WorldWideScience

Sample records for acid induces il-17a

  1. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane.

    Summers, S A; Odobasic, D; Khouri, M B; Steinmetz, O M; Yang, Y; Holdsworth, S R; Kitching, A R

    2014-06-01

    Interleukin (IL)-17A is increased both in serum and in kidney biopsies from patients with lupus nephritis, but direct evidence of pathogenicity is less well established. Administration of pristane to genetically intact mice results in the production of autoantibodies and proliferative glomerulonephritis, resembling human lupus nephritis. These studies sought to define the role of IL-17A in experimental lupus induced by pristane administration. Pristane was administered to wild-type (WT) and IL-17A(-/-) mice. Local and systemic immune responses were assessed after 6 days and 8 weeks, and autoimmunity, glomerular inflammation and renal injury were measured at 7 months. IL-17A production increased significantly 6 days after pristane injection, with innate immune cells, neutrophils (Ly6G(+)) and macrophages (F4/80(+)) being the predominant source of IL-17A. After 8 weeks, while systemic IL-17A was still readily detected in WT mice, the levels of proinflammatory cytokines, interferon (IFN)-γ and tumour necrosis factor (TNF) were diminished in the absence of endogenous IL-17A. Seven months after pristane treatment humoral autoimmunity was diminished in the absence of IL-17A, with decreased levels of immunoglobulin (Ig)G and anti-dsDNA antibodies. Renal inflammation and injury was less in the absence of IL-17A. Compared to WT mice, glomerular IgG, complement deposition, glomerular CD4(+) T cells and intrarenal expression of T helper type 1 (Th1)-associated proinflammatory mediators were decreased in IL-17A(-/-) mice. WT mice developed progressive proteinuria, but functional and histological renal injury was attenuated in the absence of IL-17A. Therefore, IL-17A is required for the full development of autoimmunity and lupus nephritis in experimental SLE, and early in the development of autoimmunity, innate immune cells produce IL-17A. PMID:24528105

  2. IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation

    Sun, Jie; Zhang, Susu; Zhang, Xiang; Zhang, Xiaobao; Dong, Hongquan; Qian, Yanning

    2015-01-01

    Background Neuroinflammation is considered a risk factor for impairments in neuronal function and cognition that arise with trauma, infection, and/or disease. IL-17A has been determined to be involved in neurodegenerative diseases such as multiple sclerosis. Recently, IL-17A has been shown to be upregulated in lipopolysaccharide(LPS)-induced systemic inflammation. This study aims to explore the role of IL-17A in LPS-induced neuroinflammation and cognitive impairment. Methods Male Sprague–Dawl...

  3. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice

    Kurimoto Etsuko

    2013-01-01

    Full Text Available Abstract Background Pulmonary emphysema is characterized by alveolar destruction and persistent inflammation of the airways. Although IL-17A contributes to many chronic inflammatory diseases, it’s role in the inflammatory response of elastase-induced emphysema remains unclear. Methods In a model of elastase-induced pulmonary emphysema we examined the response of IL-17A-deficient mice, monitoring airway inflammation, static compliance, lung histology and levels of neutrophil-related chemokine and pro-inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Wild-type mice developed emphysematous changes in the lung tissue on day 21 after elastase treatment, whereas emphysematous changes were decreased in IL-17A-deficient mice compared to wild-type mice. Neutrophilia in BAL fluid, seen in elastase-treated wild-type mice, was reduced in elastase-treated IL-17A-deficient mice on day 4, associated with decreased levels of KC, MIP-2 and IL-1 beta. Elastase-treated wild-type mice showed increased IL-17A levels as well as increased numbers of IL-17A+ CD4 T cells in the lung in the initial period following elastase treatment. Conclusions These data identify the important contribution of IL-17A in the development of elastase-induced pulmonary inflammation and emphysema. Targeting IL-17A in emphysema may be a potential therapeutic strategy for delaying disease progression.

  4. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice

    Kurimoto Etsuko; Miyahara Nobuaki; Kanehiro Arihiko; Waseda Koichi; Taniguchi Akihiko; Ikeda Genyo; Koga Hikari; Nishimori Hisakazu; Tanimoto Yasushi; Kataoka Mikio; Iwakura Yoichiro; Gelfand Erwin W; Tanimoto Mitsune

    2013-01-01

    Abstract Background Pulmonary emphysema is characterized by alveolar destruction and persistent inflammation of the airways. Although IL-17A contributes to many chronic inflammatory diseases, it’s role in the inflammatory response of elastase-induced emphysema remains unclear. Methods In a model of elastase-induced pulmonary emphysema we examined the response of IL-17A-deficient mice, monitoring airway inflammation, static compliance, lung histology and levels of neutrophil-related chemokine ...

  5. Methotrexate ameliorates pristane-induced arthritis by decreasing IFN-γ and IL-17A expressions

    Wei-kun HOU; Lie-su MENG; Fang ZHENG; Yu-rong WEN; Wen-hua ZHU; Cong-shan JIANG; Xiao-jing HE; Yan ZHOU; She-min LU

    2011-01-01

    Objective:This study was carried out to test the effects of methotrexate(MTX)and black seed oil(BSO)on pristane-induced arthritis(PIA)in rats.Methods:Inbred dark agouti(DA)rats were induced by a single subcutaneous injection of pristane,and then treated with MTX or BSO.Arthritis severity was evaluated macroscopic,ally and microscopically.Plasma nitric oxide(NO)concentration was determined by the Griess method and cytokine mRNA expression in the spleen was detected by the real-time reverse transcription-polymerase chain reaction(RT-PCR).Results:The clinical arthritis severity was decreased after MTX treatment,while the BSO groups did not show significant changes compared with the disease group.The plasma NO level of the MTX group was significantly decreased compared with the disease group,but the BSO groups showed no difference from the disease group in plasma NO levels.The interferon-γ(IFN-γ)and interleukin-17A(IL-17A)mRNA expressions in the spleens were significantly decreased in the MTX group,but only showed a declining trend in the BSO groups compared with the disease group.Neither MTX nor BSO had an effect on the mRNA expressions of IL-4,transforming growth factor β(TGF-β),and tumor necrosis factor-α(TNF-α)in the spleen.Conclusions:MTX,but not BSO,can reduce the arthritis severity and decrease the mRNA expressions of IFN-γ and IL-17A in pristane-induced arthritis of rats.

  6. High-Fat Diet-Induced IL-17A Exacerbates Psoriasiform Dermatitis in a Mouse Model of Steatohepatitis.

    Vasseur, Philippe; Serres, Laura; Jégou, Jean-François; Pohin, Mathilde; Delwail, Adriana; Petit-Paris, Isabelle; Levillain, Pierre; Favot, Laure; Samson, Michel; Yssel, Hans; Morel, Franck; Silvain, Christine; Lecron, Jean-Claude

    2016-09-01

    Recent studies suggest that psoriasis may be more severe in patients with nonalcoholic fatty liver disease, particularly in those with the inflammatory stage of steatohepatitis [nonalcoholic steatohepatitis (NASH)]. Herein, we investigated the impact of diet-induced steatohepatitis on the severity of imiquimod-induced psoriasiform dermatitis. Mice fed with a high-fat diet developed steatohepatitis reminiscent of human NASH with ballooning hepatocytes and significant liver fibrosis. Mice with steatohepatitis also displayed moderate cutaneous inflammation characterized by erythema, dermal infiltrates of CD45(+) leukocytes, and a local production of IL-17A. Moreover, steatohepatitis was associated with an epidermal activation of caspase-1 and cutaneous overexpression of IL-1β. Imiquimod-induced psoriasiform dermatitis was exacerbated in mice with steatohepatitis as compared to animals fed with a standard diet. Scale formation and acanthosis were aggravated, in correlation with increased IL-17A and IL-22 expression in inflamed skins. Finally, intradermal injection of IL-17A in standard diet-fed mice recapitulated the cutaneous pathology of mice with steatohepatitis. The results show that high-fat diet-induced steatohepatitis aggravates the inflammation in psoriasiform dermatitis, via the cutaneous production of IL-17A. In agreement with clinical data, this description of a novel extrahepatic manifestation of NASH should sensitize dermatologists to the screening and the management of fatty liver in psoriatic patients. PMID:27423696

  7. IL-17A Induces Pendrin Expression and Chloride-Bicarbonate Exchange in Human Bronchial Epithelial Cells

    Adams, Kelly M.; Abraham, Valsamma; Spielman, Daniel; Kolls, Jay K.; Rubenstein, Ronald C.; Conner, Gregory E.; Cohen, Noam A.; Kreindler, James L.

    2014-01-01

    The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to ...

  8. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes.

    Shinjo, Takanori; Iwashita, Misaki; Yamashita, Akiko; Sano, Tomomi; Tsuruta, Mitsudai; Matsunaga, Hiroaki; Sanui, Terukazu; Asano, Tomoichiro; Nishimura, Fusanori

    2016-08-19

    Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes. PMID:27311858

  9. MCPIP1 RNase Is Aberrantly Distributed in Psoriatic Epidermis and Rapidly Induced by IL-17A.

    Ruiz-Romeu, Ester; Ferran, Marta; Giménez-Arnau, Ana; Bugara, Beata; Lipert, Barbara; Jura, Jolanta; Florencia, Edwin F; Prens, Errol P; Celada, Antonio; Pujol, Ramon M; Santamaria-Babí, Luis F

    2016-08-01

    ZC3H12A, which encodes the RNase monocyte chemotactic protein-induced protein 1 (MCPIP1), is up-regulated in psoriatic skin and reduced to normal levels after clinical treatments with anti-IL-17A/IL-17R neutralizing antibodies. In IL-17A-stimulated keratinocytes, MCPIP1 is rapidly increased at the transcript and protein levels. Also, IL-17A was found to be the main inducer of ZC3H12A expression in keratinocytes treated with supernatants derived from a Streptococcus pyogenes-activated psoriatic ex vivo model based on the co-culture of psoriatic cutaneous lymphocyte-associated antigen (CLA(+)) T cells and lesional epidermal cells. Moreover, MCPIP1 was aberrantly distributed in the suprabasal layers of psoriatic epidermis. In psoriatic samples, IL-17A-stimulated epidermal cell suspensions showed an increased MCPIP1 expression, especially in the mid-differentiated cellular compartment. The knockdown of ZC3H12A showed that this RNase participates in the regulation of the mRNAs present in suprabasal differentiated keratinocytes. Furthermore, JAK/STAT3 inhibition prevented the IL-17A-dependent induction of MCPIP1. In the mouse model of imiquimod-induced psoriasis, Zc3h12a expression was abrogated in Il17ra(-/-) mice. These results support the notion that IL-17A-mediated induction of MCPIP1 is involved in the regulation of local altered gene expression in suprabasal epidermal layers in psoriasis. PMID:27180111

  10. Methotrexate ameliorates pristane-induced arthritis by decreasing IFN-γ and IL-17A expressions*

    Hou, Wei-kun; Meng, Lie-su; Zheng, Fang; Wen, Yu-rong; Zhu, Wen-Hua; Jiang, Cong-shan; He, Xiao-Jing; Zhou, Yan; Lu, She-Min

    2011-01-01

    Objective: This study was carried out to test the effects of methotrexate (MTX) and black seed oil (BSO) on pristane-induced arthritis (PIA) in rats. Methods: Inbred dark agouti (DA) rats were induced by a single subcutaneous injection of pristane, and then treated with MTX or BSO. Arthritis severity was evaluated macroscopically and microscopically. Plasma nitric oxide (NO) concentration was determined by the Griess method and cytokine mRNA expression in the spleen was detected by the real-t...

  11. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A.

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-06-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  12. IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori.

    Beverly R E A Dixon

    Full Text Available Helicobacter pylori colonization of the human stomach can lead to adverse clinical outcomes including gastritis, peptic ulcers, or gastric cancer. Current data suggest that in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization. Specifically, CD4+ T cell responses impact the pathology elicited in response to H. pylori. Because gastritis is believed to be the initiating host response to more detrimental pathological outcomes, there has been a significant interest in pro-inflammatory T cell cytokines, including the cytokines produced by T helper 17 cells. Th17 cells produce IL-17A, IL-17F, IL-21 and IL-22. While these cytokines have been linked to inflammation, IL-17A and IL-22 are also associated with anti-microbial responses and control of bacterial colonization. The goal of this research was to determine the role of IL-22 in activation of antimicrobial responses in models of H. pylori infection using human gastric epithelial cell lines and the mouse model of H. pylori infection. Our data indicate that IL-17A and IL-22 work synergistically to induce antimicrobials and chemokines such as IL-8, components of calprotectin (CP, lipocalin (LCN and some β-defensins in both human and primary mouse gastric epithelial cells (GEC and gastroids. Moreover, IL-22 and IL-17A-activated GECs were capable of inhibiting growth of H. pylori in vitro. While antimicrobials were activated by IL-17A and IL-22 in vitro, using a mouse model of H. pylori infection, the data herein indicate that IL-22 deficiency alone does not render mice more susceptible to infection, change their antimicrobial gene transcription, or significantly change their inflammatory response.

  13. Reduction of IL-17A Might Suppress the Th1 Response and Promote the Th2 Response by Boosting the Function of Treg Cells during Silica-Induced Inflammatory Response In Vitro

    Wen Tang

    2014-01-01

    Full Text Available Silica inhalation can induce chronic lung inflammation and fibrosis. Upon silica stimulation, activated macrophages trigger the T-lymphocyte which can differentiate into many different types of Th cells, including the recently discovered Th17 cells. IL-17A, the typical Th17 cytokine, is reported in some inflammatory diseases. However, the role of IL-17A in silica-induced inflammatory response is still not clear. The regulatory mechanism of silica-induced Th17 response also needs to be investigated. So we established a mice primary cell coculture system (macrophage and lymphocyte to investigate the role of IL-17A in silica-induced inflammatory response in vitro, by using anti-IL-17A mAb and IL-1Ra. Both anti-IL-17A mAb and IL-1Ra decreased the level of IL-17A and increased the function of Treg cells. The Th1 response was suppressed and the Th2 response was promoted by the addition of anti-IL-17A mAb or IL-1Ra. IL-1Ra treatment decreased the level of IL-6, whereas the levels of IL-23 and ROR-γt were increased. Our study demonstrated that IL-17A reduction altered the pattern of silica-induced Th responses by boosting the function of Treg cells in vitro. Blocking the function of IL-1 signal pathway could suppress the level of IL-17A, which played the major role in modulating silica-induced Th responses in vitro.

  14. Transcriptome profiling unveils the role of cholesterol in IL-17A signaling in psoriasis.

    Varshney, Pallavi; Narasimhan, Aarti; Mittal, Shankila; Malik, Garima; Sardana, Kabir; Saini, Neeru

    2016-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by altered proliferation and differentiation of keratinocytes as well as infiltration of immune cells. Increased expression of Th17 cells and cytokines secreted by them provides evidence for its central role in the pathogenesis of psoriasis. IL-17A, signature cytokine of Th17 cells was found to be highly differentially expressed in psoriatic lesional skin. However, cellular and molecular mechanism by which IL-17A exerts its function on keratinocyte is incompletely understood. To understand IL-17A mediated signal transduction pathways, gene expression profiling was done and differentially expressed genes were analysed by IPA software. Here, we demonstrate that during IL-17A signaling total cholesterol levels were elevated, which in turn resulted in the suppression of genes of cholesterol and fatty acid biosynthesis. We found that accumulation of cholesterol was essential for IL-17A signaling as reduced total cholesterol levels by methyl β cyclodextrin (MBCD), significantly decreased IL-17A induced secretion of CCL20, IL-8 and S100A7 from the keratinocytes. To our knowledge this study for the first time unveils that high level of intracellular cholesterol plays a crucial role in IL-17A signaling in keratinocytes and may explain the strong association between psoriasis and dyslipidemia. PMID:26781963

  15. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J;

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  16. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells.

    Yoshiki, Ryutaro; Kabashima, Kenji; Honda, Tetsuya; Nakamizo, Satoshi; Sawada, Yu; Sugita, Kazunari; Yoshioka, Haruna; Ohmori, Shun; Malissen, Bernard; Tokura, Yoshiki; Nakamura, Motonobu

    2014-07-01

    Psoriasis is a common chronic inflammatory skin disease that involves dysregulated interplay between immune cells and keratinocytes. Recently, it has been reported that IL-23 induces CCR6+ γδ T cells, which have the pivotal role in psoriasis-like skin inflammation in mice of producing IL-17A and IL-22. Langerhans cells (LCs) are a subset of dendritic cells that reside in the epidermis and regulate immune responses. The role of LCs has been extensively investigated in contact hypersensitivity, but their role in psoriasis remains to be clarified. In this study, we focused on Th17-related factors and assessed the role of LCs and γδ T cells in the development of psoriasis using a mouse psoriasis model triggered by topical application of imiquimod (IMQ). LC depletion by means of diphtheria toxin (DT) in Langerin DT receptor-knocked-in mice suppressed hyperkeratosis, parakeratosis, and ear swelling in the IMQ-treated regions. In addition, LC-depleted mice showed decreased levels of Th17-related cytokines in IMQ-treated skin lesions. Moreover, the IMQ-treated skin of LC-depleted mice showed a decreased number of IL-17A-producing CCR6+ γδ T cells. These results suggest that LCs are required for the development of psoriasis-like lesions induced by IMQ in mice. PMID:24569709

  17. Dectin-1 and IL-17A suppress murine asthma induced by Aspergillus versicolor but not Cladosporium cladosporioides due to differences in beta-glucan surface exposure1

    Mintz-Cole, Rachael A.; Gibson, Aaron M.; Bass, Stacey A.; Budelsky, Alison L.; Reponen, Tiina; Hershey, Gurjit K. Khurana

    2012-01-01

    There is considerable evidence supporting a role for mold exposure in the pathogenesis and expression of childhood asthma. Aspergillus versicolor and Cladosporium cladosporioides are common molds that have been implicated in asthma. In a model of mold-induced asthma, mice were repeatedly exposed to either A. versicolor or C. cladosporioides spores. The two molds induced distinct phenotypes and this effect was observed in both Balb/c and C57BL/6 strains. C. cladosporioides induced robust airwa...

  18. IL-17A induces MIP-1α expression in primary astrocytes via Src/MAPK/PI3K/NF-kB pathways: implications for multiple sclerosis.

    Yi, Hongwei; Bai, Ying; Zhu, Xinjian; Lin, Lin; Zhao, Lei; Wu, Xiaodong; Buch, Shilpa; Wang, Longxin; Chao, Jie; Yao, Honghong

    2014-12-01

    Neuroinflammation plays critical roles in multiple sclerosis (MS). In addition to the part played by the lymphocytes, the underlying mechanisms could, in part, be also attributed to activation mediated by astrocytes. Macrophage inflammatory protein-1α (MIP-1α) has been implicated in a number of pathological conditions, specifically attributable to its potent chemottractant effects. Its modulation by IL-17, however, has received very little attention. In the present study, we demonstrated IL-17-mediated induction of MIP-1α in rat primary astroctyes through its binding to the cognate IL-17RA. Furthermore, this effect was mediated via the activation of Src, mitogen-activated protein kinases (MAPKs), PI3K/Akt and NF-kB pathways, culminating ultimately into increased expression of MIP-1α. Exposure of primary mouse astrocytes to IL-17 resulted in increased expression of glial fibrillary acidic protein and, this effect was abrogated in cells cultured in presence of the MIP-1α neutralizing antibody, thus underscoring its role in the activation of astrocytes. In vivo relevance of these findings was further corroborated in experimental autoimmune encephalomyelitis mice that demonstrated significantly increased activation of astrocytes with concomitant increased expression of MIP-1α in the corpus callosum compared with control group. Understanding the regulation of MIP-1α expression may provide insights into the development of potential therapeutic targets for neuroinflammation associated with multiple sclerosis. PMID:24989845

  19. Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide.

    Liu, Shenping; Desharnais, Joel; Sahasrabudhe, Parag V; Jin, Ping; Li, Wei; Oates, Bryan D; Shanker, Suman; Banker, Mary Ellen; Chrunyk, Boris A; Song, Xi; Feng, Xidong; Griffor, Matt; Jimenez, Judith; Chen, Gang; Tumelty, David; Bhat, Abhijit; Bradshaw, Curt W; Woodnutt, Gary; Lappe, Rodney W; Thorarensen, Atli; Qiu, Xiayang; Withka, Jane M; Wood, Lauren D

    2016-01-01

    IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target. PMID:27184415

  20. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  1. Different Blood-Borne Human Osteoclast Precursors Respond in Distinct Ways to IL-17A.

    Sprangers, Sara; Schoenmaker, Ton; Cao, Yixuan; Everts, Vincent; de Vries, Teun J

    2016-06-01

    Osteoclasts are bone-degrading cells that are formed through fusion of their monocytic precursors. Three distinct subsets of monocytes have been identified in human peripheral blood: classical, intermediate, and non-classical monocytes. They are known to play different roles in physiology and pathology, but their capacity to differentiate into osteoclasts and whether inflammatory cytokines influence this differentiation is unknown. We hypothesized that classical, intermediate, and non-classical monocytes generate functionally different osteoclasts and that they respond in different ways to the inflammatory cytokine interleukin-17A (IL-17A). To investigate this, the different monocyte subsets were isolated from human peripheral blood and osteoclastogenesis was induced with the cytokines M-CSF and RANKL, with or without IL-17A. We found that all subsets are able to differentiate into osteoclasts in vitro, and that both osteoclastogenesis and subsequent bone resorption was distinctly affected by IL-17A. Osteoclastogenesis and bone resorption by osteoclasts derived from classical monocytes remained unaffected by IL-17A, while osteoclast formation from intermediate monocytes was inhibited by the cytokine. Surprisingly, bone resorption by osteoclasts derived from intermediate monocytes remained at similar levels as control cultures, indicating an increased bone resorbing activity by these osteoclasts. Limited numbers of osteoclasts were formed from non-classical monocytes on bone and no bone resorption was detected, which suggest that these cells belong to a cell lineage different from the osteoclast. By providing more insight into osteoclast formation from human blood monocytes, this study contributes to the possible targeting of specific osteoclast precursors as a therapeutic approach for diseases associated with inflammatory bone loss. J. Cell. Physiol. 231: 1249-1260, 2016. © 2015 Wiley Periodicals, Inc. PMID:26491867

  2. IL-17A Synergizes with IFN-γ to Upregulate iNOS and NO Production and Inhibit Chlamydial Growth

    Zhang, Yongci; Wang, Haiping; Ren, Jianyun; Tang, Xiaofei; Jing, Ye; Xing, Donghong; Zhao, Guosheng; Yao, Zhi; Yang, Xi; Bai, Hong

    2012-01-01

    IFN-γ-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-γ induced iNOS expression and NO production during Cm infection in vit...

  3. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  4. IL-17A is not expressed by CD207+ cells in Langerhans Cell Histiocytosis lesions

    Allen, Carl E.; McClain, Kenneth L.

    2009-01-01

    Interleukin-17 (IL-17A) is a pro-inflammatory cytokine that has recently been implicated in pathogenesis of Langerhans Cell Histiocytosis (LCH), a potentially fatal disease characterized by lesions including CD207+ (langerin +) histiocytes. However, in this study we were unable to identify IL-17A gene expression in Langerhans cell lesions, and plasma levels of IL-17A did not correlate with disease activity. Therefore, this study does not support a central role for IL-17A in LCH pathogenesis.

  5. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

    Joel A Mathews

    Full Text Available Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h. We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/- to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.

  6. IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway.

    Minjuan Feng

    Full Text Available IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs and tissue inhibitor of metalloproteinases (TIMPs were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB signal pathway was detected too.Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.

  7. A lack of confirmation with alternative assays questions the validity of IL-17A expression in human neutrophils using immunohistochemistry.

    Tamarozzi, Francesca; Wright, Helen L; Thomas, Huw B; Edwards, Steven W; Taylor, Mark J

    2014-12-01

    We identified IL-17A-positive neutrophils in Wolbachia-positive Onchocerca volvulus nodules using an antibody that has previously reported IL-17A-positive neutrophils in several inflammatory conditions. However, we could not detect IL-17A using a range of alternative assays. Our data question the IL-17A antibody specificity and the ability of human neutrophils to express IL-17A. PMID:25445614

  8. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy.

    Millar, Neal L; Akbar, Moeed; Campbell, Abigail L; Reilly, James H; Kerr, Shauna C; McLean, Michael; Frleta-Gilchrist, Marina; Fazzi, Umberto G; Leach, William J; Rooney, Brian P; Crowe, Lindsay A N; Murrell, George A C; McInnes, Iain B

    2016-01-01

    Increasingly, inflammatory mediators are considered crucial to the onset and perpetuation of tendinopathy. We sought evidence of interleukin 17A (IL-17A) expression in early human tendinopathy and thereafter, explored mechanisms whereby IL-17A mediated inflammation and tissue remodeling in human tenocytes. Torn supraspinatus tendon (established pathology) and matched intact subscapularis tendon (representing 'early pathology') along with control biopsies were collected from patients undergoing shoulder surgery. Markers of inflammation and IL-17A were quantified by RT-PCR and immunohistochemistry. Human tendon cells were derived from hamstring tendon obtained during ACL reconstruction. In vitro effects of IL-17A upon tenocytes were measured using RT-PCR, multiplex cytokine assays, apoptotic proteomic profiling, immunohistochemistry and annexin V FACS staining. Increased expression of IL-17A was detected in 'early tendinopathy' compared to both matched samples and non-matched control samples (p tendinopathy processes thus providing novel therapeutic approaches in the management of tendon disorders. PMID:27263531

  9. CD4+ and γδ T Cells are the main Producers of IL-22 and IL-17A in Lymphocytes from Mycobacterium bovis-infected Cattle

    Steinbach, Sabine; Vordermeier, H. Martin; Jones, Gareth J.

    2016-01-01

    Gene transcription studies have identified dual roles for the cytokines IL-17A and IL-22 in bovine tuberculosis, where they show potential as both predictors of vaccine success and correlates of infection. To allow for a detailed investigation of the cell populations responsible for production of these cytokines, we have utilised a novel bovine IL-22 specific recombinant antibody for flow cytometry. Bovine tuberculin (PPDB) induced greater IL-22 and IL-17A production in Mycobacterium bovis (M. bovis)-infected cattle compared to non-infected controls, while PWM-induced cytokine levels were similar between the two groups. In M. bovis-infected animals, PPDB specific IL-22 and IL-17A responses were observed in both CD4+ T cell and γδ T cell populations. Although both cytokines were detected in both cell types, IL-22/IL-17A double producers were rare and confined mainly to the γδ T cell population. These results support previous gene transcription studies and extend the observation of increased IL-22 and IL-17A responses in M. bovis-infected animals to the level of protein production. We were also able to characterise the cell populations responsible for these disease-related cytokine responses. The data generated can be used to further our understanding of the immunopathology of bovine tuberculosis and to produce more sensitive and specific immune-diagnostic reagents. PMID:27427303

  10. CD4+ and γδ T Cells are the main Producers of IL-22 and IL-17A in Lymphocytes from Mycobacterium bovis-infected Cattle.

    Steinbach, Sabine; Vordermeier, H Martin; Jones, Gareth J

    2016-01-01

    Gene transcription studies have identified dual roles for the cytokines IL-17A and IL-22 in bovine tuberculosis, where they show potential as both predictors of vaccine success and correlates of infection. To allow for a detailed investigation of the cell populations responsible for production of these cytokines, we have utilised a novel bovine IL-22 specific recombinant antibody for flow cytometry. Bovine tuberculin (PPDB) induced greater IL-22 and IL-17A production in Mycobacterium bovis (M. bovis)-infected cattle compared to non-infected controls, while PWM-induced cytokine levels were similar between the two groups. In M. bovis-infected animals, PPDB specific IL-22 and IL-17A responses were observed in both CD4+ T cell and γδ T cell populations. Although both cytokines were detected in both cell types, IL-22/IL-17A double producers were rare and confined mainly to the γδ T cell population. These results support previous gene transcription studies and extend the observation of increased IL-22 and IL-17A responses in M. bovis-infected animals to the level of protein production. We were also able to characterise the cell populations responsible for these disease-related cytokine responses. The data generated can be used to further our understanding of the immunopathology of bovine tuberculosis and to produce more sensitive and specific immune-diagnostic reagents. PMID:27427303

  11. Association of IL17A gene variants with chronic Chagas cardiomyopathy

    Daniel Arturo León; Luis Eduardo Echeverría; Clara Isabel González

    2015-01-01

    Human host genetic factors have been suggested to be determinants of the prevalence and clinical forms of Chagas disease. In this regard, IL-17A is believed to control parasitemia and protect against heart disease. In this work, we assessed whether IL17A gene polymorphisms are related to infection and/or development of the cardiac form of Chagas disease by genotyping for five IL17A SNPs (rs4711998, rs8193036, rs3819024, rs2275913 and rs7747909) in 1171 individuals from a Colombian region ende...

  12. Th17/IL-17A might play a protective role in chronic lymphocytic leukemia immunity.

    Iwona Hus

    Full Text Available Th17 cells, a recently discovered subset of T helper cells that secrete IL-17A, can affect the inflammation process autoimmune and cancer diseases development. The purpose of this study was to evaluate the role of Th17 cells and IL17A in biology of CLL. The study group included 294 untreated CLL patients in different clinical stages. Here, we show that higher Th17 and IL-17A values were associated with less advanced clinical stage of CLL. Th17 cells' percentages in PB were lower in patients who died due to CLL during follow-up due to CLL (as compared to surviving patients and in patients responding to first-line therapy with fludarabine-based regimens (as compared to non-responders. IL-17A inversely correlated with the time from CLL diagnosis to the start of therapy and was lower in patients who required treatment during follow-up. Th-17 and IL-17A values were lower in patients with adverse prognostic factors (17p and 11q deletion, CD38 and ZAP-70 expression. CLL patients with detectable IL-17A mRNA in T cells were in Rai Stage 0 and negative for both ZAP-70 and CD38 expression. Th17 percentages positively correlated with iNKT and adversely with Treg cells. The results of this study suggest that Th17 may play a beneficial role in CLL immunity.

  13. IL-17A-producing T cells are associated with the progression of lung adenocarcinoma.

    Bao, Zhang; Lu, Guohua; Cui, Dawei; Yao, Yinan; Yang, Guangdie; Zhou, Jianying

    2016-08-01

    Accumulating evidence has shown that T cells are crucial in shaping the tumor microenvironment and regulating tumor development. However, the roles of IL-17A‑producing T cells (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and related cytokines in the progression of lung cancer (LC) remain uncertain. Here, we found that the frequencies of both Th17 and γδT17 cells in the peripheral blood of patients with lung adenocarcinoma (LA) were higher than those in healthy controls (HCs), whereas the frequency of Tc17 cells in the patients with LA was decreased. In addition, the frequencies of circulating Th17 and γδT17 cells, but not Tc17 cells, were positively associated with tumor invasion and metastasis. Furthermore, the major source of IL-17A production was Th17 cells, followed by Tc17 and γδT17 cells, in peripheral blood from patients with LA and HCs; but the percentages of Th17 and γδT17 cells in total intracellular IL-17A+ cells obtained from the patients with LC were higher than those from HCs. Moreover, the protein and corresponding mRNA levels of IL-17A, IL-23, IL-1β, and TGF-β1 were much higher in the patients with LA than those in HCs, and the levels of IL-17A in patients were positively correlated with numbers of both Th17 and γδT17 cells, but not Tc17 cells. Finally, the frequencies of circulating Th17 and γδT17 cells, along with the levels of IL-17A, IL-23, IL-1β, and TGF-β1 were decreased in the patients with LA after tumor resection, whereas the frequency of circulating Tc17 cells was inversely increased in these patients. Our findings indicate that Th17, Tc17, γδT17 cells, and IL-17A-associated cytokines contribute to the development of LA and thus represent promising targets for therapeutic strategies. PMID:27277161

  14. Cloning and Characterization of Rainbow Trout Interleukin-17A/F2 (IL-17A/F2) and IL-17 Receptor A: Expression during Infection and Bioactivity of Recombinant IL-17A/F2

    Monte, Milena M.; Wang, Tiehui; Holland, Jason W.; Zou, Jun; Christopher J. Secombes

    2013-01-01

    Lower vertebrates have been found to possess genes that have similar homology to both interleukin (IL)-17A and IL-17F, which have been termed IL-17A/F. In fish species, several of these genes can be present, but, to date, very little is known about their functional activity. This article describes the discovery and sequence analysis of a rainbow trout (Oncorhynchus mykiss) IL-17A/F2 molecule and an IL-17RA receptor. In addition, the bioactivity of the trout IL-17A/F2 is investigated for the f...

  15. IL-17A/IL-17RA interaction promoted metastasis of osteosarcoma cells

    Wang, Mingmin; Wang, Luanqiu; Ren, Tao; Lin XU; Wen, Zhenke

    2013-01-01

    Osteosarcoma (OS) is the most common human primary malignant bone tumor in children and young adults with poor prognosis because of their high metastatic potential. Identification of key factors that could regulate the aggressive biologic behavior of OS, particularly with respect to metastasis, would be necessary if significant improvements in therapeutic outcome are to occur. In this study, we carefully evaluated the potential role of IL-17A/IL-17RA interaction in metastasis of OS. We found ...

  16. Association of G197 polymorphism of IL-17A gene with myocardial remodeling and aerobic performance in athletes.

    Lifanov, A D; Khadyeva, M N; Demenev, S V; Knyazev, A N; Babushkin, Yu A; Astashina, E E

    2014-09-01

    We studied the relationship between G197A polymorphism of IL-17A gene and changes in morphometric echocardiography parameters and physiological parameters in skiers (19 examinees). Genotyping was performed by restriction fragment length polymorphism analysis and echocardiography using a Nemio MX ultrasound scanner (Toshiba). Association of 197A allele of IL-17A gene with low myocardial growth and high aerobic performance of athletes was demonstrated. PMID:25257435

  17. Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-alpha, Oncostatin M and response to biologic therapies.

    Moran, Ellen M

    2009-01-01

    INTRODUCTION: The aim of this study was to examine IL-17A in patients, following anti-TNF-alpha therapy and the effect of IL-17A on matrix turnover and cartilage degradation. METHODS: IL-17A expression was examined by ELISA and immunohistology in the rheumatoid arthritis (RA) joints. RA whole synovial tissue explant (RA ST), primary synovial fibroblasts (RASFC), human cartilage and chondrocyte cultures were stimulated with IL-17A +\\/- TNF-alpha and Oncostatin M (OSM). Matrix metalloproteinase (MMP) and tissue inhibitor (TIMP-1) were assessed by ELISA and zymography. Cartilage proteoglycan release was assessed histologically by Safranin-O staining. Clinical parameters, IL-17A, MMP\\/TIMP were assessed in patients pre\\/post biologic therapy. RESULTS: IL-17A levels were higher in RA vs osteoarthritis (OA)\\/normal joints (P < 0.05). IL-17A up-regulated MMP-1, -2, -9, and -13 in RA ST, RASFC, cartilage and chondrocyte cultures (P < 0.05). In combination with TNF-alpha and OSM, IL-17A shifted the MMP:TIMP-1 ratio in favor of matrix degradation (all P < 0.05). Cartilage proteoglycan depletion in response to IL-17A was mild; however, in combination with TNF-alpha or OSM showed almost complete proteoglycan depletion. Serum IL-17A was detected in 28% of patients commencing biologic therapy. IL-17A negative patients demonstrated reductions post therapy in serum MMP1\\/TIMP4, MMP3\\/TIMP1 and MMP3\\/TIMP4 ratios and an increase in CS846 (all P < 0.05). No significant changes were observed in IL-17A positive patients. CONCLUSIONS: IL-17A is produced locally in the inflamed RA joint. IL-17A promotes matrix turnover and cartilage destruction, especially in the presence of other cytokines, mimicking the joint environment. IL-17A levels are modulated in vivo, following anti-TNF therapy, and may reflect changes in matrix turnover.

  18. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients.

    Naghavi Gargari, Bahar; Behmanesh, Mehrdad; Shirvani Farsani, Zeinab; Pahlevan Kakhki, Majid; Azimi, Amir Reza

    2015-09-01

    Vitamin D regulates gene expression and affects target cell functions. IL-6 and IL-17A are pro-inflammatory cytokines associated with MS pathogenesis. The aim of this study was to investigate the vitamin D effects on the expression level of IL-6 and IL-17A in peripheral blood mononuclear cells (PBMCs) of multiple sclerosis (MS) patients. Also, we performed a correlation analysis between the gene expression and some clinical features such as serum level of vitamin D and the expanded disability status scale (EDSS). Significant up-regulation of IL-6 and IL-17A gene expression was shown under vitamin D treatment. Also, some gender specific correlations between the gene expression with vitamin D levels were detected in female RR-MS patients. PMID:26188623

  19. IL-17A-producing T cells and associated cytokines are involved in the progression of gastric cancer.

    Zhong, Fengyun; Cui, Dawei; Tao, Hong; Du, Hong; Xing, Chungen

    2015-11-01

    Interleukin-17A-producing T cells (IL-17A+ T) (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and associated cytokines (IL-17A, IL-23 and IL-1β) play crucial roles in inflammation-associated diseases, such as infection, autoimmunity and tumors. Th17 cells promote human gastric cancer (GC), although the source of intracellular IL‑17A and the roles of Tc17 and γδT17 cells remain poorly understood. In this study, the frequencies of circulating Th17 and γδT17 cells in patients with GC were found to be significantly increased compared to those in healthy donors; however, Tc17 cells were decreased in these patients, and a negative relationship was found between the frequencies of Th17 and Tc17 cells. Moreover, the cytokine IL‑17A was found to be produced mainly by Th17 cells in human peripheral blood. Similarly, serum cytokine levels and relative mRNA expression levels of IL‑17A, IL‑23 and IL‑1β were significantly increased in patients with GC, and the frequency of Th17 cells was closely associated with serum IL‑17A concentrations in patients with GC. Additionally, Th17 cells and associated cytokines were present at significantly different levels during the progression and metastasis of GC, as were Tc17 and γδT17 cells. Taken together, these findings suggest that IL-17A+ T cells and associated cytokines might play crucial roles in human GC progression and metastasis and thus represent potential targets for treatment. PMID:26352729

  20. Correlation between acute myeloid leukemia and IL-17A, IL-17F, and IL-23R gene polymorphism

    Zhu, Biao; Zhang, Jianbo; Wang, Xiaodong; Chen, Jiao; Li, Chenglong

    2015-01-01

    Recent studies have shown that Th17 cells may be involved in the pathological process of acute myeloid leukemia. This CD4+ cell subgroup secretes highly homologous interleukin (IL)-17A and IL-17F, and also expresses IL-23 receptor (IL-23R) on the cell surface. Our study aims to investigate the relationship of IL-17A, IL-17F, and IL23R with disease susceptibility, and clarify the relationship between gene polymorphism variation and serum IL-17 level. 62 acute myeloid leukemia patients and 125 ...

  1. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22.

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri; Nakae, Susumu; Yamanashi, Yuji

    2016-09-01

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. PMID:27450811

  2. Serum Levels of IL-10 and IL-17A in Occult HBV-Infected South-East Iranian Patients

    Gholamhossein Hassanshahi

    2010-01-01

    Full Text Available Background and Aims: Occult hepatitis B infected (OBI patients can not completely eradicate hepatitis B virus-DNA (HBV-DNA from their liver and peripheral blood. The main aim of this study was to investigate the Interleukin (IL-10 and IL-17A serum levels in patients suffering from OBI.Methods: In this observational study, plasma samples of 3700 blood donors were tested for hepatitis B surface antigen (HBsAg and antibodies to the hepatitis B core antigen (anti-HBc, using enzyme-linked immunosorbent assay (ELISA. The HBsAg-/anti-HBc+ samples were selected and screened for HBV-DNA, using the polymerase chain reaction (PCR. HBV-DNA positive samples were assigned as OBI cases and IL-10 and IL-17 serum levels were detected using ELISA.Results: The results demonstrated that, 352 (9.5% out of 3700 blood samples were HBsAg-/anti-HBc+ and HBV-DNA was detected in 57/352 (16.1% of the HBsAg-/anti-HBc+ samples. Our results showed that the IL-10 and IL-17A serum levels increased significantly in the OBI cases in comparison to the controls (P < 0.001.Conclusions: According to the results of this study the higher level of IL-10 production may suppress the functioning of the immune system against HBV in OBI patients. The elevated IL-17A serum level also indicates a long period of infection in the patients observed.

  3. Interleukin-17A inhibits the expansion of IL-17A-producing T cells in mice through “short-loop” inhibition via IL-17 receptor.1

    Smith, Emily; Stark, Matthew A.; Zarbock, Alexander; Burcin, Tracy L.; Bruce, Anthony C.; Vaswani, Devin; Foley, Patricia; Ley, Klaus

    2008-01-01

    Interleukin-23 (IL-23) and IL-17A regulate granulopoiesis through Granulocyte-Colony Stimulating Factor (G-CSF), the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4−CD8−αβlow, CD4+CD8−αβ+ (Th17) and γδ+ T cells. Here we investigate the effects of IL-17A on circulating neutrophil levels using IL-17 receptor (Il17ra−/−) deficient mice and Il17ra−/...

  4. Neutrophils Produce Interleukin 17A (IL-17A) in a Dectin-1- and IL-23-Dependent Manner during Invasive Fungal Infection ▿

    Werner, Jessica L.; Gessner, Melissa A.; Lilly, Lauren M.; Nelson, Michael P.; Metz, Allison E.; Horn, Dawn; Dunaway, Chad W; Deshane, Jessy; Chaplin, David D.; Weaver, Casey T.; Brown, Gordon D.; Steele, Chad

    2011-01-01

    We have previously reported that compromised interleukin 17A (IL-17A) production in the lungs increased susceptibility to infection with the invasive fungal pathogen Aspergillus fumigatus. Here we have shown that culturing lung cells from A. fumigatus-challenged mice ex vivo demonstrated Dectin-1-dependent IL-17A production. In this system, neutralization of IL-23 but not IL-6, IL-1β, or IL-18 resulted in attenuated IL-17A production. Il23 mRNA expression was found to be lower in lung cells f...

  5. Serum Levels of IL-10 and IL-17A in Occult HBV-Infected South-East Iranian Patients

    Gholamhossein Hassanshahi; Abdollah Jafarzadeh; Mohammad Kazemi Arababadi; Ali Akbar Pourfathollah2

    2010-01-01

    Background and Aims Occult hepatitis B infected (OBI) patients can not completely eradicate hepatitis B virus-DNA (HBV-DNA) from their liver and peripheral blood. The main aim of this study was to investigate the Interleukin (IL)-10and IL-17A serum levels in patients suffering from OBI. Material and Methods In this observational study, plasma samples of 3700 blood donors were tested for hepatitis Bsurface antigen (HBsAg) and antibodies to the hepatitis B core antigen (anti-HBc), using enzyme-...

  6. IL17a and IL21 combined with surgical status predict the outcome of ovarian cancer patients.

    Chen, Yu-Li; Chou, Cheng-Yang; Chang, Ming-Cheng; Lin, Han-Wei; Huang, Ching-Ting; Hsieh, Shu-Feng; Chen, Chi-An; Cheng, Wen-Fang

    2015-10-01

    Aside from tumor cells, ovarian cancer-related ascites contains the immune components. The aim of this study was to evaluate whether a combination of clinical and immunological parameters can predict survival in patients with ovarian cancer. Ascites specimens and medical records from 144 ovarian cancer patients at our hospital were used as the derivation group to select target clinical and immunological factors to generate a risk-scoring system to predict patient survival. Eighty-two cases from another hospital were used as the validation group to evaluate this system. The surgical status and expression levels of interleukin 17a (IL17a) and IL21 in ascites were selected for the risk-scoring system in the derivation group. The areas under the receiver operating characteristic (AUROC) curves of the overall score for disease-free survival (DFS) of the ovarian cancer patients were 0.84 in the derivation group, 0.85 in the validation group, and 0.84 for all the patients. The AUROC curves of the overall score for overall survival (OS) of cases were 0.78 in the derivation group, 0.76 in the validation group, and 0.76 for all the studied patients. Good correlations between overall risk score and survival of the ovarian cancer patients were demonstrated by sub-grouping all participants into four groups (P for trend ovarian carcinoma. IL17a and IL21 can potentially be used as prognostic and therapeutic biomarkers. PMID:26150382

  7. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines

    Koop Ben F

    2010-05-01

    Full Text Available Abstract Background Two decades after the introduction of oil-based vaccines in the control of bacterial and viral diseases in farmed salmonids, the mechanisms of induced side effects manifested as intra-abdominal granulomas remain unresolved. Side effects have been associated with generation of auto-antibodies and autoimmunity but the underlying profile of inflammatory and immune response has not been characterized. This study was undertaken with the aim to elucidate the inflammatory and immune mechanisms of granuloma formation at gene expression level associated with high and low side effect (granuloma indices. Groups of Atlantic salmon parr were injected intraperitoneally with oil-adjuvanted vaccines containing either high or low concentrations of Aeromonas salmonicida or Moritella viscosa antigens in order to induce polarized (severe and mild granulomatous reactions. The established granulomatous reactions were confirmed by gross and histological methods at 3 months post vaccination when responses were known to have matured. The corresponding gene expression patterns in the head kidneys were profiled using salmonid cDNA microarrays followed by validation by real-time quantitative PCR (qPCR. qPCR was also used to examine the expression of additional genes known to be important in the adaptive immune response. Results Granulomatous lesions were observed in all vaccinated fish. The presence of severe granulomas was associated with a profile of up-regulation of innate immunity-related genes such as complement factors C1q and C6, mannose binding protein, lysozyme C, C-type lectin receptor, CD209, Cathepsin D, CD63, LECT-2, CC chemokine and metallothionein. In addition, TGF-β (p = 0.001, IL-17A (p = 0.007 and its receptor (IL-17AR (p = 0.009 representing TH17 were significantly up-regulated in the group with severe granulomas as were arginase and IgM. None of the genes directly reflective of TH1 T cell lineage (IFN-γ, CD4 or TH2 (GATA-3

  8. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis

    Huber, Magdalena; Heink, Sylvia; Pagenstecher, Axel; Reinhard, Katharina; Ritter, Josephine; Visekruna, Alexander; Guralnik, Anna; Bollig, Nadine; Jeltsch, Katharina; Heinemann, Christina; Wittmann, Eva; Buch, Thorsten; da Costa, Olivia Prazeres; Brüstle, Anne; Brenner, Dirk

    2012-01-01

    IL-17–producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE. After adoptive transfer of WT CD8+ T cells and subsequent immunization for EAE induction in these mice, the CD8+ T cells developed a Tc17 phenotyp...

  9. Oral administration of poly-γ-glutamate ameliorates atopic dermatitis in Nc/Nga mice by suppressing Th2-biased immune response and production of IL-17A.

    Lee, Tae-Young; Kim, Doo-Jin; Won, Ji-Na; Lee, Il-Han; Sung, Moon-Hee; Poo, Haryoung

    2014-03-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that is closely related to dysregulation of the T helper type 1 and 2 (Th1)/Th2 balance. A previous study showed that high molecular mass poly-γ-glutamate (γ-PGA) isolated from Bacillus subtilis sp. Chungkookjang induces the production of IL-12 from dendritic cells (DCs). Here, we investigated the effect of γ-PGA on AD-like skin disease using an Nc/Nga mouse model. In vitro, γ-PGA activated DCs and induced IL-12 production in mice. In vivo, oral administration of γ-PGA markedly reduced the AD symptoms, similar to the response seen in the dexamethasone (Dex)-treated group. Treatment with γ-PGA also decreased the serum levels of IgG1, the skin levels of Th2 cytokines, the extent of skin inflammation, and the accumulation of mast cells. Furthermore, γ-PGA was effective against established AD, significantly decreasing serum IgE and Th2 cytokines in the inflamed tissue. Interestingly, the production of IL-17A in splenocytes was also suppressed by γ-PGA, indicating that it inhibits both Th2 and Th17 immune responses. Collectively, these results suggest that oral administration of γ-PGA could be a therapeutic strategy for treating AD via the modulation of Th2-biased immune responses in an Nc/Nga mouse model. PMID:24025551

  10. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells.

    Teunissen, Marcel B M; Yeremenko, Nataliya G; Baeten, Dominique L P; Chielie, Saskia; Spuls, Phyllis I; de Rie, Menno A; Lantz, Olivier; Res, Pieter C M

    2014-12-01

    IL-17A is pivotal in the etiology of psoriasis, and CD8(+) T cells with the ability to produce this cytokine (Tc17 cells) are over-represented in psoriatic lesions. Here we demonstrate that the frequency of Tc17 cells in peripheral blood of psoriasis patients correlated with the clinical severity of the disease. Analysis of cutaneous-associated lymphocyte antigen expression showed that the blood Tc17 population contains a significantly higher proportion of cells with skin-homing potential compared with the CD8(+) T-cell population lacking IL-17A/IL-22 expression. IL-17A-producing CD8(+) T cells in blood have previously been reported to belong mainly to the mucosa-associated invariant T-cell (MAIT cell) lineage characterized by TCR Vα7.2 chain, CD161, IL-18Rα, and multidrug transporter ABCB1 expression. We demonstrate the presence of CD8(+) MAIT cells in the dermis and epidermis of psoriatic plaques, as well as healthy skin; however, IL-17A-producing CD8(+) MAIT cells were predominantly found in psoriatic skin. Notably, we observed IL-17A production in a large proportion of psoriatic plaque-derived CD8(+) T cells devoid of MAIT cell characteristics, likely representing conventional CD8(+) T cells. In conclusion, we provide supporting evidence that implicates Tc17 cells in the pathogenesis of psoriasis and describe the presence of innate CD8(+) MAIT cells in psoriatic lesions as an alternative source of IL-17A. PMID:24945094

  11. The levels of IL-17A and of the cytokines involved in Th17 cell commitment are increased in patients with chronic immune thrombocytopenia

    Rocha, Andreia Maria Camargos; Souza, Cláudia; Rocha, Gifone Aguiar; de Melo, Fabrício Freire; Clementino, Nelma Cristina Diogo; Marino, Marília Campos Abreu; Bozzi, Adriana; Silva, Maria Luiza; Martins Filho, Olindo Assis; Queiroz, Dulciene Maria Magalhães

    2011-01-01

    Th17 cells have been associated with immune-mediated diseases in humans but it has still not been determined whether they play a role in immune thrombocytopenia. We evaluated representative cytokines of the Th17, Th1, Th2 and Treg cell commitment in the serum of patients with chronic immune thrombocytopenia, as well as the cell source of IL-17A. Higher levels of IL-17A and Th17-related cytokines, and an increased percentage of IL-17A producing CD4+ and neutrophils were observed in patients. The levels of cytokines involved in Th1 cell commitment IFN-γ, IL-2, IL12-p70 and the percentages of Th1 cells were also increased, but IL-4 was not detected. Although the concentrations of IL-10 were higher, the levels of TGF-β were similar in both groups. In conclusion, our results point to a putative role for Th-17 cells/IL-17A cytokine in the pathogenesis of chronic immune thrombocytopenia. PMID:21972211

  12. Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    P.C.M. Res; G. Piskin; O.J. de Boer; C.M. van der Loos; P. Teeling; J.D. Bos; M.B.M. Teunissen

    2010-01-01

    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging analy

  13. Plasma levels of IL-37 and correlation with TNF-α, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis.

    Ping-Wei Zhao

    Full Text Available The aim of this study was to assess the change of IL-37 concentrations in rheumatoid arthritis (RA patients under Disease-modifying anti-rheumatic drug (DMARD therapy, and to establish a correlation between Interleukin-37 and pro-inflammatory cytokines in plasma and disease activity. The plasma level of IL-37 was determined using ELISA in 50 newly diagnosed RA patients and 30 healthy controls (HC. Plasma levels of IL-17A, IL-6 and TNF-α were measured using flow a cytometric bead array assay. We found that the concentrations of IL-37, as well as IL-17A, IL-6 and TNF-α, were higher in plasma of RA patients compared to HCs. Compared to patients who did not respond to DMARD treatment, treatment of patients responsive to DMARDs resulted in down-regulation of IL-17A, IL-6 and TNF-α expression. The plasma level of the anti-inflammatory cytokine IL-37 was also decreased in drug responders after DMARD treatment. The plasma level of IL-37 in RA patients was positively correlated with pro-inflammatory cytokines (IL-17A, TNF-α and disease activity (CRP, DAS28 in RA patients. IL-37 expression in RA and during DMARD treatment appears to be controlled by the level of pro-inflammatory cytokines. This results in a strong correlation between plasma levels of IL-37 and disease activity in RA patients.

  14. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization.

    McArthur, Monica A; Sztein, Marcelo B

    2012-01-01

    Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, continues to cause significant morbidity and mortality world-wide. CD8+ T cells are an important component of the cell mediated immune (CMI) response against S. Typhi. Recently, interleukin (IL)-17A has been shown to contribute to mucosal immunity and protection against intracellular pathogens. To investigate multifunctional IL-17A responses against S. Typhi antigens in T memory subsets, we developed multiparametric flow cytometry methods to detect up to 6 cytokines/chemokines (IL-10, IL-17A, IL-2, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1β (MIP-1β)) simultaneously. Five volunteers were immunized with a 4 dose regimen of live-attenuated S. Typhi vaccine (Ty21a), peripheral blood mononuclear cells (PBMC) were isolated before and at 11 time points after immunization, and CMI responses were evaluated. Of the 5 immunized volunteers studied, 3 produced detectable CD8+ T cell responses following stimulation with S. Typhi-infected autologous B lymphoblastoid cell lines (B-LCL). Additionally, 2 volunteers had detectable levels of intracellular cytokines in response to stimulation with S. Typhi-infected HLA-E restricted cells. Although the kinetics of the responses differed among volunteers, all of the responses were bi- or tri-phasic and included multifunctional CD8+ T cells. Virtually all of the IL-17A detected was derived from multifunctional CD8+ T cells. The presence of these multifunctional IL-17A+ CD8+ T cells was confirmed using an unsupervised analysis program, flow cytometry clustering without K (FLOCK). This is the first report of IL-17A production in response to S. Typhi in humans, indicating the presence of a Tc17 response which may be important in protection. The presence of IL-17A in multifunctional cells co-producing Tc1 cytokines (IL-2, IFN-γ and TNF-α) may also indicate that the distinction between Tc17 and Tc1

  15. Heterogeneity of multifunctional IL-17A producing S. Typhi-specific CD8+ T cells in volunteers following Ty21a typhoid immunization.

    Monica A McArthur

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi, the causative agent of typhoid fever, continues to cause significant morbidity and mortality world-wide. CD8+ T cells are an important component of the cell mediated immune (CMI response against S. Typhi. Recently, interleukin (IL-17A has been shown to contribute to mucosal immunity and protection against intracellular pathogens. To investigate multifunctional IL-17A responses against S. Typhi antigens in T memory subsets, we developed multiparametric flow cytometry methods to detect up to 6 cytokines/chemokines (IL-10, IL-17A, IL-2, interferon-γ (IFN-γ, tumor necrosis factor-α (TNF-α and macrophage inflammatory protein-1β (MIP-1β simultaneously. Five volunteers were immunized with a 4 dose regimen of live-attenuated S. Typhi vaccine (Ty21a, peripheral blood mononuclear cells (PBMC were isolated before and at 11 time points after immunization, and CMI responses were evaluated. Of the 5 immunized volunteers studied, 3 produced detectable CD8+ T cell responses following stimulation with S. Typhi-infected autologous B lymphoblastoid cell lines (B-LCL. Additionally, 2 volunteers had detectable levels of intracellular cytokines in response to stimulation with S. Typhi-infected HLA-E restricted cells. Although the kinetics of the responses differed among volunteers, all of the responses were bi- or tri-phasic and included multifunctional CD8+ T cells. Virtually all of the IL-17A detected was derived from multifunctional CD8+ T cells. The presence of these multifunctional IL-17A+ CD8+ T cells was confirmed using an unsupervised analysis program, flow cytometry clustering without K (FLOCK. This is the first report of IL-17A production in response to S. Typhi in humans, indicating the presence of a Tc17 response which may be important in protection. The presence of IL-17A in multifunctional cells co-producing Tc1 cytokines (IL-2, IFN-γ and TNF-α may also indicate that the distinction between Tc17 and

  16. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis.

    Pieter C M Res

    Full Text Available BACKGROUND: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. METHODOLOGY/PRINCIPAL FINDINGS: By spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17(pos, but no IL-22(pos T cell could be detected in psoriatic skin, whereas neither of these cytokines was expressed by T cells in normal skin. However, examination of in vitro-activated T cells by flow cytometry revealed that substantial percentages of skin-derived CD4 and CD8 T cells were able to produce IL-17A alone or together with IL-22 (i.e. Th17 and Tc17, respectively or to produce IL-22 in absence of IL-17A and IFN-γ (i.e. Th22 and Tc22, respectively. Remarkably, a significant proportional rise in Tc17 and Tc22 cells, but not in Th17 and Th22 cells, was found in T cells isolated from psoriatic versus normal skin. Interestingly, we found IL-22 single-producers in many skin-derived IL-17A(pos CD4 and CD8 T cell clones, suggesting that in vivo IL-22 single-producers may arise from IL-17A(pos T cells as well. CONCLUSIONS/SIGNIFICANCE: The increased presence of Tc17 and Tc22 cells in lesional psoriatic skin suggests that these types of CD8 T cells play a significant role in the pathogenesis of psoriasis. As part of the skin-derived IL-17A(pos CD4 and CD8 T clones developed into IL-22 single-producers, this demonstrates plasticity in their cytokine production profile and suggests a developmental relationship between Th17 and Th22 cells and between Tc17 and Tc22 cells.

  17. Targeting IL-1β and IL-17A driven inflammation during influenza-induced exacerbations of chronic lung inflammation.

    Sichelstiel A.; Yadava K.; Trompette A.; Salami O; Iwakura Y.; Nicod L.P.; Marsland B.J.

    2014-01-01

    For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that...

  18. Targeting IL-1β and IL-17A Driven Inflammation during Influenza-Induced Exacerbations of Chronic Lung Inflammation

    Sichelstiel, Anke; Yadava, Koshika; Trompette, Aurélien; Salami, Olawale; Iwakura, Yoichiro; Nicod, Laurent P.; Marsland, Benjamin J

    2014-01-01

    For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that...

  19. Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    Res, Pieter C. M.; Gamze Piskin; de Boer, Onno J.; van der Loos, Chris M.; Peter Teeling; Bos, Jan D.; Teunissen, Marcel B. M.

    2010-01-01

    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17(pos), but no...

  20. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A

    Mancini, Francesca; Monaci, Elisabetta; Lofano, Giuseppe; Torre, Antonina; Bacconi, Marta; Tavarini, Simona; Sammicheli, Chiara; Arcidiacono, Letizia; Galletti, Bruno; Laera, Donatello; Pallaoro, Michele; Tuscano, Giovanna; Fontana, Maria Rita; Bensi, Giuliano; Grandi, Guido; Rossi-Paccani, Silvia; Nuti, Sandra; Rappuoli, Rino; De Gregorio, Ennio; Bagnoli, Fabio; Soldaini, Elisabetta; Bertholet, Sylvie

    2016-01-01

    A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units. PMID:26812180

  1. Die Rolle von NFATc1 und IL-17A in der T-Zell-spezifischen Immunregulation beim metastatischen Melanom und Lungenkarzinom

    Reppert, Sarah

    2013-01-01

    Die vorliegende Arbeit beschäftigt sich mit der Analyse von NFATc1 und IL-17A im Tumormilieu von Lungenkarzinomen und Melanomen. Es konnte beobachtet werden, dass die Expression von NFATc1 in Tumorgeweben von Lungenkrebspatienten im Vergleich zu Kontrollgeweben erhöht war. Für die Untersuchungen am murinen Modell wurden NFATc1 fl/fl;CD4-Cre Mäuse, die eine konditionale NFATc1-Defizienz in CD4-exprimierenden Zellen besaßen, verwendet. Als Kontrollmäuse wurden NFATc1 fl/fl Mäuse eingesetzt. Von...

  2. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells.

    Michelle J Hansen

    Full Text Available While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA. Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.

  3. IL-17A and Th17 Cells in Lung Inflammation: An Update on the Role of Th17 Cell Differentiation and IL-17R Signaling in Host Defense against Infection

    Reen Wu; Li-Yin Hung; Hsing-Chuan Tsai; Sharlene Velichko

    2013-01-01

    The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway's immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controlling Klebsiella pneumonia (K. pneumonia) infection...

  4. Intraocular levels of interleukin 17A (IL-17A) and IL-10 as respective determinant markers of toxoplasmosis and viral uveitis.

    Sauer, Arnaud; Villard, Odile; Creuzot-Garcher, Catherine; Chiquet, Christophe; Berrod, Jean-Paul; Speeg-Schatz, Claude; Bourcier, Tristan; Candolfi, Ermanno

    2015-01-01

    Uveitis is a potentially blinding inflammatory disease. Thirty to 50% of uveitis cases are considered idiopathic. The present study sought to determine the intraocular cytokine patterns in the different etiological types of uveitis in order to better understand their immunological regulation and to determine whether the cytokine pattern may be a useful diagnostic tool. From a multicenter institutional prospective study, the clinical and biological data from patients with uveitis of various etiologies, determined after a complete workup, were compared with those from a control group of cataract patients. A multiplex assay was used to assess the profiles of 27 cytokines and chemokines in aqueous humor samples from these patients. In total, 62 patients with infectious or noninfectious uveitis and 88 controls were included. After a complete workup, the cause of uveitis remained unknown in 25 patients (40% idiopathic uveitis). Interleukin 1β (IL-1β) levels were markedly increased in viral uveitis, as were IL-10 levels, whereas IL-17A levels were augmented in toxoplasmic uveitis. Based on the cytokine pattern, the patients were reassigned to specific groups. At the end of the study, the diagnosis of idiopathic uveitis was still valid in only 11 patients (18%). The observation that some markers are specific to certain diseases enables a better understanding of the disease pathogenesis and paves the way for new diagnostic methods aimed to identify inflammatory markers, which may perhaps be targeted by therapy. PMID:25378353

  5. Recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate γδ T cells.

    Hatano, Shinya; Tamura, Toshiki; Umemura, Masayuki; Matsuzaki, Goro; Ohara, Naoya; Yoshikai, Yasunobu

    2016-05-11

    Interleukin 7 (IL-7) has an important function in the development and maintenance of IL-17A+ γδ T cells. We here constructed a recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing antigen 85B (Ag85B)-IL-7 fusion protein (rBCG-Ag85B-IL-7). The Ag85B-IL-7 fusion protein and IL-7 were detected in the bacterial lysate of rBCG-Ag85B-IL-7. rBCG-Ag85B-IL-7 was the same in number as control rBCG expressing Ag85B (rBCG-Ag85B) in the lung at the early stage after intravenous inoculation, whereas the numbers of IL-17A+ γδ T cells and Ag-specific Th1 cells were significantly higher in the lungs of mice inoculated with rBCG-Ag85B-IL-7 than those inoculated with rBCG-Ag85B. The Ag-specific Th1 cell response was impaired in mice lacking IL-17A+ γδ T cells after inoculation with rBCG-Ag85B-IL-7. Thus, rBCG-Ag85B-IL-7 increases the pool size of IL-17A+ γδ T cells, which subsequently augment the Th1 response to mycobacterial infection. PMID:27079930

  6. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  7. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  8. The IL-17A G-197A and IL-17F 7488T/C polymorphisms are associated with increased risk of cancer in Asians: a meta-analysis

    Wang H

    2015-09-01

    Full Text Available Huifen Wang,1,* Yanli Zhang,1,* Zhaolan Liu,2 Yin Zhang,3 Hongchuan Zhao,1 Shiyu Du1 1Department of Gastroenterology, China-Japan Friendship Hospital, 2Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 3Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Interleukin-17 (IL-17 is a family of emerged pro-inflammatory cytokines. The IL-17A and IL-17F are two important members of IL-17 family. Previous studies have shown that the functional IL-17A G-197A and IL-17F 7488T/C polymorphisms may contribute to susceptibility to cancer but the results were inconclusive. This meta-analysis was performed to determine the exact association between IL-17 polymorphisms and cancer risk.Methods: Online databases were searched to identify eligible case–control studies. Pooled odds ratios (ORs and confidence intervals (CIs were calculated by fixed-effect models or random-effect models. Publication bias was detected by Egger’s test and Begg’s test.Results: Nine eligible case–control studies of IL-17A G-197A and seven studies of IL-17F 7488T/C, including 3,181 cases and 4,005 controls, were identified. Pooled analysis suggested the variant IL-17A-197A allele was associated with increased risk cancer (GA/AA vs GG, OR =1.27, 95% CI: 1.15, 1.41, Pheterogeneity =0.374; and A vs G, OR =1.30, 95% CI: 1.17, 1.45, Pheterogeneity =0.021. For IL-17F 7488T/C, the homozygote 7488CC genotype significantly increased risk of cancer (CC vs TC/TT, OR =1.36, 95% CI: 0.97, 1.91, Pheterogeneity =0.875; and CC vs TT, OR =1.39, 95% CI: 1.03, 1.88, Pheterogeneity =0.979, especially for gastric cancer.Conclusion: The variant IL-17A-197A allele and IL-17F 7488CC genotype were associated with increased risk of cancer, especially for gastric cancer. Keywords: interleukin-17, gene polymorphism, gastric cancer, risk

  9. Perilla frutescens extract ameliorates DSS-induced colitis by suppressing proinflammatory cytokines and inducing anti-inflammatory cytokines.

    Urushima, Hayato; Nishimura, Junichi; Mizushima, Tsunekazu; Hayashi, Noriyuki; Maeda, Kazuhisa; Ito, Toshinori

    2015-01-01

    Anti-inflammatory effects have been reported in Perilla frutescens leaf extract (PE), which is a plant of the genus belonging to the Lamiaceae family. We examined the effect of PE on dextran sulfate sodium (DSS)-induced colitis. Preliminarily, PE was safely administered for 7 wk without any adverse effects. In the preventive protocol, mice were fed 1.5% DSS solution dissolved in distilled water (control group) or 0.54% PE solution (PE group) ad libitum for 7 days. In the therapeutic protocol, distilled water or 0.54% PE solution was given for 10 days just after administration of 1.5% DSS for 5 days. PE intake significantly improved body weight loss. The serum cytokine profile demonstrated that TNF-α, IL-17A, and IL-10 were significantly lower in the PE group than in the control group. In the therapeutic protocol, mice in the PE group showed significantly higher body weight and lower histological colitis scores compared with mice in the control group on day 15. The serum cytokine profile demonstrated that TGF-β was significantly higher in the PE group than in the control group. In distal colon mRNA expression, TNF-α, and IL-17A were significantly downregulated. In vitro analyses of biologically active ingredients, such as luteolin, apigenin, and rosmarinic acid, in PE were performed. Luteolin suppressed production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IL-17A. Apigenin also suppressed secretion of IL-17A and increased the anti-inflammatory cytokine IL-10. Rosmarinic acid increased the regulatory T cell population. We conclude that PE might be useful in treatment and prevention of DSS-induced colitis. PMID:25359539

  10. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  11. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  12. Valproic Acid Induced Hyperammonaemic Encephalopathy

    Objective: To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Methods: Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excel 2007 was used for statistical analysis. Results: Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n=8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Conclusion: Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition. (author)

  13. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  14. Functional single nucleotide polymorphism in IL-17A 3' untranslated region is targeted by miR-4480 in vitro and may be associated with age-related macular degeneration.

    Popp, Nicholas A; Yu, Dianke; Green, Bridgett; Chew, Emily Y; Ning, Baitang; Chan, Chi-Chao; Tuo, Jingsheng

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. Genetic factors contributing to AMD include single nucleotide polymorphisms (SNPs) in immune-related genes including CFH, C2, CFI, C9, and C3, thus implicating these pathways in AMD pathogenesis. MicroRNAs (miRNAs) are powerful regulators of gene expression and execute this function by binding to the 3' untranslated region (3'UTR) of target mRNAs, leading to mRNA degradation. In this study, we searched for the possible association of SNPs in the 3'UTR region of IL-17A, a gene implicated in AMD pathogenesis without any previous SNP association with AMD. Using two independent sample cohorts of Caucasian subjects, six SNPs in the IL-17A 3'-UTR were selected for genotyping based on bioinformatic predictions of the SNP effect on microRNA binding. The SNP rs7747909 was found to be associated with AMD (P < 0.05) in the NEI cohort, using a dominant model logistic regression. Luciferase reporter gene assays and RNA electrophoretic mobility shift assays were performed using ARPE-19 cells to confirm the preferential binding of microRNAs to the major allele of the SNP. Our findings support the hypothesis that microRNA-mediated gene dysregulation may play a role in the pathogenesis of AMD. PMID:26765636

  15. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice.

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J; Anderson, Gary P; Vlahos, Ross

    2015-11-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. PMID:26201093

  16. Valproic acid induced pancreatitis: a case report

    Bhupen Barman

    2014-08-01

    Full Text Available Valproic acid is a commonly used antiepileptic drug. Apart from its common side effect there is definite association between valproic acid therapy and acute pancreatitis. Since 1979, many cases of acute pancreatitis induced by valproic acid have been published in medical literature. Here we are reporting a case of valproic acid induced acute pancreatitis in a 27 years old boy. The treatment is supportive, re-challenge is hazardous and should be avoided. [Int J Res Med Sci 2014; 2(4.000: 1765-1767

  17. Bile acids in radiation-induced diarrhea

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  18. Hyaluronic Acid Inhibits Polycation Induced Cellular Responses

    lalenti, A.; Lanaro, A.; Brignola, G.; Marotta, P; Di Rosa, M.

    1994-01-01

    Positively charged macromolecules cause a variety of pathological events through their electrostatic interaction with anionic sites present on the membrane of target cells. In the present study we have investigated the effect of hyaluronic acid, a negatively charged molecule, on rat paw oedema induced by poly-L-lysine as well as on histamine release from rat mast cells and nitric oxide formation from rabbit aorta, both induced by this polycation. The results indicate that hyaluronic acid is a...

  19. Omeprazole induces altered bile acid metabolism

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  20. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho; Chang, Sung Eun

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cel...

  1. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  2. Mast cell degranulation induced by chlorogenic acid

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  3. Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media.

    Wang, Wei; Zhou, Aie; Zhang, Xuemei; Xiang, Yun; Huang, Yifei; Wang, Lei; Zhang, Shuai; Liu, Yusi; Yin, Yibing; He, Yujuan

    2014-06-01

    Streptococcus pneumoniae is a Gram-positive and human-restricted pathogen colonizing the nasopharynx with an absence of clinical symptoms as well as a major pathogen causing otitis media (OM), one of the most common childhood infections. Upon bacterial infection, neutrophils are rapidly activated and recruited to the infected site, acting as the frontline defender against emerging microbial pathogens via different ways. Evidence shows that interleukin 17A (IL-17A), a neutrophil-inducing factor, plays important roles in the immune responses in several diseases. However, its function in response to S. pneumoniae OM remains unclear. In this study, the function of IL-17A in response to S. pneumoniae OM was examined using an in vivo model. We developed a model of acute OM (AOM) in C57BL/6 mice and found that neutrophils were the dominant immune cells that infiltrated to the middle ear cavity (MEC) and contributed to bacterial clearance. Using IL-17A knockout (KO) mice, we found that IL-17A boosted neutrophil recruitment to the MEC and afterwards induced apoptosis, which was identified to be conducive to bacterial clearance. In addition, our observation suggested that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was involved in the recruitment and apoptosis of neutrophils mediated by IL-17A. These data support the conclusion that IL-17A contributes to the host immune response against S. pneumoniae by promoting neutrophil recruitment and apoptosis through the p38 MAPK signaling pathway. PMID:24664502

  4. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells.

    Chieko Iwao

    Full Text Available The acyclic diterpenoid acid geranylgeranoic acid (GGA has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1 GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2 all-trans retinoic acid induces XBP1 splicing but little cell death; and 3 phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells.

  5. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  6. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-01-01

    Background Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Results Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We preve...

  7. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  8. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  9. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into ...

  10. Inducible gene expression system by 3-hydroxypropionic acid

    Zhou, Shengfang; Ainala, Satish Kumar; Seol, Eunhee; Nguyen, Trinh Thi; Park, Sunghoon

    2015-01-01

    Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion. Results Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP ...

  11. Convective mixing induced by acid-base reactions.

    Almarcha, Christophe; R'Honi, Yasmina; De Decker, Yannick; Trevelyan, Philip; Eckert, Kerstin; De Wit, Anne

    2011-01-01

    When two miscible solutions, each containing a reactive species, are put in contact in the gravity field, local variations in the density due to the reaction can induce convective motion and mixing. We characterize here both experimentally and theoretically such buoyancy-driven instabilities induced by the neutralization of a strong acid by a strong base in aqueous solutions. The diverse patterns obtained are shown to depend on the type of reactants used and on their relative concentrations. ...

  12. Increased isoprostane levels in oleic acid-induced lung injury

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  13. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  14. Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis

    Park, Eun-Jung; Kim, Sun A.; Choi, Yong-Min; Kwon, Hyuk-Kwon; Shim, Wooyoung; Lee, Gwang; Choi, Sangdun

    2011-01-01

    Capric acid is a second medium-chain fatty acid, and recent studies have shown that fatty acids are associated with bone density and reduce bone turnover. In this study, we investigated the effects of capric acid on lipopolysaccharide (LPS)-induced osteoclastogenesis in RAW264.7 cells. After treatment with capric acid (1 mM), the number of tartrate resistant acid phosphatase (TRAP)-positive cells decreased significantly. Capric acid reduced LPS-induced TRAP expression, an osteoclast different...

  15. Iron Transformations Induced by an Acid-Tolerant Desulfosporosinus Species

    Bertel, Doug; Peck, John; Quick, Thomas J.; Senko, John M.

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) ...

  16. The role of ammonia in sulfuric acid ion induced nucleation

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  17. A Rat Model of Hemidystonia Induced by 3-Nitropropionic Acid

    Liu, Huan-Guang; Ma, Yu; Meng, Da-Wei; Yang, An-Chao; Zhang, Jian-Guo

    2013-01-01

    Objective Secondary dystonia commonly presents as hemidystonia and is often refractory to current treatments. We aimed to establish an inducible rat model of hemidystonia utilizing 3-nitropropionic acid (3-NP) and to determine the pathophysiology of this model. Methods Two different doses of 3-NP were stereotactically administered into the ipsilateral caudate putamen (CPu) of Wistar rats. Behavioral changes and alterations in the neurotransmitter levels in the basal ganglia were analyzed. We ...

  18. Acidic environments induce differentiation of Proteus mirabilis into swarmer morphotypes.

    Fujihara, Masatoshi; Obara, Hisato; Watanabe, Yusaku; Ono, Hisaya K; Sasaki, Jun; Goryo, Masanobu; Harasawa, Ryô

    2011-07-01

    Although swarmer morphotypes of Proteus mirabilis have long been considered to result from surfaced-induced differentiation, the present findings show that, in broth medium containing urea, acidic conditions transform some swimmer cells into elongated swarmer cells. This study has also demonstrates that P. mirabilis cells grown in acidic broth medium containing urea enhance virulence factors such as flagella production and cytotoxicity to human bladder carcinoma cell line T24, though no significant difference in urease activity under different pH conditions was found. Since there is little published data on the behavior of P. mirabilis at various hydrogen-ion concentrations, the present study may clarify aspects of cellular differentiation of P. mirabilis in patients at risk of struvite formation due to infection with urease-producing bacteria, as well as in some animals with acidic or alkaline urine. PMID:21707738

  19. Chromium-induced membrane damage: protective role of ascorbic acid

    2001-01-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100gbody weight). It has been observed that the intoxication with chromium ( i. p. ) at the dose of 0.8 mg/100g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospbolipid of both liver and kidney. The alkaline pbosphatase, total ATPase and Na + -K + -ATPase activities were significantly decreased in both liver and kidney after chromium treatment,except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid ( i.p. at the dose of 0.5 mg,/100g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  20. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  1. Radiation induced grafting of acrylic acid onto extruded polystyrene surface

    Polystyrene materials with good solubility in liquid scintillation cocktails are used to wipe off different types of surfaces in order to determine the tritium removable contamination with the help of a liquid scintillation counter. This paper analyses hydrophilic surface modifications by radiation induced grafting of acrylic groups onto extruded polystyrene plates. Two grafting methods were used: (a) exposure of extruded polystyrene plates, immersed in aqueous acrylic acid solution, to a gamma radiation of a Co-60 source, and (b) exposure of extruded polystyrene plates to a Co-60 source, followed by the immersion of extruded polystyrene plates in aqueous acrylic acid solution. The grafting of acrylic was proved by IR spectrometry and by radiometric methods using acrylic acid labelled with tritium. - Highlights: ► Polystyrene (PS) is used to determine the removable surface contamination (RSC). ► RSC factor may be increased by PS surface modification. ► PS surface was modified by acrylic acid grafting using γ radiation 60Co source. ► Acrylic fragments insertion was determined by IR, and radiometric. ► Grafted PS discs increase RSC factor in the case of tritium contamination.

  2. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  3. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  4. Radiation induced crystallinity damage in poly(L-lactic acid)

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (Tg) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively

  5. Radiation induced crystallinity damage in poly(L-lactic acid)

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  6. Pattern of Limb Malformations in Mice Induced by Methoxyacetic Acid

    Rasjad, Chairuddin; Yamashita, Keisuke; Datu, Abdul Razak; Yasuda, Mineo

    1991-01-01

    The present study investigated the pattern of limb malformations induced in mice by methoxyacetic acid (MAA), one of di(2-methoxyethyl) phthalate (DMEP) metabolites. Pregnant Jcl:ICR mice were given orally at gestational day (gd) 10.5, 11.0, or 11.5 (vaginal plug = gd 0) a single dose of MAA 10 mmol/kg of body weight. Fetuses were examined at gd 15.5 for external and skeletal malformations. Limb defects were maximum in frequency and severity after administration at gd 11.5. Forelimbs had grea...

  7. Acid-induced changes of brain protein buffering

    Kraig, Richard P.; Wagner, Robert J.

    1987-01-01

    Excessive cellular acidosis is thought to enhance destruction of brain from ischemia. Protein denaturation may contribute to such injury although the behavior of brain proteins to acidosis is poorly defined. As a first approach to detect acid-induced changes in brain proteins and to characterize buffer content, homogenates were acidified for 20 min (as low as pH 3.1), returned to baseline pH (6.9), and then titrated. Titration curves show a significant (P < 0.0001) and permanent increase in b...

  8. Benzoic Acid-Inducible Gene Expression in Mycobacteria.

    Marte S Dragset

    Full Text Available Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.

  9. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury.

    Pineda-Peña, Elizabeth Arlen; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2012-12-15

    Previous studies have shown gastroprotective effect of fish oil in several experimental models. However, the mechanisms and active compounds underlying this effect are not fully understood. Fish oil has several components; among them, one of the most studied is docosahexaenoic acid (DHA), which is an omega-3 long-chain polyunsaturated fatty acid. The aim of this study was to examine the gastroprotective effect of DHA as a pure compound in a rat model of indomethacin-induced gastric injury as well as elucidate some of the mechanism(s) behind DHA's gastroprotective effect. Indomethacin was orally administered to induce an acute gastric injury (3, 10 and 30mg/kg). Omeprazol (a proton pump inhibitor, 30mg/kg, p.o.) and DHA (3, 10, 30mg/kg, p.o.) were gavaged 30 and 120min, respectively, before indomethacin insult (30mg/kg p.o.). Three hours after indomethacin administration, rats were sacrificed, gastric injury was evaluated by determining the total damaged area. A sample of gastric tissue was harvested and processed to quantify prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) levels by enzyme-linked immunosorbent assay. Indomethacin produced gastric injury in dose-dependent manner. DHA protected against indomethacin-induced gastric damage, and this effect was comparable with omeprazol's gastroprotective effect. DHA did not reverse the indomethacin-induced reduction of PGE(2) gastric levels. In contrast, DHA partially prevented the indomethacin-induced increase in LTB(4) gastric levels. This is the first report demonstrating DHA's gastroprotective effect as a pure compound. Furthermore, the results reveal that the gastroprotective effect is mediated by a decrease in gastric LTB(4) levels in indomethacin-induced gastric damage. PMID:23063544

  10. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  11. Perflurooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings

    Highlights: ► PFOA exposure thinned right ventricular wall thickness in D19 chicken embryo hearts. ► PFOA exposure induced left ventricle hypertrophy in hearts of hatchling chickens. ► PFOA exposure induced altered cardiac function in hatchling chickens. -- Abstract: Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPARα). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that developmental PFOA exposure may not affect cardiac energetics. In summary, structural and functional characteristics of the heart appear to be developmental targets of PFOA, possibly at the level of cardiomyocytes. Additional studies will

  12. Induced resistance by cresotic acid (3-hydroxy-4-methyl methylbenzoic acid) against wilt disease of melon and cotton

    Cresotic acid (3-hydroxy-4-methylbenzoic acid) was proved be active in controlling wilt diseases of melon and cotton plants grown in the house. Soil drench with 200-1000 ppm cresotic acid induced 62-77 %, 69-79 % and 50-60 % protection against Fusarium oxysporum f.sp melonis (FOM) in melon, Fusarium oxysporum f.sp vasinfectum (FOV) and Verticillium dahliae in cotton, respectively. Since no inhibitory effect of cresotic acid on mycelial growth of these three fungual pathogens was observed in vitro, it is suggested that control of these wilt diseases with cresotic acid resulted from induced resistance. Cresotic acid induced resistance in melon plants not only against race 0, race 1, race 2 and race 1,2, but also against a mixture of these four races of FOM, suggesting a non-race- specific resistance. Level of induced resistance by cresotic acid against FOM depended on inoculum pressure applied to melon plants. At 25 day after inoculation with FOM, percentage protection induced by cresotic acid under low inoculum pressure retained a level of 51 %, while under high inoculum pressure percentage protection decreased to only 10 %. High concentrations of cresotic acid significantly reduced plant growth. Reduction in fresh weight of melon (36-51%) and cotton (42-71%) was obtained with 500-1000 ppm cresotic acid, while only less than 8% reduction occurred with 100-200 ppm. (author)

  13. The Effect of Opsteoporotic Model Rats Induced by Retinoic Acid

    Xu Peng; Yao Jianfeng; Jin Weizhang; Cai Qiankun; Guo Xiong

    2005-01-01

    Objective: To study the effect of retinoic acid on inducing osteoporosis in female rat. Methods: 48SD female rats were divided randomly into experiment group and control group. Retinoic acid was administered orally to experiment group with 80mg.kg-1d-1 for 15 days. Then the rats were sacrificed on the 0th, 30th, 60th days after last administration. The serum concentration of Ca, P, BGP, E2, AKP and TRAP were detected. Components of collagen and proteoglycan in the bones and BMD were also assayed .The femoral morphometric change and epiphyseal plate cartilage histological changes were observed. Results: After a 15-day period treatment with retinoic acid, charateristics of experiment group were compared with control, it is shown that the concentration of serum E2 and BGP declined, the activity of AKP and TRAP increased while BMP decreased, the bone mass of both spongy bone and cortical bone reduced, the number of spongy bone osteoclasts and their activity increased, number of epiphyseal plate chondrocyte reduced, cartilage hypertrophic zone displayed dyscalcification, and no difference of other markers was found in the two groups. On the 30th day after the last administration, the experiment group appeared a declined number of cancellous bone osteoclast and level of serum AKP yet they were still higher than control. Number of epiphyseal chondrocyte, serum BGP and tibial BMD, though higher than before, were still lower than control. Other markers were no difference. On the 60th day after treatment, although the femoral cancellous bone mass was still less and cancellous osteoblast was more than control, the cortical bone mass, cancellous osteoclast number and level of serum Ca and P were all remained no different between two groups.Conclusion: Retinoic acid possessed a better short-term effect than long-term effect. Cancellous bone loss lasted much longer than cortical bone and more obviously; the bone matrix in this osteoporosis model was able to repair itself

  14. The radiation-induced degradation of hyaluronic acid

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K+), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base. More than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N2O/O2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N2O/O2, pulse-irradiated), showed a marked dependence on pH. Steady-state radiolysis (N2O/O2) was used to determine G-values for oxygen consumption, carbon dioxide formation and peroxide formation. (author)

  15. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  16. Radiation-induced electron migration in nucleic acids

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to non-random types of damage along DNA manifested distal to the sites of the initial energy deposition. Radiation-induced electron migration in nucleic acids has been examined using oligonucleotides containing 5-bromouracil (5-BrU). Interaction of 5-BrU with solvated electrons results in release of bromide ions and formation of uracil-5-yl radicals. Monitoring either bromide ion release or uracil formation provides an opportunity to study electron migration processes in model nucleic acid systems. Using this approach we have discovered that electron migration along oligonucleotides is significantly influenced by the base sequence and strandedness. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution, which compares with mean migration distances of 6-10 bp for Escherichia coli DNA irradiated in solution and 5.5 bp for E. coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along a double-stranded oligonucleotide containing a region of purine bases adjacent to the 5-BrU moiety. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation. (Author)

  17. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  18. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  19. A C-type lectin receptor pathway is responsible for the pathogenesis of acute cyclophosphamide-induced cystitis in mice.

    Dejima, Takashi; Shibata, Kensuke; Yamada, Hisakata; Takeuchi, Ario; Hara, Hiromitsu; Eto, Masatoshi; Naito, Seiji; Yoshikai, Yasunobu

    2013-12-01

    Hemorrhagic cystitis often arises after cyclophosphamide (CYP) administration. As yet, however, the mechanism involved in its pathogenesis is unknown. In this study, it was found that the Fc receptor γ chain (FcRγ)- caspase recruitment domain-containing protein 9 (CARD9)-dependent pathway rather than the myeloid differentiation primary response gene 88 (MyD88)-dependent pathway is involved in the pathogenesis of acute CYP-induced cystitis in mice. Rapid and transient production of interleukin (IL)-6 and IL-1β was detected in the bladder at 4 hr, preceding IL-23 and IL-17A production and an influx of neutrophils, which reached a peak at 24 hr after injection. As assessed by weight, edema and neutrophil infiltration, cystitis was significantly attenuated in CARD9 knockout (KO) and FcRγKO mice, this attenuation being accompanied by impaired production of IL-1β, IL-6, IL-23 and IL-17A. The major source of IL-17A is the vesical γδ T cell population: IL-17AKO, CδKO and Tyk2KO mice showed little IL-17A production and reduced neutrophil infiltration in the bladder after CYP injection. These results suggest that FcRγ-CARD9-dependent production of proinflammatory cytokines such as IL-1β, IL-6, and IL-23 and the subsequent activation of IL-17A-producing γδ T cells are at least partly involved in the pathogenesis of acute CYP-induced cystitis in mice. PMID:24102807

  20. Inflammatory cells′ role in acetic acid-induced colitis

    Mohammad H Sanei

    2014-01-01

    Full Text Available Background: Free radicals are the known mechanisms responsible for inducing colitis with two origins: Inflammatory cells and tissues. Only the inflammatory cells can be controlled by corticosteroids. Our aim was to assess the importance of neutrophils as one of the inflammatory cells in inducing colitis and to evaluate the efficacy of corticosteroids in the treatment of inflammatory bowel disease (IBD. Materials and Methods: Thirty-six mice were divided into six groups of six mice each. Colitis was induced in three groups by exposing them to acetic acid through enema (group 1, ex vivo (group 3, and enema after immune suppression (group 5. Each group had one control group that was exposed to water injection instead of acetic acid. Tissue samples were evaluated and compared based on macroscopic damages and biochemical and pathological results. Results: Considering neutrophilic infiltration, there were significant differences between groups 1, 3, 5, and the control of group 1. Groups 3, 5, and their controls, and group 1 and the control of group 3 had significant differences in terms of goblet depletion. Based on tissue originated H 2 O 2 , we found significant differences between group 1 and its control and group 3, and also between groups 5 and the control of group 3. All the three groups were significantly different from their controls based on Ferric Reducing Ability of Plasma (FRAP and such differences were also seen between group 1 with two other groups. Conclusion: Neutrophils may not be the only cause of oxidation process in colitis, and also makes the effectiveness of corticosteroids in the treatment of this disease doubtful.

  1. Dihydrolipoic Acid Induces Cytotoxicity in Mouse Blastocysts through Apoptosis Processes

    Wen-Hsiung Chan

    2012-03-01

    Full Text Available α-Lipoic acid (LA is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA. In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity.

  2. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  3. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    Verhaag, Esther M.; Buist-Homan, Manon; Koehorst, Martijn; Groen, Albert K.; Moshage, Han; Faber, Klaas Nico

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions. Methods HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1–50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed. Results Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  4. Retinoic acid-induced gene expression in normal and leukemic myeloid cells

    1986-01-01

    Retinoic acid has been shown to induce large accumulations of tissue transglutaminase in cultured myeloid cells. Addition of retinoic acid to mouse resident peritoneal macrophages increased the level of tissue transglutaminase mRNA within 30-60 min. Retinoic acid also increased tissue transglutaminase mRNA levels in human promyelocytic leukemia (HL- 60) cells. These studies show that retinoic acid can induce acute alterations in specific gene expression in both normal and leukemic myeloid cells.

  5. The radiation-induced degradation of hyaluronic acid

    Deeble, D. J.; Phillips, G. O.; Bothe, E.; Schuchmann, H.-P.; von Sonntag, C.

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K +), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base (overall half-lives at pH values of 4.8, 7 and 10.2 were 0.6, 1 and 0.1 ms). It would seem that more than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N 2O/O 2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N 2O/O 2, pulse-irradiated), showed a marked dependence on pH, with G-values (molecules/100 eV) of 0.7, 2.5 and 4.7 at pH values of 7, 9.7 and 10.4, respectively. Steady-state radiolysis (N 2O/O 2) was used to determine G-values for oxygen consumption [ G(-O 2) ≈ 6], carbon dioxide formation [ G(CO 2) = 0.8 in the absence of O 2 and 1.3 in its presence] and peroxide formation [ G(H 2O 2) ≈ 2; G(organic hydroperoxide) < 0.15].

  6. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  7. Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus.

    Huang, Hsiao-Ling; Lin, Chih-Cheng; Jeng, Kee-Ching G; Yao, Pei-Wun; Chuang, Lu-Te; Kuo, Su-Ling; Hou, Chien-Wei

    2012-03-01

    Green tea is one of the most-consumed beverages due to its taste and antioxidative polyphenols. However, the protective effects of green tea and its constituent, gallic acid (GA), against kainic acid (KA)-induced seizure have not been studied. We investigated the effect of fresh green tea leaf (GTL) and GA on KA-induced neuronal injury in vivo and in vitro. The results showed that GTL and GA reduced the maximal seizure classes, predominant behavioral seizure patterns, and lipid peroxidation in male FVB mice with status epilepticus (SE). GTL extract and GA provided effective protection against KA-stressed PC12 cells in a dose-dependent manner. In the protective mechanism study, GTL and GA decreased Ca(2+) release, ROS, and lipid peroxidation from KA-stressed PC12 cells. Western blot results revealed that mitogen-activated protein kinases (MAPKs), RhoA, and COX-2 expression were increased in PC12 cells under KA stress, and expression of COX-2 and p38 MAPK, but not RhoA, was significantly reduced by GTL and GA. Furthermore, GTL and GA were able to reduce PGE(2) production from KA-stressed PC12 cells. Taken together, the results showed that GTL and GA provided neuroprotective effects against excitotoxins and may have a clinical application in epilepsy. PMID:22324774

  8. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  9. Iron transformations induced by an acid-tolerant Desulfosporosinus species.

    Bertel, Doug; Peck, John; Quick, Thomas J; Senko, John M

    2012-01-01

    The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe₃S₄) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe₈O₈(OH)₆SO₄ · nH₂O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2. PMID:22038606

  10. Effect of Ascorbic Acid on Lipid Peroxidation Induced by Ceftazidime

    Devbhuti P*,1

    2011-01-01

    Full Text Available Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids which is a free radical related process and responsible for thedevelopment of many diseases and disorders like diabetes mellitus, hypertension, cancer etc. End products of lipid peroxidation aremalondialdehyde (MDA, 4-hydroxy-2-nonenal (4-HNE, etc. which are the ultimate mediator of toxicity. Antioxidants have the capability toinhibit lipid peroxidation. Keeping in mind this fact, the present in vitro study was carried out to evaluate lipid peroxidation induction potential of ceftazidime, a cephalosporin antibiotic and its suppression with ascorbic acid considering some laboratory markers of lipid peroxidation like MDA, 4-HNE and reduced glutathione (GSH. Goat liver was used as the lipid source. After treatment of the liver homogenate with drug and/or antioxidant the levels of 4-HNE, MDA and GSH were estimated in different samples at different hours of incubation. The results showed that the drug ceftazidime could significantly induce lipid peroxidation and the antioxidant ascorbic acid has the capability to inhibit ceftazidime-inducedlipid peroxidation.

  11. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products. PMID:25300299

  12. Analysis of Salicylic Acid Induced Proteins in Rice

    1999-01-01

    An analysis using SDS-PAGE of acidic and basic protein fractions extracted from rice seedling treated with salicylic acid (SA) yielded several new proteins, some of which are similar in relative molecular mass to PR-1a,c, PR-2, 2e and PR-3d, 3e of tobacco.Direct assays for peroxidases and β-1,3-glucanases demonstrated that the activities of the two enzymes in the rice seedlings increased rapidly with time after SA treatment, reaching a maximum 6 days after treatment.Disease resistance tests showed that SA treated rice seedlings stunted the development of blight lesions and displayed higher resistance to rice blight pathogen (Xanthomonas oryzea pv.oryzea).The data suggest that the treatment with SA, even for plants with high endogenous SA levels such as rice, may induce the appearance of new proteins and the formation of disease resistance.The results contribute to the analysis of the SA role in rice systemic acquired resistance.

  13. Hyaluronic acid induces activation of the κ-opioid receptor.

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  14. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  15. The Role of Fatty Acids and Caveolin-1 in TNF-α-Induced Endothelial Cell Activation

    Wang, Lei; Lim, Eun-Jin; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors of atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are requ...

  16. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  17. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  18. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation. PMID:25216642

  19. Epigenetic modifications in valproic acid-induced teratogenesis

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  20. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  1. [Epigenetic variability induced by nicotinic acid in Triticum aestivum L].

    Bogdanova, E D

    2003-09-01

    The effect of nicotinic acid (NA) on hereditary traits of spring common wheat cultivar Kazakhstanskaya 126 (K.126) were studied under the laboratory and field conditions. Treatment of seeds and vegetating plants with 0.01-0.1% NA (aqueous solution) induced heritable epigenetic changes in wheat. As a result, strong tall plants with the long productive spike, large seeds, and several quantitative and qualitative characters other than in the original cultivar were obtained in the second and further generations after treatment. Crosses of changed plants with each other did not result in segregation with respect to leaf downiness or anthocyan stem color in F2-F4, suggesting the same epigenetic state of genes responsible for changed characters. In crosses with the original cultivar, characters of the changed plants always dominated in F1. Basing on the current views, the changes were attributed to a transition of the hl1 and pc recessive marker genes into new, dominant epiallelic states Hl1 and Pc, which respectively determine downy leaves and the colored stem. The NA effect was specific, since only one type of the variation was observed. The changed characters were stable, and no reversion to the original phenotype was detected in 57 generations. PMID:14582391

  2. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  3. Rabbit gastric ulcer models: comparison and evaluation of acetic acid-induced ulcer and mucosectomy-induced ulcer

    Maeng, Jin Hee; Lee, Eunhye; Lee, Don Haeng; YANG, SU-GEUN

    2013-01-01

    In this study, we examined rabbit gastric ulcer models that can serve as more clinically relevant models. Two types of ulcer model were studied: acetic acid-induced ulcers (AAU) and mucosal resection-induced ulcers (MRU). For AAU, rabbit gastric mucosa was exposed by median laparotomy and treated with bottled acetic acid. MRU was examined as a model for endoscopic mucosal resection (EMR). Normal saline was injected into the submucosal layer and the swollen mucosa was resected with scissors. E...

  4. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  5. The Interleukin-17 Induced Activation and Increased Survival of Equine Neutrophils Is Insensitive to Glucocorticoids

    Ruby Yoana Murcia; Amandine Vargas; Jean-Pierre Lavoie

    2016-01-01

    Background Glucocorticoids (GCs) are the most effective drugs for the treatment of human asthma. However, a subgroup of asthmatic patients with neutrophilic airway inflammation is insensitive to GCs. Interleukin-17 (IL-17), a cytokine upregulated in the airways of a subset of human asthmatic patients, contributes to the recruitment of neutrophils and induces a glucocorticoid resistance in human airway epithelial cells. We hypothesized that IL-17 similarly activates neutrophils and contributes...

  6. Stress -induced biosynthesis of dicaffeoylquinic acids in globe artichoke

    Moglia, A.; Lanteri, S.; Comino, C.; Acquadro, A.; Vos, de C.H.; Beekwilder, M.J.

    2008-01-01

    Leaf extracts from globe artichoke (Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along wi

  7. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors

    Tunaru, Sorin; Althoff, Till F.; Nüsing, Rolf M.; Diener, Martin; Offermanns, Stefan

    2012-01-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP3 prostanoid receptor is specifically activated by ricinoleic acid and...

  8. Chronic gamma radiation-induced changes in the content of fatty acids in spring rape seeds

    Chronic gamma irradiation of spring rape plants having no erucic acid and eicosanoic acid in seed oil induced changes both in the growth and in the morphological composition of the plants. The contents of erucic acid and eicosanoic acid did not increase. The greatest changes occurred in unsaturated acids, especially in macromutants resulting from irradiated plants located in the closest proximity of the radiation source or in places with the most significant plant growth inhibition. Nutants with a low, or a high, content of linolenic acid were obtained. (author)

  9. Effect of naloxone on met-enkephalin-induced gastric acid secretion and serum gastrin in man.

    Olsen, P S; Kirkegaard, P; Petersen, B; Christiansen, J.

    1982-01-01

    It has previously been demonstrated that met-enkephalin, and endogenous opiate, stimulates gastric acid secretion in man, while naloxone inhibits meal-stimulated acid secretion. In seven healthy subjects the opiate receptor antagonist naloxone was infused in a dose of 10 microgram/kg/h during stimulation of gastric acid secretion with pentagastrin 100 ng/kg/h and met-enkephalin 0.1 microgram/kg/h. Naloxone had no effect on pentagastrin-induced acid secretion, whereas met-enkephalin-induced ac...

  10. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  11. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  12. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  13. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  14. Acid stress adaptation protects saccharomyces cerevisiae from acetic acid-induced programme cell death

    Giannattasio, Sergio; Guaragnella, Nicoletta; Côrte-Real, Manuela; Passarella, Salvatore; Marra, Ersilia

    2005-01-01

    In this work evidence is presented that acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-mediated programmed cell death. Exponential-phase yeast cells, non-adapted or adapted to acid stress by 30 min incubation in rich medium set at pH 3.0 with HCl, have been exposed to increasing concentrations of acetic acid and time course changes of cell viability have been assessed. Adapted cells, in contrast to non-adapted cells, when exposed to 80 mM acetic acid for 200 min ...

  15. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  16. Study on the dose-response relation of premature chromosome condensation induced by Okadaic acid

    In order to study the effect-dosage relationship between the PCC induced by Okadaic acid and the IR dosages, human peripheral blood in vitro was irradiated by X-rays at different doses (0, 0.5, 1.0, 2.0, 3.0, 5.0Gy) cultivated for 48 hours and added with Okadaic acid two hours before the end of culture. Chromosome aberrations frequencies was analyzed and compared with that induced by the conventional chromosome assay and their dose-response curves were fitted. The results show that the mitotic index of the PCC induced by Okadaic acid is higher than that of the conventional chromosome assay. And the fragment rate of chromosome condensation induced by Okadaic acid has a favorable linearity relationship with external radiation doses. (authors)

  17. Radiation-induced alterations in splenic acid phosphatase of pigeons

    The effect of total body ν-irradiation with sub-lethal dose (400 rad) on acid phosphatase has been studied in spleen of pigeons. The specific activity of acid phosphatase increased significantly 48 hr and 72 hr after irradiation. This increase was accompanied by a substantial reduction in per cent 'bound' activity. The histochemical observation after irradiation confirmed the result obtained by quantitative biochemical study. This increase in acid phosphatase activity may be attributed to an increased permeability of lysosomal membrane caused by damaged lymphocytes (lymphocytolysis) after ν-irradiation. (author)

  18. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o....

  19. Nucleoside-nucleotide free diet protects rat colonic mucosa from damage induced by trinitrobenzene sulphonic acid.

    Adjei, A A; Morioka, T.; Ameho, C K; Yamauchi, K.; Kulkarni, A. D.; Al-Mansouri, H M; Kawajiri, A; Yamamoto, S.

    1996-01-01

    BACKGROUND: Growing evidence suggests that intestinal recovery from injury induced by radiation, endotoxin, and protein deficiency is improved by the ingestion of nucleosides and nucleotides. AIM: This study examined the effect of dietary nucleosides and nucleotides supplementation on trinitrobenzene sulphonic acid induced colonic damage in experimental colitis. METHODS: Sprague-Dawley rats were randomised into two groups and fed nucleic acid free 20% casein diet (control) or this diet supple...

  20. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs

    Gómez Moreno, Gerardo; Guardia, Javier; Aguilar Salvatierra, Antonio; Cabrera Ayala, Marible; Maté Sánchez de Val, José Eduardo; Calvo Guirado, José Luis

    2012-01-01

    Objectives: Assessing the clinical effectiveness of a topical sialogogue on spray (malic acid, 1%) in the treatment of xerostomia induced by antihypertensive drugs. Study Design: This research has been carried out through a randomized double-blind clinical trial. 45 patients suffering from hypertensive drugs-induced xerostomia were divided into 2 groups: the first group (25 patients) received a topical sialogogue on spray (malic acid, 1%) whereas the second group (20 patients) received a plac...

  1. Moessbauer study of corrosion induced by acid rain

    Strictly speaking acid rain refers to wet precipitation of pollutants S0/sub 2/SO/sub 3/ and NO/sub x/HNO/sub 3/ which have dissolved in cloud and rain droplets to from sulphuric and nitric acids. Acid rain has seriously damaged pine and spruce forests in Canada, USA and Europe. In these areas it has caused damage to buildings, reduced fish population due to acidification of lakes and rivers, and affected health of human beings as a result of poor water quality. The corrosion products formed in a simulated acid rain environment have been identified with transmission Moessbauer spectroscopy using a /sup 57/Co source. They were found to be gamma-FeOOH, alpha-FeOOH, gamma-Fe/sub 2/O/sub 3/ and a phase with unfamiliar parameters which seems to be amorphous in nature and can be considered as an intermediate phase. (author)

  2. Neuroprotective Effects of Alpha Lipoic Acid on Haloperidol-Induced Oxidative Stress in the Rat Brain

    Perera Joachim

    2011-03-01

    Full Text Available Abstract Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days, haloperidol alone (2 mg/kg i.p for 21 days, and haloperidol with alpha lipoic acid groups (for 21 days. Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.

  3. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Tang Bing; Li; Yang Dachun; Ma Shuangtao; Yang Yongjian

    2011-01-01

    Abstract Background Elevated plasma free fatty acid (FFA) levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36) is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs) treated with oleic acid (OA). We found that OA induces lipid accum...

  4. Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆

    Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; XU, TAO

    2012-01-01

    In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited...

  5. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats

    Omoruyi, F. O.; Budiaman, A.; Y. Eng; Olumese, F. E.; Hoesel, J. L.; Ejilemele, A.; Okorodudu, A. O.

    2013-01-01

    In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the gro...

  6. Preventive Effect of Phytic Acid on Isoproterenol-Induced Cardiotoxicity in Wistar Rats

    Brindha, E.; Rajasekapandiyan, M.

    2015-01-01

    This study was aimed to evaluate the preventive role of phytic acid on membrane bound enzymes such as sodium potassium- dependent adenosine triphosphatase (Na+ /K+ ATPase), calcium-dependent adenosine triphosphatase (Ca2+ ATPase) and magnesium- dependent adenosine triphosphatase (Mg2+ ATPase) and glycoproteins such as hexose, hexosamine, fucose and sialic acid in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with phytic acid (25 and 50...

  7. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  8. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  9. Fatty Acid Induced Remodeling within the Human Liver Fatty Acid-binding Protein*

    Sharma, Ashwani; Sharma, Amit

    2011-01-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against ...

  10. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer

    Nadezda V Cherdyntseva

    2013-01-01

    Full Text Available Aim: To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Materials and Methods: Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Results: Administration of high (non-therapeutic doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Conclusion: Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  11. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. PMID:27133035

  12. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  13. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  14. Ligand-induced formation of nucleic acid triple helices.

    Pilch, D S; Breslauer, K J

    1994-01-01

    We demonstrate that ligand binding can be used to induce the formation of triplex structures that would not otherwise form. Specifically, we show that binding of berenil or 4',6-diamidino-2-phenylindole DAPI) induces formation of the poly(rA).poly(rA).poly(dT) triplex, providing an example of an RNA(purine).RNA(purine).DNA(pyrimidine) triplex. We also show that binding of berenil, DAPI, ethidium, or netropsin can induce formation of the poly(dT).poly(rA).poly(dT) triplex, thereby overcoming a...

  15. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment...

  16. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  17. Selection of induced mutants with improved linolenic acid content in camelina

    Camelina (Camelina sativa (L.) Crtz.) is regarded as a potential crop producing a seed oil rich in linolenic acid (C18:3), which could be utilized for different oleochemical applications. Seeds of a camelina breeding line have been irradiated with gamma-rays in order to induce genetic variation in fatty acid composition. In the M2-generation, 8017 plants were subjected to a thiobarbituric acid test to identify mutants with increased linolenic acid content. Subsequently, M3-lines were isolated, which showed significantly higher concentrations of linolenic acid (up to 40.8%) than the control (34–36%). Moreover, genotypes with an erucic acid content of less than 2% were also found in the mutant population. Different mutant lines can thus be combined in order to obtain transgressive segregants, which could give a further increase in linolenic acid content. (author)

  18. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  19. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  20. Neuroprotective Effects of Alpha Lipoic Acid on Haloperidol-Induced Oxidative Stress in the Rat Brain

    Perera Joachim; Tan Joon; Jeevathayaparan S; Chakravarthi Srikumar; Haleagrahara Nagaraja

    2011-01-01

    Abstract Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the ra...

  1. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases.

    Lin, Yu-Ting; Yu, Ya-Mei; Chang, Weng-Cheng; Chiang, Su-Yin; Chan, Hsu-Chin; Lee, Ming-Fen

    2016-06-01

    The metabolic disturbance of obesity is one of the most common risk factors of atherosclerosis. Resistin, an obesity-induced adipokine, can induce the expression of cell adhesion molecules and the attachment of monocytes to endothelial cells, which play an important role in the development of atherosclerosis. Ursolic acid, a pentacyclic triterpenoid found in fruits and many herbs, exhibits an array of biological effects such as anti-inflammatory and antioxidative properties. The aim of this study was to investigate the potential underlying mechanisms of the effect of ursolic acid on resistin-induced adhesion of U937 cells to human umbilical vein endothelial cells (HUVECs). Our data indicated that ursolic acid suppressed the adhesion of U937 to HUVECs and downregulated the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1), and E-selectin, in resistin-induced HUVECs by decreasing the production of intracellular reaction oxygen species (ROS) and attenuating the nuclear translocation of NFκB. Ursolic acid appeared to inhibit resistin-induced atherosclerosis, suggesting that ursolic acid may play a protective role in obesity-induced cardiovascular diseases. PMID:26991492

  2. Reversible Altered Consciousness and Brain Atrophy Induced by Valproic Acid

    J Gordon Millichap

    2003-08-01

    Full Text Available A 5-year-old female child with valproic acid (VPA-related alteration of consciousness and brain atrophy that progressed over a 3 day period and resolved within 12 hours of discontinuing VPA is reported from Dokkyo University School of Medicine and Shimotsuga General Hospital, Tochigi, Japan.

  3. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex to...... displacement of one strand of the DNA locally by the PNA hybridization....

  4. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  5. Jasmonic acid induced resistance in grapevines to a root and leaf feeder.

    Omer, A D; Thaler, J S; Granett, J; Karban, R

    2000-06-01

    We investigated the effects of induced resistance to the folivore Pacific spider mite, Tetranychus pacificus McGregor (Acari: Tetranychidae), as well as the root-feeding grape phylloxera Daktulosphaira vitifoliae (Fitch) (Homoptera: Phylloxeridae) in grapevines using exogenous applications of the natural plant inducer, jasmonic acid. Foliar jasmonic acid application at concentrations that caused no phytotoxicity significantly reduced the performance of both herbivores. There were less than half as many eggs produced by spider mites feeding on the induced leaves compared with control grapevine leaves. Induction reduced the numbers of phylloxera eggs and nymphal instars by approximately threefold and twofold, respectively, on induced compared with control grapevine roots. The negative demographic effects of jasmonic acid application appeared to be caused by changes in fecundity for the Pacific spider mite, and possibly changes in development rate and fecundity for grape phylloxera. PMID:10902339

  6. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  7. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    Upasana Khairnar

    2016-01-01

    Full Text Available Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o., ascorbic acid (40 mg/kg/day, p.o., and combination of protocatechuic acid (20 mg/kg/day, p.o. and ascorbic acid (20 mg/kg/day, p.o. followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content, tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content, and membrane bound phosphatase (ATPase compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  8. Ionizing radiation induced attachment reactions of nucleic acids and their components

    An extensive bibliographic review is given of experimental and theoretical data on radiation-induced attachment reactions of nucleic acids and their components. Mechanisms of these reactions are reviewed. The reactions with water, formate, and alcohols, with amines and other small molecules, and with radiation sensitizers and nucleic acid-nucleic acid reactions are discussed. Studies of the reaction mechanisms show that many of the reactions occur by radical-molecule reactions, but radical-radical reactions also occur. Radiation modifiers become attached to nucleic acids in vitro and in vivo and there are indications that attachment may be necessary for the action of some sensitizers. (U.S.)

  9. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  10. Hyaluronic Acid Induces Activation of the κ-Opioid Receptor

    Zavan, Barbara; Ferroni, Letizia; Giorgi, Carlotta; Calò, Girolamo; Brun, Paola; Cortivo, Roberta; Abatangelo, Giovanni; Pinton, Paolo

    2013-01-01

    Introduction Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA) in patients with osteoarthritis (OA) appears to be particularly effective in reducing...

  11. Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency

    Zhu, Xinxia; Krasnow, Stephanie M.; Roth-Carter, Quinn R.; Levasseur, Peter R.; Braun, Theodore P.; Grossberg, Aaron J.; Marks, Daniel L.

    2012-01-01

    Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central m...

  12. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP...

  13. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Highlights: • Photodissociation dynamics of H2SO4 at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S1 state dissociated to HSO4(12A″) + H(2S). • Sulfuric acid after the excitation to the S2 state dissociated to HSO4(22A″) + H(2S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2–S1 conical intersection located at a longer OH bond-length than the S1–S0 intersection producing an electronic excited state (22A″) of HSO4 product

  14. Linoleic acid attenuates cardioprotection induced by resolvin D1.

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Bourque-Riel, Valérie; Touchette, Charles; Rousseau, Guy

    2016-05-01

    We previously observed that resolvin D1 (RvD1), a metabolite of the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid, reduces infarct size by a mechanism involving the PI3-K/Akt pathway. In parallel, the beneficial effect of a high omega-3 PUFA diet on infarct size can be attenuated by increased omega-6 PUFA consumption. The present study was designed to determine if augmented linoleic acid (LA), an omega-6 PUFA administered at the same time, attenuates the cardioprotective action of RvD1. Male Sprague-Dawley rats received 0.1μg RvD1 alone or with one of three LA doses (1, 5 or 10μg) directly into the left ventricle chamber 5min before ischemia. The animals underwent 40min of ischemia by occlusion of the left descending coronary artery followed by 30min or 24h of reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion, while caspase-3, -8 and -9 and Akt activities were assessed at 30min of reperfusion. LA attenuated cardioprotection afforded by RvD1, resulting in significantly increased infarct size. Neutrophil accumulation and Akt activity were similar between groups. Caspase activities, especially caspase-9, which could be activated by ischemia, were stimulated in the presence of LA, suggesting that this omega-6 PUFA accentuates ischemia intensity. The present results indicate that LA significantly attenuates the beneficial effect of RvD1 on infarct size. Therefore, reduction of omega-6 intake should be considered to maintain the protection afforded by RvD1. PMID:27133431

  15. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury[S

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W.; Flanders, Kathleen C.; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M.; Frank J. Gonzalez

    2012-01-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohisto...

  16. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Yoshihiro Akimoto; Mary Miyaji; Riyo Morimoto-Kamata; Yasuhiro Kosaka; Akiko Obinata

    2014-01-01

    Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488). However, the molecular mechanism of this tra...

  17. The Radiation Induced Graft Copolymerization of Methacrylic Acid to Nylon

    The grafting of methacrylic acid to nylon by the preirradiation technique has been studied. The rate of grafting is appreciably larger than that of homopolymerization. No simple relation exists between reaction rate and total dose. The temperature dependence of the rate of grafting to the fibre, preirradiated in air, indicates that initiation of grafting is likely to take place by decomposition of peroxide groups formed on irradiation. Electrical resistance measurements on the irradiated fibre indicate that this has been reduced by a factor of 10. (author)

  18. Dietary amino acid-induced systemic lupus erythematosus.

    Montanaro, A; Bardana, E J

    1991-05-01

    The effects of dietary manipulations on autoimmune disease are understood poorly. In this article, we detail our experience with a human subject who developed autoimmune hemolytic anemia while participating in a research study that required the ingestion of alfalfa seeds. Subsequent experimental studies in primates ingesting alfalfa sprout seeds and L-canavanine (a prominent amino acid constituent of alfalfa) is presented. The results of these studies indicate a potential toxic and immunoregulatory role of L-canavanine in the induction of a systemic lupus-like disease in primates. PMID:1862241

  19. Quinolinic acid induces oxidative stress in rat brain synaptosomes

    Santamaria, A.; Galván-Arzate, S.; Lisý, Václav; Ali, S. F.; Duhart, H. M.; Osorio-Rico, L.; Rios, C.; Šťastný, František

    2001-01-01

    Roč. 12, č. 4 (2001), s. 871-874. ISSN 0959-4965 R&D Projects: GA ČR GA309/99/0211; GA ČR GA305/99/1317 Grant ostatní: CONACyT(MX) J28612-M; CONACyT(MX) 130.205 Institutional research plan: CEZ:AV0Z5011922 Keywords : 2-amino-5- phosphonovaleric acid * brain regions * glutathione Subject RIV: FH - Neurology Impact factor: 2.374, year: 2001

  20. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  1. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N;

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the...... ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied...

  2. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  3. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  4. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  5. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  6. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro

    Graphical abstract: - Highlights: • Aristolochic acid induced autophagy in vivo and in vitro. • Autophagy induced by aristolochic acid could promote cell apoptosis. • Inhibition autophagy by silencing ATG5 could prevent cell from programmed cell death induced by aristolochic acid. - Abstract: Studies have found that ingestion of aristolochic acid (AA) causes nephropathy first by inducing renal tubular cell apoptosis acutely. It is currently unknown whether crosstalk between autophagy and apoptosis orchestrates the fate of tubular cells in acute AA nephropathy. We tested this hypothesis by acute administration of AA in vivo and in vitro. Autophagy was first induced in vivo through enhancing Atg5 and LC3-II expressions in kidneys of AA-I-treated rats. Punctuate LC3-GFP dots and autophagosomes were detected in this acute AA-I nephropathy rat model. We subsequently utilized normal rat renal proximal tubular epithelial cells (NRK52E) to study the autophagy mechanisms involved in acute AA-I nephropathy, with 100 μM AA-I (median lethal dose 50) given in vitro. Cleavage of poly (ADP-ribose) polymerase (PARP), nuclear condensation, and fragmentation were demonstrated in the AA-I-treated NRK52E cells. Furthermore, AA-I induced Atg5 and LC3-II expressions and punctuated LC3-GFP dots. Autophagy flux by using lysosome inhibitor E64 induced the accumulation of LC3-II, which further promoted apoptosis through enhancing PARP cleavage. Inhibition of autophagy by 3-methyl adenine also led to the attenuation of AA-I-induced apoptosis, manifesting as decreased PARP cleavage, nuclei condensation, and decreased the number of cells negative for acridine orange/ethidium bromide staining. In addition, knockdown of Atg5 by short hairpin RNA attenuated LC3-II expression and PARP cleavage in NRK52E cells. Taken together, these findings suggested that the acute phase of AA-I-induced nephropathy is associated with induction of Atg5-dependent autophagy, which promotes renal tubular cell

  7. Phenylbutyric acid induces the cellular senescence through an Akt/p21WAF1 signaling pathway

    Highlights: ► Phenylbutyric acid induces cellular senescence. ► Phenylbutyric acid activates Akt kinase. ► The knockdown of PERK also can induce cellular senescence. ► Akt/p21WAF1 pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins – PERK, ATF6 and IRE1 – initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21WAF1 induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21WAF1 pathway by PERK inhibition.

  8. Comparative Study of Domoic Acid and Okadaic Acid Induced - Chromosomal Abnormalities in the CACO-2 Cell Line

    Edmond E. Creppy

    2006-03-01

    Full Text Available Okadaic Acid (OA the major diarrheic shellfish poisoning (DSP toxin is known as a tumor promoter and seems likely implicated in the genesis of digestive cancer. Little is known regarding genotoxicity and carcinogenicity of Domoic Acid (DA, the major Amnesic Shellfish Poisoning (ASP toxin. Both OA and DA occur in seafood and are of human health concerns. Micronuclei (MN arise from abnormalities in nuclear division during mitosis due to a failure of the mitotic spindle or by complex chromosomal configurations that pose problems during anaphase. In order to evaluate the ability of okadaic acid (OA and domoic acid (DA to induce DNA damage we performed the micronucleus assay using the Caco-2 cell line. To discriminate between a clastogenic or aneugenic effect of OA and DA, the micronucleus assay was conducted by cytokinesis-block micronucleus assay using cytochalasin B with Giemsa staining and/or acridine orange staining, in parallel to fluorescence in situ hybridization (FISH using a concentrated human pan-centromeric chromosome paint probe. Our results showed that OA and DA significantly increased the frequency of MN in Caco-2 cells. The MN caused by OA are found in mononucleated cells and binucleated cells, whereas those caused by DA are mainly in binucleated cells. The results of FISH analysis showed that OA induced centromere-positive micronuclei and DA increased the percentage of MN without a centromeric signal. In conclusion, both OA and DA bear mutagenic potential as revealed in Caco-2 cells by induction of MN formation. Moreover, OA induced whole chromosome loss suggesting a specific aneugenic potential, whereas DA seems simply clastogenic. At present, one cannot rule out possible DNA damage of intestinal cells if concentrations studied are reached in vivo, since this may happen with concentrations of toxins just below regulatory limits in case of frequent consumption of contaminated shell fishes.

  9. STRUCTURAL REMODELING OF PROTEOGLYCANS UPON RETINOIC ACID-INDUCED DIFFERENTIATION OF NCCIT CELLS*

    Gasimli, Leyla; Stansfield, Hope E.; Nairn, Alison V.; Liu, Haiying; Janet L. Paluh; Yang, Bo; Dordick, Jonathan S.; Moremen, Kelley W.; Linhardt, Robert J.

    2012-01-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increa...

  10. A Comparative Study of Serum Uric Acid Level in Normal Pregnancy, and Pregnancy Induced Hypertension

    Jasmin Diwan; Chinmay Shah; Dixit, R.; AK Anand

    2011-01-01

    Hypertension is one of the common complications met with in pregnancy and contributes significantly to the cause of maternal and perinatal morbidity and mortality. The study of uric acid in serum is an interesting problem especially in normal pregnancy and pregnancy induced hypertension (PIH). The present study was carried out at Physiology Department, Shri M. P. Shah Medical College and Guru Gobind Singh Hospital, Jamnagar on Total 80 subjects. Determination of uric acid was carried out by q...

  11. Bile Acid-Induced Arrhythmia Is Mediated by Muscarinic M2 Receptors in Neonatal Rat Cardiomyocytes

    Sheikh Abdul Kadir, Siti H; Michele Miragoli; Shadi Abu-Hayyeh; Moshkov, Alexey V.; Qilian Xie; Verena Keitel; Viacheslav O. Nikolaev; Catherine Williamson; Julia Gorelik

    2010-01-01

    BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC), which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM). Apart from their hepatic functions bile acids are ubiquitous signallin...

  12. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Borate AR; Suralkar AA; Deshpande AD; Malusare PV; Bangale PA

    2012-01-01

    Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in hi...

  13. Mefenamic acid-induced neutropenia and renal failure in elderly females with hypothyroidism.

    Handa, S I; FREESTONE, S.

    1990-01-01

    We report mefenamic acid-induced non-oliguric renal failure and severe neutropenia occurring simultaneously in two elderly females. The neutropenia was due to maturation arrest of the myeloid series in one patient. Both patients were also hypothyroid, but it is not clear whether this was a predisposing factor to the development of these adverse reactions. However, it would seem prudent not to use mefenamic acid in hypothyroid patients until the hypothyroidism has been corrected.

  14. Induced resistance to Fusarium wilt of banana by exogenous applications of indoleacetic acid

    Fernández Falcón, Marino; Borges, Andrés A.; Borges-Pérez, Andrés

    2003-01-01

    Fusarium wilt of banana (Panama disease), caused by Fusarium oxysporum f.sp. cubense, is a soliborne systemic disease which occludes host vascular system. We report here two experiments on resistance induction with banana plants (cv. Dwarf Cavendish) carried out in glass greehouse with different indoleacetic acid treatments, which are capable of inducing resistance to Panama disease. The results obtained in these experiments suggest that the exogenous application of indoleacetic acid to banan...

  15. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; PAPET, Isabelle

    2011-01-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on ...

  16. Cysteamine-induced duodenal ulcer and acid secretion in the rat

    Poulsen, Steen Seier

    1980-01-01

    Duodenal ulcers can be produced in rats within 24 h by a single subcutaneous administration of cysteamine. To determine the role of gastric acid secretion in the pathogenesis of these ulcers, secretory and pathoanatomic studies were performed in chronic fistula rats ater an ulcerogenic dose of...... for ulcer formation, the hypersecretion of acid induced by cysteamine is not the only factor responsible for the development of duodenal ulcer....

  17. Stevens–Johnson syndrome induced by a combination of lamotrigine and valproic acid

    Kavitha, S.; Anbuchelvan, T.; Mahalakshmi, V; Sathya, R.; Sabarinath, T. R.; Gururaj, N.; Kalaivani, S.

    2015-01-01

    Lamotrigine and valproic acid are well-tolerated anticonvulsants, but frequently associated with severe cutaneous reactions, such as the Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis, when used in combination. We report a case of SJS likely induced by the use of a lamotrigine and valproic acid regimen and as a dental surgeon it is important to identify such lesion and report to pharmacovigilance.

  18. Radiation-induced destruction peculiarities of hydroxyl containing amino acids in diluted aqueous solution

    Amino acids aqueous solution of alpha-alanine and beta-alanine, serine, threonine (concentration 5*10-4 M) were irradiated with dose rate 0.35 Gy/s in range 100-1100 Gy and analysed. Effectiveness of radiation-induced decomposition process depends on row of factors: concentration of amino acid aqueous solution, pH, oxygen presence and other acceptors

  19. The Effect of Alpha-Lipoic Acid on Mitochondrial Superoxide and Glucocorticoid-Induced Hypertension

    Sharon L. H. Ong; Harpreet Vohra; Yi Zhang; Matthew Sutton; Whitworth, Judith A

    2013-01-01

    Aims. To examine the effect of alpha-lipoic acid, an antioxidant with mitochondrial superoxide inhibitory properties, on adrenocorticotrophic hormone- (ACTH-HT) and dexamethasone-induced hypertensions (DEX-HT) in rats and if any antihypertensive effect is mediated via mitochondrial superoxide inhibition. Methods. In a prevention study, rats received ground food or alpha-lipoic-acid-laced food (10 mg/rat/day) for 15 nights. Saline, adrenocorticotrophic hormone (ACTH, 0.2 mg/kg/day), or dexamet...

  20. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Koenitzer, Jeffrey R; Gustavo Bonacci; Woodcock, Steven R.; Chen-Shan Chen; Nadiezhda Cantu-Medellin; Kelley, Eric E.; Schopfer, Francisco J.

    2016-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the s...

  1. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  2. Incorporated fish oil fatty acids prevent action potential shortening induced by circulating fish oil fatty acids

    Hester M Den Ruijter

    2010-11-01

    Full Text Available Increased consumption of fatty fish, rich in omega-3 polyunsaturated fatty acids (3-PUFAs reduces the severity and number of arrhythmias. Long term 3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating 3-PUFAs in the bloodstream and incorporated 3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating 3-PUFAs in the bloodstream enhance or diminish the effects of incorporated 3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (3 or sunflower oil (9, as control for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch clamp technique in the absence and presence of acutely administered 3-PUFAs. Plasma of 3 fed rabbits contained more free eicosapentaenoic acid (EPA and isolated myocytes of 3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA in their sarcolemma compared to control. In the absence of acutely administered fatty acids, 3 myocytes had a shorter action potential with a more negative plateau than 9 myocytes. In the 9 myocytes, but not in the 3 myocytes, acute administration of a mixture of EPA+DHA shortened the action potential significantly. From these data we conclude that incorporated 3-PUFAs into the sarcolemma and acutely administered 3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac 3-PUFA status will probably not benefit from short term 3 supplementation as an antiarrhythmic therapy.

  3. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

    K. Stemmler

    2007-03-01

    Full Text Available The interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2 were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO, which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients γrxn for the NO2→HONO conversion on the aerosol between γrxn <10−7 (in the dark and γrxn = 6×10−6 were observed. The observed uptake coefficients decreased with increasing NO2-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH with slightly reduced values at low humidity (<20% RH and high humidity (>60% RH. The measured uptake coefficients for the NO2→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that humic materials present on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles.

  4. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. PMID:25745068

  5. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  6. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite

    Whiteman, Matthew; Hooper, D. Craig; Scott, Gwen S.; Koprowski, Hilary; Halliwell, Barry

    2002-09-01

    Chronic inflammation results in increased nitrogen monoxide (NO) formation and the accumulation of nitrite (NO). Neutrophils stimulated by various inflammatory mediators release myeloperoxidase to produce the cytotoxic agent hypochlorous acid (HOCl). Exposure of chondrocytic SW1353 cells to HOCl resulted in a concentration- and time-dependent loss in viability, ATP, and glutathione levels. Treatment of cells with NO but not nitrate (NO) substantially decreased HOCl-dependent cellular toxicity even when NO was added at low (μM) concentrations. In contrast, NO alone (even at 1 mM concentrations) did not affect cell viability or ATP and glutathione levels. These data suggest that NO accumulation at chronic inflammatory sites, where both HOCl and NO are overproduced, may be cytoprotective against damage caused by HOCl. We propose that this is because HOCl is removed by reacting with NO to give nitryl chloride (NO2Cl), which is less damaging in our cell system. inflammation | cell toxicity | nitryl chloride | nitric oxide | arthritis

  7. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  8. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to a...

  9. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    Nader Tanideh; Akram Jamshidzadeh; Masood Sepehrimanesh; Masood Hosseinzadeh; Omid Koohi-Hosseinabadi; Asma Najibi; Mozhdeh Raam; Sajad Daneshi; Seyedeh-Leili Asadi-Yousefabad

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and o...

  10. 13C hyperpolarization of a barbituric acid derivative via parahydrogen induced polarization

    Roth, Meike; Koch, Achim; Kindervater, Petra; Bargon, Joachim; Spiess, Hans Wolfgang; Münnemann, Kerstin

    2010-05-01

    Significant 13C NMR signal enhancement by a factor of 5000 of a barbituric acid derivative (5-methyl-5-propenyl-barbituric acid) via parahydrogen induced polarization is presented. This hyperpolarization is achieved by hydrogenating 5-methyl-5-propargyl-barbituric acid with 98% enriched para-H 2 under elevated temperature and pressure and transferring the initially created 1H hyperpolarization with an INEPT-derived pulse sequence to 13C. The polarization can be selectively transferred to different carbons in the barbituric acid derivative by applying different pulse delays in the INEPT pulse sequence. These results demonstrate the potential of using hyperpolarized barbituric acid derivatives as " active" contrast agents in MRI and visualizing their pharmacokinetics in vivo.

  11. (13)C hyperpolarization of a barbituric acid derivative via parahydrogen induced polarization.

    Roth, Meike; Koch, Achim; Kindervater, Petra; Bargon, Joachim; Spiess, Hans Wolfgang; Münnemann, Kerstin

    2010-05-01

    Significant (13)C NMR signal enhancement by a factor of 5000 of a barbituric acid derivative (5-methyl-5-propenyl-barbituric acid) via parahydrogen induced polarization is presented. This hyperpolarization is achieved by hydrogenating 5-methyl-5-propargyl-barbituric acid with 98% enriched para-H(2) under elevated temperature and pressure and transferring the initially created (1)H hyperpolarization with an INEPT-derived pulse sequence to (13)C. The polarization can be selectively transferred to different carbons in the barbituric acid derivative by applying different pulse delays in the INEPT pulse sequence. These results demonstrate the potential of using hyperpolarized barbituric acid derivatives as "active" contrast agents in MRI and visualizing their pharmacokinetics in vivo. PMID:20207180

  12. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest

    Budhu, Anuradha S.; Noy, Noa

    2002-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional ac...

  13. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

    K. Stemmler

    2007-08-01

    Full Text Available The interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2 were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO, which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients γrxn for the NO2→HONO conversion on the aerosol between γrxn <10−7 (in the dark and γrxn=6×10−6 were observed. The observed uptake coefficients decreased with increasing NO2-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH with slightly reduced values at low humidity (<20% RH and high humidity (>60% RH. The measured uptake coefficients for the NO2→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that the processes leading to HONO formation on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles.

  14. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  15. Nitrosyl induces phosphorous-acid dissociation in ruthenium(II).

    Truzzi, Daniela Ramos; Ferreira, Antonio Gilberto; da Silva, Sebastião Claudino; Castellano, Eduardo Ernesto; Lima, Francisco das Chagas Alves; Franco, Douglas Wagner

    2011-12-28

    The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ⇌ trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C). PMID:22027926

  16. Singlet oxygen-induced oxidation of alkylthiocarboxylic acids

    Singlet oxygen (1O2) could be generated in biological systems by endogenous and exogenous processes (e.g. enzymatic and chemical reactions, UV or visible light in the presence of a sensitizer). Numerous data show that proteins are the major targets of 1O2-induced damage in the living cells. In particular, reaction of 1O2 with thioether sulphur of methionine (Met) leads to the formation of persulphoxide >S(+)O-O(-) which is in equilibrium with superoxide radical-anion (O2·-) and respective sulphur-centered-radical-cation >S·+. In presented work, investigation the mechanisms of deprotonation and decarboxylation of the S·+ - the irreversible processes, which competes with the formation of sulphoxide. Using thioethers dissevering by the number and positions of carboxylate groups it has been shown that efficiency of both decarboxylation and deprotonation could be influenced by various factors such as neighbouring group participation and environmental effects. The observed influence of carboxylate groups in β-position relative to the sulphur on the efficiency of decarboxylation suggests furthermore that they may also catalyze decarboxylation of α-positioned carboxylate in a manner similar to hydroxide anion

  17. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid ...

  18. Optimal time point for the transplantation of neural stem cells induced to differentiate with retinoic acid

    Shuxin Wang; Dengji Pan; Na Liu; Yongming Liu; Juan Chen; Houjie Ni; Zhouping Tang

    2011-01-01

    Previous studies have demonstrated that differentiated neural stem cells (NSCs) are more suitable for transplantation than non-differentiated NSCs. In this study, NSCs were expanded in vitro for two passages, induced with retinoic acid to differentiate, and harvested between 1-6 days later. They were subsequently cultured in artificial cerebrospinal fluid for an additional 3 days, during which their growth and morphology was monitored. NSCs induced for 4 days exhibited a peak rate of cells differentiating into neurons and robust growth. Our results indicate that the optimal time point for transplanting NSCs is following a 4-day period of induced differentiation.

  19. STRUCTURAL REMODELING OF PROTEOGLYCANS UPON RETINOIC ACID-INDUCED DIFFERENTIATION OF NCCIT CELLS*

    Gasimli, Leyla; Stansfield, Hope E.; Nairn, Alison V.; Liu, Haiying; Paluh, Janet L.; Yang, Bo; Dordick, Jonathan S.; Moremen, Kelley W.; Linhardt, Robert J.

    2012-01-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1500-fold and 2800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  20. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells.

    Gasimli, Leyla; Stansfield, Hope E; Nairn, Alison V; Liu, Haiying; Paluh, Janet L; Yang, Bo; Dordick, Jonathan S; Moremen, Kelley W; Linhardt, Robert J

    2013-07-01

    Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen. PMID:23053635

  1. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress

  2. Inducible gene expression and environmentally regulated genes in lactic acid bacteria

    Kok, Jan

    1996-01-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transc

  3. Hepatoprotective effect of vitamin C on lithocholic acid-induced cholestatic liver injury in Gulo(-/-) mice.

    Yu, Su Jong; Bae, Seyeon; Kang, Jae Seung; Yoon, Jung-Hwan; Cho, Eun Ju; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Wang Jae; Kim, Chung Yong; Lee, Hyo-Suk

    2015-09-01

    Prevention and restoration of hepatic fibrosis from chronic liver injury is essential for the treatment of patients with chronic liver diseases. Vitamin C is known to have hepatoprotective effects, but their underlying mechanisms are unclear, especially those associated with hepatic fibrosis. Here, we analyzed the impact of vitamin C on bile acid induced hepatocyte apoptosis in vitro and lithocholic acid (LCA)-induced liver injury in vitamin C-insufficient Gulo(-/-) mice, which cannot synthesize vitamin C similarly to humans. When Huh-BAT cells were treated with bile acid, apoptosis was induced by endoplasmic reticulum stress-related JNK activation but vitamin C attenuated bile acid-induced hepatocyte apoptosis in vitro. In our in vivo experiments, LCA feeding increased plasma marker of cholestasis and resulted in more extensive liver damage and hepatic fibrosis by more prominent apoptotic cell death and recruiting more intrahepatic inflammatory CD11b(+) cells in the liver of vitamin C-insufficient Gulo(-/-) mice compared to wild type mice which have minimal hepatic fibrosis. However, when vitamin C was supplemented to vitamin C-insufficient Gulo(-/-) mice, hepatic fibrosis was significantly attenuated in the liver of vitamin C-sufficient Gulo(-/-) mice like in wild type mice and this hepatoprotective effect of vitamin C was thought to be associated with both decreased hepatic apoptosis and necrosis. These results suggested that vitamin C had hepatoprotective effect against cholestatic liver injury. PMID:26057690

  4. Analyses on Radiation Effects in Solid Amino Acids Induced by Low Energy Fe~+ Ion Beams

    2001-01-01

    Radiation effects in Solid samples of L(+)-cysteine and L(+)-cysteine hydroehloride monohydrate induced by 110 keV Fe~+ion implantation were characterized with FTIR, ESR,HPLC and ESI-FTMS.It was validated that solid samples of the irradiated amino acids were damaged to a certain extent,and some new groups or molecular products formed.

  5. Mefenamic acid-induced bilateral transient myopia, secondary angle closure glaucoma and choroidal detachment

    Vishwakarma Parag; Raman Ganesh; Sathyan P

    2009-01-01

    Drug-induced secondary angle closure is quite common and in the majority of cases simply stopping the medication leads to rapid reversal of the condition and resolution of glaucoma. We describe here a patient who presented with secondary angle closure glaucoma and myopia following mefenamic acid ingestion which was managed successfully by stopping the medication, symptomatic treatment and reassurance.

  6. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  7. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.

    Zarate, Sonia I; Kempema, Louisa A; Walling, Linda L

    2007-02-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  8. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses1[W][OA

    Zarate, Sonia I.; Kempema, Louisa A.; Walling, Linda L.

    2007-01-01

    The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. PMID:17189328

  9. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  10. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid.

    Wang, Jinbo; Qi, Lili; Mei, Lehe; Wu, Zhige; Wang, Hengzheng

    2016-07-01

    Lipoteichoic acid (LTA) is one of microbe-associated molecular pattern (MAMP) molecules of gram-positive bacteria. In this study, we demonstrated that Clostridium butyricum LTA (bLTA) significantly inhibited the inflammatory response and apoptosis induced by Staphylococcus aureus LTA (aLTA) in HT-29 cells. aLTA stimulated the inflammatory responses by activating a strong signal transduction cascade through NF-κB and ERK, but bLTA did not activate the signaling pathway. bLTA pretreatment inhibited the activation of the NF-κB and ERK signaling pathway induced by aLTA. The expression and release of cytokines such as IL-8 and TNF-α were also suppressed by bLTA pretreatment. aLTA treatment induced apoptosis in HT-29 cells, but bLTA did not affect the viability of the cells. Further study indicated that bLTA inhibited apoptosis in HT-29 cells induced by aLTA. These results suggest that bLTA may act as an aLTA antagonist and that an antagonistic bLTA may be a useful agent for suppressing the pro-inflammatory activities of gram-positive pathogenic bacteria. PMID:27020942

  11. Radioprotective effects of kojic acid against mortality induced by gamma irradiation in mice

    To evaluate the protective effects of kojic acid on mortality induced by gamma irradiation in mice. The efficacy was compared with amifostine as a reference radioprotector. This experimental study was conducted in the Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari and Babolsar Radiotherapy Hospital, Babolsar, Iran, between October 2006 and January 2008. Kojic acid was administrated subcutaneously as single doses of 142, 175, 232, and 350 mg/kg, one hour prior to a lethal dose of gamma irradiation (8 Gy). Amifostine was injected subcutaneously at a dose of 200 mg/kg at a similar irradiation dose. The mortality was recorded 30 days after irradiation. The antioxidant activity of the kojic acid was assessed using the 1, 1-diphenyl-2-picrylhydrazyl free stable radical (DPPH) method. One hundred and twenty NMRI mice were divided into 6 groups with 20 mice in each group. At 30 days after treatment, the percentage of survival in each group was: control, 5%; 142 mg/kg, 5%; 175 mg/kg, 0%; 232 mg/kg, 30%; 350 mg/kg, 40%; and amifostine, 40% one hour treatment prior gamma irradiation. The survival rate was statistically increased in animals treated with kojic acid (350 mg/kg), one hour prior irradiation, as compared with the irradiated control group. Kojic acid exhibited concentration-dependent scavenging activity on DPPH possessing strong antioxidant activity. Kojic acid with antioxidant activity reduced the mortality induced by gamma irradiation. (author)

  12. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  13. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  14. Protective effects of catecholomic acid derivatives on radiation-induced damage of rat liver mitochondria

    Objective: To evaluate the effects of catecholomic acid derivatives 9501, 9502 and 7601 (CBMIDA) against radiation-induced injury of rat liver mitochondria in vitro. Methods: The injury of rat liver mitochondria was induced by γ-irradiation in vitro. The contents of MDA were assayed by spectrophotometry of TBA. The absorption value at 520 nm was measured to detect swelling of mitochondria. The electron microscopic samples of mitochondria were prepared. Results: All 9501 (5 x 10-6 mol/L), 9502(10-5 mol/L), and 7601 (10-5 mol/L) significantly inhibited radiation-induced increase of MDA information.The swelling of mitochondria induced by irradiation was also prevented by 9501, 7601. The electron micrographs also showed that 9501 markedly reduced the pathological damage of mitochondria induced by γ-irradiation. The mechanisms of anti-oxidative action of catecholomic acid derivatives was discussed. Conclusion: Injurious effect of radiation on rat liver mitochondria can be prevented by catecholomic acid derivatives 9501, 9502 and 7601 (CBMIDA)

  15. Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation

    Jieun Lee

    2015-01-01

    Full Text Available To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2A−/−, an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2A−/− mice became hypothermic after an acute cold challenge, and CPT2A−/− brown adipose tissue (BAT failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in diet-dependent changes in adiposity but did not result in changes in body weight on low- or high-fat diets. Additionally, CPT2A−/− mice had suppressed high-fat diet-induced oxidative stress and inflammation in visceral white adipose tissue (WAT; however, high-fat diet-induced glucose intolerance was not improved. These data show that fatty acid oxidation is required for cold-induced thermogenesis in BAT and high-fat diet-induced oxidative stress and inflammation in WAT.

  16. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  17. EGFR Inhibition Blocks Palmitic Acid-induced inflammation in cardiomyocytes and Prevents Hyperlipidemia-induced Cardiac Injury in Mice.

    Li, Weixin; Fang, Qilu; Zhong, Peng; Chen, Lingfeng; Wang, Lintao; Zhang, Yali; Wang, Jun; Li, Xiaokun; Wang, Yi; Wang, Jingying; Liang, Guang

    2016-01-01

    Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases. PMID:27087279

  18. Effect of Tanshitone on prevention and treatment of retinoic acid-induced osteoporosis in mice

    ZHOU Yan-meng; LIU Yu-bo; GAO Yun-sheng

    2008-01-01

    Objective To observe the prevention and therapeutic effects of tanshitone (TAN) on retinoic acid induced osteoporosis in mice. Methods The mice osteoporosis was induced by given retinoic acid intragasttrically for two weeks. The histomorphological features of bone were observed and biochemical indexes in serum (Ca, P, ALP, TRAP, E2, BGP) were determined after mice were given TAN at the dose of 40, 80, 160 mg·kg-1 respectively. Results Tanshitone can induce high conversion of osteoporosis. The levels of P, ALP, TRAP and BGP in the TAN groups were lower than the model group, while the E2 level was higher than the model group. Conclusions Tanshitone can prevent the loss bone in the experimental mice. The mechanism may be that it improves the level of estrogenic hormone and inhibits the high bone turnover.

  19. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  20. 3-Nitropropionic acid-induced depression of spinal reflexes involves mechanisms different from ischemia-induced depression.

    Gupta, Rajesh; Deshpande, Shripad B

    2008-12-16

    Effect of 3-nitropropionic acid (3-NPA) and ischemia (glucose- and O(2)-free solution) on synaptic transmission in hemisected spinal cord from 4 to 8 day old rats was examined in vitro. Stimulation of a dorsal root (L3-5 segments) evoked monosynaptic (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. Superfusion of 3-NPA (0.17-3.4 mM) depressed the reflexes in a concentration- and time-dependent manner. At 3.4 mM of 3-NPA, the reflexes were abolished by 35 min. Time required to produce 50% depression (T-50) was around 170, 80, 40 and 17 min for MSR and 110, 70, 25 and 16 min for PSR at 0.17, 0.51, 1.7 and 3.4mM of 3-NPA, respectively. Ischemia also produced a time-dependent depression of reflexes and abolished them by 35 min and the T-50 values were around 18 min. Presence of creatine phosphate (10mM) in the superfusing medium did not alter the time course of 3-NPA-induced depression of reflexes but prolonged the ischemia-induced depression. dl-2-amino-5-phosphonovaleric acid (NMDA receptor antagonist; 10 microM) failed to block the 3-NPA (3.4 mM)-induced depression of reflexes, but blocked the ischemia-induced depression. The results indicate that 3-NPA-induced depression of spinal reflexes does not involve NMDA receptors and is different from ischemia-induced depression. PMID:18930119

  1. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  2. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    Obata, Toshio; Nakashima, Michiko

    2016-03-01

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *pphytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation. PMID:26724394

  3. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance

    Haus, Jacob M; Solomon, Thomas; Marchetti, Christine M;

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans.......The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans....

  4. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  5. Folic acid supplementation attenuates hyperhomocysteinemia-induced preeclampsia-like symptoms in rats

    Jun Wang; Yan Cui; Jing Ge; Meijing Ma

    2012-01-01

    Folic acid participates in the metabolism of homocysteine and lowers plasma homocysteine levels directly or indirectly. To establish a hyperhomocysteinemic pregnant rat model, 2 mL of DL-homocysteine was administered daily by intraperitoneal injection at a dose of 200 mg/kg from day 10 to day 19 of gestation. Folic acid was administered by intragastric administration at a dose of 20 mg/kg during the period of preeclampsia induction. Results showed that systolic blood pressure, proteinuria/creatinine ratio, and plasma homocysteine levels in the hyperhomocysteinemic pregnant rats increased significantly, and that body weight and brain weight of rat pups significantly decreased. Folic acid supplementation markedly reversed the above-mentioned abnormal changes of hyperhomocysteinemic pregnant rats and rat pups. These findings suggest that folic acid can alleviate the symptoms of hyperhomocysteinemia- induced preeclampsia in pregnant rats without influencing brain development of rat pups.

  6. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  7. Time-resolved laser-induced fluorescence of UO22+ in nitric acid solutions

    A comparison between nitrogen and tripled Nd-YAG laser source for Time-Resolved Laser-Induced Fluorescence (TRLIF) of uranium in nitric acid solutions in the framework of on-line feasibility has been performed. Hence, for uranium on-line monitoring with fiber optics, nitrogen laser (337 nm), most usual source in TRLIF has several drawback; poor beam quality and non negligible nitric acid absorption at 337 nm. Tripled Nd-YAG laser (355 nm) despite lower uranium absorption coefficient has several advantages: no influence of nitric acid absorption, better beam quality, better fiber transmission and solid state technology. No significant difference for fluorescence spectra and lifetimes are observed for both lasers. Limit of detection for direct determination of uranium in nitric acid by TRLIF is in the μg/l (10-8 M) range for both lasers. (author)

  8. The novel chicken interleukin 26 protein is overexpressed in T cells and induces proinflammatory cytokines.

    Truong, Anh Duc; Park, Boyeong; Ban, Jihye; Hong, Yeong Ho

    2016-01-01

    In the present study, we describe the cloning and functional characterization of chicken interleukin 26 (ChIL-26). ChIL-26, a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by T cells. The ChIL-26 cDNA encodes an 82-amino-acid protein whose amino acid sequence has 22.63, 46.31 and 43.15% homology with human IL-26, pig IL-26 and canary IL-26, respectively. ChIL-26 signals through a heterodimeric receptor complex composed of the IL-20R1 and IL-10R2 chains, which are expressed primarily in the CU91 T cell line as well as CD4(+) and CD8(+) T cells. Recombinant ChIL-26 protein induced Th1 cytokines (IL-16 and IFN-γ), Th2 cytokines (IL-4, IL-6 and IL-10), Th17 cytokines (IL-17A, IL-17D, and IL-17F), and chemokine transcripts (mainly CCL3, CCL4, CCL5, CCL20 and CXCL13) in the CU91 T cell line and in CD4(+) and CD8(+) T cells, however IL-18 was not expressed in the CU91 T cell line. Taken together, the data demonstrates that T cells express the functional ChIL-26 receptor complex and that ChIL-26 modulates T cell proliferation and proinflammatory gene expression. To the best of our knowledge, this is the first report of cloned ChIL-26. We evaluated its functional roles, particularly in the pathogenic costimulation of T cells, which may be significantly associated with the induction of cytokines. PMID:27312894

  9. "Protective Effects of Some Azo Derivatives of 5-aminosalicylic Acid and Their Pegylated Prodrugs on Acetic Acid-induced Rat Colitis "

    Alireza Garjani; Soodabeh Davaran; Mohamadreza Rashidi; Nasrin Malek

    2004-01-01

    The protective and anti-inflammatory effects of azo and azo-linked polymeric prodrugs of 5-aminosalicylic acid (5-ASA) on acetic acid induced colitis in rats were investigated. Three azo prodrugs; 4,4 -dihydroxy-azobenzene-3-carboxilic acid (azo compound I), 4-hydroxy-azobenzene-3,4-dicarboxilic acid (azo compound II), 4,4-dihydroxy-3-formyl-azobenzene-3-carboxylic acid (azo compound III) and their polyethylene glycol (PEG 6000) derivatives were synthesized. Rats were pretreated orally (1 hou...

  10. Effects of L-glutamine on acetylsalycylic acid induced gastric lesions and acid back diffusion in dogs.

    Hung, C R; Takeuchi, K; Okabe, S; Murata, T; Takagi, K

    1976-12-01

    Effects of L-glutamine on acetylsalicylic acid (ASA)-induced gastric mucosal lesions were studied in mongrel dogs. It was confirmed that when oral ASA at 1.0 or 2.0 g per dog is given in two divided doses, there is severe and consistent dose-dependent mucosal damage in the glandular portion of the stomach in fasted dogs. However, when L-glutamine 2.0 or 4.0 g per dog in two divided doses is given concomitantly with ASA 2.0 g per dog orally, the gastric irritation is significantly inhibited. Instillation of 20 mM of ASA in 100 mM HCl solution into the Heidenhain pouch of Beagle dogs produced a significant loss of H+ from the pouch and a gain of Na+ in the lumen compared with ASA-free controls. When L-glutamine (100 mM) was given concomitantly with ASA (20 mM) into the pouch, changes of electrolyte fluxes in response to ASA alone were significantly suppressed. However, 50 mM of L-glutamine had no appreciable effect on acid back diffusion caused by ASA 20 mM. The amino acid itself had little effect on the ionic movement in the pouch. Gross bleeding from the pouch treated with ASA was never observed with the concomitant dosing of ASA and L-glutamine 50 or 100 mM. PMID:15154

  11. Collision-induced dissociation of protonated tetrapeptides containing beta-alanine, gamma-aminobutyric acid, epsilon-aminocaproic acid or 4-aminomethylbenzoic acid residues.

    Talaty, Erach R; Cooper, Travis J; Osburn, Sandra; Van Stipdonk, Michael J

    2006-01-01

    The influence of the presence and position of a single beta-alanine, gamma-aminobutyric acid, epsilon-aminocaproic acid or 4-aminomethylbenzoic acid residue on the tendency to form b(n)+ -and y(n)+ -type product ions was determined using a group of protonated tetrapeptides with general sequence XAAG, AXAG and AAXG (where X refers to the position of amino acid substitution). The hypothesis tested was that the 'alternative' amino acids would influence product ion signal intensities by inhibiting or suppressing either the nucleophilic attack or key proton transfer steps by forcing the adoption of large cyclic intermediates or blocking cyclization altogether. We found that specific b ions are diminished or eliminated completely when betaA, gammaAbu, Cap or 4AMBz residues are positioned such that they should interfere with the intramolecular nucleophilic attack step. In addition, differences in the relative proton affinities of the alternative amino acids influence the competition between complementary b(n) and y(n) ions. For both the AXAG and the XAAG series of peptides, collision-induced dissociation (CID) generated prominent b ions despite potential inhibition or suppression of intramolecular proton migration by the betaA, gammaAbu, Cap or 4AMBz residues. The prominent appearance of b ions from the AXAG and XAAG peptide is noteworthy, and suggests either that proton migration occurs through larger, 'whole' peptide cyclic intermediates or that fragmentation proceeds through a population of [M+H]+ isomers that are initially protonated at amide O atoms. PMID:17066369

  12. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L−1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the ∙OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while ∙H and eaq− played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation. - Highlights: • Gamma irradiation was efficient for removing cyclohexanebutyric acid from water. • The degradation kinetics of cyclohexanebutyric acid followed pseudo first-order reaction. • OH radical played a major role for oxidative degradation. • Some possible intermediate products were identified

  13. Yeast biodiversity in Slovenian wine regions: Case amino acids in spontaneous and induced fermentations of Malvasia

    Raspor Peter I.

    2009-01-01

    Full Text Available Microbial biodiversity can also be reflected in final product composition. The work described in this paper investigates the differences in the amino acid composition of 14 Malvasia musts/wines fermented with local and commercial starter yeasts, comparing all to the spontaneous fermentations of must of the same origin. We tried to ascertain whether the changes were dependent upon different initiations of fermentations. A comparative study of free and total amino acid evolution was prepared. The total concentration of 15 amino acids studied was 1975 mg/l, and the concentration of fraee amino acids was 1061 mg/l. Spontaneous and induced fermentations showed different fermentation rates. Three to nine days were needed to reduce sugar by 50%. Although the proline is regarded as non-assailable amino acid, decreases in concentration were observed. Lysine was the only amino acid where the concentration increased. The minimal uptakes of amino acids occurred during spontaneous fermentations, whereas the maximal uptakes were observed in the fermentations inoculated with local starters.

  14. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety. PMID:26791830

  15. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  16. A Comparative Study of Serum Uric Acid Level in Normal Pregnancy, and Pregnancy Induced Hypertension

    Jasmin Diwan

    2011-01-01

    Full Text Available Hypertension is one of the common complications met with in pregnancy and contributes significantly to the cause of maternal and perinatal morbidity and mortality. The study of uric acid in serum is an interesting problem especially in normal pregnancy and pregnancy induced hypertension (PIH. The present study was carried out at Physiology Department, Shri M. P. Shah Medical College and Guru Gobind Singh Hospital, Jamnagar on Total 80 subjects. Determination of uric acid was carried out by quantitative estimation on colorimetric method by enzymatic uricase method. Results shows that Serum uric acid levels in both the time (predelivery and postdelivery were statistically significant in Pregnancy induced hypertension than normal pregnancy. Many patients had predisposing factor to development of preeclampsia like primigravida. It is also evident that severity of proteinuria increases with diastolic blood pressure and Levels of serum uric acid did show a high positive correlation with the severity of Pregnancy induced hypertension in relation to hypertension and proteinuria 65% of patients of PIH

  17. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Snehal S Patel

    2011-01-01

    Full Text Available Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.. Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o. for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUC glucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes.

  18. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.

    Zong, Nan; Li, Fei; Deng, Yuanyuan; Shi, Jingshan; Jin, Feng; Gong, Qihai

    2016-10-15

    Excitotoxicity is one of the most extensively studied causes of neuronal death and plays an important role in Alzheimer's disease (AD). Icariin is a flavonoid component of a traditional Chinese medicine reported to possess a broad spectrum of pharmacological effects. The present study was designed to investigate the effects of icariin against learning and memory impairment induced by excitotoxicity. Here, we demonstrated that rats receiving intracerebroventricular injection of excitatory neurotoxin ibotenic acid exhibited impaired learning and memory. Oral administration of icariin at doses of 20 and 40mg/kg rescued behavioral performance and protected against neurotoxicity in rat hippocampus by suppressing ibotenic acid induced pro-apoptosis. Furthermore, Western blott of hippocampal specimens revealed that icariin up-regulated the expression of calbindin-D28k protein following ibotenic acid administration. Additionally, icariin inhibited mitogen-activated protein kinase (MAPK) family phosphorylation and nuclear factor kappa B (NF-κB) signaling, implicating the MAPK signaling and NF-κB signaling pathways were involved in the mechanism underlying icariin-mediated neuroprotection against ibotenic acid-induced excitotoxicity. These data suggested that icariin could be a potential agent for treatment of excitotoxicity-related diseases, including AD. PMID:27368415

  19. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  20. Effect of folic acid on hematological changes in methionine-induced hyperhomocysteinemia in rats

    Ansari M

    2009-01-01

    Full Text Available The present study was designed to investigate the effect of folic acid on homocysteine, lipid profile and hematological changes in methionine-induced hyperhomocysteinemic rats. Hyperhomocysteinemia was induced by methionine (1 g/kg, p.o. administration for 30 days. Biochemical and hematological observations were further substantiated with histopathological examination. The increase in homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides levels with reduction in the levels of high density lipoprotein in serum were the salient features observed in methionine treated toxicologic control rats (i.e. group II. Hematological observations of the peripheral blood smears of toxicologic rats also showed crenation of red blood cells membrane and significant (P< 0.01 increase in total leukocyte count, differential leukocyte count and platelet counts with significant (P< 0.01 decrease in the mean hemoglobin levels, as compared to vehicle control rats. Administration of folic acid (100 mg/kg, p.o. for 30 days to methionine- induced hyperhomocysteinemic rats produced a significant (P< 0.01 decrease in the levels of homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides with significant (P< 0.01 increase in high density lipoprotein-cholesterol levels in serum when compared with toxicologic control rats. The present study, for the first time, investigates the effect of folic acid treatment on hematological changes in rats with methionine-induced hyperhomocysteinemia.

  1. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Padilla, María N; Begara-Morales, Juan C; Luque, Francisco; Melguizo, Manuel; Jiménez-Ruiz, Jaime; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2016-02-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant's development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  2. Rabbit gastric ulcer models: comparison and evaluation of acetic acid-induced ulcer and mucosectomy-induced ulcer.

    Maeng, Jin Hee; Lee, Eunhye; Lee, Don Haeng; Yang, Su-Geun

    2013-06-01

    In this study, we examined rabbit gastric ulcer models that can serve as more clinically relevant models. Two types of ulcer model were studied: acetic acid-induced ulcers (AAU) and mucosal resection-induced ulcers (MRU). For AAU, rabbit gastric mucosa was exposed by median laparotomy and treated with bottled acetic acid. MRU was examined as a model for endoscopic mucosal resection (EMR). Normal saline was injected into the submucosal layer and the swollen mucosa was resected with scissors. Endoscopic mucosal resection (EMR) is frequently performed for treatment of early gastric cancers. This procedure inevitably leads to ulcers and bleeding. Bleeding control is the major concern in endoscopic mucosectomy, and some endoscopic hemostatic agents are currently under clinical and preclinical studies. MRU was developed as a model for these induced ulcers and the evaluation of the healing process. The clinical relevancy of those models was compared with that of rat models. Progressive healing was observed for 7 days based on histology. Rabbit models demonstrate round, deep ulcers with clear margins and well-defined healing stages that were difficult to define in rat models. PMID:23825482

  3. The therapeutic detoxification of chlorogenic acid against acetaminophen-induced liver injury by ameliorating hepatic inflammation.

    Zheng, Zhiyong; Sheng, Yuchen; Lu, Bing; Ji, Lili

    2015-08-01

    Chlorogenic acid (CGA) has been reported to prevent acetaminophen (AP)-induced hepatotoxicity when mice were pre-administered orally with CGA for consecutive 7days before AP intoxication in our previous study. This study investigated the therapeutic detoxification of CGA against AP-induced hepatotoxicity and the engaged mechanism. The mice were orally administered with CGA (10, 20, 40mg/kg) at 1h after given AP (400mg/kg), and another 3h later the mice were killed for the following experiments. Results of serum transaminases analysis and histological evaluation demonstrated the detoxification of CGA against AP-induced hepatotoxicity. CGA reduced AP-induced the increased myeloperoxidase (MPO) enzymatic activity and its expression. CGA reduced AP-induced the increased liver expression of toll-like receptor (TLR)-3/4 and MyD88, and the increased phosphorylation of inhibitor of kappa B (IκB) and p65 subunit of nuclear factor κB (NFκB). CGA reduced AP-induced the increased NFκBp65 expression in nucleus. In addition, CGA reduced AP-induced the increased serum levels and liver mRNA expression of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and keratinocyte chemoattractant (KC). Taken together, our results demonstrate the therapeutic detoxification of CGA against AP-induced liver injury, and TLR3/4 and NFκB signaling pathway are involved in such process. PMID:26079055

  4. Antioxidant Effect of Caffeic Acid on Oxytetracycline Induced Lipid Peroxidation in Albino Rats

    Jayanthi, R.; Subash, P.

    2010-01-01

    Caffeic acid is a well-known phenolic compound widely present in plant kingdom. The aim of this study was to investigate the possible protective effect of caffeic acid (CA) against oxytetracycline (OXT) induced hepatotoxicity in male Albino Wistar rats. A total of 30 rats weighing 150–170 g were randomly divided into five groups of six rats in each group. Oral administration of OXT (200 mg/kg body weight/day) for 15 days produced hepatic damage as manifested by a significant increase in serum...

  5. Curative effects of sodium fusidate on the development of dinitrobenzenesulfonic acid-induced colitis in rats

    Di Marco, Roberto; Mangano, Katia; Quattrocchi, Cinzia; Musumeci, Rosario; Speciale, Anna Maria; Papaccio, Gianpaolo; Buschard, Karsten; Bendtzen, Klaus; Nicoletti, Ferdinando

    2003-01-01

    Fusidic acid and sodium fusidate (fusidin) are antibiotics with low toxicity and powerful immunomodulatory activities in vitro and in vivo. In this study we have evaluated the effect of fusidin on the development of dinitrobenzenesulfonic acid (DNB)-induced colitis in rats that serves as a...... preclinical model of human inflammatory bowel disease (IBD). The data show that when administered orally at the dose of 80 (but not 40) mg/kg body wt under a "therapeutic" regimen soon after DNB application, fusidin significantly ameliorates clinical, histological, and seroimmunological signs of disease...

  6. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress induced inflammation

    Jieun Lee; Jessica M. Ellis; Michael J. Wolfgang

    2015-01-01

    To understand the contribution of adipose tissue fatty acid oxidation to whole-body metabolism, we generated mice with an adipose-specific knockout of carnitine palmitoyltransferase 2 (CPT2A−/−), an obligate step in mitochondrial long-chain fatty acid oxidation. CPT2A−/− mice became hypothermic after an acute cold challenge, and CPT2A−/− brown adipose tissue (BAT) failed to upregulate thermogenic genes in response to agonist-induced stimulation. The adipose-specific loss of CPT2 resulted in d...

  7. Comparing the Effect of Mefenamic Acid and Vitex Agnus on Intrauterine Device Induced Bleeding

    Parisa Yavarikia

    2013-08-01

    Full Text Available Introduction: Increased bleeding is the most common cause of intrauterine device (IUD removal. The use of alternative therapies to treat bleeding has increased due to the complications of medications. But most alternative therapies are not accepted by women. Therefore, conducting studies to find the right treatment with fewer complications and being acceptable is necessary. This study aimed to compare the effect of mefenamic acid and vitex agnus castus on IUD induced bleeding.Methods: This was a double blinded randomized controlled clinical trial. It was conducted on 84 women with random allocation in to two groups of 42 treated with mefenamic acid and vitex agnus capsules taking three times a day during menstruation for four months. Data were collected by demographic questionnaire and Higham 5 stage chart (1 month before the treatment and 4 months during the treatment., Paired t-test, independent t-test, chi-square test, analysis of variance (ANOVA with repeated measurements, and SPSS software were used to determine the results.Results: Mefenamic acid and vitex agnus significantly decreased bleeding. This decrease in month 4 was 52% in the mefenamic acid group and 47.6% in the vitex agnus group. The mean bleeding score changes was statistically significant between the two groups in the first three months and before the intervention. In the mefenamic acid group, the decreased bleeding was significantly more than the vitex agnus group. However, during the 4th month, the mean change was not statistically significant. Conclusion: Mefenamic acid and vitex agnus were both effective on IUD induced bleeding; however, mefenamic acid was more effective.

  8. Role of ion transporters in the bile acid-induced esophageal injury.

    Laczkó, Dorottya; Rosztóczy, András; Birkás, Klaudia; Katona, Máté; Rakonczay, Zoltán; Tiszlavicz, László; Róka, Richárd; Wittmann, Tibor; Hegyi, Péter; Venglovecz, Viktória

    2016-07-01

    Barrett's esophagus (BE) is considered to be the most severe complication of gastro-esophageal reflux disease (GERD), in which the prolonged, repetitive episodes of combined acidic and biliary reflux result in the replacement of the squamous esophageal lining by columnar epithelium. Therefore, the acid-extruding mechanisms of esophageal epithelial cells (EECs) may play an important role in the defense. Our aim was to identify the presence of acid/base transporters on EECs and to investigate the effect of bile acids on their expressions and functions. Human EEC lines (CP-A and CP-D) were acutely exposed to bile acid cocktail (BAC) and the changes in intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i) were measured by microfluorometry. mRNA and protein expression of ion transporters was investigated by RT-PCR, Western blot, and immunohistochemistry. We have identified the presence of a Na(+)/H(+) exchanger (NHE), Na(+)/HCO3 (-) cotransporter (NBC), and a Cl(-)-dependent HCO3 (-) secretory mechanism in CP-A and CP-D cells. Acute administration of BAC stimulated HCO3 (-) secretion in both cell lines and the NHE activity in CP-D cells by an inositol triphosphate-dependent calcium release. Chronic administration of BAC to EECs increased the expression of ion transporters compared with nontreated cells. A similar expression pattern was observed in biopsy samples from BE compared with normal epithelium. We have shown that acute administration of bile acids differently alters ion transport mechanisms of EECs, whereas chronic exposure to bile acids increases the expression of acid/base transporters. We speculate that these adaptive processes of EECs represent an important mucosal defense against the bile acid-induced epithelial injury. PMID:27198194

  9. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO. PMID:23863407

  10. Protective Effects of Lycopene and Ellagic Acid on Gonadal Tissue, Maternal Newborn Rats Induced by Cadmiumchloride

    K Hoshmand Motlagh

    2015-08-01

    Full Text Available Background & aim: Cadmium is a toxin which reduces the ability of the reproduction in humans .Different antioxidants damaging effects of toxins are eliminated .The purpose of this study was to investigate the protective effects of lycopene and Ellagic acid induced by cadmium chloride on the gonadal tissue of newborn rats during pregnancy. Methods: In the present experimental study, 30 adult female Wistar rats (180-200 gr were prepared and maintained in standard conditions. The female rats were used for mating with the male. After observation of vaginal plaque, pregnant rats were randomly divided into 5 groups of 6 rats. Group I (normal: They were given normal saline in 13 days during pregnancy. Group II (Control: Cadmium chloride (1.5 mg / kg/ IP was injected and normal saline was given to them in 13 days of during pregnancy. Group III: Cadmium chloride (1.5 mg / kg/ IP was injected and ellagic acid (10 mg/kg/orally in 13 days were injected during pregnancy. Group IV: Cadmium chloride (1.5 mg / kg/ IP was injected and copene acid (20 mg/kg/orally was injected in 13 days of during pregnancy. Group V: Cadmium chloride (1.5 mg / kg/ IP was injected and ellagic acid (10 mg/kg/orally and lycopene acid (20 mg/kg/orally were injected in 13 days during pregnancy. After postpartum, Neonatal rats were anesthetized with ether. Animals were dissected, then the testes and Ovaries were removed and transferred to 10% formalin solution. After tissue processing, tissue sections were prepared and H&E stained. Data were analyzed by SPSS software and ANOVA test. Results: Average number of Sertoli cells ,spermatogonia ,Leydig, and the number of seminiferous tube in control group were compared to other groups that were treated with lycopene - ellagic acid and ellagic acid had been reduced-proves to be significant(P <0.05. Average diameter of seminiferous tube in control group compared to other groups that are treated with lycopene - ellagic acid and ellagic acid had

  11. Valproic acid-induced acute pancreatitis in pediatric age: case series and review of literature.

    Cofini, M; Quadrozzi, F; Favoriti, P; Favoriti, M; Cofini, G

    2015-01-01

    Valproic acid (VPA) is commonly prescribed medication for epilepsy, migraine and bipolar disorder. Although the common adverse effect associated with VPA are typically benign, less common adverse effect can occur; these include hepatotixicity, teratogenicity and acute pancreatitis (AP). VPA-induced pancreatitis does not depend on valproic acid serum level and may occur anytime after onset of therapy. Re-challenge with VPA is dangerous and should be avoided. The diagnosis of VPA-induced pancreatitis seems to be underestimated because of difficulties in determining the causative agent and the need for a retrospective re-evaluation of the causative factor. More of idiopathic pancreatitis should be a drug-induced pancreatitis. We report four cases of VPA-induced AP found in a group of 52 cases of AP in children come to our attention from January 2008 to December 2012. The aim of these reports is to point out our experience about clinical presentation, diagnosis, management, outcome in children with VPA-induced AP and review of literature. PMID:26712070

  12. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells

    Exposure of an established marsupial cell line, PtK2 (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membrane. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. (author)

  13. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells

    Kaleta, E.W.; Applegate, L.A.; Ley, R.D. (Lovelace Foundation for Medical Education and Research, Albuquerque, NM (United States))

    1991-11-01

    Exposure of an established marsupial cell line, PtK{sub 2} (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membrane. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. (author).

  14. Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations

    Gray, Vanessa E.; Kimberly R Kukurba; Kumar, Sudhir

    2012-01-01

    Summary: Site-directed mutagenesis is frequently used by scientists to investigate the functional impact of amino acid mutations in the laboratory. Over 10 000 such laboratory-induced mutations have been reported in the UniProt database along with the outcomes of functional assays. Here, we explore the performance of state-of-the-art computational tools (Condel, PolyPhen-2 and SIFT) in correctly annotating the function-altering potential of 10 913 laboratory-induced mutations from 2372 protei...

  15. Reduced Capacity for Fatty Acid Oxidation in Rats with Inherited Susceptibility to Diet-Induced Obesity

    Ji, Hong; Friedman, Mark I.

    2007-01-01

    High-fat, energy-dense diets promote weight gain and obesity in humans and other animals, but the mechanisms underlying such diet-induced obesity remain elusive. To determine whether a reduced capacity to oxidize fat is involved in the etiology of diet-induced obesity, we examined different measures of fatty acid oxidation in rats selectively bred for susceptibility (DIO) or resistance (DR) to dietary obesity before and after they were fed a high-fat diet and became obese. DIO rats eating a l...

  16. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes

    Chen, Wei-Ping; Wu, Li-Dong

    2014-01-01

    We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS...

  17. Long-term fatty liver-induced insulin resistance in orotic acid-induced nonalcoholic fatty liver rats.

    Han, Xiuqing; Liu, Chunhua; Xue, Yong; Wang, Jingfeng; Xue, Changhu; Yanagita, Teruyoshi; Gao, Xiang; Wang, Yuming

    2016-01-01

    We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model. PMID:26775542

  18. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. PMID:26463741

  19. Mechanism of cAMP-induced H+ -efflux of Dictyostelium cells: a role for fatty acids

    H Flaadt; R Schaloske; D Malchow

    2000-09-01

    Aggregating Dictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.

  20. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum

    Wu, Dousheng; Ding, Wei; Zhang, Yong; Liu, Xuejiao; Yang, Liang

    2015-01-01

    Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. solanacearum. In this study, a total of 50 different compounds were screened and almost half of them (22 of 50) significantly inhibited or induced the T3SS expression of R. solanacearum. Based on the strong induction activity on T3SS, the T3SS inducer oleanolic acid (OA) was chosen for further study. We found that OA induced the expression of T3SS through the HrpG-HrpB pathway. Some type III effector genes were induced in T3SS inducing medium supplemented with OA. In addition, OA targeted only the T3SS and did not affect other virulence determinants. Finally, we observed that induction of T3SS by OA accelerated disease progress on tobacco. Overall our results suggest that plant-derived compounds are an abundant source of R. solanacearum T3SS regulators, which could prove useful as tools to interrogate the regulation of this key virulence pathway. PMID:26732647

  1. The Effect of Kinetin, Gibberellic Acid and Indole Acetic Acid on EMS-Induced Somatic Mutation and Recombination in Drosophila melanogaster

    YEŞİLADA, Elif

    2000-01-01

    The effect of plant growth hormones (kinetin, gibberellic acid (GA 3) and indole acetic acid (IAA)) on EMS-induced mutant wing spots was studied with the somatic mutation and recombination test (SMART) in Drosophila melanogaster.GA 3 reduced all kinds of EMS-induced spot. While a 10 -3 M concentration of kinetin reduced only the number of EMS-induced twin spots, a 10 -4 M concentration was seen to increase the number of all types of spot. The same concentrations of IAA gave variable resu...

  2. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse

    Lee, Grace S.; Liao, Xiaoyan; Shimizu, Hirohito; Collins, Michael D.

    2010-01-01

    Because all-trans retinoic acid (atRA) is teratogenic in all species tested and many of the specific defects induced are common across the phylogenetic spectrum, it would be logical to predict that murine strain differences in teratology to this agent are minimal. However, for specific defects, strain susceptibilities are vastly different. Studies with atRA have shown stark differences between C57BL/6 and SWV mouse strains in susceptibility to postaxial forelimb ectrodactyly and ectopic hindl...

  3. The role of MAPK signalling pathways in acetic acid-induced cell death of Saccharomyces cerevisiae

    Azevedo, Flávio Humberto Torres Dias Feio de

    2011-01-01

    Dissertação de mestrado em Genética Molecular Mitogenic Activated Protein Kinase (MAPK) cascades are important signalling pathways that allow yeast cells to swiftly adapt to changing environmental conditions. Previous studies suggested that the High Osmolarity Glycerol (HOG) MAPK pathway and ceramide production are involved in acetic-acid induced apoptosis in yeast. Evidence that changes in the levels of endogenous ceramides can affect yeast cell fate has also been put forth...

  4. Pharmacogenomic analysis of retinoic-acid induced dyslipidemia in congenic rat model

    Krupková, Michaela; Liška, František; Šedová, Lucie; Křenová, Drahomíra; Křen, Vladimír; Šeda, Ondřej

    2014-01-01

    Background All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol ...

  5. Gastrointestinal Tract Abnormalities Induced by Prenatal Valproic Acid Exposure in Rat Offspring

    Kim, Ji-Woon; Choi, Chang Soon; Kim, Ki Chan; Park, Jin Hee; Seung, Hana; Joo, So Hyun; Yang, Sung Min; Shin, Chan Young; Park, Seung Hwa

    2013-01-01

    In-utero exposure to valproic acid (VPA) has been known as a potent inducer of autism spectrum disorder (ASD), not only in humans, but also in animals. In addition to the defects in communication and social interaction as well as repetitive behaviors, ASD patients usually suffer from gastrointestinal (GI) problems. However, the exact mechanism underlying these disorders is not known. In this study, we examined the gross GI tract structure and GI motility in a VPA animal model of ASD. On embry...

  6. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were i...

  7. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Hiromu Suzuki; Yuya Takashima; Futoshi Ishiguri; Nobuo Yoshizawa; Shinso Yokota

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were ...

  8. R-roscovitine Reduces Lung Inflammation Induced by Lipoteichoic Acid and Streptococcus pneumoniae

    Hoogendijk, Arie J.; Roelofs, Joris J. T. H.; Duitman, JanWillem; van Lieshout, Miriam H. P.; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W.

    2012-01-01

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, −2, −5 and −7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We ...

  9. Intrapulmonary Delivery of Ethyl Pyruvate Attenuates Lipopolysaccharide : and Lipoteichoic Acid-Induced Lung Inflammation in Vivo

    van Zoelen, Marieke A.D.; de Vos, Alex F.; Larosa, Gregory J.; Draing, Christian; Aulock, Sonja von; van der Poll, Tom

    2007-01-01

    Ethyl pyruvate (EP) is a stable pyruvate derivative that has been shown to exert anti-inflammatory effects in various models of systemic inflammation including endotoxemia. We here sought to determine the local effects of EP, after intrapulmonary delivery, in models of lung inflammation induced by instillation via the airways of either lipopolysaccharide (LPS, a constituent of the gram-negative bacterial cell wall) or lipoteichoic acid (LTA, a component of the gram-positive bacterial cell wal...

  10. Statin Inhibits Kainic Acid-Induced Seizure and Associated Inflammation and Hippocampal Cell Death

    Lee, Jin-Koo; Won, Je-Seong; Singh, Avtar K; Singh, Inderjit

    2008-01-01

    Statins are inhibitors of HMG-CoA reductase that have been recently recognized as anti-inflammatory and neuroprotective drugs. Herein, we investigated anti-excitotoxic and anti-seizure effects of statins by using kainic acid (KA)-rat seizure model, an animal model for temporal lobe epilepsy and excitotoxic neurodegeneration. We observed that pretreatment with Lipitor (atorvastatin) effeiciently reduced KA-induced seizure activities, hippocampal neuron death, monocyte infiltration and proinfla...

  11. Focused electron beam induced etching of copper in sulfuric acid solutions

    Boehme, Lindsay; Bresin, Matthew; Botman, Aurélien; Ranney, James; Hastings, J. Todd

    2015-12-01

    We show here that copper can be locally etched by an electron-beam induced reaction in a liquid. Aqueous sulfuric acid (H2SO4) is utilized as the etchant and all experiments are conducted in an environmental scanning electron microscope. The extent of etch increases with liquid thickness and dose, and etch resolution improves with H2SO4 concentration. This approach shows the feasibility of liquid phase etching for material selectivity and has the potential for circuit editing.

  12. Nerve growth factor protects cholinergic neurons against quinolinic acid-induced excitotoxicity in wistar rats

    Vasiljević Ivana D.; Jovanović Marina D.; Čolić Miodrag J.; Mićić D.; Ninković Milica; Maličević Živorad

    2004-01-01

    The etiology of neuronal death in neurodegenerative diseases, including Huntington's disease (HD) is still unknown. There could be a complex interplay between altered energy metabolism, excitotoxicity and oxidative stress. Excitotoxic striatal lesions induced by quinolinic acid (QA), were used to test for the neuroprotective actions of nerve growth factor (NGF) on striatal cholinergic and GABAergic neurons. QA is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) rec...

  13. Administration of Simvastatin after Kainic Acid-Induced Status Epilepticus Restrains Chronic Temporal Lobe Epilepsy

    Xie, Chuncheng; Sun, Jiahang; Qiao, Weidong; Lu, Dunyue; Wei, Lanlan; NA, MENG; Song, Yuanyuan; Hou, Xiaohua; LIN, ZHIGUO

    2011-01-01

    In this study, we examined the effect of chronic administration of simvastatin immediately after status epilepticus (SE) on rat brain with temporal lobe epilepsy (TLE). First, we evaluated cytokines expression at 3 days post KA-lesion in hippocampus and found that simvastatin-treatment suppressed lesion-induced expression of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α). Further, we quantified reactive astrocytosis using glial fibrillary acidic protein (GFAP) staining and neuron los...

  14. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Ramla Gary; Giovani Carbone; Gia Petriashvili; Maria Penelope De Santo; Riccardo Barberi

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra ...

  15. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells

    Wang, Li; Liu, Yuan; Li, Sen; Zai-yun LONG; Wu, Ya-min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cor...

  16. Fatty Acid Binding Protein 4 Deficiency Protects against Oxygen-Induced Retinopathy in Mice

    Magali Saint-Geniez; Elisa Ghelfi; Xiaoliang Liang; Chenwei Yu; Carrie Spencer; Stephanie Abend; Gokhan Hotamisligil; Sule Cataltepe

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angioge...

  17. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.

    Beker, Bilge Yıldoğan; Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2011-11-01

    Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion-ascorbate combinations was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by copper(II)-ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin>catechin≥quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)-Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure-activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions. PMID:21925488

  18. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Borate AR

    2012-02-01

    Full Text Available Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in highdensity lipoprotein cholesterol. Hence by considering the effects observed in this model, it has beensuggested that Protocatechuic acid was found to possess significant hypolipidemic activity, this may bedue to its effect on increasing the metabolism of the cholesterol by activating lipoprotein lipase or byincreasing reverse cholesterol transport.

  19. Radiation-induced graft copolymerization of methyl acrylate and acrylic acid onto rubber wood fiber

    Graft copolymerization of methyl acrylate and acrylic acid monomers onto rubber wood fiber (RWF) was carried out by simultaneous radiation-induced technique. The parameters affecting the grafting reaction were investigated and the optimum conditions for both monomers obtained are as follows: impregnation time = 16 hours, total dose = 30 kGy, methanol : water ratio, 3:1, monomers concentration = 40 v/v % and sulphuric acid concentration = 0.1 mol/L. Fourier Transform Infrared (FTIR), thermogravimetry analysis (TGA), and scanning electron microscope (SEM) analyses used to characterize graft copolymers. The structural investigation by x-ray diffraction (XRD) shows the degree of crystallinity of rubber wood fiber decreased with the incorporation of poly(methyl acrylate) and poly(acrylic acid) grafts. (Author)

  20. Hepatoprotective effects of citric acid and aspartame on carbon tetrachloride-induced hepatic damage in rats

    Omar M. E. Abdel Salam; Shaffie, Nermeen M.; Sleem, Amany A.

    2009-01-01

    The aim of this study was to investigate the effect of citric acid or the sweetening agent aspartame on the CCl4-induced hepatic injury in rats. Citric acid (10 mg/kg, 100 mg/kg or 1000 mg/kg), aspartame (0.625 or 1.25 mg/kg) or silymarin (25 mg/kg) was given once daily orally simultaneously with CCl4 and for one week thereafter. The administration of citric acid at 100 mg/kg or 1000 mg/kg to CCl4-treated rats reduced elevated plasma ALT by 44.1-63.3 %, AST by 47.8-70.6 %, ALP by 41.7-67.2 %,...

  1. Metabolism of arachidonic acid in phorbol ester, interferon and dimethyl sulfoxide differentiation induced U937 cells

    U937, a human macrophage cell line can metabolize arachidonic acid to a prostaglandin E2-like substance, and an unidentified lipoxygenase product. This metabolism occurs at very low levels however since these cells have low lipase and fatty acid oxygenase activities. The investigated the appearance of these enzyme activities during differentiation induced by phorbol-12-myristate-13-acetate (PMA), human gamma interferon (INF), and dimethyl sulfoxide (DMSO) on days 1,3 and 5 of stimulation using 3H-arachidonic acid (3H-AA). Culture supernatants were analyzed for free 3H-AA and 3H metabolites by radio-thin layer chromatography (3H-MET). The increasing percentage of 3H-AA release suggests the appearance of phospholipase activity during differentiation

  2. Laser-induced damage of sol-gel silica acid and basic thin films

    The sol-gel monolayer silica acid and basic thin films on K9 glass substrates were prepared with the dip method from acid and basic catalyzed silica sols, respectively. Both films have nearly similar optical thickness. The laser-induced damage thresholds(LIDT) of the two kinds of films were measured. Thermal absorption, porous ratio and surface morphologies of films were investigated by Stanford photo-thermal solutions, ellipsometer, atomic force microscope(AFM) and scanning electron micro-scope(SEM), respectively. Optical microscope was used to characterize the defects and impurities of films before laser irradiation and damage morphology after laser irradiation. The experimental results showed that compared with basic film, the silica acid film had larger absorption, smaller porous ratio, and smaller LIDT. Different damage morphologies of films were relative to their different absorption and microstructures. (authors)

  3. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  4. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  5. Comparison of salicylic acid, benzoic acid and p-hydroxybenzoic acid for their ability to induce flowering in Lemna Gibba G3

    The long-day plant Lemna gibba G3 fails to flower under continuous light on NH4+-free 0.5 H medium. This inhibition is completely reversed by 10 μM salicyclic acid (SA) or 32 μM benzoic acid (BA). By contrast, p-hydroxybenzoic acid (p-OH-BA) has virtually no effect on flowering at levels as high as 320 μM. Uptake rates for the three compounds are comparable. Competition studies using 14C-SA indicate that, compared to SA, BA is about 10-fold less effective and p-OH-BA is nearly 100-fold less effective in competing against 14C-SA uptake. Both the effectiveness of SA for inducing flowering and the uptake of 14C-SA are substantially increased as the pH of the medium is lowered from 8 to 4.5. Under a nitrogen atmosphere the uptake of 14C-SA is partially inhibited above pH 5. Phosphate metabolism may be important for flowering since increasing the phosphate level in the medium 10-15 fold results in substantial flowering, and suboptimal levels of Sa and phosphate interact synergistically to stimulate flowering. The interaction of phosphate with BA and p-OH-BA will be presented

  6. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  7. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Tang Bing

    2011-04-01

    Full Text Available Abstract Background Elevated plasma free fatty acid (FFA levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36 is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs treated with oleic acid (OA. We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L became foam cells based on morphological (Oil Red O staining and biochemical (5 times increase in cellular triglyceride criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results in vivo, we used ApoE-deficient mice fed with normal chow (NC, OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both p 5 μm2 vs. OA plus acipimox: 2.60 ± 0.10 ×105 μm2, p p Conclusions These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.

  8. Properties of acid-induced currents in mouse dorsal root ganglia neurons.

    Ergonul, Zuhal; Yang, Lei; Palmer, Lawrence G

    2016-05-01

    Acid-sensing ion channels (ASICs) are cation channels that are activated by protons (H(+)). They are expressed in neurons throughout the nervous system and may play important roles in several neurologic disorders including inflammation, cerebral ischemia, seizures, neurodegeneration, anxiety, depression, and migraine. ASICs generally produce transient currents that desensitize in response to a decrease in extracellular pH Under certain conditions, the inactivation of ASICs can be incomplete and allow them to produce sustained currents. Here, we characterize the properties of both transient and sustained acid-induced currents in cultured mouse dorsal root ganglia (DRG) neurons. At pH levels between 7.3 and 7.1 they include "window currents" through ASICs. With stronger acid signals sustained currents are maintained in the absence of extracellular Na(+) or the presence of the ASIC blockers amiloride and Psalmotoxin-1(PcTx1). These sustained responses may have several different origins in these cells, including acid-induced stimulation of inward Cl(-) currents, block of outward K(+) currents, and augmentation of inward H(+) currents, properties that distinguish these novel sustained currents from the well-characterized transient currents. PMID:27173673

  9. Acid-induced hyperalgesia and anxio-depressive comorbidity in rats.

    Liu, Yu-Ting; Shao, Yen-Wen; Yen, Chen-Tung; Shaw, Fu-Zen

    2014-05-28

    Fibromyalgia is a prevalent disorder characterized by chronic widespread pain (CWP) and complex comorbid symptoms. A CWP model is developed through repeated unilateral intramuscular injections of acid saline resulting in bilateral mechanical hyperalgesia in rats. The present study aims to evaluate whether both anxious and depressive comorbidities exist in this acid-induced pain model, similarly to patients with CWP syndromes. The anxiety-like behaviors were evaluated using the open field and elevated plus maze tests, and depression-like behaviors were measured by the forced swimming, sucrose consumption, and sucrose preference tests. The pain group receiving acidic saline displayed significantly lower paw withdrawal thresholds for 4weeks than animals in the vehicle group after repetitive intramuscular injections. The pain group showed a significantly shorter duration of exploring the central zone of the open field and the open arms of the elevated plus maze compared to the vehicle group. The pain group had a significantly lower preference for and consumption of the hedonic sucrose. Moreover, rats with chronic pain showed significantly longer immobility than the vehicle group in the forced swimming test. The results indicate that psychiatric behaviors are exacerbated in the CWP model. This study provides evidence for the validity of the acid-induced pain model analogous to patients with CWP syndromes. PMID:24726391

  10. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). PMID:25692407

  11. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein. PMID:26544788

  12. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    Wang, Jian-Qing [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Tao, Li [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Zhi-Hui; Liu, Xiao-Qian [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Xu, Yuan-Bao [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Hua [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Li, Jun, E-mail: lijun@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China)

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  13. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl4-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl4 (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl4 + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl4 injection to the end. As expected, PBA significantly attenuated CCl4-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl4-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl4-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl4-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl4-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl4-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl4-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl4 induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl4-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl4-induced hepatic NF-κB activation and ERK and JNK phosphorylation. ► PBA effectively protects

  14. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    Olga N. Uchakina

    2013-10-01

    Full Text Available Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB, can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS. To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU on staphylococcal enterotoxin B (SEB induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  15. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation.

    Philipp R Esser

    Full Text Available BACKGROUND: Allergic contact dermatitis (ACD represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS and a concomitant breakdown of the extracellular matrix (ECM component hyaluronic acid (HA to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. CONCLUSIONS/SIGNIFICANCE: These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD.

  16. Apoptosis of Human Pancreatic Carcinoma Cells Induced By All-Trans Retinoic Acid and Interferon

    Xiao-hua Wang; Yuan-qin Yin; Ping Ma; Cheng-guang Sui; Fan-dong Meng; Jiang You-hong

    2009-01-01

    Objective: To investigate the apoptosis of human pancreatic carcinoma PC3 cells induced by the combination of all-trans retinoic acid (ATRA) with interferon alpha (IFN-α). Methods: PC3 cells were treated with ATRA and IFN-α. The inhibitory rate of PC3 cell proliferation was detected using MTT method. Cellular apoptosis was determined with flow cytometry. The percentage of PC3 cell apoptosis was assayed using TUNEL methods. Results: ATRA and IFN-α could inhibit cellular proliferation and induces cellular apoptosis of PC3 cells. The inhibitory effect was stronger when the ATRA and IFN-α were combined as a therapy. Conclusion: ATRA inhibits the proliferation of PC3 cells and induce the apoptosis of PC3 cells. The combination of IFN-α with ATRA may enhance these effects on PC3 cells.

  17. The protective effect of blueberry anthocyanins against perfluorooctanoic acid-induced disturbance in planarian (Dugesia japonica).

    Yuan, Zuoqing; Zhang, Jianyong; Tu, Changchao; Wang, Zhijing; Xin, Wenpeng

    2016-05-01

    The influence of blueberry anthocyanins on perfluorooctanoic acid (PFOA)-induced stress response in planarian mitochondria was investigated. PFOA at 15mg/L and anthocyanins at 10 or 20mg/L were individually and simultaneously administered to planarians for up to 10d. The results showed PFOA treatment induced an increase in mitochondrial permeability transition pore opening and a decrease antioxidant capacity and enzyme activities. In anthocyanin treated animals, the activity of succinate dehydrogenase, cytochrome oxidase and monoamine oxidase increased, but mitochondrial permeability transition pore opening decreased and total antioxidant capacity increased. An improvement in above-mentioned physiological and biochemical parameters was found in the combined PFOA and anthocyanin treated animals, in a dose-dependent manner. Anthocyanins attenuated the PFOA induced toxicity; antioxidant capacity and enzyme activities are involved in the protective mechanism of anthocyanins. PMID:26836138

  18. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  19. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  20. Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations.

    Gray, Vanessa E; Kukurba, Kimberly R; Kumar, Sudhir

    2012-08-15

    Site-directed mutagenesis is frequently used by scientists to investigate the functional impact of amino acid mutations in the laboratory. Over 10,000 such laboratory-induced mutations have been reported in the UniProt database along with the outcomes of functional assays. Here, we explore the performance of state-of-the-art computational tools (Condel, PolyPhen-2 and SIFT) in correctly annotating the function-altering potential of 10,913 laboratory-induced mutations from 2372 proteins. We find that computational tools are very successful in diagnosing laboratory-induced mutations that elicit significant functional change in the laboratory (up to 92% accuracy). But, these tools consistently fail in correctly annotating laboratory-induced mutations that show no functional impact in the laboratory assays. Therefore, the overall accuracy of computational tools for laboratory-induced mutations is much lower than that observed for the naturally occurring human variants. We tested and rejected the possibilities that the preponderance of changes to alanine and the presence of multiple base-pair mutations in the laboratory were the reasons for the observed discordance between the performance of computational tools for natural and laboratory mutations. Instead, we discover that the laboratory-induced mutations occur predominately at the highly conserved positions in proteins, where the computational tools have the lowest accuracy of correct prediction for variants that do not impact function (neutral). Therefore, the comparisons of experimental-profiling results with those from computational predictions need to be sensitive to the evolutionary conservation of the positions harboring the amino acid change. PMID:22685075

  1. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  2. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  3. Radiation-induced destruction of hydroxyl-containing amino acids and dipeptides

    The yields of molecular products resulting from radiolysis of hydroxyl-containing amino acids and dipeptides under various conditions were determined. The possibility of a new radiation-induced destruction pathway has been shown for serine and threonine, as well as for the dipeptides having residues of these amino acids at the N-terminal part of the respective molecule. This process includes formation of N-centered radicals from the starting molecules followed by their decomposition with elimination of side substituents. On radiolysis, serine and threonine were also shown to undergo free-radical destruction to form acetaldehyde and acetone, respectively. A mechanism has been proposed including consecutive stages of fragmentation of α-hydroxyl-containing carbon-centered radicals with elimination of ammonia and decomposition of the secondary radicals with elimination of CO2. The yields of CO2 obtained on radiolysis of serine and threonine were significantly higher (except for solutions at pH 12) than those for alanine and valine, which have no hydroxyl groups in their structures. The obtained data indicate that the hydroxyl-containing amino acids occupy a special place among other amino acids as regards the variety of radiation-induced reactions which they may undergo due to their structural features. - Highlights: ► Ser and Thr undergo several types of C--C destruction under radiolysis. ► Free-radical mechanisms for destruction of Ser and Thr have been proposed. ► Ser- and Thr-containing dipeptides can eliminate aldehydes via C--C bond cleavage. ► Photo-induced decomposition of dipeptides can lead to side chain elimination.

  4. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction

  5. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    Grasselli, M.; Betz, N.

    2005-07-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  6. Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice.

    Beilke, Lisa D; Aleksunes, Lauren M; Holland, Ricky D; Besselsen, David G; Beger, Rick D; Klaassen, Curtis D; Cherrington, Nathan J

    2009-05-01

    Pharmacological activation of the constitutive androstane receptor (CAR) protects the liver during cholestasis. The current study evaluates how activation of CAR influences genes involved in bile acid biosynthesis as a mechanism of hepatoprotection during bile acid-induced liver injury. CAR activators phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or corn oil (CO) were administered to C57BL/6 wild-type (WT) and CAR knockout (CAR-null) mice before and during induction of intrahepatic cholestasis using the secondary bile acid, lithocholic acid (LCA). In LCA-treated WT and all the CAR-null groups (excluding controls), histology revealed severe multifocal necrosis. This pathology was absent in WT mice pretreated with PB and TCPOBOP, indicating CAR-dependent hepatoprotection. Decreases in total hepatic bile acids and hepatic monohydroxy, dihydroxy, and trihydroxy bile acids in PB- and TCPOBOP-pretreated WT mice correlated with hepatoprotection. In comparison, concentrations of monohydroxylated and dihydroxylated bile acids were increased in all the treated CAR-null mice compared with CO controls. Along with several other enzymes (Cyp7b1, Cyp27a1, Cyp39a1), Cyp8b1 expression was increased in hepatoprotected mice, which could be suggestive of a shift in the bile acid biosynthesis pathway toward the formation of less toxic bile acids. In CAR-null mice, these changes in gene expression were not different among treatment groups. These results suggest CAR mediates a shift in bile acid biosynthesis toward the formation of less toxic bile acids, as well as a decrease in hepatic bile acid concentrations. We propose that these combined CAR-mediated effects may contribute to the hepatoprotection observed during LCA-induced liver injury. PMID:19196849

  7. Heme Oxygenase-1 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis by Regulating Th17/Treg Cell Balance*

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-01-01

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. PMID:25112868

  8. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats

    Akbulut, Sami; Elbe, Hulya; Eris, Cengiz; Dogan, Zumrut; Toprak, Gulten; Otan, Emrah; Erdemli, Erman; TURKOZ, Yusuf

    2014-01-01

    AIM: To investigate the potential role of oxidative stress and the possible therapeutic effects of N-acetyl cysteine (NAC), amifostine (AMF) and ascorbic acid (ASC) in methotrexate (MTX)-induced hepatotoxicity.

  9. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse.

    Darius Moharregh-Khiabani

    Full Text Available BACKGROUND: Fumaric acid esters (FAE are a group of compounds which are currently under investigation as an oral treatment for relapsing-remitting multiple sclerosis. One of the suggested modes of action is the potential of FAE to exert a neuroprotective effect. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the impact of monomethylfumarate (MMF and dimethylfumaric acid (DMF on de- and remyelination using the toxic cuprizone model where the blood-brain-barrier remains intact and only scattered T-cells and peripheral macrophages are found in the central nervous system (CNS, thus excluding the influence of immunomodulatory effects on peripheral immune cells. FAE showed marginally accelerated remyelination in the corpus callosum compared to controls. However, we found no differences for demyelination and glial reactions in vivo and no cytoprotective effect on oligodendroglial cells in vitro. In contrast, DMF had a significant inhibitory effect on lipopolysaccharide (LPS induced nitric oxide burst in microglia and induced apoptosis in peripheral blood mononuclear cells (PBMC. CONCLUSIONS: These results contribute to the understanding of the mechanism of action of fumaric acids. Our data suggest that fumarates have no or only little direct protective effects on oligodendrocytes in this toxic model and may act rather indirectly via the modulation of immune cells.

  10. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells

    Qin, Ying; NAITO, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko

    2011-01-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intest...

  11. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    Kalaivani Batumalaie; Muhammad Arif Amin; Dharmani Devi Murugan; Munavvar Zubaid Abdul Sattar; Nor Azizan Abdullah

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein e...

  12. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects.

    Altinbas, Burcin; Topuz, Bora Burak; İlhan, Tuncay; Yilmaz, Mustafa Sertac; Erdost, Hatice; Yalcin, Murat

    2014-08-01

    The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions. PMID:25065747

  13. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  14. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  15. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    Jeffrey R. Koenitzer

    2016-08-01

    Full Text Available Nitro-fatty acids (NO2-FA are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2 reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval.

  16. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II.

    Koenitzer, Jeffrey R; Bonacci, Gustavo; Woodcock, Steven R; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E; Schopfer, Francisco J

    2016-08-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H(+) and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  17. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  18. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  19. Constitutive Androstane Receptor-Mediated Changes in Bile Acid Composition Contributes to Hepatoprotection from Lithocholic Acid-Induced Liver Injury in MiceS⃞

    Beilke, Lisa D.; Aleksunes, Lauren M.; Holland, Ricky D; Besselsen, David G; Beger, Rick D.; Klaassen, Curtis D.; Cherrington, Nathan J.

    2009-01-01

    Pharmacological activation of the constitutive androstane receptor (CAR) protects the liver during cholestasis. The current study evaluates how activation of CAR influences genes involved in bile acid biosynthesis as a mechanism of hepatoprotection during bile acid-induced liver injury. CAR activators phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or corn oil (CO) were administered to C57BL/6 wild-type (WT) and CAR knockout (CAR-null) mice ...

  20. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-01-01

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice ...

  1. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. E...

  2. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% ...

  3. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  4. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  5. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, urs...

  6. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D) in...... plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  7. Oral amino acids and gastric emptying: an investigation of the mechanism of levodopa-induced gastric stasis.

    Waller, D G; Usman, F; Renwick, A G; Macklin, B; George, C F

    1991-01-01

    To investigate possible mechanisms of levodopa-induced gastric stasis, we have studied the effect of other amino acids on gastric emptying. The large neutral amino acid tryptophan delays gastric emptying in the dog at molar concentrations below those required to stimulate duodenal osmoreceptors. In healthy volunteers, we have shown that neither tryptophan nor the small neutral amino acid glycine delayed gastric emptying when given in concentrations similar to those of levodopa which produce g...

  8. Effects of dietary linoleic acid on rat platelet ADP-induced aggregation and binding of 125I-fibrinogen

    Platelets from rats fed a diet high in linoleic acid (6%) bound increased amounts of fibrinogen on stimulation with ADP, compared to those from rats fed diets with low (2%) or no linoleic acid. However, this increased fibrinogen binding was associated with a decrease in platelet aggregation induced by ADP. Changes in the linoleic acid concentration in platelet membranes may cause changes in this relationship

  9. Mast cells in citric acid-induced cough of guinea pigs

    It was demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. To investigate the role of mast cells in CA-induced cough, three experiments were carried out in this study. In the first experiment, 59 guinea pigs were employed and we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit leukotriene synthesis, pyrilamine to antagonize histamine H1 receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, 56 compound 48/80-pretreated animals were divided into two parts; the first one was used to test the role of exogenous leukotriene (LT) C4, while the second one to test the role of exogenous histamine in CA-induced cough. Each animal with one of the above pretreatments was exposed sequentially to saline (baseline) and CA (0.6 M) aerosol, each for 3 min. Then, cough was recorded for 12 min using a barometric body plethysmograph. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining arterial plasma histamine concentration in 17 animals. Exposure to CA induced a marked increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced cough. Injection of LTC4 or histamine caused a significant increase in CA-induced cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in plasma histamine concentration, which was blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced cough via perhaps mediators LTs and histamine

  10. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts

    KOMATSU, YUKO; IBI, MIHO; CHOSA, NAOYUKI; KYAKUMOTO, SEIKO; KAMO, MASAHARU; SHIBATA, TOSHIYUKI; SUGIYAMA, YOSHIKI; ISHISAKI, AKIRA

    2016-01-01

    Bisphosphonates (BPs) are analogues of pyro-phosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF-β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF-β-induced promotion of cell viability, ii) the TGF-β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF-β-induced migratory activity of hGFs and iv) the expression level of TGF-β type I receptor on the surfaces of hGFs, as well as the TGF-β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF-β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad-dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level. PMID:27176567

  11. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  12. [Determination of Acid-Insoluble Aluminum Content in Steel by Laser-Induced Breakdown Spectroscopy].

    Yang, Chun; Jia, Yun-hai; Zhang, Yong

    2015-03-01

    Laser-induced breakdown spectroscopy (LIBS) has become a very attractive and popular chemical analysis technique in material science for its advantage of rapid analysis, non-contact measurement, micro surface analysis and online analysis. In this paper, LIBS were used to determine insoluble aluminum content by analyzing the scanning data on massive steel samples. Abnormal data were discarded by Nalimov criterion, and the remaining data was used to calculate the average and the standard deviation. The threshold to distinguish acid-insoluble aluminum and soluble aluminum was identified as the average value plus triple standard deviation. Two different mathematical models were proposed to calculate insoluble aluminum content, respectively according to the ratio of the total acid-insoluble aluminium signal strength to total aluminum signal strength and acid-insoluble signal number to total aluminum signal number. The total aluminum content was determined by the calibration curve. Insoluble aluminum content of certified reference materials and plate blank samples obtained by mathematical model is coincident to chemical wet method results. The result according to total acid-insoluble aluminium signal strength is much better. LIBS can be used as a rapid analysis method to characterize insoluble aluminum content in steel samples. PMID:26117896

  13. Radiation-induced crosslinking between poly(deoxyadenylic-deoxythymidylic acid) and tripeptides containing aromatic residues

    OH radical-induced covalent peptide-nucleotide adducts have been isolated by reverse-phase chromatography from the enzymic hydrolyzates of gamma-ray irradiated solutions containing double-stranded poly(deoxyadenylic-deoxythymidylic acid) and one of the tripeptides, lysyl-tryptophyl-lysine or lysyl-tyrosyl-lysine. Numerous compounds were formed, resulting presumably from different modes of radical addition. All isomers appeared to have the same general structure peptide-d(ApTpA), based mostly on double-labelling experiments of bases and phosphate groups in DNA. The major adduct fraction obtained from Lys-Trp-Lys and poly(dA-dT) was purified to homogeneity by sequential reverse-phase and ion-exchange chromatography, and characterized spectrally. The pattern of acid and alkaline hydrolysis suggests that thymine is the site of peptide-nucleotide binding in this particular adduct fraction. (author)

  14. Super absorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch

    Full text: Super absorbent was synthesized by radiation-induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage and germination energy were determined in order to evaluate the possibility of super absorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by FTIR. Results indicated that the sand mixed with 0.1%wt super absorbent can absorb more water than the sand without super absorbent. The germination energy of corn seeds mixed with 0.5% super absorbent was obviously higher than those without super absorbent. These experimental results showed that the super absorbent has considerable effect on seed germination and the growth of young plants. Keywords: Super absorbent, Radiation, Acrylic acid, Cassava starch

  15. Decreased apoptosis during CAR-mediated hepatoprotection against lithocholic acid-induced liver injury in mice.

    Beilke, Lisa D; Aleksunes, Lauren M; Olson, Erik R; Besselsen, David G; Klaassen, Curtis D; Dvorak, Katerina; Cherrington, Nathan J

    2009-07-10

    Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic protein that is regulated by the constitutive androstane receptor (CAR). Activation of CAR can protect the liver against bile acid-induced toxicity and it may have a role in cell death via apoptosis by altering expression of Bcl-2 family proteins such as myeloid cell leukemia-1 (Mcl-1). Our aim was to determine if activation of CAR reduces hepatocellular apoptosis during cholestasis as a mechanism of hepatoprotection. CAR(+/+) (WT) and CAR(-/-) (CAR-null) mice were pre-treated with compounds known to activate CAR prior to induction of intrahepatic cholestasis using the secondary bile acid lithocholic acid (LCA). Pre-treatment with the CAR activators phenobarbital (PB) and TCPOBOP (TC), as well as the non-CAR activator pregnenolone 16alpha-carbontrile (PCN), protected against LCA-induced liver injury in WT mice, whereas liver injury was more extensive without CAR (CAR-null). Unexpectedly, expression of anti-apoptotic Mcl-1 and Bcl-x(L) was not increased in hepatoprotected mice. Compared to unprotected groups, apoptosis was decreased in hepatoprotected mice as evidenced by the absence of cleaved caspase 3 (cCasp3). In contrast to the cytoplasmic localization in the injured livers (LCA and oltipraz), Mcl-1 protein was localized in the nucleus of hepatoprotected livers to potentially promote cell survival. This study demonstrates that although apoptosis is reduced in hepatoprotected mice pre-treated with CAR and non-CAR activators; hepatoprotection is not directly a result of CAR-induced Mcl-1 expression. PMID:19433268

  16. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    Jinying Zheng

    2016-01-01

    Full Text Available The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD. We investigated the effects of docosahexaenoic acid (DHA on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM or fructose plus 4-phenylbutyric acid (PBA for 24 h. Intracellular triglyceride (TG accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC, two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α and acyl-CoA oxidase 1 (ACOX1. DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78, total inositol-requiring kinase 1 (IRE1α and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.

  17. Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid.

    Zhu, Yingdong; Zhao, Yantao; Wang, Pei; Ahmedna, Mohamed; Ho, Chi-Tang; Sang, Shengmin

    2015-01-20

    Growing evidence has shown that ascorbic acid (ASA) can contribute to protein glycation and the formation of advanced glycation end products (AGEs), especially in the lens. The mechanism by which ascorbic acid can cause protein glycation probably originates from its oxidized form, dehydroascorbic acid (DASA), which is a reactive dicarbonyl species. In the present study, we demonstrated for the first time that four tea flavanols, (-)-epigallocatechin 3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-O-gallate (ECG), and (-)-epicatechin (EC), could significantly trap DASA and consequently form 6C- or 8C-ascorbyl conjugates. Among these four flavanols, EGCG exerted the strongest trapping efficacy by capturing approximate 80% of DASA within 60 min. We successfully purified and identified seven 6C- or 8C-ascorbyl conjugates of flavanols from the chemical reaction between tea flavanols and DASA under slightly basic conditions. Of which, five ascorbyl conjugates, EGCGDASA-2, EGCDASA-2, ECGDASA-1, ECGDASA-2 and ECDASA-1, were recognized as novel compounds. The NMR data showed that positions 6 and 8 of the ring A of flavanols were the major active sites for trapping DASA. We further demonstrated that tea flavanols could effectively inhibit the formation of DASA-induced AGEs via trapping DASA in the bovine lens crystallin-DASA assay. In this assay, 8C-ascorbyl conjugates of flavanols were detected as the major adducts using LC-MS. This study suggests that daily consumption of beverages containing tea flavanols may prevent protein glycation in the lens induced by ascorbic acid and its oxidized products. PMID:25437149

  18. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations

    Dronov S.M.

    2014-09-01

    Full Text Available Dronov S.M. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations. ABSTRACT. Background. Diabetic polyneuropathy is one of the most common long-term complications of diabetes. Hyperglycemias caused by ischemia and peroxidation of lipids are the presumed cause of diabetic neuropathy. Appointment of alpha-lipoic acid can restore the function of peripheral nerves, preventing the development of autonomic and trophic disorders. Objective. To determine the extent of changes in the ultrastructure of the sciatic nerve in rats with streptozotocin-induced simulated peripheral neuropathy in experimental therapy with α-lipoic acid. Methods. The research was conducted on 22 white rats divided randomly in 3 groups: group 1 – intact animals; group 2 – rats with streptozotocin-induced neuropathy; group 3 – rats with streptozotocin neuropathy + alpha-lipoic acid. Diabetes mellitus was induced in rats by a single intraperitoneal injection of streptozotocin (50 mg/kg. Alpha-lipoic acid was administered intraperitoneally and intragastrically once per day during 40 days from the 56th day after streptozotocin injection. Transmission electron microscopy was performed on the 40th day of alpha-lipoic acid administration. Results. Administration of alpha-lipoic acid activates compensatory-adaptive processes in neuronal cells, reduces the severity of violations in the composition of myelinated nerve fibers, contributes to a distinct axonal spruting, causes the reduction of asymmetrically distributed electron density in the lamellar structure of myelin, indicating an increase in the insulation of axons of the sciatic nerve fibers of rats. Conclusion. Experimental studies confirm high neuroprotective potential of alpha-lipoic acid in streptozotocin-induced neuropathy. Citation: Dronov SM. [Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions

  19. Caffeic acid phenethyl ester protects lung alveolar epithelial cellsfrom cigarette smoke-induced damage

    BARLAS, FIRAT BARIŞ; ERDOGAN, SUAT

    2015-01-01

    Background/aim: To evaluate the influence of caffeic acid phenethyl ester (CAPE) on cigarette smoke (CS)-induced cell damage, oxidative stress, and inflammation in human alveolar epithelial cells. Materials and methods: A549 alveolar epithelial cells were divided into control, CS exposure, CAPE, and CS+CAPE treatment groups. Undiluted CS-exposed medium (100%) and three dilutions (50%, 25%, and 10%) of CS-exposed media were applied to cultured A549 cells, which were analyzed after 3 h of inc...

  20. Preparation and Reactions of Amino Acid Ester Sulfones as New Remote Asymmetrical Induced Reagents

    ZHOU,Cheng-He; BAI,Xue; LI,Tan-Qing; WU,Jun; Alfred Hassner

    2004-01-01

    @@ The development of chiral auxiliary-controlled asymmetric synthesis has been receiving increasing interest in recent yearsfi,2] Various chiral auxiliary reagents have been observed[3] and a lot of results showed that variation of the chiral auxiliary could influence asymmetric induction. Recently, it has been reported the reaction of the aminated sulfones as a remote chiral auxiliary with α,β-unsaturated carbonyl compounds.[4] Here we would like to report the preparation of amino acid ester sulfones as new remote asymmetrical induced reagents and their reactions with α,β-unsaturated esters.

  1. Salivary a-amylase protects enamel surface against acid induced softening

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend;

    -TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had an...... explanatory power of 39% in the analysis with high concentrations being most protective (p<0.001). In addition, a smaller peak retrieved later in the chromatograms also had a strong protective effect. Inclusion of this peak in the analysis increased the explanatory power of amylase on protective effect to 65...

  2. Conjugated Linoleic Acid Induces Mast Cell Recruitment during Mouse Mammary Gland Stromal Remodeling12

    Russell, Joshua S.; McGee, Sibel Oflazoglu; Ip, Margot M.; Kuhlmann, Dietrich; Masso-Welch, Patricia A.

    2007-01-01

    Conjugated linoleic acid (CLA) is a dietary chemopreventive agent that induces apoptosis in the mammary adipose vascular endothelium and decreases mammary brown adipose tissue (BAT) and white adipose tissue (WAT). To determine onset and extent of stromal remodeling, we fed CD2F1/Cr mice diets supplemented with 1 or 2 g/100 g mixed CLA isomers for 1–7 wk. BAT loss, collagen deposition, and leukocyte recruitment occurred in the mouse mammary fat pad, coincident with an increase in parenchymal-a...

  3. Study of oxidative stress and uric acid in pregnancy induced hypertension

    Lavanya, Y. Ruth; B., Shobharani

    2015-01-01

    Background:  Pregnancy induced hypertension is a leading cause of morbidity and mortality in pregnant woman. Preeclampsia and Eclampsia Sepsis and Haemorrhage are the prime killers in pregnancy.Aim: This study is aimed to assess the role of oxidative stress by estimating Malondialdehyde(MDA), Glutathione –s-transferase (GST) and its severity by estimating serum uric acid levels in PIH.Materials and Methods:  The study comprised of 60 third trimester pregnant woman . Among those 24 were clinic...

  4. DECREASED APOPTOSIS DURING CAR-MEDIATED HEPATOPROTECTION AGAINST LITHOCHOLIC ACID-INDUCED LIVER INJURY IN MICE

    Beilke, Lisa D.; Aleksunes, Lauren M.; Olson, Erik R.; Besselsen, David G; Klaassen, Curtis D.; Dvorak, Katerina; Cherrington, Nathan J.

    2009-01-01

    Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic protein that is regulated by the constitutive androstane receptor (CAR). Activation of CAR can protect the liver against bile acid-induced toxicity and it may have a role in cell death via apoptosis by altering expression of Bcl-2 family proteins such as myeloid cell leukemia-1 (Mcl-1). Our aim was to determine if activation of CAR reduces hepatocellular apoptosis during cholestasis as a mechanism of hepatoprotection. CAR+/+ (WT) and CAR−/−...

  5. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives.

    Xuan, Jun; Zhang, Zhao-Guo; Xiao, Wen-Jing

    2015-12-21

    Visible-light-induced radical decarboxylative functionalization of carboxylic acids and their derivatives has recently received considerable attention as a novel and efficient method to create CC and CX bonds. Generally, this visible-light-promoted decarboxylation process can smoothly occur under mild reaction conditions with a broad range of substrates and an excellent functional-group tolerance. The radical species formed from the decarboxylation step can participate in not only single photocatalytic transformations, but also dual-catalytic cross-coupling reactions by combining photoredox catalysis with other catalytic processes. Recent advances in this research area are discussed herein. PMID:26509837

  6. Salicylic acid alleviates cold-induced photosynthesis inhibition and oxidative stress in Jasminum sambac

    CAI, HAN; He, Mengying; Ma, Kun; HUANG, YONGGAO; Wang, Yun

    2015-01-01

    Salicylic acid (SA) is a signal molecule that mediates many biotic and abiotic stress-induced physiological responses in plants. In the current study the protective effects of SA on cold stress-caused oxidative damage and photosynthesis inhibition in jasmine plants (Jasminum sambac) were examined. Jasmine seedlings were pretreated with 100 µM SA for 3 days and then subjected to cold stress (4 °C) for 15 days. The amounts of superoxide radicals (O_2^{-}) and hydrogen peroxide (H_{2}O_{2}) sign...

  7. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    Joy, Jordan M; Gundermann, David M.; Ryan P. Lowery; Jäger, Ralf; McCleary, Sean A; Purpura, Martin; Roberts, Michael D.; Wilson, Stephanie MC; Hornberger, Troy A.; Wilson, Jacob M.

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimula...

  8. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery

    2010-01-01

    AIM:To investigate the effect of total salvianolic acid(TSA) on ischemia-reperfusion(I/R)-induced rat mesenteric microcirculatory dysfunctions.METHODS:Male Wistar rats were randomly distributed into 5 groups(n = 6 each):Sham group and I/R group(infused with saline),TSA group,TSA + I/R group and I/R + TSA group(infused with TSA,5 mg/kg per hour).Mesenteric I/R were conducted by a ligation of the mesenteric artery and vein(10 min) and subsequent release of the occlusion.TSA was continuously infused either sta...

  9. Suppressed Mitochondrial Biogenesis in Folic Acid-Induced Acute Kidney Injury and Early Fibrosis

    Stallons, L. Jay; Whitaker, Ryan M; Schnellmann, Rick G.

    2013-01-01

    Acute kidney injury (AKI) is a disease with mitochondrial dysfunction and a newly established risk factor for the development of chronic kidney disease (CKD) and fibrosis. We examined mitochondrial homeostasis in the folic acid (FA)-induced AKI model that develops early fibrosis over a rapid time course. Mice given a single dose of FA had elevated serum creatinine (3-fold) and urine glucose (2.2-fold) 1 and 2 d after injection that resolved by 4 d. In contrast, peroxisome proliferator gamma c...

  10. [Effect of excitant amino acid antagonists on glutamate receptors in the locust and on convulsions induced by glutamate, aspartate, kynurenine and quinolinic acid in mice].

    Ryzhov, I V; Slepokurov, M V; Lapin, I P; Mandel'shtam, Iu E; Aleksandrov, V G

    1986-03-01

    All excitatory amino acid antagonists studied: diethyl esters of aspartic (DEEA) and glutamic (DEEG) acids, 2-amino-3-phosphono-propionic acid (APPA) and 2-amino-4-phosphono-butanoic acid (APBA), diminished the amplitude of excitatory postsynaptic potentials (EPP) of the locust (Locusta migratoria migratorioides) muscle fibers and arbitrary blocked glutamate (GLU) and aspartate (ASP) responses. Kynurenine (KYN) and quinolinic (QUI) acid had no effect on EPP even at a concentration of 2 X 10(-2) M. The antagonists were not strictly selective against intracerebroventricularly administered endogenous convulsants: GLU, ASP, KYN and QUI and in simulation of experimental seizures in mice. The antagonists structurally similar to ASP prevented ASP- and KYN-induced seizures in lower doses than GLU derivatives. Anti-KYN, but not anti-QUI DEEA, DEEG, APPA and APBA efficacy suggests that KYN and QUI act on different structures or binding sites. PMID:2869799

  11. Peripheral T lymphocyte subset imbalances in children with enterovirus 71-induced hand, foot and mouth disease.

    Li, Shuxian; Cai, Chunyan; Feng, Jinyan; Li, Xuejing; Wang, Yingshuo; Yang, Jun; Chen, Zhimin

    2014-02-13

    Inflammatory mediators (i.e. cytokines) play a pivotal role in the regulation of pathophysiological processes during EV71-induced hand, foot and mouth disease (HFMD). Different T cell subsets have distinct cytokine secretion profiles, and alteration in the T cell subsets frequency (imbalance) during infection leads to changed cytokine patterns. However, the effects of EV71 infection on T cell subsets were not clear. The objective of this study was to determine whether EV71-induced HFMD can be explained by the emergence of particular T-cell subsets (Th1, Th2, Tc1, Tc2, Th17, Tc17 and Treg cells) and the cytokine they produced (IFN-γ, IL-4, IL-17A and TGF-β1), as well as distinct responses to EV71 infection. We found that when compared to the control group, the percentage of Th1 and Tc1 cells was significantly higher in mild and severe HFMD group. Similar results were found in the Th1/Th2 ratio and IFN-γ levels. On the other hand, the percentage of Th17 cells and IL-17A levels were the highest in severe HFMD cases, and lowest in controls. Similar trend was also found for the Th17/Treg cell ratio. An optimal cutoff value of 2.15% for Th17 cell and 6.72 pg/ml for IL-17A provided a discriminatory value for differentiating the severity of HFMD cases by receiver operating characteristic curve analyses. These findings reveal that the Th1/Th2 and Th17/Treg imbalance exist in HFMD patients, suggesting their involvement in the pathogenesis of EV71 infection, which may have potential value as biomarkers. PMID:24316007

  12. PKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro

    Jian-lin Zhou

    2013-12-01

    The results may be showed that PKCa regulate the expresion of caspase-3, which contribute to the apoptosis of chondrocytes induced by NO. PKC α agonists enhance the protective effect of hyaluronic acid on nitric oxide-induced articular chondrocytes apoptosis.

  13. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells.

    Wen, Chuangyu; Huang, Lanlan; Chen, Junxiong; Lin, Mengmeng; Li, Wen; Lu, Biyan; Rutnam, Zina Jeyapalan; Iwamoto, Aikichi; Wang, Zhongyang; Yang, Xiangling; Liu, Huanliang

    2015-11-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  14. Experimental pain in human temporal muscle induced by hypertonic saline, potassium and acidity

    Jensen, K; Norup, M

    1992-01-01

    The study was aimed at developing a reference model for experimental pain and tenderness in the human temporal muscle by the local injection of hypertonic saline, potassium chloride and acidic phosphate buffer, using isotonic saline as control. The design was randomized and double-blind. Twenty...... healthy subjects had 0.2 ml test solution injected into one temporal muscle and saline into the other. Following each injection, pain was rated on a 10-point ordinal scale and pressure-pain thresholds were measured every minute for 10 min by a pressure algometer. Hypertonic saline (n = 11) and potassium...... chloride (n = 12) induced significantly more pain than isotonic saline (ANOVA, p less than 0.0001). Compared to control injections, hypertonic saline and potassium chloride induced a significant reduction in pressure-pain threshold (ANOVA, p less than 0.0001 and p less than 0.05). Forty-eight percent of...

  15. Protective effect of α-lipoic acid against radiation-induced fibrosis in mice.

    Ryu, Seung-Hee; Park, Eun-Young; Kwak, Sungmin; Heo, Seung-Ho; Ryu, Je-Won; Park, Jin-Hong; Choi, Kyung-Chul; Lee, Sang-Wook

    2016-03-29

    Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. We found that α-lipoic acid (α-LA) effectively prevents RIF. In RIF a mouse model, leg contracture assay was used to test the in vivo efficacy of α-LA. α-LA suppressed the expression of pro-fibrotic genes after irradiation, both in vivo and in vitro, and inhibited the up-regulation of TGF-β1-mediated p300/CBP activity. Thus, α-LA prevents radiation-induced fibrosis (RIF) by inhibiting the transcriptional activity of NF-κB through inhibition of histone acetyltransferase activity. α-LA is a new therapeutic methods that can be used in the prevention-treatment of RIF. PMID:26799284

  16. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast.

    Tsung-Chieh Lin

    Full Text Available BACKGROUND: Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α, one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.

  17. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5 mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10 mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes

  18. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury.

    Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin

    2016-06-01

    Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP upregulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepatoprotective agent. PMID:27161000

  19. Effects of Pfaffia glomerata (Spreng pedersen aqueous extract on healing acetic acid-induced ulcers

    Cristina Setim Freitas

    2008-08-01

    Full Text Available The present study was carried out to evaluate the acute toxicity and the effect of the aqueous extract of the roots from Pfaffia glomerata (Spreng Pedersen (Amaranthaceae (AEP on the prevention of acetic acid-induced ulcer and on the healing process of previously induced ulcers. The acute toxicity was evaluated in Swiss mice after oral administration of a single dose and the chronic gastric ulcer was induced with local application of acetic acid. The results showed that the LD50 of the extract was 684.6 mg.kg-1 for the intraperitoneal administration and higher than 10 mg.kg-1by the oral route. The administration of the AEP did not prevent ulcers formation. However, the AEP increased of the healing process of previously induced ulcers. The results suggest that AEP chronically administered promote an increase of tissue healing, after the damage induced by acetic acid and the extract seemed to be destituted of toxic effects in the mice by the oral route.Pfaffia glomerata (Spreng Pedersen (Amaranthaceae, uma planta conhecida popularmente como "Ginseng Brasileiro" e "paratudo", é utilizada para tratar distúrbios gástricos e como cicatrizante. Em estudos anteriores, foi demonstrado que o extrato aquoso bruto da P. glomerata (AEP protegeu a mucosa gástrica contra úlceras induzidas por etanol e estresse e reduziu a secreção ácida gástrica basal e estimulada em ratos com ligadura de piloro. Além disso, a secreção gástrica de animais tratados com AEP apresentou níveis de nitrato e nitrito aumentados. O objetivo deste estudo foi avaliar se o AEP previne o desenvolvimento de úlceras induzidas por ácido acético e o efeito desse extrato no processo de cicatrização em úlceras previamente formadas. A administração do AEP em diferentes doses produziu efeitos tóxicos baixos e não preveniu a formação de úlceras, porém aumentou o processo de cicatrização em úlceras já existentes, como evidenciado no estudo histopatológico. Em

  20. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid.

    Mohamadzadeh, Mansour; Pfeiler, Erika A; Brown, Jeffrey B; Zadeh, Mojgan; Gramarossa, Matthew; Managlia, Elizabeth; Bere, Praveen; Sarraj, Bara; Khan, Mohammad W; Pakanati, Krishna Chaitanya; Ansari, M Javeed; O'Flaherty, Sarah; Barrett, Terrence; Klaenhammer, Todd R

    2011-03-15

    Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4(+) T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4(+)CD45RB(high)T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4(+)FoxP3(+) T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders. PMID:21282652

  1. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  2. Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663

    Zhuan Zhou

    2011-04-01

    Full Text Available Abstract Background Differentiation of the acute myeloid leukemia (AML cell line HL-60 can be induced by all trans-retinoic acid (ATRA; however, the mechanism regulating this process has not been fully characterized. Methods Using bioinformatics and in vitro experiments, we identified the microRNA gene expression profile of HL-60 cells during ATRA induced granulocytic differentiation. Results Six microRNAs were upregulated by ATRA treatment, miR-663, miR-494, miR-145, miR-22, miR-363* and miR-223; and three microRNAs were downregulated, miR-10a, miR-181 and miR-612. Additionally, miR-663 expression was regulated by ATRA. We used a lentivirus (LV backbone incorporating the spleen focus forming virus (SFFV-F promoter to drive miR-663 expression, as the CMV (Cytomegalovirus promoter is ineffective in some lymphocyte cells. Transfection of LV-miR-663 induced significant HL-60 cell differentiation in vitro. Conclusions Our results show miR-663 may play an important role in ATRA induced HL-60 cell differentiation. Lentivirus delivery of miR-663 could potentially be used directly as an anticancer treatment in hematological malignancies

  3. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  4. Study on the Resistance Induced by Salicylic Acid Against Phytophthora capsici in Pepper (Capsicum annuum)

    MAO Ai-jun; WANG Yong-jian; FENG Lan-xiang; GENG San-sheng; XU Yong

    2005-01-01

    Pepper Phytophthora blight caused by Phytophthora capsici L. is the most destructive disease for reducing pepper yields in the world. Building up varietal resistance and induced resistance to the disease are of agricultural importance. In this paper, the disease resistance induced by salicylic acid (SA) against P. capsici were studied by using four hot pepper lines with different resistant abilities and one P. capsici strain with middle pathogenicity. Results show that SA could induce significantly the resistance of pepper seedlings to P. capsici, but CaC12, KH2PO4 and VAM couldn't. SA at a relative low concentration from 0.15 to 0.3 g L-1 had no antifungal activity in vitro against P. capsici. That means the disease resistant enhancement of the plants treated with SA is due to the induction effect, but not the antifungal effect of SA. About 1 to 5 days internal between SA-treatment and challenge inoculation was sufficient to induce the disease resistance of hot pepper. The resistance could remain more than 20 days after treatment with SA.

  5. The role of mast cells in citric acid-induced airway constriction and cough.

    Lai, Yih-Loong; Wu, Li-Ling; Lin, Tai-Yin; Lin, Chien-He

    2009-11-30

    Inhalation of citric acid (CA) causes airway constriction and coughing. To investigate the role of mast cells in CA-induced airway constriction and cough, three experiments using guinea pigs were carried out. In the first experiment, we used compound 48/80 to deplete mast cells, cromolyn sodium to stabilize mast cells, MK-886 to inhibit synthesis of leukotrienes, pyrilamine to antagonize histamine H1 receptor, methysergide to antagonize serotonin receptor, and indomethacin to inhibit cyclooxygenase. In the second experiment, compound 48/80-pretreated animals were divided into 2 parts; the first one was used to test the role of exogenous leukotriene (LT) C4, while the second one to test the role of exogenous histamine. Decreases in respiratory compliance (Crs) and forced expiratory volume in 0.1 sec (FEV0.1) were used as indicators for airway constriction in anesthetized guinea pigs. CA-induced cough was recorded for 12 min using a barometric body plethysmograph in conscious animals. In the third experiment, the activation of mast cells upon CA inhalation was investigated by determining lung tissue or arterial plasma histamine concentration in animals. Exposure to CA induced marked airway constriction and increase in cough number. Compound 48/80, cromolyn sodium, MK-886 and pyrilamine, but not indomethacin or methysergide, significantly attenuated CA-induced airway constriction and cough. Injection of LTC4 or histamine caused a significant increase in CA-induced airway constriction and cough in compound 48/80-pretreated animals. In addition, CA inhalation caused significant increase in lung tissue and plasma histamine concentrations, which were blocked by compound 48/80 pretreatment. These results suggest that mast cells play an important role in CA aerosol inhalation-induced airway constriction and cough via perhaps mediators including LTs and histamine. PMID:20359123

  6. Defense signaling among interconnected ramets of a rhizomatous clonal plant, induced by jasmonic-acid application

    Chen, Jin-Song; Lei, Ning-Fei; Liu, Qing

    2011-07-01

    Resource sharing between ramets of clonal plants is a well-known phenomenon that allows stoloniferous and rhizomatous species to internally transport water, mineral nutrients and carbohydrates from sites of high supply to sites of high demand. Moreover, vascular ramet connections are likely to provide an excellent means to share substances other than resources, such as defense signals. In a greenhouse experiment, the rhizomatous sedge Carex alrofusca, consisting of integrated ramets of different ages, was used to study the transmission of defense signals through belowground rhizome connections in response to local spray with jasmonic-acid. A feeding preference test with the caterpillar Gynaephora rnenyuanensis was employed to assess benefits of rhizome connections on defense signaling. Young ramets were more responsive to jasmonic-acid treatment than middle-aged or old ramets. Condensed tannin content in the foliage of young ramets showed a significant increase and soluble carbohydrate and nitrogen content showed marginally significant decreases in the 1 mM jasmonic-acid treatment but not in control and/or 0.0001 mM jasmonic-acid treatments. The caterpillar G. rnenyuanensis preferentially grazed young ramets. After a localized spray of 1 mM jasmonic-acid, the leaf area of young ramets consumed by herbivores was greatly reduced. We propose that defense signals may be transmitted through physical connections (stolon or rhizome) among interconnected ramets of clonal plants. Induced resistance to herbivory may selectively enhance the protection of more vulnerable and valuable plant tissues and confer a significant benefit to clonal plants by a modular risk-spreading strategy, equalizing ontogenetic differences of unevenly-aged ramets in chemical defense compounds and nutritional properties of tissue.

  7. Acid-responsive properties of fibrils from heat-induced whey protein concentrate.

    Xu, Hong-Hua; Wang, Jing; Dong, Shi-Rong; Cheng, Wen; Kong, Bao-Hua; Tan, Jun-Yan

    2016-08-01

    The heat-induced fibrils of whey protein concentrate (WPC) have demonstrated an acid-responsive property; that is, the fibrils went through formation-depolymerization-reformation as pH was adjusted to 1.8, 6.5, and back to 1.8. We investigated the microstructure, driving force, and thermal stability of 3.0% (wt) WPC nanofibrils adjusted between pH 6.5 and 1.8 twice. The results showed that the nanofibrils had acid-responsive properties and good thermal stability after reheating for 10h at 90°C and adjusting pH from 1.8 to 6.5 to 1.8. The content of WPC fibril aggregates was not much different with the prolongation of heating times during pH variation. Although the nanofibrils' structure could be destroyed only by changing the pH, the essence of this destruction might only form fiber fragments, polymers that would restore a fibrous structure upon returning to pH 1.8. A described model for the acid-responsive assembly of fibrils of WPC was proposed. The fibrils went through formation-depolymerization-reformation by weaker noncovalent interactions (surface hydrophobicity) as pH changed from 1.8 to 6.5 back to 1.8. However, the fibrils lost the acid-responsive properties because much more S-S (disulfide) formation occurred when the solution was adjusted to pH 6.5 and reheated. Meanwhile, fibrils still possessed acid-responsive properties when reheated at pH 1.8, and the content of fibrils slightly increased with a further reduction of α-helix structure. PMID:27265171

  8. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells. PMID:27288117

  9. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  10. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  11. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  12. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias

  13. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  14. Linoleic acid-induced expression of defense genes and enzymes in tobacco.

    Sumayo, Marilyn S; Kwon, Duck-Kee; Ghim, Sa-Youl

    2014-11-15

    Linoleic acid (LA) is a naturally occurring fatty acid (FA) found to elicit induced systemic resistance (ISR) of tobacco against the bacterial soft rot pathogen, Pectobacterium carotovorum subsp. carotovorum (PCC). In this study, we examined effects of six doses of exogenous LA on the induction of defense genes and enzymes. The optimum ISR activity was observed in plants treated with 0.1mM LA where the effect of LA on membrane permeability was minimal. The application of LA as a root drench enhanced the activity of defense enzymes such as phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO) and induced the expression of β-glucuronidase (GUS). PAL and POD activities were increased in a concentration dependent manner while the maximum PPO activity was observed after treatment with 0.01mM LA. An RT-PCR analysis of the defense-related genes, Coi1, NPR1, PR-1a and PR-1b, of tobacco plants treated with 0.1mM LA revealed an association of LA with elicitation of ISR in tobacco. PMID:25238656

  15. Gene expression profiles of murine fatty liver induced by the administration of valproic acid

    Valproic acid (VPA) has been used as anticonvulsants, however, it induces hepatotoxicity such as microvesicular steatosis and necrosis in the liver. To explore the mechanisms of VPA-induced steatosis, we profiled the gene expression patterns of the mouse liver that were altered by treatment with VPA using microarray analysis. VPA was orally administered as a single dose of 100 mg/kg (low-dose) or 1000 mg/kg (high-dose) to ICR mice and the animals were killed at 6, 24, or 72 h after treatment. Serum alanine aminotransferase and aspartate aminotransferase levels were not significantly altered in the experimental animals. However, symptoms of steatosis were observed at 72 h with low-dose and at 24 h and 72 h with high-dose. After microarray data analysis, 1910 genes were selected by two-way ANOVA (P 1.5-fold) revealed that 60 genes were involved in lipid metabolism that was interconnected with biological pathways for biosynthesis of triglyceride and cholesterol, catabolism of fatty acid, and lipid transport. This gene expression profile may be associated with the known steatogenic hepatotoxicity of VPA and it may provide useful information for prediction of hepatotoxicity of unknown chemicals or new drug candidates through pattern recognition

  16. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. PMID:27342371

  17. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas;

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...... use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.......Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise......-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the...

  18. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  19. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with [14C]SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a Mt of about 50,000 and high specificity towards UDP-glucose as the sugar donor (Km = 0.28 mM) and SA as the glucose acceptor (Km = 0.11 mM). 2-D PAGE of [35S]methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase

  20. Development of Sorghum Tolerant to Acid Soil Using Induced Mutation with Gamma Irradiation

    S. Human

    2010-04-01

    Full Text Available Water scarcity still becomes a problem in some dryland agricultural areas in Indonesia. Development of dryland farming system may be focused on crops that are required less water such as sorghum. Sorghum is a cereal crop that is usually grown under hot and dry condition and it is ideal for Indonesia. Sorghum is a good source of food, animal feed and raw material for ethanol. Indonesia is currently looking for alternative renewable energy resources and sorghum is regarded as one of the promising source of bioethanol as bioenergy. Unfortunately, most agricultural land in western part of the country particularly in Sumatera and Kalimantan is dryland and dominated by acid soil. The main constraint of crop production in acid soil is deficiency and Al toxicity. Therefore, development of sorghum cultivation in dryland farming system requires a variety which is tolerant to such conditions. Sorghum breeding for acid soil tolerance had been conducted at PATIR-BATAN by using induced mutations with gamma irradiation. The breeding objective was to search for sorghum genotypes tolerant to acid soil condition and with regard to sorghum use for bioethanol production. A number of 66 breeding materials, including the mutants, had been screened for acid soil tolerance on land with soil pH of 4.2 and 39% Al saturation in Lampung Province. Ten sorghum genotypes had been identified as high yielding in the acid soil condition. The mutant lines GH-ZB-41-07, YT30-39-07, B-76 and B-92 had grain yield higher (>4.5 t/ha than the control plants (Durra, Mandau and Numbu. Sorghum mutants ZH30-29-07, ZH30-30-07 and ZH30-35-07 were promising for grain-base bioethanol production with ethanol yield exceeded 2,000 l/ha. Meanwhile, the sweet sorghum mutants ZH30-35-07, ZH30-30-07 and ZH30-29-07 had brix content of 11.59, 11.95 and 10.50%, respectively. These mutant lines are promising to be developed further in sorghum breeding since they are highly tolerant to acid soils.

  1. Development Of Sorghum Tolerant To Acid Soil Using Induced Mutation With Gamma Irradiation

    Water scarcity still becomes a problem in some dry land agricultural areas in indonesia. Development of dry land farming system may be focused on crops that are required less water such sorghum. Sorghum is a cereal crop that is usually grown under hot and dry condition and it is ideal for Indonesia. Sorghum is good source of food, animal feed and raw material for ethanol. Indonesia is currently looking for alternative renewable energy resources and sorghum is regarded as one of the promising source of bio ethanol as bio energy. Unfortunately, most agricultural land in western part of the country particularly in Sumatera and Kalimantan is dry land and dominated by acid soil. The main constrain of crop production in acid soil is a deficiency and Al toxic. Therefore, development of sorghum cultivation in dry land farming system requires a variety which is tolerant to such conditions. Sorghum breeding for acid soil tolerance had been conducted at PATIR-BATAN by using induced mutations with gamma irradiation. The breeding objective was search for sorghum genotype tolerant to acid soil condition and regard to sorghum use for bio ethanol production. A number of 66 breeding materials, including the mutants, had been screened for acid soil tolerance on land with soil pH of 4.2 and 39 % Al saturation in Lampung Province. Ten sorghum genotypes had been identified as high yielding in the acid soil condition. the mutant lines GHZB41-07, YT30-39-07, B-76 and B-29 had grain yield higher(>4.5 t/ha) than the control plants (Durra, Mandau and Numbu). Sorghum mutants ZH30-29-07, ZH30-30-07 and ZH30-35-07 were promising for grain base bio etahnol production with ethanol yield exceeded 2,000 l/ha. Meanwhile, the sweet sorghum mutants ZH30-35-07, ZH30-29-07 had brix content of 11.59, 11.95 and 10.50%, respectively. These mutant lines are promising to be developed further in sorghum breeding since they are highly tolerant to acid soils. (author)

  2. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells

    Tomizawa,Kazuhito

    2007-06-01

    Full Text Available Neuronal apoptosis is involved in neurodegenerative diseases such as Alzheimer's disease and Parkinson.s disease. An efficient means of preventing it remains to be found. Some n-3 polyunsaturated fatty acids (PUFAs such as docosahexaenoic acid (DHA, 22 : 6n-3 and eicosapentaenoic acid (EPA, 20 : 5n-3 have been reported to be protective against the neuronal apoptosis and neuronal degeneration seen after spinal cord injury (SCI [1]. However, it is unclear which kinds of PUFAs have the most potent ability to inhibit neuronal apoptosis and whether the simultaneous treatment of PUFAs inhibits the apoptosis. In the present study, we compared the abilities of various n-3- and n-6- PUFAs to inhibit the apoptosis induced after the administration of different apoptotic inducers, etoposide, okadaic acid, and AraC, in mouse neuroblastoma cells (Neuro2a. Preincubation with DHA (22 : 6n-3, eicosapentaenoic acid (EPA, 20 : 5n-3, alpha-linolenic acid (alpha-LNA, 18 : 3n-3, linoleic acid (LA, 18 : 2n-6, arachidonic acid (AA, 20 : 4n-3, and gamma-linolenic acid (gamma-LNA, 18 : 3n-6 significantly inhibited caspase-3 activity and LDH leakage but simultaneous treatment with the PUFAs had no effect on the apoptosis of Neuro2a cells. There were no significant differences of the anti-apoptotic eff ect among the PUFAs. These results suggest that PUFAs may not be effective for inhibiting neuronal cell death after acute and chronic neurodegenerative disorders. However, dietary supplementation with PUFAs may be beneficial as a potential means to delay the onset of the diseases and/or their rate of progression.

  3. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine. PMID:22147284

  4. Myocardial fatty acid utilisation during exercise induced ischemia in patients with coronary artery disease

    Aim: Reversible or irreversible myocardial damage due to ischemia correlates with altered membrane functions of the cells. To compare myocardial free fatty acid (FFA) metabolism and flow during exercise induced ischemia we studied ten patients with coronary artery disease but without previous myocardial infarction. Methods: A series of post-exercise single-photon emission computed tomography (SPECT) measurements was performed after injection of 123I labelled heptadecanoic acid (HDA). Myocardial perfusion was estimated from the separately performed exercise-redistribution thallium study. Fatty acid metabolic rate, thallium uptake and washout were calculated for anterior, lateral, posterior and septal segments. Results: The more reduced post-exercise FFA metabolic rate (-63±18%, mean ±1 SD) compared to flow (-36±16%) was related to the severity of myocardial ischemia and wall motion abnormalities. Conclusion: In this small group of patients, the reduced post-exercise FFA metabolic rate tentatively suggests a parsimonious workload of the exercising myocardium by reducing oxygen consumption in patients with coronary artery disease. (orig.)

  5. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.

    Fickert, Peter; Fuchsbichler, Andrea; Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Krause, Robert; Zatloukal, Kurt; Jaeschke, Hartmut; Denk, Helmut; Trauner, Michael

    2006-02-01

    We determined the mechanisms of hepatobiliary injury in the lithocholic acid (LCA)-fed mouse, an increasingly used model of cholestatic liver injury. Swiss albino mice received control diet or 1% (w/w) LCA diet (for 1, 2, and 4 days), followed by assessment of liver morphology and ultrastructure, tight junctions, markers of fibrosis and key proteins of hepatobiliary function, and bile flow and composition. As expected LCA feeding led to bile infarcts, which were followed by a destructive cholangitis with activation and proliferation of periductal myofibroblasts. At the ultrastructural level, small bile ducts were frequently obstructed by crystals. Biliary-excreted fluorescence-labeled ursodeoxycholic acid accumulated in bile infarcts, whereas most infarcts did not stain with India ink injected into the common bile duct; both findings are indicative of partial biliary obstruction. Expression of the main basolateral bile acid uptake proteins (sodium-taurocholate cotransporter and organic anion-transporting polypeptide 1) was reduced, the canalicular transporters bile salt export pump and multidrug-related protein 2 were preserved, and the basolateral transporter multidrug-related protein 3 and the detoxifying enzyme sulfotransferase 2a1 were induced. Thus, we demonstrate that LCA feeding in mice leads to segmental bile duct obstruction, destructive cholangitis, periductal fibrosis, and an adaptive transporter and metabolic enzyme response. PMID:16436656

  6. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells

    Ali Koskela

    2016-05-01

    Full Text Available Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE cells and age-related macular degeneration (AMD. Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62 and LC3 (microtubule-associated protein 1A/1B-light chain 3 were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage.

  7. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells.

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  8. Mechanisms of all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells

    Ji-Wang Zhang; Jian Gu; Zhen-Yi Wang; Sai-Juan Chen; Zhu Chen

    2000-09-01

    Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor (RAR) (including: PML-RAR, PLZF-RAR, NPM-RAR, NuMA-RAR or STAT5b-RAR) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.

  9. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  10. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    El-Gezeery Amina R

    2011-08-01

    Full Text Available Abstract Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA, serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA, serotonin (5HT and dopamine (DA as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6, tumor necrosis factor-α (TNF-α as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylcholine (PC. Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as

  11. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  12. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis.

    Balaji, C; Muthukumaran, J; Nalini, N

    2014-12-01

    Sinapic acid (SA) is a naturally occurring phenolic acid found in various herbal plants which is attributed with numerous pharmacological properties. This study was aimed to investigate the chemopreventive effect of SA on 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. Rats were treated with DMH injections (20 mg kg(-1) bodyweight (b.w.) subcutaneously once a week for the first 4 consecutive weeks and SA (20, 40 and 80 mg kg(-1) b.w.) post orally for 16 weeks. At the end of the 16-week experimental period, all the rats were killed, and the tissues were evaluated biochemically. Our results reveal that DMH alone treatment decreased the levels/activities of lipid peroxidation by-products such as thiobarbituric acid reactive substances, conjugated dienes and antioxidants such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione in the intestine and colonic tissues which were reversed on supplementation with SA. Moreover, the activities of drug-metabolizing enzymes of phase I (cytochrome P450 and P4502E1) were enhanced and those of phase II (glutathione-S-transferase, DT-diaphorase and uridine diphosphate glucuronosyl transferase) were diminished in the liver and colonic mucosa of DMH alone-treated rats and were reversed on supplementation with SA. All the above changes were supported by the histopathological observations of the rat liver and colon. These findings suggest that SA at the dose of 40 mg kg(-1) b.w. was the most effective dose against DMH-induced colon carcinogenesis, and thus, SA could be used as a potential chemopreventive agent. PMID:24532707

  13. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb3+). Single-stranded oligonucleotides greatly enhance the Tb3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb3+/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb3+, producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb3+/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb3+/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  14. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden); Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bengtsson, Torbjoern [Department of Biomedicine, School of Health and Medical Sciences, Oerebro University, SE-70182 Oerebro (Sweden); Grenegard, Magnus; Lindstroem, Eva G. [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  15. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  16. Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms

    Minhee Jang

    2013-01-01

    Full Text Available Korean red ginseng (KRG possesses neuroprotective activity. However, the potential neuroprotective value of KRG for the striatal toxicity is largely unknown. We investigated whether KRG extract (KRGE could have a neuroprotective effect in a 3-nitropropionic acid- (3-NP induced (i.p. Huntington’s disease (HD model. KRGE (50, 100, and 250 mg/kg/day, p.o. was administrated 10 days before 3-NP injection (pre-administration, from the same time with 3-NP injection (co-administration, or from the peak point of neurological impairment by 3-NP injection (post-administration. Pre-administration of KRGE produced the greatest neuroprotective effect in this model. Pre-administration of KRGE significantly decreased 3-NP-induced neurological impairment, lethality, lesion area, and neuronal loss in the 3-NP-injected striatum. KRGE attenuated microglial activation and phosphorylation of mitogen-activated protein kinases (MAPKs and nuclear factor-kappa B (NF-κB signal pathway. KRGE also reduced the level of mRNA expression of tumor necrosis factor-alpha, interleukin- (IL- 1β, IL-6, inducible nitric oxide synthase, and OX-42. Interestingly, the intrathecal administration of SB203580 (a p38 inhibitor or PD98059 (an inhibitor of MAPK Kinase, MEK increased the survival rate in the 3-NP-induced HD model. Pre-administration of KRGE may effectively inhibit 3-NP-induced striatal toxicity via the inhibition of the phosphorylation of MAPKs and NF-κB pathways, indicating its therapeutic potential for suppressing Huntington’s-like symptoms.

  17. Fenretinide-induced apoptosis of Huh-7 hepatocellular carcinoma is retinoic acid receptor β dependent

    Wan Yu-Jui

    2007-12-01

    Full Text Available Abstract Background Retinoids are used to treat several types of cancer; however, their effects on liver cancer have not been fully characterized. To investigate the therapeutic potential of retinoids on hepatocellular carcinoma (HCC, the present study evaluates the apoptotic effect of a panel of natural and synthetic retinoids in three human HCC cell lines as well as explores the underlying mechanisms. Methods Apoptosis was determined by caspase-3 cleavage using western blot, DNA double-strand breaks using TUNEL assay, and phosphatidylserine translocation using flow cytometry analysis. Gene expression of nuclear receptors was assessed by real-time PCR. Transactivation assay and chromatin immunoprecipitation (ChIP were conducted to evaluate the activation of RXRα/RARβ pathway by fenretinide. Knockdown of RARβ mRNA expression was achieved by siRNA transfection. Results Our data revealed that fenretinide effectively induces apoptosis in Huh-7 and Hep3B cells. Gene expression analysis of nuclear receptors revealed that the basal and inducibility of retinoic acid receptor β (RARβ expression positively correlate with the susceptibility of HCC cells to fenretinide treatment. Furthermore, fenretinide transactivates the RXRα/RARβ-mediated pathway and directly increases the transcriptional activity of RARβ. Knockdown of RARβ mRNA expression significantly impairs fenretinide-induced apoptosis in Huh-7 cells. Conclusion Our findings reveal that endogenous expression of retinoids receptor RARβ gene determines the susceptibility of HCC cells to fenretinide-induced apoptosis. Our results also demonstrate fenretinide directly activates RARβ and induces apoptosis in Huh-7 cells in a RARβ-dependent manner. These findings suggest a novel role of RARβ as a tumor suppressor by mediating the signals of certain chemotherapeutic agents.

  18. Retinoic acid receptor gamma-induced misregulation of chondrogenesis in the murine limb bud in vitro.

    Galdones, Eugene; Hales, Barbara F

    2008-11-01

    Vitamin A derivatives modulate gene expression through retinoic acid and rexinoid receptor (RAR/RXR) heterodimers and are indispensable for limb development. Of particular interest, RARgamma is highly expressed in cartilage, a target affected following retinoid-induced limb insult. The goal of this study was to examine how selective activation of RARgamma affects limb development. Forelimbs from E12.5 CD-1 mice were cultured for 6 days in the presence of all-trans RA (pan-RAR agonist; 0.1 or 1.0 microM) or BMS-189961 (BMS961, RARgamma-selective agonist; 0.01 or 0.1 microM) and limb morphology assessed. Untreated limbs developed normal cartilage elements whereas pan-RAR or RARgamma agonist-treated limbs exhibited reductive effects on chondrogenesis. Retinoid activity was assessed using RAREbeta2 (retinoic acid response element beta2)-lacZ reporter limbs; after 3 h of treatment, both drugs increased retinoid activity proximally. To elucidate the expression profiles of a subset of genes important for development, limbs were cultured for 3 h and cRNA hybridized to osteogenesis-focused microarrays. Two genes, matrix GLA protein (Mgp; chondrogenesis inhibitor) and growth differentiation factor-10 (Gdf10/Bmp3b) were induced by RA and BMS-189961. Real-time PCR was done to validate our results and whole mount in situ hybridizations against Mgp and Gdf10 localized their upregulation to areas of cartilage and programmed cell death, respectively. Thus, our results illustrate the importance of RARgamma in mediating the retinoid-induced upregulation of Mgp and Gdf10; determining their roles in chondrogenesis and cell death will help further unravel mechanisms underlying retinoid teratogenicity. PMID:18703560

  19. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats

    Zhang Yida

    2015-12-01

    Full Text Available Background and objective: N-Acetylneuraminic acid (Neu5Ac, a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD-induced hyperlipidemic rats were evaluated in this study. Methods: Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day, and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results: The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions: The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further.

  20. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  1. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity. PMID:25893744

  2. Can electrophoretic types of listeria monocytogenes induce different sensitivity to lactic acid bacteria bacteriocins?

    Dimitrijević Mirjana

    2005-01-01

    Full Text Available The aim of this study was to find if electrophoretic types (ETs of Listeria monocytogenes, typed by multilocus enzyme electrophoresis (MEE, can induce different sensitivity to lactic acid bacteria bacteriocins. Bacteriocins are extracellular peptides or protein molecules, produced by lactic acid bacteria, which not only have bactericidal or bacteriostatic effects, on usually closely related bacterial strains, but also they may have destructive effects on some not so closely related Gram positive bacteria, for example Listeria monocytogenes. Listeria monocytogenes is commonly found in the intestines of humans and animals, in milk, soil, leafy vegetables and in food processing environments. These bacteria have been isolated in a variety of foods, including raw and cooked poultry, meat, seafood, salads and sandwiches. Many techniques for typing of Listeria monocytogenes in foodstuffs, have been developed for the purpose of identification of the origin of infection for epidemiological and epizootological studies. Among the 98 examined isolates of Listeria monocytogenes (50 clinical/human and 48 from food of animal origin 32 electrophoretic types have been detected. Bacteriocins, which we have used in the study, originated from the following lacic acid bacteria: Lactobacillus sake 148, Lactococcus UW, Lactobacillus sake 706, Pediococcus 347 and Lactobacillus sake 265. In this study, on the basis of a dendogram, our results indicate that a reliable relationship between genetic distance of Listeria monocytogenes electrophoretic types and their sensitivity to lactic acid bacteria bacteriocins cannot been found. MEE may, however, be of future benefit in establishing links between isolates from human disease cases and thus be useful in establishing the epidemiology of not only sporadic cases, but of outbreaks of listeriosis, as well.

  3. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  4. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells

    Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA. PMID:26901778

  5. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid.

    Creppy, Edmond Ekué; Traoré, Adama; Baudrimont, Isabelle; Cascante, Marta; Carratú, Maria-Rosaria

    2002-12-27

    Okadaic acid (OA) is a phycotoxin produced by dinoflagellates. It accumulates in the digestive tracts of shellfish causing diarrhetic shellfish poisoning (DSP) in consumers. OA is a tumour promoter, and an inhibitor of both protein phosphatases and protein synthesis. OA induces DNA adducts, suggesting it may be carcinogenic. Since the Ames test without S(9) was negative, but a mutagenesis test was positive in mammalian cells, the question as to whether its molecular mechanism is genotoxic or epigenetic became unavoidable. Therefore, experiments were performed to search for epigenetic effects, since evidence for DNA-adduct formation using the gamma-(32)P-ATP post-labelling method was not obtained. We found that OA is a potent inducer of lipid peroxidation in human intestinal cells (Caco-2) at low concentrations (0.75-7.5 ng/ml versus IC50 of 15 ng/ml) with increased rates of 8-OH-dG and m(5)dC formation causing CG to AT transversion mutations and gene deregulation, respectively. The transcription and translation of connexin 43-specific mRNA were inhibited, and 3H-uridine incorporation in RNA was concomitantly increased. Consequently gap junction intracellular communication (GJIC) was inhibited, making possible cellular anarchic proliferation. Higher OA concentrations also disorganized the cellular cytoskeleton, since both actin and tubulin formations were impaired. Our results suggest that OA may induce tumours via an epigenetic mechanism. PMID:12505348

  6. Omega-3 Fatty Acid Intervention Suppresses Lipopolysaccharide-Induced Inflammation and Weight Loss in Mice

    Ying-Hua Liu

    2015-02-01

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3 polyunsaturated fatty acid (PUFA intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4 pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis.

  7. Lactobacillus sakei lipoteichoic acid inhibits MMP-1 induced by UVA in normal dermal fibroblasts of human.

    You, Ga-Eun; Jung, Bong-Jun; Kim, Hye-Rim; Kim, Han-Geun; Kim, Tae-Rahk; Chung, Dae-Kyun

    2013-10-28

    Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-α (TNF-α), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-α inducing MMP-1 in NHDFs. PMID:23851272

  8. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  9. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid

    Okadaic acid (OA) is a phycotoxin produced by dinoflagellates. It accumulates in the digestive tracts of shellfish causing diarrhetic shellfish poisoning (DSP) in consumers. OA is a tumour promoter, and an inhibitor of both protein phosphatases and protein synthesis. OA induces DNA adducts, suggesting it may be carcinogenic. Since the Ames test without S9 was negative, but a mutagenesis test was positive in mammalian cells, the question as to whether its molecular mechanism is genotoxic or epigenetic became unavoidable. Therefore, experiments were performed to search for epigenetic effects, since evidence for DNA-adduct formation using the γ-32P-ATP post-labelling method was not obtained. We found that OA is a potent inducer of lipid peroxidation in human intestinal cells (Caco-2) at low concentrations (0.75-7.5 ng/ml versus IC50 of 15 ng/ml) with increased rates of 8-OH-dG and m5dC formation causing CG to AT transversion mutations and gene deregulation, respectively. The transcription and translation of connexin 43-specific mRNA were inhibited, and 3H-uridine incorporation in RNA was concomitantly increased. Consequently gap junction intracellular communication (GJIC) was inhibited, making possible cellular anarchic proliferation. Higher OA concentrations also disorganized the cellular cytoskeleton, since both actin and tubulin formations were impaired. Our results suggest that OA may induce tumours via an epigenetic mechanism

  10. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    Jie-wei Wang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  11. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  12. Ellagic acid facilitates indomethacin-induced gastric ulcer healing via COX-2 up-regulation

    Ananya Chatterjee; Sirshendu Chatterjee; Smita Das; Arpita Saha; Subrata Chattopadhyay; Sandip K. Bandyopadhyay

    2012-01-01

    The mechanism of indomethacin-induced gastric ulcer healing by ellagic acid (EA) in experimental mice model is described in our study.Ulcer index (UI) and myeloperoxidase (MPO) activity of the stomach tissues showed maximum ulceration on the third day after indomethacin (18 mg/kg,single dose) administration.Preliminary observation of UI and MPO activity suggests that EA possesses ulcer-healing activity.Other anti-ulcer parameters such as the levels of prostaglandin E2,cyclooxygenase (COX) 1 and 2 enzymes,anti-inflammatory cytokines [interleukin (IL)-4 and -5J,pro-angiogenic factors,e.g.vascular endothelial growth factor,hepatocyte growth factor (HGF),and endothelial growth factor (EGF) were down-regulated by indomethacin.EA (7 mg/kg/day) treatment for 3 days shifted the indomethacin-induced pro-inflammatory biochemical parameters to the healing side.These activities were correlated with the ability of EA to alter the COX-2-dependent healing pathways.The ulcer-healing activity of EA was,however,compromised by pre-administration of the specific COX-2 inhibitor,celecoxib,and NS-398.Taken together,these results suggested that the EA treatment accelerates ulcer healing by inducing IL-4,EGF/HGF levds and enhances COX-2 expression.

  13. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  14. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  15. Amino acid deprivation induces CREBZF/Zhangfei expression via an AARE-like element in the promoter.

    Zhang, Yani; Jin, Yaping; Williams, Tegan A; Burtenshaw, Sally M; Martyn, Amanda C; Lu, Rui

    2010-01-15

    CREBZF (also called ZF or Zhangfei) is a basic region-leucine zipper transcription factor that has been implicated in the herpesvirus infection cycle and related cellular processes. Since ATF4 is known to play a key role in cellular responses to various ER stresses as well as amino acid deprivation, we sought to examine the potential involvement of CREBZF in the amino acid response (AAR). We found that the CREBZF protein was induced by amino acid deprivation in the canine MDCK cells. We subsequently cloned a canine CREBZF promoter region (-1767bp to +1bp) that responds to amino acid limitation. Using deletion mapping and site-directed mutagenesis, we identified a 9-bp sequence 5'-ATTCACTCA-3' in the promoter (-1227 to -1219), deletion of which resulted in a complete loss of inducibility by amino acid deprivation. This sequence is similar to the known amino acid response elements (AAREs) found in other AAR-inducible genes, such as CHOP (C/EBP homologous protein, also known as GADD153). These results suggest that CREBZF may be an amino acid stress sensor. Considering the AARE-like sequence found in CREBZF and other similarities between CREBZF and CHOP, we postulate that CREBZF and CHOP may be two sensors that regulate different yet related signaling pathways governing the AAR. PMID:20026304

  16. Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression

    Li, Jian; Lau, George Ka-Kit; Chen, Leilei; Dong, Sui-sui; Lan, Hui-Yao; Huang, Xiao-Ru; Li, Yan; Luk, John M.; Yuan, Yun-Fei; Guan, Xin-yuan

    2011-01-01

    Background  IL-17A is a pro-inflammatory cytokine that plays important role in inflammatory disease pathology and tumor microenvironment. The aim of this study is to investigate the effect of IL-17A on the progression of hepatocellular carcinoma (HCC). Methodology and Principal Finding Expression pattern of IL-17A in clinical HCC samples (n = 43) was determined by immunohistochemistry staining. Transcript levels of MMP2, MMP9 and IL-17A were measured in another 50 pairs (including tumor and related non-tumor tissues) HCC samples. Cell growth, focus formation, cell migration, invasion and western blot assays were used to characterize the functional and signaling mechanisms in IL-17A-treated HCC. Association study was used to identify clinical significance of IL-17A in HCC. Compared with paired non-tumor tissue, higher frequency of IL-17A-positive cells was detected in tumor tissues in HCCs with metastasis, and the frequency of IL-17A-positive cells was also significantly associated with poor prognosis of HCC (P = 0.01). Functional study found that IL-17A could promote HCC cell migration and invasion. Further molecular analysis also showed that IL-17A could upregulate MMP2 and MMP9 expression via NF-κB signaling activation. Conclusions  IL-17A could promote HCC metastasis by the upregulation of MMP2 and MMP9 expression via activating NF-κB signaling pathway. PMID:21760911

  17. MyD88 signaling in the CNS is required for development of fatty acid induced leptin resistance and diet-induced obesity

    Kleinridders, Andre; Schenten, Dominik; Mauer, Jan; Wunderlich, F. Thomas; Okamura, Tomoo; Koenner, A. Christine; Belgardt, Bengt F.; Bruening, Jens C.; Medzhitov, Ruslan

    2009-01-01

    Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR-4 signaling by fatty acids. Here we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat-3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterize...

  18. Protective Role of Alpha Lipoic Acid Against Disorders Induced by Gamma Radiation

    Ionizing radiation interacts with living cells, causing a variety of biochemical changes depending on exposed and absorbed doses, duration of exposure, interval after exposure and susceptibility of tissues to ionizing radiation. So, it may increase the oxidative stress and damage of body organs. Alpha-lipoic acid (ALA-also known as thioctic acid) appears to be readily absorbed from an oral dose and converts easily to its reduced form, dihydro lipoic acid (DHLA), in many tissues of the body. ALA can neutralize free radicals in both fatty and watery regions of cells. The present study has been designed to evaluate the possible efficiency of ALA as antioxidant and radio-protector against radiation induced oxidative stress in different organs (liver, kidney and heart) in rats through estimation of the activity of markers of serum liver, kidney and heart function, in addition to the histopathological differentiation of these organs by light and electron microscope. Five equal groups were conducted for the study: control, ALA (30 mg/kg body wt), irradiated (each rat was exposed to 6 Gy as a fractionated dose of gamma (γ) radiation), irradiated plus ALA (each rat received ALA for 9 days simultaneously during exposure) and ALA plus irradiation plus ALA groups (each rat received ALA for a week pre-exposure plus 9 days during exposure). Radiation doses were fractionated dose levels of 2 Gy each 3 days to reach accumulative dose of 6 Gy. After 3 days of each exposure rats were sacrificed, except, those left for recovery test one month after last exposure. The results revealed that whole body γ-irradiation of rats induces oxidative stress in liver, kidney and heart obviously manifested by significant elevation in alanine and aspartate transaminase ( ALT and AST), alkaline phosphatase (ALP), urea, creatinine and creatine kinase (CK-MB). ALA treated-irradiated rats showed lower significantly values indicating remarkable improvement in all measured parameters and

  19. Effect of high dose steroids on oleic acid-induced lung injury in rabbits: CT findings

    Lee, Hwa Yeon; Yoo, Seung Min [Chung-Ang University Hospital, Seoul (Korea, Republic of)

    2006-02-15

    The purpose of this study is to evaluate the therapeutic efficacy, on the basis of CT findings, of high dose methyl prednisolone for treating acute lung injury that was induced by oleic acid injection. A total of 30 healthy rabbits (1.8-2.2 kg) were included in this study. Group I included 10 rabbits in which 0.2 mL oleic acid was injected through their ear veins. Group IIa included 10 rabbits in which 30 mg/kg methyl prednisolone and 0.2 mL oleic acid were intravenously injected at the same time. Group IIb included 5 rabbits in which 30 mg/kg methyl prednisolone was injected 6 hours prior to the 0.2 mL oleic acid intravenous injection. The other 5 rabbits (Group III) were injected intravenously with 30 mg/kg methyl prednisolone without the oleic acid. After that, 30 mg/kg methyl prednisolone per every 12 hours was injected in the non-sacrificed rabbits of Group II and Group III. Nonenhanced Chest CT scans were performed prior to the 30 minutes, 4 hours, 24 hours, 48 hours, and 72 hours after the intravenous injection of oleic acid or methyl prednisolone. We randomly sacrificed one rabbit of groups I, II and III 30 minutes, 4 hours, 24 hours, 48 hours and 72 hours after CT scanning. The distribution, extent, and pattern of the lesions on the CT scan were analyzed. The analyzed pattern of the lesions was ground glass attenuation, consolidation and interstitial thickening. Pathologic correlation was then done. The main CT findings of Group I were peripheral, wedge shaped, ill-defined ground glass attenuations and /or consolidations. The pathologic findings of Group I were interstitial or intraalveolar edema, intraalveolar hemorrhage and coagulation necrosis. Diffuse ground glass opacities with interstitial thickening were noted in 20% (n=2/10) of Group I and in 60% (n=9/15) of Group II at the 30 minute CT; however, there was no statistical difference between the two groups ({rho} = 0.09). Consolidations with air bronchogram were noted in 22.2% (2/9) of Group I and in

  20. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  1. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity. PMID:20359477

  2. Acidic environment leads to ROS-induced MAPK signaling in cancer cells.

    Anne Riemann

    Full Text Available Tumor micromilieu often shows pronounced acidosis forcing cells to adapt their phenotype towards enhanced tumorigenesis induced by altered cellular signalling and transcriptional regulation. In the presents study mechanisms and potential consequences of the crosstalk between extra- and intracellular pH (pH(e, pH(i and mitogen-activated-protein-kinases (ERK1/2, p38 was analyzed. Data were obtained mainly in AT1 R-3327 prostate carcinoma cells, but the principle importance was confirmed in 5 other cell types. Extracellular acidosis leads to a rapid and sustained decrease of pH(i in parallel to p38 phosphorylation in all cell types and to ERK1/2 phosphorylation in 3 of 6 cell types. Furthermore, p38 phosphorylation was elicited by sole intracellular lactacidosis at normal pH(e. Inhibition of ERK1/2 phosphorylation during acidosis led to necrotic cell death. No evidence for the involvement of the kinases c-SRC, PKC, PKA, PI3K or EGFR nor changes in cell volume in acidosis-induced MAPK activation was obtained. However, our data reveal that acidosis enhances the formation of reactive oxygen species (ROS, probably originating from mitochondria, which subsequently trigger MAPK phosphorylation. Scavenging of ROS prevented acidosis-induced MAPK phosphorylation whereas addition of H(2O(2 enhanced it. Finally, acidosis increased phosphorylation of the transcription factor CREB via p38, leading to increased transcriptional activity of a CRE-reporter even 24 h after switching the cells back to a normal environmental milieu. Thus, an acidic tumor microenvironment can induce a longer lasting p38-CREB-medited change in the transcriptional program, which may maintain the altered phenotype even when the cells leave the tumor environment.

  3. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells.

    Grad, J M; Bahlis, N J; Reis, I; Oshiro, M M; Dalton, W S; Boise, L H

    2001-08-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by slow-growing plasma cells in the bone marrow (BM). Patients with MM typically respond to initial chemotherapies; however, essentially all progress to a chemoresistant state. Factors that contribute to the chemorefractory phenotype include modulation of free radical scavenging, increased expression of drug efflux pumps, and changes in gene expression that allow escape from apoptotic signaling. Recent data indicate that arsenic trioxide (As(2)O(3)) induces remission of refractory acute promyelocytic leukemia and apoptosis of cell lines overexpressing Bcl-2 family members; therefore, it was hypothesized that chemorefractory MM cells would be sensitive to As(2)O(3). As(2)O(3) induced apoptosis in 4 human MM cell lines: 8226/S, 8226/Dox40, U266, and U266/Bcl-x(L). The addition of interleukin-6 had no effect on cell death. Glutathione (GSH) has been implicated as an inhibitor of As(2)O(3)-induced cell death either through conjugating As(2)O(3) or by sequestering reactive oxygen induced by As(2)O(3). Consistent with this possibility, increasing GSH levels with N-acetylcysteine attenuated As(2)O(3) cytotoxicity. Decreases in GSH have been associated with ascorbic acid (AA) metabolism. Clinically relevant doses of AA decreased GSH levels and potentiated As(2)O(3)-mediated cell death of all 4 MM cell lines. Similar results were obtained in freshly isolated human MM cells. In contrast, normal BM cells displayed little sensitivity to As(2)O(3) alone or in combination with AA. Together, these data suggest that As(2)O(3) and AA may be effective antineoplastic agents in refractory MM and that AA might be a useful adjuvant in GSH-sensitive therapies. (Blood. 2001;98:805-813) PMID:11468182

  4. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  5. Ferulic acid protects against carbon tetrachloride-induced liver injury in mice

    Ferulic acid (FA), isolated from the root of Scrophularia buergeriana, is a phenolic compound possessing antioxidant, anticancer, and antiinflammatory activities. Here, we have investigated the hepatoprotective effect of FA against carbon tetrachloride (CCl4)-induced acute liver injury. Mice were treated intraperitoneally with vehicle or FA (20, 40, and 80 mg/kg) 1 h before and 2 h after CCl4 (20 μl/kg) injection. The serum activities of aminotransferases and the hepatic level of malondialdehyde were significantly higher after CCl4 treatment, while the concentration of reduced glutathione was lower. These changes were attenuated by FA. The serum level and mRNA expression of tumor necrosis factor-α significantly increased after CCl4 treatment, and FA attenuated these increases. The levels of inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expression after CCl4 treatment were significantly higher and FA reduced these increases. CCl4-treated mice showed increased nuclear translocation of nuclear factor-κB (NF-κB), and decreased levels of inhibitors of NF-κB in cytosol. Also, CCl4 significantly increased the level of phosphorylated JNK and p38 mitogen-activated protein (MAP) kinase, and nuclear translocation of activated c-Jun. FA significantly attenuated these changes. We also found that acute CCl4 challenge induced TLR4, TLR2, and TLR9 protein and mRNA expression, and FA significantly inhibited TLR4 expression. These results suggest that FA protects from CCl4-induced acute liver injury through reduction of oxidative damage and inflammatory signaling pathways.

  6. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    Yu, Yun; Shen, Shao-Ming; Zhang, Fei-Fei; Wu, Zhao-Xia; Han, Bin [Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wang, Li-Shun, E-mail: jywangls@shsmu.edu.cn [Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. Black-Right-Pointing-Pointer ANP32B inhibited ATRA activated transcriptional activity of RAR{alpha}. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RAR{alpha}). These data will shed new insights into understanding the biological functions of ANP32B protein.

  7. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) contributes to retinoic acid-induced differentiation of leukemic cells

    Highlights: ► ANP32B was down-regulated during ATRA-induced leukemic cell differentiation. ► Knockdown of ANP32B enhanced ATRA-induced leukemic cell differentiation. ► Ectopic expression of ANP32B inhibited ATRA-induced leukemic cell differentiation. ► ANP32B inhibited ATRA activated transcriptional activity of RARα. -- Abstract: The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is a member of a conserved superfamily of nuclear proteins whose functions are largely unknown. In our previous work, ANP32B was identified as a novel direct substrate for caspase-3 and acted as a negative regulator for leukemic cell apoptosis. In this work, we provided the first demonstration that ANP32B expression was down-regulated during differentiation induction of leukemic cells by all-trans retinoic acid (ATRA). Knockdown of ANP32B expression by specific shRNA enhanced ATRA-induced leukemic cell differentiation, while ectopic expression of ANP32B attenuated it, indicating an inhibitory role of ANP32B against leukemic cell differentiation. Furthermore, luciferase reporter assay revealed that ANP32B might exert this role through inhibiting the ATRA dependent transcriptional activity of retinoic acid receptor (RARα). These data will shed new insights into understanding the biological functions of ANP32B protein.

  8. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices.

    Justino, Licínia L G; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated. PMID:27394105

  9. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions. - Highlights: • Acrylonitrile and acrylic acid were co-grafted onto a PE nonwoven fabric. • Pre-irradiation induced emulsion graft polymerization technique is applied. • The existence of AAc resulted in the increased hydrophilicity of the grafted fabric

  10. Effect of pioglitazone, quercetin and hydroxy citric acid on extracellular matrix components in experimentally induced non-alcoholic steatohepatitis

    Surapaneni Krishna Mohan

    2015-08-01

    Results:The experimental NASH rats treated with pioglitazone showed significant decrease in the levels of hyaluronic acid and significant increase in adiponectin levels when compared to experimentally induced NASH group, but did not show any effect on the levels of leptin. Contrary to these two drugs, viz. pioglitazone and hydroxy citric acid, the group treated with quercetin showedsignificant decrease in the levels of hyaluronic acid and leptin and significant decrease in adiponectin levels compared with that of experimentally induced NASH NASH group, offering maximum protection against NASH. Conclusion: Considering our findings, it could be concluded that quercetin may offer maximum protection against NASH by significantly increasing the levels of adiponectin, when compared to pioglitazone and hydroxy citric acid.

  11. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling.

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  12. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    Kim, Hag Dong [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Jang, Chang-Young [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Choe, Jeong Min [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Sohn, Jeongwon, E-mail: biojs@korea.ac.kr [Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Kim, Joon, E-mail: joonkim@korea.ac.kr [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  13. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Ting Li

    2016-01-01

    Full Text Available Green leaf volatiles (GLV prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA. In maize this response is specifically linked to insect elicitor (IE-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA, caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  14. Hydrogen Peroxide and Nitric Oxide are Involved in Salicylic Acid-Induced Salvianolic Acid B Production in Salvia miltiorrhiza Cell Cultures

    Hongbo Guo; Xiaolin Dang; Juane Dong

    2014-01-01

    Hydrogen peroxide (H2O2) and nitric oxide (NO) are key signaling molecules in cells whose levels are increased in response to various stimuli and are involved in plant secondary metabolite synthesis. In this paper, the roles of H2O2 and NO on salvianolic acid B (Sal B) production in salicylic acid (SA)-induced Salvia miltiorrhiza cell cultures were investigated. The results showed that H2O2 could be significantly elicited by SA, even though IMD (an inhibitor of NADPH oxidase) or DMTU (a quenc...

  15. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity.

    Gerin, Fethullah; Erman, Hayriye; Erboga, Mustafa; Sener, Umit; Yilmaz, Ahsen; Seyhan, Hatice; Gurel, Ahmet

    2016-08-01

    This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters. PMID:27235018

  16. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  17. Agents that increase phosphatidic acid inhibit the LH-induced testosterone production

    Lauritzen, L.; Nielsen, L.-L.A.; Vinggaard, Anne Marie;

    1994-01-01

    for cytochrome P-450 side chain cleavage enzyme. Thus, the inhibition appears to be exerted at a point distal to cAMP-generation but before the first enzyme in the testosterone synthetic pathway. Treatment with other agents (4ß-phorbol 12-myristate 13-acetate (PMA), A23187, and sphingosine) giving rise......The results of the present study point to phosphatidic acid (PtdOH) as a possible intracellular messenger, which might be involved in local modulation of testicular testosterone production in vivo. Propranolol (27-266 µM) induced an increased level of [H]PtdOH in isolated rat Leydig cells......, prelabeled with [H]myristate, and at the same time a strong dose-dependent inhibition of the acute testosterone production stimulated by luteinizing hormone (LH). The inhibition was not bypassed by the addition of dibutyryl-cAMP but was overcome, when 22(R)-hydroxycholesterol was added as a direct substrate...

  18. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system.

    Kaplan, Kursat Ali; Odabasoglu, Fehmi; Halici, Zekai; Halici, Mesut; Cadirci, Elif; Atalay, Fadime; Aydin, Ozlem; Cakir, Ahmet

    2012-11-01

    Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems. PMID:23057764

  19. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Hiromu Suzuki

    2014-07-01

    Full Text Available The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1 infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8.

  20. Rosmarinic acid in Argusia argentea inhibits snake venom-induced hemorrhage.

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2010-10-01

    A methanolic extract of Argusia (or Messerschmidia or Tournefortia) argentea (Boraginaceae) significantly inhibited hemorrhage induced by crude venom of Trimeresurus flavoviridis. The extract was then separated according to antivenom activity by using silica gel column chromatography and HPLC equipped with an octadecylsilanized silica gel (ODS) column to afford rosmarinic acid (RA) (1) as an active principle. RA (1) significantly inhibited the hemorrhagic effect of crude venoms of T. flavoviridis, Crotalus atrox, Gloydius blomhoffii, Bitis arietans as well as snake venom metalloproteinases, HT-b (C. atrox), bilitoxin 2 (Agkistrodon bilineatus), HF (B. arietans), and Ac1-proteinase (Deinagkistrodon acutus). This is the first report of the antihemorrhage activity of RA (1), and RA (1) greatly contributes to the antihemorrhagic efficiency of A. argentea against crude snake venoms and hemorrhagic toxins. PMID:20512530

  1. Rhabdovirus-induced microribonucleic acids in rainbow trout (Oncorhynchus mykiss Walbaum)

    Bela-Ong, Dennis

    This thesis deals with microribonucleic acid (microRNA; miRNA) expression during rhabdovirus infection and upon immunization with a DNA vaccine expressing the rhabdovirus glycoprotein in teleost fish. MicroRNAs are conserved, small, endogenous, non-coding regulatory RNAs that modulate gene...... with the fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV) and in fish immunized with a DNA vaccine encoding the glycoprotein of VHSV. It was shown that the two miRNAs, known so far only in teleost fishes, are orthologues of an ancient vertebrate miRNA cluster, which in humans are involved in...... the regulation of the cell cycle and have been associated with various types of cancers. Interferon (IFN)-related regulatory sequences were found in the promoter of the teleost fish miRNA cluster and its expression was induced by IFNs and IFN-related mechanisms. It was further demonstrated that these...

  2. Relationship between Mast Cells and the Colitis with Relapse Induced by Trinitrobenzesulphonic Acid in Wistar Rats

    Luchini, Ana Carolina; Costa de Oliveira, Déborah Mara; Pellizzon, Cláudia Helena; Di Stasi, Luiz Claudio; Gomes, José Carlos

    2009-01-01

    The present study aimed to clarify the role of mast cells in colitis with relapse induced in Wistar rats by trinitrobenzenosulphonic acid. Colitis induction increased the histamine concentration in the colon, which peaked on day 26. The number of mast cells, probably immature, was ten times higher on day 8. Different from animals infected with intestinal parasites, after colitis remission, mast cells do not migrate to the spleen, showing that mast cell proliferation presents different characteristics depending on the inflammation stimuli. Treatment with sulfasalazine, doxantrazole, quercetin, or nedocromil did not increase the histamine concentration or the mast cell number in the colon on day 26, thereby showing absence of degranulation of these cells. In conclusion, although mast cell proliferation is associated with colitis, these cells and their mediators appear to play no clear role in the colitis with relapses. PMID:19436763

  3. γ-radiation induced polymerization of unsaturated liposomes containing unsaturated lipid, cholesterol, and saturated aliphatic acid

    γ-Radiation induced polymerization of mixed-lipid liposomes consist of 1,2-bis[(2E, 4E)-2,4-octadecadienoyl]-sn - glycero-3-phosphocholine(DODPC), diparmitoyl phosphatidyl choline(DPPC), cholesterol(CHol), and stearic acid(SA) was studied from the point of view the kinetics and mean molecular area on the water surface. All the polymerization was carried out at temperature of 4degC. The polymer yield and molecular weight of soluble polymer increased when compared with those of poly-DODPC liposomes. The overall rate of polymerization increased linearly with decreasing the molar fraction of DODPC in the membrane. The mean molecular area on the water surface of mixtures DODPC with DPPC, CHol, and SA gave the ideal line indicating immiscibility. (author)

  4. Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization: current clinical status

    Marcus, Stuart L.; Golub, Allyn L.; Shulman, D. Geoffrey

    1995-03-01

    Photodynamic therapy using 5-aminolevulinic acid-induced photosensitization (ALA PDT) via endogenous protoporphyrin IX (PpIX) synthesis has been reported as efficacious, using topical formulations, in the treatment of a variety of dermatologic diseases including superficial basal cell carcinoma, Bowen's disease, and actinic (solar) keratoses. Application of ALA PDT to the detection and treatment of both malignant and non-malignant diseases of internal organs has recently been reported. Local internal application of ALA has been used for the detection, via PpIX fluorescence, of pathological conditions of the human urinary bladder and for selective endometrial ablation in animal model systems. Systemic, oral administration of ALA has been used for ALA PDT of superficial head and neck cancer and of colorectal cancer. This paper reviews the current clinical status of ALA PDT.

  5. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  6. Relationship between Mast Cells and the Colitis with Relapse Induced by Trinitrobenzesulphonic Acid in Wistar Rats

    Ana Carolina Luchini

    2009-01-01

    Full Text Available The present study aimed to clarify the role of mast cells in colitis with relapse induced in Wistar rats by trinitrobenzenosulphonic acid. Colitis induction increased the histamine concentration in the colon, which peaked on day 26. The number of mast cells, probably immature, was ten times higher on day 8. Different from animals infected with intestinal parasites, after colitis remission, mast cells do not migrate to the spleen, showing that mast cell proliferation presents different characteristics depending on the inflammation stimuli. Treatment with sulfasalazine, doxantrazole, quercetin, or nedocromil did not increase the histamine concentration or the mast cell number in the colon on day 26, thereby showing absence of degranulation of these cells. In conclusion, although mast cell proliferation is associated with colitis, these cells and their mediators appear to play no clear role in the colitis with relapses.

  7. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  8. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-01

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  9. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  10. Superabsorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch. Chapter 18

    Superabsorbent was synthesized by radiation induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage, and germination energy were also determined in order to evaluate the possibility of superabsorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by the Fourier transform infrared spectroscopy (FTIR). Results indicated that the sand mixed with 0.1% wt superabsorbent could absorb more water than the sand without superabsorbent. The germination energy of corn seeds mixed with 0.5% superabsorbent was obviously higher than those without superabsorbent. These experimental results showed that the superabsorbent has considerable effects on seed germination and the growth of young plants. (author)

  11. Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats.

    Kharroubi, Wafa; Dhibi, Madiha; Mekni, Manel; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-10-01

    Six groups of rats (n = 10 per group) were exposed to 1 and 10 mg/l of sodium arsenate for 45 and 90 days. Kidneys from treated groups exposed to arsenic showed higher levels of trans isomers of oleic and linoleic acids as trans C181n-9, trans C18:1n-11, and trans C18:2n-6 isomers. However, a significant decrease in eicosenoic (C20:1n-9) and arachidonic (C20:4n-6) acids were observed in treated rats. Moreover, the "Δ5 desaturase index" and the saturated/polyunsaturated fatty acids ratio were increased. There was a significant increase in the level of malondialdehyde at 10 mg/l of treatment and in the amount of conjugated dienes after 90 days (p < 0.05). Significant kidney damage was observed at 10 mg/l by increase of plasma marker enzymes. Histological studies on the ultrastructure changes of kidney supported the toxic effect of arsenate exposure. Arsenate intoxication activates significantly the superoxide dismutase at 10 mg/l for 90 days, whereas the catalase activity was markedly inhibited in all treated groups (p < 0.05). In addition, glutathione peroxidase activity was significantly increased at 45 days and dramatically declined after 90 days at 10 mg/l (p < 0.05). A significant increase in the level of glutathione was marked for the groups treated for 45 and 90 days at 1 mg/l followed by a significant decrease for rats exposed to 10 mg/l for 90 days. An increase in the level of protein carbonyl was observed in all treated groups (p < 0.05). In conclusion, the present study provides evidence for a direct effect of arsenate on fatty acid (FA) metabolism which concerns the synthesis pathway of n-6 polyunsaturated fatty acids and leads to an increase in the trans FAs isomers. Therefore, FA-induced arsenate kidney damage could contribute to trigger kidney cancer. PMID:24920263

  12. Hepatic Oxidative Stress in Fructose-Induced Fatty Liver Is Not Caused by Sulfur Amino Acid Insufficiency

    Jones, Dean P.; Youngja Park; Ziegler, Thomas R; Orr, Michael L.; Young-Mi Go; Vos, Miriam B.; James R. Roede; Kunde, Sachin S.

    2011-01-01

    Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as...

  13. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells

    Jingshu Wang; Liqun Liu; Huijuan Qiu; Xiaohong Zhang; Wei Guo; Wangbing Chen; Yun Tian; Lingyi Fu; Dingbo Shi; Jianding Cheng; Wenlin Huang; Wuguo Deng

    2013-01-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viabi...

  14. Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way

    Echteld, C. J. A. Van; Kruijff, B. de; Verkleij, A. J.; Leunissen-Bijvelt, J.; de Gier, J.

    1982-01-01

    The hydrophobic peptide gramicidin is shown by 31P-NMR, freeze-fracture electron microscopy and small-angle X-ray diffraction, to induce a hexogonal HII-phase lipid organization when incorporated in liquid crystalline saturated and unsaturated synthetic and natural phosphatidylcholines if the length of the fatty acids exceeds a 16 carbon atoms chain. The amount of hexagonally organized lipid increases with increasing fatty acid chain length. With phosphatidylcholines possessing shorter fatty ...

  15. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations

    Dronov S.M.

    2014-01-01

    Dronov S.M. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations. ABSTRACT. Background. Diabetic polyneuropathy is one of the most common long-term complications of diabetes. Hyperglycemias caused by ischemia and peroxidation of lipids are the presumed cause of diabetic neuropathy. Appointment of alpha-lipoic acid can restore the function of peripheral nerves, preventing the development of autonomic a...

  16. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  17. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  18. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario, E-mail: mariodiaz@uniovi.es

    2014-02-01

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h{sup −1} and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum Y{sub X/S} of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m{sup 2}.

  19. β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition

    β beta-tricalcium phosphate (β-TCP) granules are suitable for repair of bone defects. They have an osteoconductive effect shortly after implantation. However, dry granules are difficult to handle in the surgical room because of low weight and lack of cohesion. Incorporation of granules in a hydrogel could be a satisfactory solution. We have investigated the use of hyaluronic acid (HyA) as an aqueous binder of the granules. β-TCP granules were prepared by the polyurethane foam technology. Commercially available linear (LHya) and reticulated hyaluronic acid (RHyA) in aqueous solution were used to prepare a pasty mixture that can be handled more easily than granules alone. Thirteen New Zealand White rabbits (3.5–3.75 kg) were used; a 4 mm hole was drilled in each femoral condyle. After flushing, holes were filled with either LHyA, RHyA, dry β-TCP granules alone, β-TCP granules + LHyA and β-TCP granules + RHyA. Rabbits were allowed to heal for one month, sacrificed and femurs were harvested and analysed by microCT and histomorphometry. The net amount of newly formed bone was derived from measurements done after thresholding the microCT images for the material and for the material+bone. LHyA and RHyA did not result in healing of the grafted area. LHyA was rapidly eluted from the grafted zone but allowed deposition of more granules, although the amount of formed bone was not significantly higher than with β-TCP granules alone. RHyA permitted the deposition of more granules which induced significantly more bone trabeculae without inducing an inflammatory reaction. RHyA appears to be a good vehicle to implant granules of β-TCP, since HyA does not interfere with bone remodeling. (paper)

  20. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions

    Highlights: • MBR under feed-induced stress conditions: starvation and changing feeding conditions. • High capacity of MBR to withstand high variations in feed loads. • Slow biofilm formation under starvation conditions during the first days. • Observed growth of P. putida for substrate to microorganism ratio higher than 0.6 g/g. • Maximum specific growth rate and growth yield values of around 37.5 h−1 and 0.5 g/g. - Abstract: Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100–1100 mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15 mg/g h were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5 g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16 g/m2