are insufficient confirming data on the superiority of APRV above other ventilatory methods in regard to oxygenation, hemodynamics, regional blood flow, patient comfort and length of mechanical ventilation. Based on current findings

  5. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair

    Susanne eHerold

    2011-11-01

    Full Text Available Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation and initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.

  6. Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y.; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J.; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L.

    2009-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow–derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown.

  7. Transfusion related acute lung injury in a perinatal woman

    Deepthi Krishna G

    2016-01-01

    Full Text Available We report the case of a 26-year-old female who underwent emergency caesarean section at a private hospital and was referred to the Government Maternity Hospital (GMH, Tiruapti for bleeding per vaginum 4 hours after delivery. She had received one unit of whole blood transfusion outside. Later, whole blood, platelets (n= 1 unit and fresh frozen plasma (n= 2 units were transfused over a period of 6 hours at GMH, Tirupati. Two hours there after, she complained of sudden breathlessness with cough. On examination, bilateral basal crepitations and wheezing were noted. Fall in oxygen saturation by pulse oximetry, hypotension, tachypnoea and mild fever were also noted. Chest radiograph showed bilateral frontal opacities. Possibility of transfusion-related acute lung injury (TRALI was considered. Supportive treatment included supplemental oxygen through oxygen mask followed by assisted mechanical ventilation and the patient improved. The present case highlights the importance of transfusion related adverse events so as to facilitate prompt recognition and appropriate treatment at the right time.

  8. Surfactant therapy restores gas exchange in lung injury due to paraquat intoxication in rats

    So, K. L.; Buijzer, E.; Gommers, Diederik; Kaisers, U; Genderen, Perry; Lachmann, Burkhard

    1998-01-01

    textabstractParaquat is a weed killer which causes often fatal lung damage in humans and other animals. There is evidence that the pulmonary surfactant system is involved in the pathophysiology of respiratory failure after paraquat intoxication and, therefore, the possible therapeutic effect of intratracheal surfactant administration on gas exchange in rats with progressive lung injury induced by paraquat poisoning was studied. In one group of rats, the time course of the development of lung ...

  9. Protective Effect of Curcumin on Endotoxin-induced Acute Lung Injury in Rats

    2006-01-01

    To investigate the protective effect of curcumin on endotoxin-induced acute lung injury in rats, and explore the underlying mechanisms, 24 male Wistar rats were randomly divided into 4 experimental groups: sham-vehicle (S), sham-curcumin (C), lipopolysaccharide (LPS)-vehicle (L), and curcumin-lipopolysaccharide (C-L) groups. The wet/dry (W/D) weight ratio of the lung and bronchoalveolar lavage (BAL) fluid protein content were used as measures of lung injury. Neutrophil recruitment and activation were evaluated by BAL fluid cellularity and myeloperoxidase (MPO) activity in cell-free BAL and lung tissue. The levels of cytokine-induced neutrophil chemoattractant-1(CINC-1) in lung tissues were measured by ELISA. The histopathological changes of lung tissues were observed by using the HE staining. Our results showed that lung injury parameters, including the wet/dry weight ratio and protein content in BALF, were significantly higher in the L group than in the S group (P<0.01). In the L group, higher numbers of neutrophils and greater MPO activity in cell-free BAL and lung homogenates were observed when compared with the S group (P<0.01).There was a marked increase in CINC-1 levels in lung tissues in response to LPS challenge (P<0.01,L group vs S group). Curcumin pretreatment significantly attenuated LPS-induced changes in these indices. LPS caused extensive morphological lung damage, which was also lessened after curcumin pretreatment. All the above-mentioned parameters in the C group were not significantly different from those of the S group. It is concluded that curcumin pretreatment attenuates LPS-induced lung injury in rats. This beneficial effect of curcumin may involves, in part, inhibition of neutrophilic recruitment and activity, possibly through inhibition of lung CINC-1 expression.

  10. The Role of Hyaluronan Synthase 3 in Ventilator-induced Lung Injury

    Bai, Kuan-Jen; Spicer, Andrew P.; Mascarenhas, Marcella M.; Yu, Lunyin; Ochoa, Cristhiaan D; Garg, Hari G.; Quinn, Deborah A.

    2005-01-01

    We recently found that low-molecular-weight hyaluronan was induced by cyclic stretch in lung fibroblasts and accumulated in lungs from animals with ventilator-induced lung injury. The low-molecular-weight hyaluronan produced by stretch increased interleukin-8 production in epithelial cells, and was accompanied by an upregulation of hyaluronan synthase–3 mRNA. We hypothesized that low-molecular-weight hyaluronan induced by high VT was dependent on hyaluronan synthase 3, and was associated with...

  11. Conflicting Physiological and Genomic Cardiopulmonary Effects of Recruitment Maneuvers in Murine Acute Lung Injury

    Mekontso Dessap, Armand; Voiriot, Guillaume; Zhou, Tong; Marcos, Elisabeth; Dudek, Steven M.; Jacobson, Jeff R.; Machado, Roberto,; Adnot, Serge; Brochard, Laurent; Maitre, Bernard; Joe G N Garcia

    2012-01-01

    Low tidal volume ventilation, although promoting atelectasis, is a protective strategy against ventilator-induced lung injury. Deep inflation (DI) recruitment maneuvers restore lung volumes, but potentially compromise lung parenchymal and vascular function via repetitive overdistention. Our objective was to examine cardiopulmonary physiological and transcriptional consequences of recruitment maneuvers. C57/BL6 mice challenged with either PBS or LPS via aspiration were placed on mechanical ven...

  12. Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

    Li Lin; Lijun Zhang; Liangzhu Yu; Lu Han; Wanli Ji; Hui Shen; Zhenwu Hu

    2016-01-01

    Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time points after LPS treatment in a rat model of LPS-induced ALI. Materials and Methods: Sprague-Dawley ra...

  13. Addition of ulinastatin to preservation solution promotes protection against ischemia-reperfusion injury in rabbit lung

    XU Ming; WEN Xiao-hong; CHEN Shu-ping; AN Xiao-xia; XU He-yun

    2011-01-01

    Background The composition of the lung preservation solution used in lung graft procurement has been considered the key to minimize lung injury during the period of ischemia. Low-potassium dextran glucose (LPDG), an extracellular-type solution, has been adopted by most lung transplantation centers, due to the experimental and clinical evidences that LPDG is superior to intracellular-type solutions. Ulinastatin has been shown to attenuate ischemia-reperfusion (I/R) injury in various organs in animals. We supposed that the addition of ulinastatin to LPDG as a flushing solution, would further ameliorate I/R lung injury than LPDG solution alone.Methods Twelve male New Zealand white rabbits were randomly divided into 2 groups. Using an alternative in situ lung I/R model, the left lung in the control group was supplied and preserved with LPDG solution for 120 minutes. In the study group 50 000 U/kg of ulinastatin was added to the LPDG solution for lung preservation. Then re-ventilation and reperfusion of the left lung were performed for 90 minutes. Blood gas analysis (PaO2, PaCO2), mean pulmonary artery pressure (MPAP) and serum TNF-α level were measured intermittently. The pulmonary water index (D/W), tissue myeloperoxidase (MPO) activity, tissue malondialdehyde (MDA) content and morphologic changes were analyzed.Results The study group showed significantly higher PaO2 and lower MPAP at the end of reperfusion. Serum TNF-α level, left lung tissue MPO and MDA in the study group were significantly lower than those in the control group. D/W and pathologic evaluation were also remarkably different between the two groups.Conclusions This study indicated that better lung preservation could be achieved with the use of an ulinastatin modified LPDG solution. Ulinastatin further attenuated lung I/R injury, at least partly by reducing oxidative reactions,inhibiting the release of inflammatory factors and neutrophils immigration.

  14. Atelectasis Induced by Thoracotomy Causes Lung Injury during Mechanical Ventilation in Endotoxemic Rats

    Choi, Won-Il; Kwon, Kun Young; Kim, Jin Mo; Quinn, Deborah A; Hales, Charles Albert; Seo, Jeong Wook

    2008-01-01

    Atelectasis can impair arterial oxygenation and decrease lung compliance. However, the effects of atelectasis on endotoxemic lungs during ventilation have not been well studied. We hypothesized that ventilation at low volumes below functional residual capacity (FRC) would accentuate lung injury in lipopolysaccharide (LPS)-pretreated rats. LPS-pretreated rats were ventilated with room air at 85 breaths/min for 2 hr at a tidal volume of 10 mL/kg with or without thoracotomy. Positive end-expirat...

  15. Reactive oxygen species perpetuate radiation-induced lung injury: causes and cures

    The risk of unacceptable radiation-induced lung injury remains a significant limiting factor in the current treatment of the tumors involving the thoracic region. Despite advances in normal tissue radiobiology, demonstrating that ionizing radiation triggers a cascade of genetic and molecular events that proceed during a latent period of pulmonary injury, the precise mechanisms underlying radiation-induced lung injury remain unclear. Based on our recent results, we propose a new paradigm of radiation-induced lung injury hypothesizing that hypoxia plays a central role in generating a non-healing wound response that perpetuates radiation lung injury through continuous generation of reactive oxygen species (ROS) and expression/activation of cytokines. Several lines of evidence from our group support this hypothesis. Using electron spin resonance (ESR) and spin trapping we have demonstrated the presence of ROS in rat lungs 13 weeks after irradiation. In a transgenic mouse model we have shown that overexpression of extracellular superoxide dismutase (EC-SOD), an important scavenger of ROS, ameliorates RT-induced lung injury. In addition, our data show that synthetic superoxide dismutase (SOD) mimetic compounds can be used to target ROS and reduce RT-induced lung damage. The findings noted above indicating a role for chronic ROS expression in the perpetuation of a wound healing response, suggest that long term SOD mimetic administration may be an effective therapeutic intervention. This strategy may reduce the risk of radiation-induced lung injury at standard radiation doses and may allow for higher doses of radiation to be delivered to selected tumors without increasing the risk of pulmonary complications

  16. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    Olga N. Uchakina

    2013-10-01

    Full Text Available Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB, can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS. To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU on staphylococcal enterotoxin B (SEB induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  17. Protective effect of sodium aescinate on lung injury induced by methyl parathion.

    Du, Yuan; Wang, Tian; Jiang, Na; Ren, Ru-Tong; Zhao, De-Lu; Li, Chong; Fu, Feng-Hua

    2011-10-01

    Methyl parathion (MP) is a high venenosus insecticide. It has been used in pest control of agriculture for several years. The present study is performed to investigate the protective effect of sodium aescinate (SA) on lung injury induced by MP. Forty male Sprague-Dawley rats are randomly divided into five groups, with 8 animals in each group: control group, MP administration group, MP plus SA at doses of 0.45 mg/kg, 0.9 mg/kg and 1.8 mg/kg groups. Acetylcholinesterase (AChE) activity and nitric oxide (NO) level in plasma, myeloperoxidase (MPO) activity, NO level, and antioxidative parameters in lung tissue are assayed. Histopathological examination of lung is also performed. The results show that SA has no effect on AChE. Treatment with SA decreases the activity of MPO in lung and the level of NO in plasma and lung. The level of malondialdehyde in lung is decreased after SA treatments. SA increases the activities of superoxide dismutase, glutathione peroxidase and the content of glutathione in lung. SA administration also ameliorates lung injury induced by MP. The findings indicate that SA could protect lung injury induced by MP and the mechanism of action is related to the anti-inflammatory and anti-oxidative effect of SA. PMID:21177729

  18. Preservation of complement-induced lung injury in mice with deficiency of NADPH oxidase.

    Kubo, H.; Morgenstern, D; Quinian, W M; Ward, P A; Dinauer, M.C.; Doerschuk, C. M.

    1996-01-01

    Mice with chronic granulomatous disease (X-CGD mice) generated by mutating the X-linked gene for a subunit of NADPH oxidase have been analyzed for their ability to respond to intravenous injection of purified cobra venom factor (CVF). This agent in wild-type mice produces a neutrophil-dependent and catalase-sensitive form of lung injury. Lung injury was evaluated by measuring the accumulation of extravascular albumin. Quite unexpectedly, the lungs of X-CGD mice showed no difference in the inc...

  19. Traumatic lung injury attributed to tornadic activity-induced barometric pressure changes in two dogs.

    Cichocki, Brandy N; Dugat, Danielle R; Snider, Timothy A

    2016-06-01

    CASE DESCRIPTION A 7-year-old castrated male Italian Greyhound (dog 1) and an approximately 1-year-old female Labrador Retriever (dog 2) were evaluated because of respiratory distress 8 and 10 days, respectively, after a tornado. CLINICAL FINDINGS No obvious external injuries were identified auscultation revealed decreased bronchovesicular sounds in the affected hemithorax of both dogs. Clinicopathologic changes were mild, with evidence of inflammation in both dogs. Thoracic radiography of both dogs revealed pneumothorax and pleural effusion with effacement of the diaphragm; findings on CT included severe pulmonary atelectasis of affected lung lobes with normal bronchial tree configurtion and no evidence of diaphragmatic hernia. TREATMENT AND OUTCOME Exploratory thoracotomy of both dogs confirmed CT findings Pulmonary parenchymal damage consistent with a large rupture was found in both patients. A large hematoma was adhered to the ruptured lung lobe of dog 1. Grossly affected lung tissue was removed; histologic examination revealed atelectasis, pulmonary fib osis, thrombosis, and minimal (dog 1) to marked (dog 2) inflammation Microbial culture of lung tissue yielded no growth for dog 1 and Streptococcus spp and Escherichia coli susceptible to amoxicillin-clavulanic acid for dog 2. Dog 1 had a recurrence of pneumothorax treated by drainage with a thoracostomy tube 1 month after surgery. Eighteen months after surgery, both dogs were reportedly doing well. CLINICAL RELEVANCE Development of clinical signs after a tornado, together with clinical, diagnostic imaging, surgical, and histologic findings led to a presumptive diagnosis of pulmonary barotrauma for both dogs. Long-term outcome for these dogs, treated at a referral hospital, was good. PMID:27172344

  20. Role of NO-cGMP signalling pathway in mediation of ischemia-reperfusion lung injury

    Egemnazarov, Bakytbek

    2008-01-01

    Ischemia reperfusion (I/R) lung injury is a complex pathological process, which occurs in many clinical situations. Previous studies reported equivocal results about the role of nitric oxide (NO) synthase isoforms in the mediation of the injury and their possible mechanisms of action. Therefore, the aim of our study was to evaluate the role of NO synthase isoforms and NO-cGMP signaling pathway on I/R injury of the lung in an isolated perfused organ model employing rabbits as well as wild type...

  1. Renin-angiotensin system and its role in hyperoxic acute lung injury.

    Zhang, P X; Han, C H; Zhou, F J; Li, L; Zhang, H M; Liu, W W

    2016-01-01

    Oxygen is essential to sustain life, but at a high partial pressure oxygen may cause toxicity to the human body. These injuries to the lung are known as hyperoxic acute lung injury [HALI]). To date, numerous studies have been conducted to investigate the pathogenesis of HALI, for which some hypotheses have been proposed. Accumulating evidence indicates that the renin-angiotensin system (RAS) plays an important role in the pathogenesis of some lung diseases, including acute lung injury (ALI), chronic obstructive pulmonary disease (COPD) and HALI. In this review, we briefly introduce the classic RAS, local (tissue) RAS and intracellular RAS, and we summarize findings on the relationship between local/classic RAS and HALI. The importance--and ambiguity--of the results of these studies indicate a need for further investigations of the RAS and its role in the patho- genesis of HALI. PMID:27416692

  2. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis.

    Ludmila Khailova

    Full Text Available INTRODUCTION: Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. OBJECTIVE: Evaluate if Lactobacillus rhamnosus GG (LGG or Bifidobacterium longum (BL treatment in a weanling mouse model of cecal ligation and puncture (CLP peritonitis will protect against lung injury. METHODS: 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105 and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. RESULTS: LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105 was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. CONCLUSIONS: Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.

  3. The value of nitrogen washout/washin method in assessing alveolar recruitment volume in acute lung injury patients

    李洋

    2013-01-01

    Objective To evaluate the precision and feasibility of nitrogen washout/washin method in assessing lung recruitment of acute lung injury(ALI)patients.Methods Fifteen ALI patients underwent mechanical ventilation

  4. Reproduction and evaluation of a rat model of inhalation lung injury caused by black gunpowder smog

    Yi-fan LIU

    2013-09-01

    Full Text Available Objective To reproduce and evaluate a rat model of inhalation lung injury caused by black gunpowder smog. Methods The smog composition was analyzed and a rat model of inhalation lung injury was reproduced. Forty two healthy male Wistar rats were randomly divided into normal control (NC group and 1h, 2h, 6h, 24h, 48h and 96h after inhalation group (n=6. The arterial blood gas, wet to dry weight ratio (W/D of lung, leukocyte count, and protein concentration in broncho-alveolar lavage fluid (BALF were determined. Macroscopic and microscopic changes in lung tissue were observed. Results The composition of black gunpowder smog was composed mainly of CO2 and CO, and their concentrations remained stable within 12 minutes. Smog inhalation caused a significant hypoxemia, the concentration of blood COHb reached a peak value 1h, and the W/D of lung reached peak value 2h after inhalation (P<0.05. The amount of leukocytes and content of protein in BALF increased significantly within 24h after inhalation (P<0.05. Histopathological observation showed diffuse hemorrhage, edema and inflammatory cell infiltration in lung tissue as manifestations of acute lung injury, and the injury did not recover at 96h after inhalation. Conclusion The rat model of inhalation lung injury can be reproduced using black gunpowder smog, and it has the advantages of its readiness for reproduction, reliability and stability, and it could be used for the experiment of inhalation injury in a battlefield environment.

  5. Antenatal and postnatal corticosteroid and resuscitation induced lung injury in preterm sheep

    Kallapur Suhas G

    2009-12-01

    Full Text Available Abstract Background Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal corticosteroids are used to treat bronchopulmonary dysplasia. Objective To test if antenatal or postnatal corticosteroids would decrease resuscitation induced lung injury. Methods 129 d gestational age lambs (n = 5-8/gp; term = 150 d were operatively delivered and ventilated after exposure to either 1 no medication, 2 antenatal maternal IM Betamethasone 0.5 mg/kg 24 h prior to delivery, 3 0.5 mg/kg Dexamethasone IV at delivery or 4 Cortisol 2 mg/kg IV at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (VT to 15 mL/kg for 15 min and then given surfactant. The lambs were ventilated with VT 8 mL/kg and PEEP 5 cmH20 for 2 h 45 min. Results High VT ventilation caused a deterioration of lung physiology, lung inflammation and injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA expression, which was unaffected by corticosteroids. Conclusions Antenatal betamethasone decreased lung injury without decreasing lung inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the doses tested, did not have important effects on lung function or injury, suggesting that corticosteroids given at birth will not decrease resuscitation mediated injury.

  6. Cardiopulmonary function of dogs with plutonium-induced chronic lung injury

    Beagle dogs had signs of restrictive lung disease 1 to 5 years after exposure by inhalation to 239PuO2 aerosols. The 239PuO2 aerosols were monodisperse with activity median aerodynamic diameters of 0.75, 1.5, or 3.0 microns. The plutonium particles produced protracted alpha irradiation of the lungs. Ten dogs had specific initial pulmonary burdens (IPB) of 330 to 4100 kBq of 239PuO2/kg of body mass. The average onset time of clinical signs of lung injury was 3 years after exposure; the average time from the onset of signs until cardiorespiratory function evaluation was 5.5 years. A second group of 10 dogs had IPB of 110 to 2000 kBq of 239Pu/kg of body mass but no signs of lung injury. A third group of 10 dogs, not exposed to 239Pu, were matched for age and sex. Cardiopulmonary function tests were performed. Only the dogs in group I with signs of lung injury had a mild respiratory function disorder consisting of smaller lung volumes, reduced compliance, increased respiratory frequency and minute volume, and reduced carbon monoxide diffusing capacity. Cardiac function of all three groups was similar. These findings indicate that alpha irradiation of the lungs of man could produce restrictive lung disease at long times after initial exposure

  7. Deletion of Caveolin-1 Protects against Oxidative Lung Injury via Up-Regulation of Heme Oxygenase-1

    Jin, Yang; Kim, Hong Pyo; Chi, Minli; Ifedigbo, Emeka; Stefan W. Ryter; Choi, Augustine M. K.

    2008-01-01

    Acute lung injury (ALI) is a major cause of morbidity and mortality in critically ill patients. Hyperoxia causes lung injury in animals and humans, and is an established model of ALI. Caveolin-1, a major constituent of caveolae, regulates numerous biological processes, including cell death and proliferation. Here we demonstrate that caveolin-1–null mice (cav-1−/−) were resistant to hyperoxia-induced death and lung injury. Cav-1−/− mice sustained reduced lung injury after hyperoxia as determin...

  8. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. PMID:26851257

  9. Membrane translocation of IL-33 receptor in ventilator induced lung injury.

    Yang, Shih-Hsing; Lin, Jau-Chen; Wu, Shu-Yu; Huang, Kun-Lun; Jung, Fang; Ma, Ming-Chieh; Wang Hsu, Guoo-Shyng; Jow, Guey-Mei

    2015-01-01

    Ventilator-induced lung injury is associated with inflammatory mechanism and causes high mortality. The objective of this study was to discover the role of IL-33 and its ST2 receptor in acute lung injury induced by mechanical ventilator (ventilator-induced lung injury; VILI). Male Wistar rats were intubated after tracheostomy and received ventilation at 10 cm H2O of inspiratory pressure (PC10) by a G5 ventilator for 4 hours. The hemodynamic and respiratory parameters were collected and analyzed. The morphological changes of lung injury were also assessed by histological H&E stain. The dynamic changes of lung injury markers such as TNF-α and IL-1β were measured in serum, bronchoalveolar lavage fluid (BALF), and lung tissue homogenization by ELISA assay. During VILI, the IL-33 profile change was detected in BALF, peripheral serum, and lung tissue by ELISA analysis. The Il-33 and ST2 expression were analyzed by immunohistochemistry staining and western blot analysis. The consequence of VILI by H&E stain showed inducing lung congestion and increasing the expression of pro-inflammatory cytokines such as TNF-α and IL-1β in the lung tissue homogenization, serum, and BALF, respectively. In addition, rats with VILI also exhibited high expression of IL-33 in lung tissues. Interestingly, the data showed that ST2L (membrane form) was highly accumulated in the membrane fraction of lung tissue in the PC10 group, but the ST2L in cytosol was dramatically decreased in the PC10 group. Conversely, the sST2 (soluble form) was slightly decreased both in the membrane and cytosol fractions in the PC10 group compared to the control group. In conclusion, these results demonstrated that ST2L translocation from the cytosol to the cell membranes of lung tissue and the down-expression of sST2 in both fractions can function as new biomarkers of VILI. Moreover, IL-33/ST2 signaling activated by mechanically responsive lung injury may potentially serve as a new therapy target. PMID:25815839

  10. Membrane translocation of IL-33 receptor in ventilator induced lung injury.

    Shih-Hsing Yang

    Full Text Available Ventilator-induced lung injury is associated with inflammatory mechanism and causes high mortality. The objective of this study was to discover the role of IL-33 and its ST2 receptor in acute lung injury induced by mechanical ventilator (ventilator-induced lung injury; VILI. Male Wistar rats were intubated after tracheostomy and received ventilation at 10 cm H2O of inspiratory pressure (PC10 by a G5 ventilator for 4 hours. The hemodynamic and respiratory parameters were collected and analyzed. The morphological changes of lung injury were also assessed by histological H&E stain. The dynamic changes of lung injury markers such as TNF-α and IL-1β were measured in serum, bronchoalveolar lavage fluid (BALF, and lung tissue homogenization by ELISA assay. During VILI, the IL-33 profile change was detected in BALF, peripheral serum, and lung tissue by ELISA analysis. The Il-33 and ST2 expression were analyzed by immunohistochemistry staining and western blot analysis. The consequence of VILI by H&E stain showed inducing lung congestion and increasing the expression of pro-inflammatory cytokines such as TNF-α and IL-1β in the lung tissue homogenization, serum, and BALF, respectively. In addition, rats with VILI also exhibited high expression of IL-33 in lung tissues. Interestingly, the data showed that ST2L (membrane form was highly accumulated in the membrane fraction of lung tissue in the PC10 group, but the ST2L in cytosol was dramatically decreased in the PC10 group. Conversely, the sST2 (soluble form was slightly decreased both in the membrane and cytosol fractions in the PC10 group compared to the control group. In conclusion, these results demonstrated that ST2L translocation from the cytosol to the cell membranes of lung tissue and the down-expression of sST2 in both fractions can function as new biomarkers of VILI. Moreover, IL-33/ST2 signaling activated by mechanically responsive lung injury may potentially serve as a new therapy target.

  11. Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice

    Qiao, Ying-Ying; Liu, Xiao-Qin; Xu, Chang-Qin; Zhang, Zheng; Xu, Hong-Wei

    2016-01-01

    AIM: To investigate the potential protective effect of exogenous recombinant interleukin-22 (rIL-22) on L-arginine-induced acute severe pancreatitis (SAP)-associated lung injury and the possible signaling pathway involved. METHODS: Balb/c mice were injected intraperitoneally with L-arginine to induce SAP. Recombinant mouse IL-22 was then administered subcutaneously to mice. Serum amylase levels and myeloperoxidase (MPO) activity in the lung tissue were measured after the L-arginine administration. Histopathology of the pancreas and lung was evaluated by hematoxylin and eosin (HE) staining. Expression of B cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL and IL-22RA1 mRNAs in the lung tissue was detected by real-time PCR. Expression and phosphorylation of STAT3 were analyzed by Western blot. RESULTS: Serum amylase levels and MPO activity in the lung tissue in the SAP group were significantly higher than those in the normal control group (P 0.05). Moreover, no significant differences in the degrees of pancreatic and lung injuries were observed between the PBS and SAP groups. However, the serum amylase levels and lung tissue MPO activity in the rIL-22 group were significantly lower than those in the SAP group (P < 0.05), and the injuries in the pancreas and lung were also improved. Compared with the PBS group, rIL-22 stimulated the expression of Bcl-2, Bcl-xL and IL-22RA1 mRNAs in the lung (P < 0.05). In addition, the ratio of p-STAT3 to STAT3 protein in the rIL-22 group was significantly higher than that in the PBS group (P < 0.05). CONCLUSION: Exogenous recombinant IL-22 protects mice against L-arginine-induced SAP-associated lung injury by enhancing the expression of anti-apoptosis genes through the STAT3 signaling pathway. PMID:27275094

  12. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  13. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice.

    Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M; Gorodnya, Olena M; Ruchko, Mykhaylo V; Wilson, Glenn L; Gillespie, Mark N; Parker, James C

    2014-01-01

    The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA) damage and ventilator induced lung injury (VILI). In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII) which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP) was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH) and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group. PMID:25153040

  14. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  15. Early administration of IL-6RA does not prevent radiation-induced lung injury in mice

    Radiation pneumonia and subsequent radiation lung fibrosis are major dose-limiting complications for patients undergoing thoracic radiotherapy. Interleukin-6 (IL-6) is a pleiotropic cytokine and plays important roles in the regulation of immune response and inflammation. The purpose of this study was to investigate whether anti-IL-6 monoclonal receptor antibody (IL-6RA) could ameliorate radiation-induced lung injury in mice. BALB/cAnNCrj mice having received thoracic irradiation of 21 Gy were injected intraperitoneally with IL-6RA (MR16-1) or control rat IgG twice, immediately and seven days after irradiation. Enzyme-linked immunosorbent assay was used to examine the plasma level of IL-6 and serum amyloid A (SAA). Lung injury was assessed by histological staining with haematoxylin and eosin or Azan, measuring lung weight, and hydroxyproline. The mice treated with IL-6RA did not survive significantly longer than the rat IgG control. We observed marked up-regulation of IL-6 in mice treated with IL-6RA 150 days after irradiation, whereas IL-6RA temporarily suppressed early radiation-induced increase in the IL-6 release level. Histopathologic assessment showed no differences in lung section or lung weight between mice treated with IL-6RA and control. Our findings suggest that early treatment with IL-6RA after irradiation alone does not protect against radiation-induced lung injury

  16. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury.

    Urich, Daniela; Eisenberg, Jessica L; Hamill, Kevin J; Takawira, Desire; Chiarella, Sergio E; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B; Misharin, Alexander V; Perlman, Harris; Mutlu, Gokhan M; Budinger, G R Scott; Jones, Jonathan C R

    2011-09-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury. PMID:21878500

  17. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  18. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  19. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  20. Lung injury by amiodarone, an antiarrhythmic drug, in male rats.

    Padmavathy, B; Niranjali, S; Devaraj, H

    1992-07-01

    Administration of single dose (175 mg/kg body wt) of amiodarone dissolved in water through gavage for 3 weeks damaged the lung and changed the content of lung lavage. Activities of bronchoalveolar lavage (BAL) angiotensin converting enzyme (ACE) and lactate dehydrogenase (LDH) increased significantly. Also, the protein and lactate content of the lavage fluid increased significantly over the control. The drug also produced marked changes in morphology of the lung of experimental animals. PMID:1459640

  1. Effect of Lung Recruitment Maneuver in Children with Acute Lung Injury

    Nemat Bilan

    2016-05-01

    Full Text Available Background Acute lung injury (ALI is defined as PaO2/FiO2 less than 300 with bilateral pulmonary infiltrates, without pressure is the top of the left atrium. Early diagnosis and treatment of pediatric ALI and find new cases is very important. Accurate diagnosis and effective steps to treating these patients is essential in the outcome of ALI. This study was conducted to show the impact of recruitment in the treatment of ALI patients. Materials and Methods This clinical trial study was conducted in Pediatric Educational-Medical center of Tabriz University of Medical Sciences (Tabriz, Iran and 42 patients with ALI were enrolled. All patients were underwent echocardiography. The patients were divided in 2 groups randomly (intervention and control groups consisted of 21 patients for each group. Patients were followed for 6 months to be evaluated in terms of clinical status and mortality. Results Difference on level of PaO2 in intervention group was -26±4 in comparison to the control group which was -4±4 (P

  2. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia–reperfusion injury in rats

    Erer, Dilek; Özer, Abdullah; Demirtaş, Hüseyin; Gönül, İpek Işık; Kara, Halil; Arpacı, Hande; Çomu, Faruk Metin; Oktar, Gürsel Levent; Arslan, Mustafa; Küçük, Ayşegül

    2016-01-01

    Objectives To evaluate the effects of alprostadil (prostaglandin [PGE1] analog) and iloprost (prostacyclin [PGI2] analog) on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R) injury in an experimental rat model. Materials and methods Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius) tissue specimens were examined. Results Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (P<0.0001, P=0.015, and P<0.01, respectively). Polymorphonuclear leukocyte infiltration, pulmonary partial destruction, consolidation, alveolar edema, and hemorrhage scores were significantly lower in alprostadil- and iloprost-treated groups (P=0.017 and P=0.001; P<0.01 and P<0.0001). Polymorphonuclear leukocyte infiltration scores in skeletal muscle tissue were significantly lower in the iloprost-treated group than the scores found in the nontreated I/R group (P<0.0001). Conclusion Alprostadil and iloprost significantly reduce lung tissue I/R injury. Alprostadil has more prominent protective effects against renal I/R injury, while iloprost is superior in terms of protecting the skeletal muscle tissue against I/R injury. PMID:27601882

  3. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia

    Cui, Liang; Zheng, Dahai; Lee, Yie Hou; Chan, Tze Khee; Kumar, Yadunanda; Ho, Wanxing Eugene; Chen, Jian Zhu; Tannenbaum, Steven R.; Ong, Choon Nam

    2016-01-01

    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process. PMID:27188343

  4. Protective Effect of Rhubarb on Endotoxin-Induced Acute Lung Injury

    李春盛; 周景; 桂培春; 何新华

    2001-01-01

    To approach the mechanism of lipopolysaccharide (LPS) in causing acute lung injury (ALI) and the protective effect of rhubarb and dexamethasone, lung specimens were examined with macroscopy, microscopy, electron microscopy and the biological markers of ALI including lung wet/dry weight, the rate of neutrophils and protein content in the pulmonary alveolar lavage fluid, pulmonary capillary permeability and pulmonary alveolar permeability index were observed. The mechanism of the ALI is mainly due to direct injury of alveolar epithelium and pulmonary vascular endothelium. Rhubarb and dexamethasone could significantly reduce the edema of the lung tissue, decrease the red blood cell exudation, neutrophil infiltration and plasma protein exudation in the alveoli and all the biological markers in comparison with the ALI model rats, indicating they have protective action on vascular endothelium and alveolar epithelium.

  5. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation

    Zhang, Yang; Liu, Gongjian; Dull, Randal O; Schwartz, David E; Hu, Guochang

    2014-01-01

    The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 smal...

  6. Depletion of resident alveolar macrophages does not prevent Fas-mediated lung injury in mice

    Bem, R. A.; Farnand, A. W.; Wong, V; Koski, A; Rosenfeld, M. E.; Van Rooijen, N.; C. W. Frevert; Martin, T R; Matute-Bello, G.

    2008-01-01

    Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing lip...

  7. The utility of clinical predictors of acute lung injury: towards prevention and earlier recognition

    Levitt, Joseph E.; Matthay, Michael A

    2010-01-01

    Despite significant advances in our understanding of the pathophysiology of acute lung injury, a lung-protective strategy of mechanical ventilation remains the only therapy with a proven survival advantage. Numerous pharmacologic therapies have failed to show benefit in multicenter clinical trials. The paradigm of early, goal-directed therapy of sepsis suggests greater clinical benefit may derive from initiating therapy prior to the onset of respiratory failure that requires mechanical ventil...

  8. Antiplatelet antibody may cause delayed transfusion-related acute lung injury

    Torii Y; Shimizu T; Yokoi T; Sugimoto H; Katashiba Y; Ozasa R; Fujita S; Adachi Y; Maki M.; Nomura S

    2011-01-01

    Yoshitaro Torii1, Toshiki Shimizu1, Takashi Yokoi1, Hiroyuki Sugimoto1, Yuichi Katashiba1, Ryotaro Ozasa1, Shinya Fujita1, Yasushi Adachi2, Masahiko Maki3, Shosaku Nomura11The First Department of Internal Medicine, Kansai Medical University, Osaka, 2Department of Clinical Pathology, Toyooka Hospital, Hyogo, 3First Department of Pathology, Kansai Medical University, Osaka, JapanAbstract: A 61-year-old woman with lung cancer developed delayed transfusion-related acute lung injury (TRALI) syndro...

  9. Transfusion related acute lung injury with massive pulmonary secretion during cardiac surgery. A case report

    Teodori, Julien; Rampersad, Kamal; Teodori, Giovanni; Roopchand, Roland; Angelini, Gianni Davide

    2014-01-01

    A Indo-Caribbean patient undergoing cardiac surgery developed Transfusion Related Acute Lung Injury (TRALI) with massive endobronchial secretion of clear fluid mimicking severe pulmonary edema. Hypoxemia and lung stiffness were so severe that didn’t allow closure of the sternum on completion of surgery. The patient was treated with invasive ventilation, high positive pressure and % FiO2 and aggressive endotracheal suction. After several hours, secretions reduced spontaneously and the patient ...

  10. Protective effect of heme oxygenase-1 on lung injury induced by erythrocyte instillation in rats

    PANG Qing-feng; ZHOU Qiao-mei; ZENG Si; DOU Li-dong; JI Yong; ZENG Yin-ming

    2008-01-01

    Background Intratracheal instillation of blood induces self-repaired acute lung injury.However,the mechanism of repair has been unclear.Heme-oxygenase (HO)-1,which catalyzes heine breakdown,acts as an inducible defense against oxidative stress and plays an important role in inflammation.The objective of this study was to test the role of HO-1 in lung injury caused by intratracheal instillation of red cells.Methods Forty healthy,male Sprague-Dawley rats were randomly divided into five groups:normal group,saline group,erythrocyte group,erythrocyte+zinc-protoporphyrin (ZnPP,HO-1 inhibitor) group and saline+ZnPP group.At 2 days after intratracheal instillation of red cells,lung tissues and lavage samples were isolated for biochemical determinations and histological measurements.Results Histological analysis revealed that administration of ZnPP worsened the acute lung injury induced by instilled erythrocytes.HO-1 was over-expressed in the erythrocyte group and in the erythrocyte+ZnPP group.Compared with the erythrocyte+ZnPP group,the levels of total protein,lactate dehydrogenase and tumor necrosis factor-α in the lavage were lower (P<0.01),while the level of interleukin-10 was higher in the erythrocyte group (P<0.01).Conclusion HO-1 protects against erythrocyte-induced inflammatory injury in lung.

  11. Attenuation of Acute Lung Inflammation and Injury by Whole Body Cooling in a Rat Heatstroke Model

    Hsi-Hsing Yang

    2009-01-01

    Full Text Available Whole body cooling is the current therapy of choice for heatstroke because the therapeutic agents are not available. In this study, we assessed the effects of whole body cooling on several indices of acute lung inflammation and injury which might occur during heatstroke. Anesthetized rats were randomized into the following groups and given (a no treatment or (b whole body cooling immediately after onset of heatstroke. As compared with the normothermic controls, the untreated heatstroke rats had higher levels of pleural exudates volume and polymorphonuclear cell numbers, lung myloperoxidase activity and inducible nitric oxide synthase expression, histologic lung injury score, and bronchoalveolar proinflammatory cytokines and glutamate, and PaCO2. In contrast, the values of mean arterial pressure, heart rate, PaO2, pH, and blood HCO3− were all significantly lower during heatstroke. The acute lung inflammation and injury and electrolyte imbalance that occurred during heatstroke were significantly reduced by whole body cooling. In conclusion, we identified heat-induced acute lung inflammation and injury and electrolyte imbalance could be ameliorated by whole body cooling.

  12. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.

    Diego C Reino

    Full Text Available Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI and multiple organ dysfunction syndrome (MODS. Since Toll-like receptors (TLR act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD lung permeability and myeloperoxidase (MPO levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.

  13. Transfusion of Human Platelets Treated with Mirasol Pathogen Reduction Technology Does Not Induce Acute Lung Injury in Mice.

    Caudrillier, Axelle; Mallavia, Beñat; Rouse, Lindsay; Marschner, Susanne; Looney, Mark R

    2015-01-01

    Pathogen reduction technology (PRT) has been developed in an effort to make the blood supply safer, but there is controversy as to whether it may induce structural or functional changes to platelets that could lead to acute lung injury after transfusion. In this study, we used a commercial PRT system to treat human platelets that were then transfused into immunodeficient mice, and the development of acute lung injury was determined. P-selectin expression was higher in the Mirasol PRT-treated platelets compared to control platelets on storage day 5, but not storage day 1. Transfusion of control vs. Mirasol PRT-treated platelets (day 5 of storage, 109 platelets per mouse) into NOD/SCID mice did not result in lung injury, however transfusion of storage day 5 platelets treated with thrombin receptor-activating peptide increased both extravascular lung water and lung vascular permeability. Transfusion of day 1 platelets did not produce lung injury in any group, and LPS priming 24 hours before transfusion had no effect on lung injury. In a model of transfusion-related acute lung injury, NOD/SCID mice were susceptible to acute lung injury when challenged with H-2Kd monoclonal antibody vs. isotype control antibody. Using lung intravital microscopy, we did not detect a difference in the dynamic retention of platelets in the lung circulation in control vs. Mirasol PRT-treated groups. In conclusion, Mirasol PRT produced an increase in P-selectin expression that is storage-dependent, but transfusion of human platelets treated with Mirasol PRT into immunodeficient mice did not result in greater platelet retention in the lungs or the development of acute lung injury. PMID:26176623

  14. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    Shunying Jin

    Full Text Available Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC deposition-induced acute lung injury (ALI. Components of gamma amino butyric acid (GABA signaling, including GABA B receptor 2 (GABABR2, GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP, in the bronchoalveolar lavage fluid (BALF. Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting

  15. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (VHYP), normally (VNORM), poorly (VPOOR) and nonaerated (VNON) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for VPOOR and the less in VNORM. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in VNON (from 62±18 ml to 43±26 ml, P=0.114), and in VNORM (from 216±51 ml to 251±37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  16. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  17. Role of C3, C5 and Anaphylatoxin Receptors in Acute Lung Injury and in Sepsis

    Bosmann, Markus; Ward, Peter A.

    2012-01-01

    The complement system plays a major role in innate immune defenses against infectious agents, but exaggerated activation of complement can lead to severe tissue injury. Systemic (intravascular) activation of complement can, via C5a, lead to neutrophil (PMN) activation, sequestration and adhesion to the pulmonary capillary endothelium, resulting in damage and necrosis of vascular endothelial cells and acute lung injury (ALI). Intrapulmonary (intraalveolar) activation of complement can cause AL...

  18. Endothelial MKK3 is a critical mediator of lethal murine endotoxemia and acute lung injury

    Mannam, Praveen; Zhang, Xuchen; Shan, Peiying; Zhang, Yi; Shinn, Amanda S.; Zhang, Yitao; Lee, Patty J.

    2012-01-01

    Sepsis is a leading cause of intensive care unit admissions with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined and need to be studied. We sought to determine the role of MAP kinase kinase 3 (MKK3), a kinase of the p38 group in the pathogenesis...

  19. Selective inhibition of intra-alveolar p55 TNF receptor attenuates ventilator-induced lung injury

    Bertok, Szabolcs; Wilson, Michael R.; Morley, Peter J.; de Wildt, Ruud; Bayliffe, Andrew; Takata, Masao

    2011-01-01

    Background Tumour necrosis factor (TNF) is upregulated in the alveolar space early in the course of ventilator-induced lung injury (VILI). Studies in genetically modified mice indicate that the two TNF receptors play opposing roles during injurious high-stretch mechanical ventilation, with p55 promoting but p75 preventing pulmonary oedema. Aim To investigate the effects of selective inhibition of intra-alveolar p55 TNF receptor on pulmonary oedema and inflammation during ventilator-induced lu...

  20. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment.

    Degryse, Amber L; Tanjore, Harikrishna; Xu, Xiaochuan C; Polosukhin, Vasiliy V; Jones, Brittany R; Boomershine, Chad S; Ortiz, Camila; Sherrill, Taylor P; McMahon, Frank B; Gleaves, Linda A; Blackwell, Timothy S; Lawson, William E

    2011-06-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine. PMID:21441353

  1. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment

    Degryse, Amber L.; Tanjore, Harikrishna; Xu, Xiaochuan C.; Polosukhin, Vasiliy V.; Jones, Brittany R.; Boomershine, Chad S.; Ortiz, Camila; Sherrill, Taylor P.; McMahon, Frank B.; Gleaves, Linda A.; Blackwell, Timothy S.

    2011-01-01

    The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4+/β-gal+) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine. PMID:21441353

  2. Comparison of conventional mechanical ventilation and synchronous independent lung ventilation (SILV) in the treatment of unilateral lung injury.

    Hurst, J M; DeHaven, C B; Branson, R D

    1985-08-01

    Eight patients presenting with severe unilateral pulmonary injury responded poorly to conventional mechanical ventilation. Synchronous independent lung ventilation (SILV) was employed to provide support of ventilation and oxygenation without creating the ventilation/perfusion (V/Q) mismatch observed during conventional ventilation. All patients demonstrated improved oxygenation (mean increase, 80 torr) during SILV with the FIO2 unchanged from previous therapy. Invasive hemodynamic monitoring in five of eight patients showed no difference in the commonly measured cardiopulmonary parameters with the two forms of mechanical ventilation. Peak inspiratory pressure (PIP), continuous positive airway pressure (CPAP), and pressure change secondary to tidal volume delivery to the uninvolved lung were significantly less during SILV. SILV is an effective method of improving oxygenation in patients with severe unilateral pulmonary injury. PMID:3894680

  3. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    Lee, Ye-Ji [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Lee, Seung-Hae [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Youn, Young-So; Choi, Ji-Yeon [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Song, Keung-Sub [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Cho, Min-Sun [Department of Pathology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Kang, Jihee Lee, E-mail: jihee@ewha.ac.kr [Department of Physiology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of); Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  4. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  5. Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury

    Gama de Abreu, Marcelo; Cuevas, Maximiliano; Spieth, Peter M; Carvalho, Alysson R; Hietschold, Volker; Stroszczynski, Christian; Wiedemann, Bärbel; Koch, Thea; Pelosi, Paolo; Koch, Edmund

    2010-01-01

    Introduction There is an increasing interest in biphasic positive airway pressure with spontaneous breathing (BIPAP+SBmean), which is a combination of time-cycled controlled breaths at two levels of continuous positive airway pressure (BIPAP+SBcontrolled) and non-assisted spontaneous breathing (BIPAP+SBspont), in the early phase of acute lung injury (ALI). However, pressure support ventilation (PSV) remains the most commonly used mode of assisted ventilation. To date, the effects of BIPAP+SBm...

  6. Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology

    Saddy, Felipe; Moraes, Lillian; Santos, Cintia Lourenço; Oliveira, Gisele Pena; Cruz, Fernanda Ferreira; Morales, Marcelo Marcos; Capelozzi, Vera Luiza; de Abreu, Marcelo Gama; Baez Garcia, Cristiane Souza Nascimento; Pelosi, Paolo; Rocco, Patricia Rieken Macêdo

    2013-01-01

    Introduction Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assis...

  7. Protective Role of Cyclooxygenase (COX)-2 in Experimental Lung Injury: Evidence of a Lipoxin A(4)-Mediated Effect.

    2012-02-01

    BACKGROUND: Polymorphoneutrophils (PMNs) are activated by inflammatory mediators following splanchnic ischemia\\/reperfusion (I\\/R), potentially injuring organs such as the lung. As a result, some patients develop respiratory failure following abdominal aortic aneurysm repair. Pulmonary cyclooxygenase (COX)-2 protects against acid aspiration and bacterial instillation via lipoxins, a family of potent anti-inflammatory lipid mediators. We explored the role of COX-2 and lipoxin A(4) in experimental I\\/R-mediated lung injury. MATERIALS AND METHODS: Sprague-Dawley rats were assigned to one of the following five groups: (1) controls; (2) aortic cross-clamping for 45 min and reperfusion for 4 h (I\\/R group); (3) I\\/R and SC236, a selective COX-2 inhibitor; (4) I\\/R and aspirin; and (5) I\\/R and iloprost, a prostacyclin (PGI(2)) analogue. Lung injury was assessed by wet\\/dry ratio, myeloperoxidase (MPO) activity, and bronchoalveolar lavage (BAL) neutrophil counts. BAL levels of thromboxane, PGE(2), 6-keto-PGF(1)alpha (a hydrolysis product of prostacyclin), lipoxin A(4), and 15-epi-lipoxin A(4) were analyzed by enzyme immunoassay (EIA). Immunostaining for COX-2 was performed. RESULTS: I\\/R significantly increased tissue MPO, the wet\\/dry lung ratio, and neutrophil counts. These measures were significantly further aggravated by SC236 and improved by iloprost. I\\/R increased COX-2 immunostaining and both PGE(2) and 6-keto-PGF(1alpha) levels in BAL. SC236 markedly reduced these prostanoids and lipoxin A(4) compared with I\\/R alone. Iloprost markedly increased lipoxin A(4) levels. The deleterious effect of SC236 and the beneficial effect of iloprost was associated with a reduction and an increase, respectively, in lipoxin A(4) levels. CONCLUSIONS: Lipoxin A(4) warrants further evaluation as a mediator of COX-2 regulated lung protection.

  8. Quantification of ventilation distribution in regional lung injury by electrical impedance tomography and xenon computed tomography

    Validation studies of electrical impedance tomography (EIT) based assessment of regional ventilation under pathological conditions are required to prove that EIT can reliably quantify heterogeneous ventilation distribution with sufficient accuracy. The objective of our study was to validate EIT measurements of regional ventilation through a comparison with xenon-multidetector-row computed tomography (XeCT) in an animal model of sub-lobar lung injury. Nine anesthetized mechanically ventilated supine pigs were examined before and after the induction of lung injury in two adjacent sub-lobar segments of the right lung by saline lavage or endotoxin instillation. Regional ventilation was determined in 32 anteroposterior regions of interest in the right and left lungs and the ventilation change quantified by difference images between injury and control. Six animals were included in the final analysis. Measurements of regional ventilation by EIT and XeCT correlated well before (rs = 0.89 right, rs = 0.90 left lung) and after local injury (rs = 0.79 and 0.92, respectively). No bias and narrow limits of agreement were found during both conditions. The ventilation decrease in the right injured lung was correspondingly measured by both modalities (5.5%±1.1% by EIT and 5.4%±1.9% by XeCT, p = 0.94). EIT was inferior to clearly separate the exact anatomical location of the regional injuries. Regional ventilation was overestimated (<2%) in the most ventral and dorsal regions and underestimated (2%) in the middle regions by EIT compared to XeCT. This study shows that EIT is able to reliably discern even small ventilation changes on sub-lobar level. (paper)

  9. Genetic and pharmacologic inhibition of Tpl2 kinase is protective in a mouse model of ventilator-induced lung injury

    Kaniaris, Evangelos; Vaporidi, Katerina; Vergadi, Eleni; Theodorakis, Emmanuel E; Kondili, Eumorfia; Lagoudaki, Eleni; Tsatsanis, Christos; Georgopoulos, Dimitris

    2014-01-01

    Background Mechanical stress induced by injurious ventilation leads to pro-inflammatory cytokine production and lung injury. The extracellular-signal-regulated-kinase, ERK1/2, participates in the signaling pathways activated upon mechanical stress in the lungs to promote the inflammatory response. Tumor progression locus 2 (Tpl2) is a MAP3kinase that activates ERK1/2 upon cytokine or TLR signaling, to induce pro-inflammatory cytokine production. The role of Tpl2 in lung inflammation, and spec...

  10. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  11. Dissociation between alveolar transmigration of neutrophils and lung injury in hyperoxia.

    Perkowski, Sandra; Scherpereel, Arnaud; Murciano, Juan-Carlos; Arguiri, Evguenia; Solomides, Charalambos C; Albelda, Steven M; Muzykantov, Vladimir; Christofidou-Solomidou, Melpo

    2006-11-01

    The objective of this study was to quantitatively assess changes in cell adhesion molecule (CAM) expression on the pulmonary endothelial surface during hyperoxia and to assess the functional significance of those changes on cellular trafficking and development of oxygen-induced lung injury. Mice were placed in >95% O(2) for 0-72 h, and pulmonary injury and neutrophil (PMN) sequestration were assessed. Specific pulmonary CAM expression was quantified with a dual-radiolabeled MAb technique. To test the role of CAMs in PMN trafficking during hyperoxia, blocking MAbs to murine P-selectin, ICAM-1, or platelet-endothelial cell adhesion molecule-1 (PECAM-1) were injected in wild-type mice. Mice genetically deficient in these CAMs and PMN-depleted mice were also evaluated. PMN sequestration occurred within 8 h of hyperoxia, although alveolar emigration occurred later (between 48 and 72 h), coincident with rapid escalation of the lung injury. Hyperoxia significantly increased pulmonary uptake of radiolabeled antibodies to P-selectin, ICAM-1, and PECAM-1, reflecting an increase in their level on pulmonary endothelium and possibly sequestered blood cells. Although both anti-PECAM-1 and anti-ICAM-1 antibodies suppressed PMN alveolar influx in wild-type mice, only mice genetically deficient in PECAM-1 showed PMN influx suppression. Neither CAM blockade, nor genetic deficiency, nor PMN depletion attenuated lung injury. We conclude that early pulmonary PMN retention during hyperoxia is not temporally associated with an increase in endothelial CAMs; however, subsequent PMN emigration into the alveolar space may be supported by PECAM-1 and ICAM-1. Blocking PMN recruitment did not prevent lung injury, supporting dissociation between PMN infiltration and lung injury during hyperoxia in mice. PMID:16815892

  12. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  13. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  14. Neutrophils and their Fcγ receptors are essential in a mouse model of transfusion-related acute lung injury

    Looney, Mark R.; Su, Xiao; Van Ziffle, Jessica A.; Lowell, Clifford A.; Matthay, Michael A

    2006-01-01

    Transfusion-related acute lung injury (TRALI) is the most common cause of transfusion-related mortality. To explore the pathogenesis of TRALI, we developed an in vivo mouse model based on the passive transfusion of an MHC class I (MHC I) mAb (H2Kd) to mice with the cognate antigen. Transfusion of the MHC I mAb to BALB/c mice produced acute lung injury with increased excess lung water, increased lung vascular and lung epithelial permeability to protein, and decreased alveolar fluid clearance. ...

  15. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome.

    Rocco, Patricia R M; Pelosi, Paolo; de Abreu, Marcelo Gama

    2010-08-01

    In patients with acute lung injury and acute respiratory distress syndrome, a protective mechanical ventilation strategy characterized by low tidal volumes has been associated with reduced mortality. However, such a strategy may result in alveolar collapse, leading to cyclic opening and closing of atelectatic alveoli and distal airways. Thus, recruitment maneuvers (RMs) have been used to open up collapsed lungs, while adequate positive end-expiratory pressure (PEEP) levels may counteract alveolar derecruitment during low tidal volume ventilation, improving respiratory function and minimizing ventilator-associated lung injury. Nevertheless, considerable uncertainty remains regarding the appropriateness of RMs. The most commonly used RM is conventional sustained inflation, associated with respiratory and cardiovascular side effects, which may be minimized by newly proposed strategies: prolonged or incremental PEEP elevation; pressure-controlled ventilation with fixed PEEP and increased driving pressure; pressure-controlled ventilation applied with escalating PEEP and constant driving pressure; and long and slow increase in pressure. The efficiency of RMs may be affected by different factors, including the nature and extent of lung injury, capability of increasing inspiratory transpulmonary pressures, patient positioning and cardiac preload. Current evidence suggests that RMs can be used before setting PEEP, after ventilator circuit disconnection or as a rescue maneuver to overcome severe hypoxemia; however, their routine use does not seem to be justified at present. The development of new lung recruitment strategies that have fewer hemodynamic and biological effects on the lungs, as well as randomized clinical trials analyzing the impact of RMs on morbidity and mortality of acute lung injury/acute respiratory distress syndrome patients, are warranted. PMID:20658909

  16. Toll-like receptor 4 dependent responses to lung injury in a murine model of pulmonary contusion

    Hoth, J. Jason; Wells, Jonathan D.; Brownlee, Noel A.; Hiltbold, Elizabeth M.; Meredith, J Wayne; McCall, Charles E.; Yoza, Barbara K.

    2009-01-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 participates in the inflammatory response to lung injury. We hypothesized that the toll-like receptor 4, in a MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinical...

  17. FOXF1 maintains endothelial barrier function and prevents edema after lung injury.

    Cai, Yuqi; Bolte, Craig; Le, Tien; Goda, Chinmayee; Xu, Yan; Kalin, Tanya V; Kalinichenko, Vladimir V

    2016-01-01

    Multiple signaling pathways, structural proteins, and transcription factors are involved in the regulation of endothelial barrier function. The forkhead protein FOXF1 is a key transcriptional regulator of embryonic lung development, and we used a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis, injury, and repair. Tamoxifen-regulated deletion of bothFoxf1alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1(-/-)) caused lung inflammation and edema, leading to respiratory insufficiency and death. Deletion of a singleFoxf1allele made heterozygousPdgfb-iCreER/Foxf1(+/-)mice more susceptible to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells with homozygous FOXF1 deletion indicated reduced expression of genes critical for maintenance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, enhanced lung endothelial permeability, and increased the abundance of the mRNA and protein for sphingosine 1-phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assays demonstrated that FOXF1 directly bound to and induced the transcriptional activity of theS1pr1promoter. Pharmacological administration of S1P to injuredPdgfb-iCreER/Foxf1(+/-)mice restored endothelial barrier function, decreased lung edema, and improved survival. Thus, FOXF1 promotes normal lung homeostasis and repair, in part, by enhancing endothelial barrier function through activation of the S1P/S1PR1 signaling pathway. PMID:27095594

  18. Biochemical detection of type I cell damage after nitrogen dioxide-induced lung injury in rats.

    McElroy, M C; Pittet, J F; Allen, L; Wiener-Kronish, J P; Dobbs, L G

    1997-12-01

    We have previously shown that injury to lung epithelial type I cells can be detected biochemically by measuring the airway fluid content of a type I cell-specific protein, rTI40, in a model of severe acute lung injury [M. C. McElroy, J.-F. Pittet, S. Hashimoto, L. Allen, J. P. Wiener-Kronish, and L. G. Dobbs. Am. J. Physiol. 268 (Lung Cell. Mol. Physiol. 12): L181-L186, 1995]. The first objective of the present study was to evaluate the utility of rTI40 in the assessment of alveolar injury in a model of milder acute lung injury. Rats were exposed to 18 parts/ million NO2 for 12 h; control rats received filtered air for 12 h. In NO2-exposed rats, the total amount of rTI40 in bronchoalveolar fluid was elevated 2-fold compared with control values (P recoverable rTI40 can be used as an index of the severity of damage to the alveolar epithelium. PMID:9435578

  19. Circulating KL-6, a Biomarker of Lung Injury, in Obstructive Sleep Apnea

    Lederer, David J.; Jelic, Sanja; Basner, Robert C.; Ishizaka, Akitoshi; Bhattacharya, Jahar

    2009-01-01

    In obstructive sleep apnea (OSA), oxidative stress contributes to endothelial dysfunction in the peripheral circulation. In the lung, oxidative stress can lead to alveolar injury. We hypothesized that patients with obstructive sleep apnea would have biomarker evidence of increased alveolar wall permeability.

  20. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis

    Won Jong-Ho

    2010-02-01

    Full Text Available Abstract Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs on bleomycin (BLM-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002. Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p p in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines.

  1. Ventilator-induced lung injury is mediated by the NLRP3 inflammasome

    Kuipers, Maria T; Aslami, Hamid; Janczy, John R; van der Sluijs, Koenraad F; Vlaar, Alexander P J; Wolthuis, Esther K; Choi, Goda; Roelofs, Joris J T H; Flavell, Richard A; Sutterwala, Fayyaz S; Bresser, Paul; Leemans, Jaklien C; van der Poll, Tom; Schultz, Marcus J; Wieland, Catharina W

    2012-01-01

    BACKGROUND: The innate immune response is important in ventilator-induced lung injury (VILI) but the exact pathways involved are not elucidated. The authors studied the role of the intracellular danger sensor NLRP3 inflammasome. METHODS: NLRP3 inflammasome gene expression was analyzed in respiratory

  2. The Design of Future Pediatric Mechanical Ventilation Trials for Acute Lung Injury

    Robinder G Khemani; Newth, Christopher J.L.

    2010-01-01

    Pediatric practitioners face unique challenges when attempting to translate or adapt adult-derived evidence regarding ventilation practices for acute lung injury or acute respiratory distress syndrome into pediatric practice. Fortunately or unfortunately, there appears to be selective adoption of adult practices for pediatric mechanical ventilation, many of which pose considerable challenges or uncertainty when translated to pediatrics. These differences, combined with heterogeneous managemen...

  3. Acute lung injury in 2003%2003年度急性肺损伤

    Roger G SPRAGG

    2003-01-01

    During the past several decades, clinical investigators world-wide have continued to study the causes,pathophysiology, and treatment strategies for acute lung injury (ALl). This syndrome, which is characterized by nonhydrostatic pulmonary edema and hypoxemia associated with a variety of etiologies, is slowly becoming better understood as a result of these efforts.

  4. Angiopoietin-1 Treatment Reduces Inflammation but Does Not Prevent Ventilator-Induced Lung Injury

    M.A. Hegeman; M.P. Hennus; M. van Meurs; P.M. Cobelens; A. Kavelaars; N.J. Jansen; M.J. Schultz; A.J. van Vught; G. Molema; C.J. Heijnen

    2010-01-01

    Background: Loss of integrity of the epithelial and endothelial barriers is thought to be a prominent feature of ventilator-induced lung injury (VILI). Based on its function in vascular integrity, we hypothesize that the angiopoietin (Ang)-Tie2 system plays a role in the development of VILI. The pre

  5. Early preventive treatment for severe acute pancreatitis combined with lung injury

    刘学民; 刘青光; 潘承恩

    2002-01-01

    @@ Severe acute pancreatitis (SAP) can cause systematic inflammatory response syndrome (SIRS),which leads to injury or failure of the internal organs and systems.1 Among them,acute respiratory distress syndrome(ARDS)is a severe or fatal complication.In this article,the early preventive treatment for SAP combined with lung injure is studied.

  6. Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology

    ATS 2013 Biomarkers of asbestos-induced lung injury: the influence of fiber characteristics and exposure methodology Urmila P Kodavanti, Debora Andrews, Mette C Schaldweiler, Jaime M Cyphert, Darol E Dodd, and Stephen H Gavett NHEERL, U.S. EPA, Research Triangle Park, NC; NIEH...

  7. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury. PMID:25731971

  8. Effect of Sodium Ferulate on Fluidity and Morphology of Cell Membrane in Ozone Induced Lung Injury

    2006-01-01

    Objective: To study the effect of sodium ferulate (SF), an active component of Radix Angelica, on lung damage induced by ozone (O3). Methods: Mice model of lung injury was induced by ozone inhalation and treated with SF. The level of lipid peroxide and microviscosity in alveolar epithelial cell membrane of the mice was determined, and the structural change of lung cells was observed by microscopy. Results: Ozone could increase the level of malondialdehyde (MDA) and the microviscosity in alveolar epithelial cell membrane, and induce inflammatory changes in morphologic structure. These abnormal changes were improved after SF administration, which was manifested as alleviation of heightened microviscosity, increase of membrane fluidity, as well as the basically normalized pulmonary cellular structure under microscope. Conclusion: SF has a preventive effect against oxidized pulmonary injury induced by ozone, the action of which could be through scavenging oxygen free radicals, reducing lipid peroxide production, increasing membranous fluidity and mitigating inflammatory changes in cell structure.

  9. Association of Epstein Barr virus deoxyribonucleic acid with lung carcinoma

    Amir Hossein Jafarian

    2013-01-01

    Full Text Available Context: Lung cancer is the leading cause of cancer death worldwide. In addition to smoking, a variety of other contributing factors, including viral infection, have been suggested in tumorigenesis. Epstein Barr virus (EBV, which is linked to various malignancies, seems to be a good candidate. Aims: The aim of this study was to investigate the association of EBV with lung carcinomas. Settings and Design: A total number of 90 formalin fixed paraffin embedded lung tissue samples including 48 cases of lung cancers (18 squamous cell carcinomas [SCCs], 18 adenocarcinomas and 12 small cell carcinomas and 42 non-tumoral samples (control group, were retrieved from the pathology archive. Materials and Methods: Following deoxyribonucleic acid extraction, polymerase chain reaction (PCR was performed using an EBV-Eph PCR kit. The positive cases were studied immunohistochemically for the expression of EBV-late membrane protein-1 (EBV-LMP-1 in tumoral tissues. Statistical Analysis Used: The t-test and Fisher exact test were used and P < 0.05 was considered statistically significant. Results: Five of our cases, including four SCCs and one adenocarcinoma and two control samples showed a positive reaction in PCR. All positive tumoral cases showed diffuse staining with LMP-1 in immunohistochemistry. Conclusions: We found a significant difference in the presence of the EBV genome in cases of lung SCC compared to other lung lesions (P = 0.02. According to our data, EBV is not at major play in the non-lymphoepithelioma-like cancers of the lung in general, but may have a role in the tumorigenesis of some lung SCCs.

  10. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure.

    Zychowski, Katherine E; Lucas, Selita N; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J

    2016-08-15

    Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. PMID:27286659

  11. Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease

    Aslam, Muhammad; Baveja, Rajiv; Liang, Olin D.; Fernandez-Gonzalez, Angeles; Lee, Changjin; Mitsialis, S. Alex; Kourembanas, Stella

    2009-01-01

    Rationale: Neonatal chronic lung disease, known as bronchopulmonary dysplasia (BPD), remains a serious complication of prematurity despite advances in the treatment of extremely low birth weight infants.

  12. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury.

