WorldWideScience

Sample records for acid inhibits tumor

  1. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E2 without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells

  2. Inhibitions of Several Antineoplastic Drugs on Serum Sialic Acid Levels in Mice Bearing Tumors

    Lu, Da-Yong; Xu, Jing; Lu, Ting-Ren; Wu, Hong-Ying; Xu, Bin

    2012-01-01

    Six murine tumors, including ascetic tumors HepA, EC, P388 leukemia, S180 and solid tumor S180, and Lewis lung carcinoma, were employed in this work. The free sialic acid concentrations in both blood and ascites were measured in tumor-bearing mice. The results showed that the content of sialic acids in blood was increased in tumor growth and certain tumor types. Higher sialic acid content was observed in ascites than that present in blood. The influence of antineoplastic agents (vincristine, ...

  3. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    Zhang Z

    2013-06-01

    Full Text Available Zhihua Zhang,1 Changlai Hao,1 Lihong Wang,1 Peng Liu,2 Lei Zhao,1 Cuimin Zhu,1 Xia Tian31Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, 2Department of Medical Oncology, Shijiazhuang Municipal No 1 Hospital, Hebei Province, 3Department of Medical Oncology, Rizhao Municipal People’s Hospital, Shandong Province, People's Republic of ChinaAbstract: The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21, abnormally recruits histone deacetylase (HDAC to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21 acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21 acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.Keywords: valproic acid, acute myeloid leukemia, AML1-ETO, p21, E2F

  4. Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid.

    Johnson, J H; Belt, J A; Dubinsky, W P; Zimniak, A; Racker, E

    1980-08-01

    The synthesis and some of the physical and biological characteristics of a new inhibitor of lactate transport are described. The inhibitor is isobutylcarbonyl lactayl anhydride (iBCLA). It is formed by the condensation of lactic acid and isobutylchloroformate. It inhibits lactate transport 50% at 0.5 microgram/mg of protein in both Ehrlich ascites tumor cells and human erythrocytes. In contrast, 15 microgram of iBCLA/mg of protein is required for 50% inhibition of phosphate transport in erythrocytes, and phosphate transport in Ehrlich ascites tumor cells is unaffected at levels as high as 50 microgram of iBCLA/mg of protein. A time-dependent and concentration-dependent reversal of lactate transport inhibition took place on exposure of iBCLA-treated Ehrlich ascites cells to hydroxylamine or dithiothreitol. These data, along with the observed sensitivity of the lactate transporter to sulfhydryl reagents [Spencer, T. L., & Lehninger, A. L. (1976) Biochem. J. 154, 405-414], suggest that iBCLA acylates an essential sulfhydryl group on the transporter. When glycolyzing Ehrlich ascites tumor cells were treated with concentrations of iBCLA sufficient for complete inhibition of lactate transport, intracellular lactate levels increased, intracellular pH and extra-cellular lactate levels decreased, and overall lactate production was inhibited. PMID:7407072

  5. L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin

    Schiffmann Elliott

    2005-02-01

    Full Text Available Abstract Background Autotaxin (ATX, NPP-2, originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD. The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity. Results We show that millimolar concentrations of L-histidine inhibit ATX-stimulated but not LPA-stimulated motility in two tumor cell lines, as well as inhibiting enzymatic activities. Inhibition is reversed by 20-fold lower concentrations of zinc salt. L-histidine has no significant effect on the Km of LPLD, but reduces the Vmax by greater than 50%, acting as a non-competitive inhibitor. Several histidine analogs also inhibit the LPLD activity of ATX; however, none has greater potency than L-histidine and all decrease cell viability or adhesion. Conclusion L-histidine inhibition of LPLD is not a simple stoichiometric chelation of metal ions but is more likely a complex interaction with a variety of moieties, including the metal cation, at or near the active site. The inhibitory effect of L-histidine requires all three major functional groups of histidine: the alpha amino group, the alpha carboxyl group, and the metal-binding imidazole side chain. Because of LPA's involvement in pathological processes, regulation of its formation by ATX may give insight into possible novel therapeutic approaches.

  6. Methylseleninic acid restricts tumor growth in nude mice model of metastatic breast cancer probably via inhibiting angiopoietin-2

    Angiopoietin-2 (Ang-2) plays critical roles in vascular morphogenesis and its upregulation is frequently associated with various tumors. Previous studies showed that certain selenium compounds possess anti-tumor effects. However, the underlining mechanism has not been elucidated in detail. Plus, results of research on the anti-tumor effects of selenium compounds remain controversial. We investigated levels of Ang-2 and vascular endothelial growth factor (VEGF) on the estrogen-independent bone metastatic mammary cancer (MDA-MB-231) cells in response to treatment by methylseleninic acid (MSeA), and further examined the effects of MSeA oral administration on xenograft mammary tumors of athymic nude mice by RT-PCR, Western, radioimmuno assay, and Immunohistochemistry. Treatment of MDA-MB-231 cells with MSeA caused significant reduction of Ang-2 mRNA transcripts and secretion of Ang-2 proteins by the cells. Level of VEGF protein was accordingly decreased following the treatment. Compared with the controls, oral administration of MSeA (3 mg/kg/day for 18 days) to the nude mice carrying MDA-MB-231 induced tumors resulted in significant reduction in xenograft tumor volume and weights, significant decrease in microvascular density, and promotion of vascular normalization by increasing pericytes coverage. As expected, level of VEGF was also decreased in MSeA treated tumors. Our results point out that MSeA exerts its anti-tumor effects, at least in part, by inhibiting the Ang-2/Tie2 pathway, probably via inhibiting VEGF

  7. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    Bunce, O.R.; Abou-El-Ela, S.H. (Univ. of Georgia, Athens (United States))

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was to establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.

  8. The pattern recognition molecule deleted in malignant brain tumors 1 (DMBT1) and synthetic mimics inhibit liposomal nucleic acid delivery

    Lund Hansen, Pernille; Blaich, Stephanie; End, Caroline; Schmidt, Steffen; Møller, Jesper Bonnet; Holmskov, Uffe; Mollenhauer, Jan

    2011-01-01

    Liposomal nucleic acid delivery is a preferred option for therapeutic settings. The cellular pattern recognition molecule DMBT1, secreted at high levels in various diseases, and synthetic mimics efficiently inhibit liposomal nucleic acid delivery to human cells. These findings may have relevance ...

  9. Alpha-Lipoic Acid Inhibits Tumor Necrosis Factor-Induced Remodeling and Weakening of Human Fetal Membranes1

    Moore, Robert M.; Novak, Jillian B.; Kumar, Deepak; Mansour, Joseph M.; MERCER, Brian M.; Moore, John J.

    2009-01-01

    Untimely rupture of the fetal membranes (FMs) is a major precipitant of preterm birth. Although the mechanism of FM weakening leading to rupture is not completely understood, proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin 1 beta (IL1B), have been shown to weaken FMs concomitant with the induction of reactive oxygen species, collagen remodeling, and prostaglandin release. We hypothesized that alpha-lipoic acid, a dietary antioxidant, may block the effect of in...

  10. Inhibition of mutagenicity in Salmonella typhimurium and skin tumor initiating and tumor promoting activities in SENCAR mice by glycyrrhetinic acid: comparison of 18 alpha- and 18 beta-stereoisomers.

    Wang, Z Y; Agarwal, R; Zhou, Z C; Bickers, D R; Mukhtar, H

    1991-02-01

    Licorice has been used as medicine and as sweetening agent in food products. The major water-soluble constituent of licorice is glycyrrhizin (GL), an oleanane triterpenoide, which is known to be partly hydrolyzed by glucuronidase to its aglycone glycyrrhetinic acid (GA) which exists in 18 alpha (alpha-GA) and 18 beta (beta-GA) stereoisomeric forms. In this study alpha-GA and beta-GA were found to inhibit the mutagenicity of benzo[a]pyrene (B[a]P), 2-aminofluorene and aflatoxin B1 in Salmonella typhimurium TA98 and TA100. beta-GA was more effective than alpha-GA as an antimutagen. In the two-stage skin tumorigenesis protocol using 7,12-dimethylbenz[a]anthracene (DMBA) as the tumor initiating agent followed by twice weekly applications of 12-O-tetradecanoylphorbol-13-acetate as tumor promoter, pretreatment of SENCAR mice with alpha-GA or beta-GA resulted in significant protection against tumor initiation as well as tumor promotion. As an anti-tumor initiating agent, beta-GA was found to be more effective than alpha-GA. Similarly, topical application of beta-GA was found to be more effective than alpha-GA in inhibiting the binding of both [3H]B[a]P and [3H]DMBA to epidermal DNA. However, as an anti-tumor promoter, alpha-GA and beta-GA showed comparable effects. Our results suggest that both alpha-GA and beta-GA possess substantial anti-skin tumor initiating and anti-skin tumor promoting activities. PMID:1899808

  11. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  12. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  13. Tumor Acidity as Evolutionary Spite

    Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment

  14. Multifunctional Nucleic Acids for Tumor Cell Treatment

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor...

  15. Targeted inhibition of tumor growth and angiogenesis

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  16. Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs

    El Brahmi, Nabil; Mignani, Serge M.; Caron, Joachim; El Kazzouli, Saïd; Bousmina, Mosto M.; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2015-02-01

    The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05983b

  17. Targeted inhibition in tumors with ALK dependency

    Kwak EL

    2013-01-01

    Full Text Available Eunice L Kwak, Jeffrey W Clark, Alice T ShawMassachusetts General Hospital Cancer Center, Boston, MA, USAAbstract: The oncogenic function of gene translocations involving the anaplastic lymphoma kinase (ALK was first reported in rare subtypes of non-Hodgkin's lymphoma almost two decades ago. More recently, aberrant ALK signaling was found to be an oncogenic driver in subsets of non-small cell lung cancer (NSCLC, particularly in patients with little or no tobacco smoking history. The advent of molecularly targeted therapies that inhibit ALK has allowed the pairing of ALK inhibitors such as crizotinib as treatment for ALK-positive NSCLC, yielding dramatic responses and long-term disease control. The clinicopathologic features of ALK-driven NSCLC, the clinical development of ALK inhibitors, and the genetic determinants of acquired resistance to ALK inhibition are among the topics covered in this review.Keywords: targeted inhibition, tumors, ALK dependency

  18. Primary melanoma tumor inhibits metastasis through alterations in systemic hemostasis.

    Kirstein, Jennifer M; Hague, M Nicole; McGowan, Patricia M; Tuck, Alan B; Chambers, Ann F

    2016-08-01

    Progression from a primary tumor to distant metastases requires extensive interactions between tumor cells and their microenvironment. The primary tumor is not only the source of metastatic cells but also can also modulate host responses to these cells, leading to an enhancement or inhibition of metastasis. Tumor-mediated stimulation of bone marrow can result in pre-metastatic niche formation and increased metastasis. However, a primary tumor can also inhibit metastasis through concomitant tumor resistance-inhibition of metastatic growth by existing tumor mass. Here, we report that the presence of a B16F10 primary tumor significantly restricted numbers and sizes of experimental lung metastases through reduction of circulating platelets and reduced formation of metastatic tumor cell-associated thrombi. Tumor-bearing mice displayed splenomegaly, correlated with primary tumor size and platelet count. Reduction in platelet numbers in tumor-bearing animals was responsible for metastatic inhibition, as restoration of platelet numbers using isolated platelets re-established both tumor cell-associated thrombus formation and experimental metastasis. Consumption of platelets due to a B16F10 primary tumor is a form of concomitant tumor resistance and demonstrates the systemic impact of a growing tumor. Understanding the interplay between primary tumors and metastases is essential, as clarification of concomitant tumor resistance mechanisms may allow inhibition of metastatic growth following tumor resection. Key messages Mice with a primary B16F10 tumor had reduced metastasis vs. mice without a primary tumor. Tumor-bearing mice had splenomegaly and fewer platelets and tumor-associated thrombi. Restoring platelets restored tumor-associated thrombi and increased metastasis. This work shows the impact that a primary tumor can have on systemic metastasis. Understanding these interactions may lead to improved ways to inhibit metastasis. PMID:27048169

  19. Effect of complex amino acid imbalance on growth of tumor in tumor-bearing rats

    Yin-Cheng He; Yuan-Hong Wang; Jun Cao; Ji-Wei Chen; Ding-Yu Pan; Ya-Kui Zhou

    2003-01-01

    AIM: To investigate the effect of complex amino acid imbalance on the growth of tumor in tumor-bearing (TB) rats.METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker256 carcinosarcoma cells was subcutaneously inoculated.TB rats were randomly divided into groups A, B, C and D according to the formula of amino acids in enteral nutritional solutions, respectively. TB rats received jejunal feedings supplemented with balanced amino acids (group A),methionine-depleted amino acids (group B), valine-depleted amino acids (group C) and methionine- and valine-depleted complex amino acid imbalance (group D) for 10 days. Tumor volume, inhibitory rates of tumor, cell cycle and life span of TB rats were investigated.RESULTS: The G0/G1 ratio of tumor cells in group D (80.5±9.0) % was higher than that in groups A, B and C which was 67.0±5.1 %, 78.9±8.5 %, 69.2±6.2 %, respectively (P<0.05). The ratio of S/G2M and PI in group D were lower than those in groups A, B and C. The inhibitory rate of tumor in groups B, C and D was 37.2 %, 33.3 % and 43.9 %,respectively (P<0.05). The life span of TB rats in group D was significantly longer than that in groups B, C, and A.CONCLUSION: Methionine/valine-depleted amino acid imbalance can inhibit tumor growth. Complex amino acids of methionine and valine depleted imbalance have stronger inhibitory effects on tumor growth.

  20. Brain hyaluronan binding protein inhibits tumor growth

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  1. Mirtazapine inhibits tumor growth via immune response and serotonergic system.

    Chun-Kai Fang

    Full Text Available To study the tumor inhibition effect of mirtazapine, a drug for patients with depression, CT26/luc colon carcinoma-bearing animal model was used. BALB/c mice were randomly divided into six groups: two groups without tumors, i.e. wild-type (no drug and drug (mirtazapine, and four groups with tumors, i.e. never (no drug, always (pre-drug, i.e. drug treatment before tumor inoculation and throughout the experiment, concurrent (simultaneously tumor inoculation and drug treatment throughout the experiment, and after (post-drug, i.e. drug treatment after tumor inoculation and throughout the experiment. The "psychiatric" conditions of mice were observed from the immobility time with tail suspension and spontaneous motor activity post tumor inoculation. Significant increase of serum interleukin-12 (sIL-12 and the inhibition of tumor growth were found in mirtazapine-treated mice (always, concurrent, and after as compared with that of never. In addition, interferon-γ level and immunocompetent infiltrating CD4+/CD8+ T cells in the tumors of mirtazapine-treated, tumor-bearing mice were significantly higher as compared with that of never. Tumor necrosis factor-α (TNF-α expressions, on the contrary, are decreased in the mirtazapine-treated, tumor-bearing mice as compared with that of never. Ex vivo autoradiography with [(123I]ADAM, a radiopharmaceutical for serotonin transporter, also confirms the similar results. Notably, better survival rates and intervals were also found in mirtazapine-treated mice. These findings, however, were not observed in the immunodeficient mice. Our results suggest that tumor growth inhibition by mirtazapine in CT26/luc colon carcinoma-bearing mice may be due to the alteration of the tumor microenvironment, which involves the activation of the immune response and the recovery of serotonin level.

  2. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis

    XIAN, SHU-LIN; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2014-01-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It wa...

  3. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth.

    Richard Nuccitelli

    Full Text Available We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF. We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death. We provide direct evidence that nanoelectroablation triggers a CD8-dependent inhibition of secondary tumor growth by comparing the growth rate of secondary orthotopic liver tumors in nsPEF-treated rats with that in nsPEF-treated rats depleted of CD8+ cytotoxic T-cells. The growth of these secondary tumors was severely inhibited as compared to tumor growth in CD8-depleated rats, with their average size only 3% of the primary tumor size after the same one-week growth period. In contrast, when we depleted CD8+ T-cells the second tumor grew more robustly, reaching 54% of the size of the first tumor. In addition, we demonstrate with immunohistochemistry that CD8+ T-cells are highly enriched in the secondary tumors exhibiting slow growth. We also showed that vaccinating mice with nsPEF-treated isogenic tumor cells stimulates an immune response that inhibits the growth of secondary tumors in a CD8+-dependent manner. We conclude that nanoelectroablation triggers the production of CD8+ cytotoxic T-cells resulting in the inhibition of secondary tumor growth.

  4. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-ß-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA

    Li JM

    2013-06-01

    inhibition of tumor growth and reduced VEGF protein expression in the tumors. Conclusion: Our results suggest that the FA-HP-β-CD-PEI complex is a nontoxic and highly efficient gene carrier with the potential to deliver siRNA for cancer gene therapy effectively in vitro and in vivo. Keywords: polyethyleneimine, 2-hydroxypropyl-β-cyclodextrin, folic acid, siRNA carrier, vascular endothelial growth factor, gene silencing

  5. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  6. Everolimus and mTOR inhibition in pancreatic neuroendocrine tumors

    Pancreatic neuroendocrine tumors are rare and the majority of patients present in the advanced stage. Over the past few decades, treatment for patients with metastatic well- or moderately differentiated pancreatic neuroendocrine tumors have not significantly impeded tumor progression nor improved survival. However, recent mapping of intracellular signaling pathways promoting tumor proliferation, growth, and angiogenesis has presented mammalian target of rapamycin (mTOR) as a potential target within the phosphatidylinositol 3-kinase-Akt pathway. With the development of the new-generation mTOR inhibitor everolimus, a series of clinical trials over the last 5 years have demonstrated significant benefit in delaying tumor progression. This review focuses on the mechanism of mTOR inhibition and traces the development of clinical evidence for the use of mTOR inhibitors in well- to moderately differentiated advanced pancreatic neuroendocrine tumors

  7. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  8. All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein

    Taguchi Takahiro

    2010-12-01

    Full Text Available Abstract Background Imatinib, a selective tyrosine kinase inhibitor, has been used as a standard first-line therapy for irresectable and metastasized gastrointestinal stromal tumor (GIST patients. Unfortunately, most patients responding to imatinib will eventually exhibit imatinib-resistance, the cause of which is not fully understood. The serious clinical problem of imatinib-resistance demands alternative therapeutic strategy. This study was conducted to investigate the effect of all-trans retinoic acid (ATRA on GIST cell lines. Methods Cell proliferation was determined by trypan blue dye exclusion test. Western blot analysis was performed to test the expression of activated KIT, its downstream proteins, and apoptosis associated proteins. The cytotoxic interactions of imatinib with ATRA were evaluated using the isobologram of Steel and Peckham. Results and conclusion In this work, for the first time we have demonstrated that ATRA affected on cell proliferation of GIST-T1 and GIST-882 cell line through inhibition of cell growth in a dose dependent manner and induced apoptosis. High dose of ATRA induced morphologic change in GIST-T1 cells, rounded-up cells, and activated the caspase-3 protein. In further examination, we found that the ATRA-induced apoptosis in GIST-T1 cells was accompanied by the down-regulated expression of survivin and up-regulated expression of Bax protein. Moreover, ATRA suppressed the activity of KIT protein in GIST-T1 cells and its downstream signal, AKT activity, but not MAPK activity. We also have demonstrated that combination of ATRA with imatinib showed additive effect by isobologram, suggesting that the combination of ATRA and imatinib may be a novel potential therapeutic option for GIST treatment. Furthermore, the scracht assay result suggested that ATRA was a potential reagent to prevent the invasion or metastasis of GIST cells.

  9. Therapeutic approaches for tumor necrosis factor inhibition

    Maria Letícia de Castro Barbosa

    2011-09-01

    Full Text Available Tumor necrosis factor (TNF consists of an inflammatory cytokine essential for homeostasis and organism defense. Despite its physiological relevance, both increased biosynthesis and release of TNF lead to the exacerbation of inflammatory and oxidative responses, which are related to the pathogenesis of a host of diseases of an inflammatory, autoimmune and/or infectious nature. In this context, effective therapeutic approaches for the modulation of TNF have been the focus of research efforts. Approximately one million individuals worldwide have been treated with biotechnological inhibitors of this cytokine, the so-called anti-TNF biopharmaceuticals. However, given the high risk of infection and the limitations related to cost and administration routes, new therapeutic approaches aimed at biological targets that directly or indirectly modulate the production and/or activation of TNF appear promising alternatives for the discovery of new anti-inflammatory and immunomodulatory orally active drugs and are therefore discussed in this paper.O fator de necrose tumoral (do inglês, tumor necrosis factor - TNF consiste em uma citocina inflamatória essencial para a homeostase e defesa do organismo. A despeito de sua relevância fisiológica, o aumento da biossíntese e liberação do TNF conduzem à exacerbação das respostas inflamatória e oxidativa, as quais estão relacionadas à patogênese de várias doenças de natureza inflamatória, auto-imune e/ou infecciosa. A busca por abordagens terapêuticas eficientes na modulação do TNF tem sido alvo de diversos esforços de pesquisa. Aproximadamente um milhão de pessoas ao redor do mundo já foi tratado com inibidores biotecnológicos desta citocina, os chamados biofármacos anti-TNF. Entretanto, em face ao elevado risco de infecções e as limitações relacionadas ao custo e a via de administração, novas abordagens terapêuticas com foco em alvos que modulem, de forma direta ou indireta, a produ

  10. Zoledronic acid inhibits macrophage/microglia-assisted breast cancer cell invasion

    Rietkötter, Eva; Menck, Kerstin; Bleckmann, Annalen; Farhat, Katja; Schaffrinski, Meike; Schulz, Matthias; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether this is due to direct toxicity on cancer cells or inhibition of the tumor promoting microenvironment, is unknown. In particular, tumor-associated and resident macrophages support each step of organ ...

  11. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  12. Mechanisms of action of okadaic acid class tumor promoters on mouse skin

    Fujiki, Hirota; Suganuma, Masami; Yoshizawa, Seiji; Nishiwaki, Shinji; Winyar, Boonsong (National Cancer Center Research Inst., Tokyo (Japan)); Sugimura, Takashi (National Cancer Center, Tokyo (Japan))

    1991-06-01

    Okadaic acid, dinophysistoxin-1 (35-methylokadaic acid), and calyculin A are the okadaic acid class of non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, which do not bind to the phorbol ester receptors in cell membranes or activate protein kinase C in vitro. They have potent tumor-promoting activities on mouse skin, as strong as TPA-type tumor promoters, such as TPA, teleocidin, and aplysiatoxin. DNA samples isolated from tumors induced by dimethylbenz(a)anthracene and each of the okadaic acid class tumor promoters had the same mutation at the second nucleotide of codon 61 (CAA to CTA) in the c-H-ras gene. Okadaic acid receptors, protein phosphatases 1 and 2A, are present in the particulate as well as cytosolic fractions of various mouse tissues. The apparent activation of protein kinases by the okadaic acid class tumor promoters, after their incubation with {sup 32}P-ATP, protein kinases, and protein phosphatases, was observed. This activation was caused by inhibition of protein phosphatases 1 and 2A by the okadaic acid class tumor promoters. Treatment of primary human fibroblasts and human keratinocytes with the okadaic acid class tumor promoters induced the hyperphosphorylation of a 60-k-Da protein in nuclear and cytosolic fractions, due to the inhibition of protein phosphatases. The 60-kDa protein is a proteolytic fragment of nucleolin, a major nonhistone protein and is designated as N-60. The mechanisms of action of the okadaic acid class tumor promoters are discussed with emphasis on the inhibition of protein phosphatase activity.

  13. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  14. Dietary rice component, Oryzanol, inhibits tumor growth in tumor-bearing Mice

    Scope: We investigated the effects of rice bran and components on tumor growth in mice. Methods and results: Mice fed standard diets supplemented with rice bran, '-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet fo...

  15. Tumor shrinkage by cyclopamine tartrate through inhibiting hedgehog signaling

    Qipeng Fan; Arash Garrossian; Massoud Garrossian; Dale Gardner; Jingwu Xie; Dongsheng Gu; Miao He; Hailan Liu; Tao Sheng; Guorui Xie; Ching-xin Li; Xiaoli Zhang; Brandon Wainwright

    2011-01-01

    The link of hedgehog (Hh) signaling activation to human cancer and synthesis of a variety of Hh signaling inhibitors raise great expectation that inhibiting Hh signaling may be effective in human cancer treatment. Cyclopamine (Cyc), an alkaloid from the Veratrum plant, is a specific natural product inhibitor of the Hh pathway that acts by targeting smoothened (SMO) protein. However, its poor solubility, acid sensitivity, and weak potency relative to other Hh antagonists prevent the clinical development of Cyc as a therapeutic agent. Here, we report properties of cyclopamine tartrate salt (CycT) and its activities in Hh signaling-mediated cancer in vitro and in vivo. Unlike Cyc, CycT is water soluble (5-10 mg/mL). The median lethal dose (LD) of CycT was 62.5 mg/kg body weight compared to 43.5 mg/kg for Cyc, and the plasma half-life (T) of CycT was not significantly different from that of Cyc. We showed that CycT had a higher inhibitory activity for Hh signaling-dependent motor neuron differentiation than did Cyc (IC = 50nmol/L for CycT vs. 300 nmol/L for Cyc). We also tested the antitumor effectiveness of these Hh inhibitors using two mouse models of basal cell carcinomas (K14cre:Ptch1and K14cre:SmoM2). After topical application of CycT or Cyc daily for 21 days, we found that all CycT-treated mice had tumor shrinkage and decreased expression of Hh target genes. Taken together, we found that CycT is an effective inhibitor of Hh signaling-mediated carcinogenesis.

  16. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  17. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of [5-3H]uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes

  18. Inhibition of hepatocyte gap junctional intercellular communication by tumor promoters

    Ruch, R.J.

    1988-01-01

    The mechanisms by which tumor promoters enhance neoplasia are poorly understood. One effect common to most tumor promoters is their ability to inhibit the cell-to-cell exchange of small molecules and ions through gap junctions, i.e., gap junctional intercellular communication (IC). IC maybe necessary for normal growth control and the loss of IC may predispose cells to enhanced growth. In the present studies, the effects of liver tumor promoters and other agents on IC between rodent hepatocytes in primary culture has been studied. IC was detected between hepatocytes: (1) autoradiographically following the passage and incorporation of (5-{sup 3}H)uridine nucleotides from pre-labeled donor hepatocytes to non-labeled, adjacent recipient hepatocytes and (2) by fluorescence microscopy after microinjection of fluorescent Lucifer Yellow CH dye into hepatocytes and visualizing dye spread into adjacent hepatocytes.

  19. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth.

    Huang, Jie; Hu, Wei; Hu, Limin; Previs, Rebecca A; Dalton, Heather J; Yang, Xiao-Yun; Sun, Yunjie; McGuire, Michael; Rupaimoole, Rajesha; Nagaraja, Archana S; Kang, Yu; Liu, Tao; Nick, Alpa M; Jennings, Nicholas B; Coleman, Robert L; Jaffe, Robert B; Sood, Anil K

    2016-06-01

    Delta-like ligand 4 (Dll4), one of the Notch ligands, is overexpressed in ovarian cancer, especially in tumors resistant to anti-VEGF therapy. Here, we examined the biologic effects of dual anti-Dll4 and anti-VEGF therapy in ovarian cancer models. Using Dll4-Fc blockade and anti-Dll4 antibodies (murine REGN1035 and human REGN421), we evaluated the biologic effects of Dll4 inhibition combined with aflibercept or chemotherapy in orthotopic mouse models of ovarian cancer. We also examined potential mechanisms by which dual Dll4 and VEGF targeting inhibit tumor growth using immunohistochemical staining for apoptosis and proliferation markers. Reverse-phase protein arrays were used to identify potential downstream targets of Dll4 blockade. Dual targeting of VEGF and Dll4 with murine REGN1035 showed superior antitumor effects in ovarian cancer models compared with either monotherapy. In the A2780 model, REGN1035 (targets murine Dll4) or REGN421 (targets human Dll4) reduced tumor weights by 62% and 82%, respectively; aflibercept alone reduced tumor weights by 90%. Greater therapeutic effects were observed for Dll4 blockade (REGN1035) combined with either aflibercept or docetaxel (P GATA3 expression was significantly increased in tumor stroma from the mice treated with REGN1035 combined with docetaxel or aflibercept, suggesting an indirect effect of these combination treatments on the tumor stroma. These findings identify that dual targeting of Dll4 and VEGF is an attractive therapeutic approach. Mol Cancer Ther; 15(6); 1344-52. ©2016 AACR. PMID:27009216

  20. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    Greenberger, Lee M; Horak, Ivan D; Filpula, David; Sapra, Puja; Westergaard, Majken; Frydenlund, Henrik F; Albaek, Charlotte; Schrøder, Henrik; Ørum, Henrik

    2008-01-01

    pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice...

  1. GLB prevents tumor metastasis of Lewis lung carcinoma by inhibiting tumor adhesion actions

    Yan PAN; Qian-liu SONG; Yan-hua LIN; Ning LU; He-ming YU; Xue-jun LI

    2005-01-01

    Aim: To investigate the inhibitory effect of a new compound of GLB on tumor metastasis in vivo and analyze its actions on tumor cell adhesion to clarify its mechanism.Methods: The effect of GLB on tumor metastasis was analyzed by Lewis lung carcinoma model.The pathological morphology of lung alveolar was evaluated by hematoxylin-eosin staining.The effect of GLB on the proliferation of human prostate cancer cell (PC-3M, with a high metastatic characteristic) was studied using the MTT method, and its actions on PC-3M cell adhesion to human umbilical vein endothelial cells (HUVEC) and laminin were analyzed in vitro.Lewis lung carcinoma metastasis significantly (P<0.05).Simultaneously, GLB could mitigate the damage of lung alveolar caused by metastasic tumor deposits.In vitro, GLB inhibited dramatically the adhesion of PC-3M cells to HUVEC (P<0.01) and laminin (P<0.05), without cytotoxic or anti-proliferative action on PC-3M cells.Conclusion: GLB has anti-tumor metastatic activity, which partly depends on its inhibition of tumor adhesion.

  2. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  3. Cysteinyl Leukotriene Receptor Antagonists Inhibit Tumor Metastasis by Inhibiting Capillary Permeability

    Nozaki, Masako; Yoshikawa, Masanobu; Ishitani, Kunihiko; Kobayashi, Hiroyuki; HOUKIN, KIYOHIRO; Imai, Kohzoh; Ito, Yoichiro; Muraki, Takamura

    2010-01-01

    We explored the possibility of the cysteinyl leukotriene receptor antagonists, pranlukast and montelukast, preventing tumor cell migration through both cerebral and peripheral capillaries. To study tumor cell migration through brain capillaries, male Fisher rats were cannulated via the cisterna magna under pentobarbital anesthesia. RCN9 cells labeled with a fluorescent marker PKH67 were intravenously administered following arachidonic acid administration into the subarachnoid space, and speci...

  4. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    The biological activity of retinoids was assayed in an in vitro quantitative assay of human tumor cell invasion using human amnion basement membrane (BM). The effects measured were the inhibition of tumor cell migration through the BM and tumor cell degradative enzyme activity on 14C-proline labeled collagenous and noncollagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested, the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.009 μg/mL, and of TC-106 cells at 0.07 μg/mL. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels over 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more potent than retinol palmitate. The model system will be useful for investigating antiinvasive activity of other retinoids as well as other compounds

  5. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    The effects measured were the inhibition of tumor cell migration through the basement membrane (BM) and tumor cell degradative enzyme activity on 3H-proline labeled collagenous and non collagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.09 μg/ml, and TC-106 cells at 0.08 μg/ml. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels almost 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more than retinol palmitate. Furthermore, A549 cells treated with retinol acetate, under conditions whereby an anti-invasive state was induced,showed an increase in the number of cellular retinoic acid binding proteins (CRABP), a decrease in the activity of type IV collagenase and ectosialyltransferase, and no change in the activity of transglutaminase

  6. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members of the...... family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G- bacteria in their...... patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce...

  7. Sorafenib Inhibits Tumor Growth and Improves Survival in a Transgenic Mouse Model of Pancreatic Islet Cell Tumors

    Volker Fendrich; Katja Maschuw; Johannes Rehm; Malte Buchholz; Julia P. Holler; Slater, Emily P; Bartsch, Detlef K.; Jens Waldmann

    2012-01-01

    Background. The purpose of the study was to evaluate Sorafenib (BAY 43-9006) derived receptor tyrosine kinase inhibition on tumor progression in murine islet cell tumors. Sorafenib is considered to be a potent inhibitor of tumor angiogenesis and neovascularization in various solid tumors. Rip1Tag2 mice were treated in two different groups according to the model of tumor progression: the early treatment group received vehicle or Sorafenib from 10 to 14 weeks of age and the late treatment group...

  8. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  9. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model.

    Zhang, Chenran; Gao, Liquan; Cai, Yuehong; Liu, Hao; Gao, Duo; Lai, Jianhao; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2016-04-01

    Tumor-associated macrophages (TAMs) play essential roles in tumor invasion and metastasis, and contribute to drug resistance. Clinical evidence suggests that TAM levels are correlated with local tumor relapse, distant metastasis, and poor prognosis in patients. In this study, we synthesized a TAM-targeted probe (IRD-αCD206) by conjugating a monoclonal anti-CD206 antibody with a near-infrared phthalocyanine dye. We then investigated the potential application of the IRD-αCD206 probe to near-infrared fluorescence (NIRF) imaging and photoimmunotherapy (PIT) of tumors resistant to treatment with the kinase inhibitor sorafenib. Sorafenib treatment had no effect on tumor growth in a 4T1 mouse model of breast cancer, but induced M2 macrophage polarization in tumors. M2 macrophage recruitment by sorafenib-treated 4T1 tumors was noninvasively visualized by in vivo NIRF imaging of IRD-αCD206. Small-animal single-photon emission computed tomography (SPECT)/CT and intratumoral microdistribution analysis indicated TAM-specific localization of the IRD-αCD206 probe in 4T1 tumors after several rounds of sorafenib treatment. Upon light irradiation, IRD-αCD206 suppressed the growth of sorafenib-resistant tumors. In vivo CT imaging and ex vivo histological analysis confirmed the inhibition of lung metastasis in mice by IRD-αCD206 PIT. These results demonstrate the utility of the IRD-αCD206 probe for TAM-targeted diagnostic imaging and treatment of tumors that are resistant to conventional therapeutics. PMID:26803407

  10. Phosphonoacetic Acid Inhibition of Frog Virus 3 Replication

    Elliott, R. M.; Bateson, A.; Kelly, D C

    1980-01-01

    Phosphonoacetic acid at concentrations above 200 μg/ml inhibited the replication of frog virus 3 in BHK cells. The inhibition of viral DNA replication observed in these cells was reversible and correlated with the inhibition of the virus-induced DNA polymerase activity in an in vitro assay. The synthesis of frog virus 3-induced late or γ polypeptides was also inhibited by phosphonoacetic acid, although the early (α and β) polypeptides were unaffected.

  11. Inhibition of deoxyribonucleic acid replication in Bacillus brevis by ribonucleic acid polymerase inhibitors.

    Bhattacharya, S.; Sarkar, N.

    1981-01-01

    The incorporation of [3H]thymidine into deoxyribonucleic acid by exponentially growing cells of Bacillus brevis was inhibited by streptolydigin and rifampin in the same concentration range in which these drugs inhibit ribonucleic acid synthesis. Complete inhibition occurred within one-third generation time after drug addition, suggesting an effect on deoxyribonucleic acid chain elongation.

  12. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [35S]O4--labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of [35S]O4--labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10μg/ml), arteparon (10μg/ml), and heparin at a concentration of 3 μg/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis

  13. 1,10-phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M.; FAN, YUHUA; Dong, Lili; Zuo, Jian; Dou, Q. Ping

    2012-01-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, l-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear compl...

  14. Depletion of Ascorbic Acid Restricts Angiogenesis and Retards Tumor Growth in a Mouse Model

    Sucheta Telang

    2007-01-01

    Full Text Available Angiogenesis requires the deposition of type IV collagen by endothelial cells into the basement membrane of new blood vessels. Stabilization of type IV collagen triple helix depends on the hydroxylation of proline, which is catalyzed by the iron-containing enzyme prolyl hydroxylase. This enzyme, in turn, requires ascorbic acid to maintain the enzyme-bound iron in its reduced state. We hypothesized that dietary ascorbic acid might be required for tumor angiogenesis and, therefore, tumor growth. Here, we show that, not surprisingly, ascorbic acid is necessary for the synthesis of collagen type IV by human endothelial cells and for their effective migration and tube formation on a basement membrane matrix. Furthermore, ascorbic acid depletion in mice incapable of synthesizing ascorbic acid (Gulo-/- dramatically restricts the in vivo growth of implanted Lewis lung carcinoma tumors. Histopathological analyses of these tumors reveal poorly formed blood vessels, extensive hemorrhagic foci, and decreased collagen and von Willebrand factor expression. Our data indicate that ascorbic acid plays an essential role in tumor angiogenesis and growth, and that restriction of ascorbic acid or pharmacological inhibition of prolyl hydroxylase may prove to be novel therapeutic approaches to the treatment of cancer.

  15. Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model

    Emmanuel A Ojo-Amaize; Howard B Cottam; Olusola A Oyemade; Joseph I Okogun; Emeka J Nchekwube

    2007-01-01

    AIM: To evaluate the effect of the natural diterpenoid,hypoestoxide (HE) on the growth of established colon cancer in mice.METHODS: The CT26.WT mouse colon carcinoma cell line was grown and expanded in vitro. Following the expansion, BALB/c mice were inoculated s.c. with viable tumor cells. After the tumors had established and developed to about 80-90 mm3, the mice were started on chemotherapy by oral administration of HE, 5-fluorouracil (5-FU) or combination.RESULTS: The antiangiogenic HE has previously been shown to inhibit the growth of melanoma in the B16F1tumor model in C57BL/6 mice. Our results demonstrate that mean volume of tumors in mice treated with oral HE as a single agent or in combination with 5-FU, were significantly smaller (> 60%) than those in vehicle control mice (471.2 mm3 vs 1542.8 mm3, P < 0.01).The significant reductions in tumor burden resulted in pronounced mean survival times (MST) and increased life spans (ILS) in the treated mice.CONCLUSION: These results indicate that HE is an effective chemotherapeutic agent for colorectal cancer in mice and that HE may be used alone or in combination with 5-FU.

  16. Anti-tumor Effect and Its Mechanisms of Ursolic Acid on Human Esophageal Carcinoma Cell Eca-109 in Vivo

    CHEN Guo-qing; SHEN Yi; DUANG Hong

    2008-01-01

    Objective:To investigate the anti-tumor effect and possible mechanisms of ursolic acid on human esophageal carcinoma in vivo.Methods:A transplanted tumor model by injecting Eca-109 cells into subcutaneous tissue of BALB/c nude mice was established.40 nude mice bearing tumors were randomly divided into 4 groups and 0.2 ml saline or 0.2 ml ursolic acid(25-100 mg·kg-1.d-1)was injected into abdominal cavity respectively once everyday and lasted for fourteen days.The changes of tumor volume were measured continuously and tumor inhibition rate was calculated.The morphological changes of apoptosis were observed by electron microscope.The expressions of COX-2,bcl-2 and Bax protein in transplanted tumors were detected by immunohistochemistry.At last the PGE2 level of transplanted tumors was detected by radioimmunoassay.Results:Treatment of nude mice with 25,50,or 100 mg·kg-1.d-1 of ursolic acid significantly inhibited the growth of the human esophageal carcinoma tumor in nude mice and induced Eca-109 cells apoptosis as demonstrated by electron microscopy analyses.The expressions of COX-2 and bcl-2 in the transplanted tumors were decreased in ursolic acid groups,while the Bax increased.The PGE2 level of transplanted tumors was decreased in ursolic acid groups with a dose-related manner.Conclusion:Ursolic acid has anti-tumor effects against human esophageal carcinoma cells in vivo,which are likely mediated via induction of tumor cell apoptosis and inhibition of COX-2 and PGE2.

  17. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1.

    Kerl, Kornelius; Moreno, Natalia; Holsten, Till; Ahlfeld, Julia; Mertins, Julius; Hotfilder, Marc; Kool, Marcel; Bartelheim, Kerstin; Schleicher, Sabine; Handgretinger, Rupert; Schüller, Ulrich; Meisterernst, Michael; Frühwald, Michael C

    2014-08-15

    Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients. PMID:24420698

  18. Inhibition of osteoblast activity by zoledronic acid

    Fernanda Gonçalves Basso

    2013-10-01

    Full Text Available INTRODUCTION: Patients treated with nitrogen-containing bisphosphonates, such as zoledronic acid (ZA, have frequently shown oral bone exposure areas, termed osteonecrosis. In addition, these patients may also present low repair and regeneration potential, mainly after tooth extractions. These side-effects caused by bisphosphonates may be due to their inhibitory effects on oral mucosa and local bone cells. OBJECTIVE: To evaluate the effects of ZA on the mineralization capacity of cultured osteoblasts. MATERIALS AND METHODS: Human immortalized osteoblasts (SaOs-2 were grown in plain culture medium (Dulbecco's Modified Eagle Medium [DMEM] + 10% fetal bovine serum [FBS] in wells of 24-well plates. After 48-hour incubation, the plain DMEM was replaced by a solution with ZA at 5 µM which was maintained in contact with cells for seven, 14 or 21 days. After these periods, cells were evaluated regarding alkaline phosphatase (ALP activity and mineral nodule formation (alizarin red. Data were statistically analyzed by Mann-Whitney test, at 5% of significance level. RESULTS: ZA caused significant reduction on ALP activity and mineral nodules formation by cultured osteoblasts in all evaluated periods (p < 0.05. CONCLUSION: These data indicate that ZA causes inhibition on the osteogenic phenotype of cultured human osteoblasts, which, in turn, may reduce bone repair in patients subjected to ZA therapy.

  19. Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1.

    Wang, X; He, X J; Xu, H Q; Chen, Z W; Fan, H H

    2016-01-01

    The aim of this study was to explore the inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1 and its mechanism. For this study, athymic nude mice were injected with either normal pituitary tumor RC-4B/C cells or LRIG1-transfected RC-4B/C cells. We then calculated the volume inhibition rate of the tumors, as well as the apoptosis index of tumor cells and the expression of Ras, Raf, AKt, and ERK mRNA in tumor cells. Tumor cell morphological and structural changes were also observed under electron microscope. Our data showed that subcutaneous tumor growth was slowed or even halted in LRIG1-transfected tumors. The tumor volumes were significantly different between the two groups of mice (χ2 = 2.14, P tumor apoptosis index was found to be 8.72% in the control group and 39.7% in LRIG1-transfected mice (χ2 = 7.59, P tumor cells appeared to be in early or late apoptosis under an electron microscope, while only a few subcutaneous tumor cells appeared to be undergoing apoptosis in the control group. In conclusion, the LRIG1 gene is able to inhibit proliferation and promote apoptosis in subcutaneously implanted human pituitary tumors in nude mice. The mechanism of LRIG1 may involve the inhibition of the PI3K/ Akt and Ras/Raf/ERK signal transduction pathways. PMID:27173312

  20. Pantothenic acid and its derivatives protect Ehrlich ascites tumor cells against lipid peroxidation.

    Slyshenkov, V S; Rakowska, M; Moiseenok, A G; Wojtczak, L

    1995-12-01

    Preincubation of Ehrlich ascites tumor cells at 22 or 32 degrees C, but not at 0 degree C, with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine reduced lipid peroxidation (measured by production of thiobarbituric acid-reactive compounds) induced by the Fenton reaction (Fe2+ + H2O2) and partly protected the plasma membrane against the leakiness to cytoplasmic proteins produced by the same reagent. Pantothenic acid and its derivatives did not inhibit (Fe2+ + H2O2)-induced peroxidation of phospholipid multilamellar vesicles, thus indicating that their effect on the cells was not due to the scavenging mechanism. Homopantothenic acid and its 4'-phosphate ester (which are not precursors of CoA) neither protected Ehrlich ascites tumor cells against lipid peroxidation nor prevented plasma membrane leakiness under the same conditions. Incubation of the cells with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine significantly increased the amount of cellular CoA and potentiated incorporation of added palmitate into phospholipids and cholesterol esters. It is concluded that pantothenic acid and its related compounds protect the plasma membrane of Ehrlich ascites tumor cells against the damage by oxygen free radicals due to increasing cellular level of CoA. The latter compound may act by diminishing propagation of lipid peroxidation and promoting repair mechanisms, mainly the synthesis of phospholipids. PMID:8582649

  1. Study on the effect and mechanism of tumor inhibition of α-Ti3

    Objective: Tumor inhibition of α-Ti3 on H22 cell, Lewis cell and S180 cell and the effect of α-Ti3 on immune function in tumor mice were observed. Methods: Taking H22 tumor mice as an animal model, the authors measured tumor weight and relative immunologic indexes. Results: The results showed that LD50 of α-Ti3 was 1849.36 mg/kg; α-Ti3 could inhibit tumor and enhance spontaneous proliferation of thymocytes and synergically ConA-induced mitogenic response of splenocytes, and increase DNA synthesis of S period of splenocytes. Conclusion: That α-Ti3 can improve immune function of tumor mice could be one of the mechanisms of tumor inhibition

  2. Androgen via p21 Inhibits Tumor Necrosis Factor α-induced JNK Activation and Apoptosis*

    Tang, Fangming; Kokontis, John; Lin, Yuting; Liao, Shutsung; Lin, Anning; Xiang, Jialing

    2009-01-01

    The male hormone androgen is a growth/survival factor for its target tissues or organs. Yet, the underlying mechanism is incompletely understood. Here, we report that androgen via p21 inhibits tumor necrosis factor α-induced JNK activation and apoptosis. Inhibition by androgen requires the transcription activity of androgen receptor (AR) and de novo protein synthesis. Androgen·AR induces expression of p21 that in turn inhibits tumor necrosis factor α-induced JNK and apoptosis. Furthermore, ge...

  3. Calcite crystal growth rate inhibition by polycarboxylic acids

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  4. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  5. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  6. Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

    Hardee, Matthew E.; Cao, Yiting; Fu, Ping; Jiang, Xiaohong; Zhao, Yulin; Rabbani, Zahid N.; Vujaskovic, Zeljko; Dewhirst, Mark W; Arcasoy, Murat O.

    2007-01-01

    Background The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. Methodology/Principal Findings Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-...

  7. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes

    Wang, Qianqian; Zhao, Tingting; Liu, Yanping; Xing, Shanshan; Li, Lei; Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Yanshan University, Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer (China)

    2016-02-15

    Therapy of solid tumors mediated by nano-drug delivery has attracted considerable interest. In our previous study, ursolic acid (UA) was successfully encapsulated into PEGylated liposomes. The study aimed to evaluate the tumor inhibition effect and cytotoxicity of the PEGylated UA liposomes by U14 cervical carcinoma-bearing mice. The liposomes were spherical particles with mean particle diameters of 127.2 nm. The tumor inhibition rate of PEGylated UA liposomes was 53.60 % on U14 cervical carcinoma-bearing mice, which was greater than those of the UA solution (18.25 %) and traditional UA liposome groups (40.75 %). The tumor cells apoptosis rate of PEGylated UA liposomes was 25.81 %, which was significantly higher than that of the traditional UA liposomes (13.37 %). Moreover, the kidney and liver did not emerge the pathological changes in UA therapeutic mice by histopathological analysis, while there were significant differences on tumor tissues among three UA formulation groups. The PEGylated UA liposomes exhibited higher anti-tumor activity and lower cytotoxicity, and the main reason was that the coating PEG layer improved UA liposome properties, such as enhancing the stability of liposomes, promoting the effect of slow release, and prolonging the time of blood circulation. This may shed light on the development of PEGylated nano-vehicles.

  8. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes

    Therapy of solid tumors mediated by nano-drug delivery has attracted considerable interest. In our previous study, ursolic acid (UA) was successfully encapsulated into PEGylated liposomes. The study aimed to evaluate the tumor inhibition effect and cytotoxicity of the PEGylated UA liposomes by U14 cervical carcinoma-bearing mice. The liposomes were spherical particles with mean particle diameters of 127.2 nm. The tumor inhibition rate of PEGylated UA liposomes was 53.60 % on U14 cervical carcinoma-bearing mice, which was greater than those of the UA solution (18.25 %) and traditional UA liposome groups (40.75 %). The tumor cells apoptosis rate of PEGylated UA liposomes was 25.81 %, which was significantly higher than that of the traditional UA liposomes (13.37 %). Moreover, the kidney and liver did not emerge the pathological changes in UA therapeutic mice by histopathological analysis, while there were significant differences on tumor tissues among three UA formulation groups. The PEGylated UA liposomes exhibited higher anti-tumor activity and lower cytotoxicity, and the main reason was that the coating PEG layer improved UA liposome properties, such as enhancing the stability of liposomes, promoting the effect of slow release, and prolonging the time of blood circulation. This may shed light on the development of PEGylated nano-vehicles.

  9. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA. (paper)

  10. Hyaluronic Acid Inhibits Polycation Induced Cellular Responses

    lalenti, A.; Lanaro, A.; Brignola, G.; Marotta, P; Di Rosa, M.

    1994-01-01

    Positively charged macromolecules cause a variety of pathological events through their electrostatic interaction with anionic sites present on the membrane of target cells. In the present study we have investigated the effect of hyaluronic acid, a negatively charged molecule, on rat paw oedema induced by poly-L-lysine as well as on histamine release from rat mast cells and nitric oxide formation from rabbit aorta, both induced by this polycation. The results indicate that hyaluronic acid is a...

  11. Thyroid peroxidase activity is inhibited by amino acids

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  12. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway

  13. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  14. Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell functions.

    Fatemeh Talebian

    Full Text Available CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1⁻/⁻C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1⁻/⁻C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1⁺ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1⁺ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy.

  15. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway.

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  16. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    Victor Hugo Salvador; Rogério Barbosa Lima; Wanderley Dantas dos Santos; Anderson Ricardo Soares; Paulo Alfredo Feitoza Böhm; Rogério Marchiosi; Maria de Lourdes Lucio Ferrarese; Osvaldo Ferrarese-Filho

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean ( Glycine max ) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical in...

  17. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression.

    Yang, H; Pellegrini, L; Napolitano, A; Giorgi, C; Jube, S; Preti, A; Jennings, C J; De Marchis, F; Flores, E G; Larson, D; Pagano, I; Tanji, M; Powers, A; Kanodia, S; Gaudino, G; Pastorino, S; Pass, H I; Pinton, P; Bianchi, M E; Carbone, M

    2015-01-01

    High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information. PMID:26068794

  18. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented. PMID:3593337

  19. STAT3-Decoy ODN Inhibits Cytokine Autocrine of Murine Tumor Cells

    Xi Liu; Jiayi Li; Jian Zhang

    2007-01-01

    Tumor cells usually secrete soluble factors to improve their proliferation via autocrine network or to escape from immune surveillance by inhibiting antitumor immunity, among these factors IL-10 and IL-6 play more important roles. Since both cytokines' signal transductions are mediated through the STAT3 pathway, STAT3 becomes an attractive target for tumor therapy. In present study, STAT3 of murine tumor cell lines B16 and MCA-38 was constitutively activated. After treatment with STAT3-decoy ODN, the proliferation of these tumor cells was inhibited and the transcription of IL-10 or IL-6 in tumor cells was down-regulated. These results suggested that STAT3 is a good target candidate, and STAT3-decoy ODN may possibly be used as a strategy for breaking both tumor autocrine network and tumor immunotolerance.

  20. Nitric Oxide Synthase Inhibition by NG-Nitro-l-Arginine Methyl Ester Inhibits Tumor-Induced Angiogenesis in Mammary Tumors

    Jadeski, Lorraine C.; Lala, Peeyush K.

    1999-01-01

    Using a murine breast cancer model, we earlier found a positive correlation between the expression of nitric oxide synthase (NOS) and tumor progression; treatment with inhibitors of NOS, NG-methyl-l-arginine (NMMA) and NG-nitro-l-arginine methyl ester (L-NAME), had antitumor and antimetastatic effects that were partly attributed to reduced tumor cell invasiveness. In the present study, we used a novel in vivo model of tumor angiogenesis using subcutaneous implants of tumor cells suspended in ...

  1. Role of Acid Sphingomyelinase-Induced Signaling in Melanoma Cells for Hematogenous Tumor Metastasis

    Alexander Carpinteiro

    2016-01-01

    Full Text Available Background: Hematogenous metastasis of malignant tumor cells is a multistep process that requires release of tumor cells from the local tumor mass, interaction of the tumor cells with platelets in the blood, and adhesion of either the activated tumor cells or the complexes of platelets and tumor cells to the endothelial cells of the target organ. We have previously shown that the interaction of melanoma cells with platelets results in the release of acid sphingomyelinase (Asm from activated platelets. Secreted platelet-derived Asm acts on malignant tumor cells to cluster and activate integrins; such clustering and activation are necessary for tumor cell adhesion to endothelial cells and for metastasis. Methods: We examined the response of tumor cells to treatment with extracellular sphingomyelinase or co-incubation with wild-type and Asm-deficient platelets. We determined the phosphorylation and activation of several intracellular signaling molecules, in particular p38 kinase (p38K, phospholipase Cγ (PLCγ, ezrin, and extracellular signal-regulated kinases. Results: Incubation of B16F10 melanoma cells with Asm activates p38 MAP kinase (p38K, phospholipase Cγ (PLCγ, ezrin, and extracellular signal-regulated kinases. Co-incubation of B16F10 melanoma cells with wild-type or Asm-deficient platelets showed that the phosphorylation/activation of p38K is dependent on Asm. Pharmacological blockade of p38K prevents activation of β1 integrin and adhesion in vitro. Most importantly, inhibition of p38K activity in B16F10 melanoma cells prevents tumor cell adhesion and metastasis to the lung in vivo, a finding indicating the importance of p38K for metastasis. Conclusions: Asm, secreted from activated platelets after tumor cell-platelet contact, induces p38K phosphorylation in tumor cells. This in turn stimulates β1 integrin activation that is necessary for adhesion and subsequent metastasis of tumor cells. Thus, inhibition of p38K might be a novel

  2. Potent inhibition of tumoral hypoxia-inducible factor 1α by albendazole

    Poruchynsky Marianne S

    2010-04-01

    Full Text Available Abstract Background Emerging reports suggest resistance, increased tumor invasiveness and metastasis arising from treatment with drugs targeting vascular endothelial growth factor (VEGF. It is believed that increased tumoral hypoxia plays a prominent role in the development of these phenomena. Inhibition of tumoral hypoxia inducible factor (HIF-1α is thus becoming an increasingly attractive therapeutic target in the treatment of cancer. We hypothesized that the anti-VEGF effect of albendazole (ABZ could be mediated through inhibition of tumoral HIF-1α. Method In vitro, the effects of ABZ on HIF-1α levels in human ovarian cancer cells (OVCAR-3 were investigated using hypoxic chamber or desferrioxamine (DFO induced-hypoxia. In vivo, the effects of ABZ (150 mg/kg, i.p., single dose on the tumor levels of HIF-1α and VEGF protein and mRNA were investigated by western blotting, RT-PCR and real time-PCR. Results In vitro, ABZ inhibited cellular HIF-1α protein accumulation resulting from placement of cells under hypoxic chamber or exposure to DFO. In vivo, tumors excised from vehicle treated mice showed high levels of both HIF-1α and VEGF. Whereas, tumoral HIF-1α and VEGF protein levels were highly suppressed in ABZ treated mice. Tumoral VEGFmRNA (but not HIF-1αmRNA was also found to be highly suppressed by ABZ. Conclusion These results demonstrate for the first time the effects of an acute dose of ABZ in profoundly suppressing both HIF-1α and VEGF within the tumor. This dual inhibition may provide additional value in inhibiting angiogenesis and be at least partially effective in inhibiting tumoral HIF-1α surge, tumor invasiveness and metastasis.

  3. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model.

    Yin, Tao; He, Sisi; Shen, Guobo; Ye, Tinghong; Guo, Fuchun; Wang, Yongsheng

    2015-09-01

    Neuropsychological factors have been shown to influence tumor progression and therapeutic response. The present study investigated the effect of the dopamine receptor antagonist thioridazine on murine breast cancer. The anti‑tumor efficacy of thioridazine was assessed using a murine breast cancer model. Cell apoptosis and proliferation were analyzed in vitro using flow cytometry (FCM) and the MTT assay, respectively. Western blot analysis was performed to assess Akt, phosphorylated (p)‑Akt, signal transducer and activator of transcription (STAT) 3, p‑STAT3 and p‑p65 in tumor cells following treatment with thioridazine. The Ki67 index and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)‑positive apoptotic cells were assessed in the tumor sections. Thioridazine was found to reduce tumor growth, inhibit tumor cell proliferation and induce apoptosis in a dose‑ and time‑dependent manner in vitro. Thioridazine was also found to markedly inhibit tumor proliferation and induce tumor cell apoptosis in vivo as shown by the lower Ki67 index and increase in TUNEL‑positive cells. In addition, thioridazine was observed to inhibit the activation of the canonical nuclear factor κ‑light‑chain‑enhancer of activated B cells pathway and exert anti‑tumor effects by remodeling the tumor stroma, as well as inhibit angiogenesis in the tumor microenvironment. In conclusion, thioridazine was found to significantly inhibit breast tumor growth and the potential for thioridazine to be used in cancer therapy may be re‑evaluated and investigated in clinical settings. PMID:26095429

  4. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  5. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  6. Targeting Stem Cell Behavior in Desmoid Tumors (Aggressive Fibromatosis by Inhibiting Hedgehog Signaling

    Ronak Ghanbari-Azarnier

    2013-07-01

    Full Text Available Desmoid tumor (also called aggressive fibromatosis is a lesion of mesenchymal origin that can occur as a sporadic tumor or a manifestation of the preneoplastic syndrome, familial adenomatous polyposis caused by a mutation in adenomatous polyposis coli (APC. This tumor type is characterized by the stabilization of β-catenin and activation of Tcf-mediated transcription. Cell transplantation data suggest that desmoid tumors are derived from mesenchymal progenitor cells (MSCs. As such, modulating cell signaling pathways that regulate MSC differentiation or proliferation, such as hedgehog (Hh signaling, could alter the tumor phenotype. Here, we found that Hh signaling is activated in human and murine desmoid tumors. Inhibiting Hh signaling in human cell cultures decreased cell proliferation and β-catenin protein levels. Apc+/Apc1638N mice, which develop desmoid tumors, develop smaller and fewer tumors when Hh signaling was inhibited either genetically (by crossing Apc+/Apc1638N mice with mice lacking one copy of a Hh-activated transcription factor, Gli2+/-mice or using a pharmacologic inhibitor. Both in mice and in human tumor cell cultures, β-catenin and Hh-mediated signaling positively regulate each other's activity. These data show that targeting a pathway that regulates MSC differentiation influences desmoid tumor behavior, providing functional evidence supporting the notion that these tumors are derived from mesenchymal progenitors. It also suggests Hh blockade as a therapeutic approach for this tumor type.

  7. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas.

    Quail, Daniela F; Bowman, Robert L; Akkari, Leila; Quick, Marsha L; Schuhmacher, Alberto J; Huse, Jason T; Holland, Eric C; Sutton, James C; Joyce, Johanna A

    2016-05-20

    Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors. PMID:27199435

  8. Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment.

    Nascimento, Flávia R F; Cruz, Gustavo V B; Pereira, Paulo Vitor S; Maciel, Márcia C G; Silva, Lucilene A; Azevedo, Ana Paula S; Barroqueiro, Elizabeth S B; Guerra, Rosane N M

    2006-04-25

    The leaves of Chenopodium ambrosioides L. [Chenopodiaceae] ('mastruz') have been indicated for the treatment of several diseases, among which the cancer. There are no results focusing the effect of C. ambrosioides treatment on tumor development in vivo. The aim of this study was to investigate the effect of treatment with C. ambrosioides on Ehrlich tumor development. Swiss mice were treated by intraperitoneal route (i.p.) with hydroalcoholic extract from leaves of C. ambrosioides (5 mg/kg) or with PBS (control group) 48 h before or 48 h later the Ehrlich tumor implantation. The tumor cells were implanted on the left footpad (solid tumor) or in the peritoneal cavity (ascitic tumor). To determine the solid tumor growth, footpad was measured each 2 days until the fourteenth day, when the feet were weighed. Ascitic tumor development was evaluated after 8 days of tumor implantation by quantification of the ascitic fluid volume and tumor cell number. The i.p. administration of C. ambrosioides extract before or after the tumor implantation significantly inhibited the solid and ascitic Ehrlich tumor forms. This inhibition was observed in ascitic tumor cell number, in the ascitic volume, in the tumor-bearing foot size and foot weight when compared to control mice. The treatments also increased the survival of tumor-bearing mice. In conclusion, C. ambrosioides has a potent anti-tumoral effect which was evident with a small dose and even when the treatment was given two days after the tumor implantation. This effect is probably related with anti-oxidant properties of C. ambrosioides. PMID:16307762

  9. M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer.

    Xiaoyi Huang

    Full Text Available OBJECTIVE: In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3 in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. METHODS: RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. RESULTS: No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs, and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. CONCLUSION: Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers.

  10. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model

    Hung, Ming-Szu; Xu, Zhidong; Chen, Yu; Smith, Emmanuel; Mao, Jian-Hua; Hsieh, David; Lin, Yu-Ching; Yang, Cheng-Ta; Jablons, David M.; You, Liang

    2013-01-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed t...

  11. Dietary branched-chain amino acid (BCAA) and tumor growth

    Chan, W.; Baron, L.; Baron, P.; White, F.; Banks, W.L. Jr.

    1986-03-05

    The effects of high dietary BCAA on tumor growth was examined in adult male Fischer 344 rats inoculated with 10/sup 6/ viable MCA fibrosarcoma cells. Ten days after tumor inoculation, when tumors were of palpable size, rats were divided into two groups at random. The experimental(E) group was fed the AIN-76 diet supplemented with 4X the BCAA content of diet casein and the control(C) group was fed the AIN-76 made isonitrogenous with the E diet by glutamic acid supplementation. Five rats from each group were killed at days 0,3,6, and 9. Rats were injected with /sup 14/C-Tyrosine and /sup 3/H-Thymidine i.p. (2 and 4 uCi/100g BW, respectively) an hour before they were killed. The incorporation of /sup 14/C and /sup 3/H into the acid insoluble fraction of the tumor tissues samples were measured. Single cell suspension of tumor were prepared for cell cycle kinetics analysis using a Coulter EPICS IV flow microflorometer. The percentage of normal and hyperdiploid cells were analyzed. Results showed that both tumor size and weight were doubled at each time point the rats were killed. At day 0, the /sup 3/H and /sup 14/C incorporation were 32 +/- 10dpm and 27 +/- 4dpm/mg tumor, respectively. The /sup 3/H incorporation dropped in both diet groups at days 6 and 9 but the /sup 14/C incorporation showed a decrease only at day 9. These changes were statistically significant, P>0.05. No difference in the tumor growth parameters used in this study can be attributed to the high dietary BCAA.

  12. The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression

    Abdi Khosro

    2008-11-01

    Full Text Available Abstract Background Experimental studies indicate that gamma linolenic acid (GLA and docosahexaenoic acid (DHA may inhibit glioma cells growth but effects of oral consumption of these fatty acids on brain tumor fatty acid composition have not been determined in vivo. Methods GLA oil (GLAO; 72% GLA, DHA oil (DHAO; 73% DHA were fed to adult wistar rats (1 mL/rat/day starting one week prior to C6 glioma cells implantation and continued for two weeks after implantation. Control group were fed same amount of high linoleic acid safflower oil (74–77% linoleic acid. Fatty acid composition of tumor samples was determined in a set of 8–12 animals in each group and serum fatty acid in 6 animals per each group. Gene expression of tumor fatty acid binding protein 7 (FABP7, epidermal growth factor receptor (EGFR, peroxisome proliferator activated receptor γ (PPAR-γ and retinoid × receptor-α (RXR-α were determined in a set of 18 animals per group. Results DHAO feeding increased EPA of brain tumors and decreased ratio of n-6/n-3 fatty acids. Serum levels of EPA were also increased in DHAO group. A similar trend in serum and tumor levels of DHA were observed in DHAO group but it did not achieve statistical significance. GLAO increased serum concentration of GLA but had no significant effect on tumor GLA or dihomo-gamma linolenic acid (DGLA concentrations. Gene expression of FABP7 was up-regulated in tumors of DHAO group but no other significant effects were observed on EGFR, PPAR-γ or RXR-α expression, and expression of these genes in tumors of GLAO were not different from SFO group. Conclusion Dietary supplementation of DHA containing oil could be an effective way to increase levels of long chain n-3 fatty acids in brain tumors and this increase may be mediated partly by up-regulation of FABP7 expression.

  13. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  14. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  15. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival.

    Kansal, Rita G; McCravy, Matthew S; Basham, Jacob H; Earl, Joshua A; McMurray, Stacy L; Starner, Chelsey J; Whitt, Michael A; Albritton, Lorraine M

    2016-05-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  16. Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors.

    Nair, Vijayalekshmi; Pathi, Satya; Jutooru, Indira; Sreevalsan, Sandeep; Basha, Riyaz; Abdelrahim, Maen; Samudio, Ismael; Safe, Stephen

    2013-12-01

    Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation of Sp transcription factors. Treatment of Panc1, L3.6pL and Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, survivin, cyclin D1, vascular endothelial growth factor and its receptor, and fatty acid synthase. Metformin induced proteasome-dependent degradation of Sps in L3.6pL and Panc28 cells, whereas in Panc1 cells metformin decreased microRNA-27a and induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 by metformin was phosphatase dependent. Metformin also inhibited pancreatic tumor growth and downregulated Sp1, Sp3 and Sp4 in tumors in an orthotopic model where L3.6pL cells were injected directly into the pancreas. The results demonstrate for the first time that the anticancer activities of metformin are also due, in part, to downregulation of Sp transcription factors and Sp-regulated genes. PMID:23803693

  17. Uric Acid Inhibits Placental System A Amino Acid Uptake☆

    Bainbridge, S.A.; von Versen-Höynck, F.; Roberts, J M

    2008-01-01

    Hyperuricemia, a common clinical characteristic of preeclamptic pregnancies, has historically been considered a marker of reduced renal function in preeclamptic women. More recently it has been suggested that uric acid may directly contribute to pathological cell signaling events involved in disease progression as well as maternal and fetal pregnancy outcomes including fetal growth restriction. We hypothesize that the increased frequency of restricted fetal growth seen in relation to increasi...

  18. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  19. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  20. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (Sp transcription factors.

    Satya Pathi

    Full Text Available Acetylsalicylic acid (aspirin is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB. Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.

  1. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  2. Nitric Oxide Synthase Inhibition by NG-Nitro-l-Arginine Methyl Ester Inhibits Tumor-Induced Angiogenesis in Mammary Tumors

    Jadeski, Lorraine C.; Lala, Peeyush K.

    1999-01-01

    Using a murine breast cancer model, we earlier found a positive correlation between the expression of nitric oxide synthase (NOS) and tumor progression; treatment with inhibitors of NOS, NG-methyl-l-arginine (NMMA) and NG-nitro-l-arginine methyl ester (L-NAME), had antitumor and antimetastatic effects that were partly attributed to reduced tumor cell invasiveness. In the present study, we used a novel in vivo model of tumor angiogenesis using subcutaneous implants of tumor cells suspended in growth factor-reduced Matrigel to examine the angiogenic role of NO in a highly metastatic murine mammary adenocarcinoma cell line. This cell line, C3L5, expresses endothelial (e) NOS in vitro and in vivo, and inducible (i) NOS in vitro on stimulation with lipopolysaccharide and interferon-γ. Female C3H/HeJ mice received subcutaneous implants of growth factor-reduced Matrigel inclusive of C3L5 cells on one side, and on the contralateral side, Matrigel alone; L-NAME and D-NAME (inactive enantiomer) were subsequently administered for 14 days using osmotic minipumps. Immediately after sacrifice, implants were removed and processed for immunolocalization of eNOS and iNOS proteins, and measurement of angiogenesis. Neovascularization was quantified in sections stained with Masson’s trichrome or immunostained for the endothelial cell specific CD31 antigen. While most tumor cells and endothelial cells expressed immunoreactive eNOS protein, iNOS was localized in endothelial cells and some macrophages within the tumor-inclusive implants. Measurable angiogenesis occurred only in implants containing tumor cells. Irrespective of the method of quantification used, tumor-induced neovascularization was significantly reduced in L-NAME-treated mice relative to those treated with D-NAME. The quantity of stromal tissue was lower, but the quantity of necrotic tissue higher in L-NAME relative to D-NAME-treated animals. The total mass of viable tissue (ie, stroma and tumor cells) was lower in L

  3. Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid

    Rong Chun XIONG; Qing ZHOU; Gang WEI

    2003-01-01

    The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) wasstudied based on dynamic tests. It is found that when PESA is used alone, it had good corrosioninhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only akind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect betweenPESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higherthan 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition ofPESA is not affected by carboxyl group, but by the oxygen atom inserted The existence ofoxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclicstructure.

  4. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Lee Sung

    2010-07-01

    Full Text Available Abstract Background Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde, tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Methods Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Results Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Conclusion Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative

  5. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8+ T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  6. Inhibition of Mouse Breast Tumor-Initiating Cells by Calcitriol and Dietary Vitamin D.

    Jeong, Youngtae; Swami, Srilatha; Krishnan, Aruna V; Williams, Jasmaine D; Martin, Shanique; Horst, Ronald L; Albertelli, Megan A; Feldman, Brian J; Feldman, David; Diehn, Maximilian

    2015-08-01

    The anticancer actions of vitamin D and its hormonally active form, calcitriol, have been extensively documented in clinical and preclinical studies. However, the mechanisms underlying these actions have not been completely elucidated. Here, we examined the effect of dietary vitamin D and calcitriol on mouse breast tumor-initiating cells (TICs, also known as cancer stem cells). We focused on MMTV-Wnt1 mammary tumors, for which markers for isolating TICs have previously been validated. We confirmed that these tumors expressed functional vitamin D receptors and estrogen receptors (ER) and exhibited calcitriol-induced molecular responses including ER downregulation. Following orthotopic implantation of MMTV-Wnt1 mammary tumor cells into mice, calcitriol injections or a vitamin D-supplemented diet caused a striking delay in tumor appearance and growth, whereas a vitamin D-deficient diet accelerated tumor appearance and growth. Calcitriol inhibited TIC tumor spheroid formation in a dose-dependent manner in primary cultures and inhibited TIC self-renewal in secondary passages. A combination of calcitriol and ionizing radiation inhibited spheroid formation more than either treatment alone. Further, calcitriol significantly decreased TIC frequency as evaluated by in vivo limiting dilution analyses. Calcitriol inhibition of TIC spheroid formation could be overcome by the overexpression of β-catenin, suggesting that the inhibition of Wnt/β-catenin pathway is an important mechanism mediating the TIC inhibitory activity of calcitriol in this tumor model. Our findings indicate that vitamin D compounds target breast TICs reducing tumor-initiating activity. Our data also suggest that combining vitamin D compounds with standard therapies may enhance anticancer activity and improve therapeutic outcomes. PMID:25934710

  7. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego;

    2004-01-01

    ). Furthermore, the human Mdmx ortholog, Hdmx, was found to be overexpressed in a significant percentage of various human tumors and amplified in 5% of primary breast tumors, all of which retained wild-type p53. Hdmx was also amplified and highly expressed in MCF-7, a breast cancer cell line harboring wild......-type p53, and interfering RNA-mediated reduction of Hdmx markedly inhibited the growth potential of these cells in a p53-dependent manner. Together, these results make Hdmx a new putative drug target for cancer therapy.......Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo...

  8. Inhibition of brain tumor cell proliferation by alternating electric fields

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  9. Inhibition of brain tumor cell proliferation by alternating electric fields

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  10. Selective Tumor Cell Inhibition Effect of Ni-Ti Layered Double Hydroxides Thin Films Driven by the Reversed pH Gradients of Tumor Cells.

    Wang, Donghui; Ge, Naijian; Li, Jinhua; Qiao, Yuqin; Zhu, Hongqin; Liu, Xuanyong

    2015-04-22

    Nitinol is widely fabricated as stents for the palliation treatment of many kinds of cancers. It is of great importance to develop nitinol stents with selective tumor cell inhibition effects. In this work, a series of pH sensitive films composed of Ni(OH)2 and Ni-Ti layered double hydroxide (Ni-Ti LDH) with different Ni/Ti ratios were prepared on the surface of nitinol via hydrothermal treatment. The films with specific Ni/Ti ratios would release a large amount of nickel ions under acidic environments but were relatively stable in neutral or weak alkaline medium. Cell viability tests showed that the films can effectively inhibit the growth of cancer cells but have little adverse effects to normal cells. Besides, extraordinarily high intracellular nickel content and reactive oxygen species (ROS) level were found in cancer cells, indicating the death of cancer cells may be induced by the excessive intake of nickel ions. Such selective cancer cell inhibition effect of the films is supposed to relate with the reversed pH gradients of tumor cells. PMID:25825800

  11. Tumor inhibiting and immunoloregulation effects of Mylabris Mixture on H22 cancer-bearing mice

    A-Gao ZHOU

    2006-09-01

    Full Text Available Objective: To investigate the mechanisms of tumor inhibiting and immunoloregulation of Mylabris Mixture on H22 cancer-bearing mice. Methods: H22 cancer-bearing mice were chosen to observe the effects of tumor inhibiting and detect the proliferation function of T lymphocytes, the toxicity function of NK cells, the changes of T lymphocytes and the contents of interferon-γ and interleukin-4. Results: Mylabris Mixture could obviously inhibit the growth of H22 cancer in mice, and the tumor inhibition rat was 65.76%. The stimulation index of T lymphocyte transformation and percentage of NK cells in Mylabris Mixture-treated group were obviously higher than those in the normal control group. The subpopulation proportion of T lymphocytes in Mylabris Mixture-treated group was changed more than the normal control group. The production of interferon-γ and interleukin-4 by T lymphocytes obviously increased in Mylabris Mixture-treated group(P<0.05, P<0.001. Conclusion: Mylabris Mixture has the effect of inhibiting the growth of tumor constitution, and regulating immunological function on mice with tumor. Its mechanisms include the reinforcement of T lymphocyte immune function, NK cell killing function and humoral immune function.

  12. Radiolabelled phage display peptide derivatives inhibiting matrix metalloproteinases target xenografted tumors in mice

    Background: A phage display peptide has been characterized, which inhibits matrix metalloproteinase activity, and cell migration. This cyclic decapeptide Cys-Thr-Thr-His-Trp-Gly-Phe-Thr-Leu-Cys is known to inhibit tumor growth both in preincubated cells with peptide and also in vivo. Cell killing has been demonstrated in vitro utilizing peptidoliposome construct which contained adriamycin. Furthermore, tumor targeting using direct labelling with Tc-99m has demonstrated. Materials and Methods: Now wide variety of peptide derivatives of this CTTHWGFTLC peptide has been constructed and they alter by lipophilicity. The biodistribution of labelled peptides containing AAY and GRENYCH residues in the amino terminus has been studied in normal and tumor bearing mice. Labeling method for In-111 has been cDTPA and for iodination direct labelling and indirect ATE method. Results: Direct labeling retained the lipofilicity of the peptide. Indirect labeled peptides were more hydrophobic and their distribution were different compared to direct labeled peptides. These radiolabelled peptides both with In-111 and I-125 retained in vitro inhibitory activity. The biostribution data demonstrated liver uptake with the lipophilic and more kidney uptake with the more hydrophilic constructs. Tumor targeting was demonstrated in nude mice. Conclusion: Because of excellent in vitro characteristics in tumor targeting, and inhibition of the endothelium of tumor vasculature, and inhibition of tumor growth with the cold peptide, these radiolabelled peptides have potential for further development. This tumor targeting peptidoliposomes as drug carrier may be used cancer treatment utilizing multi potential approach: radionuclide therapy, invasion inhibition and cell killing

  13. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  14. Evaluation of Elephantopus scaber on the inhibition of chemical carcinogenesis and tumor development in mice.

    Geetha, B S; Latha, P G; Remani, P

    2010-03-01

    The effect of the active fraction of Elephantopus scaber L. (Asteraceae) (ES) on skin papillomas induced by 7,12-dimethylbenz(a)anthracene (DMBA) as an initiator and croton oil as promoter was studied in mice. The active fraction of E. scaber (100 mg/kg) on topical application delayed the onset of papilloma formation and reduced the mean number of papillomas and the mean weight of papillomas per mouse. The intraperitoneal administration of the active fraction of E. scaber also had a significant effect on subcutaneous injection of 20-methylcholanthrene (20-MCA)-induced soft tissue sarcomas in mice. It inhibited the incidence of sarcomas and reduced the tumor diameter compared to MCA-treated control animals. The subcutaneous administration of the active fraction of E. scaber significantly inhibited the growth of subcutaneously transplanted DLA and EAC solid tumors, delayed the onset of tumor formation, and increased the life span of tumor bearing mice. The present study thus indicates the tumor inhibitory activity of the active fraction of E. scaber against chemically induced tumors and its ability to inhibit the development of solid tumors. PMID:20645824

  15. Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse Model.

    García-Hevia, Lorena; Villegas, Juan C; Fernández, Fidel; Casafont, Íñigo; González, Jesús; Valiente, Rafael; Fanarraga, Mónica L

    2016-05-01

    Understanding the molecular mechanisms underlying the biosynthetic interactions between particular nanomaterials with specific cells or proteins opens new alternatives in nanomedicine and nanotoxicology. Multiwalled carbon nanotubes (MWCNTs) have long been explored as drug delivery systems and nanomedicines against cancer. There are high expectations for their use in therapy and diagnosis. These filaments can translocate inside cultured cells and intermingle with the protein nanofilaments of the cytoskeleton, interfering with the biomechanics of cell division mimicking the effect of traditional microtubule-binding anti-cancer drugs such as paclitaxel. Here, it is shown how MWCNTs can trigger significant anti-tumoral effects in vivo, in solid malignant melanomas produced by allograft transplantation. Interestingly, the MWCNT anti-tumoral effects are maintained even in solid melanomas generated from paclitaxel-resistant cells. These findings provide great expectation in the development of groundbreaking adjuvant synthetic microtubule-stabilizing chemotherapies to overcome drug resistance in cancer. PMID:26866927

  16. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  17. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  18. Immunohistochemical analysis of retinoic acid receptor-alpha in human breast tumors: retinoic acid receptor-alpha expression correlates with proliferative activity.

    van der Leede, B. M.; Geertzema, J.; Vroom, T. M.; Décimo, D.; Lutz, Y.; van der Saag, P. T.; van der Burg, B.

    1996-01-01

    Retinoids are known to prevent mammary carcinogenesis in rodents and inhibit the growth of human breast cancer cells in vitro. Previously we demonstrated that retinoid inhibition of proliferation of human breast cancer cell lines is largely mediated by retinoic acid receptor (RAR)-alpha. In this study we describe for the first time the histological distribution of RAR-alpha in 33 breast lesion specimens as determined by immunostaining with RAR-alpha antibody. Nuclear staining was observed in tumor tissue and normal portions of the breast samples. Connective tissue exhibited relative uniform staining, whereas a wide range of RAR-alpha expression was found in the epithelial tumor cells. RAR-alpha protein was expressed at significantly higher levels in tumors with greater proliferative activity as determined by immunostaining with Ki-67 antibody. This suggests that RAR-alpha expression may be altered with tumor progression. Although a positive correlation between RAR-alpha mRNA levels and estrogen receptor status of breast tumors has previously been documented, we did not find such a relationship at the protein level. As RAR-alpha plays a major role in retinoid-mediated growth inhibition of human breast cancer cell in vitro, our findings suggest that patients with highly proliferating tumors could be responsive to retinoid independently of their responsiveness to (anti)-estrogens. Images Figure 1 Figure 2 PMID:8669476

  19. Inhibiting Effects of S.acus Linnaeus Extracts on GLT-82 Tumor Cell Lines

    2002-01-01

    Hailong S.acus Linnaeus was chosen as the experimental material in the experiments and changes of cell morphology, forming rate of clone and changes of division index were conducted to identify the inhibiting effects of Hailong extract on human tumor cell lines (GLT-82). Four days after medication, most of the cells changed their normal morphology of tumor cells and became round, broken and even broke into pieces. The inhibiting rates could reach 75.1% on the fourth day. The division index reduced strongly and the clone could not form or the forming rate was very low. With the extract concentration increasing and the time prolonging, the inhibiting effect increased. These results indicate that Hailong has striking anti-tumor effects and will have a perfect future in the fields of treatment and prevention of cancer.

  20. Inhibition of Tumor Growth in Mice by Endostatin Derived from Abdominal Transplanted Encapsulated Cells

    Huaining TENG; Ying ZHANG; Wei WANG; Xiaojun MA; Jian FEI

    2007-01-01

    Endostatin, a C-terminal fragment of collagen 18a, inhibits the growth of established tumors and metastases in vivo by inhibiting angiogenesis. However, the purification procedures required for largescale production and the attendant cost of these processes, together with the low effectiveness in clinical tests, suggest that alternative delivery methods might be required for efficient therapeutic use of endostatin.In the present study, we transfected Chinese hamster ovary (CHO) cells with a human endostatin gene expression vector and encapsulated the CHO cells in alginate-poly-L-lysine microcapsules. The release of biologically active endostatin was confirmed using the chicken chorioallantoic membrane assay. The encapsulated endostatin-expressing CHO cells can inhibit the growth of primary tumors in a subcutaneous B16 tumor model when injected into the abdominal cavity of mouse. These results widen the clinical application of the microencapsulated cell endostatin delivery system in cancer treatment.

  1. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2015-01-01

    Osteosarcoma is the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease still have a poor prognosis, illustrating the need for alternative therapies. In this study, we explored the use of antibodies that block CD47 with a tumor growth suppressive effect on osteosarcoma. We first found that up-regulation of CD47 mRNA levels in the tumorous tissues from eight patients with osteosarcoma when compared with that in adjacent non-tumorous tissues. Further western-blot (WB) and immunohistochemistry (IHC) demonstrated that CD47 protein level was highly expressed in osteosarcoma compared to normal osteoblastic cells and adjacent non-tumorous tissues. Osteosarcoma cancer stem cell markers staining shown that the majority of CD44+ cells expressed CD47 albeit with different percentages (ranging from 80% to 99%). Furthermore, high CD47 mRNA expression levels were associated with a decreased probability of progression-free and overall survival. In addition, blockade of CD47 by specific Abs suppresses the invasive ability of osteosarcoma tumor cells and further inhibits spontaneous pulmonary metastasis of KRIB osteosarcoma cells in vivo. Finally, CD47 blockade increases macrophage phagocytosis of osteosarcoma tumor cells. In conclusion, our findings demonstrate that CD47 is a critical regulator in the metastasis of osteosarcoma and suggest that targeted inhibition of this antigen by anti-CD47 may be a novel immunotherapeutic approach in the management of this tumor. PMID:26093091

  2. Retinoic Acid Inhibits Airway Smooth Muscle Cell Migration

    Day, Regina M.; Lee, Young H.; Park, Ah-Mee; Suzuki, Yuichiro J.

    2006-01-01

    Airway remodeling in chronic asthma is characterized by increased smooth muscle mass that is associated with the reduction of the bronchial lumen as well as airway hyperresponsiveness. The development of agents that inhibit smooth muscle growth is therefore of interest for therapy to prevent asthma-associated airway remodeling. All-trans retinoic acid (ATRA) suppresses growth of vascular smooth muscle cells (SMCs) from the systemic and pulmonary circulation. The present study investigated the...

  3. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    Jiang, Wen-guo; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; ZHANG, SHENG-HUA; Zhou, Daifu; Liang LI; Li, Yi; Luo, Yongzhang; ZHEN, YONG-SU

    2013-01-01

    Background Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. The...

  4. Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor–independent manner

    Byer, Stephanie J.; Eckert, Jenell M.; Brossier, Nicole M.; Clodfelder-Miller, Buffie J.; Turk, Amy N.; Carroll, Andrew J.; Kappes, John C.; Zinn, Kurt R.; Prasain, Jeevan K.; Carroll, Steven L.

    2010-01-01

    Few therapeutic options are available for malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1 (NF1). Guided by clinical observations suggesting that some NF1-associated nerve sheath tumors are hormonally responsive, we hypothesized that the selective estrogen receptor (ER) modulator tamoxifen would inhibit MPNST tumorigenesis in vitro and in vivo. To test this hypothesis, we examined tamoxifen effects on MPNST cell proliferati...

  5. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  6. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  7. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Wang, Jia-lei [Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Lu, Fan-zhen [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Shen, Xiao-Yong, E-mail: shengxiaoyong_sh@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Wu, Yun, E-mail: WuYun_hd@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Zhao, Li-ting [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China)

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  8. Shigella toxin inhibition of binding and translation of polyuridylic acid by Escherichia coli ribosomes.

    Olenick, J G; Wolfe, A D

    1980-01-01

    Shigella toxin inhibits polyuridylic acid-directed polymerization of phenylalanine in ribosome-enzyme systems obtained from Escherichia coli or from Shigella dysenteriae. The inhibition is the result of toxin acting on ribosomes to prevent polyuridylic acid attachment.

  9. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  10. Inhibition of Tumor Necrosis Factor Alpha Alters Resistance to Mycobacterium avium Complex Infection in Mice

    Bala, Shukal; Hastings, Kenneth L.; Kazempour, Kazem; Inglis, Shelly; Dempsey, Walla L.

    1998-01-01

    Increased production of tumor necrosis factor alpha (TNF-α) appears to play an important role in the progression of human immunodeficiency virus disease. One treatment strategy being explored is the use of TNF-α inhibitors. TNF-α also appears to be important in conferring resistance to infections, and the inhibition of this cytokine may exacerbate the emergence of opportunistic pathogens, such as Mycobacterium avium complex (MAC). The present study examines the possibility that inhibition of ...

  11. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Kenneth Ka Ho, Lee; Li, Weidong

    2014-01-01

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit bl...

  12. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  13. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  14. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment.

    Vail, Mary E; Murone, Carmel; Tan, April; Hii, Linda; Abebe, Degu; Janes, Peter W; Lee, Fook-Thean; Baer, Mark; Palath, Varghese; Bebbington, Christopher; Yarranton, Geoffrey; Llerena, Carmen; Garic, Slavisa; Abramson, David; Cartwright, Glenn; Scott, Andrew M; Lackmann, Martin

    2014-08-15

    Eph receptor tyrosine kinases are critical for cell-cell communication during normal and oncogenic tissue patterning and tumor growth. Somatic mutation profiles of several cancer genomes suggest EphA3 as a tumor suppressor, but its oncogenic expression pattern and role in tumorigenesis remain largely undefined. Here, we report unexpected EphA3 overexpression within the microenvironment of a range of human cancers and mouse tumor xenografts where its activation inhibits tumor growth. EphA3 is found on mouse bone marrow-derived cells with mesenchymal and myeloid phenotypes, and activation of EphA3(+)/CD90(+)/Sca1(+) mesenchymal/stromal cells with an EphA3 agonist leads to cell contraction, cell-cell segregation, and apoptosis. Treatment of mice with an agonistic α-EphA3 antibody inhibits tumor growth by severely disrupting the integrity and function of newly formed tumor stroma and microvasculature. Our data define EphA3 as a novel target for selective ablation of the tumor microenvironment and demonstrate the potential of EphA3 agonists for anticancer therapy. PMID:25125683

  15. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2−/− mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC

  16. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  17. Aspirin inhibits tumor necrosis factor-α-stimulated fractalkine expression in human umbilical vein endothelial cells

    JIANG De-qian; LIU Hong; ZHANG She-bing; ZHANG Xiao-lian

    2009-01-01

    Background Fractalkine is an important chemokine mediating local monocyte accumulation and inflammatory reactions in the vascular wall. Aspirin inhibits inflammatory cytokine expression closely related to atherosclerosis through the way independent of platelet and cyclooxygenase (COX). There has been no report about the effect of aspirin on fractalkine expression. We aimed to determine the fractalkine expression in human umbilical vein endothelial cell (HUVEC) stimulated by tumor necrosis factor (TNF)-α and the effect of aspirin intervention.Methods Six of 8 HUVEC groups received either different concentrations of aspirin (0.02, 0.2, 1.0, 5.0 mmol/L) or 40 μmol/L pyrrolidinecarbodithioc acid (PDTC) or 0.5 μmol/L NS-398. The other two groups were negative control and positive control (TNF-α-stimulated). After being incubated for 24 hours, cells of the 8 groups except the negative control one were stimulated with TNF-a (4 ng/ml) for another 24 hours. After that, the cells were collected for RNA isolation and protein extraction.Results Both mRNA and protein expressions of fractalkine in HUVEC were upregulated by 4 ng/ml TNF-α stimulation,Aspirin inhibited fractalkine expression in a dose-dependent manner at mRNA and protein levels. Nuclear factor-kappa B inhibitor, PDTC, effectively decreased the fractalkine expression. Fractalkine expression was not influenced by COX-2 selective inhibitor NS-398. COX-1 protein expression was not changed by either TNF-α stimulation or aspirin, PDTC,NS-398 intervention. Both mRNA and protein expression of COX-2 in HUVEC were upregulated by 4 ng/ml TNF-α stimulation. Aspirin decreased COX-2 expression in a dose-dependent manner at mRNA and protein levels.Conclusions TNF-α-stimulated fractalkine expression is suppressed by aspirin in a dose-dependent manner through the nuclear factor-kappa B p65 pathway.

  18. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    Dinesh Thotala

    Full Text Available Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2 is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549 co-cultured with endothelial cells (bEND3 and HUVEC and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3 and induced cell death and attenuated invasion by tumor cells (LLC &A549. In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  19. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (Isc), transepithelial potential (Vt) and resistance (Rt) were recorded in the continuous presence of cadmium. Addition of cadmium (20 μM to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in Isc cannot be explained by an action on: 1) H2 histamine receptor, 2) Ca2+ signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H+/K+-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H+/K+-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  20. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors

  1. Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid.

    Baumann, R J; Bohme, E H; Wiseman, J. S.; Vaal, M; Nichols, J.S.

    1988-01-01

    The diaminopimelic acid (DAP) analog, 3-chloro-DAP, was synthesized and tested as the racemic acid for antibacterial activity and for inhibition of DAP epimerase. 3-Chloro-DAP was a potent inhibitor of DAP epimerase purified from Escherichia coli (Ki = 200 nM), and it is argued that 3-chloro-DAP is converted to a tight-binding transition state analog at the active site of this enzyme. Furthermore, 3-chloro-DAP inhibited growth of two E. coli mutants. In one of the mutants known for supersusce...

  2. Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Amino Acid Complexes

    K. Kiruthikajothi; G. Chandramohan

    2015-01-01

    Using the amino acids methionine and serine reduced Schiff base and their copper(II) complexes were synthesized. The inhibition effect of these copper (II) complexes on the corrosion of mild steel in 1 M HCl solution was investigated. The corrosion inhibition action is studied through weight loss method. Among the tested complexes [CuCl(SMet)PPh3.H2O] exhibited better corrosion inhibition at 3 mmol concentration. The adsorption of the complexes on the metal surface obeys Langmuir’s adsorption...

  3. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis.

    Ma, Jiguang; Duan, Wanxing; Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-08-28

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  4. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    J. Brian Morgan

    2015-03-01

    Full Text Available The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula. Kalkitoxin exhibited N-methyl-d-aspartate (NMDA-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1. The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM. Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC complex I (NADH-ubiquinone oxidoreductase. Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF in tumor cells.

  5. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  6. Antithrombin controls tumor migration, invasion and angiogenesis by inhibition of enteropeptidase

    Luengo-Gil, Ginés; Calvo, María Inmaculada; Martín-Villar, Ester; Águila, Sonia; Bohdan, Nataliya; Antón, Ana I.; Espín, Salvador; Ayala de la Peña, Francisco; Vicente, Vicente; Corral, Javier; Quintanilla, Miguel; Martínez-Martínez, Irene

    2016-01-01

    Antithrombin is a key inhibitor of the coagulation cascade, but it may also function as an anti-inflammatory, anti-angiogenic, anti-viral and anti-apoptotic protein. Here, we report a novel function of antithrombin as a modulator of tumor cell migration and invasion. Antithrombin inhibited enteropeptidase on the membrane surface of HT-29, A549 and U-87 MG cells. The inhibitory process required the activation of antithrombin by heparin, and the reactive center loop and the heparin binding domain were essential. Surprisingly, antithrombin non-covalently inhibited enteropeptidase, revealing a novel mechanism of inhibition for this serpin. Moreover, as a consequence of this inhibition, antithrombin was cleaved, resulting in a molecule with anti-angiogenic properties that reduced vessel-like formation of endothelial cells. The addition of antithrombin and heparin to U-87 MG and A549 cells reduced motility in wound healing assays, inhibited the invasion in transwell assays and the degradation of a gelatin matrix mediated by invadopodia. These processes were controlled by enteropeptidase, as demonstrated by RNA interference experiments. Carcinoma cell xenografts in nude mice showed in vivo co-localization of enteropeptidase and antithrombin. Finally, treatment with heparin reduced experimental metastasis induced by HT29 cells in vivo. In conclusion, the inhibition of enteropeptidase by antithrombin may have a double anti-tumor effect through inhibiting a protease involved in metastasis and generating an anti-angiogenic molecule. PMID:27270881

  7. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  8. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  9. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  10. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  11. Acid Sphingomyelinase Inhibition Prevents Hemolysis During Erythrocyte Storage

    Richard S. Hoehn

    2016-06-01

    Full Text Available Background/Aims: During storage, units of human red blood cells (pRBCs experience membrane destabilization and hemolysis which may cause harm to transfusion recipients. This study investigates whether inhibition of acid sphingomyelinase could stabilize erythrocyte membranes and prevent hemolysis during storage. Methods: Human and murine pRBCs were stored under standard blood banking conditions with and without the addition of amitriptyline, a known acid sphingomyelinase inhibitor. Hemoglobin was measured with an electronic hematology analyzer and flow cytometry was used to measure erythrocyte size, complexity, phosphatidylserine externalization, and band 3 protein expression. Results: Cell-free hemoglobin, a marker of hemolysis, increased during pRBC storage. Amitriptyline treatment decreased hemolysis in a dose-dependent manner. Standard pRBC storage led to loss of erythrocyte size and membrane complexity, increased phosphatidylserine externalization, and decreased band 3 protein integrity as determined by flow cytometry. Each of these changes was reduced by treatment with amitriptyline. Transfusion of amitriptyline-treated pRBCs resulted in decreased circulating free hemoglobin. Conclusion: Erythrocyte storage is associated with changes in cell size, complexity, membrane molecular composition, and increased hemolysis. Acid sphingomyelinase inhibition reduced these changes in a dose-dependent manner. Our data suggest a novel mechanism to attenuate the harmful effects after transfusion of aged blood products.

  12. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  13. Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+.

    Villalobo, A; Lehninger, A L

    1980-03-25

    Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered. PMID:6766937

  14. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.

    Sardu, Maria Luisa; Poggesi, Italo; De Nicolao, Giuseppe

    2015-12-01

    The mathematical modeling of tumor xenograft experiments following the dosing of antitumor drugs has received much attention in the last decade. Biomarker data can further provide useful insights on the pathological processes and be used for translational purposes in the early clinical development. Therefore, it is of particular interest the development of integrated pharmacokinetic-pharmacodynamic (PK-PD) models encompassing drug, biomarker and tumor-size data. This paper investigates the reciprocal consistency of three types of models: drug-to-tumor, such as established drug-driven tumor growth inhibition (TGI) models, drug-to-biomarker, e.g. indirect response models, and biomarker-to-tumor, e.g. the more recent biomarker-driven TGI models. In particular, this paper derives a mathematical relationship that guarantees the steady-state equivalence of the cascade of drug-to-biomarker and biomarker-to-tumor models with a drug-to-tumor TGI model. Using the Simeoni TGI model as a reference, conditions for steady-state equivalence are worked out and used to derive a new biomarker-driven model. Simulated and real data are used to show that in realistic cases the steady-state equivalence extends also to transient responses. The possibility of predicting the drug-to-tumor potency of a new candidate drug based only on biomarker response is discussed. PMID:26209955

  15. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma

  16. Inhibition of telomerase in tumor cells by ribozyme targeting telomerase RNA component

    LIU; Bailin(刘柏林); QU; Yi(屈艺); LIU; Shuqiu(刘菽秋); OUYANG; Xuesong(欧阳雪松)

    2002-01-01

    Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. A hammer-headed ribozyme(telomerase ribozyme, teloRZ) directed against the RNA component of human telomerase(hTR) was designed and synthesized. TeloRZ showed a specific cleavage activity against the hTR. The cleavage efficacy reached 60%. A eukaryotic expression plasmid containing teloRZ gene was inducted into HeLa cells by lipofectamine, the telomerase activity in HeLa cells expressing teloRZ decreased to one eighth of that in the control cells. The doubling time increased significantly and the apoptosis ratio was elevated with increasing population doublings(PDS). After 19-20 PDS 95% cells were apoptotic. To further investigate the effect of teloRZ on tumor growth, the eukaryotic expression plasmid containing teloRZ was injected into transplanted tumor of nude mouse. The teloRZ effectively inhibited the telomerase activity in transplanted tumor, promoted apoptosis of the transplanted tumor cells, and decreased the tumor size significantly. These results indicate that teloRZ can effectively inhibit telomerase activity and growth of tumor cells, and suggest the potential use of this ribozyme in anti-cancer therapy.

  17. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  18. Inhibition of proliferation in bone tumor cells after irradiation by 235U, 147Pm, 153Sm

    The inhibition of proliferation in bone tumor cells after simple or mixed irradiation by 235U, 147Pm, 153Sm was studied. Experimental results indicated that proliferation of bone tumor cells was significantly inhibited at 12 h∼24 h after a simple irradiation by 235U (128.4 Bq), 147Pm (7.4 x 105 Bq), and 153Sm (7.4 x 105 Bq) as well as mixed irradiation by 235U + 147Pm (64.2 Bq + 3.7 x 105 Bq), 235U + 153Sm (64.2 Bq + 3.7 x 105 Bq), 147Pm + 153Sm (3.7 x 105 Bq + 3.7 x 105 Bq). The findings show that the inhibition rate with mixed irradiation was more than that with simple irradiation

  19. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  20. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells

    Aleman, Mireille J.; DeYoung, Maurice Phil; Tress, Matthew; Keating, Patricia; Perry, Gary W.; Narayanan, Ramaswamy

    2005-01-01

    A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specif...

  1. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  2. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  3. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  4. Nucleic acid-based approaches to STAT inhibition.

    Sen, Malabika; Grandis, Jennifer R

    2012-10-01

    Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion. PMID:24058785

  5. Polar biophenolics in sweet potato greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth.

    Gundala, Sushma R; Yang, Chunhua; Lakshminarayana, N; Asif, Ghazia; Gupta, Meenakshi V; Shamsi, Shahab; Aneja, Ritu

    2013-09-01

    Polyphenolic phytochemicals present in fruits and vegetables indisputably confer anticancer benefits upon regular consumption. Recently, we demonstrated the growth-inhibitory and apoptosis-inducing properties of polyphenol-rich sweet potato greens extract (SPGE) in cell culture and in vivo prostate cancer xenograft models. However, the bioactive constituents remain elusive. Here, we report a bioactivity-guided fractionation of SPGE based upon differential solvent polarity using chromatographic techniques that led to the identification of a remarkably active polyphenol-enriched fraction, F5, which was ~100-fold more potent than the parent extract as shown by IC50 measurements in human prostate cancer cells. High-performance liquid chromatography-ultraviolet and mass spectrometric analyses of the seven SPGE fractions suggested varying abundance of the major phenols, quinic acid (QA), caffeic acid, its ester chlorogenic acid, and isochlorogenic acids, 4,5-di-CQA, 3,5-di-CQA and 3,4-di-CQA, with a distinct composition of the most active fraction, F5. Subfractionation of F5 resulted in loss of bioactivity, suggesting synergistic interactions among the constituent phytochemicals. Quantitative analyses revealed a ~2.6- and ~3.6-fold enrichment of QA and chlorogenic acid, respectively, in F5 and a definitive ratiometric relationship between the isochlorogenic acids. Daily oral administration of 400mg/kg body wt of F5 inhibited growth and progression of prostate tumor xenografts by ~75% in nude mice, as evidenced by tumor volume measurements and non-invasive real-time bioluminescence imaging. These data generate compelling grounds to further examine the chemopreventive efficacy of the most active fraction of SPGE and suggest its potential usefulness as a dietary supplement for prostate cancer management. PMID:23629419

  6. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    Highlights: ► Molecular iodine (I2) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. ► Autophagy is activated as a survival mechanism in response to I2 in MDA-MB231. ► Autophagy inhibition sensitizes tumor cells to I2-induced apoptotic cell death. ► Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I2 in mice. -- Abstract: Estrogen receptor negative (ER−ve) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I2) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER−ve–p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I2 (3 μM) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER−ve mammary tumors could be sensitized to I2-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I2 treated MDA-MB231 cells. Further, CQ (20 μM) in combination with I2, showed apoptotic features such as increased sub-G1 fraction (∼5-fold), expression of cleaved caspase-9 and -3 compared to I2 treatment alone. Flowcytometry of I2 and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p 2 treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I2 and CQ co-treated mice relative to I2 or vehicle treated mice. These data indicate that inhibition of autophagy renders ER−ve breast tumor cells more sensitive to I2 induced apoptosis. Thus, I2 together with autophagy inhibitor could have a potential tumorostatic role in ER−ve aggressive breast tumors that may be

  7. Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    Talebian, Fatemeh; Liu, Jin-Qing; Liu, Zhenzhen; Khattabi, Mazin; He, Yukai; Ganju, Ramesh; Bai, Xue-feng

    2012-01-01

    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16...

  8. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies. (paper)

  9. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  10. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53.

    Fukaya, Raita; Ohta, Shigeki; Yaguchi, Tomonori; Matsuzaki, Yumi; Sugihara, Eiji; Okano, Hideyuki; Saya, Hideyuki; Kawakami, Yutaka; Kawase, Takeshi; Yoshida, Kazunari; Toda, Masahiro

    2016-05-01

    Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR. PMID:26980763

  11. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-01-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer. PMID:27378792

  12. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  13. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G.

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor gr...

  14. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na+) inhibited uptake of ∼ 1 μM [3H]glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 370C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the [Na+], observed when choline was substituted for Na+ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na+ and choline, respectively. As expected, Gly uptake and the [Na+] were linearly related up to 116 mM Na+, when Na+ was replaced with Li+. The rates of Na+-independent Gly and Ala uptake were + or choline replaced Na+. Therefore, neither Li+ nor choline appears to substitute for Na+ in supporting Na+-dependent transport in blastocysts. Na+-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li+ was substituted for Na+. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na+ in new transport studies

  15. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    Nadine eBeckmann

    2014-09-01

    Full Text Available Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer’s disease and major depression, as well as viral (e.g. measles virus and bacterial (e.g. Staphylococcus aureus, Pseudomonas aeruginosa infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.

  16. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment

  17. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics

    Crompton, Joseph G.; Sukumar, Madhusudhanan; Roychoudhuri, Rahul; Clever, David; Gros, Alena; Eil, Robert; Tran, Eric; Hanada, Ken-ichi; Yu, Zhiya; Palmer, Douglas C.; Kerkar, Sid P.; Michalek, Ryan D.; Upham, Trevor; Leonardi, Anthony; Aquavella, Nicholas; Wang, Ena; Marincola, Francesco M.; Gattinoni, Luca; Muranski, Pawel; Sundrud, Mark S.; Klebanoff, Christopher A.; Rosenberg, Steven A.; Fearon, Douglas T.; Restifo, Nicholas P.

    2015-01-01

    Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) can result in complete regression of advanced cancer in some patients, but the efficacy of this potentially curative therapy might be limited by poor persistence of TIL after adoptive-transfer. Pharmacologic inhibition of the serine/threonine kinase Akt has recently been shown to promote immunologic memory in viral-specific murine models, but whether this approach may enhance features of memory (e.g. long-term persistence) in TIL which are characteristically exhausted and senescent is not established. Here we show that pharmacologic inhibition of Akt enables expansion of TIL with the transcriptional, metabolic and functional properties characteristic of memory T cells. Consequently, Akt inhibition results in enhanced persistence of TIL after adoptive transfer into an immunodeficient animal model and augments anti-tumor immunity of CD8 T cells in a mouse model of cell-based immunotherapy. Pharmacologic inhibition of Akt represents a novel immunometabolomic approach to enhance the persistence of anti-tumor T cells and improve the efficacy of cell-based immunotherapy for metastatic cancer. PMID:25432172

  18. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  19. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.

    Sekine, Airi; Kuroki, Yusuke; Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2016-09-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain. PMID:27161376

  20. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor α = 0.51 and maximum velocity by a factor β = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations

  1. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo.

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-07-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. PMID:26745389

  2. Comparative distribution study of C labelled amino acids, glucose-analogue and precursor of nucleic acid, as tumor seeking agents

    Shiba, Kazuhiro; Mori, Hirofumi; Hisada, Kinichi

    1984-08-01

    As tumor-seeking agents, glucose analogues, natural amino acids, synthetic nonmetabolized amino acids, and precursor of nucleic acids, etc., labeled with positron emitter, such as C and YF have been recently investigated. However, there are very few reports concerning comparative study of tumor uptake and tissue distribution of these agents. This preliminary paper describes comparative distribution and whole-body autoradiography of these agents. UC labeled deoxy-2-fluoro-D-glucose (FDG), L-, DL-leucine, 1-aminocyclopentane carboxylic acid (ACPC), -amino isobutyric acid ( -AIB), and thymidine were intravenously injected through tail vein into separate groups of the experimental animals. As the experimental animals, the mice with Ehrlich tumor and the rats with Hepatoma AH109A were used. Within 30 min after injection, FDG had the highest tumor uptake and tumor to tissue ratios, although FDG was inferior to ACPC and thymidine in related to tumor to heart, lung and brain ratios. However, the time course study indicated that tumor uptake of ACPC, -AIB and D-leucine increased with time, whereas those of other agents decreased with time or reached a plateau. Thus, at 120 min after injection, ACPC had the highest tumor uptake and tumor to tissue ratios, although ACPC was inferior to FDG in related to tumor to blood, liver and pancreas ratios. Autoradiogram of ACPC showed very clear tumor image as well as that of FDG. The above data suggest that synthetic nonmetabolized amino acids, such as ACPC may be promising as tumor-seeking agents, when used with a single photon emission computed tomography, while glucose analogue such as FDG, are the best tumor-seeking agent, when used with a positron emission computed tomography. (author).

  3. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.

    Marín-Hernández, Alvaro; Gallardo-Pérez, Juan Carlos; López-Ramírez, Sayra Y; García-García, Jorge Donato; Rodríguez-Zavala, José Salud; Ruiz-Ramírez, Lena; Gracia-Mora, Isabel; Zentella-Dehesa, Alejandro; Sosa-Garrocho, Marcela; Macías-Silva, Marina; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2012-05-01

    The copper-based drug Casiopeina II-gly (CasII-gly) shows potent antineoplastic effect and diminishes mitochondrial metabolism on several human and rodent malignant tumors. To elucidate whether CasII-gly also affects glycolysis, (a) the flux through the complete pathway and the initial segment and (b) the activities of several glycolytic enzymes of AS-30D hepatocarcinoma cells were determined. CasII-gly (IC₅₀ = 0.74-6.7 μM) was more effective to inhibit 24-72 h growth of several human carcinomas than 3-bromopyruvate (3BrPyr) (IC₅₀ = 45-100 μM) with no apparent effect on normal human-proliferating lymphocytes and HUVECs. In short-term 60-min experiments, CasII-gly increased tumor cell lactate production and glycogen breakdown. CasII-gly was 1.3-21 times more potent than 3BrPyr and cisplatin to inhibit tumor HK. As CasII-gly inhibited the soluble and mitochondrial HK activities and the flux through the HK-TPI glycolytic segment, whereas PFK-1, GAPDH, PGK, PYK activities and HPI-TPI segment flux were not affected, the data suggested glycogenolysis activation induced by HK inhibition. Accordingly, glycogen-depleted as well as oligomycin-treated cancer cells became more sensitive to CasII-gly. The inhibition time-course of HK by CasII-gly was slower than that of OxPhos in AS-30D cells, indicating that glycolytic toxicity was secondary to mitochondria, the primary CasII-gly target. In long-term 24-h experiments with HeLa cells, 5 μM CasII-gly inhibited OxPhos (80%), glycolysis (40%), and HK (42%). The present data indicated that CasII-gly is an effective multisite anticancer drug simultaneously targeting mitochondria and glycolysis. PMID:22349057

  4. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  5. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft.

    Senra, Joana M; Telfer, Brian A; Cherry, Kim E; McCrudden, Cian M; Hirst, David G; O'Connor, Mark J; Wedge, Stephen R; Stratford, Ian J

    2011-10-01

    PARP-1 is a critical enzyme in the repair of DNA strand breaks. Inhibition of PARP-1 increases the effectiveness of radiation in killing tumor cells. However, although the mechanism(s) are well understood for these radiosensitizing effects in vitro, the underlying mechanism(s) in vivo are less clear. Nicotinamide, a drug structurally related to the first generation PARP-1 inhibitor, 3-aminobenzamide, reduces tumor hypoxia by preventing transient cessations in tumor blood flow, thus improving tumor oxygenation and sensitivity to radiotherapy. Here, we investigate whether olaparib, a potent PARP-1 inhibitor, enhances radiotherapy, not only by inhibiting DNA repair but also by changing tumor vascular hemodynamics in non-small cell lung carcinoma (NSCLC). In irradiated Calu-6 and A549 cells, olaparib enhanced the cytotoxic effects of radiation (sensitizer enhancement ratio at 10% survival = 1.5 and 1.3) and DNA double-strand breaks persisted for at least 24 hours after treatment. Combination treatment of Calu-6 xenografts with olaparib and fractionated radiotherapy caused significant tumor regression (P = 0.007) relative to radiotherapy alone. To determine whether this radiosensitization was solely due to effects on DNA repair, we used a dorsal window chamber model to establish the drug/radiation effects on vessel dynamics. Olaparib alone, when given as single or multiple daily doses, or in combination with fractionated radiotherapy, increased the perfusion of tumor blood vessels. Furthermore, an ex vivo assay in phenylephrine preconstricted arteries confirmed olaparib to have higher vasodilatory properties than nicotinamide. This study suggests that olaparib warrants consideration for further development in combination with radiotherapy in clinical oncology settings such as NSCLC. PMID:21825006

  6. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling

  7. IGF-1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors

    Rota, Lauren M.; Albanito, Lidia; Shin, Marcus E.; Goyeneche, Corey L.; Shushanov, Sain; Gallagher, Emily J.; LeRoith, Derek; Lazzarino, Deborah A.; Wood, Teresa L.

    2014-01-01

    Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment. PMID:25092896

  8. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  9. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer

  10. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Guttmann, David M.; Hart, Lori [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Du, Kevin [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Seletsky, Andrew [Department of Biology, Drexel University, Philadelphia, Pennsylvania (United States); Koumenis, Constantinos, E-mail: koumenis@xrt.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  11. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation

    Carson, Cheryl; Raman, Pichai; Tullai, Jennifer; Xu, Lei; Henault, Martin; Thomas, Emily; Yeola, Sarita; Lao, Jianmin; McPate, Mark; Verkuyl, J. Martin; Marsh, George; Sarber, Jason; Amaral, Adam; Bailey, Scott; Lubicka, Danuta

    2015-01-01

    Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggest...

  12. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. PMID:27196773

  13. Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model.

    Hung, Ming-Szu; Xu, Zhidong; Chen, Yu; Smith, Emmanuel; Mao, Jian-Hua; Hsieh, David; Lin, Yu-Ching; Yang, Cheng-Ta; Jablons, David M; You, Liang

    2013-11-01

    Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2α in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. PMID:24008396

  14. Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition

    2015-01-01

    Curcumin (CUR) is a unique natural compound with promising anticancer and anti-inflammatory activities. However, the therapeutic efficacy of curcumin was challenged in clinical trials, mostly due to its low bioavailability, rapid metabolism, and elimination. We designed a nanodrug form of curcumin, which makes it stable and substantially enhances cellular permeability and anticancer activity at standard oral administration. Curcumin was conjugated as an ester to cholesteryl-hyaluronic acid (CHA) nanogel that is capable of targeted delivery to CD44-expressing drug-resistant cancer cells. CHA-CUR nanogels demonstrated excellent solubility and sustained drug release in physiological conditions. It induced apoptosis in cancer cells, suppressing the expression of NF-κB, TNF-α, and COX-2 cellular targets similar to free curcumin. Pharmacokinetic/pharmacodynamic (PK/PD) studies also revealed improved circulation parameters of CHA-CUR at oral, i.p. and i.v. administration routes. CHA-CUR showed targeted tumor accumulation and effective tumor growth inhibition in human pancreatic adenocarcinoma MiaPaCa-2 and aggressive orthotropic murine mammary carcinoma 4T1 animal models. CHA-CUR treatment was well-tolerated and resulted in up to 13-fold tumor suppression, making this nanodrug a potential candidate for cancer prevention and therapeutic treatment. PMID:25072100

  15. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells.

    Jeon, Min Ji; Kim, Won Gu; Lim, Seonhee; Choi, Hyun-Jeung; Sim, Soyoung; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae

    2016-01-01

    The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents. PMID:26463583

  16. Inhibition of Notch Signaling Blocks Growth of Glioblastoma Cell Lines and Tumor Neurospheres

    Chen, Jie; Kesari, Santosh; Rooney, Christine; Strack, Peter R.; Chen, Jihua; Shen, Huangxuan; Wu, Lizi; Griffin, James D.

    2010-01-01

    Glioblastoma (GBM) is the most common malignant brain tumor that is characterized by high proliferative rate and invasiveness. Since dysregulation of Notch signaling is implicated in the pathogenesis of many human cancers, here we investigated the role of Notch signaling in GBM. We found that there is aberrant activation of Notch signaling in GBM cell lines and human GBM-derived neurospheres. Inhibition of Notch signaling via the expression of a dominant negative form of the Notch coactivator...

  17. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis.

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Lee, Kenneth Ka Ho; Li, Weidong; Song, Xiaoyu; Zhou, Jia; Yang, Xuesong; Wang, Lijing

    2014-10-30

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients. PMID:25294818

  18. A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis.

    Bold, Guido; Schnell, Christian; Furet, Pascal; McSheehy, Paul; Brüggen, Josef; Mestan, Jürgen; Manley, Paul W; Drückes, Peter; Burglin, Marion; Dürler, Ursula; Loretan, Jacqueline; Reuter, Robert; Wartmann, Markus; Theuer, Andreas; Bauer-Probst, Beatrice; Martiny-Baron, Georg; Allegrini, Peter; Goepfert, Arnaud; Wood, Jeanette; Littlewood-Evans, Amanda

    2016-01-14

    This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role. PMID:26629594

  19. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  20. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1.

    Chen, Kuan-Hui Ethan; Walker, Ameae M

    2016-06-01

    Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21. PMID:26970274

  1. XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells.

    Taylor-Kashton, Cheryl; Lichtensztejn, Daniel; Baloglu, Erkan; Senapedis, William; Shacham, Sharon; Kauffman, Michael G; Kotb, Rami; Mai, Sabine

    2016-12-01

    Previous work has shown that the three-dimensional (3D) nuclear organization of telomeres is altered in cancer cells and the degree of alterations coincides with aggressiveness of disease. Nuclear pores are essential for spatial genome organization and gene regulation and XPO1 (exportin 1/CRM1) is the key nuclear export protein. The Selective Inhibitor of Nuclear Export (SINE) compounds developed by Karyopharm Therapeutics (KPT-185, KPT-330/selinexor, and KPT-8602) inhibit XPO1 nuclear export function. In this study, we investigated whether XPO1 inhibition has downstream effects on the 3D nuclear organization of the genome. This was assessed by measuring the 3D telomeric architecture of normal and tumor cells in vitro and ex vivo. Our data demonstrate for the first time a rapid and preferential disruption of the 3D nuclear organization of telomeres in tumor cell lines and in primary cells ex vivo derived from treatment-naïve newly diagnosed multiple myeloma patients. Normal primary cells in culture as well as healthy lymphocyte control cells from the same patients were minimally affected. Using both lymphoid and non-lymphoid tumor cell lines, we found that the downstream effects on the 3D nuclear telomere structure are independent of tumor type. We conclude that the 3D nuclear organization of telomeres is a sensitive indicator of cellular response when treated with XPO1 inhibitors. J. Cell. Physiol. 231: 2711-2719, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991404

  2. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.

    Li, Li; Lin, Jiumao; Sun, Guodong; Wei, Lihui; Shen, Aling; Zhang, Mingyue; Peng, Jun

    2016-06-01

    Angiogenesis is an essential process of cancer progression and is regulated by multiple intracellular signaling pathways, including signal transducer and activator of transcription 3 (STAT3) and sonic hedgehog (SHH). Thus, these pathways have become a promising target for anti‑cancer therapeutic strategies. Oleanolic acid (OA) is an active compound present in various herbal medicines, which have been used historically for the clinical treatment of various types of human malignancies, including colorectal cancer (CRC). The present study used a CRC mouse xenograft model and human umbilical vein endothelial cells (HUVECs) to evaluate the effect of OA on tumor angiogenesis and on the activation of the STAT3 and SHH signaling pathways. It was determined that OA treatment significantly inhibited tumor growth and reduced intratumoral microvessel density (MVD) in CRC mice. In addition, OA treatment inhibited the proliferation, migration and tube formation in HUVECs, in a dose and time-dependent manner. Furthermore, OA markedly suppressed the activation of the STAT3 and SHH signaling pathways and inhibited the expression of the pro‑angiogenic vascular endothelial growth factor A and basic fibroblast growth factor, two important target genes of the aforementioned signaling pathways. Therefore it is suggested that inhibition of tumor angiogenesis via the suppression of multiple signaling pathways may be one of the underlying mechanisms by which OA exerts its anti-cancer effect. PMID:27108756

  3. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Chen Wantao

    2008-06-01

    Full Text Available Abstract Background Antisense oligonucleotides against hTR (As-ODN-hTR have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma.

  4. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  5. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice.

    Braeuning, Albert; Gavrilov, Alina; Geissler, Miriam; Wenz, Christine; Colnot, Sabine; Templin, Markus F; Metzger, Ute; Römer, Michael; Zell, Andreas; Schwarz, Michael

    2016-06-01

    Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound. PMID:26838046

  6. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  7. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  8. Fatty Acid Composition of Tissue Cultured Breast Carcinoma and the Effect of Stearoyl-CoA Desaturase 1 Inhibition

    Mohammadzadeh, Fatemeh; Mosayebi, Gholamali; Montazeri, Vahid; Darabi, Maryam; Fayezi, Shabnam; Shaaker, Maghsod; Rahmati, Mohammad; Baradaran, Behzad; Mehdizadeh, Amir

    2014-01-01

    Purpose Stearoyl-CoA desaturase 1 (SCD1) is a novel therapeutic target in various malignancies, including breast cancer. The present study was designed to investigate the effect of the pharmacologic inhibition of SCD1 on fatty acid composition in tissue explant cultures of human breast cancer and to compare these effects with those in adjacent nonneoplastic breast tissue. Methods Paired samples of tumor and adjacent noncancerous tissue were isolated from 12 patients with infiltrating ductal breast cancer. Samples were explant cultured in vitro, exposed to the highly selective SCD1 inhibitor CAY10566, and examined for fatty acid composition by gas liquid chromatography. The cytotoxic and antigrowth effects were evaluated by quantification of lactate dehydrogenase release and by sulforhodamine B (SRB) measurement, respectively. Results Breast cancer tissue samples were found to have higher levels of monounsaturated fatty acids (MUFA) (p<0.001) and arachidonic acid (20:4n-6, p<0.001) and a lower level of linoleic acid (18:2n-6, p=0.02) than the normal-appearing breast tissues. While exhibiting no evident cytotoxicity, treatment with the SCD1 inhibitor, CAY10566 (0.1-1 µM), for 48 hours significantly increased 18:2n-6 levels in both the tumor and adjacent normal-appearing tissue (approximately 1.2 fold, p<0.05). However, the breast cancer tissue samples showed significant increases in the levels of MUFA and 20:4n-6 compared to the normal-appearing breast tissues (p<0.05). The SRB growth assay revealed a higher rate of inhibition with the SCD1 inhibitor in breast cancer tissues than in normal-appearing tissues (p<0.01, 41% vs. 29%). The SCD1 inhibitor also elevated saturated fatty acid (1.46-fold, p=0.001) levels only in the tumor tissue explant. Conclusion The fatty acid composition and response to SCD1 inhibition differed between the explant cultures from breast cancer and the adjacent normal-appearing tissue. Altered fatty acid composition induced by SCD1 inhibition

  9. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture

    Hardy Michele E

    2012-05-01

    Full Text Available Abstract Background Glycyrrhizin (GA and primary metabolite 18β-glycyrrhetinic acid (GRA are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines. Methods Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein. Results GRA treatment reduced rotavirus yields by 99% when added to infected cultures post-- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry. Conclusions GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway.

  10. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    Guo, Run-Sheng; Yu, Yue; Chen, Jun; Chen, Yue-Yu; Shen, Na; Qiu, Ming

    2016-01-01

    Background: Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated. Methods: BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay. Results: BASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration. Conclusions: Downregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer. PMID:27270539

  11. Thyroid hormone requirement for retinoic acid induction of mouse mammary tumor virus expression.

    Bolander, F F; Blackstone, M E

    1990-01-01

    In normal mouse mammary epithelium, insulin, cortisol, and prolactin are absolute requirements for mouse mammary tumor virus expression. Retinoic acid further increased mouse mammary tumor virus expression two- to threefold but only when triiodothyronine was also present; neither retinoic acid nor triiodothyronine alone had any effect.

  12. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  13. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  14. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    Ishihara, K; Miyakawa, H; Hasegawa, A.; Takazoe, I; Kawai, Y.

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria ...

  15. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  16. Corrosion inhibition of steel in sulphuric acid by pyrrolidine derivatives

    Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (R p) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 x 10-3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies

  17. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44

    Morrison, H.L.

    2002-03-01

    The neurofibromatosis-2 (NF2) gene encodes merlin, an ezrin-radixin-moesin-(ERM)-related protein, that functions as a tumor suppressor. I found that merlin plays a critical role in the establishment and maintenance of contact inhibition of growth. At high cell density, merlin is activated and blocks profileration with corresponding changes in cell cycle parameters. Merlin interfered with growth factor receptor or Ras-dependent signal transduction of MAP kinase and the step of interference was located downstream of Ras and Raf and upstream of MEK. Merlins growth inhibiting function depended on interaction with a specific domain of the cytoplasmic tail of CD44. In addition merlin activity and phosphorylation status depended on the extracellular ligand associated with the N-terminus of CD44. At high cell densities, in the presence of the extracellular ligand HA, merlin was dephosphorylated and bound directly to a basic amino acid motif in the cytoplasmic tail of CD44. Ezrin and moesin, which are also known to bind to the same basic amino acid motif in CD44 were absent within this growth inhibitory complex. Alternatively in logarithmically growing cells, merlin was inactive, phosphorylated and in a complex with ezrin and moesin. This growth permissive complex was also associated with the cytoplasmic tail of CD44. My data provide not only significant clues about how merlin functions as a tumor suppressor but revealed the existence of a novel molecular switch that, under the influence of ligands in the microenvironment, controls a cell decision to proliferate or growth arrest. (orig.)

  18. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation.

    Cheryl Carson

    Full Text Available Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.

  19. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

    Sitti Rahma Abdul Hafid

    Full Text Available Tocotrienol-rich fraction (TRF from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL from 4T1 cells (DC+TL once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF inhibited (p<0.05 tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC-treated 4T1 cells produced higher (p<0.05 levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL assay also showed enhanced tumor-specific killing (p<0.05 by CD8(+ T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

  20. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    Rolando Romina

    2008-02-01

    Full Text Available Abstract Background Activation of peroxisome proliferator-activated receptors γ (PPARγ induces diverse effects on cancer cells. The thiazolidinediones (TZDs, such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ, a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. Methods The effect on LMM3 cell viability and nitric oxide (NO production of different doses of RGZ, 15-dPGJ2, BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay and invasion in Transwells were performed. Metalloproteinase activity (MMP was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. Results RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose. RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A

  1. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ2, BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity. On

  2. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  3. Breast cancer tumor growth is efficiently inhibited by dendritic cell transfusion in a murine model

    Viet Quoc Pham

    2014-03-01

    Full Text Available The ability of dendritic cells to efficiently present tumor-derived antigens when primed with tumor cell lysates makes them attractive as an approach for cancer treatment. This study aimed to evaluate the effects of dendritic cell transfusion dose on breast cancer tumor growth in a murine model. Dendritic cells were produced from allogeneic bone marrow-derived mononuclear cells that were cultured in RPMI 1640 medium supplemented with 20 ng/mL GM-CSF and 20 ng/mL IL-4 for 7 days. These cells were checked for maturation before being primed with a cancer cell-derived antigen. Cancer cell antigens were produced by a rapid freeze-thaw procedure using a 4T1 cell line. Immature dendritic cells were loaded with 4T1 cellderived antigens. Dendritic cells were transfused into mice bearing tumors at three different doses, included 5.104, 105, and 106 cells/mouse with a control consisting of RPMI 1640 media alone. The results showed that dendritic cell therapy inhibited breast cancer tumors in a murine model; however, this effect depended on dendritic cell dose. After 17 days, in the treated groups, tumor size decreased by 43%, 50%, and 87.5% for the doses of 5 and times; 104, 105, and 106 dendritic cells, respectively, while tumor size in the control group decreased by 44%. This result demonstrated that dendritic cell therapy is a promising therapy for breast cancer treatment. [Biomed Res Ther 2014; 1(3.000: 85-92

  4. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    Venkataraman, Sujatha; Alimova, Irina; Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D.; Handler, Michael; Foreman, Nicholas K.; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 r...

  5. Scoparone Exerts Anti-Tumor Activity against DU145 Prostate Cancer Cells via Inhibition of STAT3 Activity

    Kim, Jeong-Kook; Kim, Joon-Young; Kim, Han-Jong; Park, Keun-Gyu; Harris, Robert A.; Cho, Won-Jea; Lee, Jae-Tae; Lee, In-Kyu

    2013-01-01

    Scoparone, a natural compound isolated from Artemisia capillaris, has been used in Chinese herbal medicine to treat neonatal jaundice. Signal transducer and activator of transcription 3 (STAT3) contributes to the growth and survival of many human tumors. This study was undertaken to investigate the anti-tumor activity of scoparone against DU145 prostate cancer cells and to determine whether its effects are mediated by inhibition of STAT3 activity. Scoparone inhibited proliferation of DU145 ce...

  6. Adenovirus E4orf6 protein inhibits DNA repair and radiosensitizes human tumor cells

    Full text: Double strand break repair (DSBR), although vital to normal cell survival and genomic stability, limits tumor cell kill following treatment with ionizing radiation (IR). The primary mechanism for DSBR in mammalian cells, non-homologous end joining (NHEJ), requires multiple proteins, one of which is DNA-dependent protein kinase (DNA-PK). Cells deficient in DNA-PK, although phenotypically normal, are among the most radiosensitive cells available. It has previously been shown that the E4orf6 gene product of adenovirus type 5 interacts with and inhibits the activity of DNA-PK. Therefore, we hypothesized that E4orf6, by interacting with DNA-PK, would inhibit the DSBR capacity of tumor cells and thus increase tumor cell kill upon treatment with IR. Stable clones expressing either wild type E4orf6, an E4orf6 mutant (L245P) that is defective at E1B-55K localization to the nucleus, or a neomycin control vector were established in colorectal carcinoma (RKO) cells. Based on clonogenic assays, we report a 10-fold increase in radiosensitivity of the wild type E4orf6 expressing clones at 6Gy of IR compared to both the neomycin and L245P mutant clones. Furthermore, the increase in sensitivity correlates with inhibition in DSBR based on sub-lethal damage repair assay. Preliminary data suggests that the transfected E4orf6 interacts with the endogenous DNA-PK and this results in a 20% decrease in the kinase activity of the DNA-PK compared to neomycin expressing control cells. These results indicate that E4orf6 radiosensitizes tumor cells by inhibiting their DSBR activity. We have constructed an adenoviral vector expressing E4orf6 in a tetracycline-inducible manner, which provides temporal control for E4orf6 expression. We are currently investigating the radiosensitizing properties of this expression vector. Successful use of this vector in vitro and in mouse xenografts, will set the stage for its future use in conjunction with localized radiotherapy of radioresistant

  7. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  8. Oncogenic Mutation of AIMP2/p38 Inhibits Its Tumor-Suppressive Interaction with Smurf2.

    Kim, Dae Gyu; Lee, Jin Young; Lee, Ji-Hyun; Cho, Ha Yeon; Kang, Beom Sik; Jang, Song-Yee; Kim, Myung Hee; Guo, Min; Han, Jung Min; Kim, Seong-Jin; Kim, Sunghoon

    2016-06-01

    AIMP2/p38 is a multifunctional tumor suppressor that normally resides in the cytosol as a scaffold protein of the multi-tRNA synthetase complex (MSC). One of the tumor-suppressive functions of AIMP2 is to facilitate ubiquitin-mediated degradation of FUSE-binding protein (FBP, FUBP1), a transcriptional activator of c-Myc. However, the mechanism by which AIMP2 functions within this pathway and its significance in tumorigenesis are uncertain. Here, we report that Smurf2 is responsible for AIMP2-mediated ubiquitination of FBP, and a mutation in AIMP2 that inhibited its nuclear interaction with Smurf2 enhanced cellular transformation and tumorigenesis in vivo Treatment of HeLa cells with TGFβ resulted in the phosphorylation of AIMP2 on S156, a residue that is exposed on the embedded GST domain of AIMP2. We further found that phospho-AIMP2 dissociated from the MSC and translocated to the nucleus, where it bound to Smurf2, enhancing ubiquitination of FBP. AIMP2 also inhibited nuclear export of Smurf2 to sustain TGFβ signaling. Collectively, these findings present a novel tumor-suppressive interaction between AIMP2 and Smurf2 and suggest that the disruption of this interaction can lead to oncogenic transformation. Cancer Res; 76(11); 3422-36. ©2016 AACR. PMID:27197155

  9. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells.

    Yoon, Jennifer R; Whipple, Rebecca A; Balzer, Eric M; Cho, Edward H; Matrone, Michael A; Peckham, Michelle; Martin, Stuart S

    2011-10-01

    Detached breast tumor cells produce dynamic microtubule protrusions that promote reattachment of cells and are termed tubulin microtentacles (McTNs) due to their mechanistic distinctions from actin-based filopodia/invadopodia and tubulin-based cilia. McTNs are enriched with vimentin and detyrosinated α-tubulin, (Glu-tubulin). Evidence suggests that vimentin and Glu-tubulin are cross-linked by kinesin motor proteins. Using known kinesin inhibitors, Lidocaine and Tetracaine, the roles of kinesins in McTN formation and function were tested. Live-cell McTN counts, adhesion assays, immunofluorescence, and video microscopy were performed to visualize inhibitor effects on McTNs. Viability and apoptosis assays were used to confirm the non-toxicity of the inhibitors. Treatments of human non-tumorigenic mammary epithelial and breast tumor cells with Lidocaine or Tetracaine caused rapid collapse of vimentin filaments. Live-cell video microscopy demonstrated that Tetracaine reduces motility of intracellular GFP-kinesin and causes centripetal collapse of McTNs. Treatment with Tetracaine inhibited the extension of McTNs and their ability to promote tumor cell aggregation and reattachment. Lidocaine showed similar effects but to a lesser degree. Our current data support a model in which the inhibition of kinesin motor proteins by Tetracaine leads to the reductions in McTNs, and provides a novel mechanism for the ability of this anesthetic to decrease metastatic progression. PMID:21069453

  10. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Xiao HAN; Jian-xun LIU; Xin-zhi LI

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes.Methods: Cardiac myocytes were incubated under starvation conditions (GD) for O, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sat B (50 μmol/L) in the presence or absence of chloro-quine (3 μmol/L) under GD 3 h, the amount of LC3-11, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. More-over, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis.Results: Immunoblot analysis showed that the amount of LC3-11 in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-11, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present.Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy.

  11. Structural and Enzymatic Analysis of Tumor-Targeted Antifolates That Inhibit Glycinamide Ribonucleotide Formyltransferase.

    Deis, Siobhan M; Doshi, Arpit; Hou, Zhanjun; Matherly, Larry H; Gangjee, Aleem; Dann, Charles E

    2016-08-16

    Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, β-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition. PMID:27439469

  12. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  13. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes.

    Wei, Yao; Li, Mingzhen; Cui, Shufang; Wang, Dong; Zhang, Chen-Yu; Zen, Ke; Li, Limin

    2016-01-01

    Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release. PMID:27322220

  14. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected. PMID:27306546

  15. Evaluation of [1-11C]-α-aminoisobutyric acid for tumor detection and amino acid transport measurement: Spontaneous canine tumor studies

    Alpha-aminoisobutyric acid (AIB) or α-methyl alanine, is a nonmetabolized amino acid treansported into cells particularly malignant cells, predominantly by the ''A'' amino acid transport system. Since it is not metabolized, [1-11C]-AIB can be used to quantify A-type amino acid transport into cells using a relatively simple compartmental model and quantitative imaging procedures (e.g. positron tomography). The tissue distribution of [1-11C]-AIB was determined in six dogs bearing spontaneous tumors, including lymphosarcoma, osteogenic sarcoma, mammary carcinoma, and adenocarcinoma. Quantitative imaging with tissue radioassay confirmation at necropsy showed poor to excellent tumor localization. However, in all cases the concentrations achieved appear adequate for amino acid transport measurement at known tumor locations. The observed low normal brain (due to blood-brain barrier exclusion) and high (relative to brain) tumor concentrations of [1-11C]-AIB suggest that this agent may prove effective for the early detection of human brain tumors. (orig.)

  16. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  17. The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma

    Lu ShihHsin

    2010-10-01

    Full Text Available Abstract Background The esophageal cancer related gene 4 (ECRG4 was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503. ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC. Methods Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting. Results The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P P > 0.05. Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P Conclusion ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.

  18. Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice.

    Kim, Heungnam; Gao, Wei; Ho, Mitchell

    2013-01-01

    Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies. PMID:24260587

  19. Novel immunocytokine IL12-SS1 (Fv inhibits mesothelioma tumor growth in nude mice.

    Heungnam Kim

    Full Text Available Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12 and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv, was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG. The single-chain IL12-SS1 (Fv immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226 and ovarian (OVCAR-3 cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226 grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies.

  20. Inhibition of tumor angiogenesis by TTF1 from extract of herbal medicine

    Chao Liu

    2011-01-01

    Full Text Available AIM: To study the inhibition of tumor angiogenesis by 5,2,4´-trihydroxy-6,7,5´-trimethoxyflavone (TTF1 isolated from an extract of herbal medicine Sorbaria sorbifolia. METHODS: Angiogenic activity was assayed using the chick embryo chorioallantoic membrane (CAM method. Microvessel density (MVD was determined by staining tissue sections immunohistochemically for CD34 using the Weidner capillary counting method. The mRNA and protein levels of vascular endothelial growth factor (VEGF, vascular endothelialgrowth factor receptor 2 (VEGFR2, Flk-1/KDR, basic fibroblast growth factor (bFGF, cyclo-oxygenase (COX-2 and hypoxia-inducible factor (HIF-1α were detected by quantitative real-time polymerase chain reaction and Western blotting analysis. RESULTS: The TTF1 inhibition rates for CAM were 30.8%, 38.2% and 47.5% with treatment concentrations of 25, 50 and 100 μg/embryo × 5 d, respectively. The inhibitory rates for tumor size were 43.8%, 49.4% and 59.6% at TTF1 treatment concentrations of 5, 10, and 20 μmol/kg, respectively. The average MVD was 14.2, 11.2 and 8.5 at treatment concentrations of 5 μmol/kg, 10 μmol/kg and 20 μmol/kg TTF1, respectively. The mRNA and protein levels of VEGF, KDR, bFGF, COX-2 and HIF-1α in mice treated with TTF1 were significantly decreased. CONCLUSION: TTF1 can inhibit tumor angiogenesis, and the mechanism may be associated with the down-regulation of VEGF, KDR, bFGF, HIF-1α and COX-2.

  1. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1-14C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  2. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  3. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells

    The effect of pertussis toxin on somatostatin-induced K+ current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K+ current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K+, Na+, and Ca2+ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with [32P]NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment

  4. Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition

    Suraweera, Amila; Münch, Christian; Hanssum, Ariane; Bertolotti, Anne

    2012-01-01

    Summary The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the deleterious consequences of proteasome inhibition are rescued by amino acid supplementation. In all three systems, this rescuing effe...

  5. Colon tumor cell growth inhibitory activity of sulindac sulfide and other NSAIDs is associated with PDE5 inhibition

    Tinsley, Heather N.; Gary, Bernard D.; Thaiparambil, Jose; Li, Nan; Lu, Wenyan; Li, Yonghe; Maxuitenko, Yulia Y.; Adam B. Keeton; Piazza, Gary A.

    2010-01-01

    In experimental studies, nonsteroidal anti-inflammatory drugs (NSAIDs) display promising antineoplastic activity, but toxicity resulting from cyclooxygenase (COX) inhibition limits their clinical use for chemoprevention. Studies suggest that the mechanism may be COX independent, although alternative targets have not been well defined. Here we show that the NSAID, sulindac sulfide (SS) inhibits cGMP phosphodiesterase (PDE) activity in colon tumor cell lysates at concentrations that inhibit col...

  6. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV) vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF) as a potent tumor suppressor and a potential candidate for cancer gene therapy. Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF) was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs). Subsequently, colorectal peritoneal carcinomatosis (CRPC) mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD) and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM) showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant higher than those in rAAV2-null or normal

  7. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Wu Qin Jie

    2012-03-01

    Full Text Available Abstract Background Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF as a potent tumor suppressor and a potential candidate for cancer gene therapy. Methods Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs. Subsequently, colorectal peritoneal carcinomatosis (CRPC mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. Results rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant

  8. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma.

    Meng, Xiangrui; Chen, Xiaoqi; Lu, Peng; Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. PMID:27045085

  9. Metformin enhances tamoxifen-mediated tumor growth inhibition in ER-positive breast carcinoma

    Tamoxifen, an endocrine therapy drug used to treat breast cancer, is designed to interrupt estrogen signaling by blocking the estrogen receptor (ER). However, many ER-positive patients are low reactive or resistant to tamoxifen. Metformin is a widely used anti-diabetic drug with noteworthy anti-cancer effects. We investigated whether metformin has the additive effects with tamoxifen in ER-positive breast cancer therapy. The efficacy of metformin alone and in combination with tamoxifen against ER-positive breast cancer was analyzed by cell survival, DNA replication activity, plate colony formation, soft-agar, flow cytometry, immunohistochemistry, and nude mice model assays. The involved signaling pathways were detected by western blot assay. When metformin was combined with tamoxifen, the concentration of tamoxifen required for growth inhibition was substantially reduced. Moreover, metformin enhanced tamoxifen-mediated inhibition of proliferation, DNA replication activity, colony formation, soft-agar colony formation, and induction of apoptosis in ER-positive breast cancer cells. In addition, these tamoxifen-induced effects that were enhanced by metformin may be involved in the bax/bcl-2 apoptotic pathway and the AMPK/mTOR/p70S6 growth pathway. Finally, two-drug combination therapy significantly inhibited tumor growth in vivo. The present work shows that metformin and tamoxifen additively inhibited the growth and augmented the apoptosis of ER-positive breast cancer cells. It provides leads for future research on this drug combination for the treatment of ER-positive breast cancer

  10. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC