WorldWideScience

Sample records for acid induced dysfunction

  1. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  2. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Patel, Snehal S.; Goyal, Ramesh K.

    2011-01-01

    Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o....

  3. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction

    Ding, Ying; Shi, Xuhui; Shuai, Xuanyu; Xu, Yuemei; Liu, Yun; Liang, Xiubin; Wei, Dong; Su, Dongming

    2014-01-01

    Abstract Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to a...

  4. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    Kalaivani Batumalaie; Muhammad Arif Amin; Dharmani Devi Murugan; Munavvar Zubaid Abdul Sattar; Nor Azizan Abdullah

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein e...

  5. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Snehal S Patel

    2011-01-01

    Full Text Available Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.. Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o. for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUC glucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes.

  6. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  7. The effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells

    Papežíková, Ivana; Pekarová, Michaela; Lojek, Antonín; Kubala, Lukáš

    2009-01-01

    Roč. 30, č. 1 (2009), s. 112-115. ISSN 0172-780X R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * homocysteine * endothelial dysfunction Subject RIV: BO - Biophysics Impact factor: 1.047, year: 2009

  8. Effect of uric acid on homocysteine - induced endothelial dysfunction in bovine aortic endothelial cells

    Papežíková, Ivana; Kubala, Lukáš; Lojek, Antonín

    Brno, 2008. s. 1. [III. European Workshop on the Analysis of Phagocyte Functions. 22.05.2008-24.05.2008, Brno] R&D Projects: GA ČR GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * endothelial dysfunction * homocysteine Subject RIV: BO - Biophysics

  9. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells.

    Beatriz Sánchez-Calvo

    Full Text Available Nitro-arachidonic acid (NO2-AA is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II produces an increase in reactive oxygen species (ROS production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells. Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-, nitric oxide (●NO, inducible nitric oxide synthase (NOS2 expression, peroxynitrite (ONOO- and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH and ATP synthase (ATPase were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II-induced renal disease.

  10. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  11. Effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells

    Papežíková, Ivana; Kubala, Lukáš; Pekarová, Michaela; Lojek, Antonín

    Elsevier. Roč. 45, č. 1 (2008), s. 310. ISSN 0891-5849. [SFRBM's Annual Meeting /15./. 19.11.2008-23.11.2008, Indianapolis] R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * endothelial dysfunction * homocysteine Subject RIV: BO - Biophysics

  12. Role and mechanism of uncoupling protein 2 on the fatty acid-induced dysfunction of pancreatic alpha cells in vitro

    SU Jie-ying; LI Hong-liang; YANG Wen-ying; XIAO Jian-zhong; DU Rui-qin; SHEN Xiao-xia; CAI Zhe; ZHANG Lan; SHU Jun

    2010-01-01

    Background Uncoupling protein (UCP) 2 is related to the dysfunction of beta cells induced by fatty acids. However,whether UCP2 has similar effects on alpha cell is still not clear. This study aimed to investigate the effects of UCP2 and its possible mechanisms in lipotoxicity-induced dysfunction of pancreatic alpha cells.Methods The alpha TC1-6 cells were used in this study to evaluate the effects of palmitate and/or UCP2 inhibit factors on the glucagon secretory function, glucagon content, the glucagon mRNA level and the nitrotyrosine level in the supernatant. Meantime, the expression levels of UCP2 and peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1 alpha) were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Furthermore, the possible relationship between UCP2 and insulin signal transduction pathway was analyzed.Results Palmitate stimulated alpha cell glucagon secretion and the expression of UCP2 and PGC-1 alpha, which could be partially decreased by the inhibition of UCP2. Palmitate increased nitrotyrosine level and suppressed insulin signal transduction pathway in alpha cells. Inhibition of UCP2 influenced the effects of free fatty acid on alpha cells and may relate to glucagon secretion.Conclusion UCP2 played an important role on alpha cell dysfunction induced by free fatty acid in vitro, which may be related to its effects on oxidative stress and insulin signal transduction pathway.

  13. Oleanolic acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction.

    Rudo F Mapanga

    Full Text Available Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP and a dysfunctional ubiquitin-proteasome system (UPS as potential mediators of this process. Since oleanolic acid (OA; a clove extract possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1 H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose; and subsequently treated with two OA doses (20 and 50 µM for 6 and 24 hr, respectively; 2 Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3 In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4 Effects of long-term OA treatment (2 weeks on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These

  14. Effects of Omega-3 Fatty Acids on Erectile Dysfunction in a Rat Model of Atherosclerosis-induced Chronic Pelvic Ischemia.

    Shim, Ji Sung; Kim, Dae Hee; Bae, Jae Hyun; Moon, Du Geon

    2016-04-01

    The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model. PMID:27051243

  15. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  16. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity.

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A; Getty, Morghan; Abraham, Nader G; Shapiro, Joseph I; Khitan, Zeid

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  17. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    Shasha He

    Full Text Available Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA, a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6 cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER and increased permeability to 4-kDa fluorescein isothiocyanate (FITC-dextran (FD4. Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs, an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction.

  18. Standardized Extract of Bacopa monniera Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway

    Subhash Dwivedi

    2013-01-01

    Full Text Available The aim of the present study is to investigate the effect of standardized extract of Bacopa monnieri (memory enhancer and Melatonin (an antioxidant on nuclear factor erythroid 2 related factor 2 (Nrf2 pathway in Okadaic acid induced memory impaired rats. OKA (200 ng was administered intracerebroventricularly (ICV to induce memory impairment in rats. Bacopa monnieri (BM-40 and 80 mg/kg and Melatonin (20 mg/kg were administered 1 hr before OKA injection and continued daily up to day 13. Memory functions were assessed by Morris water maze test on days 13–15. Rats were sacrificed for biochemical estimations of oxidative stress, neuroinflammation, apoptosis, and molecular studies of Nrf2, HO1, and GCLC expressions in cerebral cortex and hippocampus brain regions. OKA caused a significant memory deficit with oxidative stress, neuroinflammation, and neuronal loss which was concomitant with attenuated expression of Nrf2, HO1, and GCLC. Treatment with BM and Melatonin significantly improved memory dysfunction in OKA rats as shown by decreased latency time and path length. The treatments also restored Nrf2, HO1, and GCLC expressions and decreased oxidative stress, neuroinflammation, and neuronal loss. Thus strengthening the endogenous defense through Nrf2 modulation plays a key role in the protective effect of BM and Melatonin in OKA induced memory impairment in rats.

  19. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4

    Sarah L. Ullevig

    2014-01-01

    Conclusion: UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds.

  20. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells.

    Xiang, Qisen; Ma, Yunfang; Dong, Jilin; Shen, Ruiling

    2015-02-01

    Carnosic acid (CA), a phenolic diterpene isolated from rosemary, shows potential benefits in health promotion and disease prevention. In the present study, the cytotoxic and apoptotic-inducing effects of CA on human hepatocellular carcinoma HepG2 cells were investigated. The MTT assay results indicated that CA decreased cell viability in HepG2 cells in a dose-dependent manner. Treatment with CA caused a rapid Caspase-3 activation and subsequently proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), both of which were markers of cells undergoing apoptosis. CA also dissipated mitochondrial membrane potential and decreased the ratio of Bcl-2/Bax protein, which mediated cytosolic translocation of cytochrome c from the mitochondria. Furthermore, CA reduced the phosphorylation of Akt, which was partially inhibited by insulin, an activator of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. In conclusion, our data suggest that the mitochondrial dysfunction and deactivation of Akt may contribute to the apoptosis-inducing effects of CA. PMID:25265205

  1. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids

    Lotta K Stenman; Reetta Holma; Riitta Korpela

    2012-01-01

    AIM:To investigate whether high-fat-feeding is associated with increased intestinal permeability via alterations in bile acid metabolism.METHODS:Male C57B1/6J mice were fed on a high-fat (n =26) or low-fat diet (n =24) for 15 wk.Intestinal permeability was measured from duodenum,jejunum,ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator.Fecal bile acids were analyzed with gas chromatography.Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor (TNF).RESULTS:Intestinal permeability was significantly increased by high-fat feeding in jejunum (median 0.334 for control vs 0.393 for high-fat,P =0.03) and colon (0.335 for control vs 0.433 for high-fat,P =0.01),but not in duodenum or ileum.The concentration of nearly all identified bile acids was significantly increased by high-fat feeding (P < 0.001).The proportion of ursodeoxycholic acid (UDCA) in all bile acids was decreased (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in controls,P < 0.01) and correlated inversely with intestinal permeability (r =-0.72,P =0.01).High-fat feeding also increased jejunal FXR expression,as well as TNF expression along the intestine,especially in the colon.CONCLUSION:High-fat-feeding increased intestinal permeability,perhaps by a mechanism related to bile acid metabolism,namely a decreased proportion of fecal UDCA and increased FXR expression.

  2. Vascular Dysfunction Induced in Offspring by Maternal Dietary Fat Involves Altered Arterial Polyunsaturated Fatty Acid Biosynthesis

    Kelsall, Christopher J.; Hoile, Samuel P.; Irvine, Nicola A.; Masoodi, Mojgan; Torrens, Christopher; Lillycrop, Karen A.; Calder, Philip C; Clough, Geraldine F.; Hanson, Mark A; Burdge, Graham C

    2012-01-01

    Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altere...

  3. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  4. Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain.

    Lalith Kumar, Venkareddy; Muralidhara

    2014-12-01

    Epidemiological evidence has shown higher susceptibility of Children to the adverse effects of lead (Pb) exposure. However, experimental studies on Pb-induced neurotoxicity in prepubertal (PP) rats are limited. The present study aimed to examine the propensity of ferulic acid (FA), a commonly occurring phenolic acid in staple foods (fruits, vegetables, cereals, coffee etc.) to abrogate Pb-induced toxicity. Initially, we characterized Pb-induced adverse effects among PP rats exposed to Pb acetate (1,000-3,000 ppm in drinking water) for 5 weeks in terms of locomotor phenotype, activity of 5-aminolevulinic acid dehydratase (ALAD) in the blood, blood Pb levels and oxidative stress in brain regions. Further, the ameliorative effects of oral supplements of FA (25 mg/kg bw/day) were investigated in PP rats exposed to Pb (3,000 ppm). Pb intoxication increased the locomotor activity and FA supplements partially reversed the phenotype, while the reduced ALAD activity was also restored. FA significantly abrogated the enhanced oxidative stress in cerebellum (Cb) and hippocampus (Hc) as evidenced in terms of ROS generation, lipid peroxidation and protein carbonyls. Further, Pb-mediated perturbations in the glutathione levels and activity of enzymic antioxidants were also markedly restored. Furthermore, the protective effect of FA was discernible in striatum in terms of reduced oxidative stress, restored cholinergic activity and dopamine levels. Interestingly, reduced activity levels of mitochondrial complex I in Cb and enhanced levels in Hc among Pb-intoxicated rats were ameliorated by FA supplements. FA also decreased the number of damaged cells in cornu ammonis area CA1 and dentate gyrus as reflected by the histoarchitecture of Hc among Pb intoxicated rats. Collectively, our findings in the PP model allow us to hypothesize that ingestion of common phenolics such as FA may significantly alleviate the neurotoxic effects of Pb which may be largely attributed to its ability

  5. Cerebral energy metabolism during induced mitochondrial dysfunction

    Nielsen, T H; Bindslev, TT; Pedersen, S M;

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in...... brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  6. Radiation-induced neurobehavioral dysfunctions

    There is a lacuna between sparsely reported immediate effects and the well documented delayed effects on cognitive functions seen after ionizing radiation exposure. We reported the radiation-dose dependent incongruity in the early cognitive changes and its correlation with the structural aberration as reported by imaging study. The delayed effect of radiation was investigated to understand the role of hippocampal neurogenesis in the functional recovery of cognition. C57BL/6 mice were exposed to different doses of γ-radiation and 24 hrs after exposure, the stress and anxiety levels were examined in the Open Field Exploratory Paradigms (OFT). 48hrs after irradiation, the hippocampal dependent recognition memory was observed by the Novel Object Recognition Test (NORT) and the cognitive function related to memory processing and recall was tested using the Elevated Plus Maze (EPM). Visualization of damage to the brain was done by diffusion tensor imaging at 48 hours post-irradiation. Results indicate a complex dose independent effect on the cognitive functions immediately after exposure to gamma rays. Radiation exposure caused short term memory dysfunctions at lower doses which were seen to be abrogated at higher doses, but the long term memory processing was disrupted at higher doses. The Hippocampus emerged as one of the sensitive regions to be affected by whole body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. While evaluating the delayed effect of radiation on the hippocampal neurogenesis, we observed that higher doses groups showed comparatively more adaptive regenerative neurogenic potential which they could not sustain at later stages. Our studies reported an important hitherto uncovered phenomenon of neurobehavioral dysfunctions in relation to radiation dose. Nevertheless, a

  7. [Iodine excess induced thyroid dysfunction].

    Egloff, Michael; Philippe, Jacques

    2016-04-20

    The principle sources of iodine overload, amiodarone and radiologic contrast media, are frequently used in modern medicine. The thyroid gland exerts a protective effect against iodine excess by suppressing iodine internalization into the thyrocyte and iodine organification, the Wolff-Chaikoff effect. Insufficiency of this effect or lack of escape from it leads to hypo- or hyperthyroidism respectively. Amiodarone induced thyrotoxicosis is a complex condition marked by two different pathophysiological mechanisms with different treatments. Thyroid metabolism changes after exposure to radiologic contrast media are frequent, but they rarely need to be treated. High risk individuals need to be identifed in order to delay the exam or to monitor thyroid function or apply prophylactic measures in selected cases. PMID:27276725

  8. Alpha Lipoic Acid Modulated High Glucose-Induced Rat Mesangial Cell Dysfunction via mTOR/p70S6K/4E-BP1 Pathway

    Chuan Lv; Can Wu; Yue-hong Zhou; Ying Shao; Guan Wang; Qiu-yue Wang

    2014-01-01

    The aim of this study was to investigate whether alpha lipoic acid (LA) regulates high glucose-induced mesangial cell proliferation and extracellular matrix production via mTOR/p70S6K/4E-BP1 signaling. The effect of LA on high glucose-induced cell proliferation, fibronectin (FN), and collagen type I (collagen-I) expression and its mechanisms were examined in cultured rat mesangial cells by methylthiazol tetrazolium (MTT) assay, flow cytometry, ELISA assay, and western blot, respectively. LA a...

  9. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase.

    Gao, Xuefei; Li, Kuai; Hui, Xiaoyan; Kong, Xiangping; Sweeney, Gary; Wang, Yu; Xu, Aimin; Teng, Maikun; Liu, Pentao; Wu, Donghai

    2011-05-01

    The adipocyte is the principal cell type for fat storage. CPT1 (carnitine palmitoyltransferase-1) is the rate-limiting enzyme for fatty acid β-oxidation, but the physiological role of CPT1 in adipocytes remains unclear. In the present study, we focused on the specific role of CPT1A in the normal functioning of adipocytes. Three 3T3-L1 adipocyte cell lines stably expressing hCPT1A (human CPT1A) cDNA, mouse CPT1A shRNA (short-hairpin RNA) or GFP (green fluorescent protein) were generated and the biological functions of these cell lines were characterized. Alteration in CPT1 activity, either by ectopic overexpression or pharmacological inhibition using etomoxir, did not affect adipocyte differentiation. However, overexpression of hCPT1A significantly reduced the content of intracellular NEFAs (non-esterified fatty acids) compared with the control cells when adipocytes were challenged with fatty acids. The changes were accompanied by an increase in fatty acid uptake and a decrease in fatty acid release. Interestingly, CPT1A protected against fatty acid-induced insulin resistance and expression of pro-inflammatory adipokines such as TNF-α (tumour necrosis factor-α) and IL-6 (interleukin-6) in adipocytes. Further studies demonstrated that JNK (c-Jun N terminal kinase) activity was substantially suppressed upon CPT1A overexpression, whereas knockdown or pharmacological inhibition of CPT1 caused a significant enhancement of JNK activity. The specific inhibitor of JNK SP600125 largely abolished the changes caused by the shRNA- and etomoxir-mediated decrease in CPT1 activity. Moreover, C2C12 myocytes co-cultured with adipocytes pre-treated with fatty acids displayed altered insulin sensitivity. Taken together, our findings have identified a favourable role for CPT1A in adipocytes to attenuate fatty acid-evoked insulin resistance and inflammation via suppression of JNK. PMID:21348853

  10. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  11. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  12. Acute lung injury induces cardiovascular dysfunction

    Suda, Koichi; Tsuruta, Masashi; Eom, Jihyoun;

    2011-01-01

    -regulate the systemic expression of IL-6, but whether they can ameliorate the cardiovascular dysfunction related to ALI is uncertain. We sought to determine whether IL-6 contributes to the cardiovascular dysfunction related to ALI, and whether budesonide/formoterol ameliorates this process. Wild-type mice were...... pretreated for 3 hours with intratracheal budesonide, formoterol, or both, before LPS was sprayed into their tracheas. IL-6-deficient mice were similarly exposed to LPS. Four hours later, bronchoalveolar lavage fluid (BALF) and serum were collected, and endothelial and cardiac functions were measured, using...... these impairments (vasodilatory responses to acetylcholine, P = 0.005; cardiac output, P = 0.025). Pretreatment with the combination of budesonide and formoterol, but not either alone, ameliorated the vasodilatory responses to acetylcholine (P = 0.018) and cardiac output (P < 0.001). These drugs also...

  13. Inflammation-induced lymphangiogenesis and lymphatic dysfunction

    Liao, Shan; von der Weid, Pierre-Yves

    2014-01-01

    The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical ...

  14. Protective effect of Curcumin on chemotherapy-induced intestinal dysfunction

    Yao, Qinghua; Ye, Xiaozheng; Wang, Lu; Gu, Jianzhong; Fu, Ting; Wang, Yun; LAI, YUEBIAO; Wang, Yuqi; Wang, Xian; Jin, Hongchuan; Guo, Yong

    2013-01-01

    Objective: Chemotherapy is one of most important treatments for human cancers. However, side effects such as intestine dysfunction significantly impaired its clinical efficacy. This study aimed to investigate the protective effect of Curcumin on chemotherapy-induced intestinal dysfunction in rats. Methods: Sixty healthy Wistar rats were randomly divided into control group (normal saline), 5-FU group and 5-FU+Curcumin group. The weight, serum level of endotoxin, DAO and D-lactate were determin...

  15. Dimethyl sulfoxide inhibits zymosan-induced intestinal inflammation and barrier dysfunction

    Li, Yu-Meng; Wang, Hai-Bin; Zheng, Jin-Guang; Bai, Xiao-Dong; Zhao, Zeng-Kai; Li, Jing-yuan; Hu, Sen

    2015-01-01

    AIM: To investigate whether dimethyl sulfoxide (DMSO) inhibits gut inflammation and barrier dysfunction following zymosan-induced systemic inflammatory response syndrome and multiple organ dysfunction syndrome.

  16. Pathogenesis of irradiation-induced cognitive dysfunction

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.)

  17. Pathogenesis of irradiation-induced cognitive dysfunction

    Abayomi, O.K. [Howard Univ. Hospital, Washington, DC (United States). Dept. of Radiation Oncology

    1996-12-31

    Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in young children. The underlying mechanisms of this disorder have not been described. The present review describes the role of the hippocampus and the anatomically related cortex in memory function and its marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development of techniques to minimize the risks. (orig.).

  18. Lithium-induced parathyroid dysfunction: A new case

    C Gopalakrishnan Nair

    2013-01-01

    Full Text Available Lithium salts are widely used in psychiatric practice and are known to induce thyroid dysfunction. Lithium-induced parathyroid dysfunction is rare. We are reporting a case of hyperparathyroidism in a 28-year-old female patient who was on lithium carbonate for 2 years, when she developed osteopenia and girdle girdle-type muscle weakness. Biochemical parameters showed hyperparathyroidism with shift of calcium creatinine clearance ratio to 0.013, indicating an error in threshold of calcium sensing receptor. The patient eventually required parathyroidectomy and the histology of the gland showed atypical features.

  19. Administration of an amino Acid-based regimen for the management of autonomic nervous system dysfunction related to combat-induced illness.

    Shell, William E; Charuvastra, Marcus; Breitstein, Mira; Pavlik, Stephanie L; Charuvastra, Anthony; May, Lawrence; Silver, David S

    2014-01-01

    The etiology and pathophysiology of posttraumatic stress disorder (PTSD) remains poorly understood. The nutritional deficiencies associated with the altered metabolic processes of PTSD have not previously been studied in detail. This pilot study measured the reduction in symptoms in 21 military veterans reporting moderate to severe symptoms associated with PTSD. Two amino acid-based medical foods specifically formulated with biogenic amines and other nutrients were administered to study subjects targeting specific neurotransmitter deficiencies resulting from altered metabolic activity associated with PTSD. This study included the Physician Checklist - Military (PCL-M), Short Form General Health Survey (SF-36), and Epworth Sleepiness Scale to measure the change in each subject's score after 30 days of administration. An average decrease of 17 points was seen in the PCL-M, indicating a reduction in PTSD symptoms (P < 0.001). The mental health component of the SF-36 showed an average 57% increase in the subjects' mental health rating (P < 0.001). The results of this initial study demonstrate that addressing the increased dietary requirements of PTSD can improve symptoms of the disease while eliminating significant side effects. A larger, double-blind, randomized, placebo-controlled trial is warranted. PMID:25336998

  20. Perinatal programming of metabolic dysfunction and obesity-induced inflammation

    Ingvorsen, Camilla; Hellgren, Lars; Pedersen, Susanne Brix

    The number of obese women in the childbearing age is drastically increasing globally. As a consequence, more children are born by obese mothers. Unfortunately, maternal obesity and/ or high fat intake during pregnancy increase the risk of developing obesity, type-2 diabetes, cardiovascular disease...... associated with chronic low grade inflammation. Nobody have yet investigated the role of this inflammatory phenotype, but here we demonst rate that obesity induced inflammation is reversed during pregnancy in mice, and is therefore less likely to affect the fetal programming of metabolic dysfunction. Instead...... and non-alcoholic fatty liver disease in the children, which passes obesity and metabolic dysfunction on from generation to generation. Several studies try to elucidate causative effects of maternal metabolic markers on the metabolic imprinting in the children; however diet induced obesity is also...