    Sueblinvong, Viranuj; Neveu, Wendy A; Neujahr, David C; Mills, Stephen T; Rojas, Mauricio; Roman, Jesse; Guidot, David M

    2014-01-01

    Fibrotic lung diseases increase with age. Previously we determined that senescence increases tissue expression of fibronectin EDA (Fn-EDA) and decreases fibroblast expression of Thy-1, and that fibrocytes contribute to fibrosis following bleomycin-induced lung injury in mice. In this study we hypothesized that fibroblasts lacking Thy-1 expression produce an extracellular matrix that promotes fibrocyte retention and myofibroblast transdifferentiation, thereby promoting fibrogenesis. Young and old mice were treated with bleomycin intratracheally; fibrocytes in the bone marrow, blood, and lungs were quantified, and lung fibroblast Thy-1 expression assessed. Bone marrow-derived fibrocytes were cultured on matrices derived from Thy-1(+) or Thy-1(-) fibroblasts ± the pro-fibrotic cytokine TGFβ1. Older mice had more fibrocytes in their bone marrows at baseline and more fibrocytes in their lungs following bleomycin treatment. In parallel, lung fibroblasts in older mice had lower expression of Thy-1 at baseline that increased transiently 7 days after bleomycin treatment but then rapidly waned such that 14 days after bleomycin treatment Thy-1 expression was again markedly lower. Fibrocytes cultured on matrices derived from Thy-1(-) fibroblasts + TGFβ1 had increased gene expression for collagen type 1, fibronectin, Fn-EDA, and α-smooth muscle actin. In parallel, whereas the matrices derived from Thy-1(-) fibroblasts stimulated phosphorylation of Akt in cultured fibrocytes, the matrices derived from Thy-1(+) fibroblasts induced apoptosis. These findings suggest that senescence increases fibrocyte recruitment to the lung following injury and that loss of Thy-1 expression by lung fibroblasts promotes fibrocyte retention and myofibroblast trans-differentiation that renders the "aging lung" susceptible to fibrosis. PMID:24596659

  13. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  14. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  15. Enhanced Hsp70 expression protects against acute lung injury by modulating apoptotic pathways.

    Gabriella Aschkenasy

    Full Text Available The Acute respiratory distress syndrome (ARDS is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury. Sepsis was induced in rats via cecal ligation and double puncture (2CLP. At the time of 2CLP PBS, AdHSP or AdGFP (an adenoviral vector expressing green fluorescent protein were injected into the tracheas of septic rats. 48 hours later, lungs were isolated. One lung was fixed for TUNEL staining and immunohistochemistry. The other was homogenized to isolate cytosolic and nuclear protein. Immunoblotting, gel filtration and co-immunoprecipitation were performed in these extracts. In separate experiments MLE-12 cells were incubated with medium, AdHSP or AdGFP. Cells were stimulated with TNFα. Cytosolic and nuclear proteins were isolated. These were subjected to immunoblotting, co-immunoprecipitation and a caspase-3 activity assay. TUNEL assay demonstrated that AdHSP reduced alveolar cell apoptosis. This was confirmed by immunohistochemical detection of caspase 3 abundance. In lung isolated from septic animals, immunoblotting, co-immunoprecipitation and gel filtration studies revealed an increase in cytoplasmic complexes containing caspases 3, 8 and 9. AdHSP disrupted these complexes. We propose that Hsp70 impairs apoptotic cellular pathways via interactions with caspases. Disruption of large complexes resulted in stabilization of lower molecular weight complexes, thereby, reducing nuclear caspase-3. Prevention of apoptosis in lung injury may preserve alveolar cells and aid in recovery.

  16. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).

    Nieman, Gary F; Satalin, Joshua; Andrews, Penny; Habashi, Nader M; Gatto, Louis A

    2016-12-01

    It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. They used these methods to assess the impact of a mechanical breath on dynamic and static global lung strain and energy load. Strain is the change in lung volume in response to an applied stress (i.e., Tidal Volume-Vt). This study has yielded a number of exciting new concepts including the following: (1) Individual mechanical breath parameters (e.g., Vt or Plateau Pressure) are not directly correlated with VILI but rather any combination of parameters that subject the lung to excessive dynamic strain and energy/power load will cause VILI; (2) all strain is not equal; dynamic strain resulting in a dynamic energy load (i.e., kinetic energy) is more damaging to lung tissue than static strain and energy load (i.e., potential energy); and (3) a critical consideration is not just the size of the Vt but the size of the lung that is being ventilated by this Vt. This key concept merits attention since our current protective ventilation strategies are fixated on the priority of keeping the Vt low. If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection. PMID:27316442

  17. Systemic Metabolic Impairment and Lung Injury Following Acrolein Inhalation

    A single ozone exposure causes pulmonary injury and systemic metabolic alterations through neuronal and hypothalamus pituitary adrenal axis activation. Metabolically impaired Goto Kakizaki (GK) rats with non-obese type-2 diabetes are more sensitive to ozone induced changes than h...

  18. Lung mechanics in the aging lung and in acute lung injury. Studies based on sinusoidal flow modulation.

    Bitzén, Ulrika

    2006-01-01

    Knowledge about lung mechanics is of interest in intensive care to adjust mechanical ventilation and in the lung laboratory for diagnostics and evaluation of patients with various kinds of respiratory diseases. In mechanical ventilation a single inspiratory elastic pressure-volume (Pel/V) curve is difficult to interpret due to continuing re-expansion of collapsed lung units over a large pressure interval. However, the volume shifts between multiple inspiratory Pel/V curves recorded at ...

  19. Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection.

    Simpson, A J; Wallace, W A; Marsden, M E; Govan, J R; Porteous, D J; Haslett, C; Sallenave, J M

    2001-08-01

    During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils. PMID:11466403

  20. Effects of early bronchoalveolar lavage fluid collected from dogs with smoke inhalation injury on the lungs of rats

    NIE Fa-chuan; SU Dong; YANG Zong-cheng; BI Min; HUANG Yue-sheng

    2004-01-01

    Objective: Whether early massive bronchoalveolar lavage can remove the harmful substances from the lungs injured with smoke inhalation remains uncertain. This study was designed to observe the effects of early massive bronchoalveolar lavage fluid (BALF) on the healthy lungs in rats. Methods: Mongrel dogs were inflicted with severe smoke inhalation injury. The injured lungs were lavaged with large amount of normal saline in the first hour after injury and the BALF was collected. The BALF was injected into the healthy lungs of 30 rats (group C) in the dosage of 5 ml/kg. The functions and pathological changes of the lungs were observed 24 h after perfusion with the BALF. The data were compared with those of 23 rats (group B) whose lungs were perfused with the BALF collected from normal dogs and those of 21 rats (group A)whose lungs were perfused with normal saline. Results: The mortality rate 24 h after lung perfusion was higher in group C than in groups A and B. The survivors of group C exhibited fluctuation of respiratory rate (RR), remarkable decrease of PaO2, significantly higher content of lung water, decrease of total static pulmonary compliance and pulmonary expansion index, and increasse of inflammatory cytokines in the tissues of lungs. Only slight mechanic obstructive effect on the airway was observed in rats of group A and B. The pathological changes of the lungs of the rats in group C were similar to those of the dogs with actual smoke inhalation injury. Conclusion: Our findings indicate that the BALF collected from dogs with acute severe smoke inhalation injury in the early stage after injury injured the normal lungs of rats with the bioactive substances in the BALF. These findings show us that it is a valuable therapeutic procedure to apply massive bronchoalveolar fluid lavage in the early stage after inhalation injury.

  1. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  2. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  3. Strategies to improve oxygenation in experimental acute lung injury

    Hartog, Arthur

    2000-01-01

    textabstractOne of the most important clinical syndromes, in which failure of oxygen uptake in the lung leads to severe hypoxia, is the so-called acute respiratory distress syndrome (ARDS). ARDS is a complex of clinical signs and symptoms which occur following diverse pulmonary or systemic insults, including sepsis. shock, pneumonia. trauma, liquid aspiration. hematological disorders, smoke inhalation, and many others, In ARDS, the treatments available are still inadequate and morbidity, mort...

  4. Lung pathology in case of acute radiation injury

    Results of pathomorphological studies of 27 patients exposed to total external γ- and β-radiation resulted from the Chernobyl accident and lost due to the acute radiation disease in the first weeks following radiation exposure are discussed. Dose range is 3.7-13.7 Gy. Two groups of pathological changes in lungs are revealed, those are: infection (bacterial, viral and fungous) ones caused by acute radiation disease and signs of respiratory distress-syndrome in adults

  5. Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury.

    Volckaert, Thomas; Dill, Erik; Campbell, Alice; Tiozzo, Caterina; Majka, Susan; Bellusci, Saverio; De Langhe, Stijn P

    2011-11-01

    During lung development, parabronchial SMC (PSMC) progenitors in the distal mesenchyme secrete fibroblast growth factor 10 (Fgf10), which acts on distal epithelial progenitors to promote their proliferation. β-catenin signaling within PSMC progenitors is essential for their maintenance, proliferation, and expression of Fgf10. Here, we report that this Wnt/Fgf10 embryonic signaling cascade is reactivated in mature PSMCs after naphthalene-induced injury to airway epithelium. Furthermore, we found that this paracrine Fgf10 action was essential for activating surviving variant Clara cells (the cells in the airway epithelium from which replacement epithelial cells originate) located at the bronchoalveolar duct junctions and adjacent to neuroendocrine bodies. After naphthalene injury, PSMCs secreted Fgf10 to activate Notch signaling and induce Snai1 expression in surviving variant Clara cells, which subsequently underwent a transient epithelial to mesenchymal transition to initiate the repair process. Epithelial Snai1 expression was important for regeneration after injury. We have therefore identified PSMCs as a stem cell niche for the variant Clara cells in the lung and established that paracrine Fgf10 signaling from the niche is critical for epithelial repair after naphthalene injury. These findings also have implications for understanding the misregulation of lung repair in asthma and cancer. PMID:21985786

  6. 5-Hydroxytryptamine uptake in oxygen radical-mediated acute lung injury

    Pulmonary endothelial cell function (ECF) studies have been shown to be a sensitive indicator of chronic lung injury. We attempted to correlate changes in 5-hydroxytryptamine (5HT) uptake with an acute oxygen radical-mediated lung injury in dogs. Beta-d glucose/glucose oxidase was injected intravenously in an experimental group (n = 10), while the control group (n = 5) received saline. 5HT uptake, measured using a multiple indicator dilution technique before and 20 min after injection, was calculated for both the percent total uptake and the peak extraction ratio of 5HT during a single passage through the lung. The mean pulmonary and systemic arterial pressures (PAP, SAP), total pulmonary resistance (TPR), extravascular lung water (EVLW), and wet-to-dry weight ratios were also determined. The experimental group showed an acute rise in PAP and TPR and a fall in SAP after the injection, all returning to normal by 20 min; total 5HT uptake fell from 81 +/- 2.3% to 47 +/- 6.5% (p = 0.0002) as did the peak extraction ratio from 0.87 +/- 0.013 to 0.44 +/- 0.066 (p = 0.0001). No change in 5HT uptake was observed in the control group. EVLW did not change in either group, but wet-to-dry weight ratio was elevated in the experimental group (5.21 +/- 0.12 versus 4.73 +/- 0.06, p less than 0.01). ECF studies of 5HT uptake appear to be a sensitive indicator of acute lung injury in this large-animal, oxygen radical-induced injury model

  7. Pycnogenol, a compound isolated from the bark of pinus maritime mill, attenuates ventilator-induced lung injury through inhibiting NF-κB-mediated inflammatory response

    Xia, YF; Zhang, JH; Xu, ZF; Deng, XM

    2015-01-01

    Background: During mechanical ventilation, high end-inspiratory lung volume results in a permeability type pulmonary oedema, called ventilator-induced lung injury (VILI). The pathophysiology of ventilator-induced lung injury involves multiple mechanisms, such as excessive inflammation. And pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have anti-inflammatory activity. Objective: We investigated the effects of pyncogenol on ventilator-induced lung injury in r...

  8. Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats.

    Fabienne Brégeon

    Full Text Available Respiratory distress syndrome is responsible for 40 to 60 percent mortality. An over mortality of about 10 percent could result from additional lung injury and inflammation due to the life-support mechanical ventilation, which stretches the lung. It has been recently demonstrated, in vitro, that pharmacological activation of the alpha 7 nicotinic receptors (α7-nAChR could down regulate intracellular mediators involved in lung cell inflammatory response to stretch. Our aim was to test in vivo the protective effect of the pharmacological activation of the α7-nAChR against ventilator-induced lung injury (VILI. Anesthetized rats were ventilated for two hours with a high stretch ventilation mode delivering a stroke volume large enough to generate 25-cmH(2O airway pressure, and randomly assigned to four groups: pretreated with parenteral injection of saline or specific agonist of the α7-nAChR (PNU-282987, or submitted to bilateral vagus nerve electrostimulation while pre-treated or not with the α7-nAChR antagonist methyllycaconitine (MLA. Controls ventilated with a conventional stroke volume of 10 mL/kg gave reference data. Physiological indices (compliance of the respiratory system, lung weight, blood oxygenation, arterial blood pressure and lung contents of inflammatory mediators (IL-6 measured by ELISA, substance P assessed using HPLC were severely impaired after two hours of high stretch ventilation (sham group. Vagal stimulation was able to maintain the respiratory parameters close to those obtained in Controls and reduced lung inflammation except when associated to nicotinic receptor blockade (MLA, suggesting the involvement of α7-nAChR in vagally-mediated protection against VILI. Pharmacological pre-treatment with PNU-282987 strongly decreased lung injury and lung IL-6 and substance P contents, and nearly abolished the increase in plasmatic IL-6 levels. Pathological examination of the lungs confirmed the physiological differences observed

  9. Expression of aquaporin-1 and aquaporin-3 in lung tissue of rat model with ischemia-reperfusion injury

    ZHAO Song; LI Xiang-nan

    2010-01-01

    @@ End-stage lung diseases are common and frequentlyoccurring diseases which are difficult for clinical treatment. In recent years, lung transplantation has become a widely accepted and effective therapeutic option for patients with the end-stage pulmonary diseases. Early pulmonary edema resulting from ischemia-reperfusion injury accounts for the major part of mortality and morbidity after lung transplantation. The water channel proteins in lung injury have been little studied, and their impact on the formation of pulmonary edema remains unclear. In this study, we established a rat lung ischemia-reperfusion model to study its impact on the expressions of water channel proteins in lung tissue and explore a new approach to lung transplantation in pulmonary edema pathogenesis.

  10. Protective effect of ginsenoside Rg1 on glutamate-induced lung injury

    Li SHEN; Jian-zhong HAN; Chen LI; Shao-jie YUE; Yong LIU; Xiao-qun QIN; Hui-jun LIU; Zi-qiang LUO

    2007-01-01

    Aim: To examine the possible protective effect of ginsenoside Rg1, an active component of ginseng, on lung injury caused by glutamate in vivo. Methods: The lungs of mice receiving glutamate (0.5 g/kg) and/or ginsenoside Rg1 (0.03 g/kg) via intraperitoneal administration were collected. The indexes of lung wet weight/body weight ratios (LW/BW), lung wet/dry weight ratios (W/D), heart rate (HR),and breathing rate (BR) were determined. The activity of nitric oxide synthase(NOS), xanthine oxidase (XOD), superoxide dismutase (SOD), catalase (CAT), the content of NO, and malondialdehyde in the lung homogenate were measured.Results: Treatment with glutamate for 2 h increased LW/BW, W/D, HR, and BR.These changes were nearly abolished by pretreatment with ginsenoside Rg1 for 30 min before glutamate injection. An analysis of the lung homogenate demon-strated the protective effect as evidenced by the inhibition of NOS (12%) and XOD (50%) inactivity, the enhanced activity of SOD (20%) and CAT (25%).Conclusion: Ginsenoside Rg1 has a potential protective role in lung diseases associated with glutamate toxicity.

  11. Anti-inflammatory effects of montelukast on smoke-induced lung injury in rats

    Basyigit Ilknur

    2010-04-01

    Full Text Available Abstract Aim To evaluate the effects of montelukast in smoke-induced lung injury. Methods 28 Wistar-Albino rats were enrolled into 4 groups with 7 rats per group. The healthy control group was exposed to fresh air while all rats in the 3 experimental groups were exposed to cigarette smoke for 20 weeks for 2 hours per day. After histopathological verification of smoke induced lung injury, montelukast (0.1 mg/kg dissolved in Na2CO3 was given in one group (MON, Na2CO3 only was given in another group (MON control and placebo was injected in the third group (COPD control intraperitoneally for 21 days. At the end of this period blood samples were obtained for serum TNF-α assessment and light and electron microscopy analyses were performed on the lung tissues of sacrificed rats. Results Serum TNF-α levels in the MON group were significantly lower than in the MON control and COPD control groups (38.84 ± 4.9 pg/ml, 77.5 ± 5.8 pg/ml and 79.2 ± 6.9 pg/ml respectively, p 0.05. Light and electron microscopic evaluation of the lungs demonstrated that the total histopathological damage score of the lung samples was significantly lower in the MON group than in MON controls and COPD controls (5.14 ± 0.5, 8.4 ± 0.6 and 8.7 ± 0.4 respectively, p 0.05. Conclusion These findings suggest that montelukast might have a protective effect on smoke-induced lung injury in rats both from a histopathological and inflammatory point of view.

  12. Using bosentan to treat paraquat poisoning-induced acute lung injury in rats.

    Zhongchen Zhang

    Full Text Available BACKGROUND: Paraquat poisoning is well known for causing multiple organ function failure (MODS and high mortality. Acute lung injury and advanced pulmonary fibrosis are the most serious complications. Bosentan is a dual endothelin receptor antagonist. It plays an important role in treating PF. There is no related literature on the use of bosentan therapy for paraquat poisoning. OBJECTIVE: To study the use of bosentan to treat acute lung injury and pulmonary fibrosis as induced by paraquat. METHOD: A total of 120 adult Wister male rats were randomly assigned to three groups: the paraquat poisoning group (rats were intragastrically administered with paraquat at 50 mg/kg body weight once at the beginning; the bosentan therapy group (rats were administered bosentan at 100 mg/kg body weight by intragastric administration half an hour after paraquat was administered, then the same dose was administered once a day; and a control group (rats were administered intragastric physiological saline. On the 3rd, 7th, 14th, and 21st days following paraquat exposure, rats were sacrificed, and samples of lung tissue and venous blood were collected. The levels of transforming growth factor-β1 (TGF-β1, endothelin-1 (ET-1, and hydroxyproline (HYP in the plasma and lung homogenate were determined. Optical and electronic microscopes were used to examine pathological changes. RESULT: The TGF-β1, ET-1, and HYP of the paraquat poisoning group were significantly higher than in the control group, and they were significantly lower in the 21st day therapy group than in the paraquat poisoning group on the same day. Under the optical and electronic microscopes, lung tissue damage was observed to be more severe but was then reduced after bosentan was administered. CONCLUSION: Bosentan can reduce inflammation factor release. It has a therapeutic effect on acute lung injury as induced by paraquat.

  13. Protective Effect of Tanshinone Ⅱ A on Lipopolysaccharide-induced Lung Injury in Rats

    SHI Xue-mei; HUANG Liang; XIONG Sheng-dao; ZHONG Xian-yang

    2007-01-01

    Objective: To explore the protective effect of tanshinone Ⅱ A on lipopolysaccharide (LPS)-induced lung injury in rats, and possible mechanism. Methods: LPS (O111: B4) was used to produce a rat model of acute lung injury. Sprague-Dawley rats were randomly divided into 3 groups (8 in each group): the control group, the model group (ALl group), and the tanshinone ⅡA treatment group. Expression of adhesion molecule CD18 on the surface of polymorphonuclear neutrophil (PMN-CD18) in venous white blood cells (WBC), and changes in coagulation-anticoagulant indexes were measured 6 h after injection of LPS or normal saline. Changes in malondialdehyde (MDA) content, wet and dry weight (W/D) ratio and morphometry of pulmonary tissue as well as PMN sequestration in the lung were also measured. Results: (1) When compared with the control group, expression of PMN-CD18 and MDA content were enhanced in the ALl group with a hypercoagulable state (all P<0.01) and an increased W/D ratio (P<0.05). Histopathological morphometry in the lung tissue showed higher PMN sequestration, wider alveolar septa; and lower alveolar volume density (Vv) and alveolar surface density (Sv), showing significant difference (P<0.01). (2) When compared with the ALl group, the expression of PMN-CD18, MDA content, and W/D ratio were all lower in Tanshinone ⅡA treatment group (P<0.05)with ameliorated coagulation abnormality (P<0.01). Histopathological morphometry in the lung tissue showed a decrease in the PMN sequestration and the width of alveolar septa (both P<0.01), and an increase in the Vv and Sv (P<0.05, P<0.01). Conclusion: Tan ⅡA plays a protective role in LPS-induced lung injury in rats through improving hypercoagulating state, decreasing PMN-CD18 expression and alleviating migration, reducing lipid peroxidation and alleviating pathological changes.

  14. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats. PMID:15298545

  15. Periostin Deficiency Causes Severe and Lethal Lung Injury in Mice With Bleomycin Administration.

    Kondoh, Hirofumi; Nishiyama, Takashi; Kikuchi, Yoshinao; Fukayama, Masashi; Saito, Mitsuru; Kii, Isao; Kudo, Akira

    2016-07-01

    Pulmonary capillary leakage followed by influx of blood fluid into the air space of lung alveoli is a crucial step in the progression of acute lung injury (ALI). This influx is due to increased permeability of the alveolar-capillary barrier. The extracellular matrix (ECM) between the capillary and the epithelium would be expected to be involved in prevention of the influx; however, the role of the ECM remains to be addressed. Here, we show that the ECM architecture organized by periostin, a matricellular protein, plays a pivotal role in the survival of bleomycin-exposed mice. Periostin was localized in the alveolar walls. Although periostin-null mice displayed no significant difference in lung histology and air-blood permeability, they exhibited early lethality in a model of bleomycin-induced lung injury, compared with their wild-type counterparts. This early lethality may have been due to increased pulmonary leakage of blood fluid into the air space in the bleomycin-exposed periostin-null mice. These results suggest that periostin in the ECM architecture prevents pulmonary leakage of blood fluid, thus increasing the survival rate in mice with ALI. Thus, this study provides an evidence for the protective role of the ECM architecture in the lung alveoli. PMID:27270966

  16. Quantitative study of lung perfusion SPECT scanning and pulmonary function testing for early radiation-induced lung injury in patients with locally advanced non-small cell lung cancer

    Zhang, Wei; WANG, JIEZHONG; TANG, MINGDENG; Pan, Jianji; Bai, Penggang; LIN, DUANYU; QIAN, FEIYU; LIN, FENGJIE; YANG, XUEQIN; Zhang, Shengli

    2012-01-01

    Radiation lung injury is a common side-effect of pulmonary radiotherapy. The aim of this study was to quantitatively assess early changes in lung perfusion single photon emission computed tomography (SPECT) scanning and pulmonary function testing (PFT) prior to and after intensity modulated radiotherapy (IMRT) for patients suffering from locally advanced non-small cell lung cancer (LANSCLC). Twenty patients with LANSCLC received lung perfusion SPECT scanning and PFT prior to IMRT and immediat...

  17. Treatment of intractable interstitial lung injury with alemtuzumab after lung transplantation

    Kohno, M; Perch, M; Andersen, E;

    2011-01-01

    transplantation. Routine examination of a lung biopsy, 4 months after transplantation, showed nonspecific, diffuse interstitial inflammation with alveolar septal fibrosis. The patient's clinical status and imaging studies, consistent with nonspecific interstitial pneumonitis, which was considered as signs of...

  18. Transfusion-related acute lung injury following coronary artery bypass graft surgery.

    Bitargil, M; Arslan, C; Başbuğ, H S; Göçer, H; Günerhan, Y; Bekov, Y Y

    2015-11-01

    Blood transfusion is sometimes a necessary procedure during or following coronary artery bypass graft (CABG) surgery. However, transfusion-related acute lung injury (TRALI)/possible TRALI is a rare and fatal complication and characterized by acute hypoxemia and non-cardiogenic pulmonary edema that occurs within 6 hours following a transfusion. Anti-leukocyte antibodies or, possibly, other bioactive substances cause inflammation and capillary endothelial destruction in susceptible recipients' lungs. Prompt diagnosis and mechanical ventilatory support are important. A successful treatment of two male patients following CABG surgery, compatible with TRALI/possible TRALI, is presented here. PMID:25575703

  19. Aerosolized human extracellular superoxide dismutase prevents hyperoxia-induced lung injury.

    Chih-Ching Yen

    Full Text Available An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95% to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01 but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%, albumin treated group (33.3%, and CuZn-SOD treated group (75%. The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including

  20. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice.

    Lucy Kathleen Reiss

    Full Text Available INTRODUCTION: Mechanical ventilation (MV of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T = 8 mL/kg or high tidal volume V(T = 16 mL/kg and a positive end-expiratory pressure (PEEP of 2 or 6 cm H(2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP, electrocardiogram (ECG, heart frequency (HF, oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by

  1. Inhibition of SOCs Attenuates Acute Lung Injury Induced by Severe Acute Pancreatitis in Rats and PMVECs Injury Induced by Lipopolysaccharide.

    Wang, Guanyu; Zhang, Jingwen; Xu, Caiming; Han, Xiao; Gao, Yanyan; Chen, Hailong

    2016-06-01

    Acute lung injury (ALI) is a critical complication of the severe acute pancreatitis (SAP), characterized by increased pulmonary permeability with high mortality. Pulmonary microvascular endothelial cells (PMVECs) injury and apoptosis play a key role in ALI. Previous studies indicated that store-operated calcium entry (SOCE) could regulate a variety of cellular processes. The present study was to investigate the effects of SOCE inhibition on ALI induced by SAP in Sprague-Dawley rats, and PMVECs injury induced by lipopolysaccharide (LPS). Rat model of SAP-associated ALI were established by the retrograde infusion of sodium deoxycholate. Serum levels of amylase, TNF-α, and IL-6, histological changes, water content of the lung, oxygenation index, and ultrastructural changes of PMVECs were examined in ALI rats with or without store-operated Ca(2+) channels (SOCs) pharmacological inhibitor (2-aminoethoxydiphenyl borate, 2-APB) pretreatment. For in vitro studies, PMVECs were transiently transfected with or without small interfering RNA (siRNA) against calcium release-activated calcium channel protein1 (Orai1) and stromal interaction molecule1 (STIM1), the two main molecular constituents of SOCs, then exposed to LPS. The viability of PMVECs was determined. The expression of STIM1, Orai1, Bax, and caspase3, both in lung tissue and in PMVECs, were assessed by quantitative real-time PCR and western blot. Administration of sodium deoxycholate upregulated the expression of SOCs proteins in lung tissue. Similarly, the SOCs proteins were increased in PMVECs induced by LPS. 2-APB reduced the serum levels of amylase, TNF-α, and IL-6, and attenuated lung water content and histological findings. In addition, the decreased oxygenation index and ultrastructural damage in PMVECs associated with SAP were ameliorated after administration of 2-APB. Knockdown of STIM1 and Orai1 inhibited LPS-induced PMVECs death. Furthermore, blockade of SOCE significantly suppressed Orai1, STIM1, Bax

  2. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-01-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5–30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5–30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of...

  3. Ozone Therapy and Hyperbaric Oxygen Treatment in Lung Injury in Septic Rats

    Levent Yamanel, Umit Kaldirim, Yesim Oztas, Omer Coskun, Yavuz Poyrazoglu, Murat Durusu, Tuncer Cayci, Ahmet Ozturk, Seref Demirbas, Mehmet Yasar, Orhan Cinar, Salim Kemal Tuncer, Yusuf Emrah Eyi, Bulent Uysal, Turgut Topal, Sukru Oter, Ahmet Korkmaz

    2011-01-01

    Full Text Available Various therapeutic protocols were used for the management of sepsis including hyperbaric oxygen (HBO therapy. It has been shown that ozone therapy (OT reduced inflammation in several entities and exhibits some similarity with HBO in regard to mechanisms of action. We designed a study to evaluate the efficacy of OT in an experimental rat model of sepsis to compare with HBO. Male Wistar rats were divided into sham, sepsis+cefepime, sepsis+cefepime+HBO, and sepsis+cefepime+OT groups. Sepsis was induced by an intraperitoneal injection of Escherichia coli; HBO was administered twice daily; OT was set as intraperitoneal injections once a day. The treatments were continued for 5 days after the induction of sepsis. At the end of experiment, the lung tissues and blood samples were harvested for biochemical and histological analysis. Myeloperoxidase activities and oxidative stress parameters, and serum proinflammatory cytokine levels, IL-1β and TNF-α, were found to be ameliorated by the adjuvant use of HBO and OT in the lung tissue when compared with the antibiotherapy only group. Histologic evaluation of the lung tissue samples confirmed the biochemical outcome. Our data presented that both HBO and OT reduced inflammation and injury in the septic rats' lungs; a greater benefit was obtained for OT. The current study demonstrated that the administration of OT as well as HBO as adjuvant therapy may support antibiotherapy in protecting the lung against septic injury. HBO and OT reduced tissue oxidative stress, regulated the systemic inflammatory response, and abated cellular infiltration to the lung demonstrated by findings of MPO activity and histopathologic examination. These findings indicated that OT tended to be more effective than HBO, in particular regarding serum IL-1β, lung GSH-Px and histologic outcome.

  4. Collapsed lung (pneumothorax)

    Air around the lung; Air outside the lung; Pneumothorax dropped lung; Spontaneous pneumothorax ... Collapsed lung can be caused by an injury to the lung. Injuries can include a gunshot or knife wound ...

  5. Acute lung injury after platelet transfusion in a patient with dengue fever.

    Karoli, Ritu; Bhat, Sanjay; Fatima, Jalees; Verma, Pankaj

    2014-07-01

    Transfusion-related acute lung injury (TRALI) is a serious clinical syndrome associated with the transfusion of plasmacontaining blood components. Recently, TRALI has come to be recognized as the leading cause of transfusion-related mortality. This complication typically presents as shortness of breath, hypoxemia, hypotension, fever, and non cardiogenic pulmonary edema, occurring within 6 h after transfusion. Although the mechanism of TRALI has not been exactly known, it has been associated with human leukocyte antigen antibodies and with biologically active mediators in stored cellular blood components. We, hereby, present a case of a patient with dengue fever who developed acute lung injury (ALI), presumably TRALI, after transfusion of platelet concentrates. He was treated with supportive measures and mechanical ventilation. Greater knowledge and increased awareness especially amongst the clinicians regarding TRALI is needed for prevention and treatment of this potentially severe complication of blood/component transfusion. PMID:25161356

  6. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production. PMID:24577726

  7. Radiation-induced lung injury outside the irradiated area after radiation therapy for breast cancer

    Organizing pneumonia (OP) and eosinophilic pneumonia (EP) are known as lung injuries after radiation therapy for breast cancer. In this study, we reported nine cases of OP and a case of EP after radiation therapy. All 10 women (62±10 years of age) were nonsmokers. Nine patients received endocrine therapy after radiation therapy. The mean intervals from completion of radiation therapy to occurrence of any symptoms were 119 days. All the patients have symptoms, but none are severe. Seven patients were treated with corticosteroids, and three were without treatment. All patients improved, but a relapse occurred in three (two treated with corticosteroid, one without treatment). Because of our findings and the previous studies, tobacco smoke may have played a suppressive role in the occurrence of lung injury in nonirradiated areas after radiation therapy in breast cancer patients, and endocrine therapy may have played a promotive role. (author)

  8. A preclinical rodent model of radiation induced lung injury for medical countermeasure screening in accordance with the FDA animal rule

    Jackson, Isabel L.; Xu, Puting; Hadley, Caroline; Katz, Barry P.; McGurk, Ross; Down, Julian D.; Vujaskovic, Zeljko

    2012-01-01

    The purpose of pre-clinical murine model development is to establish that the pathophysiological outcome of our rodent model of radiation-induced lung injury is sufficiently representative of the anticipated pulmonary response in the human population. This objective is based on concerns that the C57BL/6J strain may not be the most appropriate preclinical model of lethal radiation lung injury in humans. In this study, we assessed this issue by evaluating the relationship between morbidity (pul...

  9. Transfusion Reactions: Newer Concepts on the Pathophysiology, Incidence, Treatment and Prevention of Transfusion Related Acute Lung Injury (TRALI)

    Sayah, David M.; Looney, Mark R.; Toy, Pearl

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. Clinically, TRALI presents as acute lung injury (ALI) (characterized by dyspnea and hypoxemia, with bilateral pulmonary infiltrates) within 6 hours after transfusion of one or more blood products. The pathophysiology of TRALI is incompletely understood, but in part is due to transfusion of certain anti-leukocyte antibodies, or possibly other bioactive substances, into susceptible recipients. T...

  10. Transfusion of Human Platelets Treated with Mirasol Pathogen Reduction Technology Does Not Induce Acute Lung Injury in Mice

    Caudrillier, Axelle; Mallavia, Beñat; Rouse, Lindsay; Marschner, Susanne; Looney, Mark R.

    2015-01-01

    Pathogen reduction technology (PRT) has been developed in an effort to make the blood supply safer, but there is controversy as to whether it may induce structural or functional changes to platelets that could lead to acute lung injury after transfusion. In this study, we used a commercial PRT system to treat human platelets that were then transfused into immunodeficient mice, and the development of acute lung injury was determined. P-selectin expression was higher in the Mirasol PRT-treated ...

  11. A Case of Fatal Acute Lung Injury after Balloon Valvuloplasty of Pulmonary Stenosis: Case Report and Review of Literature

    Ostovan Mohammad Ali; Kamali Maliheh; Zolghadrasli Abdolali

    2015-01-01

    A newly described immediate complication after percutaneous pulmonary valvuloplasty is acute lung injury. Here we report a case of fatal acute lung injury after pulmonary valvuloplasty.The patient was a 26-year-old woman, referred to a general hospital with the diagnosis of livercirrhosis. In her work-ups severe pulmonary stenosis was detected and so a decision was madeto relieve the valve stenosis. Despite the procedural success, the patient developed severe dyspneaand desaturation a few hou...

  12. Cigarette Smoke Disrupted Lung Endothelial Barrier Integrity and Increased Susceptibility to Acute Lung Injury via Histone Deacetylase 6.

    Borgas, Diana; Chambers, Eboni; Newton, Julie; Ko, Junsuk; Rivera, Stephanie; Rounds, Sharon; Lu, Qing

    2016-05-01

    Epidemiologic evidence indicates that cigarette smoke (CS) is associated with the development of acute lung injury (ALI). We have previously shown that brief CS exposure exacerbates lipopolysaccharide (LPS)-induced ALI in vivo and endothelial barrier dysfunction in vitro. In this study, we found that CS also exacerbated Pseudomonas-induced ALI in mice. We demonstrated that lung microvascular endothelial cells (ECs) isolated from mice exposed to CS had a greater permeability or incomplete recovery after challenges by LPS and thrombin. Histone deacetylase (HDAC) 6 deacetylates proteins essential for maintenance of endothelial barrier function. We found that HDAC6 phosphorylation at serine-22 was increased in lung tissues of mice exposed to CS and in lung ECs exposed to cigarette smoke extract (CSE). Inhibition of HDAC6 attenuated CSE-induced increases in EC permeability and CS priming of ALI. Similar barrier protection was provided by the microtubule stabilizer taxol, which preserved α-tubulin acetylation. CSE decreased α-tubulin acetylation and caused microtubule depolymerization. In coordination with increased HDAC6 phosphorylation, CSE inhibited Akt and activated glycogen synthase kinase (GSK)-3β; these effects were ameliorated by the antioxidant N-acetyl cysteine. Our results suggest that CS increases lung EC permeability, thereby enhancing susceptibility to ALI, likely through oxidative stress-induced Akt inactivation and subsequent GSK-3β activation. Activated GSK-3β may activate HDAC6 via phosphorylation of serine-22, leading to α-tubulin deacetylation and microtubule disassembly. Inhibition of HDAC6 may be a novel therapeutic option for ALI in cigarette smokers. PMID:26452072

  13. Genetic replacement of surfactant protein-C reduces respiratory syncytial virus induced lung injury

    Glasser, Stephan W.; Senft, Albert P; Melissa D. Maxfield; Ruetschilling, Teah L.; Baatz, John E.; Page, Kristen; Korfhagen, Thomas R.

    2013-01-01

    Background Individuals with deficiencies of pulmonary surfactant protein C (SP-C) develop interstitial lung disease (ILD) that is exacerbated by viral infections including respiratory syncytial virus (RSV). SP-C gene targeted mice (Sftpc -/-) lack SP-C, develop an ILD-like disease and are susceptible to infection with RSV. Methods In order to determine requirements for correction of RSV induced injury we have generated compound transgenic mice where SP-C expression can be induced on the Sftpc...

  14. Acute lung injury after platelet transfusion in a patient with dengue fever

    Ritu Karoli; Sanjay Bhat; Jalees Fatima; Pankaj Verma

    2014-01-01

    Transfusion-related acute lung injury (TRALI) is a serious clinical syndrome associated with the transfusion of plasmacontaining blood components. Recently, TRALI has come to be recognized as the leading cause of transfusion-related mortality. This complication typically presents as shortness of breath, hypoxemia, hypotension, fever, and non cardiogenic pulmonary edema, occurring within 6 h after transfusion. Although the mechanism of TRALI has not been exactly known, it has been associated w...

  15. Sphingomyelin synthase 2 (SMS2) deficiency attenuates LPS-induced lung injury

    Gowda, Satish; Yeang, Calvin; Wadgaonkar, Sunil; Anjum, Fatima; Grinkina, Natalia; Cutaia, Michael; Jiang, Xian-Chen; Wadgaonkar, Raj

    2010-01-01

    Sphingomyelin synthase (SMS) catalyzes the synthesis of sphingomyelin (SM) and is required for maintenance of plasma membrane microdomain fluidity. Of the two isoforms of mammalian SMS, SMS1 is mostly present in the trans-Golgi apparatus, whereas SMS2 is predominantly found at the plasma membrane. SMS2 has a role in receptor mediated response to inflammation in macrophages, however, the role of SMS2 in vascular permeability, pulmonary edema, and lung injury have not been investigated. To defi...

  16. Red blood cell transfusion and outcomes in patients with acute lung injury, sepsis and shock

    Parsons, Elizabeth C.; Hough, Catherine L.; Seymour, Christopher W; Cooke, Colin R.; Rubenfeld, Gordon D.; Watkins, Timothy R

    2011-01-01

    Introduction In this study, we sought to determine the association between red blood cell (RBC) transfusion and outcomes in patients with acute lung injury (ALI), sepsis and shock. Methods We performed a secondary analysis of new-onset ALI patients enrolled in the Acute Respiratory Distress Syndrome Network Fluid and Catheter Treatment Trial (2000 to 2005) who had a documented ALI risk factor of sepsis or pneumonia and met shock criteria (mean arterial pressure (MAP) < 60 mmHg or vasopressor ...

  17. Macrophage Migration Inhibitory Factor in Acute Lung Injury: Expression, Biomarker and Associations

    Li GAO; Flores, Carlos; Ma, Shwu-Fan; Miller, Edmund J.; Moitra, Jaideep; Moreno, Liliana; Wadgaonkar, Raj; Simon, Brett; Brower, Roy; Sevransky, Jonathan; Tuder, Rubin M.; Maloney, James P.; Moss, Marc; Shanholtz, Carl; Yates, C. Ryan

    2007-01-01

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine central to the response to endotoxemia, is a putative biomarker in acute lung injury (ALI). To explore MIF as a molecular target and candidate gene in ALI, we examined MIF gene and protein expression in murine and canine models of ALI (high tidal volume mechanical ventilation, endotoxin exposure) and in patients with either sepsis or sepsis-induced ALI. MIF gene expression and protein levels were significantly increased ...

  18. Ventilator-Induced Lung Injury (VILI) in Acute Respiratory Distress Syndrome (ARDS): Volutrauma and Molecular Effects

    Carrasco Loza, R; Villamizar Rodríguez, G; Medel Fernández, N

    2015-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a clinical condition secondary to a variety of insults leading to a severe acute respiratory failure and high mortality in critically ill patients. Patients with ARDS generally require mechanical ventilation, which is another important factor that may increase the ALI (acute lung injury) by a series of pathophysiological mechanisms, whose common element is the initial volutrauma in the alveolar units, and forming part of an entity known clinically...

  19. The functional comorbidity index had high inter-rater reliability in patients with acute lung injury

    Fan Eddy; Gifford Jeneen M; Chandolu Satish; Colantuoni Elizabeth; Pronovost Peter J; Needham Dale M

    2012-01-01

    Abstract Background The Functional Comorbidity Index (FCI) was recently developed to predict physical function in acute lung injury patients using comorbidity data. Our objectives were to determine: (1) the inter-rater reliability of the FCI collected using in-patient discharge summaries (primary objective); and (2) the accuracy and predictive validity of the FCI collected using hospital discharge summaries and admission records versus complete chart review (secondary objectives). Methods For...

  20. Transfusion-Related Acute Lung Injury (TRALI): A Clinical Review with Emphasis on the Critically Ill

    Benson, Alexander B.; Moss, Marc; Silliman, Christopher C

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related morbidity and mortality world-wide. Although first described in 1983, it took two decades to develop consensus definitions that remain controversial. The pathogenesis of TRALI is related to the infusion of donor antibodies that recognize leukocyte antigens in the transfused host or the infusion of lipids and other biologic response modifiers that accumulate during storage or processing of blood component...

  1. Acute Lung Injury Complicating Blood Transfusion in Post-Partum Hemorrhage: Incidence and Risk Factors

    Teofili, Luciana; Bianchi, Maria; Bruno A Zanfini; Catarci, Stefano; Sicuranza, Rossella; Spartano, Serena; Zini, Gina; Draisci, Gaetano

    2014-01-01

    Background We retrospectively investigated the incidence and risk factors for transfusion-related acute lung injury (TRALI) among patients transfused for post-partum hemorrhage (PPH). Methods We identified a series of 71 consecutive patients with PPH requiring the urgent transfusion of three or more red blood cell (RBC) units, with or without transfusion of fresh frozen plasma (FFP) and/or platelets (PLT). Clinical records were then retrieved and examined for respiratory distress events. Acco...

  2. Recipient clinical risk factors predominate in possible transfusion-related acute lung injury

    Toy, PTCY; Bacchetti, P; Grimes, BA; Gajić, O; Murphy, EL; Winters, JL; Gropper, MA; Hubmayr, RD; Matthay, MA; Wilson, GA; Koenigsberg, M; Lee, DC; Hirschler, NV; Lowell, CA; Schuller, RM

    2014-01-01

    © 2014 AABB. Background: Possible transfusion-related acute lung injury (pTRALI) cases by definition have a clear temporal relationship to an alternative recipient risk factor for acute respiratory distress syndrome (ARDS). We questioned whether transfusion factors are important for the development of pTRALI. Study Design and Methods: In this nested case-control study, we prospectively identified 145 consecutive patients with pTRALI and randomly selected 163 transfused controls over a 4-year ...

  3. A diagnosis overlooked: case report of a transfusion related acute lung injury

    Sema Ucak Basat; Sibel Ocak Serin; Berrin Aksakal; Ece Yigit

    2014-01-01

    Transfusion related acute lung injury (TRALI) is a rarely seen and transfusion complication that may develop as a result of transfusion of blood products which contains plasma. TRALI can be mortal if it is not diagnosed and treated promptly. The most important step in management of this complication is to provide the early differential diagnosis of this condition. Hence here in we report a case of TRALI where the patient was firstly misdiagnosed and hospitalized as septic shock and acute hear...

  4. The Role of Neutrophils in the Pathogenesis of Transfusion-Related Acute Lung Injury (TRALI)

    Fung, Y.L.; Silliman, C. C.

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is the major cause of transfusion related morbidity and mortality, world wide. Efforts to reduce or eliminate this serious complication of blood transfusion are hampered by an incomplete understanding of its pathogenesis. Currently, TRALI is thought to be mediated by donor alloantibodies directed against host leukocytes or the result of two distinct clinical events. For both proposed mechanisms the neutrophil (PMN) is the key effector cell. This p...

  5. Recipient clinical risk factors predominate in possible transfusion-related acute lung injury

    Toy, P; Bacchetti, P; Grimes, B; Gajic, O; Murphy, EL; Winters, JL; Gropper, MA; Hubmayr, RD; Matthay, MA; Wilson, G; Koenigsberg, M; Lee, DC; Hirschler, NV; Lowell, CA; Schuller, RM

    2015-01-01

    © 2014 AABB. Background: Possible transfusion-related acute lung injury (pTRALI) cases by definition have a clear temporal relationship to an alternative recipient risk factor for acute respiratory distress syndrome (ARDS). We questioned whether transfusion factors are important for the development of pTRALI. Study Design and Methods: In this nested case-control study, we prospectively identified 145 consecutive patients with pTRALI and randomly selected 163 transfused controls over a 4-year ...

  6. Transfusion related acute lung injury presenting with acute dyspnoea: a case report

    Haji Altaf; Sharma Shekhar; Vijaykumar DK; Paul Jerry

    2008-01-01

    Abstract Introduction Transfusion-related acute lung injury is emerging as a common cause of transfusion-related adverse events. However, awareness about this entity in the medical fraternity is low and it, consequently, remains a very under-reported and often an under-diagnosed complication of transfusion therapy. Case presentation We report a case of a 46-year old woman who developed acute respiratory and hemodynamic instability following a single unit blood transfusion in the postoperative...

  7. Transfusion-related acute lung injury management in a pediatric intensive care unit

    Dotis, J.; Stabouli, S.; Violaki, A; Vogiatzi, L; Mitroudi, M; Oikonomou, M.; Athanassiou-Metaxa, M; Kotsiou, M

    2011-01-01

    Transfusion-related acute lung injury (TRALI) constitutes a life threatening complication of blood transfusion. In severe TRALI cases supportive care with mechanical ventilation in intensive care unit is needed. We present two severe TRALI cases caused by leukocyte depleted, ABO compatible, packed red blood cell transfusions, coming from multiparous women donors. In the first case diagnosis was based on clinical findings and established by the identification of leukocyte antibodies in donor's...

  8. Transfusion Related Acute Lung Injury after Cesarean Section in a Patient with HELLP Syndrome

    Moon, Kyoung Min; Han, Min Soo; Rim, Ch'ang Bum; Kim, So Ri; Shin, Sang Ho; Kang, Min Seok; Lee, Jun Ho; Kim, Jihye; Kim, Sang Il

    2016-01-01

    Transfusion-related acute lung injury (TRALI) is a serious adverse reaction of transfusion, and presents as hypoxemia and non-cardiogenic pulmonary edema within 6 hours of transfusion. A 14-year-old primigravida woman at 34 weeks of gestation presented with upper abdominal pain without dyspnea. Because she showed the syndrome of HELLP (hemolysis, elevated liver enzymes, and low platelet count), an emergency cesarean section delivery was performed, and blood was transfused. In the case of such...

  9. Possible transfusion-related acute lung injury (TRALI) in cardiac surgery patients

    Zah-Bogović, Tajana; Mesarić, Jasna; Hrabač, Pero; Majerić-Kogler, Višnja

    2014-01-01

    Aim To determine the incidence of possible transfusion-related acute lung injury (TRALI) and related risk factors in cardiac surgery patients. Methods A single-center prospective cohort study was conducted from January 2009 to March 2010 at the Zagreb University Hospital Center, Croatia. Patient-, transfusion-, and surgery-related data were collected. The study included 262 patients who were observed for respiratory worsening including measurements of arterial oxygen saturation (SaO 2), fract...

  10. The approach taken to reducing the risk of transfusion related acute lung injury in Canada

    Growe G; Petraszko T; Bigham Mark

    2008-01-01

    Transfusion related acute lung injury (TRALI) has become a major reported cause of severe transfusion reactions and mortality. Over the past four years significant changes have been taken in Canada in order both to improve the recognition of the risk and to decrease its incidence. An international meeting was held in April of 2004 entitled "Towards an Understanding of TRALI". As a result of the analysis and recommendations from this meeting, the Canadian Blood Services established an ongoing ...

  11. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury

    Maloney, James P.; Ambruso, Daniel R.; Norbert F. Voelkel; Silliman, Christopher C

    2014-01-01

    Objective The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulati...

  12. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury

    Caudrillier, Axelle; Kessenbrock, Kai; Gilliss, Brian M.; Nguyen, John X.; Marques, Marisa B.; Monestier, Marc; Toy, Pearl; Werb, Zena; Looney, Mark R.

    2012-01-01

    There is emerging evidence that platelets are major contributors to inflammatory processes through intimate associations with innate immune cells. Here, we report that activated platelets induce the formation of neutrophil extracellular traps (NETs) in transfusion-related acute lung injury (TRALI), which is the leading cause of death after transfusion therapy. NETs are composed of decondensed chromatin decorated with granular proteins that function to trap extracellular pathogens; their forma...

  13. Transfusion-Related Acute Lung Injury: The role of donor antibodies

    Mathijssen-van Stein, Danielle

    2015-01-01

    markdownabstractAbstract Transfusion-related acute lung injury (TRALI) is a serious complication of blood transfusion, which causes serious morbidity and is the leading cause of transfusion-associated mortality according to the FDA. The majority of TRALI cases (up to 89%) are thought to be antibody-mediated TRALI, caused by the passive infusion of white blood cell (WBC)- reactive antibodies, present in plasma-containing blood products. This thesis focuses on the role of donor WBC-reactive ant...

  14. Transfusion-related acute lung injury: etiological research and its methodological challenges

    Middelburg, Rutger Anton

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is the most common serious side effect of blood transfusion. TRALI could be caused by donor leukocyte antibodies, present primarily in female and transfused donors (Chapters 1 and 2). In The Netherlands this led to the exclusion of female and transfused donors from the donation of plasma for transfusion from 1st October 2006. In this thesis we aimed to quantitatively estimate the expected effect of the implementation of this measure. Chapters 5 th...

  15. Transfusion-related acute lung injury (TRALI): Current Concepts and Misconceptions

    Silliman, Christopher C; Fung, Yoke Lin; Ball, J Bradley; Khan, Samina Y.

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is the most common cause of serious morbidity and mortality due to hemotherapy. Although the pathogenesis has been related to the infusion of donor antibodies into the recipient, antibody negative TRALI has been reported. Changes in transfusion practices, especially the use of male-only plasma, have decreased the number of antibody-mediated cases and deaths; however, TRALI still occurs. The neutrophil appears to be the effector cell in TRALI and t...

  16. Spectroscopic Approach to Capillary-Alveolar Membrane Damage Induced Acute Lung Injury

    Jing Wang

    1999-01-01

    Full Text Available BACKGROUND: Acute (or adult respiratory distress syndrome (ARDS is often associated with a high mortality rate in the critical care population. The term acute lung injury (ALI, a primitive phase of ARDS, was introduced by the European and American consensus groups to provide early diagnoses of ARDS. The pathophysiological characterization of ALI/ARDS – an increased pulmonary capillary-alveolar membrane barrier permeability – is generally not included in current intensive care unit diagnosis criteria.

  17. Role of Ventilation in Cases of Acute Respiratory Distress Syndrome /Acute Lung injury

    Hemant M Shah; Shilpa B Sutariya; Parul M Bhatt; Nishil Shah; Shweta Gamit

    2014-01-01

    Introduction: Acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are characterized by refractory hypoxemia that develops secondary to high-permeability pulmonary edema. These syndromes are gaining more attention as a means of better comprehending the pathophysiology of ARDS and possiblyfor modifying ventilatory management. In this context a study was done to compare role of invasive and non-invasive ventilation in cases of ARDS/ALI. Methods: in this study patients of AR...

  18. Heat Shock Protein 90 Inhibitors Prolong Survival, Attenuate Inflammation, and Reduce Lung Injury in Murine Sepsis

    Chatterjee, Anuran; Dimitropoulou, Christiana; Drakopanayiotakis, Fotios; ANTONOVA, Galina; Snead, Connie; Cannon, Joseph; Venema, Richard C.; Catravas, John D.

    2007-01-01

    Rationale: Severe sepsis is the leading cause of death for patients in intensive care units. Patients with severe sepsis develop multiple organ failure, including acute lung injury (ALI), resulting from a deregulated inflammatory response. Inhibitors of the ubiquitous chaperone, heat shock protein 90 (Hsp90), block the activity of certain proinflammatory mediators in vitro. We hypothesized that Hsp90 inhibitors may ameliorate the inflammation and ALI associated with severe sepsis.

  19. A practical protocol for titrating "optimal" PEEP in acute lung injury: recruitment maneuver and PEEP decrement.

    Suh, Gee Young; Kwon, O Jung; Yoon, Jong Wook; Park, Sang Joon; Ham, Hyoung Suk; Kang, Soo Jung; Koh, Won-Jung; Chung, Man Pyo; Kim, Ho Joong

    2003-01-01

    This study was conducted to evaluate the effectiveness and safety of a practical protocol for titrating positive end-expiratory pressure (PEEP) involving recruitment maneuver (RM) and decremental PEEP. Seventeen consecutive patients with acute lung injury who underwent PEEP titration were included in the analysis. After baseline ventilation, RM (continuous positive airway pressure, 35 cm H2O for 45 sec) was performed and PEEP was increased to 20 cmH2O or the highest PEEP guaranteeing the mini...

  20. Ligustrazine alleviates acute lung injury in a rat model of acute necrotizing pancreatitis

    Jian-Xin Zhang; Sheng-Chun Dang

    2006-01-01

    BACKGROUND:Acute necrotizing pancreatitis leads to a systemic inlfammatory response characterized by widespread leukocyte activation and, as a consequence, distant lung injury. The aim of this study was to evaluate the effect of ligustrazine, extracted from Ligusticum wallichii a traditional Chinese medicine, on lung injury in a rat model of acute necrotizing pancreatitis (ANP). METHODS:A total of 192 rats were randomly divided into three groups: control (C group); ANP without treatment (P group); and ANP treated with ligustrazine (T group). Each group was further divided into 0.5, 2, 6 and 12 hours subgroups. All rats were anesthetized with an intraperitoneal injection of sodium pentobarbital. Sodium taurocholate was infused through the pancreatic membrane to induce ANP. For the T group, sodium taurocholate was infused as above, then 0.6%ligustrazine was administered via the femoral vein. The effects of ligustrazine on the severity of lung injury were assessed by lung wet/dry weight ratio, myeloperoxidase (MPO) activity and histopathological changes. Pulmonary blood lfow was determined by the radioactive microsphere technique (RMT). RESULTS:The blood lfow in the P group was signiifcantly lower than that of the C group, while the blood lfow in the T group was signiifcantly higher than that of the P group but showed no signiifcant difference from the C group. Compared with C group, the lung wet/dry ratios in both the P and T groups were signiifcantly increased, but there was no signiifcant difference between them. The MPO activity in the P group was greatly increased over that of the C group. In the T group, although the MPO activity was also higher than in the C group, it much less increased than in the P group. Moreover, the difference between P and T groups was signiifcant after 0.5 to 12 hours. After induction of the ANP model, the pancreas showed mild edema and congestion;the longer the time, the more severe this became. The pulmonary pathological changes were

  1. The role of alveolar epithelium in radiation-induced lung injury.

    Celine Almeida

    Full Text Available Pneumonitis and fibrosis are major lung complications of irradiating thoracic malignancies. In the current study, we determined the effect of thoracic irradiation on the lungs of FVB/N mice. Survival data showed a dose-dependent increase in morbidity following thoracic irradiation with single (11-13 Gy and fractionated doses (24-36 Gy of (137Cs γ-rays. Histological examination showed a thickening of vessel walls, accumulation of inflammatory cells, collagen deposition, and regional fibrosis in the lungs 14 weeks after a single 12 Gy dose and a fractionated 30 Gy dose; this damage was also seen 5 months after a fractionated 24 Gy dose. After both single and fractionated doses, i] aquaporin-5 was markedly decreased, ii] E-cadherin was reduced and iii] prosurfactant Protein C (pro-SP-c, the number of pro-SP-c(+ cells and vimentin expression were increased in the lungs. Immunofluorescence analysis revealed co-localization of pro-SP-c and α-smooth muscle actin in the alveoli after a single dose of 12 Gy. These data suggest that, i] the FVB/N mouse strain is sensitive to thoracic radiation ii] aquaporin-5, E-cadherin, and pro-SP-c may serve as sensitive indicators of radiation-induced lung injury; and iii] the epithelial-to-mesenchymal transition may play an important role in the development of radiation-induced lung fibrosis.

  2. Pathophysiology of lung injury induced by common bile duct ligation in mice.

    Fumiaki Shikata

    Full Text Available BACKGROUND: Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL and to investigate pulmonary pathogenesis for application in future therapeutic approaches. METHODS: Eight-week-old Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers was detected by western blot and microarray analyses. RESULTS: We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells at 2 weeks after CBDL and identified 10 upregulated and 9 down-regulated proteins that were associated with angiogenesis. TNF-α and MMP-9 were highly expressed at 3 weeks after CBDL and were less expressed in the lungs of the control group. CONCLUSIONS: We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.

  3. Experimental research of prednisolone in new zealand white rabbits with radiation induced lung injury

    Objective: To observe the preventive and therapeutic effect of Prednisolone in radiation injury of lungs. Methods: 45 male New Zealand white rabbits were randomly divided into three groups with 15 in each; the blank group (a), the irradiation group (b) and the group with irradiation and Prednisolone (c). Group (a) has no other treatment. Group (b) was given injections Sodium Chloride on the first day of irradiation, with 0.1 ml/kg/d for 4 weeks. Group (c) was given intraperitoneal injections of Prednisolone on the first day of irradiation, with 0.4 mg/kg/d for 4 weeks. CT scanning was performs before irradiation and the 1, 3, 5 months after the irradiation. The animals were killed by cutting off the neck after 1, 3, 5 months of radiation. The right lungs were removed to give HE staining and immunohistochemical staining for the histological evaluation. Results: No significant changes were found in group a in CT scanning. The pathological changes in group c is less than serious than those in group b. Group c is less serious than in pathological changes those in group b. Immunohistochemical results; One, three, and five months after irradiation, the number of positive cells were highest in group b, and was significantly higher in group c than in group a. Conclusion: High dose irradiation of the lung of New Zealand rabbit tissue can successfully abtain the established radiation-induced lung injury animal models. Prednisolon can reduce the radiation-induced lung injury in rabbits New Zealand, and has a certain preventive effect. (authors)

  4. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury.

    Seah, Adrian S; Grant, Kara A; Aliyeva, Minara; Allen, Gilman B; Bates, Jason H T

    2011-05-01

    Management of patients with acute lung injury (ALI) rests on achieving a balance between the gas exchanging benefits of mechanical ventilation and the exacerbation of tissue damage in the form of ventilator-induced lung injury (VILI). Optimizing this balance requires an injury cost function relating injury progression to the measurable pressures, flows, and volumes delivered during mechanical ventilation. With this in mind, we mechanically ventilated naive, anesthetized, paralyzed mice for 4 h using either a low or high tidal volume (Vt) with either moderate or zero positive end-expiratory pressure (PEEP). The derecruitability of the lung was assessed every 15 min in terms of the degree of increase in lung elastance occurring over 3 min following a recruitment maneuver. Mice could be safely ventilated for 4 h with either a high Vt or zero PEEP, but when both conditions were applied simultaneously the lung became increasingly unstable, demonstrating worsening injury. We were able to mimic these data using a computational model of dynamic recruitment and derecruitment that simulates the effects of progressively increasing surface tension at the air-liquid interface, suggesting that the VILI in our animal model progressed via a vicious cycle of alveolar leak, degradation of surfactant function, and increasing tissue stress. We thus propose that the task of ventilating the injured lung is usefully understood in terms of the Vt-PEEP plane. Within this plane, non-injurious combinations of Vt and PEEP lie within a "safe region", the boundaries of which shrink as VILI develops. PMID:21203845

  5. Nanoparticles, lung injury, and the role of oxidant stress.

    Madl, Amy K; Plummer, Laurel E; Carosino, Christopher; Pinkerton, Kent E

    2014-01-01

    The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion. PMID:24215442

  6. Risk factors and outcome of transfusion-related acute lung injury in the critically ill : A nested case-control study

    Vlaar, Alexander P. J.; Binnekade, Jan M.; Prins, David; van Stein, Danielle; Hofstra, Jorrit J.; Schultz, Marcus J.; Juffermans, Nicole P.

    2010-01-01

    Objectives: To determine the incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of critically ill patients. Design: In a retrospective cohort study, patients with transfusion-related acute lung injury were identified using the consensus criteria of acute lung i

  7. Alveolar macrophages regulate neutrophil recruitment in endotoxin-induced lung injury

    Reyes Livia

    2005-06-01

    Full Text Available Abstract Background Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury. Methods Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed. Results A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation. Conclusion These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.

  8. Overexpression of extracellular superoxide dismutase decreases lung injury after exposure to oil fly ash.

    Ghio, Andrew J; Suliman, Hagir B; Carter, Jacqueline D; Abushamaa, Amir M; Folz, Rodney J

    2002-07-01

    The mechanism of tissue injury after exposure to air pollution particles is not known. The biological effect has been postulated to be mediated via an oxidative stress catalyzed by metals present in particulate matter (PM). We utilized a transgenic (Tg) mouse model that overexpresses extracellular superoxide dismutase (EC-SOD) to test the hypothesis that lung injury after exposure to PM results from an oxidative stress in the lower respiratory tract. Wild-type (Wt) and Tg mice were intratracheally instilled with either saline or 50 microg of residual oil fly ash (ROFA). Twenty-four hours later, specimens were obtained and included bronchoalveolar lavage (BAL) and lung for both homogenization and light histopathology. After ROFA exposure, EC-SOD Tg mice showed a significant reduction in BAL total cell counts (composed primarily of neutrophils) and BAL total protein compared with Wt. EC-SOD animals also demonstrated diminished concentrations of inflammatory mediators in BAL. There was no statistically significant difference in BAL lipid peroxidation; however, EC-SOD mice had lower concentrations of oxidized glutathione in the BAL. We conclude that enhanced EC-SOD expression decreased both lung inflammation and damage after exposure to ROFA. This supports a participation of oxidative stress in the inflammatory injury after PM exposure rather than reflecting a response to metals alone. PMID:12060579

  9. Comparison of exogenous surfactant therapy, mechanical ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury

    Hartog, Anneke; Vazquez de Anda, G.F.; Gommers, Diederik; Kaisers, U; Verbrugge, Serge; Schnabel, R.; Lachmann, Burkhard

    1999-01-01

    textabstractWe have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in eac...

  10. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  11. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport

  12. Treatment of intractable interstitial lung injury with alemtuzumab after lung transplantation

    Kohno, M; Perch, M; Andersen, E;

    2011-01-01

    A 44-year-old woman underwent left single-lung transplantation for end-stage emphysema due to α1-antitrypsin deficiency in January 2010. Cyclosporine, azathioprine, and prednisolone were administered for immunosuppression and antithymocyte globulin for induction therapy at the time of transplanta......A 44-year-old woman underwent left single-lung transplantation for end-stage emphysema due to α1-antitrypsin deficiency in January 2010. Cyclosporine, azathioprine, and prednisolone were administered for immunosuppression and antithymocyte globulin for induction therapy at the time of...

  13. Injury to the lung from cancer therapy: Clinical syndromes, measurable endpoints, and potential scoring systems

    Toxicity of the respiratory system is a common side effect and complication of anticancer therapy that can result in significant morbidity. The range of respiratory compromise can extend from acute lethal events to degrees of chronic pulmonary decompensation, manifesting years after the initial cancer therapy. This review examines the anatomic-histologic background of the lung and the normal functional anatomic unit. The pathophysiology of radiation and chemotherapy induced lung injury is discussed as well as the associated clinical syndromes. Radiation tolerance doses and volumes are assessed in addition to chemotherapy tolerance and risk factors and radiation-chemotherapy interactions. There are a variety of measurable endpoints for detection and screening. Because of the wide range of available quantitative tests, it would seem that the measurement of impaired lung function is possible. The development of staging systems for acute and late toxicity is discussed and a new staging system for Late Effects in Normal Tissues (LENT) is proposed

  14. [Independent lung ventilation for asymmetric injury: case report as a demonstration of common challenge].

    Lebedinskiĭ, K M; Artiukov, D A; Borisov, M V; Gromova, T A; Slivin, O A

    2014-01-01

    The article deals with a case of conventional mechanical ventilation in 75 y.o. woman with the background of uncompensated diabetes mellitus, suffering from bilateral pneumonia with predominantly left-sided lesion and severe sepsis. The conventional mechanical ventilation with high pressure levels led to arterial hypoxemia with P/F ratio 52. Independent lung ventilation immediately increased oxygenation up to P/F ratio 225 and evidently improved left lung aeration. The case demonstrates that while applying high pressures to open alveoli, we could not only provoke ventilator-induced lung injury and low cardiac output, but also "squeeze out" pulmonary perfusion from ventilated areas to non-ventilated ones with less intraalveolar pressure levels. PMID:25549491

  15. Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers.

    Tariket, Sofiane; Sut, Caroline; Hamzeh-Cognasse, Hind; Laradi, Sandrine; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2016-05-01

    Transfusion-related acute lung injury (TRALI) may be induced by plasma, platelet concentrates and red blood cell concentrates. The mechanism leading to TRALI is thought to involve two steps. The priming step consists of previous inflammatory pathological conditions or external factors attracting leukocytes to lung vessels and creating conditions favorable for the second step, in which anti-HLA or anti-HNA antibodies or biologically active lipids, usually in transfused blood products, stress leukocytes and inflame lung epithelia. Platelets may be involved in the pathogenesis of TRALI because of their secretory potential and capacity to interact with other immune cells. There is no drug based-prophylaxis, but transfusion strategies are used to mitigate the risk of TRALI. PMID:26855042

  16. Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

    Lin, Hen I; Chu, Shi Jye; Wang, David; Chen, Hsing I; Hsu, Kang

    2003-01-01

    1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury. PMID:12859432

  17. Protective effects of pretreatment with Radix Paeoniae Rubra on acute lung injury induced by intestinal ischemia/ reperfusion in rats

    CHEN Chang; ZHANG Fan; XIA Zhong-yuan; LIN Hui; MO An-sheng

    2008-01-01

    Objective: To investigate the effect of pretreatment with Radix Paeoniae Rubra (RPR) on acute lung injury induced by intestinal ischemia/reperfusion in rats and its protective mechanism.Methods:n lung tissues was detected by immunohistochemistry and morphometry computer image analysis. Arterial blood gas analysis, lung permeability index, malondialdehyde (MDA) and superoxide dismutase (SOD) contents in lungs were measured. The histological changes of lung tissue were observed under light microscope.Results:The expression of HO-1 in RPR-pretreatment group and hemin group was obviously higher than that in sham-operation group and I/R group (P < 0.01). The level of MDA and lung permeability index in RPR-pretreatment and hemin group were significantly lower than those in I/R group (P<0.01 or P<0.05), while the activity of SOD in RPR-pretreatment and hemin group was obviously higher than that in I/R group (P<0.01 ). Under light microscope, the pathologic changes induced by I/R were significantly attenuated by RPR.Conclusion : Intestinal ischemia/reperfusion may result in acute lung injury and pretreatment with RPR injection can attenuate the injury. The protective effect of RPR on the acute lung injury is related to its property of inducing HO-1 expression and inhibiting lipid peroxidation.

  18. Surfactant therapy restores gas exchange in lung injury due to paraquat intoxication in rats.

    So, K L; de Buijzer, E; Gommers, D; Kaisers, U; van Genderen, P J; Lachmann, B

    1998-08-01

    Paraquat is a weed killer which causes often fatal lung damage in humans and other animals. There is evidence that the pulmonary surfactant system is involved in the pathophysiology of respiratory failure after paraquat intoxication and, therefore, the possible therapeutic effect of intratracheal surfactant administration on gas exchange in rats with progressive lung injury induced by paraquat poisoning was studied. In one group of rats, the time course of the development of lung injury due to paraquat intoxication was characterized. In a second group of rats, 72 h after paraquat intoxication, the animals underwent mechanical ventilation and only those animals in which the arterial oxygen tension/inspiratory oxygen fraction (Pa,O2/FI,O2) decreased to below 20 kPa (150 mmHg) received exogenous surfactant (200 mg x kg(-1) body weight). Within 3 days the rats in group 1 developed progressive respiratory failure, demonstrated not only by impaired gas exchange and lung mechanics but also by increased minimal surface tension and increased protein concentration in bronchoalveolar lavage fluid. In group 2, intratracheal surfactant administration increased Pa,O2/FI,O2 significantly within 5 min (14.4+/-2.4 kPa (108+/-18 mmHg)) to (55.2+/-53 kPa (414+/-40 mmHg)) and sustained this level for at least 2 h. It is concluded that intratracheal surfactant administration is a promising approach in the treatment of severe respiratory failure caused by paraquat poisoning. PMID:9727775

  19. Expression of ICAM-1 in mice with radiation induced lung injury

    Objective: To observe the expression of intercellular adhesion molecule-1 (ICAM-1) in mice with radiation induced lung injury and to study the function of ICAM-1. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Two groups were defined as received sham-irradiation (C group) and underwent irradiation (X group). Mice were sacrificed at hours 1, 24, 72 and weeks 1, 2, 4, 8, 16, 24 after irradiation. The lung tissues were removed and processed for definitive analysis, including HE and Masson staining, the hydroxyproline content, the immunohistochemistry and the real-time quantitative RT-PCR. Results: Compared with C group, there was a significant histological and pathologic change in X group. And there was a significantly elevated level of positive cell counts of ICAM-1 and inflammatory cells in X group (P<0.01). Similarly, there was a significantly elevated level of hydroxyproline in X group(P<0.05). Moreover, the results of real-time quantitative RT-PCR showed that the relative mRNA expression of cytokine ICAM-1 in X group was significantly higher than that of C group(P<0.01). Conclusions: As an important cytokine in radiation-induced lung injury, ICAM-1 can not only mediate the inflammation cells adherence and infiltration, but also be involved in radiation induced lung fibrosis. (authors)

  20. GSN antibody pretreatment aggravates radiation-induced lung injury in mice

    Radiation-induced lung injury is one of the main dose limiting factors for thoracic radiation therapy. Gelsolin (GSN) is a widespread, multifunctional regulator of cellular structure and metabolism. In this work, the roles of GSN in radiation-induced lung injury in Balb/c mice were studied. The GSN levels in plasma reduced progressively in 72 hours after irradiation, and then increased gradually. GSN contents in the bronchoalveolar lavage (BAL) fluid increased after thoracic irradiation, whereas mRNA levels of GSN in the lung tissue decreased significantly within 24 hours after irradiation and then increased again. Mice were intravenously injected with 50 μg GSN antibody 0.5 hour before 20 Gy of thoracic irradiation. GSN antibody pretreatment increased lung inflammation, protein concentration in the BAL fluid and leukocytes infiltration in the irradiated mice. The activities of superoxidase dismutase (SOD) in the plasma and the BAL fluid in irradiated mice injected with GSN antibody were less than that of control groups, whereas the levels of malondialdehyde (MDA) increased. These results suggest that pretreatment of GSN antibody may aggravate radiation-induced pneumonitis. (authors)

  1. Exploration on remodeling of lung tissue in early radiation pulmonary injury

    Objective: To investigate the roles of collagen type IV and Matrix metalloproteinase-9 (MMP-9) on remodeling of lung tissue in early radiation pulmonary injury. Methods: The proliferation of human lung fibroblast (Fb) was determined by MTT following irradiation with 60Co γ ray of 1-10 Gy; the alteration of collagen type IV and MMP-9 was measured by ELISA following Fb was irradiated with 5 and 7 Gy; Macrophage was isolated from alveolar lavage solution of rat irradiated by 25 Gy of γ ray, and condition medium of alveolar macrophage (CMAM) was prepared for stimulation of pulmonary Fb, and the cellular proliferation was determined by MTT, the synthesis of collagen type IV and MMP-9 was measured by ELISA. Immunohistochemical staining of collagen type IV and MMP-9 was performed with rat lung tissue at different times after irradiation. Results: Irradiation with 1-7 Gy on pulmonary Fb could promote cellular proliferation and MMP-9 synthesis, but could not promote the collagen type IV synthesis. However, the CMAM could not only promote Fb proliferation and MMP-9 synthesis, but also promote collagen type IV synthesis and release. The deposition of collagen type IV in lung tissue could be found one week after irradiation. Conclusions: Radiation can promote pulmonary Fb proliferation but can' t make it produce collagen type IV. The synthesis of collagen type IV is related to interaction between pulmonary macrophage and Fb after irradiation, and it is directly involved in pulmonary remodeling after radiation pulmonary injury. (authors)

  2. Activated protein C attenuates acute lung injury and apoptosis in a hyperoxic animal model.

    Husari, Ahmad W; Khayat, Aline; Awdeh, Haitham; Hatoum, Hadi; Nasser, Michel; Mroueh, Salman M; Zaatari, Ghazi; El-Sabban, Marwan; Dbaibo, Ghassan S

    2010-05-01

    Evidence suggests that activated protein C (APC) attenuates acute lung injury (ALI) through antithrombotic and anti-inflammatory mechanisms. The aim of this study was to determine the effects of APC on ALI in adult rats exposed to hyperoxic environment. Rats were divided into control, hyperoxia, hyperoxia + APC, and APC. Hyperoxia and hyperoxia + APC were exposed to 1, 3, and 5 days of hyperoxia. Hyperoxia + APC and APC were injected with APC (5 mg/kg, i.p.) every 12 h. Control and hyperoxia received isotonic sodium chloride solution injection. Measurement of wet to dry ratio and albumin leak demonstrated significant improvement in hyperoxia + APC when compared with hyperoxia. Apoptosis, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, was significantly reduced in hyperoxia + APC when compared with hyperoxia. Histological evaluation of lung sections showed significant reduction in inflammation, edema, and in the number of marginating neutrophils in hyperoxia + APC as compared with hyperoxia. Transcriptional expression of lung inflammatory mediators demonstrated a time-dependent surge in the levels TNF-alpha, IL-1beta, and IL-6 in response to hyperoxia that was attenuated with APC administration in the presence of hyperoxia. In this rat model, APC attenuates lung injury and the expression of inflammatory mediators in ALI secondary to hyperoxia. PMID:19851127

  3. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury.

    Nieman, Gary F; Gatto, Louis A; Habashi, Nader M

    2015-12-01

    The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated. PMID:26472873

  4. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases

    ZHANG Xiang-feng; LIU Shuang; ZHOU Yu-jie; ZHU Guang-fa; Hussein. D Foda

    2010-01-01

    Background Exposure of adult mice to more than 95% O_2 produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS.Methods One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages >95% oxygen or room air for 24-72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24,48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues.Results OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85±0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31±0.92 in the WT group (P<0.05). iNOS mRNA (48 hours: 1.04±0.08 vs. 0.63±0.09, P<0.01; 72 hours: 0.89±0.08 vs. 0.72±0.09, P<0.05) and eNOS mRNA (48 hours: 0.62±0.08 vs. 0.43±0.09, P<0.05; 72 hours: 0.67±0.08 vs. 0.45±0.09, P<0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54±3.18 vs. 12.52±2.46, P <0.05) and eNOS (19.83±5.64 vs. 9.45±3.82, P <0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. Conclusion OPN can protect against hyperoxia-induced lung

  5. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine.

    Yuan, Zhihong; Syed, Mansoor; Panchal, Dipti; Joo, Myungsoo; Bedi, Chetna; Lim, Sokbee; Onyuksel, Hayat; Rubinstein, Israel; Colonna, Marco; Sadikot, Ruxana T

    2016-03-01

    Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. Synergy between TREM-1 and Toll-like receptor amplifies the inflammatory response; however, the mechanisms by which TREM-1 accentuates inflammation are not fully understood. In this study, we investigated the role of TREM-1 in a model of LPS-induced lung injury and neutrophilic inflammation. We show that TREM-1 is induced in lungs of mice with LPS-induced acute neutrophilic inflammation. TREM-1 knockout mice showed an improved survival after lethal doses of LPS with an attenuated inflammatory response in the lungs. Deletion of TREM-1 gene resulted in significantly reduced neutrophils and proinflammatory cytokines and chemokines, particularly IL-1β, TNF-α, and IL-6. Physiologically deletion of TREM-1 conferred an immunometabolic advantage with low oxygen consumption rate (OCR) sparing the respiratory capacity of macrophages challenged with LPS. Furthermore, we show that TREM-1 deletion results in significant attenuation of expression of miR-155 in macrophages and lungs of mice treated with LPS. Experiments with antagomir-155 confirmed that TREM-1-mediated changes were indeed dependent on miR-155 and are mediated by downregulation of suppressor of cytokine signaling-1 (SOCS-1) a key miR-155 target. These data for the first time show that TREM-1 accentuates inflammatory response by inducing the expression of miR-155 in macrophages and suggest a novel mechanism by which TREM-1 signaling contributes to lung injury. Inhibition of TREM-1 using a nanomicellar approach resulted in ablation of neutrophilic inflammation suggesting that TREM-1 inhibition is a potential therapeutic target for neutrophilic lung inflammation and acute respiratory distress syndrome (ARDS). PMID:26684249

  6. VDR Attenuates Acute Lung Injury by Blocking Ang-2-Tie-2 Pathway and Renin-Angiotensin System

    Kong, Juan; Zhu, Xiangdong; Shi, Yongyan; Liu, Tianjing; Chen, Yunzi; Bhan, Ishir; Zhao, Qun; Thadhani, Ravi; Li, Yan Chun

    2013-01-01

    Acute lung injury (ALI) is a hallmark of systemic inflammation associated with high mortality. Although the vitamin D receptor (VDR) is highly expressed in the lung, its role in lung physiology remains unclear. We investigated the effect of VDR deletion on ALI using a lipopolysaccharide (LPS)-induced sepsis model. After LPS challenge VDR-null mice exhibited more severe ALI and higher mortality compared with wild-type (WT) counterparts, manifested by increased pulmonary vascular leakiness, pul...

  7. Semiautomatic segmentation of longitudinal computed tomography images in a rat model of lung injury by surfactant depletion

    Xin, Yi; Song, Gang; Cereda, Maurizio; Kadlecek, Stephen; Hamedani, Hooman; Jiang, Yunqing; Rajaei, Jennia; Clapp, Justin; Profka, Harrilla; Meeder, Natalie; Wu, Jue; Tustison, Nicholas J.; Gee, James C; Rizi, Rahim R.

    2014-01-01

    Quantitative analysis of computed tomography (CT) is essential to the study of acute lung injury. However, quantitative CT is made difficult by poor lung aeration, which complicates the critical step of image segmentation. To overcome this obstacle, this study sought to develop and validate a semiautomated, multilandmark, registration-based scheme for lung segmentation that is effective in conditions of poor aeration. Expiratory and inspiratory CT images were obtained in rats (n = 8) with sur...

  8. Effects of sigh during pressure control and pressure support ventilation in pulmonary and extrapulmonary mild acute lung injury

    Moraes, Lillian; Santos, Cíntia Lourenco; Santos, Raquel Souza; Cruz, Fernanda Ferreira; Saddy, Felipe; Morales, Marcelo Marcos; Capelozzi, Vera Luiza; Silva, Pedro Leme; Gama de Abreu, Marcelo; Garcia, Cristiane Sousa Nascimento Baez; Pelosi, Paolo; Rocco, Patricia Rieken Macedo

    2014-01-01

    Introduction Sigh improves oxygenation and lung mechanics during pressure control ventilation (PCV) and pressure support ventilation (PSV) in patients with acute respiratory distress syndrome. However, so far, no study has evaluated the biological impact of sigh during PCV or PSV on the lung and distal organs in experimental pulmonary (p) and extrapulmonary (exp) mild acute lung injury (ALI). Methods In 48 Wistar rats, ALI was induced by Escherichia coli lipopolysaccharide either intratrachea...

  9. Unfractionated heparin and enoxaparin reduce high-stretch ventilation augmented lung injury: a prospective, controlled animal experiment

    Li, Li-Fu; Huang, Chung-Chi; Lin, Horng-Chyuan; Tsai, Ying-Huang; Quinn, Deborah A; Liao, Shuen-Kuei

    2009-01-01

    Introduction Dysregulation of coagulation and local fibrinolysis found in patients with acute lung injury often results in the need for the support of mechanical ventilation. High-tidal-volume mechanical ventilation can increase lung damage and suppression of fibrinolytic activity, but the mechanisms are unclear. We hypothesized that subcutaneous injections of unfractionated heparin and enoxaparin would decrease neutrophil infiltration, lung edema, and plasminogen-activator inhibitor-1 (PAI-1...

  10. Pharyngeal oxygen administration increases the time to serious desaturation at intubation in acute lung injury: an experimental study

    Engström, Joakim; Hedenstierna, Göran; Larsson, Anders

    2010-01-01

    Introduction Endotracheal intubation in critically ill patients is associated with severe life-threatening complications in about 20%, mainly due to hypoxemia. We hypothesized that apneic oxygenation via a pharyngeal catheter during the endotracheal intubation procedure would prevent or increase the time to life-threatening hypoxemia and tested this hypothesis in an acute lung injury animal model. Methods Eight anesthetized piglets with collapse-prone lungs induced by lung lavage were ventila...

  11. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  12. Loss of the intestinal mucus layer in the normal rat causes gut injury but not toxic mesenteric lymph nor lung injury.

    Sharpe, Susan M; Qin, Xiaofa; Lu, Qi; Feketeova, Eleonora; Palange, David C; Dong, Wei; Sheth, Sharvil U; Lee, Marlon A; Reino, Diego; Xu, Da-Zhong; Deitch, Edwin A

    2010-11-01

    There is substantial evidence that gut barrier failure is associated with distant organ injury and systemic inflammation. After major trauma or stress, the factors and mechanisms involved in gut injury are unknown. Our primary hypothesis is that loss of the intestinal mucus layer will result in injury of the normal gut that is exacerbated by the presence of luminal pancreatic proteases. Our secondary hypothesis is that the injury produced in the gut will result in the production of biologically active mesenteric lymph and consequently distant organ (i.e., lung) injury. To test this hypothesis, five groups of rats were studied: 1) uninstrumented naive rats; 2) control rats in which a ligated segment of distal ileum was filled with saline; 3) rats with pancreatic proteases placed in their distal ileal segments; 4) rats with the mucolytic N-acetylcysteine (NAC) placed in their distal ileal segments; and 5) rats exposed to NAC and pancreatic proteases in their ileal segments. The potential systemic consequences of gut injury induced by NAC and proteases were assessed by measuring the biological activity of mesenteric lymph as well as gut-induced lung injury. Exposure of the normal intestine to NAC, but not saline or proteases, led to increased gut permeability, loss of mucus hydrophobicity, a decrease in the mucus layer, as well as morphological evidence of villous injury. Although proteases themselves did not cause gut injury, the combination of pancreatic proteases with NAC caused more severe injury than NAC alone, suggesting that once the mucus barrier is impaired, luminal proteases can injure the now vulnerable gut. Because comparable levels of gut injury caused by systemic insults are associated with gut-induced lung injury, which is mediated by biologically active factors in mesenteric lymph, we next tested whether this local model of gut injury would produce active mesenteric lymph or lead to lung injury. It did not, suggesting that gut injury by itself may not

  13. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs

    Davis Peter G

    2009-03-01

    Full Text Available Abstract Background Bronchopulmonary dysplasia (BPD is closely associated with ventilator-induced lung injury (VILI in very preterm infants. The greatest risk of VILI may be in the immediate period after birth, when the lungs are surfactant deficient, still partially filled with liquid and not uniformly aerated. However, there have been very few studies that have examined this immediate post-birth period and identified the initial injury-related pathways that are activated. We aimed to determine if the early response genes; connective tissue growth factor (CTGF, cysteine rich-61 (CYR61 and early growth response 1 (EGR1, were rapidly induced by VILI in preterm lambs and whether ventilation with different tidal volumes caused different inflammatory cytokine and early response gene expression. Methods To identify early markers of VILI, preterm lambs (132 d gestational age; GA, term ~147 d were resuscitated with an injurious ventilation strategy (VT 20 mL/kg for 15 min then gently ventilated (5 mL/kg for 15, 30, 60 or 120 min (n = 4 in each. To determine if early response genes and inflammatory cytokines were differentially regulated by different ventilation strategies, separate groups of preterm lambs (125 d GA; n = 5 in each were ventilated from birth with a VT of 5 (VG5 or 10 mL/kg (VG10 for 135 minutes. Lung gene expression levels were compared to levels prior to ventilation in age-matched control fetuses. Results CTGF, CYR61 and EGR1 lung mRNA levels were increased ~25, 50 and 120-fold respectively (p CTGF, CYR61, EGR1, IL1-β, IL-6 and IL-8 mRNA levels compared to control levels. CTGF, CYR61, IL-6 and IL-8 expression levels were higher in VG10 than VG5 lambs; although only the IL-6 and CYR61 mRNA levels reached significance. Conclusion CTGF, CYR61 and EGR1 may be novel early markers of lung injury and mechanical ventilation from birth using relatively low tidal volumes may be less injurious than using higher tidal volumes.

  14. The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung.

    Joutti, A; Brotherus, J; Renkonen, O; Laine, R; Fischer, W

    1976-11-19

    Lysobisphosphatidic acid known also as bis(monoacyl-glycerol)phosphate, was isolated from liver of rats treated with Triton WR1339, and from rabbit and pig lung. Alkaline hydrolysates of all these samples of lysobisphosphatidic acid were essentially similar and contained phosphorus, total glycerol, free glycerol, total glycerophosphates, beta-glycerophosphate, total alpha-glycerophosphates, sn-glycero-1-phosphate and sn-glycero-3-phosphate in a molar ratio of 1.0 : 2.0 : 1.0 : 1.0 :0.6 : 0.4 : 0.38 : 0.04. This proves that the backbone of the principal lysobisphosphatidic acid from all three sources has the structure of 1-sn-glycerophospho-1-sn-glycerol. PMID:990300

  15. The role of the acute phase protein PTX3 in the ventilator-induced lung injury

    JM Real

    2008-06-01

    Full Text Available The pentraxin 3 (PTX3 is an acute phase proinflammatory protein produced by fibroblasts and alveolar epithelial cells. We have previously demonstrated that PTX3 is a key modulator of inflammation. Mechanical ventilation (MV is a life saving therapeutic approach for patients with acute lung injury that, nevertheless could lead to an inflammatory response and tissue injury (ventilator-induced lung injury: VILI, representing a major cause of iatrogenic lung damage in intensive units. Our objective was to investigate the role of PTX3 in VILI. PTX3 transgenic, knockout and Wt control mice (n = 12/group were ventilated (45ml·kg–1 until respiratory system Elastance increased 50% (Ers150%, an indicator of VILI. Histological analysis demonstrated that using a Ers150% was appropriate for our analysis since identical degrees of inflammation were observed in Tg, KO and Wt mice as assessed by leukocyte infiltration, oedema, alveolar collapse and number of breaks in alveolar septa. However, Tg mice reached Ers150% faster than Wt controls (p = 0.0225. We also showed that the lack of PTX3 does not abolish the occurrence of VILI in KOs. Gene expression profile of PTX3, IL-1beta, IL-6, KC, IFNgamma, TGFbeta and PCIII were investigated by QPCR. MV drastically up modulated PTX3 as well as IL-1beta, IL-6, IFNgamma and KC. Alternatively, mice were ventilated for 20, 40 and 60 min. The faster kinetics of Tg mice to reach Ers150% was accompanied by an earlier augmentation of IL-1b and PTX3 expression. The kinetics of local PTX3 expression in the lungs of ventilated mice strongly suggests the involvement of this pentraxin in the pathogenesis of VILI.

  16. Paraquat poisoning: an experimental model of dose-dependent acute lung injury due to surfactant dysfunction

    M.F.R. Silva

    1998-03-01

    Full Text Available Since the most characteristic feature of paraquat poisoning is lung damage, a prospective controlled study was performed on excised rat lungs in order to estimate the intensity of lesion after different doses. Twenty-five male, 2-3-month-old non-SPF Wistar rats, divided into 5 groups, received paraquat dichloride in a single intraperitoneal injection (0, 1, 5, 25, or 50 mg/kg body weight 24 h before the experiment. Static pressure-volume (PV curves were performed in air- and saline-filled lungs; an estimator of surface tension and tissue works was computed by integrating the area of both curves and reported as work/ml of volume displacement. Paraquat induced a dose-dependent increase of inspiratory surface tension work that reached a significant two-fold order of magnitude for 25 and 50 mg/kg body weight (P<0.05, ANOVA, sparing lung tissue. This kind of lesion was probably due to functional abnormalities of the surfactant system, as was shown by the increase in the hysteresis of the paraquat groups at the highest doses. Hence, paraquat poisoning provides a suitable model of acute lung injury with alveolar instability that can be easily used in experimental protocols of mechanical ventilation

  17. Mitigating Role of Quercetin Against Cyclophosphamide-Induced Lung Injury in Rats

    Nora A. Asry

    2014-05-01

    Full Text Available Quercetin (Qur, a polyphenolic flavonoid compound present in large amounts in vegetables and fruits, plays important roles in human health through its antioxidant activity. This study was conducted to investigate the possible modulatory effect of Qur against cyclophosphamide (CP-induced lung oxidative damage and to highlight the underlying mechanisms of such effect. Male Sprague-Dawely rats were divided into four groups. Group I was control. Group II received Qur (100 mg/kg/d. p.o. for 14 consecutive days. Group III was injected once with CP (150 mg/kg, i.p.. Group IV received Qur for 7 consecutive days, before and after CP injection.A single i.p. injection of CP markedly increased the level of serum biomarkers; total protein, LDH. Cyclophosphamide significantly increased the lung content of lipid peroxides and decreased levels of reduced glutathione. Treatment of rats with Qur for 7 days prior to and 7 days after cyclophosphamide significantly ameliorated the alterations in lung and serum biomarkers associated with inflammatory reactions. Moreover, Qur attenuated the secretion of pro-inflammatory cytokine, TNF-α in rat serum. In addition, Qur slightly ameliorated CP-induced histopathological changes in lung tissue. Our results suggest that Qur produces a protective effect against CP-induced lung injury and suggest a role of oxidative stress and inflammation in the pathogenesis.

  18. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  19. Triptolide inhibits NF-κB activation and reduces injury of donor lung induced by ischemia/reperfusion

    Jing-kang HE; Shu-dong YU; Hong-Jun ZHU; Jun-chao WU; Zhen-ghong QIN

    2007-01-01

    Aim: To investigate the protective effect of triptolide (TRI) on ischemia/reperfusion- induced injury of transplanted rabbit lungs and to investigate the mechanisms underlying the actions of TRI. Methods: We established the rabbit lung trans- plantation model and studied lung injury induced by ischemia/reperfusion and the inhibitory effect of TRI on NF-r,B. The severity of lung injury was determined by a gradual decline in PvO2, the degree of lung edema, the increase in the myeloperoxidase (MPO) activity, and the ultrastructural changes of transplanted lungs. The activation of NF-r,B was measured by immunohistochemistry. The increase in intercellular adhesion molecule- 1 (ICAM- 1), which is the target gene of NF-κB, was evaluated by ELISA. Results: After reperfusion, there was a gradual decline in the PvO2 level in the control group (group I). The level of PvO2 in the group treated with lipopolysaccharide (group Ⅱ) was significantly decreased, whereas that of the group treated with TRI (group Ⅲ) was markedly improved (P<0.01). In group Ⅲ, the activity of MPO was downregulated, and the pulmonary edema did not become severe and the ultrastructure of the donor lung remained normal. The activity of NF-κB and the expression of ICAM-1 was significantly increased in the donor lungs. TRI blocked NF-κB activation and ICAM-1 expression. Conclusion: The effects of TRI on reducing injury to donor lungs induced by ischemia/reperfusion may possibly be mediated by inhibiting the activity of NF-κB and the expression of the NF-rd3 target gene ICAM-1. Thus, TRI could be used in lung transplantations for improving the function of donor lungs.

  20. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined t...

  1. Aerosol-induced lung injuries observed by synchrotron radiation X-ray phase-contrast imaging technique

    Yue Weisheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang Guilin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: glzhang@sinap.ac.cn; Liu Ping; Sun Jianqi [Key Laboratory of Systems Biomedicine, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240 (China); Hwu Yeukuang [Institute of Physics, Acamemia Sinica, Nankang, Taipei (China); Je, Jung Ho [Department of Material Science and Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Tan Mingguang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li Yan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)], E-mail: liyan@sinap.ac.cn

    2007-09-15

    Adverse health effects are associated with the inhalation of a variety of atmospheric particles. To study the lung injuries caused by aerosol PM{sub 2.5}, synchrotron radiation (SR) X-ray phase-contrast imaging technique was used. Nude mice were inoculated with PM{sub 2.5} samples collected from suburban area (JD), industrial area (BS) and traffic tunnel (DPQ) of Shanghai. From X-ray phase-contrast images of lung tissues, apart from blood vessels and structures of alveoli, even hemorrhage spots of several microns caused by the inflammation were clearly observed. The studies showed that the PM{sub 2.5} samples collected from the traffic tunnel (DPQ) produced higher level of lung injury, followed by the aerosol samples collected from industrial area (BS) and suburban area (JD). Our studies also helped us to understand the process of lung injuries caused by aerosol particles.

  2. Aerosol-induced lung injuries observed by synchrotron radiation X-ray phase-contrast imaging technique

    Yue, Weisheng; Zhang, Guilin; Liu, Ping; Sun, Jianqi; Hwu, Yeukuang; Je, Jung Ho; Tan, Mingguang; Li, Yan

    2007-09-01

    Adverse health effects are associated with the inhalation of a variety of atmospheric particles. To study the lung injuries caused by aerosol PM2.5, synchrotron radiation (SR) X-ray phase-contrast imaging technique was used. Nude mice were inoculated with PM2.5 samples collected from suburban area (JD), industrial area (BS) and traffic tunnel (DPQ) of Shanghai. From X-ray phase-contrast images of lung tissues, apart from blood vessels and structures of alveoli, even hemorrhage spots of several microns caused by the inflammation were clearly observed. The studies showed that the PM2.5 samples collected from the traffic tunnel (DPQ) produced higher level of lung injury, followed by the aerosol samples collected from industrial area (BS) and suburban area (JD). Our studies also helped us to understand the process of lung injuries caused by aerosol particles.

  3. The Role of Nitric Oxide in Hyperoxic Lung Injury in Premature Rats

    常立文; 马丽亚; 张晓慧; 陈晔

    2001-01-01

    To investigate the role of nitric oxide (NO) in hyperoxic lung injury, the 3-day-old preterm rats were randomly assigned to four groups: group I (hyperoxia group), group Ⅱ (hyperoxia+Nw-nitro-L-arginine methyl ester (L-NAME) group), group Ⅲ (air group), and group Ⅳ (air+L-NAME) group. Group Ⅰ and Ⅱ were exposed to ≥90 % O2 for 3 or 7 days. Group Ⅱ and Ⅳ received subcutaneous L-NAMEy on daily basis (20 mg/kg). After 3 day or 7 day exposure, the lung wet weight/dry weight ratio (W/D), total protein and malondialdehyde (MDA) in bronchoalveolar lavage fluid (BALF) and lung pathology were examined in all groups. NO content, expression of endothelial NOS (eNOS) and inducible NOS (iNOS) in lungs were measured in group Ⅰ and Ⅲ. Our results showed that after 3 day exposure, group Ⅰ appeared acute lung injury characterized by the increase of MDA content (P<0.01) and the presence of hyperaemia, red cell extravasation and inflammatory infiltration; after 7 day exposure, except MDA, total protein and W/D were also increased in comparison with group Ⅲ (P<0.01, 0.05), pathological changes were more severe than those after 3 day exposure. After 3 and 7 day exposure, total protein in group Ⅱ was significantly increased as compared with group Ⅰ (P<0.01 for both). The pulmonary acute inflammatory changes were more obvious in group Ⅱ than in group Ⅰ. Occasionally, mild hemorrhage was detected in the lungs of group Ⅳ. BALF protein content in group IV was higher than that in group Ⅲ after 7 day exposure (P<0.01). After 3 and 7 day exposure, NO content in BALF were all significantly elevated in group Ⅰ as compared with group Ⅲ (P<0.01 for all). In the lungs of group Ⅰ, strong immunostaining for iNOS was observed in airway and alveolar epithelia, inflammatory cells, which were stronger than those in group Ⅲ. Expression of iNOS in rats after 7 day hyperoxic exposure was stronger than that after 3 day exposure. Shortly after 7 day exposure

  4. Regulation on the expression of Clara cell secretory protein in the lungs of the rats with acute lung injury by growth hormone

    MIN Jia; LUO Fo-quan; ZHAO Wei-lu

    2012-01-01

    Background Clara cell secretory protein (CC16) is an important lung derived protective factor and may play an important role on the pathogenesis of acute lung injury (ALl) induced by endotoxemia.Growth hormone (GH) is an important anabolism hormone secreted by GH cells of the hypophysis.Pravious research showed that GH would significantly exacerbate ALl induced by endotoxemia,but the mechanism is not very clear yet.Whether the effects are related to CC16 or not is undetermined.Methods One hundred and twelve male Sprague-Dawley rats were randomly divided into an ALl group and a GH group.The rats in the two groups were subdivided into seven subgroups,according to injection with lipopolysaccharides (LPS) or not,then according to different intervals of time after LPS injection; 0 hour (pre-injection of LPS,acted as control group),0.5 hour,1 hour,2 hours,4 hours,6 hours and 24 hours for subgroups.Pulmonary alveolar septa area density (PASAD) and ploymorphonuclear cells (PMN) in the lungs were analyzed morphometrically.The levels of tumor necrosis factor (TNF) and interleukin 6 (1L-6) were determined by radioimmunoassay.To analyze the expression and activation of nuclear factor kappa B (NF-kB),the numbers of NF-kB positive cells in lungs were counted after immunofluorescence staining.and the levels of NF-KB inhibitory protein-α (1KB-α) in lung homogenates of rats were detected by Western blotting.The expression levels of CC16 mRNA in lungs of the rats with ALl were determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR).The levels of CC16 protein in lung homogenates were detected by Western blotting.Results Half an hour after LPS injury both the PASAD and PMN numbers in lungs of the rats with ALl began to increase significantly and peaked at 6-hour post-injury.They then began to recover and reached normal levels at 24-hour post-injury.Both the PASAD and PMN numbers in the GH group increased more significantly than those in the ALl group

  5. The biological effects of higher and lower positive end-expiratory pressure in pulmonary and extrapulmonary acute lung injury with intra-abdominal hypertension

    Santos, Cíntia Lourenco; Moraes, Lillian; Santos, Raquel Souza; dos Santos Samary, Cynthia; Silva, Johnatas Dutra; Morales, Marcelo Marcos; Capelozzi, Vera Lucia; de Abreu, Marcelo Gama; Schanaider, Alberto; Silva, Pedro Leme; Garcia, Cristiane Sousa Nascimento Baez; Pelosi, Paolo; Rocco, Patricia Rieken Macedo

    2014-01-01

    Introduction Mechanical ventilation with high positive end-expiratory pressure (PEEP) has been used in patients with acute respiratory distress syndrome (ARDS) and intra-abdominal hypertension (IAH), but the role of PEEP in minimizing lung injury remains controversial. We hypothesized that in the presence of acute lung injury (ALI) with IAH: 1) higher PEEP levels improve pulmonary morphofunction and minimize lung injury; and 2) the biological effects of higher PEEP are more effective in extra...

  6. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS+ and cyclooxygenase-2+) and alternatively activated profibrotic (YM-1+ and galectin-3+) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute lung injury induced by

  7. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  8. Deletion of Caveolin-1 Protects against Oxidative Lung Injury via Up-Regulation of Heme Oxygenase-1

    Jin, Yang; Kim, Hong Pyo; Chi, Minli; Ifedigbo, Emeka; Ryter, Stefan W.; Choi, Augustine M. K.

    2008-01-01

    Acute lung injury (ALI) is a major cause of morbidity and mortality in critically ill patients. Hyperoxia causes lung injury in animals and humans, and is an established model of ALI. Caveolin-1, a major constituent of caveolae, regulates numerous biological processes, including cell death and proliferation. Here we demonstrate that caveolin-1–null mice (cav-1−/−) were resistant to hyperoxia-induced death and lung injury. Cav-1−/− mice sustained reduced lung injury after hyperoxia as determined by protein levels in bronchoalveolar lavage fluid and histologic analysis. Furthermore, cav-1−/− fibroblasts and endothelial cells and cav-1 knockdown epithelial cells resisted hyperoxia-induced cell death in vitro. Basal and inducible expression of the stress protein heme oxygenase-1 (HO-1) were markedly elevated in lung tissue or fibroblasts from cav-1−/− mice. Hyperoxia induced the physical interaction between cav-1 and HO-1 in fibroblasts assessed by co-immunoprecipitation studies, which resulted in attenuation of HO activity. Inhibition of HO activity with tin protoporphyrin-IX abolished the survival benefits of cav-1−/− cells and cav-1−/− mice exposed to hyperoxia. The cav-1−/− mice displayed elevated phospho-p38 mitogen-activated protein kinase (MAPK) and p38β expression in lung tissue/cells under basal conditions and during hyperoxia. Treatment with SB202190, an inhibitor of p38 MAPK, decreased hyperoxia-inducible HO-1 expression in wild-type and cav-1−/− fibroblasts. Taken together, our data demonstrated that cav-1 deletion protects against hyperoxia-induced lung injury, involving in part the modulation of the HO-1–cav-1 interaction, and the enhanced induction of HO-1 through a p38 MAPK–mediated pathway. These studies identify caveolin-1 as a novel component involved in hyperoxia-induced lung injury. PMID:18323531

  9. Can albumin administration relieve lung injury in trauma/hemorrhagic shock?

    Zuo-Bing Chen; Zi-Wei Wang; Chen-Yan Ding; Jian-Hua Yan; Yuan Gao; Yun Zhang; Lin-Mei Ni; Yong-Qing Zhou

    2006-01-01

    AIM:To study the effect of albumin administration on lung injury in trauma/hemorrhagic shock (T/HS).METHODS:Sixty experimental animals were randomly divided into three groups: rats undergoing laparotomy without shock (T/SS); rats with T/HS and resuscitation with blood plus twice the volume of shed blood as Ringer's lactate (RL), and rats with T/HS and resuscitation with blood plus additional 3 Ml of 50 g/L human albumin.Expression of polymorphonuclear neutrophil (PMN) CD11b/CD18, intercellular adhesion molecule-1 (ICAM-1) of jugular vein blood and the severity of lung injuries [determined mainly by measuring activity of lung tissue myeloperoxidase (MPO) and lung injury score (LIS)] were measured after a 3-h recovery period.RESULTS:All three groups showed a significant difference in the expressions of CD11b/CD18, ICAM-1,and severity of lung injury. The expressions of CD11b/CD18 in T/SS group, T/HS + RL group, T/HS + albumin group were 17.76% ± 2.11%, 31.25% ± 3.48%,20.36% ± 3.21%, respectively (F = 6.25, P < 0.05).The expressions of ICAM-1 (U/Ml) in T/SS group, T/HS + RL group, T/HS + albumin group were 258.76 ±98.23, 356.23 ± 65.6, 301.01 ± 63.21, respectively (F =5.86, P < 0.05). The expressions of MPO (U/g)) in T/SS group, T/HS + RL group, T/HS + albumin group were 2.53 ± 0.11, 4.63 ± 1.31, 4.26 ± 1.12, respectively (F= 6.26, P < 0.05). Moreover, LTS in T/HS + RL group,T/HS + albumin group was 2.62 ± 0.23, 1.25 ± 0.24,respectively. The expressions of CD11b/CD18, ICAM-1 and MPO in T/HS + RL group were significantly increased compared to T/SS group (P = 0.025, P = 0.036, P = 0.028,respectively). However, administration of 3 Ml of 50 g/L albumin significantly down-regulated the expressions of CD11b/CD18, ICAM-1 and lung injury index (MPO and LIS) when compared with the T/HS + RL rats (P = 0.035,P = 0.046, P = 0.038, P = 0.012, respectively).CONCLUSION:The infusion of albumin during resuscitation period can protect lung from injury and decrease the

  10. Regional Lung Kinetics of Ventilator-Induced Lung Injury and Protective-Ventilation Strategies Studied by Dynamic Positron Emission Tomography

    Borges, João Batista

    2014-01-01

    Mechanical ventilation in itself can harm the lung and cause ventilator-induced lung injury (VILI), which can induce or aggravate acute respiratory distress syndrome (ARDS). Much debate remains over pivotal concepts regarding the pathophysiology of VILI, especially about the precise contribution, kinetics, and primary role of potential VILI mechanisms. Consequently, it remains largely unknown how best to design a well-timed and full-bodied mechanical ventilation strategy. Little is known also...

  11. Respiratory compliance but not gas exchange correlates with changes in lung aeration after a recruitment maneuver: an experimental study in pigs with saline lavage lung injury

    Henzler, Dietrich; Pelosi, Paolo; Dembinski, Rolf; Ullmann, Annette; Mahnken, Andreas H; Rossaint, Rolf; Kuhlen, Ralf

    2005-01-01

    Introduction Atelectasis is a common finding in acute lung injury, leading to increased shunt and hypoxemia. Current treatment strategies aim to recruit alveoli for gas exchange. Improvement in oxygenation is commonly used to detect recruitment, although the assumption that gas exchange parameters adequately represent the mechanical process of alveolar opening has not been proven so far. The aim of this study was to investigate whether commonly used measures of lung mechanics better detect lu...

  12. Does a conservative fluid management strategy in the perioperative management of lung resection patients reduce the risk of acute lung injury?

    Evans, Robert G.; Naidu, Babu

    2012-01-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was whether a conservative fluid management strategy in the perioperative management of lung resection patients is associated with a reduced incidence of postoperative acute lung injury (PALI) and/or acute respiratory distress syndrome (ARDS) in the recovery period. Sixty-seven papers were found using the reported search, of which 13 level III and 1 level IV evidence studies repres...

  13. Radiation injuries to bones of the thorax after irradiation of carcinoma of the breast and lung

    An analysis of the state of 396 patients undergoing radiotherapy for carcinoma of the breast and carcinoma of the lung gave the following results. During treatment of carcinoma of the breast, radiation injuries, mainly of the ribs and clavicle, were found in 11 of 158 patients treated (7.0 +/- 2.0 percent), more frequently after x-ray therapy (in nine of 70 cases, 12.9 +/- 4.0 percent). In the case of x-ray therapy, the minimal focal dose causing radiation injury to bone was 4,500 rads. The larger the dose and the shorter the course of treatment, the more frequently these changes were found. During treatment of carcinoma of the lung, radiation injuries were discovered in the ribs in ten patients and in the spine in one (of 238 patients treated). The frequency was 4.6 +/- 1.4 percent. They occurred after treatment on a linear accelerator with a frequency of 5.1 +/- 1.6 percent, and after treatment on the γ-ray apparatus in 1 of 27 patients. The minimal focal dose causing injury to bone when a linear accelerator was used was 5,000 rad. If the skin above the region of injury remained intact, clinical manifestations of the lesion were minimal. Repeated observations over a course of several years showed that the changes developed slowly and that consolidation of a radiation fracture can take place. On the whole, the course of the process is directly dependent on the size of the dose given

  14. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases. PMID:26677751

  15. Ebselen Attenuates Lung Injury in Experimental Model of Carrageenan-Induced Pleurisy in Rats.

    Petronilho, Fabricia; Florentino, Drielly; Silvestre, Fernanda; Danielski, Lucineia Gainski; Nascimento, Diego Zapelini; Vieira, Andriele; Kanis, Luiz Alberto; Fortunato, Jucelia Jeremias; Badawy, Marwa; Barichello, Tatiana; Quevedo, Joao

    2015-08-01

    The study evaluates the role of Ebselen (Eb), an organoselenium compound in animal model of acute lung injury induced by carrageenan (CG). Wistar rats received saline or 2 % λ-carrageenan in the pleural cavity, and treatment with Eb (50 mg/kg intragastrically) or dexamethasone (Dx) (0.5 mg/kg intraperitoneal) after CG administration. After 4 h, rats were euthanized and the pleural exudate removed for analysis of the total cell count, total protein, lactate dehydrogenase, and nitrite/nitrate. Moreover, lung tissue were removed to verify the myeloperoxidase activity and oxidative damage. Eb showed anti-inflammatory activity by inhibiting leukocyte influx, myeloperoxidase activity, and nitrite/nitrate concentration. Eb presented with an anti-inflammatory activity similar to Dx and an antioxidant activity better than Dx. This study suggests that Eb plays an important role against the oxidative damage associated with anti-inflammatory activity in animal model of acute lung injury, proving to be similar or potentially more effective than Dx. PMID:25616904

  16. Antiplatelet antibody may cause delayed transfusion-related acute lung injury

    Torii Y

    2011-09-01

    Full Text Available Yoshitaro Torii1, Toshiki Shimizu1, Takashi Yokoi1, Hiroyuki Sugimoto1, Yuichi Katashiba1, Ryotaro Ozasa1, Shinya Fujita1, Yasushi Adachi2, Masahiko Maki3, Shosaku Nomura11The First Department of Internal Medicine, Kansai Medical University, Osaka, 2Department of Clinical Pathology, Toyooka Hospital, Hyogo, 3First Department of Pathology, Kansai Medical University, Osaka, JapanAbstract: A 61-year-old woman with lung cancer developed delayed transfusion-related acute lung injury (TRALI syndrome after transfusion of plasma- and leukoreduced red blood cells (RBCs for gastrointestinal bleeding due to intestinal metastasis. Acute lung injury (ALI recurred 31 days after the first ALI episode. Both ALI episodes occurred 48 hours after transfusion. Laboratory examinations revealed the presence of various antileukocyte antibodies including antiplatelet antibody in the recipient's serum but not in the donors' serum. The authors speculate that antiplatelet antibodies can have an inhibitory effect in the recipient, which can modulate the bona fide procedure of ALI and lead to a delay in the onset of ALI. This case illustrates the crucial role of a recipient's platelets in the development of TRALI.Keywords: delayed TRALI syndrome, recurrence, anti-platelet antibody

  17. THE DETERMINATION OF CORRELATION LINKAGES BETWEEN LEVEL OF REACTIVE OXYGEN SPECIES, CONTENTS OF NEUTROPHILES AND BLOOD GAS COMPOSITION IN EXPERIMENTAL ACUTE LUNG INJURY.

    Marushchak, M; Krynytska, I; Petrenko, N; Klishch, I

    2016-04-01

    Acute lung injury (ALI) remains a major cause of acute respiratory failure and death of patients. Despite the achievements at the current stage in treatment, morbidity and mortality of ALI remain high. However, a deeper understanding of the pathogenetic links of ALI, identifying of the predictors that positively or negatively influence on the course of the syndrome, the correlation between some pathogenetic mechanisms will improve therapeutic strategies for patients with ALI, which makes the actuality of this study. The aim of the research was to detect additional pathogenetic mechanisms of the acute lung injury development in rats based on a comparative analysis of the correlations between the level of reactive oxygen species in blood and bronchoalveolar lavage, contents of neutrophils and blood gas composition. The experiments were performed on 54 white nonlinear mature male rats 200-220g in weight. The animals were divided into 5 groups: the 1st - control group (n=6), the 2nd - animals affected by hydrochloric acid for 2 hours (n=12), the 3rd - animals affected by hydrochloric acid for 6 hours (n=12), the 4th - animals affected by hydrochloric acid for 12 hours (n=12), the 5th - animals affected by hydrochloric acid for 24 hours (n=12). Correlation analysis was performed between all the studied indices. Coefficient of linear correlation (r) and its fidelity (p) was calculated that was accordingly denoted in the tables (correlation matrices). The correlation coefficient was significant at palveoli. On this background non-specific inflammatory reaction is developed at lung microvessels level with violation of lung homeostasis, which is iniciated by neutrophils' activation, which are producing ROS. PMID:27249444

  18. PI3K-AKT Signaling via Nrf2 Protects against Hyperoxia-Induced Acute Lung Injury, but Promotes Inflammation Post-Injury Independent of Nrf2 in Mice.

    Narsa M Reddy

    Full Text Available Lung epithelial and endothelial cell death accompanied by inflammation contributes to hyperoxia-induced acute lung injury (ALI. Impaired resolution of ALI can promote and/or perpetuate lung pathogenesis, including fibrosis. Previously, we have shown that the transcription factor Nrf2 induces cytoprotective gene expression and confers protection against hyperoxic lung injury, and that Nrf2-mediated signaling is also crucial for the restoration of lung homeostasis post-injury. Although we have reported that PI3K/AKT signaling is required for Nrf2 activation in lung epithelial cells, significance of the PI3K/AKT-Nrf2 crosstalk during hyperoxic lung injury and repair remains unclear. Thus, we evaluated this aspect using Nrf2 knockout (Nrf2(-/- and wild-type (Nrf2(+/+ mouse models. Here, we show that pharmacologic inhibition of PI3K/AKT signaling increased lung inflammation and alveolar permeability in Nrf2(+/+ mice, accompanied by decreased expression of Nrf2-target genes such as Nqo1 and Hmox1. PI3K/AKT inhibition dampened hyperoxia-stimulated Nqo1 and Hmox1 expression in lung epithelial cells and alveolar macrophages. Contrasting with its protective effects, PI3K/AKT inhibition suppressed lung inflammation in Nrf2(+/+ mice during post-injury. In Nrf2(-/- mice exposed to room-air, PI3K/AKT inhibition caused lung injury and inflammation, but it did not exaggerate hyperoxia-induced ALI. During post-injury, PI3K/AKT inhibition did not augment, but rather attenuated, lung inflammation in Nrf2(-/- mice. These results suggest that PI3K/AKT-Nrf2 signaling is required to dampen hyperoxia-induced lung injury and inflammation. Paradoxically, the PI3K/AKT pathway promotes lung inflammation, independent of Nrf2, during post-injury.

  19. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1.

    Mei, Shirley H. J; McCarter, Sarah D.; Yupu Deng; Parker, Colleen H; Conrad Liles, W.; Duncan J Stewart

    2007-01-01

    Editors' Summary Background. Critically ill people who have had an injury to their lungs, for example through pneumonia, trauma, or an immune response to infection, may end up developing a serious complication in the lung termed acute respiratory distress syndrome (ARDS). In ARDS, inflammation develops in the lung, and fluid builds up in the alveoli (the air sacs resembling “bunches of grapes” at the ends of the network of tubes in the lung). This buildup of fluid prevents oxygen from being c...

  20. Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury.

    Wu, Fugen; Shi, Wei; Zhou, Guojun; Yao, Hongyi; Xu, Chengyun; Xiao, Weiqiang; Wu, Junsong; Wu, Ximei

    2016-07-01

    Ginkgolides are the major bioactive components of Ginkgo biloba extracts, however, the exact constituents of Ginkgolides contributing to their pharmacological effects remain unknown. Herein, we have determined the anti-inflammatory effects of Ginkgolide B (GB) and Ginkgolides mixture (GM) at equivalent dosages against lipopolysaccharide (LPS)-induced inflammation. RAW 264.7 cell culture model and mouse model of LPS-induced lung injury were used to evaluate in vitro and in vivo effects of GB and GM, respectively. In RAW 264.7 cells, GB and GM at equivalent dosages exhibit an identical capacity to attenuate LPS-induced inducible nitric oxide synthase mRNA and protein expression and subsequent NO production. Likewise, GB and GM possess almost the same potency in attenuating LPS-induced expression and activation of nuclear factor kappa B (p65) and subsequent increases in tumor necrosis factor-α mRNA levels. In LPS-induced pulmonary injury, GB and GM at the equivalent dosages have equal efficiency in attenuating the accumulation of inflammatory cells, including neutrophils, lymphocytes, and macrophages, and in improving the histological damage of lungs. Moreover, GB and GM at equivalent dosages decrease the exudation of plasma protein to the same degree, whereas GM is superior to GB in alleviating myeloperoxidase activities. Finally, though GB and GM at equivalent dosages appear to reduce LPS-induced IL-1β mRNA and protein levels and IL-10 protein levels to the same degree, GM is more potent than GB to attenuate the IL-10 mRNA levels. Taken together, this study demonstrates that GB functions as the determinant constituent of Ginkgolides in alleviating LPS-induced lung injury. PMID:27261579

  1. NPC 15669 blocks neutrophil CD18 increase and lung injury during cardiopulmonary bypass in pigs

    J. M. Bator

    1993-01-01

    Full Text Available During cardiopulmonary bypass (CPB, neutrophils become activated due to contact with extracorporeal surfaces and binding of complement fragments C3a and C5a, leading to extravasation and subsequent tissue damage. In this study, the effects of the leumedin NPC 15669 (N [9H - (2,7 dimethylfluorenyl - 9 - methoxy car bonyl]-L-leucine, a leukocyte recruitment inhibitor, were evaluated in a pig model of CPB. NPC 15669 caused significant inhibition of CPB associated increase in CD18 upregulation, lung tissue myeloperoxidase content, and percentage wet weight compared to controls. Lung histology revealed clear airways and minimal neutrophil infiltration in treated animals vs. significant oedema and cellular infiltration in controls. It is concluded that CPB causes a dramatic increase in neutrophil CD18, and that leumedins are effective in inhibiting neutrophil activation and subsequent tissue injury when administered during CPB.

  2. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation.

    Jochen Grommes

    Full Text Available INTRODUCTION: Treatment of acute lung injury (ALI remains an unsolved problem in intensive care medicine. As simvastatin exerts protective effects in inflammatory diseases we explored its effects on development of ALI and due to the importance of neutrophils in ALI also on neutrophil effector functions. METHODS: C57Bl/6 mice were exposed to aerosolized LPS (500 µg/ml for 30 min. The count of alveolar, interstitial, and intravasal neutrophils were assessed 4 h later by flow cytometry. Lung permeability changes were assessed by FITC-dextran clearance and albumin content in the BAL fluid. In vitro, we analyzed the effect of simvastatin on neutrophil adhesion, degranulation, apoptosis, and formation of reactive oxygen species. To monitor effects of simvastatin on bacterial clearance we performed phagocytosis and bacterial killing studies in vitro as well as sepsis experiments in mice. RESULTS: Simvastatin treatment before and after onset of ALI reduces neutrophil influx into the lung as well as lung permeability indicating the protective role of simvastatin in ALI. Moreover, simvastatin reduces the formation of ROS species and adhesion of neutrophils without affecting apoptosis, bacterial phagocytosis and bacterial clearance. CONCLUSION: Simvastatin reduces recruitment and activation of neutrophils hereby protecting from LPS-induced ALI. Our results imply a potential role for statins in the management of ALI.

  3. Lobeline improves acute lung injury via nuclear factor-κB-signaling pathway and oxidative stress.

    Li, Kun-Cheng; Ho, Yu-Ling; Chen, Cing-Yu; Hsieh, Wen-Tsong; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2016-05-01

    Acute lung injury (ALI) is a severe, life-threatening medical condition whose pathogenesis is linked to neutrophil infiltration of the lung. Activation and recruitment of neutrophils to the lung is mostly attributed to the production of chemokines NO, IL-6, for instance. This study aims to investigate lobeline ability in reducing NO production, and nitric oxide synthase (iNOs) expression. Lobeline was tested by inhibiting phosphorylation of mitogen-activated protein kinases (MAPKs), NF-κB and IκBα in LPS-stimulated RAW 264.7 cells. When RAW 264.7 macrophages were given lobeline with LPS, a significant concentration-dependent inhibition of NO production was detected. In vivo tests, mice were either treated with normal saline, 10mg/kg dexmethasone or 5, 10, 20mg/kg lobeline intraperitoneally, and after an hour, the administration of 5mg/kg of LPS was given intratracheally. External performance, cytokines, MAPK pathways and antioxidative enzymes (AOEs) were also carried out to evaluate the effects of these drugs. This is the first investigation in which lobeline was found to effectively inhibit acute lung edema, which may provide a potential target for treating ALI. Lobeline may utilize MAPKs pathways as well as AOEs activity to attenuate LPS-induced nonspecific pulmonary inflammation. PMID:26702732

  4. Endothelial Semaphorin 7A Promotes Inflammation in Seawater Aspiration-Induced Acute Lung Injury

    Minlong Zhang

    2014-10-01

    Full Text Available Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI. Although several studies have shown that Semaphorin 7A (SEMA7A promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague–Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  5. Therapeutic effect of ent-kaur-16-en-19-oic acid on neutrophilic lung inflammation and sepsis is mediated by Nrf2.

    Kim, Kyun Ha; Sadikot, Ruxana T; Joo, Myungsoo

    2016-06-01

    Kaurenoic acid (ent-kaur-16-en-19-oic acid: KA) is a key constituent found in the roots of Aralia continentalis Kitagawa (Araliaceae), a remedy to treat patients with inflammatory diseases in traditional Asian medicine. Since KA activates Nrf2, a key anti-inflammatory factor, at the cellular level, we explored a possible therapeutic usage of KA against neutrophilic inflammatory lung disease such as acute lung injury (ALI). Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to C57BL/6 mice induced lung inflammation as in ALI. 2 h after i.p. LPS, intratracheal (i.t.) delivery of KA (0.3, 3, or 30 μg/kg body weight) improved lung structure and significantly suppressed neutrophil infiltrations to mouse lungs, with concomitant reduction of myeloperoxidase activity and of the expression of pro-inflammatory cytokine genes. While activating Nrf2 and expressing Nrf2-dependent genes in mouse lungs, KA did not significantly suppress neutrophil lung inflammation in Nrf2 KO mice. In a mouse model of sepsis, a major cause of ALI, single i.t. KA (3 μg/kg) 2 h after the onset of sepsis significantly decreased the mortality of mice. Together, these results suggest that KA has a therapeutic potential against inflammatory lung disease, the effect of which is associated with Nrf2 activation. PMID:27133718

  6. Alveolar Overdistension as a Cause of Lung Injury: Differences among Three Animal Species

    Manuel García-Delgado; Inés Navarrete-Sánchez; Virginia Chamorro-Marín; Juan Carlos Díaz-Monrové; Javier Esquivias; Enrique Fernández-Mondéjar

    2012-01-01

    This study analyses characteristics of lung injuries produced by alveolar overdistension in three animal species. Mechanical ventilation at normal tidal volume (10 mL/Kg) and high tidal volume (50 mL/Kg) was applied for 30 min in each species. Data were gathered on wet/dry weight ratio, histological score, and area of alveolar collapse. Five out of six rabbits with high tidal volume developed tension pneumothorax, and the rabbit results were therefore not included in the histological analysis...

  7. Acute Lung Injury Induced by Lipopolysaccharide Is Independent of Complement Activation1

    Rittirsch, Daniel; Flierl, Michael A; Day, Danielle E.; Nadeau, Brian A.; McGuire, Stephanie R.; Hoesel, Laszlo M.; Ipaktchi, Kyros; Zetoune, Firas S.; Sarma, J. Vidya; Leng, Lin; Huber-Lang, Markus S.; Neff, Thomas A.; Bucala, Richard; Ward, Peter A.

    2008-01-01

    Although acute lung injury (ALI) is an important problem in humans, its pathogenesis is poorly understood. Airway instillation of bacterial LPS, a known complement activator, represents a frequently used model of ALI. In the present study, pathways in the immunopathogenesis of ALI were evaluated. ALI was induced in wild-type, C3–/–, and C5–/– mice by airway deposition of LPS. To assess the relevant inflammatory mediators, bronchoalveolar lavage fluids were evaluated by ELISA analyses and vari...

  8. Reproduction of a model of lung injury induced by depleted uranium inhalation in canine

    Zhang, Bin; Duan, Yun-You; He, Wen-Bo; Feng, Hua-Song; Ning, Hao-Yong; Ju-yi WEN; Yang, Zhi-Hua; Xiu-jie PAN; Zhen-shan CAO; Mao-xiang ZHU; Xu, Qin-Zhi; Ping-kun ZHOU; Xin-min DING

    2011-01-01

    Objective To reproduce a canine model of subacute lung injury induced by depleted uranium inhalation.Methods Twenty-six dogs were randomized into the control group(CG,n=6),low-dose group(LG,n=10).and high-dose group(HG,n=10).All of them underwent tracheal intubation.In control group,0.2ml/kg of normal saline was intratracheally given.In low dosage group,10mg/kg of depleted uranium(LG),and in high dose group 100mg/ml of depleted uranium(HG) was introduced.The survival time of animals was obser...

  9. A diagnosis overlooked: case report of a transfusion related acute lung injury

    Sema Ucak Basat

    2014-01-01

    Full Text Available Transfusion related acute lung injury (TRALI is a rarely seen and transfusion complication that may develop as a result of transfusion of blood products which contains plasma. TRALI can be mortal if it is not diagnosed and treated promptly. The most important step in management of this complication is to provide the early differential diagnosis of this condition. Hence here in we report a case of TRALI where the patient was firstly misdiagnosed and hospitalized as septic shock and acute heart failure due to clinical findings of chest pain, respiratory failure and hypotension.

  10. Nitric oxide synthase 3 contributes to ventilator-induced lung injury

    Vaporidi, Katerina; Francis, Roland C; Bloch, Kenneth D.; Zapol, Warren M.

    2010-01-01

    Nitric oxide synthase (NOS) depletion or inhibition reduces ventilator-induced lung injury (VILI), but the responsible mechanisms remain incompletely defined. The aim of this study was to elucidate the role of endothelial NOS, NOS3, in the pathogenesis of VILI in an in vivo mouse model. Wild-type and NOS3-deficient mice were ventilated with high-tidal volume (HVT; 40 ml/kg) for 4 h, with and without adding NO to the inhaled gas. Additional wild-type mice were pretreated with tetrahydrobiopter...

  11. Intrapleural delivery of MSCs attenuates acute lung injury by paracrine/endocrine mechanism

    Qin, Zhao-hui; Xu, Jin-Fu; Qu, Jie-Ming; Zhang, Jing; Sai, Yin; Chen, Chun-mei; Wu, Lian; YU, LONG

    2012-01-01

    Two different repair mechanisms of mesenchymal stem cells (MSCs) are suggested to participate in the repair of acute lung injury (ALI): (i) Cell engraftment mechanism, (ii) Paracrine/endocrine mechanism. However, the exact roles they play in the repair remain unclear. The aim of the study was to evaluate the role of paracrine/endocrine mechanism using a novel intrapleural delivery method of MSCs. Either 1 × 106 MSCs in 300 μl of PBS or 300 μl PBS alone were intrapleurally injected into rats w...

  12. Multidetector computed tomography-spectrum of blunt chest wall and lung injuries in polytraumatized patients

    Peters, S., E-mail: soeren.peters@rub.d [Department of Radiology and Nuclear Medicine, BG Universitaetsklinikum Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany); Nicolas, V.; Heyer, C.M. [Department of Radiology and Nuclear Medicine, BG Universitaetsklinikum Bergmannsheil, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany)

    2010-04-15

    Accidental injuries are the leading cause of death in the 15 to 44-year-old age group. Blunt chest trauma is often encountered in these patients and is associated with a mortality of up to 25%. Although conventional radiography still plays an important role in the initial emergency room setting, for follow-up in the intensive care unit, multidetector computed tomography has established itself as the standard imaging method for the evaluation of chest trauma patients. The following review presents salient radiological findings of the chest wall and shoulder girdle, thoracic spine, pleural space, and lung in polytraumatized patients.

  13. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. PMID:12566987

  14. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection.

    Connors, Thomas J; Ravindranath, Thyyar M; Bickham, Kara L; Gordon, Claire L; Zhang, Feifan; Levin, Bruce; Baird, John S; Farber, Donna L

    2016-06-01

    Infants and young children are disproportionately susceptible to severe complications from respiratory viruses, although the underlying mechanisms remain unknown. Recent studies show that the T cell response in the lung is important for protective responses to respiratory infections, although details on the infant/pediatric respiratory immune response remain sparse. The objectives of the present study were to characterize the local versus systemic immune response in infants and young children with respiratory failure from viral respiratory tract infections and its association to disease severity. Daily airway secretions were sampled from infants and children 4 years of age and younger receiving mechanical ventilation owing to respiratory failure from viral infection or noninfectious causes. Samples were examined for immune cell composition and markers of T cell activation. These parameters were then correlated with clinical disease severity. Innate immune cells and total CD3(+) T cells were present in similar proportions in airway aspirates derived from infected and uninfected groups; however, the CD8:CD4 T cell ratio was markedly increased in the airways of patients with viral infection compared with uninfected patients, and specifically in infected infants with acute lung injury. T cells in the airways were phenotypically and functionally distinct from those in blood with activated/memory phenotypes and increased cytotoxic capacity. We identified a significant increase in airway cytotoxic CD8(+) T cells in infants with lung injury from viral respiratory tract infection that was distinct from the T cell profile in circulation and associated with increasing disease severity. Airway sampling could therefore be diagnostically informative for assessing immune responses and lung damage. PMID:26618559

  15. Pleiotropic Effects of Levofloxacin, Fluoroquinolone Antibiotics, against Influenza Virus-Induced Lung Injury.

    Yuki Enoki

    Full Text Available Reactive oxygen species (ROS and nitric oxide (NO are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX, one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1 influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress and nitrotyrosine (a nitrative marker in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.

  16. Detection of radiation induced lung injury in rats using dynamic hyperpolarized 129Xe magnetic resonance spectroscopy

    Purpose: Radiation induced lung injury (RILI) is a common side effect for patients undergoing thoracic radiation therapy (RT). RILI can lead to temporary or permanent loss of lung function and in extreme cases, death. Combining functional lung imaging information with conventional radiation treatment plans may lead to more desirable treatment plans that reduce lung toxicity and improve the quality of life for lung cancer survivors. Magnetic Resonance Imaging of the lung following inhalation of hyperpolarized129Xe may provide a useful nonionizing approach for probing changes in lung function and structure associated with RILI before, during, or after RT (early and late time-points). Methods: In this study, dynamic129Xe MR spectroscopy was used to measure whole-lung gas transfer time constants for lung tissue and red blood cells (RBC), respectively (TTr-tissue and TTr-RBC) in groups of rats at two weeks and six weeks following 14 Gy whole-lung exposure to radiation from a 60Co source. A separate group of six healthy age-matched rats served as a control group. Results: TTr-tissue values at two weeks post-irradiation (51.6 ± 6.8 ms) were found to be significantly elevated (p < 0.05) with respect to the healthy control group (37.2 ± 4.8 ms). TTr-RBC did not show any significant changes between groups. TTr-tissue was strongly correlated with TTr-RBC in the control group (r = 0.9601 p < 0.05) and uncorrelated in the irradiated groups. Measurements of arterial partial pressure of oxygen obtained by arterial blood sampling were found to be significantly decreased (p < 0.05) in the two-week group (54.2 ± 12.3 mm Hg) compared to those from a representative control group (85.0 ± 10.0 mm Hg). Histology of a separate group of similarly irradiated animals confirmed the presence of inflammation due to radiation exposure with alveolar wall thicknesses that were significantly different (p < 0.05). At six weeks post-irradiation, TTr-tissue returned to values (35.6 ± 9.6 ms

  17. Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs.

    Noah H Hillman

    Full Text Available BACKGROUND: Sustained inflations (SI are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. HYPOTHESIS: A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. METHODS: The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline. Fetal lambs were randomized to one of four 15 minute interventions: 1 PEEP 8 cmH2O; 2 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3 mechanical ventilation with 7 ml/kg tidal volume; or 4 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. RESULTS: SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. CONCLUSION: In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation.

  18. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  19. The functional comorbidity index had high inter-rater reliability in patients with acute lung injury

    Fan Eddy

    2012-09-01

    Full Text Available Abstract Background The Functional Comorbidity Index (FCI was recently developed to predict physical function in acute lung injury patients using comorbidity data. Our objectives were to determine: (1 the inter-rater reliability of the FCI collected using in-patient discharge summaries (primary objective; and (2 the accuracy and predictive validity of the FCI collected using hospital discharge summaries and admission records versus complete chart review (secondary objectives. Methods For reliability, we evaluated the FCI’s intraclass correlation coefficient (ICC among trained research staff performing data collection for 421 acute lung injury patients enrolled in a prospective cohort study. For validity and accuracy, we compared the detection of FCI comorbidities across three types of inpatient medical records, and the association of the respective FCI scores obtained with patients’ SF-36 physical function subscale (PFS scores at 1-year follow-up. Results Inter-rater reliability was near-perfect (ICC 0.91; 95% CI 0.89-0.94. Hospital admission records and discharge summaries (vs. complete chart review significantly underestimated the total FCI score. However, using multivariable linear regression, FCI scores collected using each of the three types of inpatient medical records had similar associations with PFS, suggesting similar predictive value. Conclusions Data collection using in-patient discharge summaries represents a reliable and valid method for collecting FCI comorbidity information.

  20. Cytokine profiling for prediction of symptomatic radiation-induced lung injury

    Purpose: To analyze plasma cytokine profiles before the initiation of radiation therapy to define a cytokine phenotype that correlates with risk of developing symptomatic radiation-induced lung injury (SRILI). Methods and Materials: Symptomatic radiation-induced lung injury was evaluated in 55 patients (22 with SRILI and 33 without SRILI), according to modified National Cancer Institute common toxicity criteria. These plasma samples were analyzed by the multiplex suspension bead array system (Bio-Rad Laboratories; Hercules, CA), which included the following cytokines: interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17, granulocyte/macrophage colony-stimulating factor, interferon-γ, monocyte chemotactic protein 1, macrophage inflammatory protein 1β, tumor necrosis factor α, and granulocyte colony-stimulating factor. Results: Significant differences in the median values of IL-8 were observed between patients with and without SRILI. Patients who did not develop SRILI had approximately fourfold elevated levels of IL-8 as compared with patients who did subsequently develop SRILI. Significant correlations were not found for any other cytokine in this study, including transforming growth factor β1. Conclusions: Patients with lower levels of plasma IL-8 before radiation therapy might be at increased risk for developing SRILI. Further studies are necessary to determine whether IL-8 levels are predictive of SRILI in a prospective trial and whether this marker might be used to determine patient eligibility for dose escalation

  1. Roles of transforming growth factor β in hyperoxia-induced lung injury.

    Liu, Y; Mao, Y F; Zheng, J; Liu, K; Han, C H; Liu, W W

    2016-01-01

    Hyperoxia induced lung injury (HILI) refers to the acute lung injury secondary to prolonged exposure to hyperoxia at elevated partial pressure. With the advent of efficient systems for delivery of high concentrations of oxygen in hospitals, the population at risk for this condition has been markedly increased. Although numerous studies have been conducted to investigate the pathogenesis of HILI, the specific mechanism is still poorly understood and some hypotheses have been proposed. Transforming growth factor β (TGF-β) is a secreted protein that controls proliferation, cellular differentiation and other functions in most cells and is a type of cytokine that plays a role in many diseases. In this mini-review, we summarize the role of TGF-β in HILI according to its relationships with reactive oxygen species (ROS), pro-inflammatory cytokines, cell apoptosis and pulmonary fibrosis. We hope it may help the understanding of pathogenesis of HILI and provide a greater understanding for the target therapy of HILI. PMID:27416690

  2. The Effect of Post-Treatment N-Acetylcysteine in LPS-Induced Acute Lung Injury of Rats

    Choi, Jae Sung; Lee, Ho Sung; Seo, Ki Hyun; Na, Ju Ock; Kim, Yong Hoon; Uh, Soo Taek; Park, Choon Sik; Oh, Mee Hye; Lee, Sang Han; Kim, Young Tong

    2012-01-01

    Background Oxidation plays an important role in acute lung injury. This study was conducted in order to elucidate the effect of repetitive post-treatment of N-acetylcysteine (NAC) in lipopolysaccaride (LPS)-induced acute lung injury (ALI) of rats. Methods Six-week-old male Sprague-Dawley rats were divided into 4 groups. LPS (Escherichia coli 5 mg/kg) was administered intravenously via the tail vein. NAC (20 mg/kg) was injected intraperitoneally 3, 6, and 12 hours after LPS injection. Broncho-...

  3. Gastric pH and motility in a porcine model of acute lung injury using a wireless motility capsule

    Rauch, Stefan; Muellenbach, Ralf M.; Johannes, Amélie; Zollhöfer, Bernd; Roewer, Norbert

    2011-01-01

    Summary Background Evaluation of gastric pH and motility in a porcine model of acute lung injury using a novel, wireless motility capsule. Material/Methods A motility capsule was applied into the stomach of 7 Pietrain pigs with acute lung injury induced by high volume saline lavage. Wireless transmission of pH, pressure and temperature data was performed by a recorder attached to the animal’s abdomen. Gastric motility was evaluated using pH and pressure values, and capsule location was confir...

  4. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury

    Looney, Mark R.; Nguyen, John X.; Hu, Yongmei; Van Ziffle, Jessica A.; Lowell, Clifford A.; Matthay, Michael A

    2009-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated mortality in the US. Previously, we established an immune-mediated TRALI mouse model, wherein mice with cognate antigen were challenged with MHC class I mAb. In this study, when mice housed in a rodent, specific pathogen–free barrier room were challenged with MHC I mAb, there was significant protection from TRALI compared with nonbarrier mice. Priming mice with LPS restored lung injury with mAb challe...

  5. Mechanical Ventilation and the Titer of Antibodies as Risk Factors for the Development of Transfusion-Related Lung Injury

    Vlaar, A.P.J.; Kuipers, M. T.; Hofstra, J. J.; E. K. Wolthuis; Wieland, C. W.; Roelofs, J. J. T. H.; Boon, L.; Schultz, M.J.; Lutter, R; Juffermans, N.P.

    2012-01-01

    Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl. Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRA...

  6. A Hyperoxic Lung Injury Model in Premature Rabbits: The Influence of Different Gestational Ages and Oxygen Concentrations

    Manzano, Roberta Munhoz; Mascaretti, Renata Suman; Carrer, Valéria; Haddad, Luciana Branco; Fernandes, Aline Rabelo; Ana M A Reyes; Rebello, Celso Moura

    2014-01-01

    Background Many animal models have been developed to study bronchopulmonary dysplasia (BPD). The preterm rabbit is a low-cost, easy-to-handle model, but it has a high mortality rate in response to the high oxygen concentrations used to induce lung injury. The aim of this study was to compare the mortality rates of two models of hyperoxia-induced lung injury in preterm rabbits. Methods Pregnant New Zealand white rabbits were subjected to caesarean section on gestational day 28 or 29 (full term...

  7. Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep

    Hillman, Noah H.; Nitsos, Ilias; Berry, Clare; Jane Pillow, J.; Suhas G Kallapur; Alan H Jobe

    2011-01-01

    The initiation of ventilation in preterm, surfactant-deficient sheep without positive end-expiratory pressure (PEEP) causes airway injury and lung inflammation. We hypothesized that PEEP and surfactant treatment would decrease the lung injury from initiation of ventilation with high tidal volumes. Fetal sheep at 128-day gestational age were randomized to ventilation with: 1) no PEEP, no surfactant; 2) 8-cmH2O PEEP, no surfactant; 3) no PEEP + surfactant; 4) 8-cmH2O PEEP + surfactant; or 5) co...

  8. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  9. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Yang Sun; Sachiko Ito; Naomi Nishio; Yuriko Tanaka; Nana Chen; Lintao Liu; Ken-ichi Isobe

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing...

  10. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies

    Luh, Shi-Ping; Chiang, Chi-huei

    2006-01-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), which manifests as non-cardiogenic pulmonary edema, respiratory distress and hypoxemia, could be resulted from various processes that directly or indirectly injure the lung. Extensive investigations in experimental models and humans with ALI/ARDS have revealed many molecular mechanisms that offer therapeutic opportunities for cell or gene therapy. Herein the present strategies and future perspectives of the treatment for ALI/AR...

  11. Efficacy of Tiotropium Bromide and Rehabilitation Treatment on Pulmonary Function of Patients With Sulfur Mustard Lung Injury

    2015-01-01

    Background: Chronic pulmonary complication is the most common delayed toxic effect of sulfur mustard (SM) and it has no treatment so far. Objectives: To evaluate short-term therapeutic effects of inhaled tiotropium bromide and pulmonary rehabilitation on pulmonary function of patients with SM induced lung injury. Patients and Methods: In a randomized clinical trial, using convenient sampling method, 54 patients with chronic lung disease due to SM exposure were recruited in Baqiyatallah Genera...

  12. Comparative analysis between the alveolar recruitment maneuver and breath stacking technique in patients with acute lung injury

    Porto, Elias Ferreira; Tavolaro, Kelly Cristiani; Kumpel, Claudia; Oliveira, Fernanda Augusta; Sousa, Juciaria Ferreira; de Carvalho, Graciele Vieira; de Castro, Antonio Adolfo Mattos

    2014-01-01

    Objective To compare the effectiveness of the alveolar recruitment maneuver and the breath stacking technique with respect to lung mechanics and gas exchange in patients with acute lung injury. Methods Thirty patients were distributed into two groups: Group 1 - breath stacking; and Group 2 - alveolar recruitment maneuver. After undergoing conventional physical therapy, all patients received both treatments with an interval of 1 day between them. In the first group, the breath stacking techniq...

  13. Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability

    Halter, Jeffrey M; Steinberg, Jay M; Gatto, Louis A; DiRocco, Joseph D; Pavone, Lucio A; Schiller, Henry J.; Albert, Scott; Lee, Hsi-Ming; Carney, David; Nieman, Gary F.

    2007-01-01

    Introduction One potential mechanism of ventilator-induced lung injury (VILI) is due to shear stresses associated with alveolar instability (recruitment/derecruitment). It has been postulated that the optimal combination of tidal volume (Vt) and positive end-expiratory pressure (PEEP) stabilizes alveoli, thus diminishing recruitment/derecruitment and reducing VILI. In this study we directly visualized the effect of Vt and PEEP on alveolar mechanics and correlated alveolar stability with lung ...

  14. Treatment with ginkgo biloba extract protects rats against acute pancreatitis-associated lung injury by modulating alveolar macrophage

    Xu, Xiao-Wu; Yang, Xiao-Min; Bai, Yong-Heng; Zhao, Yan-Rong; SHI, GONG-SHENG; Zhang, Jian-Guo; Zheng, Yi-Hu

    2014-01-01

    Introduction Acute pancreatitis (AP) protease release induces lung parenchymal destruction via inflammatory mediators. Ginkgo biloba has been reported to have anti-inflammatory effects. Aim To evaluate the effect of ginkgo biloba extract on experimental acute pancreatitis-associated lung injury in the rat and to investigate the underlying mechanisms. Material and methods Acute pancreatitis was induced in rats by injection of 5% sodium taurocholate into the biliary pancreatic duct. Ginkgo bilo...

  15. Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    Shah, Dilip; Romero, Freddy; Duong, Michelle; Wang, Nadan; Paudyal, Bishnuhari; Benjamin T Suratt; Kallen, Caleb B.; Sun, Jianxin; Zhu, Ying; Walsh, Kenneth; Summer, Ross

    2015-01-01

    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese m...

  16. Inhibitors of inflammation and endogenous surfactant pool size as modulators of lung injury with initiation of ventilation in preterm sheep

    Polglase Graeme R; Nitsos Ilias; Pillow J Jane; Kallapur Suhas G; Hillman Noah H; Ikegami Machiko; Jobe Alan H

    2010-01-01

    Abstract Background Increased pro-inflammatory cytokines in tracheal aspirates correlate with the development of BPD in preterm infants. Ventilation of preterm lambs increases pro-inflammatory cytokines and causes lung inflammation. Objective We tested the hypothesis that selective inhibitors of pro-inflammatory signaling would decrease lung inflammation induced by ventilation in preterm newborn lambs. We also examined if the variability in injury response was explained by variations in the e...

  17. Low levels of tissue factor lead to alveolar hemorrhage, potentiating murine acute lung injury and oxidative stress

    Bastarache, J.A.; Sebag, S. C.; Clune, J.K.; Grove, B.S.; Lawson, W.E.; Janz, D. R.; Roberts, L. J.; Dworski, R; Mackman, N.; Ware, L. B.

    2013-01-01

    Background Systemic blockade of Tissue Factor (TF) attenuates acute lung injury (ALI) in animal models of sepsis but the effects of global TF deficiency are unknown. Hypothesis We used mice with complete knockout of mouse TF and low levels (~1%) of human TF (LTF mice) to test the hypothesis that global TF deficiency attenuates lung inflammation in direct lung injury. Methods LTF mice were treated with 10 μg of lipopolysaccharide (LPS) or vehicle administered by direct intratracheal (IT) injection and studied at 24 hours. Results Contrary to our hypothesis, LTF mice had increased lung inflammation and injury as measured by bronchoalveolar lavage cell count (3.4 × 105 WT LPS versus 3.3 × 105 LTF LPS, p=0.947) and protein (493 μg/ml WT LPS versus 1014 μg/ml LTF LPS, p=0.006), proinflammatory cytokines (TNF-α, IL-10, IL-12, p<0.035 WT LPS versus LTF LPS) and histology compared to wild type mice. LTF mice also had increased hemorrhage and free hemoglobin in the airspace accompanied by increased oxidant stress as measured by lipid peroxidation products (F2-Isoprostanes and Isofurans). Conclusions These findings indicate that global TF deficiency does not confer protection in a direct lung injury model. Rather, TF deficiency causes increased intra-alveolar hemorrhage following LPS leading to increased lipid peroxidation. Strategies to globally inhibit tissue factor may be deleterious in patients with ALI. PMID:23033361

  18. STAT4 knockout protects LPS-induced lung injury by increasing of MDSC and promoting of macrophage differentiation.

    Fu, Cuiping; Jiang, Liyan; Xu, Xiaobo; Zhu, Fen; Zhang, Shuqi; Wu, Xu; Liu, Zilong; Yang, Xiangdong; Li, Shanqun

    2016-03-01

    The disruption of signal transducer and activator of transcription 4 (STAT4) signal can inhibit the inflammation and protect organs from injury during severe bacterial infection. However, the mechanism of STAT4 signal in lung injury remains poor understood. Here we report that STAT4 deficiency decreased the lethality and protein leakage in STAT4(-/-) mice and protected lipopolysaccharid (LPS)-induced lung injury with ameliorated edema, inflammatory infiltration and hemorrhage. The expression of CD11b(+)Gr-1(+) myeloid derived suppressor cells (MDSCs) markedly increased in the circulation of STAT4(-/-) mice after LPS stimuli, accompanying with increased macrophages infiltration in inflamed lung tissue. In addition, the levels of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 decreased while anti-inflammatory cytokine (IL-10) increased in the bronchoalveolar lavage fluid of STAT4(-/-) mice. Thus, these results indicate that the accumulation of MDSCs and macrophages play a critical role in LPS-induced lung injury. Targeting MDSCs and macrophages polarization through a STAT4 dependent signaling pathway might help to reduce the inflammation and damage of lung tissue. PMID:26644077

  19. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S. [Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708 (United States); Fu, Jian [Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708 (United States); Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pinson, Barbara M. [Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708 (United States); Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Levin, Jeffrey [Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708 (United States); Shetty, Sreerama, E-mail: sreerama.shetty@uthct.edu [Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708 (United States)

    2015-03-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  20. Effects of resolvin D1 on inflammatory responses and oxidative stress of lipopolysaccharide-induced acute lung injury in mice

    Wang Lei; Yuan Ruixia; Yao Chengyue; Wu Qingping; Marie Christelle; Xie Wanli; Zhang Xingcai

    2014-01-01

    Background A variety of inflammatory mediators and effector cells participate together in acute lung injury,and lead to secondary injury that is due to an inflammatory cascade and secondary diffuse lung parenchyma injury.Inflammation is associated with an oxidative stress reaction,which is produced in the development of airway inflammation,and which has positive feedback on inflammation itself.Resolvin D1 can reduce the infiltration of neutrophils,regulate cytokine levels and reduce the inflammation reaction,and thereby promote the resolution of inflammation.The purpose of this study is to investigate the effects of resolvin D1 on an inflammatory response and oxidative stress during lipopolysaccharide (LPS)-induced acute lung injury.Methods LPS (3 mg/kg) was used to induce the acute lung injury model.Pretreatment resolvin D1 (100 ng/mouse) was given to mice 30 minutes before inducing acute lung injury.Mice were observed at 6 hours,12 hours,1 day,2 days,3 days,4 days and 7 days after LPS was administrated,then they were humanely sacrificed.We collected bronchoalveolar lavage fluid (BALF) and the lung tissues for further analysis.Paraffin section and HE staining of the lung tissues were made for histopathology observations.Parts of the lung tissues were evaluated for wet-to-dry (W/D) weight ratio.tumor necrosis factor (TNF)-α,inter leukin (IL)-1β,IL-10 and myeloperoxidase (MPO) were detected by enzyme-linked immunosorbent assay (ELISA).A lipid peroxidation malondialdehyde (MDA) assay kit was used to detect MDA.A total superoxide dismutase assay kit with WST-1 was used to analyze superoxide dismutase (SOD).We determined the apoptosis of neutrophils by Flow Cytometry.A real-time quantitative PCR Detecting System detected the expression of mRNA for heme oxygenase (HO)-1.Results Pretreatment with resolvin D1 reduced the pathological damage in the lung,decreased the recruitment of neutrophils and stimulated their apoptosis.It markedly decreased the expressions of TNF

  1. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  2. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.

  3. Differences in regional pulmonary pressure–impedance curves before and after lung injury assessed with a novel algorithm

    Global pressure–volume (PV) curves are an adjunct measure to describe lung characteristics in patients with acute respiratory distress syndrome (ARDS). There is convincing evidence that high peak inspiratory pressures (PIP) cause barotrauma, while optimized positive end-expiratory pressure (PEEP) helps avoid mechanical injury to the lungs by preventing repeated alveolar opening and closing. The optimal values of PIP and PEEP are deduced from the shape of the PV curve by the identification of so-called lower and upper inflection points. However, it has been demonstrated using electrical impedance tomography (EIT) that the inflection points vary across the lung. This study employs a simple curve-fitting technique to automatically define inflection points on both pressure–volume (PV) and pressure–impedance (PI) curves to asses the differences between global PV and regional PI estimates in animals before and after induced lung injury. The results demonstrate a clear increase in lower inflection point (LIP) along the gravitational axis both before and after lung injury. Moreover, it is clear from comparison of the local EIT-derived LIPs with those derived from global PV curves that a ventilation strategy based on the PV curve alone may leave dependent areas of the lung collapsed. EIT-based PI curve analysis may help choosing an optimal ventilation strategy

  4. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury.

    Charlotte J Beurskens

    Full Text Available BACKGROUND: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2 diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. METHODS: Sprague-Dawley rats (N=8 per group were mechanically ventilated with heliox (50% oxygen; 50% helium. Controls received a standard gas mixture (50% oxygen; 50% air. VILI was induced by application of tidal volumes of 15 mL kg(-1; lung protective ventilated animals were ventilated with 6 mL kg(-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF was obtained. Data are mean (SD. RESULTS: VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324 vs. 290 (181 μg mL(-1; p<0.05 and IL-6 levels (640 (8.7 vs. 206 (8.7 pg mL(-1; p<0.05, whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123 ± 0.6 vs. 146 ± 8.9 mL min(-1, P<0.001, due to a decrease in respiratory rate (22 (0.4 vs. 25 (2.1 breaths per minute; p<0.05, while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. CONCLUSIONS: Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of

  5. Platycodin D attenuates acute lung injury by suppressing apoptosis and inflammation in vivo and in vitro.

    Tao, Weiwei; Su, Qiang; Wang, Hanqin; Guo, Shen; Chen, Yanyan; Duan, Jinao; Wang, Shumin

    2015-07-01

    Platycodin D (PLD) is the major triterpene saponin in the root of Platycodon grandiflorum (Jacq.) with various pharmacological activities. The purpose of the present study was to evaluate the protective effects and possible mechanisms of PLD on acute lung injury (ALI) both in vivo and in vitro. In vivo, we used two ALI models, lipopolysaccharide (LPS)-induced ALI and bleomycin (BLE)-induced ALI to evaluate the protective effects and possible mechanisms of PLD. Female BALB/c mice were randomly divided into the following groups: control group, LPS group, LPS plus pre-treatment with dexamethasone (2 mg/kg) group, LPS plus pre-treatment with PLD groups (50 mg/kg, 100 mg/kg), LPS plus post-treatment with dexamethasone (2 mg/kg) group, LPS plus post-treatment with PLD groups (50 mg/kg, 100 mg/kg), BLE group, BLE plus pre-treatment with dexamethasone (2 mg/kg) group, BLE plus pre-treatment with PLD groups (50 mg/kg, 100 mg/kg), BLE plus post-treatment with dexamethasone (2 mg/kg) group, and BLE plus post-treatment with PLD groups (50 mg/kg, 100 mg/kg). PLD was orally administered before or after LPS or BLE challenge with mice. Mice were sacrificed, and lung tissues and bronchoalveolar fluid (BALF) were prepared for further analysis. Our results showed that PLD significantly decreased lung wet-to-dry weight ratio (lung W/D weight ratio), total leukocyte number and neutrophil percentage in the BALF, and myeloperoxidase (MPO) activity of lung in a dose-dependent manner. Besides, cytokine levels, including interleukin (IL)-6, tumor neurosis factor (TNF)-α were also found significantly inhibited in BALF. Furthermore, PLD effectively inhibited the expressions of nuclear factor κB (NF-κB), Caspase-3 and Bax in the lung tissues, as well as restored the expression of Bcl-2 in the lungs and improved the superoxide dismutase (SOD) activity in BALF. In vitro, we used LPS-challenged cell model to evaluate the protective effects and possible mechanisms of PLD. MLE-12 cells were

  6. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury.

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun; Zhou, Huacheng

    2016-02-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. PMID:26290141

  7. Reproduction of a model of lung injury induced by depleted uranium inhalation in canine

    Bin ZHANG

    2011-02-01

    Full Text Available Objective To reproduce a canine model of subacute lung injury induced by depleted uranium inhalation.Methods Twenty-six dogs were randomized into the control group(CG,n=6,low-dose group(LG,n=10.and high-dose group(HG,n=10.All of them underwent tracheal intubation.In control group,0.2ml/kg of normal saline was intratracheally given.In low dosage group,10mg/kg of depleted uranium(LG,and in high dose group 100mg/ml of depleted uranium(HG was introduced.The survival time of animals was observed in one month after intratracheal introduction of various agents,and chest CT scan was performed in the survived animals.They were sacrificed for pathological examination of lung tissues on the 31st day post of them intratracheal introduction of various agents.Results During the observation period,no animal died in CG,one dog in LG died on the 22nd day and 9 of them survived longer than 30 days.All the animals in HG group died within 30 days with a mean survival time of 11.2±8.9 days(median=12d.In comparison with the HG,significant difference on survival time was found between LG and CG,while no significant difference was found between the latter 2 groups(P=0.439.Pathologically,changes were noted in lung tissue of LG,such as escape of inflammatory cells into alveoli,hemorrhage and hyaline membrane formation in alveolar space,dilatation and congestion of alveolar capillaries,and infiltration of inflammatory cells in interstitial tissue.CT scanning revealed patchy effusion and solid consolidation in the left lung.Conclusion The canine model of subacute lung injury induced by a dose of 2mg/kg depleted uranium introduced through tracheal intubation is suitable for the study of subacute toxicity induced by depleted uranium.

  8. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity. PMID:27398612

  9. Injury to the lung from cancer therapy: Clinical syndromes, measurable endpoints, and potential scoring systems

    McDonald, S.; Rubin, P. [Univ. of Rochester Cancer Center, NY (United States); Phillips, T.L. [Univ. of California, San Francisco, CA (United States)] [and other

    1995-03-30

    Toxicity of the respiratory system is a common side effect and complication of anticancer therapy that can result in significant morbidity. The range of respiratory compromise can extend from acute lethal events to degrees of chronic pulmonary decompensation, manifesting years after the initial cancer therapy. This review examines the anatomic-histologic background of the lung and the normal functional anatomic unit. The pathophysiology of radiation and chemotherapy induced lung injury is discussed as well as the associated clinical syndromes. Radiation tolerance doses and volumes are assessed in addition to chemotherapy tolerance and risk factors and radiation-chemotherapy interactions. There are a variety of measurable endpoints for detection and screening. Because of the wide range of available quantitative tests, it would seem that the measurement of impaired lung function is possible. The development of staging systems for acute and late toxicity is discussed an a new staging system for Late Effects in Normal Tissues :(LENT) is proposed. 115 refs., 2 figs., 9 tabs.

  10. Derecruitment Test and Surfactant Therapy in Patients with Acute Lung Injury

    Alexey A. Smetkin

    2012-01-01

    Full Text Available Introduction. A recruitment maneuver (RM may improve gas exchange in acute lung injury (ALI. The aim of our study was to assess the predictive value of a derecruitment test in relation to RM and to evaluate the efficacy of RM combined with surfactant instillation in patients with ALI. Materials and Methods. Thirteen adult mechanically ventilated patients with ALI were enrolled into a prospective pilot study. The patients received protective ventilation and underwent RM followed by a derecruitment test. After a repeat RM, bovine surfactant (surfactant group, n=6 or vehicle only (conventional therapy group, n=7 was instilled endobronchially. We registered respiratory and hemodynamic parameters, including extravascular lung water index (EVLWI. Results. The derecruitment test decreased the oxygenation in 62% of the patients. We found no significant correlation between the responses to the RM and to the derecruitment tests. The baseline EVLWI correlated with changes in SpO2 following the derecruitment test. The surfactant did not affect gas exchange and lung mechanics but increased EVLWI at 24 and 32 hrs. Conclusions. Our study demonstrated no predictive value of the derecruitment test regarding the effects of RM. Surfactant instillation was not superior to conventional therapy and might even promote pulmonary edema in ALI.

  11. Recruitment maneuver: RAMP versus CPAP pressure profile in a model of acute lung injury.

    Riva, D R; Contador, R S; Baez-Garcia, C S N; Xisto, D G; Cagido, V R; Martini, S V; Morales, M M; Rocco, P R M; Faffe, D S; Zin, W A

    2009-10-31

    We examined whether recruitment maneuvers (RMs) with gradual increase in airway pressure (RAMP) provide better outcome than continuous positive airway pressure (CPAP) in paraquat-induced acute lung injury (ALI). Wistar rats received saline intraperitoneally (0.5 mL, CTRL) or paraquat (15 mg/kg, ALI). Twenty-four hours later lung mechanics [static elastance, viscoelastic component of elastance, resistive, viscoelastic and total pressures] were determined before and after recruitment with 40cmH2O CPAP for 40s or 40-s-long slow increase in pressure up to 40cmH2O (RAMP) followed by 0 or 5 cmH2O PEEP. Fractional area of alveolar collapse and PCIII mRNA were determined. All mechanical parameters and the fraction area of alveolar collapse were higher in ALI compared to CTRL. Only RAMP-PEEP maneuver significantly improved lung mechanics and decreased PCIII mRNA expression (53%) compared with ALI, while both RMs followed by PEEP decreased alveolar collapse. In conclusion, in the present experimental ALI model, RAMP followed by 5cm H2O PEEP yields a better outcome. PMID:19712760

  12. Pulmonary clearance of 99mTc-DTPA and 99mTc-albumin in rabbits with surfactant dysfunction and lung injury

    We measured the pulmonary clearance of inhaled 99mTc-DTPA and 99mTc-albumin in rabbits with surfacant dysfunction induced by dioctyl sodium sulphosuccinate and in rabbits with lung injury induced by oleic acid. After inhalation of 99mTc-albumin in ten animals, clearance of the tracer from the lungs was monitored for 90 min. The first 30 min was a control period. Dioctyl sodium sulphosuccinate was then administered in aerosol and after another 30 min oleic acid was injected intravenously. Ten other rabbits were given 99mTc-DTPA, and clearance was externally recorded for 60 min. Five animals inhaled detergent aerosol and five animals were given oleic acid intravenously after 30 min. Airway pressures, tidal volume, and arterial blood gases were measured before and after each intervention. The half-life of 99mTc-albumin in the lung was 442 ± 123 min during the control period, 363 ± 52 min after detergent administration, and 134 ± 18 min after oleic acid administration. The half-life of 99mTc-DTPA was 94 ± 16 min before and 10 ± 0.6 min after detergent administration and 75 ± 12 min before and 18 ± 1.8 min after oleic acid administration. Gas exchange was not affected by administration of dioctyl sodium sulphosuccinate but markedly impaired after injection of oleic acid. Compliance of the respiratory system remained unaffected by detergent but decreased after injection of oleic acid. The results indicate that the rate limiting factors for the alveolo-capillary transfer of 99mTc-albumin and 99mTc-DTPA are different. Surfactant dysfunction affects the transfer of 99mTc-DTPA but not 99mTc-albumin. (author)

  13. CT appearance of radiation injury of the lung and clinical symptoms after stereotactic radiation therapy (SRT) for lung cancer

    The purpose of this study was to evaluate the CT appearance of radiation injury to the lung and clinical symptoms after SRT (stereotactic radiation therapy) for small lung cancers. In this analysis, 35 patients with 39 primary or metastatic lung cancers were enrolled. The follow-up at the time of evaluation ranged from 6 to 44 months (median 18 months). SRT was performed by 3D conformal method which focuses a single high dose to the tumor. We evaluated the CT appearance of acute radiation pneumonitis (within 6 months) and radiation fibrosis (after 6 months) after SRT. Clinical symptoms were evaluated by CTCAE ver.3.0. CT appearance of acute radiation pneumonitis was classified as follows; 1) diffuse consolidation in 12 lesions (30.7%), 2) patchy consolidation and ground-grass opacities (GGO) in 6 lesions (15.4%), 3) diffuse GGO in 5 patients (12.8%), 4) patchy GGO in 1 lesion (2.6%), 5) no evidence of increasing density in 15 lesions (38.5%). CT appearance of radiation fibrosis was classified as follows; 1) modified conventional pattern (consolidation, volume loss and bronchiectasis similar to, but less extensive than conventional radiation fibrosis) in 18 lesions (46.2%), 2) mass-like pattern (focal consolidation limited around the tumor) in 10 lesions (25.6%), 3) scar-like pattern (linear opacity in the region of the tumor associated with volume loss) in 11 lesions (28.2%). Eleven of 15 lesions which had no evidence of increasing density of acute radiation pneumonitis progressed to scar-like pattern of radiation fibrosis. Most of these patients had pulmonary emphysema. Patients who were diagnosed more than Grade 2 pneumonitis were significantly more in diffuse consolidation pattern than in other pattern (p=0.00085). Patients who were diagnosed more than Grade 2 pneumonitis were significantly less in no evidence of increase density pattern than in other pattern (p=0.0026). CT appearance after SRT was classified into five patterns of acute radiation pneumonitis and

  14. The effect of low level laser therapy on ventilator-induced lung injury in mice (Conference Presentation)

    Szabari, Margit V.; Miller, Alyssa J.; Hariri, Lida P.; Hamblin, Michael R.; Musch, Guido; Stroh, Helene; Suter, Melissa J.

    2016-03-01

    Although mechanical ventilation (MV) is necessary to support gas exchange in critically ill patients, it can contribute to the development of lung injury and multiple organ dysfunction. It is known that high tidal volume (Vt) MV can cause ventilator-induced lung injury (VILI) in healthy lungs and increase the mortality of patients with Acute Respiratory Distress Syndrome. Low level laser therapy (LLLT) has demonstrated to have anti-inflammatory effects. We investigated whether LLLT could alleviate inflammation from injurious MV in mice. Adult mice were assigned to 2 groups: VILI+LLLT group (3 h of injurious MV: Vt=25-30 ml/kg, respiratory rate (RR)=50/min, positive end-expiratory pressure (PEEP)=0 cmH20, followed by 3 h of protective MV: Vt=9 ml/kg, RR=140/min, PEEP=2 cmH20) and VILI+no LLLT group. LLLT was applied during the first 30 min of the MV (810 nm LED system, 5 J/cm2, 1 cm above the chest). Respiratory impedance was measured in vivo with forced oscillation technique and lung mechanics were calculated by fitting the constant phase model. At the end of the MV, bronchoalveolar lavage (BAL) was performed and inflammatory cells counted. Lungs were removed en-bloc and fixed for histological evaluation. We hypothesize that LLLT can reduce lung injury and inflammation from VILI. This therapy could be translated into clinical practice, where it can potentially improve outcomes in patients requiring mechanical ventilation in the operating room or in the intensive care units.

  15. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  16. A new therapeutic strategy for lung tissue injury induced by influenza with CR2 targeting complement inhibitior

    Tomlinson Stephen

    2010-02-01

    Full Text Available Abstract Background Influenza is a respiratory disease that seriously threatens human health. In fact, influenza virus itself does not make critical contribution to mortality induced by influenza, but "cytokine storm" produced by the excessive immune response triggered by the virus can result in inflammatory reaction of lung tissues and fatal lung tissue injury, and thus increase influenza mortality. Therefore, besides antiviral drugs, immunosuppression drugs should also be included in infection treatment. Presentation of the hypothesis Complement is the center of inflammatory reaction. If complement system is over activated, the body will have strong inflammatory reaction or tissue injury, resulting in pathological process. Many studies have proved that, inflammatory injury of lung tissues caused by influenza virus is closely related to complement activation. Therefore, inhibiting complement activation can significantly reduce inflammatory injury in lung tissues. As complement is both a physiological defense and pathological damage medium, systematic inhibition may result in side effects including infection. Therefore, we design targeting complement inhibitors for complement activation sites, i.e. with CR2 as targeting vector, complement inhibitors like CD59 and Crry are targeted to inflammatory sites to specially inhibit the complement activation in local injury, thus local inflammatory reaction is inhibited. Testing the hypothesis CR2-CD59 and CR2-Crry targeting complement inhibitors are fusion-expressed, and their biological activity is examined via in vivo and in vitro tests. CR2 targeting complement inhibitors are used to treat mouse influenza viral pneumonia model, with PBS treatment group as the control. The survival and lung tissue injury of the mice is observed and the effect of CR2 targeting complement inhibitors on pneumonia induced by influenza virus is evaluated. Implications of the hypothesis CR2 targeting complement inhibitors

  17. Computed Tomography Appearance of Early Radiation Injury to the Lung: Correlation With Clinical and Dosimetric Factors

    Purpose: To systematically assess the spectrum of radiologic changes in the lung after radiation therapy for non-small-cell lung cancer. Methods and Materials: We reviewed the cases of 146 patients treated with radical radiotherapy at our institution. All patients had computed tomography (CT) scans performed 3 months after completion of therapy. Radiographic appearances were categorized using a standard grading system. The association of these abnormalities with pretreatment factors and clinical radiation pneumonitis (RP) was investigated. Results: New intrapulmonary abnormalities were seen in 92 patients (63%). These were ground-glass opacity in 16 (11%), patchy consolidation in 19 (13%), and diffuse consolidation in 57 (39%). Twenty-five patients (17%) developed clinical symptoms of RP. Although 80% of the patients with RP had areas of consolidation seen on the posttreatment CT scan, the majority (74%) of patients with such radiographic changes were asymptomatic. For patients with lung infiltrates, the minimum isodose encompassing the volume of radiologic abnormality was usually ≥27 Gy. Traditional dose-volume metrics, pulmonary function tests, and the coadministration of angiotensin converting enzyme inhibitors (ACE-I) were all strongly correlated with the presence of radiologic injury on univariate analysis (p ≤ 0.002). There was also an inverse correlation between prior smoking history and CT scan changes (p = 0.02). On multivariate analysis, dosimetric parameters and the use of ACE-I retained significance (p = 0.005). Conclusions: Our findings suggest that there is substantial interindividual variation in lung radiosensitivity. ACE-I prevented the radiologic changes seen after high-dose radiation therapy, and their role as radioprotectants warrants further investigation.

  18. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340).

    Foda, H D; Rollo, E E; Drews, M; Conner, C; Appelt, K; Shalinsky, D R; Zucker, S

    2001-12-01

    Mechanical ventilation has become an indispensable therapeutic modality for patients with respiratory failure. However, a serious potential complication of MV is the newly recognized ventilator-induced acute lung injury. There is strong evidence suggesting that matrix metalloproteinases (MMPs) play an important role in the development of acute lung injury. Another factor to be considered is extracellular matrix metalloproteinase inducer (EMMPRIN). EMMPRIN is responsible for inducing fibroblasts to produce/secrete MMPs. In this report we sought to determine: (1) the role played by MMPs and EMMPRIN in the development of ventilator-induced lung injury (VILI) in an in vivo rat model of high volume ventilation; and (2) whether the synthetic MMP inhibitor Prinomastat (AG3340) could prevent this type of lung injury. We have demonstrated that high volume ventilation caused acute lung injury. This was accompanied by an upregulation of gelatinase A, gelatinase B, MT1-MMP, and EMMPRIN mRNA demonstrated by in situ hybridization. Pretreatment with the MMP inhibitor Prinomastat attenuated the lung injury caused by high volume ventilation. Our results suggest that MMPs play an important role in the development of VILI in rat lungs and that the MMP-inhibitor Prinomastat is effective in attenuating this type of lung injury. PMID:11726397

  19. Effects of peroxisome proliferator-activated receptor-β/δ on sepsis induced acute lung injury

    Wang Cairui; Zhou Guopeng; Zeng Zeng

    2014-01-01

    Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the first steps in the development of multiple organ failure induced by sepsis.A systemic excessive inflammatory reaction is currently the accepted mechanism of the pathogenesis of sepsis.Several studies have suggested a protective role of the peroxisome proliferator activated receptor-β/δ (PPAR-β/δ) in related inflammatory diseases.But the role of PPARβ/δ in ALI remains uncertain.The aim of this study was to investigate the role and possible mechanism of PPARβ/δ in ALI induced by sepsis.Methods Cecal ligation and puncture (CLP) was used as a sepsis model.Rats were randomly divided into four groups,the control group (CON,n=6),sham-operation group (SHAM,n=12),cecal ligation and puncture group (CLP,n=30),GW501516 group (CLP+GW,n=25),which underwent CLP and were subcutaneously injected with the PPAR-β/δ agonist GW501516 (0.05 mg/100 g body weight).Survival was monitored to 24 hours after operation.Blood pressure,serum creatinine,blood urea nitrogen,aspartate aminotrasferase and alanine aminotrasferase were measured after CLP.Concentrations of tumor necrosis factor α (TNF-α) and interleukin (IL)-1β in serum were detected by enzyme linked immunosorbent assay (ELISA) kits.Lung tissue samples were stained with H&E and scored according to the degree of inflammation.Bacterial colonies were counted in the peritoneal fluid.Alveolar macrophages were cultured and incubated with GW501516 (0.15 μmol/L) and PPARβ/δ adenovirus and then treated with Lipopolysaccharide (2 μg/ml) for 2 hours.The TNF-α,IL-1β and IL-6 RNA in lung and alveolar macrophages were determined by real-time PCR.Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in lung and alveolar macrophages was detected by Western blotting.Results GW501516 significantly increased the survival of septic rats,decreased histological damage of the lungs,reduced inflammatory cytokines in serum and

  20. IL-17 response mediates acute lung injury induced by the 2009 Pandemic Influenza A(H1N1)Virus

    Chenggang Li; Chen Wang; Zhongwei Chen; Li Xing; Chong Tang; Xiangwu Ju; Feng Guo; Jiejie Deng; Yan Zhao; Peng Yang; Jun Tang; Penghui Yang; Huanling Wang; Zhongpeng Zhao; Zhinan Yin; Bin Cao; Xiliang Wang; Chengyu Jiang; Yang Sun; Taisheng Li; Chen Wang; Zhong Wang; Zhen Zou; Yiwu Yan; Wei Wang

    2012-01-01

    The 2009 flu pandemic involved the emergence of a new strain of a swine-origin H1N1 influenza virus(S-OIV H1N1)that infected almost every country in the world.Most infections resulted in respiratory illness and some severe cases resulted in acute lung injury.In this report,we are the first to describe a mouse model of S-OIV virus infection with acute lung injury and immune responses that reflect human clinical disease.The clinical efficacy of the antiviral oseltamivir(Tamiflu)administered in the early stages of S-OIV H1N1 infection was confirmed in the mouse model.Moreover,elevated levels of IL-17,Th-17 mediators and IL-17-responsive cytokines were found in serum samples of S-OIV-infected patients in Beijing.IL-17 deficiency or treatment with monoclonal antibodies against IL-17-ameliorated acute lung injury induced by the S-OIV H1N1 virus in mice.These results suggest that IL-17 plays an important role in S-OIV-induced acute lung injury and that monoclonal antibodies against IL-17 could be useful as a potential therapeutic remedy for future S-OIV H1N1 pandemics.

  1. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults

    Afshari, Arash; Brok, Jesper; Møller, Ann;

    2010-01-01

    Acute hypoxaemic respiratory failure (AHRF), defined as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are critical conditions. AHRF results from a number of systemic conditions and is associated with high mortality and morbidity in all ages. Inhaled nitric oxide (INO) has...

  2. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury.

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  3. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-04-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy.

  4. Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment

    Li, Li-Fu; Liao, Shuen-Kuei; Huang, Chung-Chi; Hung, Ming-Jui; Quinn, Deborah A

    2008-01-01

    Introduction Lung fibrosis, reduced lung compliance, and severe hypoxemia found in patients with acute lung injury often result in a need for the support of mechanical ventilation. High-tidal-volume mechanical ventilation can increase lung damage and fibrogeneic activity but the mechanisms regulating the interaction between high tidal volume and lung fibrosis are unclear. We hypothesized that high-tidal-volume ventilation increased pulmonary fibrosis in acute lung injury via the serine/threon...

  5. Effects and mechanism analysis of combined infusion by levosimendan and vasopressin on acute lung injury in rats septic shock.

    Wang, Xuebing; Ma, Shaolin; Liu, Yang; Xu, Wei; Li, Zhanxia

    2014-12-01

    This research is aimed to discover the influence and underling mechanism of combined infusion of arginine vasopressin with levosimendan on acute lung injury in rat septic shock with norepinephrine supplemented. The traditional fecal peritonitis-induced septic shock model was undergone in rats for study. It is observed that the combined infusion supplemented with norepinephrine brought about a lower mean pulmonary artery pressure; lower high-mobility group box 1 levels, pulmonary levels of interleukin-6, and arterial total nitrate/nitrite; lower apoptotic cells scores and total histological scores; but higher pulmonary gas exchange when compared with the separate infusion group and norepinephrine group. This therapy shows potential clinical beneficial assistance in sepsis-induced acute lung injury. The results suggest the mechanism of such effect is through abating pulmonary artery pressure, and more importantly suppressing inflammatory responses in lung when compared with norepinephrine infusion group and the separate infusion of levosimendan or vasopressin alone. PMID:25002345

  6. Effects of tachykinin NK1 or PAF receptor blockade on the lung injury induced by scorpion venom in rats.

    Matos, I M; Souza, D G; Seabra, D G; Freire-Maia, L; Teixeira, M M

    1999-07-01

    In cases of severe human scorpion envenoming, lung injury is a common finding and frequently the cause of death. In the rat, two distinct mechanisms account for oedema following the intravenous injection of the venom -- acute left ventricular failure resulting from a massive release of catecholamines and an increase in pulmonary vascular permeability. In the present work, we investigated the effects of a tachykinin NK1 receptor antagonist (CP96,345, the dihydrochloride salt of (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)methyl)-1-az abicycol[2.2.2]octan-3-amine) and its 2 R-3 R inactive enantiomer (CP96,344) on the acute lung injury induced by the i.v. injection of Tityus serrulatus venom in rats. Lung injury was assessed by evaluating the extravasation of Evans blue dye in the bronchoalveolar lavage fluid and in the lung of venom-treated and control animals. The effects of the platelet-activating factor (PAF) receptor antagonist WEB2170 (2-methyl-1-phenylimidazol[4,5c]pyridine) were evaluated for comparison. The i.v. injection of the venom induced the extravasation of Evans blue in the bronchoalveolar lavage fluid and into the left lung. Pretreament with the tachykinin NK1 receptor antagonist CP96,345, but not CP96,344, inhibited Evans blue dye extravasation in the bronchoalveolar lavage fluid and in the lung by 96% and 86%, respectively. The PAF receptor antagonist WEB2170 inhibited the increase in vascular permeability in the bronchoalveolar lavage fluid by 60% and had no effect on the extravasation to the lung parenchyma of venom-injected animals. In addition to abrogating lung injury, pretreatment of rats with CP96,345, but not CP96,344 or WEB2170, decreased by 70% the mortality induced by the venom. This is the first study to show the relevance of the tachykinin NK1 receptor in mediating lung injury and mortality in animals injected with the neurotoxic T. serrulatus venom. Blockade of the tachykinin NK1 receptor may represent an important strategy in

  7. Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice

    Ribeiro, Edlene Lima; Barbosa, Karla Patricia de Souza; Fragoso, Ingrid Tavares; Donato, Mariana Aragão Matos; Oliveira dos Santos Gomes, Fabiana; da Silva, Bruna Santos; Silva, Amanda Karolina Soares e; Rocha, Sura Wanessa Santos; Amaro da Silva Junior, Valdemiro; Peixoto, Christina Alves

    2014-01-01

    Diethylcarbamazine (DEC) is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy). The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs) as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2), and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg) three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation. PMID:24550603

  8. Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats

    Many welders have experienced bronchitis, metal fume fever, lung function changes, and an increase in the incidence of lung infection. Questions remain regarding the possible mechanisms associated with the potential pulmonary effects of welding fume exposure. The objective was to assess the early effects of stainless steel (SS) welding fume inhalation on lung injury, inflammation, and defense responses. Male Sprague-Dawley rats were exposed to gas metal arc-SS welding fume at a concentration of 15 or 40 mg/m3 x 3 h/day for 1, 3, or 10 days. The control group was exposed to filtered air. To assess lung defense responses, some animals were intratracheally inoculated with 5 x 104Listeria monocytogenes 1 day after the last exposure. Welding particles were collected during exposure, and elemental composition and particle size were determined. At 1, 4, 6, 11, 14, and 30 days after the final exposure, parameters of lung injury (lactate dehydrogenase and albumin) and inflammation (PMN influx) were measured in the bronchoalveolar lavage fluid. In addition, particle-induced effects on pulmonary clearance of bacteria and macrophage function were assessed. SS particles were composed of Fe, Cr, Mn, and Ni. Particle size distribution analysis indicated the mass median aerodynamic diameter of the generated fume to be 0.255 μm. Parameters of lung injury were significantly elevated at all time points post-exposure compared to controls except for 30 days. Interestingly, no significant difference in lung PMNs was observed between the SS and control groups at 1, 4, and 6 days post-exposure. After 6 days post-exposure, a dramatic increase in lung PMNs was observed in the SS group compared to air controls. Lung bacteria clearance and macrophage function were reduced and immune and inflammatory cytokines were altered in the SS group. In summary, short-term exposure of rats to SS welding fume caused significant lung damage and suppressed lung defense responses to bacterial infection, but

  9. Systematic review and meta-analysis of nasal potential difference in hypoxia-induced lung injury.

    Su, Zhenlei; Zhu, Lili; Wu, Jing; Zhao, Runzhen; Ji, Hong-Long

    2016-01-01

    Nasal potential difference (NPD), a well-established in vivo clinical test for cystic fibrosis, reflects transepithelial cation and anion transport in the respiratory epithelium. To analyze whether NPD can be applied to diagnose hypoxic lung injury, we searched PubMed, EMBASE, Scopus, Web of Science, Ovid MEDLINE, and Google Scholar, and analyzed data retrieved from eleven unbiased studies for high altitude pulmonary edema (HAPE) and respiratory distress syndrome (RDS) using the software RevMan and R. There was a significant reduction in overall basal (WMD -5.27 mV, 95% CI: -6.03 to -4.52, P hypoxia is characterized by dysfunctional NPD. PMID:27488696

  10. Transfusion Related Acute Lung Injury after Cesarean Section in a Patient with HELLP Syndrome.

    Moon, Kyoung Min; Han, Min Soo; Rim, Ch'ang Bum; Kim, So Ri; Shin, Sang Ho; Kang, Min Seok; Lee, Jun Ho; Kim, Jihye; Kim, Sang Il

    2016-01-01

    Transfusion-related acute lung injury (TRALI) is a serious adverse reaction of transfusion, and presents as hypoxemia and non-cardiogenic pulmonary edema within 6 hours of transfusion. A 14-year-old primigravida woman at 34 weeks of gestation presented with upper abdominal pain without dyspnea. Because she showed the syndrome of HELLP (hemolysis, elevated liver enzymes, and low platelet count), an emergency cesarean section delivery was performed, and blood was transfused. In the case of such patients, clinicians should closely observe the patient's condition at least during the 6 hours while the patient receives blood transfusion, and should suspect TRALI if the patient complains of respiratory symptoms such as dyspnea. Furthermore, echocardiography should be performed to distinguish between the different types of transfusion-related adverse reactions. PMID:26885326

  11. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention.

    Peters, Anna L; Van Stein, Danielle; Vlaar, Alexander P J

    2015-09-01

    Transfusion-related acute lung injury (TRALI), a syndrome of respiratory distress caused by blood transfusion, is the leading cause of transfusion-related mortality. The majority of TRALI cases have been related to passive infusion of human leucocyte antigen (HLA) and human neutrophil antigen (HNA) antibodies in donor blood. In vitro, ex vivo and in vivo animal models have provided insight in TRALI pathogenesis. The various classes of antibodies implicated in TRALI appear to have different pathophysiological mechanisms for the induction of TRALI involving endothelial cells, neutrophils, monocytes and, as very recently has been discovered, lymphocytes. The HLA and HNA-antibodies are found mainly in blood from multiparous women as they have become sensitized during pregnancy. The incidence of TRALI has decreased rapidly following the introduction of a male-only strategy for plasma donation. This review focuses on pre-clinical and clinical studies investigating the pathophysiology of antibody-mediated TRALI. PMID:25921271

  12. [Role of computed tomography in the diagnosis of acute lung injury/acute respiratory distress syndrome].

    Mazzei, Maria Antonietta; Guerrini, Susanna; Cioffi Squitieri, Nevada; Franchi, Federico; Volterrani, Luca; Genovese, Eugenio Annibale; Macarini, Luca

    2012-11-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a complex pulmonary pathology with high mortality rates, manifesting over a wide range of severity. Clinical diagnosis relies on the following 4 criteria stated by the American-European Consensus Conference: acute onset of impaired gas exchange, severe hypoxemia defined as a PaO2 to FiO2 ratio <300 (PaO2 in mmHg), bilateral diffuse infiltration on chest X-ray; pulmonary artery wedge pressure of ≤18 mmHg to rule out cardiogenic causes of pulmonary edema. The aim of this study was to determine the usefulness of CT in the diagnosis and management of this condition. PMID:23096732

  13. Angiotensin II is related to the acute aortic dissection complicated with lung injury through mediating the release of MMP9 from macrophages

    Wu, Zhiyong; Ruan, Yongle; Chang, Jinxing; Li, Bowen; Ren, Wei

    2016-01-01

    Background: Acute aortic dissection (AAD) patients usually show concurrent lung injury mainly featured by hyoxemia. To date, no effective treatment method has been established for the AAD complicated with acute lung injury (ALI). Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, have been considered to be closely related to the onset of aortic disease including AAD. To investigate the roles of MMP in the pathogenesis of AAD complicated with ALI, we determined the expression of MMP2 and MMP9 in serum and lung tissues of AAD patients. In addition, a new rat model of AAD complicated with ALI was established to investigate the pathogenesis of such complicated conditions. Methods and results: Angiotensin II (Ang II) and MMP9 were up-regulated in the AAD complicated with ALI patients compared to those of the AAD without ALI patients, normal individuals and the patients with non-ruptured aneurysm. Besides, massive macrophages with MMP9 expression was noticed in the lung tissues in the AAD complicated with ALI patients. On this basis, AAD complicated with ALI rat model was established based on BAPN feeding and infusion of Ang II. Obvious lung injury was observed in the BAPN+Ang II group compared to that of the BAPN group, together with macrophage accumulation in lung tissues, as well as over-expression of MMP9 in lung tissues. After interference of MMP antagonist, a large number of macrophages were still accumulated in the lung tissues, but the lung injury was obviously attenuated. After the interference of AT1 receptor, the number of macrophages in the lung tissues was obviously decreased and the lung injury was obviously relieved. Conclusions: Ang II is closely related to the lung injury at the early stage of AAD through mediating the release of MMP9 in the macrophages in the lung tissues. PMID:27186269

  14. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9.

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  15. Inhibitors of inflammation and endogenous surfactant pool size as modulators of lung injury with initiation of ventilation in preterm sheep

    Polglase Graeme R

    2010-10-01

    Full Text Available Abstract Background Increased pro-inflammatory cytokines in tracheal aspirates correlate with the development of BPD in preterm infants. Ventilation of preterm lambs increases pro-inflammatory cytokines and causes lung inflammation. Objective We tested the hypothesis that selective inhibitors of pro-inflammatory signaling would decrease lung inflammation induced by ventilation in preterm newborn lambs. We also examined if the variability in injury response was explained by variations in the endogenous surfactant pool size. Methods Date-mated preterm lambs (n = 28 were operatively delivered and mechanically ventilated to cause lung injury (tidal volume escalation to 15 mL/kg by 15 min at age. The lambs then were ventilated with 8 mL/kg tidal volume for 1 h 45 min. Groups of animals randomly received specific inhibitors for IL-8, IL-1, or NF-κB. Unventilated lambs (n = 7 were the controls. Bronchoalveolar lavage fluid (BALF and lung samples were used to quantify inflammation. Saturated phosphatidylcholine (Sat PC was measured in BALF fluid and the data were stratified based on a level of 5 μmol/kg (~8 mg/kg surfactant. Results The inhibitors did not decrease the cytokine levels or inflammatory response. The inflammation increased as Sat PC pool size in BALF decreased. Ventilated lambs with a Sat PC level > 5 μmol/kg had significantly decreased markers of injury and lung inflammation compared with those lambs with Conclusion Lung injury caused by high tidal volumes at birth were decreased when endogenous surfactant pool sizes were larger. Attempts to decrease inflammation by blocking IL-8, IL-1 or NF-κB were unsuccessful.

  16. Pulmonary microRNA expression profiling in an immature piglet model of cardiopulmonary bypass-induced acute lung injury.

    Li, Wenlei; Ma, Kai; Zhang, Sen; Zhang, Hao; Liu, Jinping; Wang, Xu; Li, Shoujun

    2015-04-01

    After surgery performed under cardiopulmonary bypass (CPB), severe lung injury often occurs in infants. MicroRNAs (miRNAs) are potentially involved in diverse pathophysiological processes via regulation of gene expression. The objective of this study was to investigate differentially expressed miRNAs and their potential target genes in immature piglet lungs in response to CPB. Fourteen piglets aged 18.6 ± 0.5 days were equally divided into two groups that underwent sham sternotomy or CPB. The duration of aortic cross-clamping was 2 h, followed by 2 h reperfusion. Lung injury was evaluated by lung function indices, levels of cytokines, and histological changes. We applied miRNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analysis to determine miRNA expression. Meanwhile, qRT-PCR and enzyme-linked immunosorbent assay were used for validation of predicted mRNA targets. The deterioration of lung function and histopathological changes revealed the piglets' lungs were greatly impaired due to CPB. The levels of tumor necrosis factor alpha, interleukin 6, and interleukin 10 increased in the lung tissue after CPB. Using miRNA microarray, statistically significant differences were found in the levels of 16 miRNAs in the CPB group. Up-regulation of miR-21 was verified by PCR. We also observed down-regulation in the levels of miR-127, miR-145, and miR-204, which were correlated with increases in the expression of the products of their potential target genes PIK3CG, PTGS2, ACE, and IL6R in the CPB group, suggesting a potential role for miRNA in the regulation of inflammatory response. Our results show that CPB induces severe lung injury and dynamic changes in miRNA expression in piglet lungs. Moreover, the changes in miRNA levels and target gene expression may provide a basis for understanding the pathogenesis of CPB-induced injury to immature lungs. PMID:25347932

  17. ACUTE LUNG INJURY COMPLICATING BLOOD TRANSFUSION IN POST-PARTUM HEMORRHAGE: INCIDENCE AND RISK FACTORS.

    Luciana Teofili

    2014-10-01

    Full Text Available Background. We retrospectively investigated the incidence and risk factors for transfusion-related acute lung injury (TRALI among patients transfused for post-partum hemorrhage (PPH. Methods. We identified a series of 71 consecutive patients with PPH requiring the urgent transfusion of three or more red blood cell (RBC units, with or without fresh frozen plasma (FFP and platelet (PLT transfusion. Clinical records were then retrieved and examined for respiratory distress events. According to the 2004 consensus definition, cases of new-onset hypoxemia within 6 hours after transfusion, with bilateral pulmonary changes in the absence of cardiogenic pulmonary edema  were identified as TRALI; if an alternative risk factor for acute lung injury was present,  possible TRALI was diagnosed.Results. Thirteen cases of TRALI and 1 case of possible TRALI were identified (overall incidence 19.7%.  At univariate analysis, patients with TRALI received higher number of RBC, PLT and FFP units and had a longer post-partum hospitalization. Among several pregnancy-related diseases (including hypertensive disorders, anemia, intrahepatic cholestasis, gestational diabetes and various pre-existing comorbidities, only gestational hypertension and pre-eclampsia   significantly increased the risk to develop  TRALI (p = 0.006. At multivariate analysis, including both transfusion- and patient-related risk factors, pregnancy-related hypertensive disorders were confirmed to be the only predictors for TRALI, with an odds ratio of 27.7 ( 95% CI 1.27-604.3, p=0.034.Conclusions. Patients suffering from PPH represent a high-risk population for TRALI. In particular, patients with gestational hypertension and pre-eclampsia   have the highest risk, particularly if they are not receiving anti-hypertensive therapy. A careful monitoring of these patients after transfusions is therefore recommended.

  18. PAMAM Nanoparticles Promote Acute Lung Injury by Inducing Autophagic Cell Death through the Akt-TSC2-mTOR Signaling Pathway

    Chenggang Li; Haolin Liu; Yang Sun; Hongliang Wang; Feng Guo; Shuan Rao; Jiejie Deng; Yanli Zhang; Yufa Miao; Chenying Guo; Jie Meng; Xiping Chen; Limin Li; Dangsheng Li; Haiyan Xu; Heng Wang; Bo Li; Chengyu Jiang

    2009-01-01

    Nanotechnology is an important and emerging industry with a projected annual market of around one trillion US dollars by 2011–2015. Concerns about the toxicity of nanomaterials in humans, however, have recently been raised. Although studies of nanoparticle toxicity have focused on lung disease the molecular link between nanoparticle exposure and lung injury remained unclear. In this report, we show that cationic Starburst polyamidoamine dendrimer (PAMAM), a class of nanomaterials that are being widely developed for clinical applications can induce acute lung injury in vivo. PAMAM triggers autophagic cell death by deregulating the Akt-TSC2-mTOR signaling pathway. The autophagy inhibitor 3-methyladenine rescued PAMAM dendrimer-induced cell death and ameliorated acute lung injury caused by PAMAM in mice. Our data provide a molecular explanation for nanoparticle-induced lung injury, and suggest potential remedies to address the growing concerns of nanotechnology safety.

  19. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage. PMID:23063544

  20. Establishment and verification of rabbit model of radiation-induced lung injury

    Objective: to establish the rabbit model of radiation-induced lung injury (RILI) for the study of CT perfusion. Methods: Forty-eight New Zealand rabbits were randomly divided into two groups, 36 rabbits in test group were administered with 25 Gy of single fractionated irradiation in the whole unilateral lung, and the other 12 rabbits in control group were sham-irradiated. All rabbits were sacrificed at 1, 6, 12, 24, 48, 72 h, and 1, 2, 4, 8, 16, 24 week after irradiation respectively, then six specimens were extracted from upper, middle and lower fields of bilateral lungs, respectively. The pathological changes were observed with light and electron microscopies. The expression of TNF-α and TNF-β1 in local lung tissue was detected by immunohistochemistry. Results: In test group, RILI occured at early stage, characterized by acute inflammatory reaction, and featured by the progressing fibrosis at later stage. The expression of TNF-α and TGF-β1 1 and 72 h post-irradiation were statistically different between test and control groups (t=3.04-14.95, P<0.05). Thickness of alveolar wall, density of pulmonary interstitium 12 h of post-irradiation, amount of fibroblast and fibrocyte from interstitium 24 h post-irradiation were statistically different between two groups (t=4.44-39.78, P<0.05), and correlated with the time post-irradiation (r=0.821, 0.872, 0.682). There was statistical differences among the relative amount of collagen fibers at time points post-irradiation in test group (F=100.31, P<0.05), while no difference in control group (F=1.00, P<0.05). The relative amount of collagen fibers was statistically different between two groups 72 h post-irradiation (t=3.07-45.18, P<0.05), and correlated with the time post-irradiation (r=0.993). Conclusions: Stable and reliable rabbit model of RILI could be established through single fractionated irradiation in whole unilateral lung with 25 Gy of high-energy X-rays, which may simulate the occurrence and development of