  1. Tamoxifen Injection induce transient myocardiac dysfunction in mice

    Yan; Yan; Wang; Sheng; Liu; Bin; Yu

    2014-01-01

    Tamoxifen inducible cre-loxp system has been employed as a very powerful tool for cardiology research in mice. It enables researchers to control their interested gene expression in tight control in terms of tissue specification and time specification. Here, we reported that in the absence of loxp transgenes,tamoxifen injection can lead to myocardiac dysfunction 3 days after drug administration but cardiac function start recover from 2 days later.

  2. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction

    O'Mahony, D. Shane; Liles, W. Conrad; William A Altemeier; Dhanireddy, Shireesha; Frevert, Charles W.; Liggitt, Denny; Martin, Thomas R.; Matute-Bello, Gustavo

    2006-01-01

    Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunctio...

  3. Factors influencing fluoxetine-induced sexual dysfunction in female rats

    Adams, Sarah; Heckard, Danyeal; Hassell, James; Uphouse, Lynda

    2012-01-01

    Treatment with selective serotonin reuptake inhibitors, such as fluoxetine, produces sexual side effects with low sexual desire being the most prevalent effect in females. In few studies have preclinical models for such antidepressant-induced sexual dysfunction been fruitful. In the current manuscript, the effects of fluoxetine on multiple measures of female sexual motivation and sexual receptivity were examined. Ovariectomized, Fischer rats were primed with 10 μg estradiol benzoate and 500 μ...

  4. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  5. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  6. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  7. Nebulized Pentamidine-Induced Acute Renal Allograft Dysfunction

    Siddhesh Prabhavalkar

    2013-01-01

    Full Text Available Acute kidney injury (AKI is a recognised complication of intravenous pentamidine therapy. A direct nephrotoxic effect leading to acute tubular necrosis has been postulated. We report a case of severe renal allograft dysfunction due to nebulised pentamidine. The patient presented with repeated episodes of AKI without obvious cause and acute tubular necrosis only on renal histology. Nebulised pentamidine was used monthly as prophylaxis for Pneumocystis jirovecii pneumonia, and administration preceded the creatinine rise on each occasion. Graft function stabilised following discontinuation of the drug. This is the first report of nebulized pentamidine-induced reversible nephrotoxicity in a kidney allograft. This diagnosis should be considered in a case of unexplained acute renal allograft dysfunction.

  8. Dysfunction of Rice Mitochondrial Membrane Induced by Yb3+.

    Gao, Jia-Ling; Wu, Man; Liu, Wen; Feng, Zhi-Jiang; Zhang, Ye-Zhong; Jiang, Feng-Lei; Liu, Yi; Dai, Jie

    2015-12-01

    Ytterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated. We found that Yb(3+) with high concentrations (200 ~ 600 μM) not only induced mitochondrial membrane permeability transition (mtMPT), but also disturbed the mitochondrial ultrastructure. Moreover, Yb(3+) caused the respiratory chain damage, ROS formation, membrane potential decrease, and mitochondrial complex II activity reverse. The results above suggested that Yb(3+) with high concentrations could induce mitochondrial membrane dysfunction. These findings will support some valuable information to the safe application of Yb-based agents. PMID:26305923

  9. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (pGST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. PMID:27259349

  10. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  11. The dosimetry of brachytherapy-induced erectile dysfunction

    There is emerging evidence that brachytherapy-induced erectile dysfunction (ED) is technique-related and may be minimized by careful attention to source placement. Herein, we review the relationship between radiation doses to the prostate gland/surrounding structures and the development of brachytherapy-induced ED. The permanent prostate brachytherapy literature was reviewed using MEDLINE searches to ensure completeness. Although the site-specific structure associated with brachytherapy-induced ED remains unknown, there is an increasing body of data implicating the proximal penis. With day 0 CT-based dosimetry, the dose to 50% (D50) and 25% (D25) of the bulb of the penis should be maintained below 40% and 60% mPD, respectively, while the crura D50 should be maintained below 28% mPD to maximize post-brachytherapy potency. To date, there is no data to suggest that either radiation doses to the neurovascular bundles or choice of isotope is associated with brachytherapy-induced ED, while conflicting data has been reported regarding radiation dose to the prostate and the use of supplemental external beam radiation therapy. Although the etiology of brachytherapy-induced ED is likely multifactorial, the available data supports the proximal penis as an important site-specific structure. Refinements in implant technique, including preplanning and intraoperative seed placement, will result in lower radiation doses to the proximal penis with potential improvement in potency preservation

  12. Alpha-Lipoic Acid Improves Subclinical Left Ventricular Dysfunction in Asymptomatic Patients with Type 1 Diabetes

    Hegazy, Sahar K; Tolba, Osama A.; Mostafa, Tarek M.; Eid, Manal A; El-Afify, Dalia R.

    2013-01-01

    BACKGROUND: Oxidative stress plays an important role in the development of diabetic cardiomyopathy. Alpha-lipoic acid (ALA) is a powerful antioxidant that may have a protective role in diabetic cardiac dysfunction. AIM: We investigated the possible beneficial effect of alpha-lipoic acid on diabetic left ventricular (LV) dysfunction in children and adolescents with asymptomatic type 1 diabetes (T1D). SUBJECTS AND METHODS: Thirty T1D patients (aged 10-14) were randomized to receive insulin trea...

  13. Protective effects of N-acetylcysteine against hyperoxaluria induced mitochondrial dysfunction in male wistar rats.

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2015-07-01

    The purpose of the present study was to evaluate the nephro-protective potential of N-acetylcysteine against hyperoxaluria-induced renal mitochondrial dysfunction in rats. Nine days dosing of 0.4 % ethylene glycol +1 % ammonium chloride, developed hyperoxaluria in male wistar rats which resulted in renal injury and dysfunction as supported by increased level of urinary lactate dehydrogenase, calcium, and decreased creatinine clearance. Mitochondrial oxidative strain in hyperoxaluric animals was evident by decreased levels of superoxide dismutase, glutathione peroxidase, glutathione reductase, reduced glutathione, and an increased lipid peroxidation. Declined activities of respiratory chain enzymes and tricarboxylic acid cycle enzymes showed mitochondrial dysfunction in hyperoxaluric animals. N-acetylcysteine (50 mg/kg, i.p.), by virtue of its -SH reviving power, was able to increase the glutathione levels and thus decrease the oxidative stress in renal mitochondria. Hence, mitochondrial damage is, evidently, an essential event in ethylene glycol-induced hyperoxaluria and N-acetylcysteine presented itself as a safe and effective remedy in combating nephrolithiasis. PMID:25842190

  14. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction.

    Ceylan-Isik, Asli F; Kandadi, Machender R; Xu, Xihui; Hua, Yinan; Chicco, Adam J; Ren, Jun; Nair, Sreejayan

    2013-10-01

    Apelin has been recognized as an adipokine that plays an important role in regulating energy metabolism and is credited with antiobesity and antidiabetic properties. This study was designed to examine the effect of exogenous apelin on obesity-associated cardiac dysfunction. Oral glucose tolerance test, echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed in adult C57BL/6J mice fed - low or a - high-fat diet for 24weeks followed by apelin treatment (100nmol/kg, i.p. for 2weeks). High-fat diet resulted in increased left ventricular diastolic and systolic diameters, and wall thickness, compromised fractional shortening, impaired cardiomyocyte mechanics (peak-shortening, maximal velocity of shortening/relengthening, and duration of shortening and relengthening) and compromised intracellular Ca(2+) handling, all of which were reconciled by apelin. Apelin treatment also reversed high fat diet-induced changes in intracellular Ca(2+) regulatory proteins, ER stress, and autophagy. In addition, microRNAs (miR) -133a, miR-208 and miR-1 which were elevated following high-fat feeding were attenuated by apelin treatment. In cultured cardiomyocytes apelin reconciled palmitic acid-induced cardiomyocyte contractile anomalies. Collectively, these data depict a pivotal role of apelin in obesity-associated cardiac contractile dysfunction, suggesting a therapeutic potential of apelin in the management of cardiac dysfunction associated with obesity. PMID:23859766

  15. Exercise-induced mitochondrial dysfunction: a myth or reality?

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  16. Effects of Exercise on Cardiovascular Dysfunctions Induced by Cigarette Smoking

    Abdel-Sater Khaled A.

    2008-06-01

    Full Text Available Smoking is known to adversely affect many organs and systems in human, where the cardiovascular system is one of the important targets. However, the exact mechanisms by which cigarette smoke alters myocardial and endothelial cells function and induces cardiovascular pathology are not clear. There are no reports especially with nitric oxide (NO•, uric acid and hemodynamics after acute exercise in smokers up to date. This study is designed to investigate the role of oxidative stress, NO• and uric acid in the pathophysiologic mechanisms of smoking- induced cardiovascular diseases.40 apparently healthy subjects were studied. Depending on their previous physical conditioning status subjects were divided into equal four groups (n=10, physically active nonsmokers, physically active smokers, sedentary nonsmokers and sedentary smokers. Exercise tolerance was evaluated for each subject by using a running race (3 kilometers after a worming up period of 5 minutes.The obtained data revealed that regular exercise significantly decreased the plasma malonaldehyde, total cholesterol, LDL and uric acid levels below sedentary levels. Pre and post race plasma level of malonaldehyde and uric acid levels were significantly increased, while, plasma glutathione and NO• were decreased in sedentary smokers than the sedentary non smokers, physically active smokers and physically active non smokers.These findings point to the role of NO•, uric acid and lipid peroxide in the pathophysiologic mechanisms of smoking induced cardiovascular diseases. Sedentary smokers may be at an even greater risk of oxidative stress-related cardiovascular diseases. Finally, every body should include in a regular exercise.

  17. Relationship of plasma creatinine and lactic acid in type 2 diabetic patients without renal dysfunction

    LIU Fang; LU Jun-xi; TANG Jun-ling; LI Li; LU Hui-juan; HOU Xu-hong; JIA Wei-ping; XIANG Kun-san

    2009-01-01

    Background As one of most widely-used biguanides,metformin can induce the lactic acidosis in patients with renal failure though its incidence is very low.However,lactic acidemia induced by mefformin was reported in patients without renal dysfunction.It is unclear that whether lactatemia exists in diabetic patients with normal renal function in Chinese or not and its influencing factors.This study aimed to clarify the influencing factors of lactic acid,and identify a practiced clinical marker to predict the hyperlactacidemia in diabetics with normal renal function.Methods The clinical data and venous blood samples of 1024 type 2 diabetic patients treated with(n=426)or without metformin(n=599)were collected.The lactic acid was assayed by enzyme-electrode method.The biochemical indexes included creatinine(Cr)and hepatase were measured with enzymatic procedures.The lactic acid concentrations of different Cr subgroups were compared,and the correlation and receiver operating characteristic curve analysis were used.Results The mean lactic acid level and the proportion of hyperlactatemia of metformin group were significantly higher than that of non-metformin group(P<0.01),but no lactic acidosis was found in all patients.The correlation and multiple stepwise regression analysis indicated that the correlative factors of lactic acid in turn were Cr,metformin,alanine transferase(ALT),body mass index(BMI),Urine albumin(Ualb),and blood urea nitrogen(BUN)in total patients;and Cr,ALT,BMI and BUN in non-metformin treated patients;Cr and ALT in metformin-group.The lactate concentration increased with the increment of Cr levels,and reached its peak at Cr 111-130 μmol/L,and the optimal cutoff of Cr in predicting hyperlactacidemia was 96.5 μmol/L.Conclusions Metformin can increase the incidence of lactatemia in type 2 diabetic patients without renal dysfunction.Cr,ALT,and BMI are independent associated factors of blood lactic acid levels.There is low proportion of lactatemia in

  18. Aspartic acid in the hippocampus:a biomarker for postoperative cognitive dysfunction

    Rong Hu; Dong Huang; Jianbin Tong; Qin Liao; Zhonghua Hu; Wen Ouyang

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2%iso-lfurane and 80%oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isolfurane also signiifcantly increased the levels of N,N-diethy-lacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isolfurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isolfurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 µmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  19. Curcumin improves tau-induced neuronal dysfunction of nematodes.

    Miyasaka, Tomohiro; Xie, Ce; Yoshimura, Satomi; Shinzaki, Yuki; Yoshina, Sawako; Kage-Nakadai, Eriko; Mitani, Shohei; Ihara, Yasuo

    2016-03-01

    Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau. PMID:26923403

  20. Protection from Palmitate-Induced Mitochondrial DNA Damage Prevents from Mitochondrial Oxidative Stress, Mitochondrial Dysfunction, Apoptosis, and Impaired Insulin Signaling in Rat L6 Skeletal Muscle Cells

    Yuzefovych, Larysa V.; Solodushko, Viktoriya A.; Wilson, Glenn L.; Rachek, Lyudmila I.

    2011-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme ...

  1. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development. PMID:26945730

  2. Adenosine kinase inhibition protects against cranial radiation-induced cognitive dysfunction

    Munjal M Acharya

    2016-06-01

    Full Text Available Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting, however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK. Adult rats exposed to cranial irradiation (10 Gy showed significant declines in performance of hippocampal-dependent cognitive function tasks (novel place recognition, novel object recognition, and contextual fear conditioning 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the fear conditioning task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP. Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection also against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS

  3. Markers of endothelial dysfunction in patients with iodine induced hyperthyroidism

    Introduction: It has been reported that hyperthyroidism is associated with an altered endothelial function and increased risk of arterial thromboembolism. The aim of our study was to estimate chosen markers of endothelial dysfunction in iodine-induced thyrotoxicosis (IIT). Materials and methods: The groups studied consisted of 41 hyperthyroid subjects, who had been treated with amiodarone (n = 6) or vitamin preparations supplemented with iodine (n = 35) and 40 persons with normal thyroid function. The following parameters were measured: thyroglobulin antibodies (TG Ab), thyroid peroxidase antibodies (TPO Ab), THS receptor antibodies (TR Ab), soluble adhesion molecules: sVCAM-1 and sICAM-1, von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), fibrinogen and urine iodine concentration. Results: Patients with IIT had significantly higher levels of sVCAM-1 (p < 0.01), IL-6 (p < 0.005), fibrinogen (p < 0.005) and CRP (p < 0.05) in comparison to healthy subjects, whereas sICAM-1, PAI-1 and vWF concentrations did not differ between the groups studied. The highest sVCAM-1 levels were observed in patients with amiodarone induced thyrotoxicosis, and fibrinogen and CRP - in subjects receiving vitamin preparations. There were significant correlations between sVCAM-1 concentration and the levels of sICAM-1 (r = 0.341; p = 0.029) and PAI-1 (r = 0.347; p = 0.026), as well as with urine iodine concentration (r 0.448; p = 0.004). IL-6 concentration correlated with vWF (r = 0.456; p 0.003), TPO Ab (r = 0.328; p = 0.036) and PAI-1 level (r = 0.319; p = 0.042). Conclusion: Iodine induced thyrotoxicosis is associated with an increase of sVCAM-1 and IL-6 levels, possibly reflecting inflammatory and destructive processes in the thyroid gland. However, increased procoagulant activity was not found in patients with IIT. (author)

  4. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  5. A Case of Montelukast-Induced Churg-Strauss Syndrome Associated with Liver Dysfunction

    Keiji Matsui

    2011-01-01

    Full Text Available A 64-year-old woman was admitted to hospital due to protracted diarrhea and liver dysfunction. The patient was diagnosed as Churg-Strauss syndrome (CSS due to asthma, paranasal sinusitis, hypereosinophilia, and polyneuropathy. There was a history of taking montelukast, a leukotriene receptor antagonist (LTRA, which is thought to have some relationship with CSS. The liver biopsy specimen showed eosinophilic infiltration and centrolobular fatty change. In this paper, we review the relationship between LTRA and CSS. Several lines of evidence suggest that leukotriene plays an important role in maintaining neural tissues. We also review the potential relationship between centrolobular fatty change and pivoxil-containing antibiotics, which was prescribed for sinusitis before admission. Carnitine deficiency induced by pivoxil-containing agents may cause impaired fatty acid oxidation in mitochondria.

  6. Microvascular Injury in Ketamine-Induced Bladder Dysfunction.

    Lin, Chih-Chieh; Lin, Alex Tong-Long; Yang, An-Hang; Chen, Kuang-Kuo

    2016-01-01

    alteration of endothelial cells can potentially contribute to KC-induced bladder dysfunction. PMID:27529746

  7. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria

    cunha-oliveira, teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J.; Oliveira, Catarina R.; Santos, Maria S.

    2013-01-01

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand ...

  8. Valproic Acid Induced Hyperammonaemic Encephalopathy

    Objective: To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Methods: Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excel 2007 was used for statistical analysis. Results: Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n=8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Conclusion: Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition. (author)

  9. Interferon-Alpha Induced and Ribavirin Induced Thyroid Dysfunction in Patients with Chronic Hepatitis C

    Amina Nadeem

    2010-04-01

    Full Text Available Chronic hepatitis C (CHC is one of the commonest infectious diseases of the liver and may lead to cirrhosis or hepatocellular carcinoma. Combination therapy with pegylated interferon (PEG-IFN and Ribavirin is the treatment of choice for CHC. Combination therapy is thought to act by means of antiviral mechanisms and immunomodulation. Thyroid dysfunction is the most common autoimmune adverse effect associated with combination therapy; hypothyroidism is more common than hyperthyroidism. Antithyroid antibodies and female sex have a predictive value in the development of interferon induced thyroid disease (IITD. Patients with CHC should be informed of the possibility of side effects on the thyroid gland. Screening for antithyroid antibodies and thyroid function tests should be performed in patients with CHC before the commencement of antiviral treatment, and during and after it. This article reviews different aspects of IITD, including its pathogenesis, clinical manifestations, association with treatment regimens and treatment response and the outcome of thyroid dysfunction.

  10. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA tre...

  11. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid

    Li Chun-jun

    2012-06-01

    Full Text Available Abstract Background Alpha-lipoic acid (ALA, a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS, extracellular matrix (ECM remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2 levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA and transforming growth factor–β (TGF-β. Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK, p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated

  12. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis.

    Biniecka, Monika

    2012-02-01

    OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives

  13. Graptopetalum paraguayense and resveratrol ameliorates carboxymethyllysine (CML)-induced pancreas dysfunction and hyperglycemia.

    Lee, Bao-Hong; Lee, Chia-Chen; Cheng, Yu-Hsiang; Chang, Wen-Chang; Hsu, Wei-Hsuan; Wu, She-Ching

    2013-12-01

    Hyperglycemia is associated with advanced glycation end products (AGEs). Recently, AGEs were found to cause pancreatic damage, oxidative stress, and hyperglycemia through the AGE receptor. Carboxymethyllysine (CML) is an AGE but whether it induces pancreatic dysfunction remains unclear. Graptopetalum paraguayense, a vegetable consumed in Taiwan, has been used in folk medicine and is an antioxidant that protects against liver damage. We investigated the protective properties of G. paraguayense 95% ethanol extracts (GPEs) against CML-induced pancreatic damage. The results indicated that resveratrol, GPE, and gallic acid (the active compound of GPE) increased insulin synthesis via upregulation of pancreatic peroxisome proliferator activated-receptor-γ (PPARγ) and pancreatic-duodenal homeobox-1 (PDX-1) but inhibited the expression of CML-mediated CCAAT/enhancer binding protein-β (C/EBPβ), a negative regulator of insulin production. Moreover, resveratrol and GPE also strongly activated nuclear factor-erythroid 2-related factor 2 (Nrf2) to attenuate oxidative stress and improve insulin sensitivity in the liver and muscle of CML-injected C57BL/6 mice and resulted in reduced blood glucose levels. Taken together, these findings suggested that GPE and gallic acid could potentially be used as a food supplement to protect against pancreatic damage and the development of diabetes. PMID:24036142

  14. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats.

    Verbeke, Len; Farre, Ricard; Verbinnen, Bert; Covens, Kris; Vanuytsel, Tim; Verhaegen, Jan; Komuta, Mina; Roskams, Tania; Chatterjee, Sagnik; Annaert, Pieter; Vander Elst, Ingrid; Windmolders, Petra; Trebicka, Jonel; Nevens, Frederik; Laleman, Wim

    2015-02-01

    Bacterial translocation (BTL) drives pathogenesis and complications of cirrhosis. Farnesoid X-activated receptor (FXR) is a key transcription regulator in hepatic and intestinal bile metabolism. We studied potential intestinal FXR dysfunction in a rat model of cholestatic liver injury and evaluated effects of obeticholic acid (INT-747), an FXR agonist, on gut permeability, inflammation, and BTL. Rats were gavaged with INT-747 or vehicle during 10 days after bile-duct ligation and then were assessed for changes in gut permeability, BTL, and tight-junction protein expression, immune cell recruitment, and cytokine expression in ileum, mesenteric lymph nodes, and spleen. Auxiliary in vitro BTL-mimicking experiments were performed with Transwell supports. Vehicle-treated bile duct-ligated rats exhibited decreased FXR pathway expression in both jejunum and ileum, in association with increased gut permeability through increased claudin-2 expression and related to local and systemic recruitment of natural killer cells resulting in increased interferon-γ expression and BTL. After INT-747 treatment, natural killer cells and interferon-γ expression markedly decreased, in association with normalized permeability selectively in ileum (up-regulated claudin-1 and occludin) and a significant reduction in BTL. In vitro, interferon-γ induced increased Escherichia coli translocation, which remained unaffected by INT-747. In experimental cholestasis, FXR agonism improved ileal barrier function by attenuating intestinal inflammation, leading to reduced BTL and thus demonstrating a crucial protective role for FXR in the gut-liver axis. PMID:25592258

  15. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  16. Malondialdehyde induces autophagy dysfunction and VEGF secretion in the retinal pigment epithelium in age-related macular degeneration.

    Ye, Fuxiang; Kaneko, Hiroki; Hayashi, Yumi; Takayama, Kei; Hwang, Shiang-Jyi; Nishizawa, Yuji; Kimoto, Reona; Nagasaka, Yosuke; Tsunekawa, Taichi; Matsuura, Toshiyuki; Yasukawa, Tsutomu; Kondo, Takaaki; Terasaki, Hiroko

    2016-05-01

    Age-related macular degeneration (AMD) is a major cause of blindness in developed countries and is closely related to oxidative stress, which leads to lipid peroxidation. Malondialdehyde (MDA) is a major byproduct of polyunsaturated fatty acid (PUFA) peroxidation. Increased levels of MDA have been reported in eyes of AMD patients. However, little is known about the direct relationship between MDA and AMD. Here we show the biological importance of MDA in AMD pathogenesis. We first confirmed that MDA levels were significantly increased in eyes of AMD patients. In ARPE-19 cells, a human retinal pigment epithelial cell line, MDA treatment induced vascular endothelial growth factor (VEGF) expression alternation, cell junction disruption, and autophagy dysfunction that was also observed in eyes of AMD patients. The MDA-induced VEGF increase was inhibited by autophagy-lysosomal inhibitors. Intravitreal MDA injection in mice increased laser-induced choroidal neovascularization (laser-CNV) volumes. In a mouse model fed a high-linoleic acid diet for 3 months, we found a significant increase in MDA levels, autophagic activity, and laser-CNV volumes. Our study revealed an important role of MDA, which acts not only as a marker but also as a causative factor of AMD pathogenesis-related autophagy dysfunction. Furthermore, higher dietary intake of linoleic acid promoted CNV progression in mice with increased MDA levels. PMID:26923802

  17. Metabolomics analysis reveals insights into biochemical mechanisms of mental stress-induced left ventricular dysfunction

    Boyle, Stephen H.; Matson, Wayne R.; Velazquez, Eric J.; Samad, Zainab; Williams, Redford B.; Sharma, Swati; Thomas, Beena; Wilson, Jennifer L.; O'Connor, Christopher

    2014-01-01

    Mental stress induced left ventricular dysfunction (LVD) has been associated with a greater risk of adverse events in coronary heart disease (CHD) patients independent of conventional risk indicators. The underlying biochemical mechanisms of this cardiovascular condition are poorly understood. Our objective was to use metabolomics technology to identify biochemical changes that co-occur with mental stress-induced LVD in patients with clinically stable CHD. Participants were adult CHD patients who were recruited for mental stress-induced myocardial ischemia screening. For this study, we randomly selected 30 patients representing the extremes of the mental stress-induced left ventricular ejection fraction (LVEF) change distribution; 15 who showed LVD (i.e. LVEF reduction ≥5) and 15 who showed a normal left ventricular response (NLVR; i.e. a LVEF increase of ≥5) to three mental stressors. An electrochemistry based metabolomics platform was used to profile pre- and post-stress serum samples yielding data for 22 known compounds, primarily within the tyrosine, tryptophan, purine and methionine pathways. There were significant stress-induced changes in several compounds. A comparison between the NLVR and LVD groups showed significant effects for kynurenine (p = .036, N-acetylserotonin (p = .054), uric acid (p = .015), tyrosine (p = .019) and a trend for methionine (p = .065); the NLVR group showed a significantly greater stress-induced reduction in all of those compounds compared to the LVD group. Many of these biochemicals have been implicated in other stress-related phenomena and are plausible candidates for mechanisms underlying LVD in response to mental stress. PMID:25983674

  18. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease.

    Kanae Iijima-Ando

    Full Text Available The amyloid-beta 42 (Abeta42 is thought to play a central role in the pathogenesis of Alzheimer's disease (AD. However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.

  19. Voiding Dysfunction Induced by Tetanus: A Case Report

    Satoru Kira; Norifumi Sawada; Tadashi Aoki; Hideki Kobayashi; Masayuki Takeda

    2016-01-01

    A 34-year-old man presented with sudden voiding dysfunction and lower limb paraplegia. As a central nervous system disorder was suspected, he was referred to the neurology department. Under the diagnosis of neurosarcoidosis, steroid pulse therapy was initiated. To ensure the effect of this therapy, the patient was referred back for urodynamic testing. Urodynamic testing indicated that the urethral sphincter was not relaxed and could not void. Due to the sudden appearance of repeated and refra...

  20. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  1. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools. PMID:27119030

  2. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes

    Shenouda, Sylvia K.; Varner, Kurt J.; Carvalho, Felix; Lucchesi, Pamela A.

    2009-01-01

    Repeated administration of MDMA (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown; oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included: al...

  3. Inhibition of cyclo-oxygenase-2 exacerbates ischaemia-induced acute myocardial dysfunction in the rabbit

    Rossoni, Giuseppe; Muscara, Marcelo N.; Cirino, Giuseppe; Wallace, John L

    2002-01-01

    The effects of treatment with a number of cyclo-oxygenase inhibitors, (celecoxib, meloxicam, DuP-697 and aspirin) on ischaemia-reperfusion-induced myocardial dysfunction were examined using an in vitro perfused rabbit heart model.Ischaemia resulted in myocardial dysfunction, as indicated by a significant increase in left ventricular end diastolic pressure and marked changes in coronary perfusion pressure and left ventricular developed pressure. In the post-ischaemic state, coronary perfusion ...

  4. Lead induced behavioral dysfunction: an animal model of hyperactivity

    Silbergeld, E.K.; Goldberg, A.M.

    1974-01-01

    Although clinically lead poisoning is thought to cause several serious behavioral problems, a causal relationship between lead ingestion and behavioral dysfunction has not been shown. An animal model of lead poisoning was developed in which suckling mice were exposed to lead acetate from birth indirectly through their mothers and then directly after weaning. For the first 60 days, no deaths of offspring occurred due to lead but their growth and development were significantly retarded. Epidemiological evidence exists for the coincidence of lead exposure and hyperactivity syndromes in children. Activity of offspring was measured between 40 and 60 days of age. Treated mice were more than three times as active as agematched controls. Treated and control animals were given drugs used in the treatment and diagnosis of minimal brain dysfunction hyperactivity in children: d- and l-amphetamine, methylphenidate, phenobarbital, and chloral hydrate. Lead-treated hyperactive mice responded paradoxically to all drugs except chloral hydrate: that is, d- and l-amphetamine and methylphenidate suppressed hyperactivity, while phenobarbital increased their levels of motor activity. Chloral hydrate was an effective sedative. Implications of these findings are discussed for the study of the central effects of lead poisoning and for the relationship between lead poisoning and minimal brain dysfunction hyperactivity.

  5. A mechanism for trauma induced muscle wasting and immune dysfunction

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  6. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats

    Smeding, Lonneke; Kuiper, Jan Willem; Plotz, Frans B.; Kneyber, Martin C. J.; Groeneveld, A. B. Johan

    2013-01-01

    Background: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI) and may thereby contribute to fatal multiple organ failure. We tested the hypothesis that injurious MV of lipopolysaccharide (LPS) pre-injured lungs induces myocardial inflammation and further dysfunction ex vivo

  7. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  8. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse

    Jie WANG; Takeuchi, Toshiyuki; Tanaka, Shigeyasu; Kubo, Suely-Kunimi; Kayo, Tsuyoshi; Lu, Danhong; Takata, Kuniaki; Koizumi, Akio; Izumi, Tetsuro

    1999-01-01

    The mouse autosomal dominant mutation Mody develops hyperglycemia with notable pancreatic β-cell dysfunction. This study demonstrates that one of the alleles of the gene for insulin 2 in Mody mice encodes a protein product that substitutes tyrosine for cysteine at the seventh amino acid of the A chain in its mature form. This mutation disrupts a disulfide bond between the A and B chains and can induce a drastic conformational change of this molecule. Although there was no gross defect in the ...

  9. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Ping-Chang Yang

    2009-01-01

    Full Text Available Background : Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods : Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results : HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions : Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein. (Yang PC, Tu YH, Perdue MH, Oluwole C, Struiksma S. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction.

  10. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress.

    Kammouni, Wafa; Wood, Heidi; Saleh, Ali; Appolinario, Camila M; Fernyhough, Paul; Jackson, Alan C

    2015-08-01

    Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress. PMID:25698500

  11. Folic Acid Reverses Nitric Oxide Synthase Uncoupling and Prevents Cardiac Dysfunction in Insulin Resistance: Role of Ca2+/Calmodulin-Activated Protein Kinase II

    Roe, Nathan D.; He, Emily Y.; Wu, Zhenbiao; Ren, Jun

    2013-01-01

    Nitric oxide synthase (NOS) may be uncoupled to produce superoxide rather than nitric oxide (NO) under pathological conditions such as diabetes mellitus and insulin resistance, leading to cardiac contractile anomalies. Nonetheless, the role of NOS uncoupling in insulin resistance-induced cardiac dysfunction remains elusive. Given that folic acid may produce beneficial effect for cardiac insufficiency partially through its NOS recoupling capacity, this study was designed to evaluate the effect...

  12. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF2α) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF2α production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and ROS production culminate

  13. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice

    Soltysinska, Ewa; Speerschneider, Tobias; Winther, Sine V;

    2014-01-01

    Background: The aim of this study was to probe cardiac complications, including heart-rate control, in a mouse model of type-2 diabetes. Heart-rate development in diabetic patients is not straight forward: In general, patients with diabetes have faster heart rates compared to non......-diabetic individuals, yet diabetic patients are frequently found among patients treated for slow heart rates. Hence, we hypothesized that sinoatrial node (SAN) dysfunction could contribute to our understanding the mechanism behind this conundrum and the consequences thereof.MethodsCardiac hemodynamic and...... electrophysiological characteristics were investigated in diabetic db/db and control db/+mice.ResultsWe found improved contractile function and impaired filling dynamics of the heart in db/db mice, relative to db/+controls. Electrophysiologically, we observed comparable heart rates in the two mouse groups, but SAN...

  14. Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction.

    Frech, Tracy; Walker, Ashley E; Barrett-O'Keefe, Zachary; Hopkins, Paul N; Richardson, Russell S; Wray, D Walter; Donato, Anthony J

    2015-05-01

    Systemic sclerosis (SSc) vasculopathy can result in a digital ulcer (DU) and/or pulmonary arterial hypertension (PAH). We hypothesized that bedside brachial artery flow-mediated dilation (FMD) testing with duplex ultrasound could be used in SSc patients to identify features of patients at risk for DU or PAH. Thirty-eight SSc patients were compared to 52 age-matched healthy controls from the VAMC Utah Vascular Research Laboratory. Peripheral hemodynamics, arterial structure, and endothelial function were assessed by duplex ultrasound. A blood pressure cuff was applied to the forearm and 5-min ischemia was induced. Post-occlusion, brachial artery vascular reactivity (peak hyperemia/area under the curve [AUC]), shear rate, and endothelial function (FMD) were measured. SSc patients had smaller brachial artery diameters (p 5.40 %) had less than 15 % chance of DU. All brachial artery FMD measurements were similar between SSc patients with and without PAH (all p > 0.05). Compared to healthy controls, SSc patients had significantly smaller brachial artery diameter and blunted peripheral vascular reactivity and endothelial function. SSc patients with DU have even greater impairments in endothelial function compared to those without DU. FMD testing has clinical utility to identify SSc patients at risk for DU. PMID:25511849

  15. ATRX dysfunction induces replication defects in primary mouse cells.

    David Clynes

    Full Text Available The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  16. World Workshop on Oral Medicine VI : clinical implications of medication-induced salivary gland dysfunction

    Aliko, Ardita; Wolff, Andy; Dawes, Colin; Aframian, Doron; Proctor, Gordon; Ekstrom, Jorgen; Narayana, Nagamani; Villa, Alessandro; Sia, Ying Wai; Joshi, Revan Kumar; McGowan, Richard; Jensen, Siri Beier; Kerr, A. Ross; Pedersen, Anne Marie Lynge; Vissink, Arjan

    2015-01-01

    Objective. This study aimed to systematically review the available literature on the clinical implications of medication-induced salivary gland dysfunction (MISGD). Study Design. The systematic review was performed using PubMed, Embase, and Web of Science (through June 2013). Studies were assessed f

  17. Restoration of dietary-fat induced blood–brain barrier dysfunction by anti-inflammatory lipid-modulating agents

    Pallebage-Gamarallage Menuka

    2012-09-01

    Full Text Available Abstract Background Several studies have identified use of non-steroidal-anti-inflammatory drugs and statins for prevention of dementia, but their efficacy in slowing progression is not well understood. Cerebrovascular disturbances are common pathological feature of Alzheimer’s disease. We previously reported chronic ingestion of saturated fatty acids (SFA compromises blood–brain barrier (BBB integrity resulting in cerebral extravasation of plasma proteins and inflammation. However, the SFA-induced parenchymal accumulation of plasma proteins could be prevented by co-administration of some cholesterol lowering agents. Restoration of BBB dysfunction is clinically relevant, so the purpose of this study was to explore lipid-lowering agents could reverse BBB disturbances induced by chronic ingestion of SFA’s. Methods Wild-type mice were fed an SFA diet for 12 weeks to induce BBB dysfunction, and then randomised to receive atorvastatin, pravastatin or ibuprofen in combination with the SFA-rich diet for 2 or 8 weeks. Abundance of plasma-derived immunoglobulin-G (IgG and amyloid-β enriched apolipoprotein (apo-B lipoproteins within brain parenchyme were quantified utilising immunofluorescence microscopy. Results Atorvastatin treatment for 2 and 8 weeks restored BBB integrity, indicated by a substantial reduction of IgG and apo B, particularly within the hippocampus. Pravastatin, a water-soluble statin was less effective than atorvastatin (lipid-soluble. Statin effects were independent of changes in plasma lipid homeostasis. Ibuprofen, a lipid-soluble cyclooxygenase inhibitor attenuated cerebral accumulation of IgG and apo B as effectively as atorvastatin. Our findings are consistent with the drug effects being independent of plasma lipid homeostasis. Conclusion Our findings suggest that BBB dysfunction induced by chronic ingestion of SFA is reversible with timely introduction and sustained treatment with agents that suppress inflammation.

  18. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men.

    Kim van Wijck

    Full Text Available BACKGROUND: Splanchnic hypoperfusion is common in various pathophysiological conditions and often considered to lead to gut dysfunction. While it is known that physiological situations such as physical exercise also result in splanchnic hypoperfusion, the consequences of flow redistribution at the expense of abdominal organs remained to be determined. This study focuses on the effects of splanchnic hypoperfusion on the gut, and the relationship between hypoperfusion, intestinal injury and permeability during physical exercise in healthy men. METHODS AND FINDINGS: Healthy men cycled for 60 minutes at 70% of maximum workload capacity. Splanchnic hypoperfusion was assessed using gastric tonometry. Blood, sampled every 10 minutes, was analyzed for enterocyte damage parameters (intestinal fatty acid binding protein (I-FABP and ileal bile acid binding protein (I-BABP. Changes in intestinal permeability were assessed using sugar probes. Furthermore, liver and renal parameters were assessed. Splanchnic perfusion rapidly decreased during exercise, reflected by increased gap(g-apCO(2 from -0.85±0.15 to 0.85±0.42 kPa (p<0.001. Hypoperfusion increased plasma I-FABP (615±118 vs. 309±46 pg/ml, p<0.001 and I-BABP (14.30±2.20 vs. 5.06±1.27 ng/ml, p<0.001, and hypoperfusion correlated significantly with this small intestinal damage (r(S = 0.59; p<0.001. Last of all, plasma analysis revealed an increase in small intestinal permeability after exercise (p<0.001, which correlated with intestinal injury (r(S = 0.50; p<0.001. Liver parameters, but not renal parameters were elevated. CONCLUSIONS: Exercise-induced splanchnic hypoperfusion results in quantifiable small intestinal injury. Importantly, the extent of intestinal injury correlates with transiently increased small intestinal permeability, indicating gut barrier dysfunction in healthy individuals. These physiological observations increase our knowledge of splanchnic hypoperfusion sequelae, and may

  19. Deficiency of αB crystallin augments ER stress induced apoptosis by enhancing mitochondrial dysfunction

    Dou, Guorui; Sreekumar, Parameswaran G; Spee, Christine; He, Shikun; Ryan, Stephen J.; Kannan, Ram; Hinton, David R.

    2012-01-01

    Endoplasmic reticulum (ER) stress is linked to several pathological conditions including age-related macular degeneration. Excessive ER stress initiates cell death cascades which are mediated, in part, through mitochondrial dysfunction. Here, we identify αB crystallin as an important regulator of ER stress-induced cell death. Retinal pigment epithelial (RPE) cells from αB crystallin (−/−) mice, and human RPE cells transfected with αB crystallin siRNA, are more vulnerable to ER stress induced ...

  20. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats

    Wang, Li-li; Miller, Dori; Wanders, Desiree; Nanayakkara, Gayani; Amin, Rajesh; Judd, Robert; Morrison, Edward E.; Zhong, Ju-ming

    2015-01-01

    Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- a...

  1. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets

    Nielsen, Troels Halfeld; Olsen, N.V.; Toft, P; Nordström, C H

    2013-01-01

    variables related to energy metabolism. METHODS: Mitochondrial dysfunction was induced in piglets and evaluated by monitoring brain tissue oxygen tension (PbtO2 ) and cerebral levels of glucose, lactate, pyruvate, glutamate, and glycerol bilaterally. The biochemical variables were obtained by microdialysis...... insufficient energy metabolism and degradation of cellular membranes, respectively. CONCLUSION: Mitochondrial dysfunction is characterised by an increased LP ratio signifying a shift in cytoplasmatic redox state at normal or elevated PbtO2 . The condition is biochemically characterised by a marked increase in...

  2. C-phycocyanin prevents cisplatin-induced mitochondrial dysfunction and oxidative stress.

    Fernández-Rojas, Berenice; Rodríguez-Rangel, Daniela Sarai; Granados-Castro, Luis Fernando; Negrette-Guzmán, Mario; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Molina-Jijón, Eduardo; Reyes, José L; Zazueta, Cecilia; Pedraza-Chaverri, José

    2015-08-01

    The potential of C-phycocyanin (C-PC) to prevent cisplatin (CP)-induced kidney mitochondrial dysfunction was determined in CD-1 male mice. The CP-induced mitochondrial dysfunction was characterized by ultrastructural abnormalities and by decrease in the following parameters in isolated kidney mitochondria: adenosine diphosphate (ADP)-induced oxygen consumption (state 3), respiratory control ratio, ADP/oxygen (ADP/O) ratio, adenosine triphosphate synthesis, membrane potential, calcium retention, glutathione (GSH) content, and activity of respiratory complex I, aconitase, catalase, and GSH peroxidase. These mitochondria also showed increase in hydrogen peroxide production, malondialdehyde, and 3-nitrotyrosine protein adducts content. The above-described changes, as well as CP-induced nephrotoxicity, were attenuated in mice pretreated with a single injection of C-PC. Our data suggest that the attenuation of mitochondrial abnormalities is involved in the protective effect of C-PC against CP-induced nephrotoxicity. This is the first demonstration that C-PC pretreatment prevents CP-induced mitochondrial dysfunction in mice. PMID:25971372

  3. Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    Jain, Swati; Sharma, Bhupesh

    2016-10-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia. PMID:27262216

  4. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  5. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  6. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid

    Mingyue Zhao; Lihui Lu; Song Lei; Hua Chai; Siyuan Wu; Xiaoju Tang; Qinxue Bao; Li Chen; Wenchao Wu; Xiaojing Liu

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardi...

  7. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs

    Marilisa Molinaro

    2015-01-01

    Full Text Available Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV dysfunction, and heart failure (HF. The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure.

  8. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  9. Early life stress in male mice induces superoxide production and endothelial dysfunction in adulthood.

    Ho, Dao H; Burch, Mariah L; Musall, Benjamin; Musall, Jacqueline B; Hyndman, Kelly A; Pollock, Jennifer S

    2016-05-01

    Early life stress (ELS) is a risk for cardiovascular disease in adulthood although very little mechanistic insight is available. Because oxidative stress and endothelial dysfunction are major contributors to cardiovascular risk, we hypothesized that ELS induces endothelial dysfunction in adult male mice via increased superoxide production. Studies employed a mouse model of ELS, maternal separation with early weaning (MSEW), in which litters were separated from the dam for 4 h/day [postnatal days (PD) 2-5] and 8 h/day (PD6-16), and weaned at PD17. Control litters remained undisturbed until weaning at PD21. When compared with control mice, thoracic aortic rings from adult male MSEW mice displayed significant endothelial dysfunction that was reversed by the superoxide scavenger, polyethylene glycol-superoxide dismutase (PEG-SOD). PEG-SOD-inhibitable superoxide production by aortae from MSEW mice was significantly greater than observed in control aortae, although unaffected by nitric oxide synthase inhibition, suggesting that uncoupled nitric oxide synthase was not responsible for the accelerated superoxide production. Aortic SOD expression, plasma SOD activity, and total antioxidant activity were similar in MSEW and control mice, indicating unaltered antioxidant capacity in MSEW mice. Increased expression of the NADPH oxidase subunits, NOX2 and NOX4, was evident in the aortae of MSEW mice. Moreover, endothelial dysfunction and superoxide production in MSEW mice was reversed with the NADPH oxidase inhibitor, apocynin, indicating increased NADPH oxidase-dependent superoxide production and endothelial dysfunction. The finding that MSEW induces superoxide production and endothelial dysfunction in adult mice may provide a mechanistic link between ELS and adult cardiovascular disease risk. PMID:26921433

  10. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  11. Protective effects of cariporide on endothelial dysfunction induced by high glucose

    Shuang-xi WANG; Xiao-ming XIONG; Tao SONG; Li-ying LIU

    2005-01-01

    Aim: To explore the effects of cariporide, a selective sodium-hydrogen antiporter inhibitor, on endothelial dysfunction induced by high glucose. Methods: Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside (SNP)-induced endothelium-independent relaxation and biochemical parameters including malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) were measured in rat isolated aorta. Results: A 6-h incubation of aortic rings with high glucose (44 mmol/L) resulted in a significant inhibition of EDR, but had no effects on endothelium-independent relaxation. After the 6-h incubation of aortic rings in the co-presence of cariporide (0.01, 0.1, and 1 μmol/L) with high glucose, cariporide prevented the inhibition of EDR caused by high glucose in concentration-dependent manners. Similarly, high glucose decreased SOD activity and contents of NO, and increased MDA concentration in aortic tissue. Cariporide (1 μmol/L) significantly resisted the decrease of NO content and SOD activity, and elevation of MDA concentration caused by high glucose in aortic tissues. Mannitol (44 mmol/L) or cariporide (1 μmol/L) alone had no effect on EDR, endothelium-independent relaxation and biochemical parameters.Conclusion: Cariporide significantly prevented endothelial dysfunction induced by high glucose. The mechanisms of endothelial dysfunction induced by high glucose may involve the activation of sodium-hydrogen antiporter and the generation of oxygen-free radicals, but it is not related to the change of osmolarity.

  12. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil.

    Radovits, Tamás; Arif, Rawa; Bömicke, Timo; Korkmaz, Sevil; Barnucz, Enikő; Karck, Matthias; Merkely, Béla; Szabó, Gábor

    2013-06-15

    Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular

  13. Mitochondrial dysfunction induced by different concentrations of gadolinium ion.

    Zhao, Jie; Zhou, Zhi-Qiang; Jin, Jian-Cheng; Yuan, Lian; He, Huan; Jiang, Feng-Lei; Yang, Xiao-Gang; Dai, Jie; Liu, Yi

    2014-04-01

    Gadolinium-based compounds are the most widely used paramagnetic contrast agents in magnetic resonance imaging on the world. But the tricationic gadolinium ion (Gd(3+)) could induce cell apoptosis probably because of its effects on mitochondria. Until now, the mechanism about how Gd(3+) interacts with mitochondria is not well elucidated. In this work, mitochondrial swelling, collapsed transmembrane potential and decreased membrane fluidity were observed to be important factors for mitochondrial permeability transition pore (mtPTP) opening induced by Gd(3+). The protection effect of CsA (Cyclosporin A) could confirm high concentration of Gd(3+) (500 μM) would trigger mtPTP opening. Moreover, mitochondrial outer membrane breakdown and volume expansion observed clearly by transmission electron microscopy and the release of Cyt c (Cytochrome c) could explain the mtPTP opening from another aspect. In addition, MBM(+) (monobromobimane(+)) and DTT (dithiothreitol) could protect thiol (-SH) groups from oxidation so that the toxicity of Gd(3+) might be resulted from the chelation of -SH of membrane proteins by free Gd(3+). Gd(3+) could inhibit the initiation of mitochondrial membrane lipid peroxidation, so it might interact with anionic lipids too. These findings will highly contribute to the safe applications of Gd-based agents. PMID:24321333

  14. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats

    Kang, Ki-Woon; Kim, Ok-Soon; Chin, Jung Yeon; Kim, Won Ho; Park, Sang Hyun; Choi, Yu Jeong; Shin, Jong Ho; Jung, Kyung Tae; Lim, Do-Seon; Lee, Seong-Kyu

    2015-01-01

    Background Obesity is well-known as a risk factor for heart failure, including diastolic dysfunction. However, this mechanism in high-fat diet (HFD)-induced obese rats remain controversial. The purpose of this study was to investigate whether cardiac dysfunction develops when rats are fed with a HFD for 10 weeks; additionally, we sought to investigate the association between mitochondrial abnormalities, adenosine triphosphate (ATP) levels and cardiac dysfunction. Methods We examined myocardia...

  15. Skin Microcirculatory Dysfunction Induced by 7 Days of Dry Immersion

    Navasiolava, N. M.; Tsvirkun, D. V.; Pastushkova, L. Kh.; Larina, I. M.; Dobrokhotov, I. V.; Fortrat, J. O.; Gharib, G.; Gauquelin-Koch, G.; Custaud, M.-A.

    2008-06-01

    To study the effects of microgravity on the skin microcirculatory function, basal blood flow and stimulated vasodilation were determined at the calf level by laser Doppler flowmetry in 8 male subjects before, during and after 7 days of dry immersion. Endothelium-dependent and - independent vasodilation was assessed using iontophoresis of acetylcholine and sodium nitroprusside, respectively. Basal blood flow was significantly reduced on the third day of immersion (13 ± 1 arbitrary units (AU) vs. 33 ± 8 AU pre-immersion level, p Endothelium dependent vasodilation was significantly decreased on the seventh day of immersion in comparison with pre-immersion values (12 ± 6% vs. 29 ± 6% of max vasodilation, p < 0.05). Our results support the idea that dry immersion induces changes in skin microcirculation with impairment of endothelial functions. Microcirculatory impairment should be considered as an important factor of the cardiovascular deconditioning.

  16. The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid

    Kamel Hamdy H

    2011-05-01

    Full Text Available Abstract Aims This study aimed to examine the effect of high fat diet (HFD to modulate brain dysfunction, and understand the linkages between obesity, metabolic disturbances and the brain oxidative stress (BOS dysfunction and modulation with hydroxyl citric acid of G. Cambogia. Methods Rats were divided into 3 groups; 1st control, maintained on standard normal rat chow diet, 2nd HFD, maintained on high fat diet along 12 week and 3rd HFD+G, administered G. Cambogia for 4 weeks and each group include 8 rats. Blood, brain and abdominal fat were collected for biochemical measurements. Results HFD group showed significant increase in energy intake, final BW and BW gain. Also significant increase in weight of abdominal fat in HFD group. HFD induce metabolic disturbance through increasing the lipid profile (LDL, TG, TC, γGT and α-amylase activity, uric acid level and hyperglycemia, while decreasing creatine kinase (CK activity. These changes associated with lowering in brain nitric oxide (NO level and rising in serum butyrylcholinesterase (BChE, brain catalase activity and MDA levels as oxidative stress markers. These alterations improved by G. Cambogia that decrease BOS and increased NO level. Conclusions Rats fed HFD showed, metabolic disturbances produce hyperglycemia, hypertriglyceridemia, hypercholesterolemia and increased LDL associated with increased BOS. Involvement of BuChE, NO and oxidative stress associated with metabolic disturbances in the pathophysiological progression in brain, suggesting association between obesity, metabolic disorders and brain alteration while, using G. Cambogia, ameliorate the damaging effects of the HFD via lowering feed intake and BOS.

  17. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid-Role of HMG-CoA reductase.

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Raja, Boobalan; Chatterjee, Suvro

    2016-04-15

    The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations. PMID:26945821

  18. Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction.

    Toral, Marta; Romero, Miguel; Jiménez, Rosario; Mahmoud, Ayman Moawad; Barroso, Emma; Gómez-Guzmán, Manuel; Sánchez, Manuel; Cogolludo, Ángel; García-Redondo, Ana B; Briones, Ana M; Vázquez-Carrera, Manuel; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2015-11-01

    Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition. PMID:26253087

  19. Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit.

    Vignozzi, Linda; Filippi, Sandra; Comeglio, Paolo; Cellai, Ilaria; Sarchielli, Erica; Morelli, Annamaria; Rastrelli, Giulia; Maneschi, Elena; Galli, Andrea; Vannelli, Gabriella Barbara; Saad, Farid; Mannucci, Edoardo; Adorini, Luciano; Maggi, Mario

    2014-03-25

    A pathogenic link between erectile dysfunction (ED) and metabolic syndrome (MetS) is now well established. Nonalcoholic steatohepatitis (NASH), the hepatic hallmark of MetS, is regarded as an active player in the pathogenesis of MetS-associated cardiovascular disease (CVD). This study was aimed at evaluating the relationship between MetS-induced NASH and penile dysfunction. We used a non-genomic, high fat diet (HFD)-induced, rabbit model of MetS, and treated HFD rabbits with testosterone (T), with the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA), or with the anti-TNFα mAb infliximab. Rabbits fed a regular diet were used as controls. Liver histomorphological and gene expression analysis demonstrated NASH in HFD rabbits. Several genes related to inflammation (including TNFα), activation of stellate cells, fibrosis, and lipid metabolism parameters were negatively associated to maximal acetylcholine (Ach)-induced relaxation in penis. When all these putative liver determinants of penile Ach responsiveness were tested as covariates in a multivariate model, only the association between hepatic TNFα expression and Ach response was confirmed. Accordingly, circulating levels of TNFα were increased 15-fold in HFD rabbits. T and OCA dosing in HFD rabbits both reduced TNFα liver expression and plasma levels, with a parallel increase of penile eNOS expression and responsiveness to Ach. Also neutralization of TNFα with infliximab treatment fully normalized HFD-induced hypo-responsiveness to Ach, as well as responsiveness to vardenafil, a phosphodiesterase type 5 inhibitor. Thus, MetS-induced NASH in HFD rabbits plays an active role in the pathogenesis of ED, likely through TNFα, as indicated by treatments reducing liver and circulating TNFα levels (T or OCA), or neutralizing TNFα action (infliximab), which significantly improve penile responsiveness to Ach in HFD rabbits. PMID:24486698

  20. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Stevie Struiksma

    2009-06-01

    Full Text Available Background: Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods: Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results: HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions: Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein.

  1. Protective effect of ginseng against gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats

    Mansour, Heba Hosny

    2013-01-01

    This study investigated the potential protective effects of ginseng on gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats. Twenty four male albino rats were divided into four groups. In the control group, rats were administered vehicle by tube for 7 consecutive days. The second group was administered ginseng extract (100 mg/kg, by gavage) for 7 consecutive days. Animals in the third group were administered vehicle by tube for 7 consecutive days, then exposed to sin...

  2. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction

    Sollanek, Kurt J.; Smuder, Ashley J.; Wiggs, Michael P; Morton, Aaron B.; Koch, Lauren G.; Britton, Steven L.; Powers, Scott K.

    2015-01-01

    Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed “ventilator-induced diaphragm dysfunction” (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested th...

  3. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced super...

  4. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction

    Azevedo, Luciano Cesar Pontes; Janiszewski, Mariano; Pontieri, Vera; Pedro, Marcelo de Almeida; Bassi, Estevão; Tucci, Paulo José Ferreira; Laurindo, Francisco Rafael Martins

    2007-01-01

    Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with se...

  5. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction

    Murdoch, Colin E.; Alom-Ruiz, Sara P.; Wang, Minshu; Zhang, Min; Walker, Simon; Yu, Bin; Brewer, Alison; Shah, Ajay M.

    2011-01-01

    NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 ...

  6. Uncomplicated mechanically induced pelvic pain and organic dysfunction in low back pain patients

    Browning, James E.

    1991-01-01

    Mechanical disorders of the lumbar spine have been given much attention in the literature. Short of an acute cauda equina syndrome, few reports exist detailing the findings and clinical course of patients with pelvic and disorders of bladder, bowel and gynecologic/sexual function of spinal origin. Two uncomplicated representative cases of mechanically induced pelvic pain and organic dysfunction (PPOD) in patients presenting with low back pain are detailed. These patients typically reveal a wi...

  7. Acute and Chronic Altitude-Induced Cognitive Dysfunction in Children and Adolescents.

    Rimoldi S.F.; Rexhaj E.; Duplain H.; Urben S.; Billieux J.; Allemann Y.; Romero C.; Ayaviri A.; Salinas C.; Villena M.; Scherrer U.; Sartori C.

    2016-01-01

    OBJECTIVE: To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN: We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized Eu...

  8. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  9. Impact of Mannose-Binding Lectin Deficiency on Radiocontrast-Induced Renal Dysfunction

    Michael Osthoff

    2013-01-01

    Full Text Available Contrast-induced nephropathy (CIN is the third leading cause of acute renal failure in hospitalized patients. Endothelial dysfunction, renal medullary ischemia, and tubular toxicity are regarded as the most important factors in the pathogenesis of CIN. Mannose-binding lectin (MBL, a pattern recognition protein of the lectin pathway of complement, has been found to aggravate and mediate tissue damage during experimental renal ischemia/reperfusion (I/R injury which was alleviated by inhibition with C1 inhibitor, a potent MBL, and lectin pathway inhibitor. In this paper, we highlight the potential role of MBL in the pathogenesis of human CIN. In experimental I/R models, MBL was previously found to induce tubular cell death independent of the complement system. In addition, after binding to vascular endothelial cells, MBL and its associated serine proteases were able to trigger a proinflammatory reaction and contribute to endothelial dysfunction. In humans, urinary MBL was increased after administration of contrast media and in individuals with CIN. Moreover, individuals with normal/high MBL levels were at increased risk to develop radiocontrast-induced renal dysfunction. Hence, MBL and the lectin pathway seem to be a promising target given that a licensed, powerful, human recombinant inhibitor exits to be added to the scarce armamentarium currently available for prophylaxis of CIN.

  10. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  11. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  12. Effects of genistein on cognitive dysfunction and hippocampal synaptic plasticity impairment in an ovariectomized rat kainic acid model of seizure.

    Khodamoradi, Mehdi; Asadi-Shekaari, Majid; Esmaeili-Mahani, Saeed; Esmaeilpour, Khadije; Sheibani, Vahid

    2016-09-01

    The major objective of this study was to investigate the probable effects of genistein (one of the most important soy phytoestrogens-SPEs) on seizure-induced cognitive dysfunction, hippocampal early long-term potentiation (E-LTP) impairment and morphological damage to CA1 neurons in ovariectomized (OVX) rats. Three weeks after ovariectomy, cannulae were implanted over the left lateral ventricle. After a 7-day recovery period, animals were injected by genistein (0.5 or 5mg/kg) or vehicle during four consecutive days, each 24h. One h after the last treatment, kainic acid (KA) or vehicle was perfused into the left lateral ventricle to induce generalized tonic-clonic seizures. Finally, 7 days later, spatial learning and memory of animals were examined using the Morris water maze (MWM) task, hippocampal E-LTP was assessed using in-vivo field potential recordings and the morphology of hippocampal CA1 area was examined using Fluoro-Jade C staining. KA-induced generalized seizures resulted in spatial learning and memory impairment, E-LTP deficit and CA1 cell injury. Seizure-induced abnormalities improved partially only by the lower dose of genistein (0.5mg/kg). However, genistein at the higher dose (5mg/kg) did not have any beneficial effects. Also, genistein did not affect seizure activity. It is concluded that genistein may have partially preventive effects against seizure-induced cognitive impairment in OVX rats. Also, it seems that such effects of genistein are correlated with its beneficial effects on hippocampal synaptic plasticity and morphology. PMID:27235295

  13. Successful treatment for sorafenib-induced liver dysfunction: a report of case with liver biopsy.

    Kuroda, Daisuke; Hayashi, Hiromitsu; Nitta, Hidetoshi; Imai, Katsunori; Abe, Shinya; Hashimoto, Daisuke; Chikamoto, Akira; Ishiko, Takatoshi; Beppu, Toru; Baba, Hideo

    2016-12-01

    Sorafenib is an oral multikinase inhibitor with anti-proliferative and anti-angiogenic effects and is used worldwide for the treatment of advanced or metastatic hepatocellular carcinoma (HCC). While the significant survival benefit of sorafenib in patients with advanced HCC was demonstrated, various treatment-related adverse events might happen. Of them, the incidence of drug-related severe liver dysfunction rarely occurs (liver dysfunction (T-Bil 28.6 mg/dL, AST 1611 IU/L, ALT 1098 IU/L) 2 months later even without either intrahepatic viable HCC or hepatitis B virus (HBV) reactivation. Then, the liver dysfunction was improved following aggressive treatment using hyperbaric oxygen. A liver biopsy demonstrated cholestasis, degeneration, and necrosis in hepatocytes with lymphocyte infiltration. Thus, sorafenib rarely can induce liver dysfunction characterized by cholestatic and hepatocellular injury types, and it could be a fatal event. Clinicians should pay attention to any increase in the liver enzymes in these patients. PMID:26943680

  14. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway.

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5±1.2μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway. PMID:27294548

  15. Valproic acid induced pancreatitis: a case report

    Bhupen Barman

    2014-08-01

    Full Text Available Valproic acid is a commonly used antiepileptic drug. Apart from its common side effect there is definite association between valproic acid therapy and acute pancreatitis. Since 1979, many cases of acute pancreatitis induced by valproic acid have been published in medical literature. Here we are reporting a case of valproic acid induced acute pancreatitis in a 27 years old boy. The treatment is supportive, re-challenge is hazardous and should be avoided. [Int J Res Med Sci 2014; 2(4.000: 1765-1767

  16. Macrophage migration inhibitory factor inhibition is deleterious for high-fat diet-induced cardiac dysfunction.

    Aurore Palud

    Full Text Available AIMS: Development of metabolic syndrome is associated with impaired cardiac performance, mitochondrial dysfunction and pro-inflammatory cytokine increase, such as the macrophage migration inhibitory factor MIF. Depending on conditions, MIF may exert both beneficial and deleterious effects on the myocardium. Therefore, we tested whether pharmacological inhibition of MIF prevented or worsened metabolic syndrome-induced myocardial dysfunction. METHODS AND RESULTS: C57BL/6J mice were fed for ten weeks with 60% fat-enriched diet (HFD or normal diet (ND. MIF inhibition was obtained by injecting mice twice a week with ISO-1, for three consecutive weeks. Then, triglycerides, cholesterol, fat mass, glucose intolerance, insulin resistance, ex vivo cardiac contractility, animal energetic substrate utilization assessed by indirect calorimetry and mitochondrial respiration and biogenesis were evaluated. HFD led to fat mass increase, dyslipidemia, glucose intolerance and insulin resistance. ISO-1 did not alter these parameters. However, MIF inhibition was responsible for HFD-induced cardiac dysfunction worsening. Mouse capacity to increase oxygen consumption in response to exercise was reduced in HFD compared to ND, and further diminished in ISO-1-treated HFD group. Mitochondrial respiration was reduced in HFD mice, treated or not with ISO-1. Compared to ND, mitochondrial biogenesis signaling was upregulated in the HFD as demonstrated by mitochondrial DNA amount and PGC-1α expression. However, this increase in biogenesis was blocked by ISO-1 treatment. CONCLUSION: MIF inhibition achieved by ISO-1 was responsible for a reduction in HFD-induced mitochondrial biogenesis signaling that could explain majored cardiac dysfunction observed in HFD mice treated with MIF inhibitor.

  17. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. PMID

  18. Inhibition of zymosan-induced kidney dysfunction by tyrphostin AG-490

    Saso Luciano; Shalova Irina; Gyurkovska Valeriya; Dimitrova Petya; Ivanovska Nina

    2009-01-01

    Abstract Background Zymosan-induced shock has been associated with an increased production of pro-inflammatory cytokines and mediators, causing a generalized dysfunction of liver, lung and kidneys. Herein, we investigate the effects of tyrphostin AG-490 on the early inflammation and on the late renal injury provoked by zymosan injection. Methods Shock was induced by intraperitoneal injection of zymosan in a dose of 0.8–1.0 mg/g body weight in BALB/c mice and 0.8 mg/g body weight in SCID mice....

  19. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  20. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  1. Correlation of Flicker-Induced and Flow-Mediated Vasodilatation in Patients With Endothelial Dysfunction and Healthy Volunteers

    Pemp, Berthold; Weigert, Günther; Karl, Katharina; Petzl, Ursula; Wolzt, Michael; Schmetterer, Leopold; Garhofer, Gerhard

    2009-01-01

    OBJECTIVE Flicker-induced vasodilatation is reduced in patients with vascular-related diseases, which has at least partially been attributed to endothelial dysfunction of retinal vessels. Currently, the standard method to assess endothelial function in vivo is flow-mediated vasodilatation (FMD). Thus, the present study was performed to investigate whether a correlation exists between flicker-induced vasodilatation and FMD in patients with known endothelial dysfunction and healthy subjects. RE...

  2. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  3. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression.

    Tang, Ming-Ming; Lin, Wen-Juan; Pan, Yu-Qin; Guan, Xi-Ting; Li, Ying-Cong

    2016-07-01

    Our previous work found that triple central lipopolysaccharide (LPS) administration could induce depressive-like behaviors and increased central pro-inflammatory cytokines mRNA, hippocampal cytokine mRNA in particular. Since several neuroinflammation-associated conditions have been reported to impair neurogenesis, in this study, we further investigated whether the neuroinflammation induced depression would be associated with hippocampal neurogenesis dysfunction. An animal model of depression induced by triple central lipopolysaccharide (LPS) administration was used. In the hippocampus, the neuroinflammatory state evoked by LPS was marked by an increased production of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. It was found that rats in the neuroinflammatory state exhibited depressive-like behaviors, including reduced saccharin preference and locomotor activity as well as increased immobility time in the tail suspension test and latency to feed in the novelty suppressed feeding test. Adult hippocampal neurogenesis was concomitantly inhibited, including decreased cell proliferation and newborn cell survival. We also demonstrated that the decreased hippocampal neurogenesis in cell proliferation was significantly correlated with the depressive-like phenotypes of decreased saccharine preference and distance travelled, the core and characteristic symptoms of depression, under neuro inflammation state. These findings provide the first evidence that hippocampal neurogenesis dysfunction is correlated with neuroinflammation-induced depression, which suggests that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neruoinflammation. PMID:27106565

  4. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease. PMID:27001668

  5. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  6. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment

    Hala Ahmadieh

    2013-01-01

    Full Text Available Tyrosine kinase inhibitors (TKI belong to a new class of molecular multitargeted anticancer therapy which targets different growth factor receptors and hence attenuates cancer cell survival and growth. Since their introduction as adjunct treatment for renal cell carcinoma and gastrointestinal stromal tumors (GIST, a number of reports have demonstrated that TKI can induce thyroid dysfunction which was especially more common with sunitinib maleate. Many mechanisms with respect to this adverse effect of tyrosine kinase inhibitors have been proposed including their induction of thyroiditis, capillary regression in the thyroid gland, antithyroid peroxidase antibody production, and their ability to decrease iodine uptake by the thyroid gland. Of interest is the observation that TKI-induced thyroid dysfunction may actually be protective as it was shown to improve overall survival, and it was suggested that it may have a prognostic value. Followup on thyroid function tests while patients are maintained on tyrosine kinase inhibitor is strongly recommended. When thyroid dysfunction occurs, appropriate treatment should be individualized depending on patients symptoms and thyroid stimulating hormone level.

  7. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system. PMID:25976368

  8. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain

    Chrissobolis, Sophocles; Banfi, Botond; Sobey, Christopher G.

    2012-01-01

    Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg−1·day−1 for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2−/y) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1+/y) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1−/y) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2−/y mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1. PMID:22628375

  9. Bile acids in radiation-induced diarrhea

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  10. Nifedipine prevents sodium caprate-induced barrier dysfunction in human epidermal keratinocyte cultures.

    Uchino, Yoshihiro; Matsumoto, Junichi; Watanabe, Takuya; Hamabashiri, Masato; Tsuchiya, Takashi; Kimura, Ikuya; Yamauchi, Atsushi; Kataoka, Yasufumi

    2015-01-01

    Tight junctions (TJs) of the epidermis play an important role in maintaining the epidermal barrier. TJ breakdown is associated with skin problems, such as wrinkles and transepidermal water loss (TEWL). Clinical studies have reported that topical nifedipine is effective in reducing the depth of wrinkles and improving TEWL. However, it remains unknown whether nifedipine influences the TJ function in the epidermis. In the present study, we investigated the effect of nifedipine on epidermal barrier dysfunction in normal human epidermal keratinocytes (NHEKs) treated with sodium caprate (C10), a TJ inhibitor. Nifedipine reversed the C10-decreased transepithelial electrical resistance values as a measure of disruption of the epidermal barrier. Immunocytochemical observations revealed that nifedipine improved the C10-induced irregular arrangement of claudin-1, a key protein in TJs. Taken together, these findings suggest that nifedipine prevents epidermal barrier dysfunction, at least in part, by reconstituting the irregular claudin-1 localization at TJs in C10-treated NHEKs. PMID:26027835

  11. Hyaluronic Acid Inhibits Polycation Induced Cellular Responses

    lalenti, A.; Lanaro, A.; Brignola, G.; Marotta, P; Di Rosa, M.

    1994-01-01

    Positively charged macromolecules cause a variety of pathological events through their electrostatic interaction with anionic sites present on the membrane of target cells. In the present study we have investigated the effect of hyaluronic acid, a negatively charged molecule, on rat paw oedema induced by poly-L-lysine as well as on histamine release from rat mast cells and nitric oxide formation from rabbit aorta, both induced by this polycation. The results indicate that hyaluronic acid is a...

  12. Protective effect of Phyllanthus fraternus against bromobenzene-induced mitochondrial dysfunction in rat kidney

    Vadde Ramakrishna; Sriram Gopi; Oruganti H.Setty

    2012-01-01

    Phyllanthus fraternus (PF) (Euphorbiaceae) is used in ancient Indian traditional phytomedicine to treat various human diseases including hepatic and renal disorders.The present study was designed to investigate the protective effect of PF aqueous extract against bromobenzene-induced mitochondrial dysfunction in rat kidney,compared with vitamin E used as positive control.Male Wistar rats divided into six (A-F) groups and the experimental animals were administered bromobenzene with or without prior administration of PF extract or vitamin E.Animals were sacrificed and the kidneys obtained for studying mitochondrial function and histopathology.Administration of bromobenzene caused significant changes,including decrease in the mitochondrial respiration and P/O ratios,an increase in lipid peroxidation and protein oxidation,and a decrease in the activities of antioxidant enzymes (catalase,superoxide dismutase,glutathione reductase,and glutathione peroxidase) in mitochondria with significant histopathological changes in the kidney.However,prior administration of the PF extract showed significant protection against bromobenzene induced renal damage by reversing all above parameters.Mitochondrial dysfunction induced by bromobenzene was protected much better with the PF extract than with vitamin E.These results suggested that the Phyllanthus fraternus extract is an efficient armament against nephrotoxicity induced by bromobenzene.

  13. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7).

    Sigurta', Anna; Zambelli, Vanessa; Bellani, Giacomo

    2016-09-01

    Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its

  14. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  15. Effects of prone and supine position on oxygenation and inflammatory mediator in a hydrochloric acid-induced lung dysfunction in rats Efeitos da posição prona e supina na oxigenação e mediador inflamatório na disfunção pulmonar induzida por ácido clorídrico em ratos

    Wagner Rogério Souza de Oliveira

    2008-10-01

    Full Text Available PURPOSE: To compare the effectiveness of mechanical ventilation of supine versus prone position in hydrochloric acid (HCl-induced lung dysfunction. METHODS: Twenty, adult, male, Wistar-EPM-1 rats were anesthetized and randomly grouped (n=5 animals per group as follows: CS-MV (mechanical ventilation in supine position; CP-MV (mechanical ventilation in prone position; bilateral instillation of HCl and mechanical ventilation in supine position (HCl+S; and bilateral instillation of HCl and mechanical ventilation in prone position (HCl+P. All groups were ventilated for 180 minutes. The blood partial pressures of oxygen and carbon dioxide were measured in the time points 0 (zero; 10 minutes before lung injury for stabilization, and at the end of times acid injury, 60, 120 and 180 minutes of mechanical ventilation. At the end of experiment the animals were euthanized, and bronchoalveolar lavages (BALs were taken to determine the contents of total proteins, inflammatory mediators, and lungs wet-to-dry ratios. RESULTS: In the HCl+P group the partial pressure of oxygen increased when compared with HCl+S (128.0±2.9 mmHg and 111.0±6.7 mmHg, respectively within 60 minutes. TNF-α levels in BAL do not differ significantly in the HCl+P group (516.0±5.9 pg/mL, and the HCl+S (513.0±10.6 pg/mL. CONCLUSION: The use of prone position improved oxygenation, but did not reduce TNF-α in BAL upon lung dysfunction induced by HCl.OBJETIVO: Comparar os efeitos da ventilação mecânica em posição prona versus supina na disfunção pulmonar induzida por ácido clorídrico (HCl. MÉTODOS: Vinte ratos, adultos, Wistar-EPM-1 foram anestesiados e distribuídos aleatoriamente em grupos (n=5 animais por grupo: CS-MV (controle, ventilado mecanicamente em posição supina; CP-MV (controle, ventilado mecanicamente em posição prona; instilação bilateral de HCl e ventilação mecânica em posição supina (HCl+S ou ventilação em posição prona (HCl+P. Todos os grupos

  16. Reversal of statin-induced memory dysfunction by co-enzyme Q10: a case report

    Okeahialam BN

    2015-11-01

    Full Text Available Basil N Okeahialam Cardiology Sub-Unit 1, Department of Medicine, Jos University Teaching Hospital, Jos, Nigeria Abstract: Statins are useful in the armamentarium of the clinician dealing with dyslipidemia, which increases cardiovascular morbi-mortality in hypertensive and diabetic patients among others. Dyslipidemia commonly exists as a comorbidity factor in the development of atherosclerotic cardiovascular disease. Use of statins is however associated with side effects which at times are so disabling as to interfere with activities of daily living. There are various ways of dealing with this, including use of more water-soluble varieties, intermittent dosing, or use of statin alternatives. Of late, use of co-enzyme Q10 has become acceptable for the muscle side effects. Only one report of any benefit on the rarely reported memory side effect was encountered by the author in the search of English medical literature. This is a report of a documented case of a Nigerian woman with history of statin intolerance in this case, memory dysfunction despite persisting dyslipidemia comorbidity. Her memory dysfunction side effect which interfered with activities of daily living and background muscle pain cleared when coenzyme Q10 was administered alongside low dose statin. Her lipid profile normalized and has remained normal. It is being recommended for use when statin side effects (muscle- and memory-related impair quality of life and leave patient at dyslipidemia-induced cardiovascular morbi-mortality. Keywords: statin, memory dysfunction, co-enzyme Q10, improvement

  17. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    Nélson R Carvalho

    Full Text Available The acute liver failure (ALF induced by acetaminophen (APAP is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe2 to the N-acetylcysteine (NAC during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg, (PhSe2 (15.6 mg/kg, NAC (1200 mg/kg, APAP+(PhSe2 or APAP+NAC, where the (PhSe2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe2. The effectiveness of (PhSe2 was similar at a lower dose than NAC. In summary, (PhSe2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.

  18. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    Chung-Hsi Hsing

    2015-01-01

    Full Text Available Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs modulate cytokine synthesis and release. Trichostatin A (TSA, an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS- induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p. injected with vehicle or TSA (0.3 mg/kg. One hour later, they were injected (i.p. with saline or Escherichia coli LPS (1 mg/kg. We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO, TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression.

  19. Transition from Cyclosporine-Induced Renal Dysfunction to Nephrotoxicity in an in Vivo Rat Model

    José Sereno

    2014-05-01

    Full Text Available Cyclosporin A (CsA, a calcineurin inhibitor, remain the cornerstone of immunosuppressive regimens, regardless of nephrotoxicity, which depends on the duration of drug exposure. The mechanisms and biomarkers underlying the transition from CsA-induced renal dysfunction to nephrotoxicity deserve better elucidation, and would help clinical decisions. This study aimed to clarify these issues, using a rat model of short- and long-term CsA (5 mg/kg bw/day treatments (3 and 9 weeks, respectively. Renal function was assessed on serum and urine; kidney tissue was used for histopathological characterization and gene and/or protein expression of markers of proliferation, fibrosis and inflammation. In the short-term, creatinine and blood urea nitrogen (BUN levels increased and clearances decreased, accompanied by glomerular filtration rate (GFR reduction, but without kidney lesions; at that stage, CsA exposure induced proliferating cell nuclear antigen (PCNA, transforming growth factor beta 1 (TGF-β1, factor nuclear kappa B (NF-κβ and Tumor Protein P53 (TP53 kidney mRNA up-regulation. In the long-term treatment, renal dysfunction data was accompanied by glomerular and tubulointerstitial lesions, with remarkable kidney mRNA up-regulation of the mammalian target of rapamycin (mTOR and the antigen identified by monoclonal antibody Ki-67 (Mki67, accompanied by mTOR protein overexpression. Transition from CsA-induced renal dysfunction to nephrotoxicity is accompanied by modification of molecular mechanisms and biomarkers, being mTOR one of the key players for kidney lesion evolution, thus suggesting, by mean of molecular evidences, that early CsA replacement by mTOR inhibitors is indeed the better therapeutic choice to prevent chronic allograft nephropathy.

  20.  The Effect of Amantadine on Clomipramine Induced Sexual Dysfunction in Male Rats

    K Kumar Eswar

    2011-11-01

    Full Text Available  Objective: Several studies have reported that Clomipramine has the ability to suppress male rat sexual behavior. Literature indicatesthat the activation of brain D2 receptors causes facilitation of penile erection, and a number of reports have indicated dopamine’s involvement in sexual function. Hence this study was undertaken to investigate the effect of Amantadine, a dopamine agonists on the Clomipramine induced sexual dysfunction. Methods: The study subjects involved a total of 48 males and 48 females, 4 months old Sprague-Dawley albino rats, all housed in a group of six males and females separately in plexi glass cages in an acclimatized colony room (25±0.50C maintained on a 12/12 hr light/dark cycle. The male rats were randomly divided into four groups of 12 male rats each. Group I served as controls. Group II, III, and IV were treated with Amantadine (9 mg/kg body weight, p.o 30 min, prior to the treatment with 13.5 mg/kg, 27 mg/Kg and 54 mg/Kg bodyweight p.o of Clomipramine respectively for 60 days. The control group received vehicle 1 ml/kg p.o. The sexual behavior of the male rats was observed to determine the following parameters: mount latency, intromission latency, ejaculation latency, post ejaculatory pause, and intromission frequency. As well as the sexual behavior; serum testosterone and histopathology of the testes were also investigated in this study. Results: The results indicate that Amantadine in all aspects failed to antagonize Clomipramine induced sexual dysfunction in male rats. Even the sexual competence of male rats treated with 1/2 therapeutic dose (TD of Clomipramine failed to regain their sexual competence in the presence of Amantadine. Testicular damage and decline in testosterone levels continued in the presence of Amantadine. Conclusion: Overall, the results suggest that Amantadine could not be a safe antidote to antagonize Clomipramine induced sexual dysfunction.

  1. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by Sargassum echinocarpum extract

    Muhamad Firdaus

    2010-02-01

    Full Text Available Aim This study aimed to elicit the protective effect of Sargassum echinocarpum extract on endothelial dysfunction in thoracic aorta of streptozotocin-induced diabetic rats.Methods The animals were divided into 5 groups. The first was normal, the second was diabetic non treated animals. The third to fifth groups were the diabetic animals which given Sargassum echinocarpum extract (150; 300, and 450 mg kg-1 body weight, respectively by oral gavage and extract treatment was given for 12 weeks. Diabetes was induced by single administration of streptozotocin (45 mg kg-1, i.p., dissolved in freshly prepared 0.1 M citrate buffer, pH 4.5. Diabetes was confirmed ten days latter in streptozotocin induced animals showing blood glucose levels > 200 mg dL-1 (11.1 mmol L-1 as monitored in the blood from tail vein using glucometer. After the treatment period, the blood serum acquired was used for antioxidant enzymes assays and the thoracic aorta was used for vasorelaxation assay.Results There was a significant decrease in the activity of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-px in diabetic rats (3.31 ± 0.12;67.17 ± 0.62;35.10 ± 0.83 comaped to control rats (9.97 ± 0.12;185.31 ± 0.23;116.38 ± 0.88. Administration of Sargassum extract increased the activity of SOD, CAT, and GSH-px. The diabetic rats exhibit endothelial dysfunction as shown by loss of vasodilatory response to acethylcholine (ACH. This was restored by administration of Sargassum extract.Conclusion Sargassum echinocarpum extract ameliorates oxidative stress and reverses the endothelial dysfunction associated with diabetes. This effect appears to be due to its antioxidant properties. (Med J Indones 2010; 19:32-5Keywords: oxidative stress, sargassum echinocarpum, endothelium dependent relaxation, thoracic aorta

  2. The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid

    Kamel Hamdy H; Amin Kamal A; Abd Eltawab Mohamed A

    2011-01-01

    Abstract Aims This study aimed to examine the effect of high fat diet (HFD) to modulate brain dysfunction, and understand the linkages between obesity, metabolic disturbances and the brain oxidative stress (BOS) dysfunction and modulation with hydroxyl citric acid of G. Cambogia. Methods Rats were divided into 3 groups; 1st control, maintained on standard normal rat chow diet, 2nd HFD, maintained on high fat diet along 12 week and 3rd HFD+G, administered G. Cambogia for 4 weeks and each group...

  3. Omeprazole induces altered bile acid metabolism

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  4. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes.

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. PMID:27095095

  5. The JAK–STAT Pathway Is Critical in Ventilator-Induced Diaphragm Dysfunction

    Tang, Huibin; Smith, Ira J; Hussain, Sabah NA; Goldberg, Peter; Lee, Myung; Sugiarto, Sista; Godinez, Guillermo L; Singh, Baljit K; Payan, Donald G; Rando, Thomas A; Kinsella, Todd M; Shrager, Joseph B

    2014-01-01

    Mechanical ventilation (MV) is one of the lynchpins of modern intensive-care medicine and is life saving in many critically ill patients. Continuous ventilator support, however, results in ventilation-induced diaphragm dysfunction (VIDD) that likely prolongs patients’ need for MV and thereby leads to major associated complications and avoidable intensive care unit (ICU) deaths. Oxidative stress is a key pathogenic event in the development of VIDD, but its regulation remains largely undefined. We report here that the JAK–STAT pathway is activated in MV in the human diaphragm, as evidenced by significantly increased phosphorylation of JAK and STAT. Blockage of the JAK–STAT pathway by a JAK inhibitor in a rat MV model prevents diaphragm muscle contractile dysfunction (by ~85%, p < 0.01). We further demonstrate that activated STAT3 compromises mitochondrial function and induces oxidative stress in vivo, and, interestingly, that oxidative stress also activates JAK–STAT. Inhibition of JAK–STAT prevents oxidative stress-induced protein oxidation and polyubiquitination and recovers mitochondrial function in cultured muscle cells. Therefore, in ventilated diaphragm muscle, activation of JAK–STAT is critical in regulating oxidative stress and is thereby central to the downstream pathogenesis of clinical VIDD. These findings establish the molecular basis for the therapeutic promise of JAK–STAT inhibitors in ventilated ICU patients. PMID:25286450

  6. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration.

    Xu, Wei; Weissmiller, April M; White, Joseph A; Fang, Fang; Wang, Xinyi; Wu, Yiwen; Pearn, Matthew L; Zhao, Xiaobei; Sawa, Mariko; Chen, Shengdi; Gunawardena, Shermali; Ding, Jianqing; Mobley, William C; Wu, Chengbiao

    2016-05-01

    The endosome/lysosome pathway is disrupted early in the course of both Alzheimer's disease (AD) and Down syndrome (DS); however, it is not clear how dysfunction in this pathway influences the development of these diseases. Herein, we explored the cellular and molecular mechanisms by which endosomal dysfunction contributes to the pathogenesis of AD and DS. We determined that full-length amyloid precursor protein (APP) and its β-C-terminal fragment (β-CTF) act though increased activation of Rab5 to cause enlargement of early endosomes and to disrupt retrograde axonal trafficking of nerve growth factor (NGF) signals. The functional impacts of APP and its various products were investigated in PC12 cells, cultured rat basal forebrain cholinergic neurons (BFCNs), and BFCNs from a mouse model of DS. We found that the full-length wild-type APP (APPWT) and β-CTF both induced endosomal enlargement and disrupted NGF signaling and axonal trafficking. β-CTF alone induced atrophy of BFCNs that was rescued by the dominant-negative Rab5 mutant, Rab5S34N. Moreover, expression of a dominant-negative Rab5 construct markedly reduced APP-induced axonal blockage in Drosophila. Therefore, increased APP and/or β-CTF impact the endocytic pathway to disrupt NGF trafficking and signaling, resulting in trophic deficits in BFCNs. Our data strongly support the emerging concept that dysregulation of Rab5 activity contributes importantly to early pathogenesis of AD and DS. PMID:27064279

  7. Study on acid- base disturbance in patients with posttraumatic multiple organ dysfunction syndrome

    2000-01-01

    Objective: To investigate the classification and incidence of acid-base disturbance (ABD) in the patients with post-traumatic multiple organ dysfunction syndrome (MODS). Methods: A total of 119 patients with MODS were examined with arterial blood gas analysis and serum electrolytes detection for 675 times in this study. Results: Different types of ABD existed in 647 times out of 675 times (95.9%) of blood-gas analyses. There were 270 times (41.7%) of simple ABD, 271 times (41.9%) of double ABD and 106 times (16.4%) of triple ABD. Among which, 404 times (62.4%) were in respiratory alkalosis (RAL), 332 times (51.3%) in metabolic acidosis (MA), 227 times (35.1% ) in metabolic alkalosis (MAL) and 167 times (25.8%) in respiratory acidosis (RA). In this study, 79 cases (66.4%) out of 119cases with MODS died from these kinds of ABD. Conclusions: It suggests that in the early stage of MODS, RAL with or without hypoxemia may exist, and later on, MA or even triple ABD may occur. In order to detect and correct the primary disorders as early as possible, it is important to keep the balance of hydrolyte. The treatment of primary diseases is also important.Disorders of acid-base balance were corrected according to pH standard values, anion gap (AG) and the potential [HCO3- ] were also calculated simultaneously. When pH was more than 7.50 or lower than 7.20, it is necessary to give drugs of acidity or alkalinity to the patients with ABD to maintain pH value within a normal range.

  8. Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats

    Rats were sacrificed 2 mo after a single dose of 10-30 Gy of /sup 60/Co gamma rays delivered to either a right unilateral or a bilateral thoracic port. Four indices of lung endothelial function were measured: the activities of angiotensin converting enzyme (ACE) and plasminogen activator (PLA), and the production of prostacyclin (PGL/sub 2/) and thromboxane (TXA/sub 2/). The experimental results are given. These data indicate that pulmonary endothelial dysfunction induced by hemithoracic irradiation represents a direct response of a endothelium to injury, and is not secondary to other phenomena such as shunting of function to the contralateral lung

  9. Chronic visual dysfunction after blast-induced mild traumatic brain injury

    M. Teresa Magone, MD; Ellen Kwon, OD; Soo Y. Shin, MD

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/– 19.8 mo. Age at the time of injury was 30.0 +/– 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted durin...

  10. Iptakalim rescues human pulmonary artery endothelial cells from hypoxia-induced nitric oxide system dysfunction

    Zong, Feng; Zuo, Xiang-Rong; Wang, Qiang; ZHANG, SHI-JIANG; Xie, Wei-Ping; Wang, Hong

    2011-01-01

    The aim of this study was to assess whether hypoxia inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production, and whether iptakalim may rescue human pulmonary artery endothelial cells (HPAECs) from hypoxia-induced NO system dysfunction. HPAECs were cultured under hypoxic conditions in the absence or presence of 0.1, 10 and 1,000 μM iptakalim or the combination of 10 μM iptakalim and 1, 10 and 100 μM glibenclamide for 24 h, and the eNOS activity and NO levels...

  11. Resveratrol prevents interleukin-1β-induced dysfunction of pancreatic β-cells ☆

    Chen, Fang; Zhou, Xiaohua; Lin, Yan; JING, CHANGWEN; Yang, Tao; Ji, Yong; Sun, Yujie; Han, Xiao

    2010-01-01

    Objective Interleukin-1β (IL-1β) plays an important role in the development of type 1 and type 2 diabetes mellitus. Resveratrol, a polyphenol, is known to have a wide range of pharmacological properties in vitro. In this research, we examined the effects of resveratrol on IL-1β-induced β-cell dysfunction. Methods We first evaluated the effect of resveratrol on nitric oxide (NO) formation in RINm5F cells stimulated with IL-1β using the Griess method. Next, we performed transient transfection a...

  12. Vitamin K1 (phylloquinone) induces vascular endothelial dysfunction: Role of oxidative stress

    We aimed to investigate the mechanisms underlying the vascular effects induced by phylloquinone (Vitamin K1; VK1). Vascular reactivity experiments, using standard muscle bath procedures, showed that VK1 (5 and 50 μM) enhances the contractile response of endothelium-intact, but not denuded, rat carotid rings to phenylephrine. Similarly, maximal contraction induced by phenylephrine was enhanced in the presence of the nitric oxide (NO) synthase inhibitor N G-nitro-L-arginine methyl ester (L-NAME). The combination of L-NAME and VK1 did not produce any further additional effect. Pre-incubation of intact-rings with VK1 reduced both acetylcholine- and bradykinin-induced relaxation. VK1 induced an increment in tension on carotid rings submaximally pre-contracted with phenylephrine. VK1-induced increment in tension was completely abolished by endothelial removal or incubation of intact rings with L-NAME and L-NNA. Conversely, 7-nitroindazole, 1400 W, or indomethacin did not affect VK1-induced contraction. Moreover, VK1 reduced L-arginine-induced relaxation in endothelium-intact rings. Lucigenin-amplified chemiluminescence assays showed that VK1 induced an increase in the level of superoxide anions in endothelium-intact but not denuded rings. Measurement of nitrite and nitrate generation showed that VK1 did not alter nitrate formation but strongly inhibited the generation of nitrite. Finally, the superoxide anions scavenger tiron prevented the endothelial vasomotor dysfunction caused by VK1 on phenyleprine-induced contraction and acetylcholine or bradykinin-induced relaxation. In conclusion, our data show that VK1 disrupts the vasomotor function of rat carotid. Our results suggest that VK1-induced oxidative stress through production of superoxide anion is interfering with the NO pathway, which in turn is responsible for the altered vascular reactivity induced by VK1

  13. Interferon-Alpha Induced and Ribavirin Induced Thyroid Dysfunction in Patients with Chronic Hepatitis C

    Amina Nadeem; Muhammad Mazhar Hussain; Muhammad Aslam; Tassawar Hussain

    2010-01-01

    Chronic hepatitis C (CHC) is one of the commonest infectious diseases of the liver and may lead to cirrhosis or hepatocellular carcinoma. Combination therapy with pegylated interferon (PEG-IFN) and Ribavirin is the treatment of choice for CHC. Combination therapy is thought to act by means of antiviral mechanisms and immunomodulation. Thyroid dysfunction is the most common autoimmune adverse effect associated with combination therapy; hypothyroidism is more common than hyperthyroidism. Antith...

  14. Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus

    N. Papanas

    2011-01-01

    Full Text Available The aim of this paper was to assess serum uric acid (SUA levels in patients with type 2 diabetes mellitus (T2DM with or without sudomotor dysfunction (evaluated by the Neuropad test. We included 36 T2DM patients with sudomotor dysfunction (group A: mean age 63.1±2.6 years and 40 age-, gender-, renal function- and T2DM duration-matched patients without sudomotor dysfunction (group B: mean age 62.1±3.1 years. SUA was significantly higher in group A (P<0.001. There was a significant correlation between SUA and Neuropad time to colour change in both groups (group A: rs=0.819, P<0.001; group B: rs=0.774, P<0.001. There was also a significant positive correlation between SUA and CRP in both groups (group A: rs=0.947, P<0.001; group B: rs=0.848, P<0.001. In conclusion, SUA levels were higher in T2DM patients with sudomotor dysfunction than those without this complication. The potential role of SUA in sudomotor dysfunction merits further study.

  15. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    Giuseppina Barrera

    2016-02-01

    Full Text Available In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS, produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE and malondialdehyde (MDA, which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations.

  16. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products.

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  17. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  18. World Workshop on Oral Medicine VI: a systematic review of medication-induced salivary gland dysfunction.

    Villa, A; Wolff, A; Narayana, N; Dawes, C; Aframian, D J; Lynge Pedersen, A M; Vissink, A; Aliko, A; Sia, Y W; Joshi, R K; McGowan, R; Jensen, S B; Kerr, A R; Ekström, J; Proctor, G

    2016-07-01

    The aim of this paper was to perform a systematic review of the pathogenesis of medication-induced salivary gland dysfunction (MISGD). Review of the identified papers was based on the standards regarding the methodology for systematic reviews set forth by the World Workshop on Oral Medicine IV and the PRISMA statement. Eligible papers were assessed for both the degree and strength of relevance to the pathogenesis of MISGD as well as on the appropriateness of the study design and sample size. A total of 99 papers were retained for the final analysis. MISGD in human studies was generally reported as xerostomia (the sensation of oral dryness) without measurements of salivary secretion rate. Medications may act on the central nervous system (CNS) and/or at the neuroglandular junction on muscarinic, α-and β-adrenergic receptors and certain peptidergic receptors. The types of medications that were most commonly implicated for inducing salivary gland dysfunction were those acting on the nervous, cardiovascular, genitourinary, musculoskeletal, respiratory, and alimentary systems. Although many medications may affect the salivary flow rate and composition, most of the studies considered only xerostomia. Thus, further human studies are necessary to improve our understanding of the association between MISGD and the underlying pathophysiology. PMID:26602059

  19. Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme

    The ability of the angiotensin converting enzyme (ACE) inhibitor Captopril to modify radiation-induced pulmonary endothelial dysfunction was determined in male rats sacrificed 2 months after a single dose of 10-30 Gy of 60Co gamma rays to the right hemithorax. Half of each dose group consumed feed containing 0.12% w/w Captopril (60 mg/kg/day) continuously after irradiation, and half consumed control feed. Four markers of endothelial function were monitored: ACE activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. All data were plotted as dose-response curves, and subjected to linear regression analysis. The Captopril modifying effect was expressed as the ratio of isoeffective doses at a common intermediate response (DRF), or as the ratio of the response curve slopes. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. Captopril exhibited DRF values of 1.4-2.1, and slope ratios of 1.4-5.1 for all four functional markers (p less than 0.05). Thus, the ACE inhibitor Captopril ameliorates radiation-induced pulmonary endothelial dysfunction in rats sacrificed 2 months postirradiation. Although the mechanism of Captopril action is not clear at present, these data suggest a novel application for this class of compounds as injury-modifying agents in irradiated lung

  20. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  1. Radiation-induced cognitive dysfunction: An experimental model in the old rat

    To develop a model of radiation-induced behavioral dysfunction. A course of whole brain radiation therapy (30 Gy/10 fractions/12 days) was administered to 26 Wistar rats ages 16-27 months, while 26 control rats received sham irradiation. Sequential behavioral studies including one-way avoidance, two-way avoidance, and a standard operant conditioning method (press-lever avoidance) were undertaken. In addition, rats were studied in a water maze 7 months postradiation therapy. Prior to radiation therapy, both groups were similar. No difference was found 1 and 3 months postradiation therapy. At 6-7 months postradiation therapy, irradiated rats had a much lower percentage of avoidance than controls for one-way avoidance (23% vs. 55%, p ≤ 0.001) and two-way avoidance (18% vs. 40%, p ≤ 0.01). Seven months postradiation therapy the reaction time was increased (press-lever avoidance, 11.20 s vs. 8.43 s, p ≤ 0.05) and the percentage of correct response was lower (water maze, 53% vs. 82%) in irradiated rats compared with controls. Pathological examination did not demonstrate abnormalities of the irradiated brains at the light microscopic level. Behavioral dysfunction affecting mainly memory can be demonstrated following conventional radiation therapy in old rats. This model can be used to study the pathogenesis of radiation-induced cognitive changes. 15 refs., 3 figs., 1 tab

  2. Radiation-induced cognitive dysfunction: an experimental model in the old rat

    Purpose: To develop a model of radiation-induced behavioral dysfunction. Methods and Materials: A course of whole brain radiation therapy (30 Gy/10 fractions/12 days) was administered to 26 Wistar rats ages 16-27 months, while 26 control rats received sham irradiation. Sequential behavioral studies including one-way avoidance, two-way avoidance, and a standard operant conditioning method (press-lever avoidance) were undertaken. In addition, rats were studied in a water maze 7 months postradiation therapy. Results: Prior to radiation therapy, both groups were similar. No difference was found 1 and 3 months postradiation therapy. At 6-7 months postradiation therapy, irradiated rats had a much lower percentage of avoidance than controls for one-way avoidance (23% vs. 55%, p ≤ 0.001) and two-way avoidance (18% vs. 40%, p ≤ 0.01). Seven months postradiation therapy the reaction time was increased (press-lever avoidance, 11.20 s vs. 8.43 s, p ≤ 0.05) and the percentage of correct response was lower (water maze, 53% vs. 82%) in irradiated rats compared with controls. Pathological examination did not demonstrate abnormalities of the irradiated brains at the light microscopic level. Conclusion: Behavioral dysfunction affecting mainly memory can be demonstrated following conventional radiation therapy in old rats. This model can be used to study the pathogenesis of radiation-induced cognitive changes

  3. Effects of naringin on learning and memory dysfunction induced by gp120 in rats.

    Qin, Shanshan; Chen, Qiang; Wu, Hui; Liu, Chenglong; Hu, Jing; Zhang, Dalei; Xu, Changshui

    2016-06-01

    The aim of the present study was to investigate the effects of naringin on learning and memory dysfunction induced by HIV-1-enveloped protein gp120 in rats, and to identify its potential mechanisms of action. Learning and memory ability was evaluated via Morris water maze test, P2X7 receptor and P65 protein expressions in the rat hippocampus were detected by western blot analysis, and P2X7 mRNA expression in the hippocampus was measured by RT-PCR. We also recorded P2X7 agonist BzATP-activated current in the hippocampus via patch clamp technique. The results showed that naringin treatment (30mg/kg/day) markedly decreased the escape latency and target platform errors of rats treated with gp120 (50ng/day), and further, that naringin treatment significantly decreased the expression of P2X7 and P65 protein and P2X7 mRNA in the hippocampus of gp120-treated rats. In addition, naringin treatment reduced BzATP-activated current in the hippocampus of gp120-treated rats. These results altogether demonstrated that naringin can improve gp120-induced learning and memory dysfunction via mechanisms involving the inhibition of P2X7 expression in the hippocampus. PMID:27154619

  4. Effects of coffee and caffeine on bladder dysfunction in streptozotocin-induced diabetic rats

    Chao-ran YI; Zhong-qing WEI; Xiang-lei DENG; Ze-yu SUN; Xing-rang LI; Cheng-gong TIAN

    2006-01-01

    Aim: To explore the effects and mechanisms of caffeine and coffee on bladder dysfunction in streptozotocin-induced diabetic rats. Methods: Sprague-Dawley male rats were divided randomly into 4 groups: control, diabetes mellitus (DM), DM with coffee treatment, and DM with caffeine treatment. The diabetic rat was induced by intraperitoneal injection of streptozotocin (60 mg/kg). After 7 weeks of treatment with coffee and caffeine, cystometrogram, contractile responses to electrical field stimulation (EFS) and acetylcholine (ACh), and cyclic AMP (cAMP) concentration of the bladder body and base were measured. Results: The bladder weight, volume threshold for micturition and post-void residual volume (PVR) in the diabetic rats were significantly higher compared to those in the control animals. Coffee or caffeine treatment significantly reduced the bladder weight, bladder capacity and PVR in the diabetic rats. DM caused significant decreases in cAMP concentration of the bladder and coffee and caffeine caused upregulation of cAMP content in the diabetic bladder. In addition, coffee and caffeine tended to normalize the altered detrusor contractile responses to EFS and ACh in the diabetic rats. Conclusion: These results indicate that caffeine and coffee may have beneficial effects on bladder dysfunction in the early stage of diabetes by increasing cAMP content in the lower urinary tract, recovering the micturition reflex and improving the detrusor contractility.

  5. Prostaglandin D2 signaling mediated by the CRTH2 receptor is involved in MK-801-induced cognitive dysfunction.

    Onaka, Yusuke; Shintani, Norihito; Nakazawa, Takanobu; Kanoh, Takuya; Ago, Yukio; Matsuda, Toshio; Hashimoto, Ryota; Ohi, Kazutaka; Hirai, Hiroyuki; Nagata, Kin-Ya; Nakamura, Masataka; Kasai, Atsushi; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Takuma, Kazuhiro; Ogawa, Asao; Baba, Akemichi; Hashimoto, Hitoshi

    2016-11-01

    Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), which is a second receptor for prostaglandin (PG) D2, is involved in inflammatory responses in peripheral tissue; however, its role in cognitive function remains unclear. Here, we demonstrate that CRTH2 is involved in cognitive function using a well-established animal model of cognitive dysfunction induced by MK-801, an N-methyl-d-aspartate receptor antagonist. Genetic deletion and pharmacological inhibition of CRTH2 suppressed MK-801-induced cognitive dysfunction. Pharmacological inhibition of cyclooxygenase-1, a rate-limiting enzyme in PG synthesis, also suppressed MK-801-induced cognitive dysfunction. Moreover, an MK-801-induced increase in c-Fos expression in the paraventricular nucleus (PVN) was abolished in the CRTH2-deficient mice. Together, these results suggest that PGD2-CRTH2 signaling is involved in both MK-801-induced cognitive dysfunction and neuronal activity regulation in the PVN. Furthermore, genetic association studies suggest that CRTH2 is weakly associated with cognitive function in humans. Our study provides evidence that PGD2-CRTH2 signaling is involved in cognitive function and may represent a potential therapeutic target for cognitive dysfunction in patients with psychiatric disorders. PMID:27481693

  6. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho; Chang, Sung Eun

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cel...

  7. BRAIN DYSFUNCTION OF PATIENTS WITH QIGONG INDUCED MENTAL DISORDER REVEALED BY EVOKED POTENTIALS RECORDING

    LU Yingzhi; ZONG Wenbin; CHEN Xingshi

    2003-01-01

    Objective: In order to investigate the brain function of patients with Qigong induced mental disorder (QIMD), this study was carried out. Methods: Four kinds of evoked potentials, including contingent negative variation (CNV), auditory evoked potentials (AEP), visual evoked potentials (VEP), and somatosensory evoked potentials (SEP), were recorded from 12 patients with Qigong induced mental disorder.Comparison of their evoked potentials with the data from some normal controls was made. Results: The results revealed that there were 3 kinds of abnormal changes in evoked potentials of patients with QIMD that is latency prolongation, amplitude increase and amplitude decrease, as compared with normal controls. Conclusion: Brain dysfunction of patients with QIMD was confirmed. Its biological mechanism needs further studying.

  8. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  9. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Highlights: ► The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. ► PARP-1 protects from oxidative stress induced endothelial dysfunction. ► This effect is mediated through inhibition of vasoconstrictor prostanoid production. ► Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(−/−) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(−/−), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(−/−) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(−/−) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(−/−) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(−/−) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  10. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  11. GLUTATHIONE PEROXIDASE-1 PLAYS A MAJOR ROLE IN PROTECTING AGAINST ANGIOTENSIN II-INDUCED VASCULAR DYSFUNCTION

    Chrissobolis, Sophocles; Didion, Sean P.; Kinzenbaw, Dale A.; Schrader, Laura I.; Dayal, Sanjana; Lentz, Steven R.; Faraci, Frank M.

    2011-01-01

    Levels of reactive oxygen species, including hydrogen peroxide (H2O2), increase in blood vessels during hypertension and in response to angiotensin II (Ang II). Although glutathione peroxidases (GPx) are known to metabolize H2O2, the role of GPx during hypertension is poorly defined. We tested the hypothesis that GPx-1 protects against Ang II-induced endothelial dysfunction. Responses of carotid arteries from Gpx1-deficient (Gpx1 +/− and Gpx1 −/−) and Gpx1 transgenic (Tg) mice, and their respective littermate controls, were examined in vitro following overnight incubation with either vehicle or Ang II. Under control conditions, relaxation to acetylcholine (ACh, an endothelium-dependent agonist) was similar in control, Gpx1 +/−, and Gpx1 Tg mice, whereas in Gpx1 −/− mice, responses to ACh were impaired. In control mice, ACh-induced vasorelaxation was not affected by 1 nmol/L Ang II. In contrast, relaxation to ACh in arteries from Gpx1 +/− mice was inhibited by ~60% following treatment with 1 nmol/L Ang II, indicating Gpx1 haploinsufficiency markedly enhances Ang II-induced endothelial dysfunction. A higher concentration of Ang II (10 nmol/L) selectively impaired relaxation to ACh in arteries from control mice, and this effect was prevented in arteries from Gpx1 Tg mice, or arteries from control mice treated with PEG-catalase (which degrades H2O2). Thus, genetic and pharmacological evidence suggests a major role for GPx-1 and H2O2 in Ang II-induced effects on vascular function. PMID:18299484

  12. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  13. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    Yi Ding; Lan Xie; Cun-Qing Chang; Zhi-Min Chen; Hua Ai

    2015-01-01

    Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in thi...

  14. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa. PMID:17719569

  15. [Effect of diltiazem on cold-induced left ventricular dysfunction in patients with systemic sclerosis].

    Rey, R H; Marrero, G; Chwojnik, A; Martínez Martínez, J A; Maldonado Cocco, J; Rodrigué, S; Casabé, H

    1997-01-01

    Patients with systemic sclerosis (SS) have cardiac dysfunction induced by cold exposure. We and others have demonstrated this finding after corporal chilling, suggesting a "coronary Raynaud phenomenon" mediated by intermittent vascular spasm. In this study we evaluated the effect of diltiazem (DTZ) in cardiac dysfunction induced by cold test in patients with SS without clinical evidence of heart disease. Twelve patients with SS were studied. One patient was excluded because he did not fulfill the prescribed treatment. Eleven patients (age of 49.9 +/- 3.8 years and illness duration of 9.3 +/- 4.8 years) were included. Gated equilibrium radionuclide ventriculography was recorded after red blood cells were labeled in vivo using an intravenous injection of stannous pirophosphate followed by 20 mc of 99 Tc (gamma camera with electrocardiographic R wave gating was used). Left ventricular injection fraction (LVEF) was calculated using computer analysis and wall motion abnormalities by visual interpretation. Patients were cooled using a thermic blanket set at 5 degrees centigrade. They were evaluated before and after a period of cooling. After corporal chilling LVEF decreased more than 10% in all of them. DTZ 270 mg a day was administered to the same patients during 48 hs. Basal and cold LVEF were repeated in all patients. The results with and without DTZ were compared by Student's t Test. The basal LVEF with and without DTZ was not different (64.8 +/- 2.6 and 63.1 +/- 1.8). After corporal chilling LVEF decreased (64.8 +/- 2.6 to 54.8 +/- 2.5 p < 0.00001) and reversible abnormalities in wall motion were noticed in patients without DTZ. When they received DTZ neither difference in LVEF (63.1 +/- 1.8 to 62.1 +/- 2.4) nor wall motion abnormalities were observed. We compared the LVEF after chilling (62.1 +/- 2.4 and 54.8 +/- 2.5) and we found an important difference with the use of DTZ (p < 0.005). It can be concluded that in patients with SS and no overt heart disease, DTZ

  16. Cocaine enhances HIV-1 gp120-induced lymphatic endothelial dysfunction in the lung.

    Zhang, Xuefeng; Jiang, Susan; Yu, Jinlong; Kuzontkoski, Paula M; Groopman, Jerome E

    2015-08-01

    Pulmonary complications are common in both AIDS patients and cocaine users. We addressed the cellular and molecular mechanisms by which HIV and cocaine may partner to induce their deleterious effects. Using primary lung lymphatic endothelial cells (L-LECs), we examined how cocaine and HIV-1 gp120, alone and together, modulate signaling and functional properties of L-LECs. We found that brief cocaine exposure activated paxillin and induced cytoskeletal rearrangement, while sustained exposure increased fibronectin (FN) expression, decreased Robo4 expression, and enhanced the permeability of L-LEC monolayers. Moreover, incubating L-LECs with both cocaine and HIV-1 gp120 exacerbated hyperpermeability, significantly enhanced apoptosis, and further impaired in vitro wound healing as compared with cocaine alone. Our studies also suggested that the sigma-1 receptor (Sigma-1R) and the dopamine-4 receptor (D4R) are involved in cocaine-induced pathology in L-LECs. Seeking clinical correlation, we found that FN levels in sera and lung tissue of HIV(+) donors were significantly elevated as compared to HIV(-) donors. Our in vitro data demonstrate that cocaine and HIV-1 gp120 induce dysfunction and damage of lung lymphatics, and suggest that cocaine use may exacerbate pulmonary edema and fibrosis associated with HIV infection. Continued exploration of the interplay between cocaine and HIV should assist the design of therapeutics to ameliorate HIV-induced pulmonary disorders within the drug using population. PMID:26311830

  17. Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome.

    Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin; Li, Zhigang; Fan, Jie; Wang, Ping

    2016-01-01

    Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern (DAMP) molecule which stimulates proinflammatory cytokine release in hemorrhage and sepsis. Under these medical conditions, disruption of endothelial homeostasis and barrier integrity, typically induced by proinflammatory cytokines, is an important factor contributing to morbidity and mortality. However, the role of CIRP in causing endothelial dysfunction has not been investigated. In this study, we show that intravenous injection of recombinant murine CIRP (rmCIRP) in C57BL/6 mice causes lung injury, evidenced by vascular leakage, edema, increased leukocyte infiltration and cytokine production in the lung tissue. The CIRP-induced lung damage is accompanied with endothelial cell (EC) activation marked by upregulation of cell-surface adhesion molecules E-selectin and ICAM-1. Using in vitro primary mouse lung vascular ECs (MLVECs), we demonstrate that rmCIRP treatment directly increases the ICAM-1 protein expression and activates NAD(P)H oxidase in MLVECs. Importantly, CIRP stimulates the assembly and activation of Nlrp3 inflammasome in MLVECs accompanied with caspase-1 activation, IL-1β release and induction of proinflammatory cell death pyroptosis. Finally, our study demonstrates CIRP-induced EC pyroptosis in the lungs of C57BL/6 mice for the first time. Taken together, the released CIRP in shock can directly activate ECs and induce EC pyroptosis to cause lung injury. PMID:27217302

  18. Long pentraxin PTX3 exacerbates pressure overload-induced left ventricular dysfunction.

    Satoshi Suzuki

    Full Text Available BACKGROUND: Left ventricular hypertrophy is enhanced by an inflammatory state and stimulation of various cytokines. Pentraxin 3 (PTX3 is rapidly produced in response to inflammatory signals, and high plasma PTX3 levels are seen in patients with heart failure. This study aimed to examine the influence of PTX3 on cardiac hypertrophy and left ventricular dysfunction with respect to pressure overload. METHODS AND RESULTS: PTX3 systemic knockout (PTX3-KO mice, transgenic mice with cardiac-specific overexpression of PTX3 (PTX3-TG, and the respective wild-type (WT littermate mice were subjected to transverse aortic constriction (TAC or a sham operation. Cardiac PTX3 expression increased after TAC in WT mice. In vitro, hydrogen peroxide induced the expression of PTX3 in both cardiac myocytes and cardiac fibroblasts. Recombinant PTX3 phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2 in cardiac fibroblasts. Phosphorylation of cardiac ERK1/2 and nuclear factor kappa-B after TAC was attenuated in the PTX3-KO mice but was enhanced in the PTX3-TG mice compared with WT mice. Interleukin-6 and connective tissue growth factor production was lower in the PTX3-KO mice than in the WT mice, but this was augmented in the PTX3-TG mice than in the WT mice. Echocardiography revealed that adverse remodeling with left ventricular dysfunction, as well as with increased interstitial fibrosis, was enhanced in PTX3-TG mice, while these responses were suppressed in PTX3-KO mice. CONCLUSION: The local inflammatory mediator PTX3 directly modulates the hypertrophic response and ventricular dysfunction following an increased afterload.

  19. Therapeutic Potential of Date Palm Pollen for Testicular Dysfunction Induced by Thyroid Disorders in Male Rats.

    Akram M El-Kashlan

    Full Text Available Hyper- or hypothyroidism can impair testicular function leading to infertility. The present study was designed to examine the protective effect of date palm pollen (DPP extract on thyroid disorder-induced testicular dysfunction. Rats were divided into six groups. Group I was normal control. Group II received oral DPP extract (150 mg kg(-1, group III (hyperthyroid group received intraperitoneal injection of L-thyroxine (L-T4, 300 μg kg(-1; i.p., group IV received L-T4 plus DPP extract, group V (hypothyroid group received propylthiouracil (PTU, 10 mg kg(-1; i.p. and group VI received PTU plus DPP extract. All treatments were given every day for 56 days. L-T4 or PTU lowered genital sex organs weight, sperm count and motility, serum levels of luteinizing hormone (LH, follicle stimulating hormone (FSH and testosterone (T, testicular function markers and activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD and 17β-hydroxysteroid dehydrogenase (17β-HSD. Moreover, L-T4 or PTU increased estradiol (E2 serum level, testicular oxidative stress, DNA damage and apoptotic markers. Morphometric and histopathologic studies backed these observations. Treatment with DPP extract prevented LT4- or PTU induced changes. In addition, supplementation of DPP extract to normal rats augmented sperm count and motility, serum levels of LH, T and E2 paralleled with increased activities of 3β-HSD and 17β-HSD as well as testicular antioxidant status. These results provide evidence that DPP extract may have potential protective effects on testicular dysfunction induced by altered thyroid hormones.

  20. RAMP1 Augments Cerebrovascular Responses to CGRP And Inhibits Angiotensin II-Induced Vascular Dysfunction

    Chrissobolis, Sophocles; Zhang, Zhongming; Kinzenbaw, Dale A.; Lynch, Cynthia M.; Russo, Andrew F.; Faraci, Frank M.

    2010-01-01

    Background and Purpose Receptors for calcitonin gene-related peptide (CGRP) are composed of the calcitonin-like receptor in association with receptor activity-modifying protein-1 (RAMP1). CGRP is an extremely potent vasodilator and may protect against vascular disease through other mechanisms. Methods We tested the hypothesis that overexpression of RAMP1 enhances vascular effects of CGRP using transgenic mice with ubiquitous expression of human RAMP1 (hRAMP1). Because angiotensin II (Ang II) is a key mediator of vascular disease, we also tested the hypothesis that RAMP1 protects against Ang II-induced vascular dysfunction. Results Responses to CGRP in carotid and basilar arteries in vitro as well as cerebral arterioles in vivo were selectively enhanced in hRAMP1 transgenic mice compared to littermate controls (P<0.05), and this effect was prevented by a CGRP receptor antagonist (P<0.05). Thus, vascular responses to CGRP are normally RAMP1-limited. Responses of carotid arteries were examined in vitro following overnight incubation with vehicle or Ang II. In arteries from control mice, Ang II selectively impaired responses to the endothelium-dependent agonist acetylcholine by ∼50% (P<0.05) via a superoxide-mediated mechanism. In contrast, Ang II did not impair responses to acetylcholine in hRAMP1 transgenic mice. Conclusions RAMP1 overexpression increases CGRP-induced vasodilation and protects against Ang II-induced endothelial dysfunction. These findings suggest that RAMP1 may be a new therapeutic target to regulate CGRP-mediated effects during disease including pathophysiological states where Ang II plays a major role. PMID:20814003

  1. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting.

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Fadel, Paul J; Padilla, Jaume

    2016-07-01

    Prolonged sitting impairs endothelial function in the leg vasculature, and this impairment is thought to be largely mediated by a sustained reduction in blood flow-induced shear stress. Indeed, preventing the marked reduction of shear stress during sitting with local heating abolishes the impairment in popliteal artery endothelial function. Herein, we tested the hypothesis that sitting-induced reductions in shear stress and ensuing endothelial dysfunction would be prevented by periodic leg movement, or "fidgeting." In 11 young, healthy subjects, bilateral measurements of popliteal artery flow-mediated dilation (FMD) were performed before and after a 3-h sitting period during which one leg was subjected to intermittent fidgeting (1 min on/4 min off) while the contralateral leg remained still throughout and served as an internal control. Fidgeting produced a pronounced increase in popliteal artery blood flow and shear rate (prefidgeting, 33.7 ± 2.6 s(-1) to immediately postfidgeting, 222.7 ± 28.3 s(-1); mean ± SE; P FMD was impaired after 3 h of sitting in the control leg (presit, 4.5 ± 0.3% to postsit: 1.6 ± 1.1%; P = 0.039) but improved in the fidgeting leg (presit, 3.7 ± 0.6% to postsit, 6.6 ± 1.2%; P = 0.014). Collectively, the present study provides evidence that prolonged sitting-induced leg endothelial dysfunction is preventable with small amounts of leg movement while sitting, likely through the intermittent increases in vascular shear stress. PMID:27233765

  2. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  3. Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit.

    Vignozzi L; Filippi S; Comeglio P; Cellai I; Sarchielli E; Morelli A; Rastrelli G; Maneschi E; Galli A; Vannelli GB; Saad F; Mannucci E; Adorini L; Maggi M.

    2014-01-01

    A pathogenic link between erectile dysfunction (ED) and metabolic syndrome (MetS) is now well established. Nonalcoholic steatohepatitis (NASH), the hepatic hallmark of MetS, is regarded as an active player in the pathogenesis of MetS-associated cardiovascular disease (CVD). This study was aimed at valuating the relationship between MetS-induced NASH and penile dysfunction. We used a non-genomic, high fat diet (HFD)-induced, rabbit model of MetS, and treated HFD rabbits with testosterone (T...

  4. Chronic visual dysfunction after blast-induced mild traumatic brain injury

    M. Teresa Magone, MD

    2014-03-01

    Full Text Available The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI using a retrospective case series of 31 patients with mbTBI (>12 mo prior without eye injuries. Time since mbTBI was 50.5 +/– 19.8 mo. Age at the time of injury was 30.0 +/– 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22 experienced loss of consciousness; 68% (n = 15 of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21 of patients had visual complaints. The most common complaints were photophobia (55% and difficulty with reading (32%. Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%. Asymptomatic patients had a significantly longer time (62.5 +/– 6.2 mo since the mbTBI than symptomatic patients (42.0 +/– 16.4 mo, p < 0.004. Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population.

  5. Chronic visual dysfunction after blast-induced mild traumatic brain injury.

    Magone, M Teresa; Kwon, Ellen; Shin, Soo Y

    2014-01-01

    The purpose of this study was to investigate the long-term visual dysfunction in patients after blast-induced mild traumatic brain injury (mbTBI) using a retrospective case series of 31 patients with mbTBI (>12 mo prior) without eye injuries. Time since mbTBI was 50.5 +/- 19.8 mo. Age at the time of injury was 30.0 +/- 8.3 yr. Mean corrected visual acuity was 20/20. Of the patients, 71% (n = 22) experienced loss of consciousness; 68% (n = 15) of patients in this subgroup were dismounted during the blast injury. Overall, 68% (n = 21) of patients had visual complaints. The most common complaints were photophobia (55%) and difficulty with reading (32%). Of all patients, 25% were diagnosed with convergence insufficiency and 23% had accommodative insufficiency. Patients with more than one mbTBI had a higher rate of visual complaints (87.5%). Asymptomatic patients had a significantly longer time (62.5 +/- 6.2 mo) since the mbTBI than symptomatic patients (42.0 +/- 16.4 mo, p < 0.004). Long-term visual dysfunction after mbTBI is common even years after injury despite excellent distance visual acuity and is more frequent if more than one incidence of mbTBI occurred. We recommend obtaining a careful medical history, evaluation of symptoms, and binocular vision assessment during routine eye examinations in this prepresbyopic patient population. PMID:24805895

  6. Gastrodia elata Ameliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

    Min Chul Kho

    2014-01-01

    Full Text Available Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome. Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract of Gastrodia elata Blume (EGB attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF diet animal model. Rats were fed the 65% HF diet with/without EGB 100 mg/kg/day for 8 weeks. Treatment with EGB significantly suppressed the increments of epididymal fat weight, blood pressure, plasma triglyceride, total cholesterol levels, and oral glucose tolerance, respectively. In addition, EGB markedly prevented increase of adipocyte size and hepatic accumulation of triglycerides. EGB ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1 and adhesion molecules in the aorta. Moreover, EGB significantly recovered the impairment of vasorelaxation to acetylcholine and levels of endothelial nitric oxide synthase (eNOS expression and induced markedly upregulation of phosphorylation AMP-activated protein kinase (AMPKα in the liver, muscle, and fat. These results indicate that EGB ameliorates dyslipidemia, hypertension, and insulin resistance as well as impaired vascular endothelial function in HF diet rats. Taken together, EGB may be a beneficial therapeutic approach for metabolic syndrome.

  7. Effects of mecobalamin on testicular dysfunction induced by X-ray irradiation in mice

    Experimental testicular dysfunction was produced by X-ray irradiation to the testes in mice. Mecobalamin (CH3-B12) was orally administered at a daily dose of 0.01, 0.1 or 1 mg/kg six times a week for 8 weeks from the next day after the irradiation. The control mice received physiological saline in the same manner. On 4th- and 6th-week after the irradiation, the weights of testes and epididymides were decreased, although those of the body and accessory sex glands (seminal vesicle, coagulating gland and prostate) were nearly equal to those of non-irradiated mice. At the same time, the diameter of seminiferous tubules decreased and sperm parameters (sperm count, sperm motility and sperm abnormality) deteriorated. When CH3-B12 (1 mg/kg) was administered, the diameter of seminiferous tubules increased and sperm parameters improved as compared to those of the control. The results indicate that CH3-B12 improved the experimental testicular dysfunction in mice induced by the irradiation. These results suggest that CH3-B12 might accelerate testicular function. (author)

  8. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  9. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  10. Emerging therapies for patients with symptoms of opioid-induced bowel dysfunction

    Leppert W

    2015-04-01

    Full Text Available Wojciech Leppert Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland Abstract: Opioid-induced bowel dysfunction (OIBD comprises gastrointestinal (GI symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50% after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN in one tablet (a ratio of 2:1 provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying

  11. PD-L1 blockade improves immune dysfunction of spleen dendritic cells and T-cells in zymosan-induced multiple organs dysfunction syndromes

    Liu, Qian; Lv, Yi; Zhao, Min; Jin, Yiduo; Lu, Jiangyang

    2015-01-01

    This research is to investigate the role of tolerant spleen dendritic cells (DC) in multiple organs dysfunction syndromes (MODS) at late stage. Tolerant DC and MODS were induced by intraperotineal injection of zymosan. The immunity of DC was determined by examining interleukin (IL)-10, IL-12, IL-2, major histocompatibility complex (MHC), CD86, programmed death (PD-1), programmed death ligand 1 (PD-L1), paired immunoglobulin-like receptor B (PIR-B) or T-cell proliferation in serum, spleen homo...

  12. Mimicking cataract-induced visual dysfunction by means of protein denaturation in egg albumen

    Mandracchia, B.; Finizio, A.; Ferraro, P.

    2016-03-01

    As the world's population ages, cataract-induced visual dysfunction and blindness is on the increase. This is a significant global problem. The most common symptoms of cataracts are glared and blurred vision. Usually, people with cataract have trouble seeing and reading at distance or in low light and also their color perception is altered. Furthermore, cataract is a sneaky disease as it is usually a very slow but progressive process, which creates adaptation so that patients find it difficult to recognize. All this can be very difficult to explain, so we built and tested an optical device to help doctors giving comprehensive answers to the patients' symptoms. This device allows visualizing how cataract impairs vision mimicking the optical degradation of the crystalline related cataracts. This can be a valuable optical tool for medical education as well as to provide a method to illustrate the patients how cataract progression process will affect their vision.

  13. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex

    Rebecca M Shansky

    2013-04-01

    Full Text Available The mechanisms and neural circuits that drive emotion and cognition are inextricably linked. Activation of the hypothalamic-pituitary-adrenal (HPA axis as a result of stress or other causes of arousal initiates a flood of hormone and neurotransmitter release throughout the brain, affecting the way we think, decide, and behave. This review will focus on factors that influence the function of the prefrontal cortex (PFC, a brain region that governs higher-level cognitive processes and executive function. The PFC becomes markedly impaired by stress, producing measurable deficits in working memory. These deficits arise from the interaction of multiple neuromodulators, including glucocorticoids, catecholamines, and gonadal hormones; here we will discuss the non- human primate and rodent literature that has furthered our understanding of the circuitry, receptors, and signaling cascades responsible for stress-induced prefrontal dysfunction.

  14. Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects

    Ihlemann, Nikolaj; Rask-Madsen, Christian; Perner, Anders;

    2003-01-01

    cofactor of eNOS. Therefore, we examined whether an acute supplement of BH4 could restore endothelial dysfunction induced by an oral glucose challenge. Healthy subjects were examined in 53 experiments. Forearm blood flow was measured by venous occlusion plethysmography. Dose-response studies were obtained......An oral glucose challenge causes transient impairment of endothelial function, probably because of increased oxidative stress. During oxidative stress, endothelial nitric oxide (NO) synthase (eNOS) becomes uncoupled because of decreased bioavailability of tetrahydrobiopterin (BH4), an essential...... during intra-arterial infusion of serotonin to elicit endothelium-dependent, NO-specific vasodilation and during sodium nitroprusside (SNP) infusion to elicit endothelium-independent vasodilation. Subjects were examined before (fasting) and 1 and 2 h after an oral glucose challenge (75 g) with serotonin...

  15. Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice

    Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis. Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE-/- mice with slight atherosclerosis and from normal apoE+/+ mice. Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 μg DEP/ml before measurement of vasomotor functions. Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE-/- mice, whereas the response was enhanced in apoE+/+ mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K+ or phenylephrine. In vitro exposure to 100 μg DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure. Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis

  16. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.

    Huby, Anne-Cécile; Otvos, Laszlo; Belin de Chantemèle, Eric J

    2016-05-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115±2; protein tyrosine phosphatase 1b knockout, 124±2 mm Hg;Pantagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex-specific mechanisms. PMID:26953321

  17. Alcohol hangover induces mitochondrial dysfunction and free radical production in mouse cerebellum.

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Lombardi, P; Cutrera, R A; Lores-Arnaiz, S

    2015-09-24

    Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. Male mice received a single i.p. injection of EtOH (3.8g/kg BW) or saline solution. Mitochondrial function was evaluated 6h after injection (AH onset). At the onset of AH, malate-glutamate and succinate-supported state 4 oxygen uptake was 2.3 and 1.9-fold increased leading to a reduction in respiratory control of 55% and 48% respectively, as compared with controls. Decreases of 38% and 16% were found in Complex I-III and IV activities. Complex II-III activity was not affected by AH. Mitochondrial membrane potential and mitochondrial permeability changes were evaluated by flow cytometry. Mitochondrial membrane potential and permeability were decreased by AH in cerebellum mitochondria. Together with this, AH induced a 25% increase in superoxide anion and a 92% increase in hydrogen peroxide production in cerebellum mitochondria. Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system. PMID:26192095

  18. MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

    Hasahya Tony

    2015-01-01

    Full Text Available Aims. GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. Methods and Results. Eight-week-old female Balb/C mice were randomly assigned to sham, antagomir, and control groups. Antagomir group were pretreated with miR-208a antagomir 4 days before doxorubicin administration. At day 0, control and antagomir groups received 20 mg/kg of doxorubicin, while sham mice received phosphate buffered solution. Echocardiography was done at day 7, after which animals were sacrificed and hearts harvested and assessed for apoptosis and expression of miR-208a, GATA4, and BCL-2. Doxorubicin significantly upregulated miR-208a, downregulated GATA4, and increased myocyte apoptosis, with resulting decrease in cardiac function. In contrast, therapeutic silencing of miR-208a salvaged GATA4 and BCL-2 and decreased apoptosis, with improvement in cardiac function. Conclusion. Doxorubicin upregulates miR-208a and promotes cardiomyocyte apoptosis, while therapeutic silencing of miR-208a attenuates doxorubicin induced myocyte apoptosis with subsequent improvement in cardiac function. These novel results highlight the therapeutic potential of targeting miR-208a to prevent doxorubicin cardiotoxicity.

  19. Effects of Crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats.

    Topal, Gökçe; Koç, Ebru; Karaca, Cetin; Altuğ, Tuncay; Ergin, Bülent; Demirci, Cihan; Melikoğlu, Gülay; Meriçli, Ali H; Kucur, Mine; Ozdemir, Osman; Uydeş Doğan, B Sönmez

    2013-03-01

    Vascular dysfunction plays a key role in the pathogenesis of diabetic vascular disease. In this study, we aimed to investigate whether chronic in vivo treatment of Crataegus microphylla (CM) extract in diabetic rats induced with streptozotocin (STZ, intraperitoneal, 65 mg/kg) preserves vascular function and to evaluate whether the reduction of inducible nitric oxide synthase (iNOS), proinflammatory cytokines, and lipid peroxidation mediates its mechanisms of action. Starting at 4 weeks of diabetes, CM extract (100 mg/kg) was administrated to diabetic rats for 4 weeks. In aortic rings, relaxation to acetylcholine and vasoreactivity to noradrenaline were impaired, whereas aortic iNOS expression and plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), total nitrite-nitrate, and malondialdehite levels were increased in diabetic rats compared with controls. Chronic CM treatment significantly corrected all the above abnormalities in diabetic rats. In comparison, pretreatment of the aorta of diabetic rats with N-[3(aminomethyl) benzyl]-acetamidine, dihydrochloride (10(-5)  M), a selective inhibitor of iNOS, produced a similar recovery in vascular reactivity. These results suggest that chronic in vivo treatment of CM preserves endothelium-dependent relaxation and vascular contraction in STZ-induced diabetes, possibly by reducing iNOS expression in the aorta and by decreasing plasma levels of TNF-α and IL-6 and by preventing lipid peroxidation. PMID:22585450

  20. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  1. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  2. Protective role of cabbage extract versus cadmium-induced oxidative renal and thyroid hormones dysfunctions in rats

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of Cd damage. Cabbage is economically an important cole crop grown and consumed worldwide. It belongs the Cruciferous vegetables (Brassica), which have been reported to have a wide range of pharmacological properties. Since kidney is the critical target organ of chronic Cd damage, we carried out this study to investigate the effects of cabbage extract (C.E.) on Cd-induced dysfunction in the kidney of rats. The thyroid hormones values were also determined. Male Wistar rats were provided with cadmium chloride (100 mg/ L water) as the only drinking fluid and/or cabbage extract (C.E.) (5 ml/ kg body weight /day) for 4 weeks. Oral administration of Cd significantly induced the renal damage which was evident from the significantly (p < 0.05) increased levels of serum urea, uric acid and creatinine with a significant (p < 0.05) decrease in creatinine clearance. It also significantly declined the levels of urea, uric acid and creatinine in urine. Intoxication of Cd to rats reduced serum triiodothyronine (T3) and thyroxine (T4) concentrations. Reduced glutathione (GSH), and enzymatic antioxidants (superoxide dismutase (SOD) and catalase (CAT) were also significantly (p < 0.05) depressed with a concomitant marked enhancement in lipid peroxidation marker (thiobarbituric acid reactive substances, TBARS). Co-administration of C.E. along with Cd resulted in a reversal of the Cd-induced biochemical variables in kidney accompanied by a significant reduction in lipid peroxidation and a higher levels of renal antioxidant defense system. However, incorporation of C.E. to rats whether applied alone or in combination with Cd did not reveal any change in the thyroid hormones levels, which reflect significant drop in

  3. Hypocarnitinaemia induced by sodium pivalate in the rat is associated with left ventricular dysfunction and impaired energy metabolism.

    Broderick, Tom L

    2006-01-01

    Carnitine is a naturally occurring compound that is essential in energy metabolism of the mammalian heart. In addition to its essential role in facilitating beta-oxidation, carnitine eliminates excess toxic acyl residues and regulates the mitochondrial acetyl coenzyme A (CoA)/CoA ratio. Thus, it is not surprising that patients with carnitine deficiency syndromes exhibit defects in energy metabolism and in some cases demonstrate left ventricular dysfunction. Pivalic acid is commonly used to create prodrugs, such as pivampicillin and pivmecillinam, to facilitate enteral absorption and increase oral bioavailability. Pivalic acid released from the drug following absorption readily forms an ester with carnitine, which is then excreted as pivaloylcarnitine. Sustained loss of carnitine in the form of this ester induces a state of carnitine deficiency, exemplified by low plasma and tissue carnitine content. This review examines the effects in the rat of short- and long-term sodium pivalate treatment on: (1) cardiac carnitine content; (2) in vitro mechanical function; (3) markers of glycolytic and fatty acid metabolism; and (4) energy substrate metabolism. Treatment with sodium pivalate induces a gradual loss of cardiac carnitine content for up to 12 weeks. Doubling the duration of treatment is not associated with any further decrease in cardiac carnitine content. While heart function following short-term treatment (2 weeks) is normal under aerobic conditions, impaired recovery of function following ischaemia is seen. In contrast, long-term treatment (11-28 weeks) is associated with impaired heart function, which is dependent on workload and substrate availability. Impaired heart function is also associated with reductions in activity of 3-hydroxyacyl CoA dehydrogenase and rates of fatty acid oxidation. However, to maintain adenosine triphosphate production, glucose metabolism, expressed as hexokinase activity and glucose oxidation, is increased in carnitine

  4. Protection from Cigarette Smoke-Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin).

    Pini, Alessandro; Boccalini, Giulia; Lucarini, Laura; Catarinicchia, Stefano; Guasti, Daniele; Masini, Emanuela; Bani, Daniele; Nistri, Silvia

    2016-06-01

    Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases. PMID:27048661

  5. Mast cell degranulation induced by chlorogenic acid

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  6. Urinary excretion of fatty acid-binding protein 4 is associated with albuminuria and renal dysfunction.

    Yusuke Okazaki

    Full Text Available Fatty acid-binding protein 4 (FABP4/A-FABP/aP2 is expressed in not only adipocytes and macrophages but also peritubular capillaries in the normal kidney. We recently demonstrated that ectopic expression of FABP4, but not FABP1 known as liver FABP (L-FABP, in the glomerulus is associated with progression of proteinuria and renal dysfunction. However, urinary excretion of FABP4 has not been investigated.Subjects who participated in the Tanno-Sobetsu Study, a study with a population-based cohort design, in 2011 (n = 392, male/female: 166/226 were enrolled. Urinary FABP4 (U-FABP4 and urinary albumin-to-creatinine ratio (UACR were measured. Change in estimated glomerular filtration rate (eGFR was followed up one year later.In 93 (23.7% of the 392 subjects, U-FABP4 level was below the sensitivity of the assay. Subjects with undetectable U-FABP4 were younger and had lower UACR and higher eGFR levels than subjects with measurable U-FABP4. U-FABP4 level was positively correlated with age, systolic blood pressure and levels of serum FABP4 (S-FABP4, triglycerides, hemoglobin A1c (HbA1c, urinary FABP1 (U-FABP1 and UACR (r = 0.360, p<0.001. Age, S-FABP4, U-FABP1 and UACR were independent predictors of U-FABP4. On the other hand, systolic blood pressure, HbA1c and U-FABP4 were independently correlated with UACR. Reduction in eGFR after one year was significantly larger in a group with the highest tertile of baseline U-FABP4 than a group with the lowest tertile.Urinary FABP4 level is independently correlated with level of albuminuria and possibly predicts yearly decline of eGFR. U-FABP4 would be a novel biomarker of glomerular damage.

  7. Evaluation of pulmonary dysfunctions and acid–base imbalances induced by Chlamydia psittaci in a bovine model of respiratory infection

    Ostermann, Carola; Linde, Susanna; Siegling-Vlitakis, Christiane; Reinhold, Petra

    2014-01-01

    Background Chlamydia psittaci (Cp) is a respiratory pathogen capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection. To elucidate the pathogenesis of this infection, a translational large animal model was recently introduced by our group. This study aims at quantifying and differentiating pulmonary dysfunction and acid–base imbalances induced by Cp. Methods Forty-two calves were grouped in (i) animals inoculated with Cp (n = 21) and (ii) controls sham-inocu...

  8. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity

    Cui, Wenpeng; Maimaitiyiming, Hasiyeti; Qi, Xinyu; Norman, Heather; Wang, Shuxia

    2013-01-01

    Obesity is prevalent worldwide and is a major risk factor for many diseases including renal complications. Thrombospondin 1 (TSP1), a multifunctional extracellular matrix protein, plays an important role in diabetic kidney diseases. However, whether TSP1 plays a role in obesity-related kidney disease is unknown. In the present studies, the role of TSP1 in obesity-induced renal dysfunction was determined by using a diet-induced obese mouse model. The results demonstrated that TSP1 was signific...

  9. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  10. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    Nolan, Michael W., E-mail: mwnolan@ncsu.edu [Department of Clinical Sciences, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina (United States); Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Marolf, Angela J. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Ehrhart, E.J. [Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado (United States); Rao, Sangeeta [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Kraft, Susan L. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Engel, Stephanie [Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (United States); Yoshikawa, Hiroto; Golden, Anne E. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States); Wasserman, Todd H. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); LaRue, Susan M. [Department of Environmental and Radiologic Health Sciences, Colorado State University, Fort Collins, Colorado (United States)

    2015-03-15

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  11. Central Autonomic Dysfunction Delays Recovery of Fingolimod Induced Heart Rate Slowing.

    Max J Hilz

    Full Text Available In multiple sclerosis (MS patients, Fingolimod may induce prolonged heart-rate slowing which might be caused by MS-related central autonomic lesions.To evaluate whether MS-patients with prolonged heart-rate slowing (> six hours upon Fingolimod show cardiovascular-autonomic dysfunction before Fingolimod-initiation.Before Fingolimod-initiation, we recorded electrocardiographic RR-intervals (RRIs and blood-pressure (BP at rest, upon standing-up, during metronomic deep-breathing, Valsalva-maneuver, and "sustained-handgrip-exercise" in 21 patients with relapsing-remitting MS, and 20 healthy persons. We calculated sympathetic and parasympathetic cardiovascular parameters, including low- (LF and high-frequency (HF powers of RRI- and BP-oscillations, RRI-RMSSDs, RRI- and BP-changes during handgrip-exercise, parasympathetic heart-rate-slowing in relation to BP-overshoot after Valsalva-strain-release. We compared values of healthy persons and patients with and without prolonged heart-rate slowing after Fingolimod-initiation (ANOVA; significance: p<0.05.Upon Fingolimod-initiation, 7/21 patients had prolonged HR-slowing. Before Fingolimod, these patients had higher resting BP and higher BP increase during handgrip-exercise than had the other participants (p<0.05. They did not reduce parasympathetic HR-parameters upon standing-up. After Valsalva-strain-release, their parasympathetic HR-slowing in response to BP-overshoot was four times higher than in the other participants (p<0.05.The autonomic cardiovascular dysfunction in MS-patients with delayed HR-re-acceleration upon Fingolimod-initiation suggests that MS-related central autonomic lesions compromise HR-re-acceleration upon Fingolimod.German Clinical Trial Register DRKS00004548 http://drks-neu.uniklinik-freiburg.de/drks_web/setLocale_EN.do.

  12. Conjugated linoleic acid and nitrite attenuate mitochondrial dysfunction during myocardial ischemia.

    Van Hoose, Patrick M; Kelm, Natia Qipshidze; Piell, Kellianne M; Cole, Marsha P

    2016-08-01

    Cardiovascular health is influenced by dietary composition and the western diet is composed of varying types/amounts of fat. Conjugated linoleic acid (cLA) is an abundant dietary unsaturated fatty acid associated with health benefits but its biological signaling is not well understood. Nitrite is enriched in vegetables within the diet and can impact signaling of unsaturated fatty acids; however, its role on cLA signaling is not well understood. Elucidating how nitrite may impact the biological signaling of cLA is important due to the dietary consumption of both cLA and nitrite in the western diet. Since co-administration of cLA and nitrite results in cardioprotection during myocardial infarction (MI), it was hypothesized that cLA and nitrite may affect cardiac mitochondrial respiratory function and complex activity in MI. C57BL/6J mice were treated with cLA and nitrite for either 10 or 13days, where MI was induced on day 3. Following treatment, respiration and complex activity were measured. Among the major findings of this study, cLA treatment (10days) decreases state 3 respiration in vivo. Following MI, nitrite alone and in combination with cLA attenuates increased state 3 respiration and decreases hydrogen peroxide levels. Further, nitrite and cLA co-treatment attenuates increased complex III activity after MI. These results suggest that cLA, nitrite and the combination significantly alter cardiac mitochondrial respiratory and electron transport chain activity in vivo and following MI. Overall, the daily consumption of cLA and nitrite in the diet can have diverse cardiovascular implications, some of which occur at the mitochondrial level. PMID:27156147

  13. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors inAgtr1a(-/-)and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg inAgtr1a(-/-)mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed inAgtr1a(-/-)mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT andAgtr1a(-/-)mice.Agtr1a(-/-)mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone.Agtr1a(-/-)mice had decreased mesenteric artery expression of the calcium-activated potassium channelKcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt inAgtr1a(-/-)mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more inAgtr1a(-/-)mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. PMID:27045029

  14. Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients Induces Mitochondrial and Lysosomal Dysfunction.

    Sharma, Aparna; Varghese, Anu Mary; Vijaylakshmi, Kalyan; Sumitha, Rajendrarao; Prasanna, V K; Shruthi, S; Chandrasekhar Sagar, B K; Datta, Keshava K; Gowda, Harsha; Nalini, Atchayaram; Alladi, Phalguni Anand; Christopher, Rita; Sathyaprabha, Talakad N; Raju, Trichur R; Srinivas Bharath, M M

    2016-05-01

    In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS. PMID:26646005

  15. Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction.

    Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H A; MacIver, Bryce; Zeidel, Mark; Yu, Weiqun

    2016-05-01

    Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg(-1)·day(-1) ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853

  16. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism.

    Dong, Ping; Li, Jia-Han; Xu, Shi-Ping; Wu, Xiao-Juan; Xiang, Xun; Yang, Qi-Qi; Jin, Jian-Cheng; Liu, Yi; Jiang, Feng-Lei

    2016-05-01

    As noble metal nanoclusters (NCs) are widely employed in nanotechnology, their potential threats to human and environment are relatively less understood. Herein, the biological effects of ultra-small silver NCs coated by bovine serum albumin (BSA) (Ag-BSA NCs) on isolated rat liver mitochondria were investigated by testing mitochondrial swelling, membrane permeability, ROS generation, lipid peroxidation and respiration. It was found that Ag-BSA NCs induced mitochondrial dysfunction via synergistic effects of two different ways: (1) inducing mitochondrial membrane permeability transition (MPT) by interacting with the phospholipid bilayer of the mitochondrial membrane (not with specific MPT pore proteins); (2) damaging mitochondrial respiration by the generation of reactive oxygen species (ROS). As far as we know, this is the first report on the biological effects of ultra-small size nanoparticles (∼2nm) at the sub-cellular level, which provides significant insights into the potential risks brought by the applications of NCs. It would inspire us to evaluate the potential threats of nanomaterials more comprehensively, even though they showed no obvious toxicity to cells or in vivo animal models. Noteworthy, a distinct toxic mechanism to mitochondria caused by Ag-BSA NCs was proposed and elucidated. PMID:26808252

  17. Aβ1-42-induced dysfunction in synchronized gamma oscillation during working memory.

    Bai, Wenwen; Xia, Mi; Liu, Tiaotiao; Tian, Xin

    2016-07-01

    Amyloid-β peptide (Aβ) is recognized as a causative factor for the cognitive impairments in Alzheimer's disease (AD). The studies on the effects of Aβ to cognitive impairments are beneficial for lifting the veil of the pathophysiology in AD. Neuronal oscillations are proposed to play an important role in cognition and its ensuing behavior. Specially, the synchronized gamma oscillations are essential for the successful execution of working memory. However, whether the Aβ will induce the abnormal neuronal oscillations and working memory deficits has remained largely unexplored. In the present study, rats (control and Aβ-injected groups) were trained to perform a delay-alternation task on Y-maze while spikes and local field potentials (LFPs) were recorded from multi-electrodes implanted in the medial prefrontal cortex (mPFC), an area that is strongly modulated by working memory. Synchronized neuronal oscillations were assessed by phase locking between spike trains and LFPs. We found the significant working memory impairment in the Aβ-injected group. Moreover, in the control group, during the memory retention period, a transient burst of gamma synchronization preceded an animal's correct choice, but not an animal's error choice. In the Aβ-injected group, however, gamma synchronization experience no change in neither correct nor error trials. Our results indicate that the Aβ1-42-induced dysfunction in gamma synchronization may provide a potential mechanism for working memory deficits. PMID:27058924

  18. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-01-01

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch. PMID:27578458

  19. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  20. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Shen, Bo; He, Pei-Jie; Shao, Chun-Lin

    2013-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP. PMID:24367681

  1. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Bo Shen

    Full Text Available Norcantharidin (NCTD, a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM, the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN. Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen expression, destruction of mitochondrial membrane potential (MMP, down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  2. Endothelial ROS and Impaired Myocardial Oxygen Consumption in Sepsis-induced Cardiac Dysfunction

    Potz, Brittany A; Sellke, Frank W.; Abid, M. Ruhul

    2016-01-01

    Sepsis is known as the presence of a Systemic Inflammatory Response Syndrome (SIRS) in response to an infection. In the USA alone, 750,000 cases of severe sepsis are diagnosed annually. More than 70% of sepsis-related deaths occur due to organ failure and more than 50% of septic patients demonstrate cardiac dysfunction. Patients with sepsis who develop cardiac dysfunction have significantly higher mortality, and thus cardiac dysfunction serves as a predictor of survival in sepsis.

  3. Serelaxin (recombinant human relaxin-2) prevents high glucose-induced endothelial dysfunction by ameliorating prostacyclin production in the mouse aorta.

    Ng, Hooi Hooi; Leo, Chen Huei; Parry, Laura J

    2016-05-01

    Diabetes-induced endothelial dysfunction is a critical initiating factor in the development of cardiovascular complications. Treatment with relaxin improves tumour necrosis factor α-induced endothelial dysfunction by enhancing endothelial nitric oxide synthase (eNOS) activity and restoring superoxide dismutase 1 protein in rat aortic rings ex vivo. It is, therefore, possible that relaxin treatment could alleviate endothelial dysfunction in diabetes. This study aimed to test the hypothesis that serelaxin (recombinant human relaxin-2) prevents high glucose-induced vascular dysfunction in the mouse aorta. Abdominal aortae were isolated from C57BL/6 male mice and incubated in M199 media for 3days with either normal glucose (5.5mM) or high glucose (30mM), and co-incubated with placebo (20mM sodium acetate) or 10nM serelaxin at 37°C in 5% CO2. Vascular function was analysed using wire-myography. High glucose significantly reduced the sensitivity to the endothelium-dependent agonist, acetylcholine (ACh) (pEC50; normal glucose=7.66±0.10 vs high glucose=7.29±0.10, n=11-12, Paortae, but had no effect in serelaxin treated aortae. This suggests that high glucose incubation alters the superoxide and COX-sensitive pathway, which was normalized by co-incubation with serelaxin. Neither high glucose incubation nor serelaxin treatment had an effect on cyclooxygenase 1 and 2 (Ptgs1, Ptgs2), prostacyclin synthase (PTGIS) and receptor (Ptgir) as well as thromboxane A2 receptor (Tbxa2r) mRNA expression. Importantly, production of prostacyclin was significantly (Paortae, which was prevented by serelaxin treatment. Our data show that serelaxin treatment for 3 days restores high glucose-induced endothelial dysfunction by ameliorating vasodilator prostacyclin production and possibly through the reduction of superoxide in the mouse aorta. PMID:26993102

  4. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. PMID:25091560

  5. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. PMID:23872130

  6. Senescence marker protein 30 has a cardio-protective role in doxorubicin-induced cardiac dysfunction.

    Makiko Miyata

    Full Text Available BACKGROUND: Senescence marker protein 30 (SMP30, which was originally identified as an aging marker protein, is assumed to act as a novel anti-aging factor in the liver, lungs and brain. We hypothesized that SMP30 has cardio-protective function due to its anti-aging and anti-oxidant effects on doxorubicin (DOX-induced cardiac dysfunction. METHODS AND RESULTS: SMP30 knockout (SMP30 KO mice, SMP30 transgenic (SMP30 TG mice with cardiac-specific overexpression of SMP30 gene and wild-type (WT littermate mice at 12-14 weeks of age were given intra-peritoneal injection of DOX (20 mg/kg or saline. Five days after DOX injection, echocardiography revealed that left ventricular ejection fraction was more severely reduced in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but was preserved in the DOX-treated SMP30 TG mice. Generation of reactive oxygen species and oxidative DNA damage in the myocardium were greater in the DOX-treated SMP30 KO mice than in the DOX-treated WT mice, but much less in the SMP30 TG mice. The numbers of deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive nuclei in the myocardium, apoptotic signaling pathways such as caspase-3 activity, Bax/Bcl-2 ratio and phosphorylation activity of c-Jun N-terminal kinase were increased in SMP30 KO mice and decreased in SMP30 TG mice compared with WT mice after DOX injection. CONCLUSIONS: SMP30 has a cardio-protective role by anti-oxidative and anti-apoptotic effects in DOX-induced cardiotoxicity, and can be a new therapeutic target to prevent DOX-induced heart failure.

  7. Selective inducible nitric oxide synthase inhibition attenuates organ dysfunction and elevated endothelin levels in LPS-induced DIC model rats.

    Asakura, H; Asamura, R; Ontachi, Y; Hayashi, T; Yamazaki, M; Morishita, E; Miyamoto, K-I; Nakao, S

    2005-05-01

    We examined the role of nitric oxide (NO) produced by an inducible isoform of NO synthase (iNOS) using N[6]-(iminoethyl)-lysine (L-NIL), a selective iNOS inhibitor, in the rat model of lipopolysaccharide (LPS)-induced disseminated intravascular coagulation (DIC) and investigated changes in organ function, plasma levels of NOX (metabolites of NO) and endothelin. We induced experimental DIC by the sustained infusion of 30 mg kg(-1) LPS for 4 h via the tail vein. We then investigated the effect of L-NIL (6 mg kg(-1), from - 0.5 to 4 h) on LPS-induced DIC. Blood was withdrawn at 4 and 8 h, and all four groups (LPS with or without L-NIL at 4 and 8 h) consisted of eight rats. Three of the animals in the 8-h LPS group died, and we examined blood samples from five rats in this group. None of the other rats died. The LPS-induced elevation of creatinine, alanine aminotransferase, glomerular fibrin deposition and plasminogen activator inhibitor was significantly suppressed by L-NIL coadministration, although L-NIL did not affect the platelet count, fibrinogen concentration or the level of thrombin-antithrombin complex. Moreover, plasma levels of the D-dimer that reflect the lysis of cross-linked fibrin were significantly increased by L-NIL coadministration in the LPS-induced DIC model. Plasma levels of NOX and endothelin were obviously increased by LPS infusion. However, both levels were significantly suppressed in the LPS + L-NIL group, when compared with the LPS group. Although mean arterial pressure (MAP) was significantly decreased between 2 and 8 h compared with the control in the LPS group, this depression was significantly attenuated in the LPS + L-NIL group. Our results suggest that NO induced by iNOS contributes to hypotension (depressed MAP), the progression of hepatic and renal dysfunction, microthrombus deposition and elevated endothelin levels in the rat model of LPS-induced DIC. PMID:15869603

  8. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats.

    Renugadevi, J; Prabu, S Milton

    2009-02-01

    Cadmium (Cd) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Naringenin is a naturally occurring plant bioflavonoid found in citrus fruits, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of cadmium toxicity. Since kidney is the critical target organ of chronic Cd toxicity, we carried out this study to investigate the effects of naringenin on Cd-induced toxicity in the kidney of rats. In experimental rats, oral administration of cadmium chloride (5mg/(kgday)) for 4 weeks significantly induced the renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (pCadmium also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (pcadmium-treated rats. Co-administration of naringenin (25 and 50mg/(kgday)) along with Cd resulted in a reversal of Cd-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological studies in the kidney of rats also showed that naringenin (50mg/(kgday)) markedly reduced the toxicity of Cd and preserved the normal histological architecture of the renal tissue. The present study suggest that the nephroprotective potential of naringenin in Cd toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in Cd-induced renal damage. PMID:19063931

  9. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  10. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    Kathleen Kauter

    2013-02-01

    Full Text Available Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats.