WorldWideScience

Sample records for acid induce lipid

  1. Effect of Ascorbic Acid on Lipid Peroxidation Induced by Ceftazidime

    Devbhuti P*,1

    2011-01-01

    Full Text Available Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids which is a free radical related process and responsible for thedevelopment of many diseases and disorders like diabetes mellitus, hypertension, cancer etc. End products of lipid peroxidation aremalondialdehyde (MDA, 4-hydroxy-2-nonenal (4-HNE, etc. which are the ultimate mediator of toxicity. Antioxidants have the capability toinhibit lipid peroxidation. Keeping in mind this fact, the present in vitro study was carried out to evaluate lipid peroxidation induction potential of ceftazidime, a cephalosporin antibiotic and its suppression with ascorbic acid considering some laboratory markers of lipid peroxidation like MDA, 4-HNE and reduced glutathione (GSH. Goat liver was used as the lipid source. After treatment of the liver homogenate with drug and/or antioxidant the levels of 4-HNE, MDA and GSH were estimated in different samples at different hours of incubation. The results showed that the drug ceftazidime could significantly induce lipid peroxidation and the antioxidant ascorbic acid has the capability to inhibit ceftazidime-inducedlipid peroxidation.

  2. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  3. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane.

    Onuki, Yoshinori; Morishita, Mariko; Chiba, Yoshiyuki; Tokiwa, Shinji; Takayama, Kozo

    2006-01-01

    We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form. PMID:16394552

  4. γ-radiation induced polymerization of unsaturated liposomes containing unsaturated lipid, cholesterol, and saturated aliphatic acid

    γ-Radiation induced polymerization of mixed-lipid liposomes consist of 1,2-bis[(2E, 4E)-2,4-octadecadienoyl]-sn - glycero-3-phosphocholine(DODPC), diparmitoyl phosphatidyl choline(DPPC), cholesterol(CHol), and stearic acid(SA) was studied from the point of view the kinetics and mean molecular area on the water surface. All the polymerization was carried out at temperature of 4degC. The polymer yield and molecular weight of soluble polymer increased when compared with those of poly-DODPC liposomes. The overall rate of polymerization increased linearly with decreasing the molar fraction of DODPC in the membrane. The mean molecular area on the water surface of mixtures DODPC with DPPC, CHol, and SA gave the ideal line indicating immiscibility. (author)

  5. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas;

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...... use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.......Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise......-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the...

  6. EVALUATION OF ANTIPEROXIDATIVE POTENTIAL OF ASCORBIC ACID ON BUSULFAN-INDUCED LIPID PEROXIDATION USING 4-HYDROXY-2-NONENAL AND NITRIC OXIDE AS MODEL MARKERS

    Supratim Ray

    2012-01-01

    The study was designed with an aim to evaluate the antiperoxidative potential of ascorbic acid on busulfan-induced lipid peroxidation. The study was performed in vitro using goat liver as lipid source. This evaluation was done by measuring the 4-hydroxy-2-nonenal (4-HNE) and nitric oxide (NO) content of liver tissue homogenates as markers of lipid peroxidation. The study reveals the lipid peroxidation induction capacity of busulfan and the antiperoxidative potential of ascorbic acid on busulf...

  7. Radiation-induced lipid peroxidation in whole grain of rye, wheat and rice: effects on linoleic and linolenic acid

    Changes in the fatty acid composition in lipids after γ-irradiation of whole grain of wheat, rye and rice were examined. The radiosensitivity of linoleic acid (18:2) and linolenic acid (18:3) was studied up to a dose of 63 kGy in seeds with different water content and after a post-irradiation storage time of 2 months. At doses in the range recommended for grain disinfestation, i.e. 0.1-1.0 kGy, no detectable degradation of 18:2 and 18:3 was found, but at the highest dose applied, 63 kGy, a degradation in the range from a few percent up to 40% was observed. Under extreme conditions, i.e. pre- and post-irradiation treatment with oxygen, or when the flour prepared from the seeds was mixed with water and heated before the extraction of the lipids, a more pronounced degradation of the unsaturated fatty acids was noticed. Lipid peroxidation induced by γ-irradiation was estimated using the thiobarbituric acid (TBA) method. High yields of the TBA-reactive material were formed in the three types of grain investigated corresponding to G-values in the range of 12-18. The influence on peroxidation yields of the water content of the seeds was studied in wheat. The origin of the TBA-reactive material formed in the seeds is not yet known, but could only to a minor extent be due to fatty acid peroxidation. (author)

  8. Antioxidant Effect of Caffeic Acid on Oxytetracycline Induced Lipid Peroxidation in Albino Rats

    Jayanthi, R.; Subash, P.

    2010-01-01

    Caffeic acid is a well-known phenolic compound widely present in plant kingdom. The aim of this study was to investigate the possible protective effect of caffeic acid (CA) against oxytetracycline (OXT) induced hepatotoxicity in male Albino Wistar rats. A total of 30 rats weighing 150–170 g were randomly divided into five groups of six rats in each group. Oral administration of OXT (200 mg/kg body weight/day) for 15 days produced hepatic damage as manifested by a significant increase in serum...

  9. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses. PMID:27088457

  10. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  11. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    Eu Chia

    2010-07-01

    Full Text Available Abstract Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL, an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR. Glycyrrhizic acid (GA, a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR (p Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA.

  12. Lipid changes in normal and cancer colon cells during differentiation and apoptosis induced by fatty acids

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    2007-01-01

    Roč. 20, č. 1 (2007), S43. ISSN 1107-3756. [12th World Congress on Advances in Oncology and 10th International Symposium on Molecular Medicine. 11.10.2007-13.10.2007, Hersonissos, Crete] R&D Projects: GA ČR(CZ) GA524/07/1178; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : colon cancer * lipids * apoptosis Subject RIV: BO - Biophysics

  13. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas; Mattijssen, Frits; Evers-van Gogh, Inkie; Schaart, Gert; Jeppesen, Jacob; Kneppers, Anita; Mensink, Marco; Voshol, Peter J.; Olivecrona, Gunilla; Tan, Nguan Soon; Hesselink, Matthijs K. C.; Berbée, Jimmy F.; Rensen, Patrick C N

    2014-01-01

    Physical exercise causes profound changes in energy metabolism in humans. In this study we show that resting skeletal muscle has a crucial role in the metabolic response to acute exercise. During endurance exercise, selective induction of the protein angiopoietin-like 4 (ANGPTL4) in nonexercising muscle reduces local fatty acid uptake, presumably to prevent fat overload, while directing fatty acids to the active skeletal muscle as fuel. Our data thus suggest that nonexercising muscle has a ke...

  14. Suppression by ellagic acid of 60Co-irradiation-induced lipid peroxidation in placenta and fetus of rats

    The effect of ellagic acid, a component of Eucalyptus maculata, on lipid peroxidation was examined in placenta and fetus of pregnant rats irradiated with 60Co. The increase in lipid peroxide levels by the irradiation of the placenta and fetus brain as well as those of the serum and organs of mother was suppressed by treatment of the mother rats with ellagic acid. This suppressing effect found in placenta and fetus was significantly correlated with that found in mother rats. Moreover, ellagic acid suppressed the morphological changes such as degeneration in the endothelial cells of placenta and liver cells of fetus caused by the irradiation and improved the survival rate after the irradiation. These suppressing effects of ellagic acid were approximately the same as those of α-tocopherol. (author)

  15. Fusidic acid betamethasone lipid cream.

    Girolomoni, G; Mattina, R; Manfredini, S; Vertuani, S; Fabrizi, G

    2016-05-01

    Bacterial infections of the skin and soft tissues are frequent disorders. They can be primitive infections (e.g. impetigo, folliculitis) or secondary infections complicating other diseases, particularly atopic dermatitis. The most common aetiologic agent is Staphylococcus aureus. Topical antibiotic therapy may be sufficient in many instances to control these infections. Fusidic acid is an antibiotic used topically on the skin which is very active against S. aureus, including methicillin-resistant strains, and other Gram-positive bacteria. Resistance rates to fusidic acid are stably low. A fusidic acid and betamethasone formulation in a lipid-enriched cream (lipid cream) has been recently developed in order to provide effective antibacterial and anti-inflammatory activities in conjunction with a powerful emollient and moisturising effect. This preparation may be especially useful in patients with atopic-infected eczema. PMID:27121235

  16. Iron and hydroxyl radicals in lipid oxidation: Fenton reactions in lipid and nucleic acids co-oxidized with lipid

    Borg, D.C.; Schaich, K.M.

    1987-01-01

    Hydroxyl radicals can initiate lipid peroxidation in liquids, but their high reactivity affords reaction paths so short that they are unlikely to reach lipids in membrane bilayers when formed exteriorly. EPR studies of Fenton-like reactions inducing oxidation in bulk lipids indicate that iron-dependent initiation of lipid oxidation in organelles and vesicles may result from hydroxyl radicals formed within the hydrophobic membrane interiors, where they would be inaccessible to typical hydrophilic radical scavengers. The cytotoxic or cytogenetic results of lipid peroxidation, especially in nuclear membranes, may include radiominetic chemical damage to adjacent DNA or nucleoprotein. Preliminary product analyses of nucleic acid basis cooxidized with lipids in vitro support this view.

  17. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  18. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise.

    Catoire, M.; Alex, S.; Paraskevopulos, N.; Mattijssen, F.; Evers-van Gogh, I.; Schaart, G.; Jeppesen, J.; Kneppers, A.; Mensink, M.; Voshol, P.J.; Olivecrona, G.; Tan, N.S.; Hesselink, M.K.; Berbee, J.F.; Rensen, P.C.; Kalkhoven, E.; Schrauwen, P.; Kersten, S.

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise e

  19. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  20. Stearoyl-CoA desaturase-1 (SCD1 augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes.

    Hiroki Matsui

    Full Text Available Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1 is a rate-limiting enzyme that converts saturated fatty acids (SFAs to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis.

  1. Yuanhuapine-induced intestinal and hepatotoxicity were correlated with disturbance of amino acids, lipids, carbohydrate metabolism and gut microflora function: A rat urine metabonomic study.

    Chen, Yanyan; Duan, Jin-Ao; Guo, Jianming; Shang, Erxin; Tang, Yuping; Qian, Yefei; Tao, Weiwei; Liu, Pei

    2016-07-15

    This research was designed to study metabonomic characteristics of the toxicity induced by yuanhuapine, a major bioactive diterpenoid in a well-known traditional Chinese medicine-Genkwa Flos. General observation, blood biochemistry and histopathological examination were used to reflect yuanhuapine-induced toxicity. Urine samples from rats in control and yuanhuapine treated rats were analyzed by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Pattern recognition methods including principal components analysis (PCA), partial least-squared discriminant analysis (PLS-DA), orthogonal partial least-squared discriminant analysis (OPLS-DA) and computational system analysis were integrated to obtain comprehensive metabonomic profiling and pathways of the biological data sets. The results suggested that yuanhuapine could induce intestinal and liver damage. And 14 endogenous metabolites as biomarkers related to the amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora were significantly changed in the urine of yuanhuapine treated rats, which were firstly constructed the metabolomic feature profiling and metabolite interaction network of yuanhuapine-induced injury using pattern recognition methods and Ingenuity Pathway Analysis (IPA) approach. The present study showed that yuanhuapine-induced intestinal and hepatic toxicity were correlated with disturbance of amino acids metabolism, lipids metabolism, carbohydrate metabolism and gut microflora. PMID:26341729

  2. Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

    Karim Bensaad

    2014-10-01

    Full Text Available An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3 and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α-dependent manner. There was a significant lipid droplet (LD accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo.

  3. Ultrasonic radiation induced lipid peroxidation in liposomal membrane

    Jana, A.K.; Agarwal, S.; Chatterjee, S.N.

    1986-12-01

    Ultrasonic radiation produced a dose dependent linear increase in lipid peroxidation (MDA formation) in the liposomal membrane. The yield of MDA was significantly inhibited by butylated hydroxytoluene (BHT), the antioxidant, sodium formate,the OH/sup ./ radical scavenger, and EDTA, the metal ion chelator. Ascorbic acid at low concentration increased the ultrasonic induced MDA formation while high concentrations inhibited lipid peroxidation. A mechanism of ultrasound induced lipid peroxidation is suggested.

  4. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  5. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    Swapna Bhat

    Full Text Available Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these

  6. Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice

    Hyun Yang-Jin

    2010-02-01

    Full Text Available Abstrect Background To understand whether TLR-4-linked NF-kB activation negatively correlates with lipid peroxidation in colitic animal models, we caused colitis by the treatment with dextran sulfate sodium (DSS or 2,4,6-trinitrobenzenesulfonic acid (TNBS to C3H/HeJ (TLR-4-defective and C3H/HeN (wild type mice, investigated inflammatory markers, lipid peroxidation, proinflammatory cytokines and TLR-4-linked NF-κB activation, in colon and intestinal bacterial composition in vivo. Methods Orally administered DSS and intrarectally injected TNBS all caused severe inflammation, manifested by shortened colons in both mice. These agents increased intestinal myeloperoxidase activity and the expression of the proinflammatory cytokines, IL-1β, TNF-α and IL-6, in the colon. Results DSS and TNBS induced the protein expression of TLR-4 and activated transcription factor NF-κB. However, these colitic agents did not express TLR-4 in C3H/HeJ mice. Of proinflammatory cytokines, IL-1β was most potently expressed in C3H/HeN mice. IL-1β potently induced NF-κB activation in CaCo-2 cells, but did not induce TLR-4 expression. DSS and TNBS increased lipid peroxide (malondialdehyde and 4-hydroxy-2-nonenal content in the colon, but reduced glutathione content and superoxide dismutase and catalase activities. These colitic inducers increased the number of Enterobacteriaceae grown in DHL agar plates in both mice, although the number of anaerobes and bifidobacteria grown in GAM and BL agar plates was reduced. E. coli, K. pneumoniae and Proteus mirabilis isolated in DHL agar plates increased lipid peroxidation in liposomes prepared by L-α-phosphatidylcholine, but B. animalis and B. cholerium isolated from BL agar plates inhibited it. Discussion These findings suggest that DSS and TNBS may cause colitis by inducing lipid peroxidation and enterobacterial proliferation, which may deteriorate the colitis by regulating proinflammatory cytokines via TLR-4-linked NF

  7. Protective effects of salicylic acid and vitamin C on sulfur dioxide-induced lipid peroxidation in mice.

    Zhao, Huiping; Xu, Xin; Na, Jie; Hao, Lin; Huang, Linli; Li, Guangzhe; Xu, Qiang

    2008-07-01

    The antioxidant effects of exogenous salicylic acid (SA) and vitamin C (Vit C) on the oxidative stress induced by 56 mg/m(3) of sulfur dioxide (SO2) in mouse livers and brains were investigated. The exposure of SO2 caused significant elevation of thiobarbituric acid-reactive substance (TBARS) levels and reduction of enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in brain and liver, accompanied by a decrease in relative growth rate, when compared with controls. Application of moderate concentrations of SA and Vit C markedly reduced the SO2-induced elevation of TBARS levels, with 5.5 mg/kg SA or 200 mg/kg Vit C being most effective. In contrast to the decrease of TBARS levels, the levels of SOD, POD, and CAT in liver and brain were significantly increased in comparison with controls. The polyacrylamide gel electrophoresis (PAGE) of total liver proteins showed that the SO2 inhalation caused a 30-kD protein band disappearance compared with the control. However, the band remained unchanged in the samples treated with 5.5 and 8.25 mg/kg SA or 100, 200, and 400 mg/kg Vit C. Therefore, this protein band may serve as a marker for the damage induced by SO2 and an additional basis for drug screening and selection. PMID:18645726

  8. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  9. Influence of ferulic acid on γ-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes

    Ionizing radiation is known to induce oxidative stress through generation of reactive oxygen species (ROS) resulting in imbalance of the pro-oxidant and antioxidant activities ultimately resulting in cell death. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn, and ricebran. FA exhibit a wide range of pharmacological effects including antiageing, anti-inflammatory, anticancer, antidiabetic, antiapoptotic, and neuroprotective. The present work is aimed at evaluating the radioprotective effect of FA, on γ-radiation induced toxicity in primary cultures of isolated rat hepatocytes. Hepatocytes were isolated from the liver of rats by collagenase perfusion. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH), ceruloplasmin, Vitamins A, E and C and uric acid. DNA damage was analyzed by single cell gel electrophoresis (comet assay). An increase in the severity of DNA damage was observed with increasing dose (1, 2 and 4 Gy) of γ-radiation in cultured hepatocytes. TBARS were increased significantly, whereas the levels of GSH, Vitamins C, E and A, ceruloplasmin, uric acid and antioxidant enzymes were significantly decreased in γ-irradiated groups. The maximum damage to hepatocytes was observed at 4 Gy irradiation. Pretreatment with FA (1, 5 and 10 μg/ml) significantly decrease the levels of TBARS and DNA damage. In addition, pretreatment with FA significantly increased antioxidant enzymes, GSH, Vitamins A, E and C, uric acid and ceruloplasmin levels. The maximum protection of hepatocytes was observed at 10 μg/ml of FA pretreatment. Thus, pretreatment with FA helps in protecting the hepatocytes against γ-radiation induced cellular damage and can be developed as a effective radioprotector during radiotherapy

  10. Protective effect of chenodeoxycholic acid against lipid kidney injury induced by high-fructose feeding in rats and the underlying mechanism

    胡志娟

    2013-01-01

    Objective To study the intervention of chenodeoxycholic acid(CDCA) on kidney of high-fructose-fed rats,and investigate the mechanism of CDCA on lipid kidney injury.Methods Forty-eight healthy male Wistar

  11. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid.

    Yousef, Mokhtar I

    2004-06-01

    For a long time, aluminium (Al) has been considered an indifferent element from a toxicological point of view. In recent years, however, Al has been implicated in the pathogenesis of several clinical disorders, such as dialysis dementia, the fulminant neurological disorder that can develop in patients on renal dialysis. Therefore, the present experiment was carried out to determine the effectiveness of l-ascorbic acid (AA) in alleviating the toxicity of aluminium chloride (AlCl3) on certain hemato-biochemical parameters, lipid peroxidation and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to 1 of 4 treatment groups: 0mg AA and 0mg AlCl3/kg body weight (BW) (control); 40 mg AA/kg BW; 34 mg AlCl3/kg BW (1/25 LD50); 34 mg AlCl3 plus 40 mg AA/kg BW. Rabbits were orally administered their respective doses every other day for 16 weeks. Evaluations were made for lipid peroxidation, enzyme activities and hemato-biochemical parameters. Results obtained showed that AlCl3 significantly (PGST) and the levels of sulfhydryl groups (SH groups) in rabbit plasma, liver, brain, testes and kidney. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and phosphorylase activities were significantly decreased in liver and testes due to AlCl3 administration. While, plasma, liver, testes and brain lactate dehydrogenase (LDH) activities were significantly increased. Contrariwise, the activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Aluminium treatment caused a significant decrease in plasma total lipids (TL), blood haemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), and increased total leukocyte count (TLC) and the concentrations of glucose, urea, creatinine, bilirubin and cholesterol. Ascorbic acid alone significantly decreased the levels of free radicals, TL, cholesterol, glucose and creatinine, and increased the

  12. Effects of chicory inulin on serum metabolites of uric acid, lipids, glucose, and abdominal fat deposition in quails induced by purine-rich diets.

    Lin, Zhijian; Zhang, Bing; Liu, Xiaoqing; Jin, Rui; Zhu, Wenjing

    2014-11-01

    Inulin, a group of dietary fibers, is reported to improve the metabolic disorders. In the present study, we investigated the effects of chicory inulin on serum metabolites of uric acid (UA), lipids, glucose, and abdominal fat deposition in quail model induced by a purine-rich diet. In this study, 60 male French quails were randomly allocated to five groups: CON (control group), MOD (model group), BEN (benzbromarone-treated group), CHI-H (high-dosage chicory inulin-treated group), and CHI-L (low-dosage chicory inulin-treated group). The serum UA level was significantly increased in the model group from days 7 to 28, as well as triglyceride (TG) and free fatty acid (FFA) increased later in the experimental period. The abdominal fat ratio was increased on day 28. Benzbromarone can decrease UA levels on days 14 and 28. The high and low dosage of chicory inulin also decreased serum UA levels on days 7, 14, and 28. The abdominal fat ratio, activity, and protein of acetyl-CoA carboxylase (ACC) were decreased in chicory inulin-treated groups. The activities of xanthine oxidase (XOD) and fatty acid synthase (FAS) were increased in the model group and decreased in the benzbromarone and chicory inulin groups. This study evaluated a quail model of induced hyperuricemia with other metabolic disorders caused by a high-purine diet. The results indicated that a purine-rich diet might contribute to the development of hyperuricemia, hypertriglyceridemia, and abdominal obesity. Chicory inulin decreased serum UA, TG, and abdominal fat deposition in a quail model of hyperuricemia by altering the ACC protein expression and FAS and XOD activities. PMID:25314375

  13. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    Eu Chia; Lim Wai; Ton So; Kadir Khalid

    2010-01-01

    Abstract Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL), an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR). Glycyrrhizic acid (GA), a triterpenoid saponin, is th...

  14. N-3 Polyunsaturated Fatty Acids Supplementation Does not Affect Changes of Lipid Metabolism Induced in Rats by Altered Thyroid Status

    Rauchová, Hana; Vokurková, Martina; Pavelka, Stanislav; Behuliak, Michal; Tribulová, N.; Soukup, Tomáš

    2013-01-01

    Roč. 45, č. 7 (2013), s. 507-512. ISSN 0018-5043 R&D Projects: GA ČR(CZ) GA303/09/0570; GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 7AMB12SK158 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : hypothyriodism * hyperthyroidism * mitochondrial glycerol-3-phosphate dehydrogenase * glucose * plasma lipids Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.038, year: 2013

  15. Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice

    Newberry, Elizabeth P.; Kennedy, Susan M; Xie, Yan; Luo, Jianyang; Davidson, Nicholas O.

    2008-01-01

    Liver fatty acid binding protein (L-FABP) is highly expressed in both enterocytes and hepatocytes and binds multiple ligands, including saturated (SFA), unsaturated fatty acids (PUFA), and cholesterol. L-fabp−/− mice were protected against obesity and hepatic steatosis on a high saturated fat (SF), high cholesterol “Western” diet and manifested a similar phenotype when fed with a high SF, low cholesterol diet. There were no significant differences in fecal fat content or food consumption betw...

  16. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids

    Hofmanová, Jiřina; Ciganek, M.; Slavík, J.; Kozubík, Alois; Stixová, Lenka; Vaculová, Alena; Dušek, L.; Machala, M.

    2012-01-01

    Roč. 23, č. 6 (2012), s. 539-548. ISSN 0955-2863 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040507 Institutional support: RVO:68081707 Keywords : Colon cancer * Polyunsaturated fatty acids * Butyrate Subject RIV: BO - Biophysics Impact factor: 4.552, year: 2012

  17. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    Carol L Fischer; Katherine S Walters; David R Drake; Deborah V Dawson; Derek R Blanchette; Kim A Brogden; Philip W Wertz

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria;however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  18. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators

    Thomas Köhnke

    2013-01-01

    Full Text Available The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA. In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation.

  19. Regulation of exercise-induced lipid metabolism in skeletal muscle

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle...... mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose......Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid...

  20. The modulatory influence of p-methoxycinnamic acid, an active rice bran phenolic acid, against 1,2-dimethylhydrazine-induced lipid peroxidation, antioxidant status and aberrant crypt foci in rat colon carcinogenesis.

    Sivagami, Gunasekaran; Karthikkumar, Venkatachalam; Balasubramanian, Thangavel; Nalini, Namashivayam

    2012-03-01

    We investigated the chemopreventive effect of p-methoxycinnamic acid (p-MCA), an active phenolic acid of rice bran, turmeric, and Kaemperfia galanga against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Male albino Wistar rats were randomly divided into six groups. Group 1 consisted of control rats that received a modified pellet diet and 0.1% carboxymethyl cellulose. The rats in Group 2 received a modified pellet diet supplemented with p-MCA [80 mg/kg body weight (b.wt.) post-orally (p.o.)] everyday. The rats in Groups 3-6 received 1,2-dimethylhydrazine (DMH) (20 mg/kg b.wt.) via subcutaneous injections once a week for the first 4 weeks; additionally, the rats in Groups 4, 5 and 6 received p-MCA at doses of 20, 40 and 80 mg/kg b.wt./day p.o., respectively, everyday for 16 weeks. The rats were sacrificed at the end of the experimental period of 16 weeks. The DMH-treated rats exhibited an increased incidence of aberrant crypt foci (ACF) development; an increased crypt multiplicity; decreased concentrations of tissue lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (LOOH); decreased levels of tissue enzymic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR); and decreased levels of non-enzymic antioxidants such as reduced glutathione (GSH) and vitamins C, E and A in the colon. Supplementation with p-MCA significantly reversed these changes and significantly inhibited the formation of ACF and its multiplicity. Thus, our findings demonstrate that p-MCA exerts a strong chemopreventive activity against 1,2-dimethylhydrazine-induced colon carcinogenesis by virtue of its ability to prevent the alterations in DMH-induced circulatory and tissue oxidative stress and preneoplastic changes. p-MCA was more effective when administered at a dose of 40 mg/kg b.wt. than at the other two doses tested. PMID:22326950

  1. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Neiva T.J.C.

    1997-01-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  2. Essential fatty acids and lipid mediators. Endocannabinoids

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  3. Marine lipids and the bioavailability of omega-3 fatty acids

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... bioavailability of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty....... In vitro studies provided a mechanistic understanding on the varied bioavailability caused by different lipid structures, the lower relative bioavailability of omega-3 fatty acids from FAEE formulation was closely related to the slower digestion rate of FAEE. Microencapsulated fish oil has often been...

  4. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing.

    Qiu, Chaoying; Zhao, Mouming; Sun, Weizheng; Zhou, Feibai; Cui, Chun

    2013-03-01

    Lipid composition, fatty acid profile and lipid oxidative stability were evaluated during Cantonese sausage processing. Free fatty acids increased with concomitant decrease of phospholipids. Total content of free fatty acids at 72 h in muscle and adipose tissue was 7.341 mg/g and 3.067 mg/g, respectively. Total amount of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA, and PUFA) in neutral lipid exhibited a little change during processing, while the proportion of PUFA significantly decreased in the PL fraction. The main triacylglycerols were POO+SLO+OOO, PSO (P = palmitic acid, O = oleic acid, L = linoleic acid, S = stearic acid), and a preferential hydrolysis of palmitic, oleic and linoleic acid was observed. Phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the main components of phospholipids and PE exhibited the most significant degradation during processing. Thiobarbituric acid values (TBARS) increased while peroxide values and hexanal contents varied during processing. PMID:23273460

  5. A Case of Rhabdomyolysis Induced by Lipid Lowering Agent

    Koh, Eun Mi; Lee, Tae Won; Ihn, Chun Gyoo; Kim, Kwang Won; Kim, Myung Jae; Choi, Young Kil [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-03-15

    Bezafibrate is a lipid-lowering agent and one of the fabric acid derivatives. It is relatively safe and well tolerated and adverse reactions to bezafibrate have largely been restricted to gastrointestinal disturbances. But a few cases of rhabdomyolysis after bezafibrate administration have been reported and recently we experienced bezafibrate-induced rhabdomyolysis in patients with chronic renal failure. So we report this case with the bone scan finding and the literature review. We believe that this is the first case report of bezafibrate-induced rhabdomyolysis in Korea.

  6. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  7. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  8. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  9. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  10. Fatty acid methyl ester profiles of bat wing surface lipids.

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration. PMID:25227993

  11. Fatty Acid and Lipid Transport in Plant Cells.

    Li, Nannan; Xu, Changcheng; Li-Beisson, Yonghua; Philippar, Katrin

    2016-02-01

    Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. PMID:26616197

  12. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used. PMID:24080318

  13. Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview.

    Ramadan, Mohamed Fawzy; Oraby, Hesahm Farouk

    2016-01-01

    Potato tuber is a highly nutritious, wherein genotype and environmental differences are known to exist in the shape, size and nutritional value of potatoes. Owing to its high consumption, potato could be an ideal carrier of health-promoting phytochemicals. Potato cultivars contain many bioactive lipidic compounds such as fatty acids, glycolipids, phospholipids, sterols, tocols and carotenoids, which are highly desirable in diet because of their health-promoting effects. In the scientific literature, information on the content and profile of bioactive lipidic compounds in potato cultivars are few. The concentration and stability of bioactive lipids are affected by many factors such as genotype, agronomic factors, postharvest storage, cooking and processing conditions. In this review levels and composition of bioactive lipids in terms of lipid classes, fatty acids, phytosterols, tocopherols, and caroteinoids distribution in different potato cultivars including genetically modified potato (GMP) were highlighted and discussed. In addition, factors affecting bioactive lipids levels, stability and health benefits are reviewed. In consideration of potential nutritional value, detailed knowledge on lipids of potato cultivars is of major importance. PMID:27250559

  14. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s......The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration......-dependent self-quenching properties of the hydrophilic marker, calcein. Adding lysoPPC to lipid membranes in the gel-phase induced a time-dependent calcein release curve that can be described by the sum of two exponentials, whereas RA induces a considerably more complex release curve. However, when lysoPPC and...

  15. Myoglobin-induced lipid oxidation : A review

    Baron, Caroline; Andersen, H.J.

    2002-01-01

    An overview of myoglobin-initiated lipid oxidation in simple model systems, muscle, and muscle-based foods is presented. The potential role of myoglobin spin and redox states in initiating lipid oxidation is reviewed. Proposed mechanisms for myoglobin- initiated lipid oxidation in muscle tissue (p...

  16. Pantothenic acid and its derivatives protect Ehrlich ascites tumor cells against lipid peroxidation.

    Slyshenkov, V S; Rakowska, M; Moiseenok, A G; Wojtczak, L

    1995-12-01

    Preincubation of Ehrlich ascites tumor cells at 22 or 32 degrees C, but not at 0 degree C, with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine reduced lipid peroxidation (measured by production of thiobarbituric acid-reactive compounds) induced by the Fenton reaction (Fe2+ + H2O2) and partly protected the plasma membrane against the leakiness to cytoplasmic proteins produced by the same reagent. Pantothenic acid and its derivatives did not inhibit (Fe2+ + H2O2)-induced peroxidation of phospholipid multilamellar vesicles, thus indicating that their effect on the cells was not due to the scavenging mechanism. Homopantothenic acid and its 4'-phosphate ester (which are not precursors of CoA) neither protected Ehrlich ascites tumor cells against lipid peroxidation nor prevented plasma membrane leakiness under the same conditions. Incubation of the cells with pantothenic acid, 4'-phosphopantothenic acid, pantothenol, or pantethine significantly increased the amount of cellular CoA and potentiated incorporation of added palmitate into phospholipids and cholesterol esters. It is concluded that pantothenic acid and its related compounds protect the plasma membrane of Ehrlich ascites tumor cells against the damage by oxygen free radicals due to increasing cellular level of CoA. The latter compound may act by diminishing propagation of lipid peroxidation and promoting repair mechanisms, mainly the synthesis of phospholipids. PMID:8582649

  17. Platelet activation and platelet-monocyte aggregate formation by the atherosclerotic plaque lipid lysophosphatidic acid

    Haserück, Nadine

    2007-01-01

    Oxidized LDL and platelets play a central role in the pathogenesis of atherosclerosis and ischemic cardiovascular diseases. Lysophosphatidic acid (LPA) is a thrombogenic substance that accumulates in mildly-oxidized LDL and in human atherosclerotic lesions, and is responsible for the initial platelet activation, shape change, induced by mildly-oxidized LDL and extracts of lipid-rich atherosclerotic plaques (Siess et al., 1999 Proc Natl Acad Sci USA 1999). LPA directly induced platelet shape c...

  18. Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages.

    Ljubuncic, P; Fuhrman, B.; Oiknine, J; Aviram, M.; Bomzon, A

    1996-01-01

    BACKGROUND: Kupffer cells are essential for normal hepatic homeostasis and when stimulated, they secrete reactive oxygen species, nitric oxide, eicosanoids, and cytokines. Some of these products are cytotoxic and attack nucleic acids, thiol proteins, or membrane lipids causing lipid peroxidation. Hydrophobic bile acids, such as deoxycholic acid (DCA), can damage hepatocytes by solubilising membranes and impairing mitochondrial function, as well as increasing the generation of reactive oxygen ...

  19. Biophysical perturbations induced by ethylazinphos in lipid membranes.

    Videira, R A; Antunes-Madeira, M C; Madeira, V M

    1999-02-01

    Perturbations induced by ethylazinphos on the physical organization of dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol membranes were studied by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6-, 12-(9-anthroyloxy) stearic acids and 16-(9-anthroyloxy) palmitic acid. Ethylazinphos (50 and 100 microM) increases the fluorescence polarization of the probes, either in the gel or in the fluid phase of DPPC bilayers, and this concentration dependent effect decreases from the surface to the bilayer core. Additionally, the insecticide displaces the phase transition to a lower temperature range and broadens the transition profile of DPPC. A shifting and broadening of the phase transition is also observed by DSC. Furthermore at insecticide/lipid molar ratios higher than 1/7, DSC thermograms, in addition to the normal transition centered at 41 degrees C, also display a new phase transition centered at 45.5 degrees C. The enthalpy of this new transition increases with insecticide concentration, with a corresponding decrease of the main transition enthalpy. Ethylazinphos in DPPC bilayers with low cholesterol (DPPC. However, cholesterol concentrations higher than 20 mol% prevent insecticide interaction, as revealed by fluorescence polarization and DSC data. Apparently, cholesterol significantly modulates insecticide interaction by competition for similar distribution domains in the membrane. The present results strongly support our previous hypothesis that ethylazinphos locates in the cooperativity region, i.e. the region of C1-C9 atoms of the acyl chains, and extends to the lipid-water interface, where it increases lipid packing order sensed across all the thickness of the bilayer. Additionally, and, on the basis of DSC data, a lateral regionalization of ethylazinphos is here tentatively suggested. PMID:10192930

  20. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  1. Bicarbonate trigger for inducing lipid accumulation in algal systems

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  2. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  3. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice

    Evan Prince Sabina; Haridas Indu; Mahaboobkhan Rasool

    2012-01-01

    Objective:To evaluate the efficacy of boswellic acid against monosodium urate crystal-induced inflammation in mice. Methods:The mice were divided into four experimental groups. Group I served as control;mice in group II were injected with monosodium urate crystal;group III consisted of monosodium urate crystal-induced mice who were treated with boswellic acid (30 mg/kg/b.w.);group IV comprised monosodium urate crystal-induced mice who were treated with indomethacin (3 mg/kg/b.w.). Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-αwere determined in control and monosodium urate crystal-induced mice. In addition, the levels of β-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. Results:The activities of lysosomal enzymes, lipid peroxidation, and tumour necrosis factor-αlevels and paw volume were increased significantly in monosodium urate crystal-induced mice, whereas the activities of antioxidant status were in turn decreased. However, these changes were modulated to near normal levels upon boswellic acid administration. In vitro, boswellic acid reduced the level of β-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated PMNL in concentration dependent manner when compared with control cells. Conclusions: The results obtained in this study further strengthen the anti-inflammatory/antiarthritic effect of boswellic acid, which was already well established by several investigators.

  4. Insulin-induced lipid binding to hemoglobin

    VESNA NIKETIC

    2003-01-01

    Full Text Available Under hypoglycemic conditions, concomitant hyperinsulinism causes an apparent modification of hemoglobin (Hb which is manifested by its aggregation (Niketi} et al., Clin. Chim. Acta 197 (1991 47. In the present work the causes and mechanisms underlying this Hb modification were studied. Hemoglobin isolated from normal erythrocytes incubated with insulin was analyzed by applying 31P-spectrometry and lipid extraction and analysis. To study the dynamics of the plasma membrane during hyperinsulinism, a fluorescent lipid-analog was applied. In the presence of insulin, phosphatidylserine (PS, phosphatidylethanolamine (PE and cholesterol were found to bind to Hb. Lipid binding resulted in Hb aggregation, a condition that can be reproduced when phospholipids are incubated with Hb in vitro. Using a fluorescent lipid-analog, it was also shown that exposing erythrocytes to supraphysiological concentrations of insulin in vitro resulted in the internalization of lipids. The results presented in this work may have relevance to cases of diabetes mellitus and hypoglycemia.

  5. Rapid lipid enrichment in omega3 fatty acids: plasma data.

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous injection of a novel medium-chain triglyceride:fish oil emulsion to normal subjects was recently reported to enrich within 60 min the phospholipid content of leucocytes and platelets in long-chain polyunsaturated omega3 fatty acids. The present study, conducted in second generation omega3-depleted rats, aimed at investigating whether such a procedure may also increase within 60 min the phospholipid content of omega3 fatty acids in cells located outwards the bloodstream, in this case liver cells, and whether this coincides with correction of the perturbation in the liver triglyceride fatty acid content and profile otherwise prevailing in these rats. This first report deals mainly with the fatty acid pattern of plasma lipids in male omega3-depleted rats that were non-injected or injected with either the omega3-rich emulsion or a control medium-chain triglyceride:olive oil emulsion. The results provide information on the fate of the exogenous lipids present in the lipid emulsions and injected intravenously 60 min before sacrifice. Moreover, in the uninjected omega3-depleted rats the comparison between individual plasma and liver measurements indicated positive correlations in the fatty acid profile of phospholipids and triglycerides. PMID:18288383

  6. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  7. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution–Induced Cardiac Effects and Lipid Changes in Healthy Middle-Aged Adults

    Tong, Haiyan; Rappold, Ana G.; Diaz-Sanchez, David; Steck, Susan E.; Berntsen, Jon; Cascio, Wayne E; Devlin, Robert B; Samet, James M.

    2012-01-01

    Background: Air pollution exposure has been associated with adverse cardiovascular health effects. Findings of a recent epidemiological study suggested that omega-3 fatty acid (fish oil) supplementation blunted cardiac responses to air pollution exposure. Objectives: We conducted a randomized, controlled exposure study to evaluate the efficacy of fish oil supplements in attenuating adverse cardiac effects of exposure to concentrated ambient fine and ultrafine particulate matter (CAP). Methods...

  8. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.;

    2015-01-01

    deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...... carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam....

  9. Effect of gender on lipid-induced insulin resistance in obese subjects

    Vistisen, Bodil; Hellgren, Lars; Vadset, T.;

    2008-01-01

    Objective: In obese subjects, chronically elevated plasma concentrations of non-esterified fatty acids (NEFAs) exert a marked risk to contract insulin resistance and subsequently type 2 diabetes. When NEFA is acutely increased due to i.v. infusion of lipid, glucose disposal during...... a hyperinsulinemic-euglycemic clamp is reduced. This effect has been explained by a NEFA-induced decrease in skeletal muscle insulin sensitivity caused by accumulation of the lipid intermediates Such as ceramide and diacylglycerol in the myocytes. However, neither the lipid-induced reduction of glucose disposal nor...... the clamp was similar in females and males (46+/-10 and 60+/-4%,, respectively, NS). However, whole-body insulin sensitivity as well as non-oxidative glucose disposal was higher in obese females compared with obese males both during lipid and saline infusion (P...

  10. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?

    Kooijman, Edgar E; Carter, Karen M; van Laar, Emma G; Chupin, Vladimir; Burger, Koert N J; de Kruijff, Ben

    2005-12-27

    Phosphatidic acid and lysophosphatidic acid are minor but important anionic bioactive lipids involved in a number of key cellular processes, yet these molecules have a simple phosphate headgroup. To find out what is so special about these lipids, we determined the ionization behavior of phosphatidic acid (PA) and lysophosphatidic acid (LPA) in extended (flat) mixed lipid bilayers using magic angle spinning 31P NMR. Our data show two surprising results. First, despite identical phosphomonoester headgroups, LPA carries more negative charge than PA when present in a phosphatidylcholine bilayer. Dehydroxy-LPA [1-oleoyl-3-(phosphoryl)propanediol] behaves in a manner identical to that of PA, indicating that the difference in negative charge between LPA and PA is caused by the hydroxyl on the glycerol backbone of LPA and its interaction with the phosphomonoester headgroup. Second, deprotonation of phosphatidic acid and lysophosphatidic acid was found to be strongly stimulated by the inclusion of phosphatidylethanolamine in the bilayer, indicating that lipid headgroup charge depends on local lipid composition and will vary between the different subcellular locations of (L)PA. Our findings can be understood in terms of a hydrogen bond formed within the phosphomonoester headgroup of (L)PA and its destabilization by competing intra- or intermolecular hydrogen bonds. We propose that this hydrogen bonding property of (L)PA is involved in the various cellular functions of these lipids. PMID:16363814

  11. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli.

    Ghosh, Amit; Kar, Kumkum; Ghosh, D; Dey, C; Misra, K K

    2010-04-01

    The paper presents major lipid classes and their fatty acids investigated from Ascaridia galli, a nematode parasite of country fowl. Thin layer chromatography (TLC) reveals that the percent of total lipid, neutral lipid, phospholipids, and glycolipids are 1.94, 54.39, 26.95 and 18.66, respectively. Gas-liquid chromatography (GLC) analysis shows that the saturated fatty acids are the major components in all the lipid fractions followed by monoenes and dienes. Polyunsaturated fatty acids (PUFA) were present in low amount. Stearic acids (C(18)) were the chief components among all the fatty acids in all the lipid fractions. PMID:21526035

  12. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli

    Ghosh, Amit; Kar, Kumkum; Ghosh, D.; Dey, C.; Misra, K. K.

    2010-01-01

    The paper presents major lipid classes and their fatty acids investigated from Ascaridia galli, a nematode parasite of country fowl. Thin layer chromatography (TLC) reveals that the percent of total lipid, neutral lipid, phospholipids, and glycolipids are 1.94, 54.39, 26.95 and 18.66, respectively. Gas–liquid chromatography (GLC) analysis shows that the saturated fatty acids are the major components in all the lipid fractions followed by monoenes and dienes. Polyunsaturated fatty acids (PUFA)...

  13. Intravenous lipid and amino acids briskly increase plasma glucose concentrations in small premature infants.

    Savich, R D; Finley, S L; Ogata, E S

    1988-07-01

    We determined the glycemic response to intravenous lipid infusion alone, lipid with amino acids, or amino acids alone in 15 very small premature infants receiving constant glucose infusion during early life. Infants who received lipid or lipid and amino acids demonstrated significant increases in glucose compared with infants who received amino acids. The combination of lipid and amino acids resulted in an earlier increase than lipid alone. Although plasma insulin did not change in all three groups, infants who received amino acids alone demonstrated an appropriate increase in glucagon. These data suggest that lipid infusion, a commonly used means of providing nutrition to premature infants, may cause significant disturbances in glucoregulation, particularly when administered with amino acids. PMID:3132930

  14. Lipid oxidation induced oxidative degradation of cereal beta-glucan.

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula

    2016-04-15

    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist. PMID:26675874

  15. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  16. Melittin-induced cholesterol reorganization in lipid bilayer membranes.

    Qian, Shuo; Heller, William T

    2015-10-01

    The peptide melittin, a 26 amino acid, cationic peptide from honey bee (Apis mellifera) venom, disrupts lipid bilayer membranes in a concentration-dependent manner. Rather than interacting with a specific receptor, the peptide interacts directly with the lipid matrix of the membrane in a manner dependent on the lipid composition. Here, a small-angle neutron scattering study of the interaction of melittin with lipid bilayers made of mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol (Chol) is presented. Through the use of deuterium-labeled DMPC, changes in the distribution of the lipid and cholesterol in unilamellar vesicles were observed for peptide concentrations below those that cause pores to form. In addition to disrupting the in-plane organization of Chol, melittin produces vesicles having inner and outer leaflet compositions that depend on the lipid-Chol molar ratio and on the peptide concentration. The changes seen at high cholesterol and low peptide concentration are similar to those produced by alamethicin (Qian, S. et al., J. Phys. Chem. B 2014, 118, 11200-11208), which points to an underlying physical mechanism driving the redistribution of Chol, but melittin displays an additional effect not seen with alamethicin. A model for how the peptide drives the redistribution of Chol is proposed. The results suggest that redistribution of the lipids in a target cell membrane by membrane active peptides takes places as a prelude to the lysis of the cell. PMID:26074009

  17. Uric acid as a modulator of glucose and lipid metabolism.

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  18. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    Butts, Ian; Baeza, R.; Støttrup, Josianne;

    2015-01-01

    In order for European eel aquaculture to be sustainable, the life cycle should be completed in captivity. Development of broodstock diets may improve the species' reproductive success in captivity, through the production of high-quality gametes. Here, our aim was to evaluate the influence...... of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...

  19. Effects of fatty acids on carbohydrates and lipids of canola seeds during germination

    M.L.L. Ferrarese; C. R. S. Baleroni; O. Ferrarese-Filho

    1998-01-01

    The present work was carried out to investigate the effects of caprylic acid (C8) and oleic acid (C18) on carbohydrates and lipids during canola seed germination. The results showed that oleic acid influence carbohydrate concentration but did not influence lipid concentration. Significant results were found with caprylic acid that affected carbohydrates and lipids in cotyledons after three-day germination.O presente trabalho foi realizado com o objetivo de investigar os efeitos dos ácidos cap...

  20. Skeletal Muscle Lipid Deposition and Insulin Resistance: Impact of Dietary Fatty Acids and Exercise

    Evidence has mounted indicating that elevated intramuscular triacylglycerol levels are associated with diminished insulin sensitivity in skeletal muscle. This lipid accumulation is most likely due to enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid oxidation. Th...

  1. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  2. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    Saito, Takeshi; Fujii, Noriko

    2014-05-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid-benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10-3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10-5 and 5.0×10-6 M β-carotene, and 5.0×10-7 and 5.0×10-8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage.

  3. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  4. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  5. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid–benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10−3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10−5 and 5.0×10−6 M β-carotene, and 5.0×10−7 and 5.0×10−8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage. - Highlights: • Gamma radiation dose-dependently increases degradation levels of α-linolenic acid. • Gamma radiation dose-dependently increases peroxidation levels of α-linolenic acid. • An optimum concentration of carotenoids inhibits degradation of α-linolenic acid. • Relatively low concentrations of carotenoids promote degradation of α-linolenic acid. • Carotenoids do not affect the peroxidation level of α-linolenic acid

  6. Ocean Warming and CO2-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod

    Roselyn Valles-Regino

    2015-09-01

    Full Text Available Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52% with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO2 on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO2 acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.

  7. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells.

    Chieko Iwao

    Full Text Available The acyclic diterpenoid acid geranylgeranoic acid (GGA has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1 GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2 all-trans retinoic acid induces XBP1 splicing but little cell death; and 3 phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells.

  8. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  9. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  10. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower

    Moradkhani S.

    2012-11-01

    Full Text Available The ameliorative effect of salicylic acid (SA on cadmium (Cd toxicity in sunflower plants was studied by investigating plant growth and fatty acid composition. Sunflower plants in two leaves stage were exposed to CdCl2 treatment (0, 50, 100, 150 and 200 µM and then were treated with salicylic acid (0, 250 and 500 µM as foliage spraying. One week after the last salicylic acid treatment,plants were harvested and growth parameters were measured . Oil of leaf was extracted in a Soxhlet system and fatty acid composition were measured by gas chromatography (GC. Statistical analyses showed excess Cd reduced growth parameters (fresh weight and length of stems and roots, fresh weight and number of leavesand SA increased them compared with the control. Maximum reduction in these parameters was at 200 µmol Cd and 0µmol of SA. Cd caused a shift in fatty acids composition, resulting in a lower degree of their unsaturation and an increase in saturated fatty acids in sunflower leaves,whereas SA improved them. SA, particularly increased the percentage of linolenic acid and lowered that of palmitic acid by the same proportion. These results sugg membrane integrity due to lipids est that SA could be used as a potential growth regulator and a stabilizer ofprotection of cadmium-induced oxidative stress to improve plant resistance to Cd stress

  11. Effect of ionizing radiation on fatty acid composition of plasma membrane lipids of liver cells

    Changes in the fatty acid compositon of total lipids and individual phospholipids of liver cell plasma membranes of intact and exposed (7.65 Gy) rats have been studied. The authors discuss the relationship between the degree of lipid oxidation and other lipid characteristics of the studied membrane after exposure to ionizing radiation

  12. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host. PMID:27089382

  13. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase

  14. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively

  15. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  16. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  17. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes.

    Jespersen, Henrik; Andersen, Jonas H; Ditzel, Henrik J; Mouritsen, Ole G

    2012-01-01

    Molecular shape and its impact on bilayer curvature stress are powerful concepts for describing the effects of lipids and fatty acids on fundamental membrane properties, such as passive permeability and derived properties like drug transport across liposomal membranes. We illustrate these relationships by studying the effects of fatty acids and lysolipids on the permeation of a potent anti-cancer drug, doxorubicin, across the bilayer of a liposome in which the drug is encapsulated. Using a simple fluorescence assay, we have systematically studied the passive permeation of doxorubicin across liposomal membranes in different lipid phases: the solid-ordered phase (DPPC bilayers), the liquid-disordered phase (POPC lipid bilayers), and the liquid-ordered phase induced by high levels of cholesterol (DOPC + cholesterol lipid bilayers). The effect of different free fatty acids (FA) and lysolipids (LL), separately and in combination, on permeability was assessed to elucidate the possible mechanism of phospholipase A(2)-triggered release in cancer tissue of liposomal doxorubicin formulations. In all cases, FAs applied separately lead to significant enhancement of permeability, most pronounced in liquid-disordered bilayers and less pronounced in solid and solid-ordered bilayers. LLs applied separately had only a marginal effect on permeability. FA and LL applied in combination lead to a synergistic enhancement of permeability in solid bilayers, whereas in liquid-disordered bilayers, the combined effect suppressed the otherwise strong permeability enhancement due to the FAs. PMID:21839138

  18. Influence of lipid chain unsaturation on melittin-induced micellization.

    Monette, M; Lafleur, M

    1996-01-01

    It is well known that melittin, an amphipathic helical peptide, causes the micellization of phosphatidylcholine vesicles. In the present work, we conclude that the extent of micellization is dependent on the level of unsaturation of the lipid acyl chains. We report the results obtained on two systems: dipalmitoylphosphatidylcholine (DPPC), containing 10(mol)% saturated or unsaturated fatty acid (palmitic, oleic, or linoleic), and DPPC, containing 10(mol)% positively charged diacyloxy-3-(trime...

  19. Lipid-induced cell stress and insulin resistance

    Schrauwen, Patrick

    2006-01-01

    In our Westernized society, although some excess body fat is stored inside its proper place, adipose tissue, the surplus of circulating fatty acids is also excessively stored in the liver, heart, pancreas and skeletal muscle. In these tissues, intracellular fat accumulation, in combination with a low oxidative capacity, is associated with decreased insulin sensitivity. Although the exact mechanism behind the negative effect of intracellular lipid accumulation on insulin sensitivity has not be...

  20. Valproic Acid Induced Hyperammonaemic Encephalopathy

    Objective: To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Methods: Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excel 2007 was used for statistical analysis. Results: Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n=8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Conclusion: Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition. (author)

  1. Effect of mycolic acid on surface activity of binary surfactant lipid monolayers.

    Chimote, G; Banerjee, R

    2008-12-15

    In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis. PMID:18848703

  2. Evening primrose oil in rheumatoid arthritis: changes in serum lipids and fatty acids.

    Jäntti, J; Nikkari, T.; Solakivi, T; Vapaatalo, H.; Isomäki, H

    1989-01-01

    The serum concentration of lipids and composition of fatty acids after overnight fasting were studied in 18 patients with rheumatoid arthritis treated for 12 weeks with either 20 ml of evening primrose oil containing 9% of gamma-linolenic acid or olive oil. The serum concentrations of oleic acid, eicosapentaenoic acid, and apolipoprotein B decreased and those of linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, and arachidonic acid increased during treatment with evening primr...

  3. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall;

    2003-01-01

    commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid and...

  4. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    T.J.C. Neiva; D.M. Fries; Monteiro, H. P.; E.A. D'Amico; D.A.F. Chamone

    1997-01-01

    Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated t...

  5. β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes

    Chang-Xiang Shi; Ming-Xia Zhao; Xiao-Dong Shu; Xiao-Qing Xiong; Jue-Jin Wang; Xing-Ya Gao; Qi Chen; Yue-Hua Li; Yu-Ming Kang; Guo-Qing Zhu

    2016-01-01

    β-aminoisobutyric acid (BAIBA) is a nature thymine catabolite, and contributes to exercise-induced protection from metabolic diseases. Here we show the therapeutical effects of BAIBA on hepatic endoplasmic reticulum (ER) stress and glucose/lipid metabolic disturbance in diabetes. Type 2 diabetes was induced by combined streptozotocin (STZ) and high-fat diet (HFD) in mice. Oral administration of BAIBA for 4 weeks reduced blood glucose and lipids levels, hepatic key enzymes of gluconeogenesis a...

  6. Steatosis-induced proteins adducts with lipid peroxidation products and nuclear electrophilic stress in hepatocytes

    Sarit Anavi

    2015-04-01

    Full Text Available Accumulating evidence suggests that fatty livers are particularly more susceptible to several pathological conditions, including hepatic inflammation, cirrhosis and liver cancer. However the exact mechanism of such susceptibility is still largely obscure. The current study aimed to elucidate the effect of hepatocytes lipid accumulation on the nuclear electrophilic stress. Accumulation of intracellular lipids was significantly increased in HepG2 cells incubated with fatty acid (FA complex (1 mM, 2:1 oleic and palmitic acids. In FA-treated cells, lipid droplets were localized around the nucleus and seemed to induce mechanical force, leading to the disruption of the nucleus morphology. Level of reactive oxygen species (ROS was significantly increased in FA-loaded cells and was further augmented by treatment with moderate stressor (CoCl2. Increased ROS resulted in formation of reactive carbonyls (aldehydes and ketones, derived from lipid peroxidation with a strong perinuclear accumulation. Mass-spectroscopy analysis indicated that lipid accumulation per-se can results in modification of nuclear protein by reactive lipid peroxidation products (oxoLPP. 235 Modified proteins involved in transcription regulation, splicing, protein synthesis and degradation, DNA repair and lipid metabolism were identified uniquely in FA-treated cells. These findings suggest that steatosis can affect nuclear redox state, and induce modifications of nuclear proteins by reactive oxoLPP accumulated in the perinuclear space upon FA-treatment.

  7. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes.

    Brotherus, J; Renkonen, O

    1977-03-01

    Homogenates of cultured hamster fibroblasts (BHK 21 cells) were fractionated by differential centrifugation into six main fractions: nuclear, mitochondrial, light mitochondrial, microsomal, soluble, and floating. The contents of several lipids and some marker enzymes were measured. According to the enzyme distributions, lysosomes were enriched both in the floating fraction and in the light mitochondrial fraction. Lysobisphosphatidic acid was enriched in the floating fraction more than tenfold relative to phospholipid. Cholesteryl esters and triglycerides were the main constituents of the fraction (70% of total lipids). Lysobisphosphatidic acid, triglycerides, and cholesteryl esters were enriched also in the light mitochondrial fraction. Their distribution patterns were different from those of the other lipids. Electron microscopy showed that the floating fraction contained numerous lipofuscin-like particles with darkly stained peripheries and with core regions staining like droplets of neutral lipids. Similar particles, frequently containing prominent multilamellar formations, were also common in intact cells. They contained cytochemically identified acid phosphatase. We conclude that lysobisphosphatidic acid was enriched in the lysosomes of the BHK cells and that the lysosomes also contained variable amounts of neutral lipids in the form of intralysosomal droplets. PMID:845501

  8. Crowding-Induced Mixing Behavior of Lipid Bilayers: Examination of Mixing Energy, Phase, Packing Geometry, and Reversibility.

    Zeno, Wade F; Rystov, Alice; Sasaki, Darryl Y; Risbud, Subhash H; Longo, Marjorie L

    2016-05-10

    In an effort to develop a general thermodynamic model from first-principles to describe the mixing behavior of lipid membranes, we examined lipid mixing induced by targeted binding of small (Green Fluorescent Protein (GFP)) and large (nanolipoprotein particles (NLPs)) structures to specific phases of phase-separated lipid bilayers. Phases were targeted by incorporation of phase-partitioning iminodiacetic acid (IDA)-functionalized lipids into ternary lipid mixtures consisting of DPPC, DOPC, and cholesterol. GFP and NLPs, containing histidine tags, bound the IDA portion of these lipids via a metal, Cu(2+), chelating mechanism. In giant unilamellar vesicles (GUVs), GFP and NLPs bound to the Lo domains of bilayers containing DPIDA, and bound to the Ld region of bilayers containing DOIDA. At sufficiently large concentrations of DPIDA or DOIDA, lipid mixing was induced by bound GFP and NLPs. The validity of the thermodynamic model was confirmed when it was found that the statistical mixing distribution as a function of crowding energy for smaller GFP and larger NLPs collapsed to the same trend line for each GUV composition. Moreover, results of this analysis show that the free energy of mixing for a ternary lipid bilayer consisting of DOPC, DPPC, and cholesterol varied from 7.9 × 10(-22) to 1.5 × 10(-20) J/lipid at the compositions observed, decreasing as the relative cholesterol concentration was increased. It was discovered that there appears to be a maximum packing density, and associated maximum crowding pressure, of the NLPs, suggestive of circular packing. A similarity in mixing induced by NLP1 and NLP3 despite large difference in projected areas was analytically consistent with monovalent (one histidine tag) versus divalent (two histidine tags) surface interactions, respectively. In addition to GUVs, binding and induced mixing behavior of NLPs was also observed on planar, supported lipid multibilayers. The mixing process was reversible, with Lo domains

  9. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition.

    Nadège Minois

    Full Text Available Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water increases life span and stress resistance in several model organisms. In this work, we expand spermidine's range of age-related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine's mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces autophagy. Here, we suggest that the molecular targets of spermidine also include lipid metabolism: Spermidine-fed flies contain more triglycerides and show altered fatty acid and phospholipid profiles. We further determine that most of these metabolic changes are regulated through autophagy. Collectively, our data suggests an additional and novel lipid-mediated mechanism of action for spermidine-induced autophagy.

  10. Icariin Is A PPARα Activator Inducing Lipid Metabolic Gene Expression in Mice

    Yuan-Fu Lu

    2014-11-01

    Full Text Available Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2 were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1 and FA synthetase (Fasn were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.

  11. Translation inhibitors induce formation of cholesterol ester-rich lipid droplets.

    Michitaka Suzuki

    Full Text Available Lipid droplets (LDs in non-adipocytes contain triglycerides (TG and cholesterol esters (CE in variable ratios. TG-rich LDs are generated when unsaturated fatty acids are administered, but the conditions that induce CE-rich LD formation are less well characterized. In the present study, we found that protein translation inhibitors such as cycloheximide (CHX induced generation of CE-rich LDs and that TIP47 (perilipin 3 was recruited to the LDs, although the expression of this protein was reduced drastically. Electron microscopy revealed that LDs formed in CHX-treated cells possess a distinct electron-dense rim that is not found in TG-rich LDs, whose formation is induced by oleic acid. CHX treatment caused upregulation of mTORC1, but the CHX-induced increase in CE-rich LDs occurred even when rapamycin or Torin1 was given along with CHX. Moreover, the increase in CE was seen in both wild-type and autophagy-deficient Atg5-null mouse embryonic fibroblasts, indicating that mTORC1 activation and suppression of autophagy are not necessary to induce the observed phenomenon. The results showed that translation inhibitors cause a significant change in the lipid ester composition of LDs by a mechanism independent of mTORC1 signaling and autophagy.

  12. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells

    Hella Wobser; Christoph Dorn; Thomas S Weiss; Thomas Amann; Cornelius Bollheimer; Roland Büttner; Jürgen Sc(o)lmerich; Claus Hellerbrand

    2009-01-01

    Despite the initial belief that non-alcoholic fatty liver disease is a benign disorder, it is now recognized that fbrosis progression occurs in a significant number of patients. Furthermore, hepatic steatosis has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of other liver diseases. Here, we established an in vitro model to study the effect of hepatic lipid accumulation on hepatic stellate cells (HSCs), the central mediators of liver fibrogenesis. Primary human hepatocytes were incubated with the saturated fatty acid palmitate to induce intracellular lipid accumulation. Subsequently, human HSCs were incubated with conditioned media (CM) from steatotic or control hepatocytes. Lipid accumulation in hepatocytes induced the release of factors that accelerated the activation and proliferation of HSC, and enhanced their resistance to apoptosis, largely mediated via activation of the PI-3-kinase pathway. Furthermore, CM from steatotic hepatocytes induced the expression of the profibrogenic genes TGF-β, tissue inhibitor of metallo-proteinase-1 (TIMP-1), TIMP-2 and matrix-metallo-proteinase-2, as well as nuclear-factor Κb-dependent MCP-1 expression in HSC. In summary, our in vitro data indicate a potential mechanism for the pathophysiological link between hepatic steatosis and fibrogenesis in vivo. Herewith, this study provides an attractive in vitro model to study the molecular mechanisms of steatosis-induced fibrogenesis, and to identify and test novel targets for antifibrotic therapies in fatty liver disease.

  13. Digestion and absorption of lipids and bile acids in sheep fed stearic acid, oleic acid, or tristearin

    Sheep were fed diets containing 7.5% added stearic acid, oleic acid, or tristearin for 21 days. In addition, 50 microCi/kg cerium-141 was included for the last 10 days on experimental diets as an unabsorbed reference substance. In the rumen dietary triglycerides were approximately 50% hydrolyzed, and hydrogenation resulted in saturation of the free fatty acid fraction. Some net synthesis of phospholipids, presumably microbial phospholipids, occurred in the rumen. In the intestine immediately distal to the pylorus, extensive secretion of bile acids, cholesterol, phospholipids, triglycerides, free fatty acids, and lipase occurred. This resulted in doubling of fatty acid fluxes through the duodenum. These endogenous secretions were reabsorbed rapidly however, with the major site of lipid and bile acid absorption in the region .6 to 4 m distal to the pylorus. Additional but less absorption occurred in the more distal segments of the small intestine. Overall absorption of stearic acid, oleic acid, and tristearin supplements was in the range 60 to 70%, and no differences were apparent between fats. Unsaturated fatty acids were over 90% absorbed as compared with 55 to 65% for saturated fatty acids. No significant effect of any of the supplements was observed on ruminal total volatile fatty acids, ratios of volatile fatty acids, or on overall cellulose or caloric digestion

  14. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  15. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  16. Effect of tea catechins on the structure of lipid membrane and beta ray-induced lipid peroxidation

    Tea catechins show various pharmacological effect and is known as one of useful antioxidants. We have reported that tea catechins showed inhibiting effect to β-ray induced lipid peroxidation in the low concentration region up to 5 x 10-5 M in the aqueous liposome suspension system. The initiating radical was thought to be the hydroxyl radical (·OH) formed by the decomposition of' water molecules near the membrane surface. Catechins are adsorbed on the membrane surface and scavenge ·OH which enters in the membrane and initiates lipid peroxidation. Inhibiting ability depended on the degree of partition between membrane and water, and this was one of the evidences of the propriety of the model. In this paper, we report the effect of tea catechins on the lipid peroxidation using a spin probe method and the observation of the figure of the liposome with transmission electron microscope in high concentration region between 5 x 10-5 and 1 x 10-2 M. A spin probe 16NS (16-doxylstearic acid) was mixed with egg yolk phosphatidylcholine, and the lipid was dispersed in phosphate buffer solution forming unilamellar liposome. Catechins, (-)-epicatechin (EC), (-)-epicatechin gallate (ECg), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCg), of various concentrations and then the tritiated water were added to the suspension. Reaction was proceeded at 310 K, and the inhibiting activity was compared using ID50 at which absorbed dose the intensity of 16NS decreases to a half of the initial value. Liposomes were stained with 3% solution of uranium acetate and observed by Hitachi H-7500 Electron Microscope. Fig. 1 shows the concentration dependence of ID50 of catechins. EC and ECg showed inhibiting effect in whole region and looked to converge. But EGCg had the maximum point. Below the point, it showed the strongest activity among four catechins. EGC showed slow decrease in whole region. We considered these results as follows. Catechins possessing gallate group have

  17. Temperature-induced membrane-lipid adaptation in Acanthamoeba castellanii.

    Jones, A L; Hann, A C; Harwood, J L; Lloyd, D

    1993-02-15

    A method has been developed for the separation of the major membrane fractions of Acanthamoeba castellanii after growth at different temperatures. The acyl-lipid compositions of individual membrane fractions, microsomal membranes, plasma membrane and mitochondria were analysed after a shift in culture temperature from 30 degrees C to 15 degrees C. The major change in lipid composition observed was an alteration in the relative proportions of oleate and linoleate. This reciprocal change was seen in all the membrane fractions, but occurred most rapidly in the phosphatidylcholine of the microsomal fraction. Thus, there appears to be a rapid induction of delta 12-desaturase activity in A. castellanii after a downward shift in growth temperature. Changes were also seen in the proportions of the n-6 C20 fatty acids, with a decrease in the proportions of icosadienoate and increases of icosatrienoate and arachidonate. However, unlike the alteration in oleate/linoleate ratios, this change was not seen in all the individual lipids of each membrane fraction. PMID:8439295

  18. Dietary Conjugated Linoleic Acid and Hepatic Steatosis: Species-Specific Effects on Liver and Adipose Lipid Metabolism and Gene Expression

    Diwakar Vyas

    2012-01-01

    Full Text Available Objective. To summarize the recent studies on effect of conjugated linoleic acid (CLA on hepatic steatosis and hepatic and adipose lipid metabolism highlighting the potential regulatory mechanisms. Methods. Sixty-four published experiments were summarized in which trans-10, cis-12 CLA was fed either alone or in combination with other CLA isomers to mice, rats, hamsters, and humans were compared. Summary and Conclusions. Dietary trans-10, cis-12 CLA induces a severe hepatic steatosis in mice with a more muted response in other species. Regardless of species, when hepatic steatosis was present, a concurrent decrease in body adiposity was observed, suggesting that hepatic lipid accumulation is a result of uptake of mobilized fatty acids (FA from adipose tissue and the liver's inability to sufficiently increase FA oxidation and export of synthesized triglycerides. The potential role of liver FA composition, insulin secretion and sensitivity, adipokine, and inflammatory responses are discussed as potential mechanisms behind CLA-induced hepatic steatosis.

  19. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation

  20. Computer Simulation of Cytoskeleton-Induced Blebbing in Lipid Membranes

    Spangler, Eric J; Revalee, Joel D; Kumar, P B Sunil; Laradji, Mohamed

    2011-01-01

    Blebs are balloon-shaped membrane protrusions that form during many physiological processes. Using computer simulation of a particle-based model for self-assembled lipid bilayers coupled to an elastic meshwork, we investigated the phase behavior and kinetics of blebbing. We found that blebs form for large values of the ratio between the areas of the bilayer and the cytoskeleton. We also found that blebbing can be induced when the cytoskeleton is subject to a localized ablation or a uniform compression. The results obtained are qualitatively in agreement with the experimental evidence and the model opens up the possibility to study the kinetics of bleb formation in detail.

  1. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  2. Effect of lipid supplementation on milk fatty acid focus on rumenic acid.

    Esperanza Prieto-Manrique

    2016-06-01

    Full Text Available The aim of this study was to review the effect of the lipid supplementation on the concentration of conjugated linoleic acid (CLA-c9t11 or rumenic acid and other unsaturated fatty acids in bovine milk. The study addressed the concept and origin of the CLA-c9t11 in ruminants. There is an international trend to improve nutrition quality , which implies an increase in consumption of animal protein, including the healthy and rich in CLA-c9t11 dairy products. CLA-c9t11 has proved to have anticancer effects in animal models. CLA-c9t11 in the bovine milk results from the consumption of unsaturated fatty acids and from the extent of rumen biohydrogenation. Supplementation with unsaturated fatty acids of vegetable origin allows to increase the concentration of CLA-c9t11 and to decrease the proportion of saturated fatty acids in milk, but the response varies depending on the source of fat used, its level, and its interaction with basal diet

  3. Effect of Alpha-lipoic Acid Supplementation on Serum Lipid Profile in Women with Rheumatoid Arthritis

    Elham Mirtaheri

    2014-09-01

    Conclusions: In the present study, serum lipid profile was not significantly affected by ALA intervention. However, ALA supplementation aiming at prevention or treatment of dyslipidemia in RA patients should be further investigated. Keywords: Lipoic acid, Supplementation, Rheumatoid arthritis, Women, Lipid profile

  4. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus.

    Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Bhat, Rakesh; Anwar-Mohamed, Anwar; Logan, Michael; Lund, Garry; Addison, William R; Lehner, Richard; Kneteman, Norman M

    2016-01-22

    Cytopathic effects are currently believed to contribute to hepatitis C virus (HCV)-induced liver injury and are readily observed in Huh7.5 cells infected with the JFH-1 HCV strain, manifesting as apoptosis highly correlated with growth arrest. Reactive oxygen species, which are induced by HCV infection, have recently emerged as activators of AMP-activated protein kinase. The net effect is ATP conservation via on/off switching of metabolic pathways that produce/consume ATP. Depending on the scenario, this can have either pro-survival or pro-apoptotic effects. We demonstrate reactive oxygen species-mediated activation of AMP-activated kinase in Huh7.5 cells during HCV (JFH-1)-induced growth arrest. Metabolic labeling experiments provided direct evidence that lipid synthesis is attenuated, and β-oxidation is enhanced in these cells. A striking increase in nuclear peroxisome proliferator-activated receptor α, which plays a dominant role in the expression of β-oxidation genes after ligand-induced activation, was also observed, and we provide evidence that peroxisome proliferator-activated receptor α is constitutively activated in these cells. The combination of attenuated lipid synthesis and enhanced β-oxidation is not conducive to lipid accumulation, yet cellular lipids still accumulated during this stage of infection. Notably, the serum in the culture media was the only available source for polyunsaturated fatty acids, which were elevated (2-fold) in the infected cells, implicating altered lipid import/export pathways in these cells. This study also provided the first in vivo evidence for enhanced β-oxidation during HCV infection because HCV-infected SCID/Alb-uPA mice accumulated higher plasma ketones while fasting than did control mice. Overall, this study highlights the reprogramming of hepatocellular lipid metabolism and bioenergetics during HCV infection, which are predicted to impact both the HCV life cycle and pathogenesis. PMID:26627833

  5. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties.

    Prades, Jesús; Vögler, Oliver; Alemany, Regina; Gomez-Florit, Manuel; Funari, Sérgio S; Ruiz-Gutiérrez, Valentina; Barceló, Francisca

    2011-03-01

    Free triterpenic acids (TTPs) present in plants are bioactive compounds exhibiting multiple nutriceutical activities. The underlying molecular mechanisms have only been examined in part and mainly focused on anti-inflammatory properties, cancer and cardiovascular diseases, in all of which TTPs frequently affect membrane-related proteins. Based on the structural characteristics of TTPs, we assume that their effect on biophysical properties of cell membranes could play a role for their biological activity. In this context, our study is focused on the compounds, oleanolic (3β-hydroxy-12-oleanen-28-oic acid, OLA), maslinic (2α,3β-dihydroxy-12-oleanen-28-oic acid, MSL) and ursolic ((3β)-3-hydroxyurs-12-en-28-oic acid, URL) as the most important TTPs present in orujo olive oil. X-ray diffraction, differential scanning calorimetry, (31)P nuclear magnetic resonance and Laurdan fluorescence data provide experimental evidence that OLA, MSL and URL altered the structural properties of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and DPPC-Cholesterol (Cho) rich membranes, being located into the polar-hydrophobic interphase. Specifically, in DPPC membranes, TTPs altered the structural order of the L(β'), phase without destabilizing the lipid bilayer. The existence of a nonbilayer isotropic phase in coexistence with the liquid crystalline L(α) phase, as observed in DPPC:URL samples, indicated the presence of lipid structures with high curvature (probably inverted micelles). In DPPC:Cho membranes, TTPs affected the membrane phase properties increasing the Laurdan GP values above 40°C. MSL and URL induced segregation of Cho within the bilayer, in contrast to OLA, that reduced the structural organization of the membrane. These results strengthen the relevance of TTP interactions with cell membranes as a molecular mechanism underlying their broad spectrum of biological effects. PMID:21167812

  6. The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism

    Nielsen, Søren Bang; Wilhelm, Kristina; Vad, Brian;

    2010-01-01

    with oleic acids (ELOAs) were shown to possess tinctorial and morphological properties, similar to amyloidal aggregates, and to be cytotoxic. ELOA's interactions with phospholipid membranes appear to be central to its biological action, similar to human alpha-lactalbumin made lethal to tumor cells....... Here, we describe the interaction of ELOA with phospholipid membranes. Confocal scanning laser microscopy shows that ELOA, but not native EL, accumulates on the surface of giant unilamellar vesicles, without inducing significant membrane permeability. Quartz crystal microbalance with dissipation data...... indicated an essentially non-disruptive binding of ELOA to supported lipid bilayers, leading to formation of highly dissipative and "soft" lipid membrane; at higher concentrations of ELOA, the lipid membrane desorbs from the surface probably as bilayer sheets of vesicles. This membrane rearrangement...

  7. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  8. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  9. Serum lipid profile and uric acid levels in preeclampsia in University of Benin Teaching Hospital

    Enaruna, Nosakhare O; Joseph O Idemudia; Aikoriogie, Paul I

    2014-01-01

    Background: Preeclampsia is a pregnancy-specific disease associated with significant maternal and perinatal mortality and morbidity. Lipid abnormality and elevated serum uric acid have been reported as early features of the disease. We aimed to detect the level of serum lipid profile and uric acid abnormalities in severe preeclamptics in Benin City and to measure their clinical significance. Materials and Methods: A prospective case-control study was conducted with subjects presenting with se...

  10. Membrane-Bound Basic Peptides Sequester Multivalent (PIP2), but Not Monovalent (PS), Acidic Lipids

    Golebiewska, Urszula; Gambhir, Alok; Hangyás-Mihályné, Gyöngyi; Zaitseva, Irina; Rädler, Joachim; McLaughlin, Stuart

    2006-01-01

    Several biologically important peripheral (e.g., myristoylated alanine-rich C kinase substrate) and integral (e.g., the epidermal growth factor receptor) membrane proteins contain clusters of basic residues that interact with acidic lipids in the plasma membrane. Previous measurements demonstrate that the polyvalent acidic lipid phosphatidylinositol 4,5-bisphosphate is bound electrostatically (i.e., sequestered) by membrane-adsorbed basic peptides corresponding to these clusters. We report he...

  11. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis

    Palmeri, Rosa; Monteleone, Julieta I.; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  12. Allium sativum aqueous extract prevents potassium dichromate-induced nephrotoxicity and lipid oxidation in rats

    Sergio L. Becerra-Torres

    2014-04-01

    Full Text Available Context: The potassium dichromate (K2Cr2O7 induces nephrotoxicity by oxidative stress mechanisms. Aims: To study the potential protection of an aqueous extract of Allium sativum against the K2Cr2O7-induced nephrotoxicity and lipid oxidation in rats. Methods: Twenty four hours after treatment, biomarkers such as proteinuria, creatinine clearance, malondialdehyde production, specific enzyme activity of gamma glutamyl transpeptidase and alanine aminopeptidase, and renal clearance of para-aminohippuric acid and inulin were measured. Results: The K2Cr2O7 caused significant renal dysfunction, but A. sativum extract prevented this condition by improving all measured biomarkers. Conclusions: A single injection of K2Cr2O7 induced nephrotoxicity in rats, but the supply of an Allium sativum aqueous extract prevented the disorders caused by this metal.

  13. Identification of furan fatty acids in the lipids of common carp (Cyprinus carpio L.).

    Chvalová, Daniela; Špička, Jiří

    2016-06-01

    Fatty acid (FA) composition was analyzed in muscle and gonad tissues of marketed common carp (Cyprinus carpio). The extracted lipids were separated into four fractions: polar lipids (PL), diacylglycerols, free fatty acids and triacylglycerols (TAG) using thin layer chromatography. FA content within the lipid fractions was determined by gas chromatography with flame ionization detector (GC/FID). The muscle lipids consisted primarily of TAG (96.9% of total FA), while PL were the major component of both male (67.6%) and female gonad (58.6%) lipids. Polyunsaturated fatty acids predominated in PL of all tissues (52.2-55.8% of total FA); monounsaturated fatty acids were the most abundant FA group in TAG of muscle (51.8%) and female gonads (47.8%) whereas high proportion of furan fatty acids (F-acids) (38.2%) was detected in TAG of male gonads. Eight F-acids were identified by gas chromatography-mass spectrometry (GC/MS) in male gonad samples, including less common 12,15-epoxy-13,14-dimethylnonadeca-12,14-dienoic acid with even-numbered alkyl moiety. PMID:26830577

  14. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  15. Effect of conjugated linoleic acid mixtures and different edible oils on body composition and lipid regulation in mice

    María Victoria Scalerandi

    2014-03-01

    Full Text Available Introduction: Evidences suggest that commercial and natural conjugated linoleic acids (CLA differentially affect nutritional status and lipid metabolism. Objective: To investigate the differential effect of two types of CLA preparations supplemented to dietary fats containing different proportions of n-9, n-6 and n-3 fatty acids (FA on body composition, triacylglycerol (TG levels and lipid metabolism in mice. Methods: Growing mice were fed diets containing olive, maize and rapeseed oils supplemented with an equimolecular mixture of CLA (mix-CLA or a rumenic acid (RA-rich oil for 30 days. Body weight gain, carcass composition, tissue weights, plasma and tissue TG levels, and lipid regulation parameters were evaluated. Results: Independently of the dietary fats, mix-CLA decreased body weight gain and fat depots related to lower energy efficiency, hepatomegaly, increase of serum TG and decrease of muscle TG. Rapeseed oil prevented the hepatic steatosis observed with mix-CLA supplementation to olive and maize oils by increasing TG secretion. RA-rich oil supplementation decreased fat depots without hepatomegaly, hepatic steatosis and hypertriglyceridemia. Olive oil, by an equilibrium between FA uptake/oxidation, prevented the increase of muscle TG induced by the RA-rich oil supplementation to maize and rapeseed oils. Discussion and conclusion: The proportions of dietary unsaturated FA modulated the different mix-CLA and RA-rich oil response to lipid metabolism in mice. Finally, rapeseed oil prevented the hepatic steatosis induced by mix-CLA, and the most beneficial effects of RA-rich oil were observed when supplemented to olive oil, due to the reduced lipid accretion without changes in TG levels.

  16. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall; Jacobsen, Charlotte

    2003-01-01

    adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....

  17. Lipid emulsions differentially affect LPS-induced acute monocytes inflammation: in vitro effects on membrane remodeling and cell viability.

    Boisramé-Helms, Julie; Delabranche, Xavier; Klymchenko, Andrey; Drai, Jocelyne; Blond, Emilie; Zobairi, Fatiha; Mely, Yves; Hasselmann, Michel; Toti, Florence; Meziani, Ferhat

    2014-11-01

    The aim of this study was to assess how lipid emulsions for parenteral nutrition affect lipopolysaccharide (LPS)-induced acute monocyte inflammation in vitro. An 18 h long LPS induced human monocyte leukemia cell stimulation was performed and the cell-growth medium was supplemented with three different industrial lipid emulsions: Intralipid(®), containing long-chain triglycerides (LCT--soybean oil); Medialipid(®), containing LCT (soybean oil) and medium-chain triglycerides (MCT--coconut oil); and SMOFlipid(®), containing LCT, MCT, omega-9 and -3 (soybean, coconut, olive and fish oils). Cell viability and apoptosis were assessed by Trypan blue exclusion and flow cytometry respectively. Monocyte composition and membrane remodeling were studied using gas chromatography and NR12S staining. Microparticles released in supernatant were measured by prothrombinase assay. After LPS challenge, both cellular necrosis and apoptosis were increased (threefold and twofold respectively) and microparticle release was enhanced (sevenfold) after supplementation with Medialipid(®) compared to Intralipid(®), SMOFlipid(®) and monocytes in the standard medium. The monocytes differentially incorporated fatty acids after lipid emulsion challenge. Finally, lipid-treated cells displayed microparticles characterized by disrupted membrane lipid order, reflecting lipid remodeling of the parental cell plasma membrane. Our data suggest that lipid emulsions differentially alter cell viability, monocyte composition and thereby microparticle release. While MCT have deleterious effects, we have shown that parenteral nutrition emulsion containing LCT or LCT and MCT associated to n-3 and n-9 fatty acids have no effect on endotoxin-induced cell death and inflammation. PMID:25038627

  18. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids - a randomized trial in overweight postmenopausal women

    Bendsen, Nathalie Tommerup; Haugaard, Steen; Larsen, Thomas Meinert;

    2011-01-01

    Intake of industrially produced trans-fatty acids (TFA) has been linked to increased risk of type 2 diabetes mellitus in observational studies. We investigated the causality of this association by examining if a high intake of TFA impairs measures of glucose homeostasis and induces intramuscular...... markers of glucose homeostasis and 4 markers of lipolysis were derived from glucose, insulin, C-peptide, nonesterified fatty acid, and glycerol concentrations during a 3-hour frequent sampling oral glucose tolerance test. Intramuscular lipids were assessed by magnetic resonance spectroscopy. Forty...

  19. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Sinclair Andrew J; Manickam Elizabeth; Cameron-Smith David

    2010-01-01

    Abstract Background Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) ...

  20. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers.

    Dacaranhe, C D; Terao, J

    2001-10-01

    The relationship between the antioxidant effect of acidic phospholipids, phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylserine (PS), on iron-induced lipid peroxidation of phospholipid bilayers and their abilities to bind iron ion was examined in egg yolk phosphatidylcholine large unilamellar vesicles (EYPC LUV). The effect of each acidic phospholipid added to the vesicles at 10 mol% was assessed by measuring phosphatidylcholine hydroperoxides (PC-OOH) and thiobarbituric acid-reactive substances. The addition of dipalmitoyl PS (DPPS) showed a significant inhibitory effect, although the other two acidic phospholipids, dipalmitoyl PA (DPPA) and dipalmitoyl PG (DPPG), did not exert the inhibition. Neither dipalmitoyl PC (DPPC) nor dipalmitoyl phophatidylethanolamine (DPPE) showed any remarkable inhibition on this system. None of the tested phospholipids affected the lipid peroxidation rate remarkably when the vesicles were exposed to a water-soluble radical generator. The iron-binding ability of each phospholipid was estimated on the basis of the amounts of iron recovered in the chloroform/methanol phase after separation of the vesicle solution to water/methanol and chloroform/methanol phases. EYPC LUV containing DPPS, DPPA, and DPPG had higher amounts of bound iron than those containing DPPC and DPPE, indicating that these three acidic phospholipids possess an iron-binding ability at a similar level. Nevertheless, only DPPS suppressed iron-dependent decomposition of PC-OOH significantly. Therefore, it is likely that these three acidic phospholipids possess a significant iron-binding ability, although this ability per se does not warrant them antioxidative activities. The ability to suppress the iron-dependent decomposition of PC-OOH may explain the unique antioxidant activity of PS. PMID:11768154

  1. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.;

    2004-01-01

    cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... design, 17 healthy young men replaced part of their habitual dietary fat intake with 70 g MCTs (66% 8:0 and 34% 10:0) or high-oleic sunflower oil (89.4% 18:1). Each intervention period lasted 21 d, and the 2 periods were separated by a washout period of 2 wk. Blood samples were taken before and after the...... oleic acid, MCT fat unfavorably affected lipid profiles in healthy young men by increasing plasma LDL cholesterol and triacylglycerol. No changes in the activities of phospholipid transfer protein and cholesterol ester transfer protein were evident....

  2. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton

  3. Lipid peroxidation during n-3 fatty acid and vitamin E supplementation in humans.

    Allard, J P; Kurian, R; Aghdassi, E; Muggli, R; Royall, D

    1997-05-01

    The purpose of this study was to investigate in healthy humans the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake, alone or in combination with dL-alpha-tocopherol acetate (vitamin E) supplements on lipid peroxidation. Eighty men were randomly assigned in a double-blind fashion to take daily for 6 wk either menhaden oil (6.26 g, n-3 fatty acids) or olive oil supplements with either vitamin E (900 IU) or its placebo. Antioxidant vitamins, phospholipid composition, malondialdehyde (MDA), and lipid peroxides were measured in the plasma at baseline and week 6. At the same time, breath alkane output was measured. Plasma alpha-tocopherol concentration increased in those receiving vitamin E (P < 0.0001). In those supplemented with n-3 fatty acids, EPA and DHA increased in plasma phospholipids (P < 0.0001) and plasma MDA and lipid peroxides increased (P < 0.001 and P < 0.05, respectively). Breath alkane output did not change significantly and vitamin E intake did not prevent the increase in lipid peroxidation during menhaden oil supplementation. The results demonstrate that supplementing the diet with n-3 fatty acids resulted in an increase in lipid peroxidation, as measured by plasma MDA release and lipid peroxide products, which was not suppressed by vitamin E supplementation. PMID:9168460

  4. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. PMID:25978353

  5. Alternation in Lipid Composition of Wheat Leaves Induced by Phosphate Deficiency Is Related to Both Lipid Biosynthesis and Phosphatidylglycerol Degradation

    YANGWen; FENGFu-Ying; HOUHai-Tong; JIANGGui-Zhen; XUYi-Nong; KUANGTing-Yun

    2004-01-01

    In this study, the causes of the changes in lipid composition induced by different phosphatenutrient levels were investigated. Wheat plants were grown in phosphate-deficient and phosphate-suffcient conditions, respectively, and lipid compositions in the leaves of 9-day-old and 16-day-old plants wereanalyzed. We found that phosphate deficiency induced a dramatic change at the lipid levels in photosyntheticmembranes of wheat leaves and the extent of changes in lipid composition depended on the leaf ages.Phosphate deficiency induced a gradual decrease in PG and MGDG and a concomitant increase in DGDGand SQDG from the first leaf to the second and the third leaf on 16-day-old plants. In addition, as comparedto leaves grown under phosphate sufficient solution, PG content in the first leaf of 16-day-old plants wassignificantly lower than that of 9-day-old leaf with 2.5 mol% versus 5.5 mol% when these plants were grownunder phosphate deficient condition. From these results, it is suggested that the alternation in lipidcomposition in wheat leaves induced by phosphate deficiency is related to both lipid biosynthesis and PGdegradation. PG decrease in younger leaves is mainly due to insufficient phosphate supply for PG biosynthesis,while PG degradation mainly resulted in the PG decrease in older leaves.

  6. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  7. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Gu Keyu; Yi Chengxin; Tian Dongsheng; Sangha Jatinder; Hong Yan; Yin Zhongchao

    2012-01-01

    Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L.), a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been...

  8. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes.

    Fraga, C G; Leibovitz, B E; Tappel, A L

    1988-01-01

    Liver slices were used to measure lipid peroxidation induced by bromotrichloromethane, tert-butyl hydroperoxide (t-BOOH), or ferrous iron. The responses of liver homogenates and microsomes to oxidative conditions were compared with the response of tissue slices. Lipid peroxidation was evaluated by the production of thiobarbituric acid-reactive substances (TBARS). As was observed in homogenates and microsomes, TBARS production by liver slices depended upon the amount of tissue, the incubation time, inducer, the amount of inducer, and the presence of antioxidant. Control liver slices incubated at 37 degrees C for 2 h produced 19 nmol of TBARS per g of liver. When slices were incubated in the presence of 1 mM BrCCl3, 1 mM t-BOOH, or 50 microM ferrous iron, TBARS production increased 4.6-, 8.2-, or 6.7-fold over the control value, respectively. Comparable induction of TBARS by liver homogenates and microsomes was observed when these preparations were incubated with the same inducers. Addition of 5 microM butylated hydroxytoluene (BHT) prevented the induction of TBARS by 50 microM ferrous iron by liver slices. The results indicate the usefulness of tissue slices to measure lipid peroxidation. The usefulness of tissue slices is emphasized when a number of compounds or tissues are studied and tissue integrity is desired as in toxicological, pharmacological, and nutritional studies where reduced numbers of experimental animals is a relevant issue. PMID:3356355

  9. Activity of caffeic acid in different fish lipid matrices: A review

    Medina, Isabel; Undeland, Ingrid; Larsson, Karin;

    2012-01-01

    Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a natural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this review is to discuss the mechanisms involved in the antioxidative and prooxidative eff...

  10. UVB-induced photoperoxidation of lipids of human low and high density lipoproteins. A possible role of tryptophan residues

    Ultraviolet radiation of the UVB region readily destroys tryptophan (Trp) residues of low (LDL) and high (HDL) density lipoproteins. The photooxidation of tryptophan residues is accompanied by peroxidation of low and high density lipoproteins unsaturated fatty acids, as measured by thiobarbituric acid assay. Moreover, low and high density lipoproteins are natural carriers of vitamin E and carotenoids. These two antioxidants are also rapidly bleached by UVB. The UVA radiation promotes neither tryptophan residue destruction nor lipid photoperoxidation. The redox cycling Cu2+ ions considerably increase lipid photoperoxidation. The synergistic action of photo and auto (Cu2+-induced) peroxidation induces marked post-irradiation modifications of apolipoproteins as illustrated by degradation of most tryptophan residues after overnight incubation in the dark of pre-irradiated samples. (author)

  11. Manifestations of Fasting-Induced Fatty Liver and Rapid Recovery from Steatosis in Voles Fed Lard or Flaxseed Oil Lipids

    Mustonen, Anne-Mari; Kärjä, Vesa; Kilpiö, Michael; Tammi, Raija; Tammi, Markku; Rouvinen-Watt, Kirsti; Halonen, Toivo; Nieminen, Petteri

    2013-01-01

    Long-chain n-3 polyunsaturated fatty acids (PUFA) can have beneficial effects against fat deposition, cardiovascular diseases, and liver steatosis. We investigated how diets based on lard (predominantly saturated and monounsaturated fatty acids) or flaxseed oil (rich in 18:3n-3) affect liver fat-% and fatty acid profiles of tundra voles (Microtus oeconomus). We also studied potential participation of hyaluronan (HA) in the pathology of fatty liver and whether the development and recovery of fasting-induced steatosis are influenced by n-3 PUFA. The dietary fatty acid composition was manifested in the liver fatty acid signatures. Fasting for 18 h induced macrovesicular steatosis and the liver fat-% increased to 22% independent of the preceding diet. Fasting-induced steatosis did not involve inflammation or connective tissue activation indicated by the absence of both leukocyte accumulation and increased HA. Food deprivation modified the liver fatty acid signatures to resemble more closely the diets. Fasting reduced the proportions of long-chain n-3 PUFA in both dietary regimes and n-3/n-6 PUFA ratios in the lard-fed voles. Decreases in long-chain n-3 PUFA may promote lipid accumulation by modulating the expression of lipid-metabolizing genes. Dietary 18:3n-3 did not prevent the development or attenuate the manifestation of steatosis in the fasted voles or promote the recovery. PMID:24152753

  12. Manifestations of Fasting-Induced Fatty Liver and Rapid Recovery from Steatosis in Voles Fed Lard or Flaxseed Oil Lipids

    Toivo Halonen

    2013-10-01

    Full Text Available Long-chain n-3 polyunsaturated fatty acids (PUFA can have beneficial effects against fat deposition, cardiovascular diseases, and liver steatosis. We investigated how diets based on lard (predominantly saturated and monounsaturated fatty acids or flaxseed oil (rich in 18:3n-3 affect liver fat-% and fatty acid profiles of tundra voles (Microtus oeconomus. We also studied potential participation of hyaluronan (HA in the pathology of fatty liver and whether the development and recovery of fasting-induced steatosis are influenced by n-3 PUFA. The dietary fatty acid composition was manifested in the liver fatty acid signatures. Fasting for 18 h induced macrovesicular steatosis and the liver fat-% increased to 22% independent of the preceding diet. Fasting-induced steatosis did not involve inflammation or connective tissue activation indicated by the absence of both leukocyte accumulation and increased HA. Food deprivation modified the liver fatty acid signatures to resemble more closely the diets. Fasting reduced the proportions of long-chain n-3 PUFA in both dietary regimes and n-3/n-6 PUFA ratios in the lard-fed voles. Decreases in long-chain n-3 PUFA may promote lipid accumulation by modulating the expression of lipid-metabolizing genes. Dietary 18:3n-3 did not prevent the development or attenuate the manifestation of steatosis in the fasted voles or promote the recovery.

  13. Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate.

    Matos, Ângelo Paggi; Feller, Rafael; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião

    2015-12-01

    In this study the feasibility of growing marine Nannochloropsis gaditana in desalination concentrate (DC) was explored and the influence of the DC concentration on the biomass growth, lipid productivities and fatty acids composition was assessed. The reuse of the medium with the optimum DC concentration in successive algal cultivation cycles and the additional of a carbon source to the optimized medium were also evaluated. On varying the DC concentration, the maximum biomass concentration (0.96gL(-1)) and lipid content (12.6%) were obtained for N. gaditana in the medium with the optimum DC concentration (75%). Over the course of the reuse of the optimum DC medium, three cultivation cycles were performed, observing that the biomass productivity is directly correlated to lipid productivity. Palmitic acid was the major fatty acid found in N. gaditana cells. The saturated fatty acids content of the algae enhanced significantly on increasing the DC concentration. PMID:26318921

  14. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation

    Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H2DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis. -- Highlights: ► Ethanol depleted mitochondrial GSH in Nrf2-null mice but not in Keap1-KD mice. ► Ethanol increased ROS in hepatocytes isolated from Nrf2-null and wild

  15. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats

    Lee Si; Cha Min; Kim Jung; Lee Do; Park Shin; An Hyang; Lim Hyung; Kim Kyung; Ha Nam

    2011-01-01

    Abstract Background Recent studies have reported the preventive effects of probiotics on obesity. Among commensal bacteria, bifidobacteria is one of the most numerous probiotics in the mammalian gut and are a type of lactic acid bacteria. The aim of this study was to assess the antiobesity and lipid-lowering effects of Bifidobacterium spp. isolated from healthy Korean on high fat diet-induced obese rats. Methods Thirty-six male Sprague-Dawley rats were divided into three groups as follows: (1...

  16. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik;

    2009-01-01

    between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and...... hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results in...

  17. Correlation between leptin level with lipid profile and free fatty acid in liver cirrhosis patients

    Siti Maryani; Neneng Ratnasari; Siti Nurdjanah

    2015-01-01

    Malnutrition is a common condition in liver cirrhotic patients. Leptin regulates body weightphysiologically by suppressing appetite and increasing energy expenditure. Leptin is higher in femalethan male. Studies have shown correlation between leptin with metabolic factors like body massindex (BMI) and lipid profile in cirrhotic patients. This study was conducted to investigate thecorrelation between serum leptin levels with lipid profile and free fatty acid in male patients with livercirrhosi...

  18. Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats

    Ton So

    2009-07-01

    Full Text Available Abstract Background The metabolic syndrome (MetS is a cluster of metabolic abnormalities comprising visceral obesity, dyslipidaemia and insulin resistance (IR. With the onset of IR, the expression of lipoprotein lipase (LPL, a key regulator of lipoprotein metabolism, is reduced. Increased activation of glucocorticoid receptors results in MetS symptoms and is thus speculated to have a role in the pathophysiology of the MetS. Glycyrrhizic acid (GA, the bioactive constituent of licorice roots (Glycyrrhiza glabra inhibits 11β-hydroxysteroid dehydrogenase type 1 that catalyzes the activation of glucocorticoids. Thus, oral administration of GA is postulated to ameliorate the MetS. Results In this study, daily oral administration of 50 mg/kg of GA for one week led to significant increase in LPL expression in the quadriceps femoris (p p > 0.05 of the GA-treated rats compared to the control. Decrease in adipocyte size (p > 0.05 in both the visceral and subcutaneous adipose tissue depots accompanies such selective induction of LPL expression. Consistent improvement in serum lipid parameters was also observed, with decrease in serum free fatty acid, triacylglycerol, total cholesterol and LDL-cholesterol but elevated HDL-cholesterol (p > 0.05. Histological analysis using tissue lipid staining with Oil Red O showed significant decrease in lipid deposition in the abdominal muscle and quadriceps femoris (p p > 0.05. Conclusion Results from this study may imply that GA could counteract the development of visceral obesity and improve dyslipidaemia via selective induction of tissue LPL expression and a positive shift in serum lipid parameters respectively, and retard the development of IR associated with tissue steatosis.

  19. Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method

    Cherng-Yuan Lin

    2015-02-01

    Full Text Available Lipids were extracted from Isochrysis galbana using a microwave-assisted method accompanied by various types of organic solvents. The effects of organic solvent type and microwave input energy on the fatty acid characteristics of the extracted lipids and their biodiesel product were investigated. Variations in the characteristics of the lipids extracted using a combination of n-hexane and iso-propanol solvents in both emulsion and direct mixtures were also compared. The experimental results showed that greater quantities of Isochrysis galbana lipids, and fatty acid methyl esters transesterified from those lipids, were extracted when using microwave irradiation with an organic solvent mixture of n-hexane and isopropanol in a 2:1 volumetric ratio than when using either n-hexane or isopropanol as the sole solvent. A greater quantity of Isochrysis galbana lipids was extracted when an emulsion of isopropanol solvent evenly dispersed in the continuous phase of n-hexane solvent was used than when a direct mixture of the two solvents was used. In addition, the quantity of lipids extracted from the dried Isochrysis galbana powder with the assistance of microwave irradiation was 9.08 wt% greater than when using traditional Soxhlet extraction without microwave irradiation.

  20. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  1. Serum total sialic acid, lipid peroxidation, and glutathione reductase levels in patients with rheumatoid arthritis

    Mohan, Surapaneni Krishna; PRIYAV, Vishnu

    2010-01-01

    The changes in the serum sialic acid levels, total lipid peroxidation products (MDA), and glutathione reductase activity were estimated in patients with rheumatoid arthritis. Serum Sialic acid is known as a parameter of inflammation. This work was undertaken to assess the potential role of sialic acid as well as oxidative stress and antioxidant status in patients with rheumatoid arthritis. Materials and methods: The levels of these parameters in serum were studied in 52 subjects with rheuma...

  2. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Tang Bing; Li; Yang Dachun; Ma Shuangtao; Yang Yongjian

    2011-01-01

    Abstract Background Elevated plasma free fatty acid (FFA) levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36) is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs) treated with oleic acid (OA). We found that OA induces lipid accum...

  3. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae

    Figueiredo, J.; Baird, A. H.; Cohen, M. F.; Flot, J.-F.; Kamiki, T.; Meziane, T.; Tsuchiya, M.; Yamasaki, H.

    2012-06-01

    Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.

  4. Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats

    Ling Li; Gang-Yi Yang

    2004-01-01

    AIM: To explore the influence of hepatic glucose production on acute insulin resistance induced by a lipid infusion in awake rats.METHODS: A hyperinsulinaemic-euglycaemic clamp was established in awake chronically catheterized rats. Two groups of rats were studied either with a 4-h intraarterial infusion of lipid/heparin or saline. Insulin-mediated peripheral and hepatic glucose metabolism was assessed by hyperinsulinaemiceuglycaemic clamp combined with [3-3H]-glucose infusion.RESULTS: During hyperinsulinaemic-euglycaemic clamp,there was a significant increase in plasma free fatty acid (FFA, from 741.9±50.6 to 2346.4±238.5 μmol/L, P<0.01) in lipid-infused group. The glucose infusion rates (GIR) in the lipid infusion rats, compared to control rats, were significantly reduced (200-240 min average: lipid infusion; 12.6±1.5 vs control; 34.0±1.6 mg/kg.min, P<0.01), declining to - 35%of the corresponding control values during the last time of the clamp (240 min: lipid infusion; 12.0±1.9 vs control;34.7±1.7 mg/kg.min, P<0.0001). At the end of clamp study,the hepatic glucose production (HGP) in control rats was significantly suppressed (88%) from 19.0±4.5 (basal) to 2.3±0.9 mg/kg.min (P<0.01). The suppressive effect of insulin on HGP was significantly blunted in the lipid-infused (P<0.05). The rate of glucose disappearance (GRd) was a slight decrease in the lipid-infused rats compared with controls during the clamp.CONCLUSION: These data suggest that lipid infusion could induces suppression of hepatic glucose production, impairs the abilities of insulin to suppress lipolysis and mediate glucose utilization in peripheral tissue. Therefore, we conclude that lipid-infusion induces an acute insulin resistance in vivo.

  5. Sugars, organic acids, minerals and lipids in jabuticaba

    Annete de Jesus Boari Lima

    2011-06-01

    Full Text Available The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed of the Paulista (Plinia cauliflora and Sabará (Plinia jaboticaba jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.

  6. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling

    Petersen, Frederic N.R.; Laursen, Ib; Bohr, Henrik [Quantum Protein Center, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Nielsen, Claus Helix, E-mail: claus.nielsen@fysik.dtu.dk [Quantum Protein Center, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Aquaporin A/S, Diplomvej 377, DK-2800 Kgs. Lyngby (Denmark)

    2009-10-02

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to -6 kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid {r_reversible} gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few A results in up to 10-fold increased exchange rates as compared to the 'optimal' match situation pointing to the regulatory role of hydrophobic coupling in lipid-protein interactions.

  7. Enhancing Lipid Stability in Irradiated Beef Mince by Oleoresins and/ or Ascorbic Acid during Chilling Storage

    Lipid Oxidation, fatty acids profile and sensory properties of irradiated beef mince (2.5 kGy) treated with oleoresins (rosemary or ginger), ascorbic acid, or combination of ascorbic acid and oleoresins were investigated during 30 days of chilled storage. Thiobarbituric acid reactive substances (TBARS) as an indication of lipid oxidation, of irradiated control samples were significantly higher than those of non irradiated control and samples treated with rosemary and ginger oleoresins. By GC-MS analysis, it was found that the relative percentage of total saturated fatty acids (TSFA) increased in all treatments. However, the highest increase was recorded in irradiated control samples compared to non irradiated control samples. Beef mince samples treated with oleoresins (rosemary or ginger) had the best scores for discoloration and off odour. Thus, the addition of oleoresins (rosemary or ginger) to beef mince before irradiation could be an easily applied method to minimize oxidative degradation of irradiated meat

  8. The influence of some anticancer preparations on photo induced lipid preoxidation

    In nowadays it is very important in medicine to investigate mechanisms of actions of different pharmacological preparations including anticancer ones. As it is known during cancer there is the disruption of balance between free radical oxidative processes and amount of antioxidants. That is why it was investigated the possibility of cooperation of some anticancer preparations with membrane structures and the influence of these preparations on photo induced free radical oxidative process. For investigations of the influence of some anticancer preparations - sarkolizin and cyclophosphane - on the intensivity of chemiluminescence as a biological target it were taken homogenates of brains of cows in tris-HCL buffer solution (1:10, pH=7.4). Irradiation was done with UV-light for 1 minute. Also it was used the model-system of oleinic acid for investigation of action studied preparations on lipid peroxidation. All experiments were done at 40 degree C. It was found out that anticancer preparations suppressed lipid peroxidation and that it is expressed by decreasing of level of photo chemiluminescence. By the way it was discovered that maximal inhibition of photo chemiluminescence was at the moment of adding preparation to the biological target. And then level of photo chemiluminescence increased till some point, which was lower than normal one. Also it was found that the inhibition degree for these preparations was different. For example, sarkolizin decreased the level of photo chemiluminescence on 58%, and cyclophosphane - on 52%. Because chemiluminescence of oleinic acid very well imitates the chemiluminescence of different lipid structures, so it was used as a model-system for testing investigated preparations. And in this experiment also it was found that sarkolizin and cyclophosphane decreased the level of induced chemiluminescence. And this action depended on the concentration of preparations. In conclusion it can be said that sarkolizin and cyclophosphane inhibited

  9. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively. PMID:25745068

  10. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  11. Studies in lipid histochemistry. XIII. The OPA (osmiumtetroxide-periodic acid-alpha-naphthylamine) method for the detection of apolar lipids.

    Elleder, M

    1975-09-29

    A new procedure for the detection of apolar lipids is described. It is a modification of the OTAN method (Adams, 1959) using periodic acid which oxidatively removes lower osmium derivatives from polar sites only, leaving those in apolar lipids intact and demonstrable with alpha-naphthylamine. Control steps for the exclusion of the possible interference of some less polar complex lipids and of lipopigments are described. The described technic is superior to the conventionally used sudan dyes due partly to the fact that only aqueous solutions are employed thus excluding any extraction of lipids, partly to the more distinct coloration. PMID:171245

  12. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid.

    Patel, Avnish; Mohl, Bjorn-Patrick; Roy, Polly

    2016-06-01

    The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry. PMID:27036941

  13. Lipid Polymorphism Induced by Surfactant Peptide SP-B1-25

    Farver, R. Suzanne; Mills, Frank D.; Antharam, Vijay C.; Chebukati, Janetricks N.; Fanucci, Gail E.; Long, Joanna R.

    2010-01-01

    Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization...

  14. Lipid-Nucleic Acid Supramolecular Complexes: Lipoplex Structure and the Kinetics of Formation

    Nily Dan

    2015-06-01

    Full Text Available The need for synthetic gene therapy or gene silencing vehicles that can insert therapeutic nucleic acids (DNA or siRNA into cells (so-called transfection has focused interest on lipid-nucleic acid assemblies (lipoplexes. This paper reviews the kinetics pathways leading to lipoplex formation and structure. The process is qualitatively comparable to those of cluster nucleation and growth and to the adsorption of polyelectrolytes on colloidal particles: Initially is a rapid stage where the nucleic acid binds onto the surface of the cationic lipid aggregate (adsorption, or nucleation. This is followed by an intermediate step where the lipid/nucleic acid complexes flocculate to form larger structures (growth. The last and final step involves internal rearrangement, where the overall global structure remains constant while local adjustment of the nucleic acid/lipid organization takes place until the equilibrium lipoplex characteristics are obtained. This step can require unusually long time scales of order hours or longer. Understanding the kinetics of lipoplex formation is not only of fundamental interest as a multi-component, multi-length scale and multi-time scale process, but also has significant implications for the utilization of lipoplexes as carriers for gene delivery and gene silencing agents.

  15. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation

  16. Serum lipid profile and uric acid levels in preeclampsia in University of Benin Teaching Hospital

    Nosakhare O Enaruna

    2014-01-01

    Full Text Available Background: Preeclampsia is a pregnancy-specific disease associated with significant maternal and perinatal mortality and morbidity. Lipid abnormality and elevated serum uric acid have been reported as early features of the disease. We aimed to detect the level of serum lipid profile and uric acid abnormalities in severe preeclamptics in Benin City and to measure their clinical significance. Materials and Methods: A prospective case-control study was conducted with subjects presenting with severe preeclampsia to the Obstetric Unit of the UBTH, Benin City. Fasting serum lipid profile and uric acid levels of 40 severe preeclamptic subjects and 80 gestation-matched normotensive controls were done at recruitment. The preeclamptic subjects were managed according to our departmental protocol which included stabilisation and delivery. Their sociodemographic and clinical characteristics were used to generate a database for analysis. Results: The mean serum uric acid level was 28% higher in severe preeclamptics than normotensive women (5.96 ± 2.54 mg/dl versus 4.30 ± 0.85; P = 0.005. There were statistically significant differences in levels of triglycerides (TG, low-density lipoprotein (LDL and high-density lipoprotein (HDL between the preeclamptics and their normotensive controls (P = 0.006, P = 0.000, P = 0.000, respectively. Abnormal serum uric acid was associated with advanced maternal age (P = 0.000, early-onset preeclampsia (P = 0.000 and abnormal body mass index (BMI; P = 0.000. Low birth weight was more likely in preeclamptics with elevated serum uric acid levels (P = 0.041. Conclusion: Abnormality of serum uric acid in preeclampsia was significantly associated with increased frequency of complications but lipid profile abnormalities were not shown in the subjects studied. We recommend a larger scale study to determine lipid profile in normal and complicated pregnancies in our environment.

  17. Valproic acid induced pancreatitis: a case report

    Bhupen Barman

    2014-08-01

    Full Text Available Valproic acid is a commonly used antiepileptic drug. Apart from its common side effect there is definite association between valproic acid therapy and acute pancreatitis. Since 1979, many cases of acute pancreatitis induced by valproic acid have been published in medical literature. Here we are reporting a case of valproic acid induced acute pancreatitis in a 27 years old boy. The treatment is supportive, re-challenge is hazardous and should be avoided. [Int J Res Med Sci 2014; 2(4.000: 1765-1767

  18. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice.

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Schroeder, Friedhelm; Kier, Ann B

    2015-08-15

    Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD). PMID:26116377

  19. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  20. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    Corpeleijn, Eva; Hessvik, Nina P; Bakke, Siril S;

    2010-01-01

    were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO......Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments...... all, a lower mitochondrial mass and lower ICL(OX) were related to a higher cell-associated OA accumulation. Second, myotubes established from obese T2D individuals showed reduced ICL(OX). ICL(OX) remained lower during uncoupling (P <0.001), even with comparable mitochondrial mass, suggesting decreased...

  1. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  2. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River

    Svetlana A. Murzina

    2016-06-01

    Full Text Available The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes.

  3. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  4. Preparation, characterization, and in vivo pharmacokinetics of nanostructured lipid carriers loaded with oleanolic acid and gentiopicrin

    Zhang KC

    2013-08-01

    Full Text Available Kunchi Zhang, Shaowa Lv, Xiuyan Li, Yufei Feng, Xin Li, Lu Liu, Shuang Li, Yongji Li School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, People’s Republic of China Background: The purpose of this work was to develop nanostructured lipid carriers (NLCs loaded simultaneously with oleanolic acid and gentiopicrin. Methods: An aqueous dispersion of NLCs was prepared successfully using a film-ultrasonic method, with glycerin monostearate as the solid lipid and oleic acid as the liquid lipid. Poloxamer 188 was used as the surfactant. A central composite design was used to optimize the technologic parameters. The characteristics of the NLCs were then investigated. Results: The encapsulation efficiency was 48.34% ± 2.76%, drug loading was 8.06% ± 0.42%, particle size was 111.0 ± 1.56 nm, polydispersity index was 0.287 ± 0.01, and zeta potential was –23.8 ± 0.36 mV for the optimized NLCs. The other physicochemical properties were characterized by transmission electron microscopy and differential scanning calorimetry. Drug release followed first-order kinetics and release studies confirmed that oleanolic acid and gentiopicrin fitted a sustained-release model. Compared with NLCs loaded with oleanolic acid or gentiopicrin alone, NLCs loaded with both oleanolic acid and gentiopicrin produced drug concentrations which persisted for a significantly longer time in plasma, with a linear decrement following second-order kinetics. Aspartate and alanine aminotransferase levels were significantly lower on exposure to NLCs loaded with both oleanolic acid and gentiopicrin than in negative controls. Conclusion: The results of this study confirm that oleanolic acid and gentiopicrin can be loaded simultaneously into NLCs. Compared with oleanolic acid and gentiopicrin loaded alone, sustained release and protective effects against hepatic injury were observed using NLCs loaded with both oleanolic acid and

  5. Obesity Induces Tissue-Specific Changes in Lipid Peroxidation Defense Enzymes

    Lipid peroxidation is thought to be a component of obesity-induced pathology. However, the tissue-dependent changes in lipid peroxidation (LOOH) and LOOH defense mechanisms in response to obesity are unclear. In this work, we utilized 14-week old male, obese Zucker rats and their control, lean litte...

  6. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  7. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Kang, Jung Hoon [Cheongju Univ., Cheongju (Korea, Republic of)

    2013-11-15

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD.

  8. Acrolein, A Reactive Product of Lipid Peroxidation, Induces Oxidative Modification of Cytochrome c

    Acrolein (ACR) is a well-known carbonyl toxin produced by lipid peroxidation of polyunsaturated fatty acids, which is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). In Alzheimer's brain, ACR was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In this study, we evaluated oxidative modification of cytochrome c occurring after incubation with ACR. When cytochrome c was incubated with ACR, protein aggregation increased in a dose-dependent manner. The formation of carbonyl compounds and the release of iron were obtained in ACR-treated cytochrome c. Reactive oxygen species scavengers and iron specific chelator inhibited the ACR-mediated cytochrome c modification and carbonyl compound formation. Our data demonstrate that oxidative damage of cytochrome c by ACR might induce disruption of cyotochrome c structure and iron mishandling as a contributing factor to the pathology of AD

  9. Inhibition of erythrocyte lipid peroxidation and hemolysis by the radioprotectant WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid

    Chemical radioprotection is often interpreted in terms of protection or repair of DNA damaged predominantly by reactive oxygen species formed from the radiolysis of water. Radiation injury can also be related to membrane damage as a consequence, e.g., of lipid hydroperoxide formation, but the role of lipid peroxidation in radioprotection has not been studied widely. The authors have used red cell model systems in this regard, which have the advantage of lack of organelles and DNA, and the potential for characterizing factors that influence drug uptake. Cumene hydroperoxide (CHP) was used to mimic radiation-induced hydroperoxides. After 2.5 hr incubation of rat erythrocytes with 1.0 mM CHP, 20% hemolysis was observed, which appeared to be related to glucose depletion in the cells, since the presence of glucose (5mM) inhibited hemolysis. Hemolysis was also totally inhibited by 5 mM WR-2721. Thiobarbituric acid-reactive substances (indicative of lipid peroxidation) were detectable before hemolysis and inhibited by WR-2721. WR-2721 and its free sulfhydryl form (WR-1065) were also capable of inhibiting radiation-induced formation of pentane in erythrocyte ghost preparations. These data indicate that the antioxidant action of WR-2721 is due to its conversion to WR-1065, and this antioxidant effect may contribute to the radioprotective effect of the drug

  10. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike;

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...... storage period, and off-flavors were more pronounced in SFO. The lower oxidative stability of SFO was probably related to the initially lower quality (regarding oxidation products), which is apparently a result of the long production procedure required. Addition of metal chelators did not reduce the...

  11. Production of lipids and docosahexasaenoic acid (DHA) by a native Thraustochytrium strain

    Shene, Carolina; Leyton, Allison; Rubilar, Mónica;

    2013-01-01

    /w. Under this growth condition lipids and DHA productivities were 50 and 23 mg/(L h), respectively. Practical applications: Consumption of long chain‐polyunsaturated fatty acids (LC‐PUFA) belonging to the omega‐3 family such as DHA has several positive effects on human and animal health. However, natural......Production of docosahexasaenoic acid (DHA) by a native Labyrinthulomycetes strain, Thraustochytriidae sp. TN5, whose growth characteristics present some differences to related strains, was scaled from shaken flask to a laboratory fermentor. The effect of the growth medium composition and growth...... conditions for (i) biomass production, (ii) lipid content of the biomass, and (iii) DHA content in the lipids was determined. Taguchi's design of experiments was used to study the influence of two discrete – carbon and nitrogen sources – and six continuous – concentrations of the carbon and nitrogen sources...

  12. Relation of Plasma Uric Acid Levels and the Lipid Parameters in Han and Uygur Ethnicity

    Sun Yuping; Yao Hua; Yao Wenhai; Li Qing; You Lan; Wang Qiuyun; Jiang Yan

    2006-01-01

    Objectives Hyperuricemia is a common finding in hypertension and hyperlipidemia,they are all correlated to cardiovascular diseases. The aim of this study was to find the relationship of uric acid and plasma lipid parameters of Han and Uygur ethnicity in Xinjiang. Methods This cross-sectional health examination survey was based on a population random sample from the Urumchi, It included 1166 subjects aged from 20 to 70 years. Serum biochemical testing by Automatic Analyzer (HITACHI 7600-010).Results The uric acid in Han was higher than in Uygur(P< 0.05), men were higher than women in two ethnicities; For lipid parameters men were higher than women, in TG and HDL women were higher than in men in two ethnicity (P < 0.05). Serum uric acid was strongly related to serum triglycerides in Han as well as Uygur ethnicity ( P < 0.001); Compared with the normal group, UA, TG, CHOL, VLDL had ascending trend and HDL had descending trend (P <0.05 ) among groups in Han and Uygur ethnicity,especially Hyperuricemia-hypertriglyceridemia group,uric acid and most some lipid parameters was higher than Hyperuricemia and hypertriglyceridemia group,The prevalence of different groups in Han and Urgur was significantly different (P < 0.05). Conclusions This study shows that the UA and some lipid parameters are different in Han and Uygur ethnicity and show sexual difference; serum uric acid is markedly related to serum triglycerides; Hyperuricemia and hypertriglyceridemia show cooperated effect in uric acid and most lipid parameters. Considering the growing incidence of the potential link between hyperuricemia/hypertriglyceridemia and cardiovascular diseases, more emphasis should be put on the evolving prevalence of hyperuricemia and hypertriglyceridemia in Xinjiang.

  13. Bile acids in radiation-induced diarrhea

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  14. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Eric eBoyd

    2013-04-01

    Full Text Available Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park (YNP, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings, the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly

  15. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice.

    Oliveros, L B; Videla, A M; Giménez, M S

    2004-03-01

    We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL+VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [3H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [3H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [3H]-AA uptake but induced an increase in [3H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress. PMID:15060696

  16. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  17. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes

    Dulf Francisc V; Pamfil Doru; Baciu Adriana D; Pintea Adela

    2013-01-01

    Abstract Background Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fra...

  18. Fatty acid composition of lipids in pot marigold (Calendula officinalis L. seed genotypes

    Dulf Francisc V

    2013-01-01

    Full Text Available Abstract Background Calendula officinalis L. (pot marigold is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%, of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L. were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9% and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2% fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%, while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids. Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids, making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.

  19. The hydroperoxide moiety of aliphatic lipid hydroperoxides is not affected by hypochlorous acid

    Zschaler, Josefin; Arnhold, Jürgen

    2015-01-01

    The oxidation of polyunsaturated fatty acids to the corresponding hydroperoxide by plant and animal lipoxygenases is an important step for the generation of bioactive lipid mediators. Thereby fatty acid hydroperoxide represent a common intermediate, also in human innate immune cells, like neutrophil granulocytes. In these cells a further key component is the heme protein myeloperoxidase producing HOCl as a reactive oxidant. On the basis of different investigation a reaction of the fatty ac...

  20. Fatty acids and algal lipids as precursors of chlorination by-products

    Yan Liang; Yuen Shan Lui; Huachang Hong

    2012-01-01

    Six common algal fatty acids (FAs) with different numbers of double bonds,lipophilic fractions and proteins extracted from the diatom Navicula pelliculosa and algal cells were chlorinated to evaluate their potential in generating disinfection by-products (DBPs).The result showed that the more double bonds in the FAs,the higher the amounts of chloroform and dichloroacetic acid (DCAA) produced,but such a pattern was not observed for trichloroacetic acid (TCAA).Based on the previously reported composition of fatty acids in algal lipids,the DBP generation potentials of algal lipids were calculated.These predicted values were much lower than those measured in the chlorinated algal lipophilic fraction,suggesting unknown lipophilic fraction(s) served as potent DBPs precursors.Another calculation attempted to predict DBP production in algal cells based on algal lipid and protein composition,given quantified measured DBP production per unit algal lipid and proteins.The analysis showed that the observed DBP production was similar to that predicted (< 35% difference),suggesting that algal biochemical compositions may serve as a bioindicator for preliminary estimation of chloroform,DCAA and TCAA formation upon chlorinating algae.

  1. Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way

    Echteld, C. J. A. Van; Kruijff, B. de; Verkleij, A. J.; Leunissen-Bijvelt, J.; de Gier, J.

    1982-01-01

    The hydrophobic peptide gramicidin is shown by 31P-NMR, freeze-fracture electron microscopy and small-angle X-ray diffraction, to induce a hexogonal HII-phase lipid organization when incorporated in liquid crystalline saturated and unsaturated synthetic and natural phosphatidylcholines if the length of the fatty acids exceeds a 16 carbon atoms chain. The amount of hexagonally organized lipid increases with increasing fatty acid chain length. With phosphatidylcholines possessing shorter fatty ...

  2. Hyaluronic Acid Inhibits Polycation Induced Cellular Responses

    lalenti, A.; Lanaro, A.; Brignola, G.; Marotta, P; Di Rosa, M.

    1994-01-01

    Positively charged macromolecules cause a variety of pathological events through their electrostatic interaction with anionic sites present on the membrane of target cells. In the present study we have investigated the effect of hyaluronic acid, a negatively charged molecule, on rat paw oedema induced by poly-L-lysine as well as on histamine release from rat mast cells and nitric oxide formation from rabbit aorta, both induced by this polycation. The results indicate that hyaluronic acid is a...

  3. Dietary α-linolenic acid-rich flaxseed oil prevents against alcoholic hepatic steatosis via ameliorating lipid homeostasis at adipose tissue-liver axis in mice

    Wang, Meng; Zhang, Xiao-Jing; Feng, Kun; He, Chengwei; Li, Peng; Hu, Yuan-Jia; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Low levels of n-3 polyunsaturated fatty acids (PUFAs) in serum and liver tissue biopsies are the common characteristics in patients with alcoholic liver disease. The α-linolenic acid (ALA) is a plant-derived n-3 PUFA and is rich in flaxseed oil. However, the impact of ALA on alcoholic fatty liver is largely unknown. In this study, we assessed the potential protective effects of ALA-rich flaxseed oil (FO) on ethanol-induced hepatic steatosis and observed that dietary FO supplementation effectively attenuated the ethanol-induced hepatic lipid accumulation in mice. Ethanol exposure stimulated adipose lipolysis but reduced fatty acid/lipid uptake, which were normalized by FO. Our investigations into the corresponding mechanisms demonstrated that the ameliorating effect of FO might be associated with the lower endoplasmic reticulum stress and normalized lipid metabolism in adipose tissue. In the liver, alcohol exposure stimulated hepatic fatty acid uptake and triglyceride synthesis, which were attenuated by FO. Additionally, dietary FO upregulated plasma adiponectin concentration, hepatic adiponectin receptor 2 expression, and the activation of hepatic adenosine monophosphate-activated protein kinase. Collectively, dietary FO protects against alcoholic hepatic steatosis by improving lipid homeostasis at the adipose tissue-liver axis, suggesting that dietary ALA-rich flaxseed oil might be a promising approach for prevention of alcoholic fatty liver. PMID:27220557

  4. Restoration of dietary-fat induced blood–brain barrier dysfunction by anti-inflammatory lipid-modulating agents

    Pallebage-Gamarallage Menuka

    2012-09-01

    Full Text Available Abstract Background Several studies have identified use of non-steroidal-anti-inflammatory drugs and statins for prevention of dementia, but their efficacy in slowing progression is not well understood. Cerebrovascular disturbances are common pathological feature of Alzheimer’s disease. We previously reported chronic ingestion of saturated fatty acids (SFA compromises blood–brain barrier (BBB integrity resulting in cerebral extravasation of plasma proteins and inflammation. However, the SFA-induced parenchymal accumulation of plasma proteins could be prevented by co-administration of some cholesterol lowering agents. Restoration of BBB dysfunction is clinically relevant, so the purpose of this study was to explore lipid-lowering agents could reverse BBB disturbances induced by chronic ingestion of SFA’s. Methods Wild-type mice were fed an SFA diet for 12 weeks to induce BBB dysfunction, and then randomised to receive atorvastatin, pravastatin or ibuprofen in combination with the SFA-rich diet for 2 or 8 weeks. Abundance of plasma-derived immunoglobulin-G (IgG and amyloid-β enriched apolipoprotein (apo-B lipoproteins within brain parenchyme were quantified utilising immunofluorescence microscopy. Results Atorvastatin treatment for 2 and 8 weeks restored BBB integrity, indicated by a substantial reduction of IgG and apo B, particularly within the hippocampus. Pravastatin, a water-soluble statin was less effective than atorvastatin (lipid-soluble. Statin effects were independent of changes in plasma lipid homeostasis. Ibuprofen, a lipid-soluble cyclooxygenase inhibitor attenuated cerebral accumulation of IgG and apo B as effectively as atorvastatin. Our findings are consistent with the drug effects being independent of plasma lipid homeostasis. Conclusion Our findings suggest that BBB dysfunction induced by chronic ingestion of SFA is reversible with timely introduction and sustained treatment with agents that suppress inflammation.

  5. Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout.

    Zehmer, John K; Hazel, Jeffrey R

    2005-11-01

    In poikilotherms, increases in plasma membrane (PM) cholesterol and an increase in the degree of lipid acyl chain saturation commonly accompany an increase in growth temperature. This has typically been interpreted in terms of membrane fluidity/order homeostasis, but these changes would also be expected to stabilize the structure of PM rafts against thermal perturbation. Rafts are microdomains that organize the molecules of many signaling cascades and are formed as a result of interactions between lipids with saturated acyl chains and cholesterol. No study to date has examined the thermally induced compositional changes of raft and non-raft regions of the PM separately. In this study we have measured the phospholipid class composition and fatty acid composition of raft-enriched (raft) and raft-depleted PM (RDPM) of hepatocytes from trout Oncorhynchus mykiss acclimated to 5 degrees C and 20 degrees C. In the raft, warm acclimation was associated with a reduction in the proportion of phosphatidylcholine from 56% to 30% while phosphatidylserine and phosphatidylinositol each increased from 8% to approximately 20% of the total phospholipid. Additionally, there were significantly fewer unsaturated fatty acids in the raft lipids from warm-acclimated (61%) than from the cold-acclimated trout (68%). In contrast, there were no significant changes in phospholipid class or acyl chain unsaturation in the RDPM. These data suggest that changes in raft lipid composition, rather than the PM as a whole, are particularly important during thermal acclimation. PMID:16272251

  6. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid-Role of HMG-CoA reductase.

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Raja, Boobalan; Chatterjee, Suvro

    2016-04-15

    The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations. PMID:26945821

  7. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids.

    Malinin, Vladimir S.; Frederik, Peter; Lentz, Barry R

    2002-01-01

    Poly (ethylene glycol) (PEG) in the external environment of membrane vesicles creates osmotic imbalance that leads to mechanical stress in membranes and may induce local membrane curvature. To determine the relative importance of membrane stress and curvature in promoting fusion, we monitored contents mixing (CM) and lipid mixing (LM) between different sized vesicles under a variety of osmotic conditions. CM between highly curved vesicles (SUV, 26 nm diameter) was up to 10 times greater than ...

  8. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function

  9. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-08-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function.

  10. Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas

    Gu Keyu

    2012-07-01

    Full Text Available Abstract Background Temporal and spatial expression of fatty acid and lipid biosynthetic genes are associated with the accumulation of storage lipids in the seeds of oil plants. In jatropha (Jatropha curcas L., a potential biofuel plant, the storage lipids are mainly synthesized and accumulated in the endosperm of seeds. Although the fatty acid and lipid biosynthetic genes in jatropha have been identified, the expression of these genes at different developing stages of endosperm has not been systemically investigated. Results Transmission electron microscopy study revealed that the oil body formation in developing endosperm of jatropha seeds initially appeared at 28 days after fertilization (DAF, was actively developed at 42 DAF and reached to the maximum number and size at 56 DAF. Sixty-eight genes that encode enzymes, proteins or their subunits involved in fatty acid and lipid biosynthesis were identified from a normalized cDNA library of jatropha developing endosperm. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that the 68 genes could be collectively grouped into five categories based on the patterns of relative expression of the genes during endosperm development. Category I has 47 genes and they displayed a bell-shaped expression pattern with the peak expression at 28 or 42 DAF, but low expression at 14 and 56 DAF. Category II contains 8 genes and expression of the 8 genes was constantly increased from 14 to 56 DAF. Category III comprises of 2 genes and both genes were constitutively expressed throughout endosperm development. Category IV has 9 genes and they showed a high expression at 14 and 28 DAF, but a decreased expression from 42 to 56 DAF. Category V consists of 2 genes and both genes showed a medium expression at 14 DAF, the lowest expression at 28 or 42 DAF, and the highest expression at 56 DAF. In addition, genes encoding enzymes or proteins with similar function were

  11. Crocidolite-induced lipid peroxidation. II. Role of antioxidants

    Gulumian, M.; Kilroe-Smith, T.A.

    1987-12-01

    Asbestos fibers in vitro produce lipid peroxidation in rat lung microsomes. Butylated hydroxytoluene prevented this peroxidation. Ascorbate in low concentrations enhanced peroxidation of lipids but inhibited it at concentrations above 4 mmole/liter so that it partially protected membrane lipids from peroxidation produced by asbestos fibers. Reduced glutathione added to microsomes gave increased peroxidation at increased concentrations up to 20 mmol/liter. At 40 mmol/liter peroxidation was prevented. Glutathione had no obvious effect on the level of peroxidation produced by asbestos fibers. The 105,000g supernatant cell fraction added either with or without glutathione gave a decrease in the amount of lipid peroxidation produced by asbestos fibers. The protective action of these reducing agents suggests a possible use as prophylactic agents against the harmful effects of inhaled asbestos.

  12. Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean.

    Armendariz, Ana L; Talano, Melina A; Villasuso, Ana L; Travaglia, Claudia; Racagni, Graciela E; Reinoso, Herminda; Agostini, Elizabeth

    2016-06-01

    Soybean (Glycine max) is often exposed to high arsenic (As) level in soils or through irrigation with groundwater. In previous studies on As-treated soybean seedlings we showed deleterious effect on growth, structural alterations mainly in root vascular system and induction of antioxidant enzymes. However, there are not reports concerning signal transduction pathways triggered by the metalloid in order to develop adaptive mechanisms. Phosphatidic acid (PA), a key messenger in plants, can be generated via phospholipase D (PLD) or via phospholipase C (PLC) coupled to diacylglycerol kinase (DGK). Thus, changes in PA and in an enzyme involved in its metabolism (PLD) were analysed in soybean seedlings treated with 25 μM AsV or AsIII. The present study demonstrated that As triggers the PA signal by PLD and also via PLC/DGK mainly after 48 h of As treatment. DGPP, other lipid messenger produced by phosphorylation of PA by PAK increased in As treated roots. Arsenic also induced rapid and significant stomatal closure after 1.5 h of treatment, mainly with AsIII, probably as an adaptive response to the metalloid to reduce water loss by transpiration. This report constitute the first evidence that shows the effects of As on lipid signalling events in soybean seedlings which would be crucial in adaptation and survival of soybean seedlings under As stress. PMID:26963899

  13. Is atherosclerosis a multifactorial disease or is it induced by a sequence of lipid peroxidation reactions?

    Spiteller, Gerhard

    2005-06-01

    The delivery of not only free cholesterol but also cholesterol esters to cells by low-density lipoprotein (LDL) has hitherto been unstudied. Minor compounds present in mammalian-derived food include cholesterol linoleate and arachidonate. Evidence is presented that these esters are directly incorporated into VLDL and are responsible for the deleterious effects of atherosclerosis. Cholesterol esterified with these polyunsaturated fatty acids (PUFAs) is readily oxidized at the PUFA residue during storage and heating. Apparently, the liver is unable to distinguish between nonoxidized and oxidized cholesterol PUFA esters and also incorporates the latter into VLDL, which is transformed to LDL. When this LDL is transferred to endothelial cells, the toxic products are liberated and induce cell damage. Cell damage is combined with structural changes that influence neighboring cells and cause an influx of Ca2+ ions and activation of phospholipases and lipoxygenases, resulting in production of lipid hydroperoxides (LOOHs). When the level of free PUFAs generated by phospholipases exceeds a certain limit, lipoxygenases commit suicide, causing liberation of iron ions. The latter react with LOOHs and thus induce a switch from enzymatic to nonenzymatic generation of lipid peroxidation (LPO) products. Although the LOO. radicals produced in enzymatic reactions are deactivated within the enzyme complex, LOO. radicals generated in nonenzymatic reactions are able to attack any biological compound, inducing severe damage. Apparently, iron ions and LOOH molecules at the surface of injured cells transfer the nonenzymatic LPO reactions to the phospholipid layer of bypassing lipoproteins, thus explaining why inflammatory diseases, such as diabetes, are combined with atherogenesis. PMID:16037257

  14. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  15. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44+) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44-) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44+ cells in vitro. In the B16F10-CD44+ lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy. PMID:25897340

  16. Effect of methyl-branched fatty acids on the structure of lipid bilayers.

    Poger, David; Caron, Bertrand; Mark, Alan E

    2014-12-01

    Methyl-branched fatty acids are widespread in prokaryotic membranes. Although anteiso and iso branching (that is on the antepenultimate and penultimate carbons) and the presence of multiple methyl branches in the phytanoyl chain are known to modify the thermotropic behavior and enhance the fluidity of lipid bilayers, little is known about the effect of methyl branching on the structure of lipid bilayers. In this study, molecular dynamics simulations are used to examine systematically the impact of one or more methyl branches at different positions along the sn-1 palmitoyl chain on the structural properties of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer. It is found that methyl branching reduces lipid condensation, decreases the bilayer thickness, and lowers chain ordering. Branching also results in the formation of kinks at the branching point, thereby enhancing the fluidity of lipid bilayers. Furthermore, this effect varies in a methyl-position-dependent fashion. In the case of polymethylated chains, the simulations suggest that if the gap between the methyl groups is sufficient (two or three carbons), the effects of the methyl branches are additive and equivalent to the combined effect of the corresponding monomethyl-branched lipids. PMID:25380125

  17. Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Langkilde, Annette Eva;

    2014-01-01

    molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution...

  18. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    Sidiqat Adamson Shodehinde; Ganiyu Oboh

    2013-01-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods: Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results: The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions: Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  19. Equivalent Isopropanol Concentrations of Aromatic Amino Acids Interactions with Lipid Vesicles.

    Johnson, Merrell A; Ray, Bruce D; Wassall, Stephen R; Petrache, Horia I

    2015-08-01

    We show that the interaction of aromatic amino acids with lipid bilayers can be characterized by conventional 1D [Formula: see text]H NMR spectroscopy using reference spectra obtained in isopropanol-d8/D[Formula: see text]O solutions. We demonstrate the utility of this method with three different peptides containing tyrosine, tryptophan, or phenylalanine amino acids in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid membranes. In each case, we determine an equivalent isopropanol concentration (EIC) for each hydrogen site of aromatic groups, in essence constructing a map of the chemical environment. These EIC maps provide information on relative affinities of aromatic side chains for either PC or PS bilayers and also inform on amino acid orientation preference when bound to membranes. PMID:25691267

  20. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  1. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  2. Omeprazole induces altered bile acid metabolism

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  3. Inhibition of Zymosan-Induced Inflammatory Factors Expression by ATRA Nanostructured Lipid Carriers

    Zhou, Hongyan; Zhang, Wensong; Gao, Xunyi; Zhang, Hongguang; Kong, Ning

    2016-01-01

    Purpose. The study aimed to evaluate the effect of all-trans retinoic acid-loaded nanostructured lipid carriers (ATRA-NLCs) on the zymosan-induced expression of the cytokines IL-4, IL-10, and IFN-γ and the matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) and TLR2 in rabbit corneal fibroblasts (RCFs). Methods. ATRA-NLCs were prepared by emulsification. RCFs were isolated and harvested after four to seven passages in monolayer culture. Cytokine release (IL-4, IL-10, and IFN-γ) induced by zymosan was analyzed by cytokine release assay, reverse transcription, and real-time polymerase chain reaction (RT-PCR) analysis detection. MMP-1, MMP-3, and MMP-13, TIMP-1 and TIMP-2, and TLR2 expression were analyzed by immunoblotting. Results. ATRA-NLCs were resistant to light and physically stable, and the average size of the ATRA-NLCs was 200 nm. ATRA-NLCs increased the zymosan-induced release of IL-4 and IL-10 and decreased the release of IFN-γ by RCFs. ATRA-NLCs decreased the levels of TLR2 and MMPs/TIMPs above. Conclusions. ATRA may be a potent anti-inflammatory agent for the therapy of fungal keratitis (FK). PMID:27340562

  4. Characterization of lipids and fatty acids of the soil derived fungus Cladosporium sp.

    Verma, Shikha

    2011-06-01

    Full Text Available The fungus Cladosporium sp. was explored for its potential ability to produce lipids, fatty acids and protein. The lipids were characterized by the quantification of acylglycerols and fatty acids. Alterations in lipid and protein accumulation were observed by changing the growth medium, carbon source type (glucose and dextrose and content, growth period and by developing salt stress through the incorporation of NaCl in the formulation of the medium. Lipid content was found to vary from 6.8 ± 0.3 to 27.3 ± 2.8%, w/w. The major fatty acids accumulated were palmitic, oleic and linoleic. The lipid fraction obtained from a Potato- dextrose medium (containing 2% dextrose and 4% NaCl accumulated 73.7 ± 3.7%, w/w, oleic acid. Some lipid fractions were found to have fatty acid ratios like saturated, monounsaturated, and polyunsaturated close to 1:1:1 w/w/w. Triacylglycerol was obtained as the major constituent of lipid fractions.El hongo Cladosporium sp. fue estudiado por a su potencial para producir lípidos, ácidos grasos y proteínas. Los lípidos fueron caracterizados por la cuantificación de acilgliceroles y ácidos grasos. Alteraciones en la acumulación de proteínas y lípidos fue observada por cambios en el medio de crecimiento, el tipo y contenido de la fuente de carbono (glucosa o dextrosa, el período de crecimiento y por desarrollo de estrés salino a través de la incorporación de NaCl en el medio de formulación. El contenido lipídico vario desde 6.8% ± 0.3 hasta 27.3% ± 2.8 %, w/w. Los principales ácidos grasos acumulados fueron ácido palmítico, oleico y linoleico. La fracción lipídica obtenida con el medio de patatadextrosa (conteniendo 2% dextrosa y 4% NaCl acumulo un 73.7% ± 3.7 w/w de ácido oleico. Algunas fracciones lipídicas encontradas tuvieron una proporción saturado: monoinsaturado: poliinsaturado cercana a 1:1:1 w/w/w. Los triglicérido fueron los principales constituyentes de la fracción lipídica.

  5. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups.

    Therrien, Alexandre; Lafleur, Michel

    2016-01-19

    Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes. PMID:26789763

  6. Lipid Peroxides and α-Tocopherol in Rat Streptozotocin-Induced Diabetes Mellitus

    Higuchi,Yoshimi

    1982-06-01

    Full Text Available Measurement of lipid peroxides and alpha-tocopherol was undertaken in rats with streptozotocin-induced diabetes. In sera and livers in diabetic rats, the lipid peroxides increased but alpha-tocopherol decreased. To study the effect of vitamin E deficiency in the diabetic state, diabetes was induced in rats maintained on a vitamin E deficient diet. Serum lipid peroxides increased greatly but alpha-tocopherol decreased. Lipid peroxides and alpha-tocopherol increased in the liver of vitamin E deficient states. In the liver, vitamin E deficient diabetic rats had lower lipid peroxides levels but higher alpha-tocopherol levels than vitamin E deficient non-diabetic rats. On the basis of the present experiments, it was considered that the decrease of alpha-tocopherol might be due to consumption as an antioxidant as lipid peroxides increased in sera and livers. The decrease of lipid peroxides in the liver was thought to play an important part of the increase in serum lipid peroxides.

  7. Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus.

    Huang, Hsiao-Ling; Lin, Chih-Cheng; Jeng, Kee-Ching G; Yao, Pei-Wun; Chuang, Lu-Te; Kuo, Su-Ling; Hou, Chien-Wei

    2012-03-01

    Green tea is one of the most-consumed beverages due to its taste and antioxidative polyphenols. However, the protective effects of green tea and its constituent, gallic acid (GA), against kainic acid (KA)-induced seizure have not been studied. We investigated the effect of fresh green tea leaf (GTL) and GA on KA-induced neuronal injury in vivo and in vitro. The results showed that GTL and GA reduced the maximal seizure classes, predominant behavioral seizure patterns, and lipid peroxidation in male FVB mice with status epilepticus (SE). GTL extract and GA provided effective protection against KA-stressed PC12 cells in a dose-dependent manner. In the protective mechanism study, GTL and GA decreased Ca(2+) release, ROS, and lipid peroxidation from KA-stressed PC12 cells. Western blot results revealed that mitogen-activated protein kinases (MAPKs), RhoA, and COX-2 expression were increased in PC12 cells under KA stress, and expression of COX-2 and p38 MAPK, but not RhoA, was significantly reduced by GTL and GA. Furthermore, GTL and GA were able to reduce PGE(2) production from KA-stressed PC12 cells. Taken together, the results showed that GTL and GA provided neuroprotective effects against excitotoxins and may have a clinical application in epilepsy. PMID:22324774

  8. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Borate AR; Suralkar AA; Deshpande AD; Malusare PV; Bangale PA

    2012-01-01

    Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in hi...

  9. Inhibition of endotoxin-induced interleukin-6 production by synthetic lipid A partial structures in human peripheral blood mononuclear cells.

    Wang, M. H.; Flad, H D; Feist, W; Brade, H; Kusumoto, S; Rietschel, E T; Ulmer, A J

    1991-01-01

    The effect of two synthetic lipid A partial structures, compound 406 (or LA-14-PP, identical in structure to the lipid A precursor, known as Ia or IVa) and compound 401 (lipid X), on the in vitro modulation of endotoxin (lipopolysaccharide)-induced interleukin-6 production by human blood mononuclear cells was investigated. Lipopolysaccharide of Salmonella abortus equi and synthetic Escherichia coli-type lipid A (compound 506, or LA-15-PP) had potent interleukin-6-inducing capacities. The maxi...

  10. Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin–nicotinamide induced diabetic rats

    Devarshi, Prasad P.; Jangale, Nivedita M.; Ghule, Arvindkumar E.; Bodhankar, Subhash L.; Harsulkar, Abhay M.

    2012-01-01

    Dietary omega-3 fatty acids have been demonstrated to have positive physiological effects on lipid metabolism, cardiovascular system and insulin resistance. Type-2 diabetes (T2DM) is known for perturbations in fatty acid metabolism leading to dyslipidemia. Our objective was to investigate beneficial effects of dietary flaxseed oil and fish oil in streptozotocin–nicotinamide induced diabetic rats. Thirty-six adult, male, Wistar rats were divided into six groups: three diabetic and three non-di...

  11. Saturated- and n-6 Polyunsaturated-Fat Diets Each Induce Ceramide Accumulation in Mouse Skeletal Muscle: Reversal and Improvement of Glucose Tolerance by Lipid Metabolism Inhibitors

    Frangioudakis, G.; J. Garrard; Raddatz, K.; Nadler, J L; Mitchell, T. W.; Schmitz-Peiffer, C.

    2010-01-01

    Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, would protect against glucose intolerance in saturated fat-fed mice, while lisofylline (LSF), a funct...

  12. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  13. Gamma radiation effects on fattly acid composition of lipids in cotton leaves

    The mechanism of high irradiation dose (30 kR) effect on the lipid fatty acid composition of cotton leaves was studied in the ontogenesis. The experiment was carried out in vegetation vials (capacity 25 kg, humidity level - 65% of full water capacity). Before seeding, each vial was fertilized with 5g P2O5, 3g K2O and 5gN as an auxillary nutrition during vegetation. The test vials also contained 0.4 - 0.5 g CaO per kg of soil. A portion of irradiated seeds was soaked in 1.5% solution of CaO and Ca(NO3)2 before seeding. The cotton seeds were gamma-irradiated at 50 R/sec in the Institute of Nuclear Physics, Usbec SSR Academy of Sciences. The fatty acid composition of mature leaf lipids determined by gas-liquid chromatography proved to change in the blooming phase. Leaves of irradiated plants contained traces of myristic acid, higher levels of palmitic, palmitoleinic and strearinic acids and lower levels of oleinic and linoleic acids. Lower content of fatty acids with long carbon chains seemed to handicap the renewal of membranes and their components, especially in mitochondria. When irradiated seeds were soaked in calcium salt solution and CaO is added to the soil, the amount of unsaturated long chain fatty acids increased. The fact probably promotes the membrane renewal in irradiated plants

  14. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  15. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO4, Sodium nitroprusside and Quinolinic acid) - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P2O2 induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe (II) chelating ability. (author)

  16. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-08-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. PMID:27208776

  17. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  18. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    HOSOMI, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding...

  19. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  20. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers

    Brodbek, Leonie

    2015-01-01

    We discuss different mechanisms for curvature-induced domain formation in multicomponent lipid membranes and present a theoretical model that allows us to study the interplay between the domains. The model represents the membrane by two coupled monolayers, which each carry an additional order parameter field describing the local lipid composition. The spontaneous curvature of each monolayer is coupled to the local composition, moreover, the lipid compositions on opposing monolayers are coupled to each other. Using this model, we calculate the phase behavior of the bilayer in mean-field approximation. The resulting phase diagrams are surprisingly complex and reveal a variety of phases and phase transitions, including a decorated microdomain phase where nanodomains are aligned along the microdomain boundaries. Our results suggest that external membrane tension can be used to control the lateral organization of nanodomains (which might be associated with lipid "rafts") in a multicomponent lipid bilayer.

  1. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption

    Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity, caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.

  2. Computer simulation of cytoskeleton-induced blebbing in lipid membranes

    Spangler, E. J.; Harvey, C. W.; Revalee, J. D.;

    2011-01-01

    Blebs are balloon-shaped membrane protrusions that form during many physiological processes. Using computer simulation of a particle-based model for self-assembled lipid bilayers coupled to an elastic meshwork, we investigated the phase behavior and kinetics of blebbing. We found that blebs form ...

  3. Chemopreventive and renal protective effects for docosahexaenoic acid (DHA: implications of CRP and lipid peroxides

    Darweish MM

    2009-04-01

    Full Text Available Abstract Background The fish oil-derived ω-3 fatty acids, like docosahexanoic (DHA, claim a plethora of health benefits. We currently evaluated the antitumor effects of DHA, alone or in combination with cisplatin (CP in the EAC solid tumor mice model, and monitored concomitant changes in serum levels of C-reactive protein (CRP, lipid peroxidation (measured as malondialdehyde; MDA and leukocytic count (LC. Further, we verified the capacity of DHA to ameliorate the lethal, CP-induced nephrotoxicity in rats and the molecular mechanisms involved therein. Results EAC-bearing mice exhibited markedly elevated LC (2-fold, CRP (11-fold and MDA levels (2.7-fold. DHA (125, 250 mg/kg elicited significant, dose-dependent reductions in tumor size (38%, 79%; respectively, as well as in LC, CRP and MDA levels. These effects for CP were appreciably lower than those of DHA (250 mg/kg. Interestingly, DHA (125 mg/kg markedly enhanced the chemopreventive effects of CP and boosted its ability to reduce serum CRP and MDA levels. Correlation studies revealed a high degree of positive association between tumor growth and each of CRP (r = 0.85 and leukocytosis (r = 0.89, thus attesting to a diagnostic/prognostic role for CRP. On the other hand, a single CP dose (10 mg/kg induced nephrotoxicity in rats that was evidenced by proteinuria, deterioration of glomerular filtration rate (GFR, -4-fold, a rise in serum creatinine/urea levels (2–5-fold after 4 days, and globally-induced animal fatalities after 7 days. Kidney-homogenates from CP-treated rats displayed significantly elevated MDA- and TNF-α-, but reduced GSH-, levels. Rats treated with DHA (250 mg/kg, but not 125 mg/kg survived the lethal effects of CP, and showed a significant recovery of GFR; while their homogenates had markedly-reduced MDA- and TNF-α-, but -increased GSH-levels. Significant association was detected between creatinine level and those of MDA (r = 0.81, TNF-α r = 0.92 and GSH (r = -0

  4. Fatty acid composition in leaf lipids of some Carex L. (Cyperaceae species from Northeast Anatolia (Turkey

    Olgun, Arzu

    2000-10-01

    Full Text Available Fatty acid composition of 16 species of Carex from 15 sections are reported. The palmitic acid is the dominant fatty acid in lipid of all species and sections surveyed. The linoleic and linolenic acids were the second most abundant fatty acids. Taxonomic value and phylogenetic implications of results are discussed.Se presenta la composición en ácidos grasos de 16 especies de Carex (de 15 secciones. El ácido palmítico es el ácido graso dominante en los lípidos de todas las especies examinadas, seguidos por los ácidos linoleico y linolenico. El valor taxonómico y las implicaciones filogenéticas de los resultados son discutidos.

  5. Investigation of the roles of the substances in serum lipids and their constitutive fatty acids in chronic urticaria.

    Kobayashi, S

    1989-06-01

    The newly-generated lipid mediators include products of arachidonate metabolism, prostaglandins and leukotrienes. In this study, serum lipids and fatty acids, including arachidonic acid (C20:4) were examined in 12 normal subjects (6 males and 6 females) and 23 subjects with chronic urticaria (6 males and 17 females), including 17 who made an excellent or good recovery (4 males and 13 females). The results indicated a relationship between chronic urticaria and serum lipids and fatty acids. The omega 6 (n-6) and omega 3 (n-3) series of polyunsaturated fatty acids and lipid peroxidation were suggested that may be one of the mediators in chronic urticaria. Pantethine, glutathione and ascorbic acid were effective in controlling chronic urticaria. PMID:2794222

  6. Tranexamic Acid Diminishes Laser-Induced Melanogenesis

    Kim, Myoung Shin; Bang, Seung Hyun; Kim, Jeong-Hwan; Shin, Hong-Ju; Choi, Jee-Ho; Chang, Sung Eun

    2015-01-01

    Background The treatment of post-inflammatory hyperpigmentation (PIH) remains challenging. Tranexamic acid, a well-known anti-fibrinolytic drug, has recently demonstrated a curative effect towards melasma and ultraviolet-induced PIH in Asian countries. However, the precise mechanism of its inhibitory effect on melanogenesis is not fully understood. Objective In order to clarify the inhibitory effect of tranexamic acid on PIH, we investigated its effects on mouse melanocytes (i.e., melan-a cel...

  7. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  8. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles.

    Conceição, Mariana; Mendonça, Liliana; Nóbrega, Clévio; Gomes, Célia; Costa, Pedro; Hirai, Hirokazu; Moreira, João Nuno; Lima, Maria C; Manjunath, N; de Almeida, Luís Pereira

    2016-03-01

    In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs). To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled "Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype" (Conceição et al., in press) [1]. PMID:26958628

  9. Lipid Peroxidation Inhibitation Activity of Maillard Reaction Products Derived from Sugar-amino Acid Model Systems

    Nanjing Zhong

    2015-08-01

    Full Text Available The present study aimed to evaluate the lipid peroxidation inhibitation activity of Maillard Reaction Products (MRPs derived from sugar (glucose, fructose, lactose and maltose and 18 amino acid model systems in soybean oil. MRPs were produced by heating at 130°C for 2 h. Of the 18 amino acids-fructose model systems studied, MRPs derived from fructose-leucine, fructose-methionine, fructose-phenylalanine and fructose-isoleucine model sytems showed high lipid peroxidation inhibitation activity and best performance was observed from fructose-phenylalanine MRPs. Interestingly, glucose-phenylalanine MRPs also exhibited high inhibitation activity and inhibitation activity of both glucose-phenylalanine and fructose-phenylalanine MRPs exceeded 87% even with concentration at 1.1 wt % after 8 days storage.

  10. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu;

    2012-01-01

    ,12 CLA, but not 9,11 CLA, decreased total cellular lipids within 3 days and the ratio of monounsaturated FA (MUFA) to saturated FA, and increased C18:0 acyl-CoA levels within 24 h. Consistent with these data, stearoyl-CoA desaturase (SCD)-1 mRNA and protein levels were down-regulated by 10,12 CLA within......Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid...... is due, in part, to the rapid repression of lipogenic transcription factors that regulate MUFA synthesis, suggesting an anti-obesity mechanism unique to this trans FA....

  11. Lipid and fatty acid digestibility in Calanus copepod and krill oil by Atlantic halibut (Hippoglossus hippoglossus L.)

    Colombo-Hixson, Stefanie M.; Olsen, Rolf Erik; Milley, Joyce E.; Lall, Santosh P

    2010-01-01

    Marine zooplankton represent a significant biomass of marine lipid that could supply lipid in diets for farmed marine fish. Digestibility of lipid and fatty acids of the copepod, Calanus finmarchicus and Antarctic krill, Euphausia superba by farmed juvenile Atlantic halibut (Hippoglossus hippoglossus) was investigated. Halibut were fed diets containing one of the following test oils at 15% inclusion level: fish oil (FO), Calanus copepod oil (CO) and Euphausia krill oil (KO). KO contained the ...

  12. Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101.

    Hong, Won-Kyung; Yu, Anna; Heo, Sun-Yeon; Oh, Baek-Rock; Kim, Chul Ho; Sohn, Jung-Hoon; Yang, Ji-Won; Kondo, Akihiko; Seo, Jeong-Woo

    2013-07-01

    The oleaginous microalga Aurantiochytrium sp. KRS101 was cultivated in enzymatic hydrolysates of alkali-pretreated empty palm fruit bunches (EFBs), without prior detoxification process. The maximal levels of lipid and docosahexaenoic acid synthesized were 12.5 and 5.4 g L⁻¹ after cultivation for 36 h. Similar lipid levels were also obtained via simultaneous saccharification and cultivation. The results suggested that EFB is a promising source for production of useful lipids by the microalgal strain. PMID:23053417

  13. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  14. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; Holčapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. PMID:26858118

  15. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes

    Sinclair Andrew J

    2010-06-01

    Full Text Available Abstract Background Lipid droplet (LD formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3 in comparison to SFA (STA; stearic acid, C18:0 and MUFA (OLA; oleic acid, C18:1n-9 on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation. Results EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions. Conclusions This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

  16. Supplemental N-3 polyunsaturated fatty acids in diet: their influence on lipid metabolism in the rat

    Rauchová, Hana; Pavelka, Stanislav; Vokurková, Martina; Tribulová, N.; Soukup, Tomáš

    Bratislava: Slovak University of Technology, 2013, s. 140-145. ISBN 978-80-227-3959-7. [Industrial Toxicology 2013 /33./. Svit, Vysoké Tatry (SK), 19.06.2013-21.06.2013] R&D Projects: GA MŠk(CZ) 7AMB12SK158 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : lipid metabolism * n-3 polyunsaturated fatty acids * thyroid hormones Subject RIV: ED - Physiology

  17. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis

    Surapaneni Krishna; Venkataramana G

    2007-01-01

    Background : The exact pro-oxidant and antioxidant status in osteoarthritis patients is still not clear. To add a new insight to the question, changes in the erythrocyte lipid peroxidation products (MDA), levels of glutathione (GSH), ascorbic acid and plasma vitamin E (nonenzymatic antioxidant parameters); and activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase in erythrocytes and plasma glutathione - S - transferase (GST) were measured in pati...

  18. Fatty Acid Desaturase 1 (FADS1) Gene Polymorphisms Control Human Hepatic Lipid Composition

    Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing

    2014-01-01

    Fatty Acid Desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes including liver enzymes and hepatic fat accumulation but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids and ceramides among 154 human liver tissue samples. The associations between previously Genome-wide Association St...

  19. Hyperosmolarity-induced lipid droplet formation depends on ceramide production by neutral sphingomyelinase 2[S

    Robciuc, Alexandra; Hyötyläinen, Tuulia; Jauhiainen, Matti; Holopainen, Juha M.

    2012-01-01

    Hyperosmolarity (HO) imposes a remarkable stress on membranes, especially in tissues in direct contact with the external environment. Our efforts were focused on revealing stress-induced lipid changes that precede the inflammatory cytokine response in human corneal epithelial cells exposed to increasing osmolarity. We used a lipidomic analysis that detected significant and systematic changes in the lipid profile, highly correlated with sodium concentrations in the medium. Ceramides and trigly...

  20. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  1. Lipid polymorphism induced by surfactant peptide SP-B(1-25).

    Farver, R Suzanne; Mills, Frank D; Antharam, Vijay C; Chebukati, Janetricks N; Fanucci, Gail E; Long, Joanna R

    2010-09-22

    Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B(1-25), a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B(1-25) interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B(1-25) on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B(1-25) partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B(1-25) remains constant, but (2)H and (31)P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the T(m) of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B(1-25), a return to a single lamellar phase above the lipid mixture T(m) is observed, but for 5 mol% SP-B(1-25) a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in (2)H and (31)P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B(1-25) promotes the formation of a fluid isotropic phase. The ability of SP-B(1-25) to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of

  2. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-01

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. PMID:27020550

  3. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  4. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation.

    Kessler, Sonja M; Laggai, Stephan; Van Wonterg, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K

    2016-01-01

    Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation. PMID:27199763

  5. Transient hepatic overexpression of Insulin-like growth factor 2 induces free cholesterol and lipid droplet formation

    Sonja M Kessler

    2016-04-01

    Full Text Available Although insulin-like growth factor 2 (IGF2 has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development.Hydrodynamic gene delivery of the Igf2 plasmid used for transient IGF2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in IGF2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in IGF2-livers without signs of inflammation. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in IGF2 overexpressing mice. Accordingly, HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBP1 and its target genes. SREBP1 was induced and also SREBP1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic Igf2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation.

  6. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    Bee, Giuseppe

    2001-01-01

    Influence de l'apport des acides linoléiques conjugués dans l'alimentation sur la composition des tissus adipeux et la lipogenèse de novo chez les porcs en finition. Plusieurs travaux ont révélé que les acides linoléiques conjugués (conjugated linoleic acids : CLA) ont une influence importante sur le métabolisme des lipides et des protéines. En revanche, les effets des CLA sur le profil des acides gras dans les tissus adipeux chez le porc sont peu connus. Dans cette étude, nous avons détermin...

  7. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  8. Short term exposure to perluoroalkyl acids causes increase of hepatic lipid and triglyceride in conjunction with liver hypertrophy

    ABSTRACT BODY: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to extensive use of industrial and consumer products. These chemicals activate peroxisome proliferatoractivated receptor-alpha (PPARa) in liver and after lipid metabolism. The current stu...

  9. Changes of lipid peroxides and alpha-tocopherol in rats with experimentally induced myocardial necrosis.

    Higuchi,Yoshimi

    1982-04-01

    Full Text Available Myocardial necrosis was produced in rats by injection of isoproterenol (80 mg per kg body weight. Lipid peroxides were measured by the thiobarbituric acid reaction. alpha-Tocopherol was assayed by fluorometric analysis. Immediately after isoproterenol injections, serum lipid peroxides increased and serum alpha-tocopherol decreased, then gradually returned to the pre-injection levels. Lipid peroxides increased more rapidly in the heart and liver than in serum. Alpha-Tocopherol decreased in the heart and liver, then gradually returned to the pre-injection levels. These results indicate that increase in serum lipid peroxides reflects production of peroxides in myocardial tissue and in liver. The decrease in alpha-tocopherol may be due to consumption as anti-oxidants in the vascular system and organs.

  10. Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet

    Hooiveld Guido JEJ

    2009-03-01

    Full Text Available Abstract Background Dietary polyunsaturated fatty acids (PUFA, in particular the long chain marine fatty acids docosahexaenoic (DHA and eicosapentaenoic (EPA, are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process. Results The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon. Conclusion We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.

  11. Total lipids and fatty acid profile in the liver of wild and farmed catla catla fish

    Hassan, M.; Shaihid chatha, S. A.; Tahira, I.; Hussain, B.

    2010-07-01

    This experimental work was aimed to study the moisture content, total lipids and fatty acid profile in the liver of wild and farmed freshwater major carp Catla catla of three different weight categories designated as W{sub 1} (601-900g), W{sub 2} (901- 1200)g and W{sub 3} (1201-1500g). Seven fish specimens of each of the three weight categories of wild and farmed Catla catla were obtained from Trimu Head, Jhang and Fish Hatchery, Satiana Road and Faisalabad, respectively. The fish were dissected to remove the liver and after weighing, liver samples were prepared and subjected to chemical analysis. Wild Catla catla liver had a significantly (p <0.05) higher moisture content as compared to the farmed species. Farmed Catla catla deposited significantly (p < 0.05) higher lipid contents in liver. Proportions of saturated fatty acids varied irregularly in the lipids of the liver from both wild and farmed Catla catla. Saturated fatty acids C12:0, C14:0, C16:0, C18:0, C20:0 and C22:0 were identified with considerable percentages in the liver of Catla catla from both habitats and monounsaturated fatty acid C18:1 was found in considerable amounts in the liver of both major carp. Polyunsaturated fatty acids such as C18:3 (n-6) and C20: 2 (n-6) were detected in the liver of the wild fish of W{sub 2} and W{sub 3} and was similar in the W{sub 3} weight category of the farmed species. (Author) 22 refs.

  12. Correlation between leptin level with lipid profile and free fatty acid in liver cirrhosis patients

    Siti Maryani

    2015-09-01

    Full Text Available Malnutrition is a common condition in liver cirrhotic patients. Leptin regulates body weightphysiologically by suppressing appetite and increasing energy expenditure. Leptin is higher in femalethan male. Studies have shown correlation between leptin with metabolic factors like body massindex (BMI and lipid profile in cirrhotic patients. This study was conducted to investigate thecorrelation between serum leptin levels with lipid profile and free fatty acid in male patients with livercirrhosis. This was a cross sectional study that conducted at Gastroentero-Hepatology Clinic andInternal Ward at Dr. Sardjito General Hospital, Yogyakarta. The inclusion criteria were patients withliver cirrhosis > 18 years old, male, with Child-Pugh classification B and C, and provided informedconsent. The exclusion criteria were liver cirrhotic patients with comorbidity chronic kidney disease,chronic heart failure, diabetic, cancer, infection/septic, pregnancy, breast feeding, and steroid use.Data collecting was performed by anamnesis, physical examination, abdominal ultrasonographyexamination, and blood chemistry test. Pearson test was used to evaluate the correlation betweenthe serum leptin level with the lipid profile and free fatty acid. The results showed that no significantnegative correlation was observed between the serum leptin level with the total cholesterol (r= -0.052; p=0.766, high-density lipoprotein/HDL (r= -0.078; p=0.658 and triglyceride (r= -0.170; p=0.328 in male patients with liver cirrhosis. Furthermore, no significant positive correlationwas observed between the serum leptin levels with the low-density lipoprotein/LDL (r= -0.013; p=0.942 and free fatty acid/FFA (r= 0.007; p=0.968. In conclusion, there was no correlationbetween serum leptin levels with lipid profile and FFA in male patients with liver cirrhosis.

  13. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L; Sinninghe Damste, J. S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has become the primary method for analysis ofIPLs. Many glycerol-free amino acid containing membrane lipids (AA-IPLs), which are structurally different thanabundant aminophospholipids, have not been char...

  14. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

    Dahlia M. El Maghraby; Eman M. Fakhry

    2015-01-01

    Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae), Ulva linza (Chlorophyceae) and Padina pavonica (Phaeophyceae) were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens) to 4.14% (U. linza) of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were a...

  15. PPARd IS A LIPID SENSOR AND A REGULATOR OF FATTY ACID OXIDATION IN PANCREATIC β-CELLS

    Ravnskjær, Kim; Nielsen, Tina; Børgesen, Michael; Mandrup, Susanne

    islets and in the insulinoma cell line INS-1E. This is reflected at the functional level in activity assays using a PPRE-driven luciferase reporter construct. The fatty acids oleic, arachidonic and linolenic acid are able to acivate this construct synergistically with the synthetic RXR agonist LG100268......-oleate oxidation. The current observations suggest that PPARd is an important lipid sensor and regulator of lipid oxidation in pancreatic b-cells....

  16. Conjugated linoleic acid supplementation: lipid content and hepatic histology in healthy Wistar rats

    Lilia Ferreira Santos-Zago

    2011-03-01

    Full Text Available This work aimed to evaluate the effects of the consumption of two commercial conjugated linoleic acid (CLA mixtures on lipid content and liver histology of healthy rats. The investigation was carried out using thirty rats divided into three groups: C (control, AE (AdvantEdge®CLA, and CO (CLA One®. The concentration of CLA was 2% of feed consumption, and the animals were supplemented daily for 42 days. The total lipid content of the liver was determined, and the histology of the organ was examined by Transmission Electronic Microscopy. The results of total liver lipid contents did not exhibit significant differences between the groups. With regard to hepatic histology, it was observed that although fat globules were visibly present in higher numbers and bigger size in the CLA groups, the organ histology was considered normal since both cytoplasm and organelles showed integrity. It was concluded that even though liver microscopic images indicated the presence of fat globules in the liver, from a statistical point of view, the supplementation for 42 days did not bring about lipid accumulation, nor did it alter hepatic histology.

  17. Lipid Emulsions Enhance the Norepinephrine-Mediated Reversal of Local Anesthetic-Induced Vasodilation at Toxic Doses

    Lee, Soo Hee; Sung, Hui-Jin; Ok, Seong-Ho; Yu, Jongsun; Choi, Mun-Jeoung; Lim, Jin Soo; Sohn, Ju-Tae

    2013-01-01

    Purpose Intravenous lipid emulsions have been used to treat the systemic toxicity of local anesthetics. The goal of this in vitro study was to examine the effects of lipid emulsions on the norepinephrine-mediated reversal of vasodilation induced by high doses of levobupivacaine, ropivacaine, and mepivacaine in isolated endothelium-denuded rat aorta, and to determine whether such effects are associated with the lipid solubility of local anesthetics. Materials and Methods The effects of lipid e...

  18. Fatty Acid Profiling of Lipid A Isolated from Indigenous salmonella typhi strain by gas chromatography mass spectrometry

    Typhoid, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem worldwide especially in developing countries. Lipopolysaccharides are one of the main virulence factors of S. Typhi. Hydrophobic lipid A anchors the lipopolysaccharides into the bacterial outer membrane and also serves as the epicenter of endotoxicity, which is linked to the presence of several fatty acid chains. Fatty acid profiling is, therefore, very important to understand the endotoxicity of these pathogenic bacteria. To profile lipid A with respect to its fatty acid constituents, a S. Typhi was isolated from blood culture of a typhoid patient from the Faisalabad region of Pakistan. After its complete identification using biochemical and molecular techniques, this bacterium was cultivated in a fermentor. The cell pellet obtained was subjected to hot phenol process to extract and purify lipopolysaccharides. Acid hydrolysis of the lipopolysaccharides yielded lipid A, which was subjected to analyses using GC-MS after derivatization into their fatty acid methyl esters. The fatty acid methyl esters were identified on the basis of their retention times, compared with standards as well as characteristic mass fragmentation patterns of their respective mass spectra. This fatty acid profiling revealed the occurrence of dodecanoic acid (C12:0), tetradecanoic acid (C14:0), 3-hydroxy tetradecanoic acid (3-OH C14:0) and hexadecanoic acid (C16:0) in the lipid A component of S. Typhi strain with the relative percentage abundances 8.5%, 12.5%, 55.9% and 23.1%, respectively. (author)

  19. Monthly Changes of Glycogen, Lipid and Free Amino Acid of Oyster

    ZHANG Zhicui; XUE Changhu; GAO Xin; LI Zhaojie; WANG Qi

    2006-01-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed.The components analyzed included glycogen, fatty acid and free amino acid (FAA).The content of glycogen was high in January and March (2.89 and 2.82 g(100 g)- 1 on average, respectively) and low in October (2.07 g(100 g)- 1 on average).The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g) -1 on average).The main fatty acids of oyster were palmitic acid(16:0),oleic acid(18:1),eicosapentaenoic acid (EPA,20:5w-3) and docosahexaenoic acid(DHA,22:6w-3).The major FAAs of oyster were Taurine,Glutamicacid,Glycin,Alanine, Arginine and Proline.Taurine was the most abundant FAA with its content ranging from 603 mg(100 g)- 1 to 1139 mg(100 g) -1.The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  20. Monthly changes of glycogen, lipid and free amino acid of oyster

    Zhicui, Zhang; Changhu, Xue; Xin, Gao; Zhaojie, Li; Qi, Wang

    2006-07-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100g)-1 on average, respectively) and low in October (2.07 g(100g)-1 on avarage). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g)-1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18:1), eicosapentaenoic acid (EPA, 20: 5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg (100g)-1 to 1139 mg(100g)-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  1. EFFECTS OF HARVEST STAGE ON THE TOTAL LIPID AND FATTY ACID COMPOSITION OF FOUR CYLINDROTHECA STRAINS

    梁英; 麦康森; 孙世春

    2002-01-01

    Four strains of Cylindrotheca (B156, B164, B196, and B200) wereharvested at three phases in the growth curve and their total lipid and fatty acid composition were determined. Total lipid reached highest values in the late stationary phase in B156 (24.0%), B164 (26.6%) and B200 (17.3%), in the exponential phase in B196 (15.5%). Saturated fatty acids increased with the development of the culture in B156 and B196, and reached their highest values in the late stationary phase in B156 (41.7%) and B196 (45.1%), in the early stationary phase in B164 (45.4%) and B200 (37.6%). Monounsaturated fatty acids increased with the development of the culture in B196 and B200, and reached their highest values inthe late stationary phase in B196 (32.4%) and B200 (32.8%), in the early stationary phase in B164 (31.0%) and in the exponential phase in B156 (29.3%). Polyunsaturated fatty acids decreased in the later phases of the culture in B164, B196 and B200, and peaked in the exponential phase in B164 (29.5%), B196 (42.9%) and B200 (37.3%), and in the early stationary phase in B156 (32.0%). ``

  2. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  3. Perturbations in polar lipids, starvation survival and reproduction following exposure to unsaturated fatty acids or environmental toxicants in Daphnia magna.

    Sengupta, Namrata; Gerard, Patrick D; Baldwin, William S

    2016-02-01

    Acclimating to toxicant stress is energy expensive. In laboratory toxicology tests dietary conditions are ideal, but not in natural environments where nutrient resources vary in quality and quantity. We compared the effects of additional lipid resources, docosahexaenoic acid (n-3; DHA) or linoleic acid (n-6; LA), or the effects of the toxicants, atrazine or triclosan on post-treatment starvation survival, reproduction, and lipid profiles. Chemical exposure prior to starvation had chemical-specific effects as DHA showed moderately beneficial effects on starvation survival and all of the other chemicals showed adverse effects on either survival or reproduction. Surprisingly, pre-exposure to triclosan inhibits adult maturation and in turn completely blocks reproduction during the starvation phase. The two HR96 activators tested, atrazine and LA adversely reduce post-reproduction survival 70% during starvation and in turn show poor fecundity. DHA and LA show distinctly different lipid profiles as DHA primarily increases the percentage of large (>37 carbon) phosphatidylcholine (PC) species and LA primarily increases the percentage of smaller (triclosan moderately perturb a large number of different phospholipids including several phosphatidylethanolamine species. Some of these polar lipid species may be biomarkers for diets rich in specific fatty acids or toxicant classes. Overall our data demonstrates that toxicants can perturb lipid utilization and storage in daphnids in a chemical specific manner, and different chemicals can produce distinct polar lipid profiles. In summary, biological effects caused by fatty acids and toxicants are associated with changes in the production and use of lipids. PMID:26606184

  4. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.

    Baumann, E; Chouinard, P Y; Lebeuf, Y; Rico, D E; Gervais, R

    2016-08-01

    Eight ruminally fistulated, multiparous Holstein cows were arranged in a double 4×4 Latin square with 14-d periods to investigate the effects of lipid supplementation on performance, rumen parameters, the milk odd- and branched-chain fatty acid (OBCFA) profile, and the relationships between milk OBCFA and rumen parameters. Lipid supplementation is known to inhibit microbial growth in the rumen, decrease de novo microbial fatty acid synthesis, and increase the uptake of circulating fatty acids by the mammary gland; treatments were selected to isolate these effects on the milk OBCFA profile. The 4 treatments were (1) a lipid-free emulsion medium infused in the rumen (CTL), (2) soybean oil as a source of polyunsaturated fatty acids infused in the rumen (RSO), (3) saturated fatty acids (38% 16:0, 40% 18:0) infused in the rumen (RSF), and (4) saturated fatty acids infused in the abomasum (ASF). Fat supplements were provided continuously as emulsions at a rate of 450g/d. Preplanned contrasts compared CTL to RSO, RSO to RSF, and RSF to ASF. Infusing RSO slightly decreased ruminal pH, but did not affect volatile fatty acids profile and milk fat concentration as compared with CTL. The yields of energy-corrected milk, fat, and protein were greater with RSF compared with RSO. The concentration of odd-chain fatty acids was decreased by RSO, whereas even-chain iso fatty acids were not affected. Milk fat concentration of 17:0 + cis-9 17:1 was higher for RSF than for RSO, due to the saturated fatty acids supplement containing 2% 17:0 + cis-9 17:1. Limited differences were observed in the milk OBCFA profile between RSF and ASF. A multiple regression analysis yielded the following equation for predicting rumen pH based on milk fatty acids: pH=6.24 - (0.56×4:0) + (1.67 × iso 14:0) + (4.22 × iso 15:0) + (9.41×22:0). Rumen propionate concentration was negatively correlated with milk fat concentration of iso 14:0 and positively correlated with milk 15:0, whereas the acetate

  5. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher (2+ induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  6. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    Flore Dagorn

    2016-05-01

    Full Text Available Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg on the French Atlantic coast. Total lipid and phospholipid (PL fatty acids (FAs and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight varied from 7.1% (winter to 8.6% (spring. Of this, PLs accounted for 28.1% (spring to 50.4% (winter. Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter. Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter. Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5% and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5% were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter. Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin.

  7. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast.

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-01-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  8. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii.

    Goold, Hugh Douglas; Cuiné, Stéphan; Légeret, Bertrand; Liang, Yuanxue; Brugière, Sabine; Auroy, Pascaline; Javot, Hélène; Tardif, Marianne; Jones, Brian; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-08-01

    Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity. PMID:27297678

  9. Tailored host-guest lipidic cubic phases: a protocell model exhibiting nucleic acid recognition.

    Komisarski, Marek; Osornio, Yazmin M; Siegel, Jay S; Landau, Ehud M

    2013-01-21

    A classical conundrum in origin-of-life studies relates to the nature of the first chemical system: was it a carrier of genetic information or a facilitator of cellular compartmentalization? Here we present a system composed of tailor-made nucleolipids and hydrated monoolein, which assemble at ambient temperatures to form host-guest lipidic cubic phase (LCP) materials that are stable in bulk water and can perform both functions. As such, they may represent a molecular model for a protocell in origin-of-life studies. Nucleolipids within the lipidic material sequester and bind selectively complementary oligonucleotide sequences from solution by virtue of base-pairing; noncomplementary sequences diffuse freely between the LCP material and the bulk aqueous environment. Sequence specific enrichment of nucleic acids within the LCP material demonstrates an effective mechanism for selection of genetic material in these cell-mimetic systems. PMID:23239006

  10. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  11. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  12. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  13. Growth Response and Fatty Acid Composition of Juvenile Procambarus clarkii Fed Different Sources of Dietary Lipid

    WEN Xiao-bo; KU Yao-mei; ZHOU Kai-ya

    2003-01-01

    An experiment was conducted to evaluate the effects of feeding various sources of dietary lipidon weight gain, feed conversion, survival and fatty acid composition of juvenile red swamp crawfish, Procam-barus clarkii. Six semi-purified diets containing vitamin-free casein, defatted soybean meal, 0.5% cholinechloride, 0.5 % glycine and 0.5 % cholesterol were supplemented with 6.0 % of either anchovy oil, linseed oil,soybean oil, rapeseed oil, safflower oil or pork lard. Each diet was fed to crawfish (3.07±0.21 g averageweight) in three replicate aquaria for 60 days. Survival rate, weight gain and feed conversion were best forcrawfish fed the diet containing anchovy oil. Crawfish fed the linseed oil diet had the second highest weightgain, followed by crawfish on soybean oil, repaseed oil, safflower oil and pork lard diets, respectively. Feedconversion values were a reflection of weight gain. Results showed that both n-6 and n-3 fatty acids are dietaryessential for juvenile Procambarus clarkii, although n-3 fatty acids promoted faster growth than n-6. Howev-er, highly unsaturated fatty acids (HUFA) (20 : 5n-3 and 22 : 6n-3) had better growth-promoting effect than18 : 3n-3, due probably to the limited ability of crawfish to bioconvert fatty acids to polyenoic forms of longerchain length. The fatty acid composition of the crawfish generally reflected that of the dietary lipids, especial-ly for the diets containing unsaturated fatty acids.

  14. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  15. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm;

    2001-01-01

    attributed to its ability to chelate free metal ions and iron from egg yolk located at the oil-water interface. Gallic acid reduced the levels of both free radicals and lipid hydroperoxides but promoted slightly the oxidative flavor deterioration in mayonnaise and influenced the profile of volatiles. Gallic......The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA was...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  16. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A233/A215, and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  17. Mast cell degranulation induced by chlorogenic acid

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  18. Preparation and evaluation of chitosan/ellagic acid/erythrocyte membrane lipid hemostatic composite sponge

    贺庆; 敖强; 王臻; 刘伟强; 龚锴; 公衍道; 张秀芳

    2013-01-01

      背景:部分文献报道壳聚糖对严重创伤的止血效果有限,因此以壳聚糖为基础止血剂的促凝血活性还有待进一步增强。目的:制备一种新型的壳聚糖/鞣花酸/红细胞膜脂复合海绵,评价其促凝血活性和细胞毒性。方法:通过冻干法制备壳聚糖海绵和壳聚糖乙酸盐海绵,然后再通过静电吸附法制备壳聚糖/鞣花酸/红细胞膜脂复合海绵。血浆复钙时间法观察3种海绵的促凝血活性,并检测3种海绵对 SD 大鼠肝脏的止血效果及对 L929细胞的毒性。结果与结论:壳聚糖/鞣花酸/红细胞膜脂复合海绵组的血浆复钙时间、出血时间、失血量均显著少于壳聚糖海绵组和壳聚糖乙酸盐海绵组(P <0.01)。细胞实验显示壳聚糖/鞣花酸/红细胞膜脂复合海绵无细胞毒性。说明壳聚糖/鞣花酸/红细胞膜脂复合海绵具有良好的促凝血活性且无细胞毒性。%BACKGROUND: Some previous studies have indicated that the hemostatic effect of chitosan is limited when dealing with severe injuries. Therefore, the procoagulant activity of chitosan-based hemostatic agents needs to be enhanced. OBJECTIVE: To prepare a novel chitosan/el agic acid/erythrocyte membrane lipid composite sponge and to evaluate its procoagulant activity and cytotoxicity.METHODS: Chitosan sponge and chitosan acetate sponge were prepared by freeze-drying method. Then chitosan/el agic acid/erythrocyte membrane lipid composite sponge was prepared by electrostatic adsorption method. Procoagulant activity of the chitosan, chitosan acetate, and chitosan/el agic acid/erythrocyte membrane lipid sponges was evaluated by the plasma recalcification time method. Hemostatic effect of these sponges was evaluated in the Sprague Dawley rat liver bleeding model, and the cytotoxicity to L929 cel line was evaluated. RESULTS AND CONCLUSION: The plasma recalcification time, bleeding time and blood loss of the chitosan/el agic acid

  19. OPTIMIZED DETERMINATION OF MALONDIALDEHYDE IN PLASMA-LIPID EXTRACTS USING 1,3-DIETHYL-2-THIOBARBITURIC ACID - INFLUENCE OF DETECTION METHOD AND RELATIONS WITH LIPIDS AND FATTY-ACIDS IN PLASMA FROM HEALTHY-ADULTS

    HOVING, EB; LAING, C; RUTGERS, HM; TEGGELER, M; VANDOORMAAL, JJ; MUSKIET, FAJ

    1992-01-01

    We investigated the influence of different concentrations of Fe3+, phosphoric acid, butylated hydroxytoluene and glutathione on the production of the malondialdehyde-1,3-diethyl-2-thiobarbituric acid adduct in plasma lipid extracts. Following organic solvent extraction the stable product was analyze

  20. Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep

    Duckett SK

    2014-11-01

    Full Text Available Susan K Duckett, Gabriela Volpi-Lagreca, Mariano Alende, Nathan M LongAnimal and Veterinary Sciences Department, Clemson University, Clemson, SC, USAAbstract: Obese sheep were used to assess the effects of palmitoleic (C16:1 cis-9 acid infusion on lipogenesis and circulating insulin levels. Infusion of 10 mg/kg body weight (BW/day C16:1 intravenously in obese sheep reduced (P<0.01 weight gain by 77%. Serum palmitoleic levels increased (P<0.05 in a linear manner with increasing levels of C16:1 infusion. Cis-11 vaccenic (C18:1 cis-11 acid, a known elongation product of palmitoleic acid, was also elevated (P<0.05 in serum after 14 days and 21 days of infusion. Plasma insulin levels were lower (P<0.05 (10 mg/kg BW/day C16:1 than controls (0 mg/kg BW/day C16:1 at 14 days and 28 days of infusion. Infusion of C16:1 resulted in linear increases in tissue concentrations of palmitoleic, cis-11 vaccenic, eicosapentaenoic, and docosapentaenoic acids in a dose-dependent manner. Total lipid content of the semitendinosus (ST muscle and mesenteric adipose tissue was reduced (P<0.01 in both 5 mg/kg and 10 mg/kg BW C16:1 dose levels. Total lipid content and mean adipocyte size in the longissimus muscle was reduced (P<0.05 in the 10 mg/kg BW C16:1 dose level only, whereas total lipid content and adipocyte size of the subcutaneous adipose tissue was not altered. Total lipid content of the liver was also unchanged with C16:1 infusion. Palmitoleic acid infusion upregulated (P<0.05 acetyl-CoA carboxylase (ACC, fatty acid elongase-6 (ELOVL6, and Protein kinase, AMP-activated, alpha 1 catalytic subunit, transcript variant 1 (AMPK mRNA expressions in liver, subcutaneous adipose, and ST muscle compared to the controls. However, mRNA expression of glucose transporter type 4 (GLUT4 and carnitine palmitoyltransferase 1b (CPT1B differed between tissues. In the subcutaneous adipose and liver, C16:1 infusion upregulated (P<0.05 GLUT4 and CPT1B, whereas these genes were

  1. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  2. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway.

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  3. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  4. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  5. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA. PMID

  6. Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis

    Zhang, Guochang; French, William Todd; Hernandez, Rafael; Alley, Earl; Paraschivescu, Maria [Dave C. Swalm School of Chemical Engineering, Mississippi State University, P.O. Box 9595, Mississippi State, MS 39762 (United States)

    2011-01-15

    Microbial conversion of lignocellulosic sugars to triacylglycerols (a biodiesel or renewable diesel feedstock) was investigated using the oleaginous yeast Rhodotorula glutinis (ATCC 15125). In the shake flask experiments, R. glutinis was first grown in a nitrogen-rich medium utilizing an artificial acid hydrolysate of lignocellulosic biomass switchgrass as the sole carbon and energy source. Once the culture had reached the stationary phase, the cells were harvested and transferred to a fresh nitrogen-free media containing artificial acid hydrolysate sugars for lipid accumulation. Analysis of the data collected showed that the yeast were able to grow in the medium containing artificial acid hydrolysate sugars as the carbon and energy source. The net specific Growth rate(s) indicated that the presence of acetic acid and furfural in the artificial acid hydrolysate inhibited the growth of R. glutinis on glucose, but not the growth on xylose. The lipid accumulated in the cells, determined by gravimetrical method, increased from initial 4.3%-39.0% of dry cell mass weight. The major fatty acids of the accumulated lipids were palmitic acid, stearic acid, oleic acid, linoleic acid and {gamma}-linoleic acid. These results indicate that it is feasible to convert the sugars in acid hydrolysate of lignocellulosic biomass to triacylglycerols using R. glutinis. (author)

  7. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and molecular

  8. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  9. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?*CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  10. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  11. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.

    Zhang, Yi; He, Meilin; Zou, Shanmei; Fei, Cong; Yan, Yongquan; Zheng, Shiyan; Rajper, Aftab Ahmed; Wang, Changhai

    2016-05-01

    To improve the biomass yield and lipid productivity, two desert microalgae, Desmodesmus sp. S81 and G41 were induced mutagenesis by Ethylmethane sulfonate (EMS), and obtained two potential mutants, Desmodesmus sp. S5 and G3 from the mutagenic clones for their greatly promoted biomass and lipid production. The results showed that the biomass yield, lipid content and lipid productivity of the mutant strains S5 and G3 were 778.10mg·L(-1), 48.41% and 19.83mg·L(-1)·d(-1), 739.52mg·L(-1), 46.01%, and 17.92mg·L(-1)·d(-1), respectively, which presented the increment of 45.50%, 8.00% and 74.24%, 20.67%, 10.35% and 55.77% than those of S81 and G41. Comparing with the wild strains, the mutants showed reduced PUFAs and glycol lipids, elevated MUFAs and neutral lipids contents, which were appropriate for biodiesel production. PMID:26894567

  12. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats. PMID:27418998

  13. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

    Upasana Khairnar

    2016-01-01

    Full Text Available Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200–250 g were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o., ascorbic acid (40 mg/kg/day, p.o., and combination of protocatechuic acid (20 mg/kg/day, p.o. and ascorbic acid (20 mg/kg/day, p.o. followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content, tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content, and membrane bound phosphatase (ATPase compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  14. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis

    Mello, Suzana B V; Tavares, Elaine R; Maria Carolina Guido; Eloisa Bonfá; Raul C. Maranhão

    2016-01-01

    OBJECTIVE: To test the hypothesis that intravenous use of methotrexate associated with lipid nanoemulsions can achieve superior anti-inflammatory effects in the joints of rabbits with antigen-induced arthritis compared with commercial methotrexate. METHODS: Arthritis was induced in New Zealand rabbits sensitized with methylated bovine serum albumin and subsequently intra-articularly injected with the antigen. A nanoemulsion of methotrexate labeled with 3H-cholesteryl ether (4 mg/kg methotrex...

  15. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury

    Whidbey, Christopher; Vornhagen, Jay; Gendrin, Claire; Boldenow, Erica; Samson, Jenny Mae; Doering, Kenji; Ngo, Lisa; Ezekwe, Ejiofor A D; Gundlach, Jens H.; Elovitz, Michal A.; Liggitt, Denny; Duncan, Joseph A.; Adams Waldorf, Kristina M.; Rajagopal, Lakshmi

    2015-01-01

    Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects i...

  16. Allium sativum aqueous extract prevents potassium dichromate-induced nephrotoxicity and lipid oxidation in rats

    Sergio L. Becerra-Torres; César Soria-Fregozo; Fernando Jaramillo-Juárez; José L. Moreno-Hernández-Duque

    2014-01-01

    Context: The potassium dichromate (K2Cr2O7) induces nephrotoxicity by oxidative stress mechanisms. Aims: To study the potential protection of an aqueous extract of Allium sativum against the K2Cr2O7-induced nephrotoxicity and lipid oxidation in rats. Methods: Twenty four hours after treatment, biomarkers such as proteinuria, creatinine clearance, malondialdehyde production, specific enzyme activity of gamma glutamyl transpeptidase and alanine aminopeptidase, and renal clearance of para-...

  17. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. E...

  18. Fatty Acid Binding Protein 4 Deficiency Protects against Oxygen-Induced Retinopathy in Mice

    Magali Saint-Geniez; Elisa Ghelfi; Xiaoliang Liang; Chenwei Yu; Carrie Spencer; Stephanie Abend; Gokhan Hotamisligil; Sule Cataltepe

    2014-01-01

    Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angioge...

  19. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent. PMID:26381667

  20. Inhibitory effect of some tropical green leafy vegetables on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced lipid peroxidation in rats’ brain

    Oboh, Ganiyu; Akinyemi, Ayodele Jacobson; Ademiluyi, Adedayo Oluwaseun; Bello, Fatai Olumide

    2011-01-01

    This study sought to investigate the inhibitory effect of some commonly consumed Nigerian green leafy vegetables (raw and blanched) on acetylcholinesterase and butyrylcholinesterase (key enzyme linked to Alzheimer’s disease) activities and some pro-oxidants (FeSO4, Sodium nitroprusside and Quinolinic acid) induced lipid peroxidation in rat brain in vitro. Three commonly consumed green leafy vegetables in Nigeria [Amarantus cruentus (Arowojeja), Struchium sparganophora (Ewuro-odo) and Telfairi...

  1. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  2. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids

    Isabel Baeza

    2012-12-01

    Full Text Available Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.

  3. Myocardial Lipid Profiling During Time Course of High Fat Diet and its Relationship to the Expression of Fatty Acid Transporters

    Ewa Harasim

    2015-09-01

    Full Text Available Background/Aims: It is well documented that increased fatty acids (FA supply causes lipid accumulation and insulin resistance in skeletal muscles. Whether the same mechanism is present in the heart is still unclear. Therefore, the goal of our study was to determine the content of specific myocardial lipid fractions during feeding rats a high fat diet (HFD for 5 weeks. Moreover, the relation between changes in myocardial lipid content, whole body insulin resistance and the expression of fatty acid transporters in each week of HFD was established. Methods: Gas liquid chromatography and high performance liquid chromatography were used to determine the content of lipid fractions in the left ventricle. Expression of selected proteins was estimated by Western blot technique. All measurements were made after each week of HFD. Results: As expected, lipid profile in myocardium was altered by HFD in different weeks of the study with the most intense changes in triacylglycerols, long chain fatty acid-CoA and ceramide. Furthermore, there was a significant elevation of plasmalemmal (the 4th and the 5th week and mitochondrial expression (from the 3rd to the 5th week of fatty acid translocase. Conclusion: High fat diet affects myocardial lipid profile in each week of its duration and causes alternations in FA metabolism in cardiomyocytes.

  4. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  5. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi.

    Benyagoub, M; Willemot, C; Bélanger, R R

    1996-10-01

    Antifungal fatty acids produced by the biocontrol fungus Sporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi, Cladosporium cucumerinum, Fusarium oxysporum, and S. flocculosa, whose growth was decreased by 51, 33, and 5%, respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics from S. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture of S. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18:1 > 18:2 > 18:3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi as demonstrated by assessment of fluoresence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted to S. flocculosa. PMID:8898307

  6. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.

    Lina Lindberg

    Full Text Available When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D and Zygosaccharomyces bailii (CBS7555 cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L(-1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L(-1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP2C 2.2× and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP2C 2.7×, when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to

  7. Comparison of fatty acid composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae)

    ABBAS KHANI; SAEID MOHARRAMIPOUR; MOHSEN BARZEGAR; HOSSEIN NADERI-MANESH

    2007-01-01

    Seasonal changes in the fatty acid composition of the total lipid extracted from the whole body of Cydia pomonella L. larvae were determined by gas chromatography. The six most abundant fatty acids in both non-diapause and diapause larvae of codling moth were oleic (35%-39%), palmitic (23%-33%), linoleic (16%-30%), palmitoleic (5%-10%),stearic (1.5%-3.0%) and linolenic acids (1.0%-2.5%). This represents a typical complement of Lepidopteran fatty acids. The fatty acid composition of total lipid of C. pomonella larvae was related to diapause. In similarity to most other reports, the proportion of unsaturated fatty acids increased in diapause initiation state. The total lipid of diapause larvae contained more linoleic acid (25.8% vs. 16.1%) and less palmitic acid (24.7% vs. 33.4%),than that ofnon-diapause larvae. The weight percentage of linoleic acid (C18:2) increased from 16% to 26% from early-August through early-September during transition to diapause,while palmitic acid (C16:0) decreased from 33% to 25% at the same time. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (UFA/SFA) from 1.72 in non-diapause larvae to 2.63 in diapause larvae.

  8. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro

    Canfrán-Duque, Alberto; Pastor, Oscar; Reina, Manuel; Lerma, Milagros; Cruz-Jentoft, Alfonso J.

    2015-01-01

    Scope First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation. Methods HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation. Results Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics. Conclusion Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials. PMID:26517556

  9. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  10. Melittin-Induced Bilayer Leakage Depends on Lipid Material Properties: Evidence for Toroidal Pores

    Allende, Daniel; Simon, S. A.; McIntosh, Thomas J.

    2004-01-01

    The membrane-lytic peptide melittin has previously been shown to form pores in lipid bilayers that have been described in terms of two different structural models. In the “barrel stave” model the bilayer remains more or less flat, with the peptides penetrating across the bilayer hydrocarbon region and aggregating to form a pore, whereas in the “toroidal pore” melittin induces defects in the bilayer such that the bilayer bends sharply inward to form a pore lined by both peptides and lipid head...

  11. High Oxidative Capacity Due to Chronic Exercise Training Attenuates Lipid-Induced Insulin Resistance

    Phielix, Esther; Meex, Ruth; Ouwens, D Margriet; Sparks, Lauren; Hoeks, Joris; Schaart, Gert; Moonen-Kornips, Esther; Hesselink, Matthijs K. C.; Schrauwen, Patrick

    2012-01-01

    Fat accumulation in skeletal muscle combined with low mitochondrial oxidative capacity is associated with insulin resistance (IR). Endurance-trained athletes, characterized by a high oxidative capacity, have elevated intramyocellular lipids, yet are highly insulin sensitive. We tested the hypothesis that a high oxidative capacity could attenuate lipid-induced IR. Nine endurance-trained (age = 23.4 ± 0.9 years; BMI = 21.2 ± 0.6 kg/m2) and 10 untrained subjects (age = 21.9 ± 0.9 years; BMI = 22...

  12. Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4.

    Sinninghe Damsté, Jaap S; Rijpstra, W Irene C; Hopmans, Ellen C; Foesel, Bärbel U; Wüst, Pia K; Overmann, Jörg; Tank, Marcus; Bryant, Donald A; Dunfield, Peter F; Houghton, Karen; Stott, Matthew B

    2014-09-01

    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting "Candidatus Chloracidobacterium thermophilum") contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile "Ca. Chloracidobacterium thermophilum." Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range. PMID:24928878

  13. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    Qu CY

    2015-06-01

    Full Text Available Chun-Ying Qu,1,* Min Zhou,1,* Ying-wei Chen,2 Mei-mei Chen,3 Feng Shen,1 Lei-Ming Xu11Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People’s Republic of China; 3Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU and cisplatin (CDDP. The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity.Methods: First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model.Results: HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo.Conclusion: This work reveals that HA-coated NLC could be used as a novel carrier to codeliver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.Keywords: gastric cancer, nanostructured lipid carriers, hyaluronic acid, combination chemotherapy, lipid prodrug

  14. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide

    Ho, Yuan-Soon [School of Medical Technology, Taipei Medical University, Taipei (Taiwan); Liou, Hung-Bin; Lin, Yu-Ping; Guo, How-Ran; Ho, Sheng-Yow; Lee, Ching-Chang; Wang, Ying-Jan [Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan (Taiwan); Lin, Jen-Kun; Pan, Min-Hsiung [Institute of Biochemistry, National Taiwan University, Medical College, Taipei (Taiwan); Jeng, Jiiang-Huei [School of Dentistry, National Taiwan University and Hospital, Medical College, Taipei (Taiwan)

    2002-08-01

    Nitric oxide (NO) is an environmental pollutant found in smog and cigarette smoke. Recently, NO has been discovered to act as a molecular messenger, mediating various physiological functions. However, when an excess of NO is present, cytotoxic and mutagenic effects can also be induced. The reaction of NO with superoxide results in the formation of peroxynitrite (ONOO{sup -}), which decomposes into the hydroxyl radical and nitrogen dioxide. Both of them are potent oxidant species that may initiate and propagate lipid peroxidation. In the present study, we examined the effects of NO and ONOO{sup -} on the induction of lipid peroxidation and cell death mechanisms in rats and in A549 pulmonary epithelial cells. The results showed that ONOO{sup -} is able to induce lipid peroxidation in pulmonary epithelial cells in a dose-dependent manner. 8-Epi-prostaglandin F{sub 2{alpha}} can serve as a good biomarker of lipid peroxidation both in vitro and in vivo. Postmitotic apoptosis was found in A549 cells exposed to NO, whereas ONOO{sup -} induced cell death more characteristic of necrosis than apoptosis. Apoptosis that occurred in cells may be related to the dysfunction of mitochondria, the release of cytochrome c into cytosol, and the activation of caspase-9. The relationship between caspase activation and the cleavage of other death substrates during postmitotic apoptosis in A549 cells needs further investigation. (orig.)

  15. Mechanotransduction-Induced Lipid Production System with High Robustness and Controllability for Microalgae

    Cho, Myung Kwon; Shin, Hwa Sung

    2016-01-01

    Microalgae lipids are a promising energy source, but current biochemical methods of lipid-inductions such as nitrogen deprivation have low process robustness and controllability. Recently, use of mechanotransduction based membrane distortion by applying compression stress in a 2D-microsystem was suggested as a way to overcome these limitations of biochemical induction. However, reproduction in large numbers of cells without cell death has been difficult to overcome because compression for direct membrane distortion reduces culture volume and leads to cell death due to nutrient deprivation. In this study, a mechanotransduction-induced lipid production (MDLP) system that redirects elastic microbeads to induce membrane distortion of microalgae with alleviating cell death was developed. This system resulted in accumulation of lipid in as little as 4 hr. Once compressed, porous microbeads absorb media and swell simultaneously while homogeneously inducing compression stress of microalgae. The absorbed media within beads could be supplied to adjacent cells and could minimize cell death from nutrient deficiency. All mechanotransduction was confirmed by measuring upregulation of calcium influx and Mat3 genes. The microbeads ensured robustness and controllability in repeated compression/de-compression processes. Overall, the MDLP system has potential for use as a fundamental biodiesel process that requires robustness and controllability. PMID:27609701

  16. Docosapentaenoic acid derived metabolites and mediators - The new world of lipid mediator medicine in a nutshell.

    Weylandt, Karsten-H

    2016-08-15

    Recent years have seen the description and elucidation of a new class of anti-inflammatory and pro-resolving lipid mediators. The arachidonic acid (AA)-derived compounds in this class are called lipoxins and have been described in great detail since their discovery thirty years ago. The new players are mediators derived from fish oil omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), called resolvins, protectins and maresins. Taken together, these mediators are also called specialized pro-resolution mediators (SPMs). As compared to the AA/EPA/DHA-derived compounds, research regarding mediators formed from the n-3 and n-6 docosapentaenoic acids (DPAn-3 and DPAn-6) is sparse. However, mono- di- and trihydroxy derivates of the DPAs have anti-inflammatory properties as well, even though mechanisms of their anti-inflammatory action have not been fully elucidated. This review aims to summarize current knowledge regarding the DPA-derived SPMs and their actions. PMID:26546723

  17. Incorporation of conjugated linoleic acid and vaccenic acid into lipids from rat tissues and plasma

    Lund, Pia; Sejrsen, Kristen; Straarup, Ellen Marie

    2006-01-01

    The objective of this study was to determine the incorporation of conjugated linoleic acid (CLA) into triacylglycerols (TAG) and phospholipids (PL) of tissues and plasma, and to interpret the role of dietary-derived vaccenic acid (VA) in increasing the tissue content of CLA (c9,t11) and the...... influence on the fatty acid profile. We fed five groups of rats semi-purified diets with varying levels of CLA and VA: control butter with low CLA (c9,t11) and VA; control butter added 5% CLA (c9,t11); control butter added 5% Tonalin [equal amount of CLA (c9,t11) and CLA (t10,c12)]; control butter added 5...

  18. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury

    Whidbey, Christopher; Vornhagen, Jay; Gendrin, Claire; Boldenow, Erica; Samson, Jenny Mae; Doering, Kenji; Ngo, Lisa; Ezekwe, Ejiofor A D; Gundlach, Jens H; Elovitz, Michal A; Liggitt, Denny; Duncan, Joseph A; Adams Waldorf, Kristina M; Rajagopal, Lakshmi

    2015-01-01

    Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K+ efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth. PMID:25750210

  19. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury.

    Whidbey, Christopher; Vornhagen, Jay; Gendrin, Claire; Boldenow, Erica; Samson, Jenny Mae; Doering, Kenji; Ngo, Lisa; Ezekwe, Ejiofor A D; Gundlach, Jens H; Elovitz, Michal A; Liggitt, Denny; Duncan, Joseph A; Adams Waldorf, Kristina M; Rajagopal, Lakshmi

    2015-04-01

    Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K(+) efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth. PMID:25750210

  20. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N;

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the...... ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied...

  1. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  2. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling*

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-01-01

    Background: A multiprotein complex designated as lipolysome degrades intracellular triglycerides and contains proteins such as adipose triglyceride lipase (Atgl) and its co-activator Cgi-58. Results: Cgi-58 interacts with fatty acid-binding proteins (Fabps), which impact Atgl-mediated lipolysis and lipid signaling. Conclusion: Fabps modulate Atgl-mediated TG hydrolysis and link lipolysis with intracellular lipid ligand shuttling. Significance: Novel mechanistic insights into the regulation of...

  3. Differential Effects of Dietary Lipids on Growth Performance, Digestibility, Fatty Acid Composition and Histology of African Catfish (Heterobranchus longifilis) Fingerlings

    Theophilus Olayiwola Babalola; David Friday Apata; James Sunday Omotosho; Musibau Ayinde Adebayo

    2011-01-01

    The present study was performed to investigate the influence of fish oil (FO), two terrestrial animal fats (lard (PL) and poultry oil (CF)) and three vegetable oils (palm kernel (PKO), sheabutter (SBO) and sunflower (SFO)) as the dietary lipid sources on the growth performance, nutrient digestibility, fatty acid (FA) composition and histology of Hetero-branchus longifilis. Six isonitrogenous and isoenergetic diets containing 6% of added fat from the lipid sources were formulated and used. Eac...

  4. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  5. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers.

    Sparr, Emma; Engel, Maarten F M; Sakharov, Dmitri V; Sprong, Mariette; Jacobs, Jet; de Kruijff, Ben; Höppener, Jo W M; Killian, J Antoinette

    2004-11-01

    Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins. PMID:15527771

  6. Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions.

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Agafonov, Alexey V; Penkov, Nikita V; Samartsev, Victor N; Lemasters, John J; Mironova, Galina D

    2015-10-01

    The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 μM) and the anionic surfactant sodium dodecylsulfate (10-50 μM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening. PMID:26014488

  7. Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa

    Christian Alexander

    2013-02-01

    Full Text Available There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4/myeloid differentiation factor 2 (MD-2 receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli -type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68% than to the murine (62%, 58% ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564 acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed

  8. Effects of Lagenaria Sicessaria Fruit Juice on Lipid Profile and Glycoprotein Contents in Cardiotoxicity Induced by Isoproterenol in Rats

    Upaganlawar, Aman; Balaraman, R.

    2012-01-01

    This study investigated antihyperlipidemic effects of Lagenaria siceraria fruit juice (LSFJ) in isoproterenol (ISO)induced cardiotoxicity in rats. Rats treated with ISO (200 mg/kg, s.c.) showed a significant increase in the levels of triglycerides, cholesterol, and free fatty acids, in both serum and heart tissue. An increase in the levels of phospholipids, low-density lipoprotein, and very low-density lipoprotein-cholesterol, and decrease in high-density lipoprotein-cholesterol in serum and phospholipid levels in the heart were observed. ISO intoxicated rats also showed a significant decrease in the activities of lecithin: cholesterol acyl transferase, whereas lipoprotein lipase was found to be increased. Administration of LSFJ (400 mg/kg, p.o.) for 30 consecutive days and challenged with ISO on day 29th and 30th significantly attenuated these alterations and restored the levels of serum and heart lipids along with lipid metabolizing enzymes. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the protective effect of LSFJ during ISO-induced cardiotoxicity in rats. PMID:22736897

  9. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Buttet, Marjorie; Poirier, Hélène; Traynard, Véronique; Gaire, Kévin; Tran, Thi Thu Trang; Sundaresan, Sinju; Besnard, Philippe; Abumrad, Nada A; Niot, Isabelle

    2016-01-01

    The metabolic syndrome (MetS) greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL) in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD). By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP) and blood clearance (ApoC2). These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG), while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the reported

  10. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  11. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes.

    Wenz, Jorge J; Barrantes, Francisco J

    2005-01-11

    Purified nicotinic acetylcholine receptor (AChR) protein was reconstituted into synthetic lipid membranes having known effects on receptor function in the presence and absence of cholesterol (Chol). The phase behavior of a lipid system (DPPC/DOPC) possessing a known lipid phase profile and favoring nonfunctional, desensitized AChR was compared with that of a lipid system (POPA/POPC) containing the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the AChR. Fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and AChR intrinsic fluorescence by a nitroxide spin-labeled phospholipid showed that the AChR diminishes the degree of DPH quenching and promotes DPPC lateral segregation into an ordered lipid domain, an effect that was potentiated by Chol. Fluorescence anisotropy of the probe DPH increased in the presence of AChR or Chol and also made apparent shifts to higher values in the transition temperature of the lipid system in the presence of Chol and/or AChR. The values were highest when both Chol and AChR were present, further reinforcing the view that their effect on lipid segregation is additive. These results can be accounted for by the increase in the size of quencher-free, ordered lipid domains induced by AChR and/or Chol. Pyrene phosphatidylcholine (PyPC) excimer (E) formation was strongly reduced owing to the restricted diffusion of the probe induced by the AChR protein. The analysis of Forster energy transfer (FRET) from the protein to DPH further indicates that AChR partitions preferentially into these ordered lipid microdomains, enriched in saturated lipid (DPPC or POPA), which segregate from liquid phase-enriched DOPC or POPC domains. Taken together, the results suggest that the AChR organizes its immediate microenvironment in the form of microdomains with higher lateral packing density and rigidity. The relative size of such microdomains depends not only on the phospholipid polar headgroup

  12. Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae.

    Leber, Christopher; Polson, Brian; Fernandez-Moya, Ruben; Da Silva, Nancy A

    2015-03-01

    The production of fuels and chemicals from biorenewable resources is important to alleviate the environmental concerns, costs, and foreign dependency associated with the use of petroleum feedstock. Fatty acids are attractive biomolecules due to the flexibility of their iterative biosynthetic pathway, high energy content, and suitability for conversion into other secondary chemicals. Free fatty acids (FFAs) that can be secreted from the cell are particularly appealing due to their lower harvest costs and straightforward conversion into a broad range of biofuel and biochemical products. Saccharomyces cerevisiae was engineered to overproduce extracellular FFAs by targeting three native intracellular processes. β-oxidation was disrupted by gene knockouts in FAA2, PXA1 and POX1, increasing intracellular fatty acids levels up to 55%. Disruptions in the acyl-CoA synthetase genes FAA1, FAA4 and FAT1 allowed the extracellular detection of free fatty acids up to 490mg/L. Combining these two disrupted pathways, a sextuple mutant (Δfaa1 Δfaa4 Δfat1 Δfaa2 Δpxa1 Δpox1) was able to produce 1.3g/L extracellular free fatty acids. Further diversion of carbon flux into neutral lipid droplet formation was investigated by the overexpression of DGA1 or ARE1 and by the co-overexpression of a compatible lipase, TGL1, TGL3 or TGL5. The sextuple mutant overexpressing the diacylglycerol acyltransferase, DGA1, and the triacylglycerol lipase, TGL3, yielded 2.2g/L extracellular free fatty acids. This novel combination of pathway interventions led to 4.2-fold higher extracellular free fatty acid levels than previously reported for S. cerevisiae. PMID:25461829

  13. Gramicidin Induce Local Non-Uniform Distribution of Lipids in Multi-Component Membrane Domains

    Mao, Yu; Hussain, Fazle; Huang, Juyang

    2015-03-01

    In lipid membranes, gramicidin form trans-membrane channels that are specific for monovalent cations. We performed Molecular Dynamics simulations of gramicidin in coexisting liquid-ordered (Lo) and liquid disordered (Ld) domains using GROMACS. The lipid compositions of Lo and Ld domains are DOPC/DSPC/Cholesterol = 6.5/52.6/40.9 and 74.4/10.6/15, respectively. In the Ld domain, the membrane thickness matches the hydrophobic length of gramicidin quite well, and water molecules can diffuse through the gramicidin channels. However, in the Lo lipid domain, the bilayer thickness is far greater than the hydrophobic length of gramicidin and majority of gramicidin do not form conducting channel. The simulation result explained our experimental finding that gramicidin partition favorably into the Ld domains. The calculated radial distribution functions of lipids indicate that gramicidin recruit a layer of short DOPC surrounding each protein and keep cholesterol and taller DSPC away from the protein-bilayer interface. Our result indicates that membrane proteins are capable of inducing non-uniform distributions of lipids and creating a local bilayer environment, which favors protein function.

  14. STUDY OF LIPID PROFILE TRENDS IN WOMEN OF PREGNANCY INDUCED HYPERTENSION CASES IN A RURAL SETUP

    Amandeep Singh

    2013-03-01

    Full Text Available ABSTRACT: OBJECTIVE: Elevated plasma lipid levels are believed to be prob able cause of endothelial cell dysfunction. We planned to measure the changes in the lipid levels in patients of PIH (pregnancy induced hypertension and compare it wi th that of normotensive pregnant females. MATERIALS & METHODS: We studied 804 pregnant women. 624 patients studied were of PIH and 180 patients were healthy pregnant wo men. Lipid levels were estimated in these pregnant women. RESULTS: We found a significant rise in the serum lipid level s in the PIH patients group as compared to normotensive pregnan t females, which were highly significant (P0.05 and total cholesterol. Amongst the different lipoprotein ratios, TC: HDL, LDL: HDL, TG: HDL, and HDL: VLDL ratios were found highly significant (p<0.001 in PIH patients group. CONCLUSION: It is essential that blood lipid concentrations be estimated in pregnant women during antenatal care since it could be useful in early diagnosis and prevention of obstetric complicat ions such as PIH

  15. Effect of Consumption of Coleus tuberosus on the Lipid Profile of Alloxan-induced Diabetic Rats

    Mutiara Nugraheni

    2014-02-01

    Full Text Available Coleus tuberosus is a minor vegetable belonging to the Lamiaceae family. C. tuberosus and processed products have been evaluated on resistant starch content and effect of consumption of C. tuberosus and processed products on the lipid profile has been studied in rats with diabetes mellitus. Resistant starch was analyzed using the megazyme method. Analysis of lipid profile was performed in experimental alloxan-induced animals. Such lipid profile as Total Cholesterol (TC, Low Density Lipoprotein (LDL and High Density Lipoprotein (HDL are determined enzymatically by the Cholesterol Oxidase-oxidase-Phenol Aminophenazone (CHOD-PAP method. Triglyceride levels are determined by the enzymatic Glycerol-3-Phosphate Oxidase-Phenol+Aminophenazone (GPO-PAP method. The results showed that the treatment process can increase the levels of resistant starch. C. tuberosus consumption and processed products can lower the lipid profile of TC, TG and LDL and increase HDL in experimental animals. Resistant starch contained in C. tuberosus and processed products is one of the factors that affect the lipid profile of experimental animals with diabetes mellitus.

  16. The influence of lipid composition on glycophorin-induced bilayer permeability

    Gier, J.; Hoogevest, P. van; de Kruijff, B.; Du Maine, A.P.M.

    1984-01-01

    (1) Glycophorin was incorporated into large unilamellar vesicles and the bilayer permeability was measured as a function of the lipid composition. (2) In agreement with previous data (Van der Steen, A.T.M., De Kruijff, B. and De Gier, J. (1982) Biochim. Biophys. Acta 691, 13–23) it was found that glycophorin greatly increased the bilayer permeability of DOPC vesicles. This effect was observed for a large variety of phosphatidylcholines, differing in their fatty acid composition and homogeneit...

  17. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa. PMID:17719569

  18. Effects of paracetamol and propacetamol on gastric mucosal damage and gastric lipid peroxidation caused by acetylsalicylic acid (ASA) in rats.

    Galunska, B; Marazova, K; Tankova, T; Popov, A; Frangov, P; Krushkov, I; Di Massa, A

    2002-08-01

    We have studied the effect of paracetamol and its pro-drug propacetamol on gastric mucosal damage induced by acetylsalicylic acid (ASA) and its possible relation to changes in gastric lipid peroxidation status in rats. Paracetamol or propacetamol were administered intragastrically 1h before ASA (300 mg kg(-1)) in the following equivalent doses: 62.5, 125.0 and 250.0 mg kg(-1) or 125.0, 250.0 and 500.0 mg kg(-1), respectively. The effects of the tested agents were compared to that of prostaglandin E2 (PGE2) 15, 30 and 60 mg kg(-1). Gastric ulcer formation was estimated morphometrically 4h after ASA administration. Malondialdehyde (MDA), glutathione (reduced, GSH, and oxidized, GSSG) and uric acid (UA) were determined in gastric mucosa and blood plasma and used as biochemical markers of the oxidative status. The results showed that paracetamol (250, 125, 62.5 mg kg(-1)) and propacetamol (500, 250, 125 mg kg(-1)) diminished the area of ASA-induced gastric lesions. The effect of propacetamol was more pronounced than that of paracetamol and similar to that of PGE2. Gastric MDA increased 3-fold in the ASA-group. The tested agents reduced it by a range of 30-70%. In all pretreated groups gastric glutathione and UA levels were found higher than that of control group and lower than that of ASA-group. Paracetamol and propacetamol, as well as PGE2, diminished the lipid peroxidation in plasma to a lesser extent than in gastric mucosa, but maintained elevated levels of the selective plasma antioxidant UA. These results show that the ASA-induced gastric mucosal damage is accompanied by the development of oxidative stress, evidenced by the accumulation of MDA, and concomitant initial activation of cell antioxidant defences. As paracetamol and propacetamol tend to decrease gastric lesions caused by ASA and alter gastric mucosal MDA, glutathione and UA values in a favorable manner, it could be suggested that their effects on the gastric mucosa could be related to interference with

  19. Keratinocyte lipid fluidity under the influence of cholesterols, hydrocortisones, "active lipid", tocopherol and retinoic acid--a fluorescence polarization study with regard to physiological and pathophysiological epidermopoiesis and its therapeutic accessibility.

    Bonnekoh, B; Daefler, S; Krueger, G R; Mahrle, G

    1991-01-01

    Lipid fluidity of freshly isolated human (H) and guinea pig (GP) keratinocytes (K) was determined as the reciprocal of diphenylhexatriene (DPH) fluorescence polarization (P-value), the temperature being kept at 25 degrees C and cell density standardized to 550,000 per ml (level of statistical significance a less than 0.05). An experimental model involving short-term incubations (2.5 hours, 37 degrees C) of GPK in 1% ethanolic lipid solutions (15 mg lipid agent per ml ethanol) was set up to investigate accumulation a) of cholesterol due to terminal differentiation of keratinocytes and b) of cholesteryl sulfate due to the lack of steroid sulfatase activity in recessive X-linked ichthyosis (RXLI). In comparison to the control including 1% ethanol (P = 0.291 +/- 0.004), significant rigidifying effects were demonstrated for cholesteryl hemisuccinate (0.331 +/- 0.005) and cholesteryl sulfate (0.310 +/- 0.002). Correspondingly, a significant increase of the P-value was also induced by cholesteryl hemisuccinate in HK. Rigidification of GPK by a preincubation with cholesteryl sulfate (P = 0.306 +/- 0.002) could be antagonized by a subsequent short-term incubation with "active lipid (mixture 721)" (0.285 +/- 0.003, a less than 0.05) which may be relevant for future therapeutic strategies in RXLI. Other steran molecules such as hydrocortisone-21-hemisuccinate or hydrocortisone acetate did not affect lipid fluidity. With regard to the therapeutic potency of retinoids in epidermopoietic disorders, incubations of HK with all-trans-retinoic-acid were compared to those with also lipophilic vitamin E, i.e. d-alpha-tocopherol, for 2.5 hours at 37 degrees C using 1% DMSO as a solvent.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1893078

  20. Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles

    Sansone, Anna; Tolika, Evanthia; Louka, Maria; Sunda, Valentina; Deplano, Simone; Melchiorre, Michele; Anagnostopoulos, Dimitrios; Chatgilialoglu, Chryssostomos; Formisano, Cesare; Di Micco, Rosa; Faraone Mennella, Maria Rosaria; Ferreri, Carla

    2016-01-01

    Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the

  1. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    The lipid membrane partitioning of lysolipids (lysoPC) and fatty acids (FA) into unilamellar vesicles composed of saturated DC$-16$/PC phospholipids has been determined by means of isothermal titration calorimetry (ITC). The calorimetric titrations were performed at low temperatures in the ordere...... on, for example, the lipid membrane permeability and the activity of membrane associated enzymes such as phospholipase A$-2$/.......The lipid membrane partitioning of lysolipids (lysoPC) and fatty acids (FA) into unilamellar vesicles composed of saturated DC$-16$/PC phospholipids has been determined by means of isothermal titration calorimetry (ITC). The calorimetric titrations were performed at low temperatures in the ordered...... gel phase and at high temperatures in the disordered fluid phase of the phospholipid membrane vesicles. The long saturated acyl chains of the lysolipids and fatty acids varied from 10 to 16 carbon atoms and all titrations were performed below the critical micellar concentrations (cmc) of the...

  2. Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function

    Watkins, E. B.; Miller, C.E.; Majewski, J.; Kuhl, T L

    2011-01-01

    Biological membranes are complex, self-organized structures that define boundaries and compartmentalize space in living matter. Composed of a wide variety of lipid and protein molecules, these responsive surfaces mediate transmembrane signaling and material transport within the cell and with its environment. It is well known that lipid membrane properties change as a function of composition and phase state, and that protein-lipid interactions can induce changes in the membrane’s properties an...

  3. Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan.

    Takenaga, Fumio; Matsuyama, Kaori; Abe, Shin; Torii, Yasuyoshi; Itoh, Shingo

    2008-01-01

    The lipid and fatty acid composition of the mesocarp and seed of avocado fruit grown and harvested in Japan, which is located at the northern range of the avacado, was investigated and compared to an imported avocado purchased commercially. The potential of the avocado mesocarp as an agricultural product in Japan was also explored. Total lipids (TL) accounted for approximately 20% of the mesocarp. Further analysis showed that the neutral lipid (NL) fraction accounted for at least 95% of the TL, and almost 90% of NL was triacylglycerol. Monoenoic acids accounted for at least 65% of the total fatty acids, and oleic acid, which is regarded as an especially important functional component of avacado accounted for approximately 50% of the monounsaturated fatty acids. A comparison of the Japanese avocado cultivars and an imported avocado cultivar in the present study revealed no significant differences in the lipid and fatty acid compositions. Therefore, production of avocado fruit, which is rich in various nutritional components, is expected to be increased on a larger number of farms in Japan in the future. It is believed to be necessary to carry out further verification, such as the establishment of a cultivation technique adoptable to Japan, examination of optimal soil and land features, and cultivar selection. PMID:18838831

  4. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  5. Ethanolic extract of Nigella sativa protects Fe(II) induced lipid peroxidation in rat's brain, kidney and liver homogenates.

    Hassan, Waseem; Noreen, Hamsa; Khalil, ShafqatUllah; Hussain, Arshad; Rehman, Shakilla; Sajjad, Shagufta; Rahman, Ataur; da Rocha, Joao B T

    2016-01-01

    The study describes the effect of ethanolic extract of Nigella sativa against Fe(II) induced lipid peroxidation. Basal and Fe(II) induced thiobarbituric acid reactive species (TBARS) production was significantly inhibited by the ethanolic extract of Nigella sativa at 25-200 μg/ml. Our data revealed that the extract has high DPPH radical scavenging activity at highest tested concentrations. The extract significantly chelated Fe(II) and scavenged hydroxyl (OH) radical at 25-200μg/ml concentration. The nutritional analysis was performed and carbohydrate, fats, fiber, protein, moisture and ash content were measured in the studied extract. The phytochemical analysis confirmed the presence of alkaloid, carbohydrate & sugar, glycosides, phenolic compounds, flavonoids, protein and amino acid, phytosterols, tannins, gum and mucilage. The extract also showed significant antimicrobial activities against 10 bacterial strains i.e. Salmonella typhi, Bacillus subtilis, Bacillus cereus, Klebsiella pneumonia, Escheria coli, Xanthomonas, Salmonella heidelberg, Staphylococcus aureus, Clostridium and Escheria coli (human) and 5 fungal strains i.e. Aspergillus niger, Entomola, Aspergillus flavus, Alternaria alternata and Penicillium. This study confirms the potential antioxidant and antimicrobial activities of ethanolic extract of Nigella sativa which can be considered not only as a diet supplement but can be used against a variety of free radical induced damage diseases. PMID:26826815

  6. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    Jie-wei Wang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  7. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation. PMID:27283678

  8. Milk lipids

    Milk fat conveys a number of desirable qualities to food, and various lipid components contribute to human nutrition and health. Over 96% of milk lipids consist of triacylglycerols, which contain a variety of fatty acids. Di- and monoacylglycerols, free fatty acids, sterols, and phospho-, glyco-,...

  9. Parenteral lipids and partial enteral nutrition affect hepatic lipid composition but have limited short term effects on formula-induced necrotizing enterocolitis in preterm piglets

    Vegge, Andreas; Thymann, Thomas; Lauritzen, Lotte;

    2015-01-01

    Rapid transition from total parenteral nutrition (TPN) to enteral feeding is a risk factor for necrotizing enterocolitis (NEC) in preterm infants. We hypothesized that partial enteral nutrition with colostrum, increased proportion of n-3 polyunsaturated fatty acids (PUFA), or exclusion of lipid i...

  10. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  11. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties. PMID:23648407

  12. Evaluation of protective effects of water extract of Spirulina platensis (blue green algae on cisplatin-induced lipid peroxidation

    Ray S

    2007-01-01

    Full Text Available Attempt has been made to evaluate free radical scavenging activity of water extract of Spirulina platensis on cisplatin-induced lipid peroxidation using some common laboratory markers. In this present study goat liver has been used as lipid source. This in vitro evaluation was done by measuring the malondialdehyde, 4-hydroxy-2-nonenal, reduced glutathione and nitric oxide content of tissue homogenates. The results suggest that cisplatin could induce lipid peroxidation to a significant extent and it was also found that water extract of the algae has the ability to suppress the cisplatin-induced toxicity.

  13. Wrinkling of a spherical lipid interface induced by actomyosin cortex

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex.

  14. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

    Barcelos Oliveira, Jorge Luiz

    2006-09-01

    Full Text Available Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.Medios de cultivo alternativos vienen siendo evaluados para el cultivo de microalgas, entre ellos, están los afluentes industriales y agrícolas, que posibilitan la reciclaje del residuo, bioconvirtiéndose en una biomasa enriquecida bajo el punto de vista nutricional, que puede ser utilizada como complemento alimenticio, para la acuacultura y en varias otras áreas de actuación. El presente trabajo tuvo como objetivo determinar los contenidos de lípidos, composición de ácidos grasos y carotenoides producidos por la microalga Chlorella vulgaris cultivada en solución hidropónica residual, con diferentes diluciones. Los resultados de los contenidos de lípidos totales no presentaron diferencia significativa. Los ácidos grasos predominantes fueron los 16:0, 18:0, 18:1 e 18:3n-6. Para los carotenoides totales, la dilución de la solución hidropónica residual no estimuló la producción de estos pigmentos por la microalga. La utilización de la solución hidrop

  15. Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent inhibition by aspirin.

    Bozza, P T; Payne, J L; Morham, S G; Langenbach, R; Smithies, O; Weller, P F

    1996-01-01

    Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was i...

  16. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka. PMID:27373421

  17. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations

    Dronov S.M.

    2014-01-01

    Dronov S.M. Ultrastructure of rat sciatic nerve at the streptozotocin-induced neuropathy conditions under administration of alpha-lipoic acid preparations. ABSTRACT. Background. Diabetic polyneuropathy is one of the most common long-term complications of diabetes. Hyperglycemias caused by ischemia and peroxidation of lipids are the presumed cause of diabetic neuropathy. Appointment of alpha-lipoic acid can restore the function of peripheral nerves, preventing the development of autonomic a...

  18. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  19. Effects of Glycyrrhizic Acid on Peroxisome Proliferator-Activated Receptor Gamma (PPARγ, Lipoprotein Lipase (LPL, Serum Lipid and HOMA-IR in Rats

    Chia Yoke Yin

    2010-01-01

    Full Text Available Studies on ligand binding potential of glycyrrhizic acid, a potential agonist to PPARγ, displayed encouraging results in amelioration of metabolic syndrome. The regulation of gene cassettes by PPARγ affects glucose homeostasis, lipid, lipoprotein metabolism and adipogenesis. This study was performed to determine the effects of GA on total PPARγ and LPL expression levels, lipid parameters and HOMA-IR. Oral administration of 100 mg/kg GA for 24 hours resulted in an increase in insulin sensitivity with decreases in blood glucose, serum insulin and HOMA-IR. Improvement in serum lipid parameters was also observed with a decrease in triacylglycerol, total cholesterol and LDL-cholesterol and an elevation in HDL-cholesterol. GA administration also resulted in up-regulation of total PPARγ and LPL expression levels in the visceral and subcutaneous adipose tissues, abdominal and quadriceps femoris muscles, as well as liver and kidney, with a significant up-regulation only in the visceral adipose tissue, abdominal and quadriceps femoris muscles. Thus, oral administration of 100 mg/kg GA for 24 hours improved insulin sensitivity and lipid profiles and induced upregulation of total PPARγ and LPL expression levels in all studied tissues.

  20. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning

    Shomonov-Wagner, Limor; Raz, Amiram; Leikin-Frenkel, Alicia

    2015-01-01

    Background Alpha linolenic acid (ALA, 18:3) in maternal diets has been shown to attenuate obesity associated insulin resistance (IR) in adult offspring in mice. The objective in the present study was to detect the early effects of maternal dietary saturated fatty acids (SFA) and their partial substitution with ω-3 ALA, docosa hexenoic acid (DHA,22:6) and eicosapentenoic acid 20:5 (EPA,20:5) on the HOMA index, liver lipids and fatty acid desaturases in the offspring at weaning. Methods 3 month...

  1. Preparation and In Vitro Evaluation of Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carriers

    Yang Chu

    2014-02-01

    Full Text Available Curcumin, a phenolic antioxidant compound derived from the rhizome of the turmeric plant Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this study, a Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carrier (Cur-GA-PEG-NLC was prepared by the film ultrasound method to improve the tumor-targeting ability. The drug content was detected by an UV spectrophotometry method. The encapsulation efficiency of curcumin in the nanostructured lipid carriers (NLCs was determined using a mini-column centrifugation method. The encapsulation efficiency for various Cur-GA-PEG-NLC was within the range of 90.06%–95.31% and particle size was between 123.1 nm and 132.7 nm. An in vitro MTT assay showed that Cur-GA10%-PEG-NLC had significantly high cellular uptake and cytotoxicity against HepG2 cells compared with other groups.

  2. Communication: Activation energy of tension-induced pore formation in lipid membranes

    Karal, Mohammad Abu Sayem; Yamazaki, Masahito

    2015-08-01

    Tension plays a vital role in pore formation in biomembranes, but the mechanism of pore formation remains unclear. We investigated the temperature dependence of the rate constant of constant tension (σ)-induced pore formation in giant unilamellar vesicles of lipid membranes using an experimental method we developed. By analyzing this result, we determined the activation energy (Ua) of tension-induced pore formation as a function of tension. A constant (U0) that does not depend on tension was found to contribute significantly to Ua. Analysis of the activation energy clearly indicated that the dependence of Ua on σ in the classical theory is correct, but that the classical theory of pore formation is not entirely correct due to the presence of U0. We can reasonably consider that U0 is a nucleation free energy to form a hydrophilic pre-pore from a hydrophobic pre-pore or a region with lower lateral lipid density. After obtaining U0, the evolution of a pre-pore follows a classical theory. Our data provide valuable information that help explain the mechanism of tension-induced pore formation in biomembranes and lipid membranes.

  3. Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells.

    Ibbotson, S H; Lambert, C R; Moran, M N; Lynch, M C; Kochevar, I E

    1998-01-01

    Ultraviolet A radiation induces oxidative stress and cell damage. The purpose of this investigation was to examine whether ultraviolet A-induced cell injury was amplified by the presence of a non-ultraviolet A absorbing molecule capable of generating free radicals. Benzoyl peroxide was used as a lipid soluble potential radical-generating agent. Plasma membrane permeability assessed by trypan blue uptake was used to measure cell damage in murine leukemia L1210 cells. Cells were irradiated with a pulsed Nd/YAG laser at 355 nm using 0-160 J per cm2. The ratio of the fluence-response slope in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.3 +/- 2.6. Benzoyl peroxide alone or benzoyl peroxide added after irradiation did not cause increased trypan blue uptake. The ratio of the fluence-response slopes in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.7 +/- 1.4 when cells were irradiated (0-43 J per cm2) with a xenon lamp, filtered to remove wavelengths butylated hydroxytoluene, vitamin E, and trolox, a water-soluble vitamin E derivative. Lipid oxidation, assessed as thiobarbituric acid reactive substances, was significantly increased in samples irradiated with ultraviolet A in the presence of benzoyl peroxide at fluences >34 J per cm2. The increased trypan blue uptake and thiobarbituric acid reactive substances were inhibited by butylated hydroxytoluene. These results suggest that agents not absorbing ultraviolet A radiation may enhance ultraviolet A-initiated oxidative stress in cells. PMID:9424093

  4. Association between Dietary Acid Load and Insulin Resistance: Tehran Lipid and Glucose Study

    Moghadam, Sajjad Khalili; Bahadoran, Zahra; Mirmiran, Parvin; Tohidi, Maryam; Azizi, Fereidoun

    2016-01-01

    In the current study, we investigated the longitudinal association between dietary acid load and the risk of insulin resistance (IR) in the Tehranian adult population. This longitudinal study was conducted on 925 participants, aged 22~80 years old, in the framework of the third (2006~2008) and fourth (2009~2011) phases of the Tehran Lipid and Glucose Study. At baseline, the dietary intake of subjects was assessed using a validated semi-quantitative food frequency questionnaire, and the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores were calculated at baseline. Fasting serum insulin and glucose were measured at baseline and again after a 3-year of follow-up; IR was defined according to optimal cut-off values. Multiple logistic regression models were used to estimate the risk of IR according to the PRAL and NEAP quartile categories. Mean age and body mass index of the participants were 40.3 years old of 26.4 kg/m2, respectively. Mean PRAL and NEAP scores were −11.2 and 35.6 mEq/d, respectively. After adjustment for potential confounders, compared to the lowest quartile of PRAL and NEAP, the highest quartile was accompanied with increased risk of IR [odds ratio (OR)=2.81, 95% confidence interval (CI)=1.32~5.97 and OR=2.18, 95% CI=1.03 ~4.61, respectively]. Our findings suggest that higher acidic dietary acid-base load, defined by higher PRAL and NEAP scores, may be a risk factor for the development of IR and related metabolic disorders. PMID:27390726

  5. Analysis of constant tension-induced rupture of lipid membranes using activation energy.

    Karal, Mohammad Abu Sayem; Levadnyy, Victor; Yamazaki, Masahito

    2016-05-11

    The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs. PMID:27125194

  6. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts

    Kalischuk Lisa D

    2009-02-01

    Full Text Available Abstract Background Campylobacter enteritis represents a risk factor for the development of inflammatory bowel disease (IBD via unknown mechanisms. As IBD patients exhibit inflammatory responses to their commensal intestinal microflora, factors that induce translocation of commensal bacteria across the intestinal epithelium may contribute to IBD pathogenesis. This study sought to determine whether Campylobacter induces translocation of non-invasive intestinal bacteria, and characterize underlying mechanisms. Methods Mice were infected with C. jejuni and translocation of intestinal bacteria was assessed by quantitative bacterial culture of mesenteric lymph nodes (MLNs, liver, and spleen. To examine mechanisms of Campylobacter-induced bacterial translocation, transwell-grown T84 monolayers were inoculated with non-invasive Escherichia coli HB101 ± wild-type Campylobacter or invasion-defective mutants, and bacterial internalization and translocation were measured. Epithelial permeability was assessed by measuring flux of a 3 kDa dextran probe. The role of lipid rafts was assessed by cholesterol depletion and caveolin co-localization. Results C. jejuni 81–176 induced translocation of commensal intestinal bacteria to the MLNs, liver, and spleen of infected mice. In T84 monolayers, Campylobacter-induced internalization and translocation of E. coli occurred via a transcellular pathway, without increasing epithelial permeability, and was blocked by depletion of epithelial plasma membrane cholesterol. Invasion-defective mutants and Campylobacter-conditioned cell culture medium also induced E. coli translocation, indicating that C. jejuni does not directly 'shuttle' bacteria into enterocytes. In C. jejuni-treated monolayers, translocating E. coli associated with lipid rafts, and this phenomenon was blocked by cholesterol depletion. Conclusion Campylobacter, regardless of its own invasiveness, promotes the translocation of non-invasive bacteria across

  7. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µm dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 BioFactors, 42(2):201-211, 2016. PMID:26893251

  8. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected].

    Francois-Pierre J Martin

    Full Text Available Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2 under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.

  9. Lipid-Encapsulated Echium Oil (Echium plantagineum) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows.

    Bainbridge, Melissa L; Lock, Adam L; Kraft, Jana

    2015-05-20

    The objective of this study was to evaluate the impact of feeding lipid-encapsulated echium oil (EEO) on animal performance and milk fatty acid profile. Twelve Holstein dairy cows were used in a 3 × 3 Latin Square design with 14 day periods. Treatments were a control diet (no supplemental fat), 1.5% dry matter (DM) as EEO and 3.0% DM as EEO. Treatments had no negative effect on animal performance (dry matter intake, milk yield, and fat yield). The milk fat content of total n-3 fatty acids and stearidonic acid (SDA) increased with EEO supplementation (P < 0.001). The proportion of SDA increased in all plasma lipid fractions with EEO supplementation (P < 0.001). Transfer of SDA from EEO into milk fat was 3.4 and 3.2% for the 1.5 and 3% EEO treatments, respectively. In conclusion, EEO increases the content of n-3 fatty acids in milk fat; however, the apparent transfer efficiency was low. PMID:25904162

  10. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles.

    Allam, Ayat A; Sadat, Md Ehsan; Potter, Sarah J; Mast, David B; Mohamed, Dina F; Habib, Fawzia S; Pauletti, Giovanni M

    2013-01-01

    -coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Qr. PMID:24134544

  11. Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices' ability to inhibit lipid peroxidation of human LDL in vitro

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    Antioxidant activities of red and white European grape juices towards copper induced lipid oxidation of human low-density lipoproteins (LDL) were examined in vitro. LDL lipid peroxidation was assessed spectrophotometrically by monitoring the development of conjugated lipid hydroperoxides at 234 n...

  12. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (Psize of lipid droplets in 3T3-L1 adipocytes (Padipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (Psize (P>0.05) and remedy the palmitate damage induced cell death (Padipocytes. PMID:27157327

  13. Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment.

    Liang, Yanna; Jarosz, Kimberly; Wardlow, Ashley T; Zhang, Ji; Cui, Yi

    2014-08-01

    Corn fiber and sweet sorghum bagasse (SSB) are both pre-processed lignocellulosic materials that can be used to produce liquid biofuels. Pretreatment using dilute sulfuric acid at a severity factor of 1.06 and 1.02 released 83.2 and 86.5 % of theoretically available sugars out of corn fiber and SSB, respectively. The resulting hydrolysates derived from pretreatment of SSB at SF of 1.02 supported growth of Cryptococcus curvatus well. In 6 days, the dry cell density reached 10.8 g/l with a lipid content of 40 % (w/w). Hydrolysates from corn fiber, however, did not lead to any significant cell growth even with addition of nutrients. In addition to consuming glucose, xylose, and arabinose, C. curvatus also utilized formic acid, acetic acid, 4-hydroxymethylfurfural, and levulinic acid for growth. Thus, C. curvatus appeared to be an excellent yeast strain for producing lipids from hydrolysates developed from lignocellulosic feedstocks. PMID:24928546

  14. Ameliorating Effect of Ginger Extract (Zingiber officinale Roscoe on Liver Marker Enzymes, Lipid Profile in Aluminium chloride Induced Male Rats

    A Kalaiselvi

    2015-01-01

    Full Text Available Nowadays, aluminium (Al exposure has been increasing and it has the potential to be toxic in animal and humans. In recent years, ginger has become a subject of interest because of its beneficial effects on human health. The purpose of the present study to investigate the effect of ginger extract on serum biochemical parameters of aluminium chloride (AlCl3 induced male rats. 24 Wistar rats (6 in each group distributed into 4 groups. Control group received distilled water as vehicle; In E1 group, animal received AlCl3 orally (100 mg/kg bw, E2 group received AlCl3 (100 mg/kg bw and simultaneously with ginger extract (50 mg/kg bw and E3 group received ginger extract alone (50 mg/kg bw for 60 days. At the end of the experimental period, blood samples were collected for separating the serum for biochemical analyses. The results showed that oral administration of aluminium revealed a significant increase in the levels of serum glucose, total protein, globulin, albumin, urea, uric acid, creatinine, lipid profile and serum aspartate aminotransferase (AST, alanine aminotransferase (ALT and alkaline phosphatase (ALP and no change was noted in bilirubin. The extract of ginger decreased the activities serum levels of AST, ALT, ALP, lipid profile and all the parameter studied. It was concluded that the consumption of ginger protects the liver and kidney against the Aluminium toxicity. In addition, ginger is capable of improving hyperlipidemia and the impaired kidney functions.

  15. Differential roles of CIDEA and CIDEC in insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes

    Ito, Minoru; Nagasawa, Michiaki; Hara, Tomoko; Ide, Tomohiro; Murakami, Koji

    2010-01-01

    Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. However, regulation of the CIDE family by insulin and the contribution of the CIDE family to insulin actions remain unclear. Here, we investigated whether insulin regulates expression of the CIDE family and which subtypes contribute to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. Insulin decreased CIDE...

  16. Effect of alpha-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.

    Karvonen, Henna M; Aro, Antti; Tapola, Niina S; Salminen, Irma; Uusitupa, Matti I j; Sarkkinen, Essi S

    2002-10-01

    Camelina sativa-derived oil (camelina oil) is a good source of alpha-linolenic acid. The proportion of alpha-linolenic acid in serum fatty acids is associated with the risk of cardiovascular diseases. We studied the effects of camelina oil on serum lipids and on the fatty acid composition of total lipids in comparison to rapeseed and olive oils in a parallel, double-blind setting. Sixty-eight hypercholesterolemic subjects aged 28 to 65 years were randomly assigned after a 2-week pretrial period to 1 of 3 oil groups: camelina oil, olive oil, and rapeseed oil. Subjects consumed daily 30 g (actual intake, approximately 33 mL) of test oils for 6 weeks. In the camelina group, the proportion of alpha-linolenic acid in fatty acids of serum lipids was significantly higher (P camelina group from those in other groups. During the intervention, the serum low-density lipoprotein (LDL) cholesterol concentration decreased significantly by 12.2% in the camelina oil group, 5.4% in the rapeseed oil group, and 7.7% in the olive oil group. In conclusion, camelina oil significantly elevated the proportions of alpha-linolenic acid and its metabolites in serum of mildly or moderately hypercholesterolemic subjects. Camelina oil's serum cholesterol-lowering effect was comparable to that of rapeseed and olive oils. PMID:12370843

  17. Effect of a novel insulinotropic agent, succinic acid monoethyl ester, on lipids and lipoproteins levels in rats with streptozotocin-nicotinamideinduced type 2 diabetes

    Ramalingam Saravanan; Leelavinothan Pari

    2006-12-01

    In the present study, the effect of succinic acid monoethyl ester (EMS) on the pattern of lipids and lipoproteins in streptozotocin-nicotinamide induced type 2 diabetes was investigated. Type 2 diabetes was induced in male Wistar rats by single intraperitoneal injection (i.p.) of 45 mg/kg streptozotocin, 15 min after the i.p administration of 110 mg/kg body weight of nicotinamide. The carboxylic nutrient EMS was administered intraperitonially at a dose of 8 mol/g body weight for 30 days. At the end of experimental period, the effect of EMS on plasma glucose, insulin, thiobarbituric acid reactive substances (TBARS) and hydroperoxide (HP) and serum triglycerides (TG), phospholipids (PL), free fatty acids (FFA), total cholesterol (TC), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and the percentage of antiatherogenic index (AAI) (ratio of HDL-C to total cholesterol) were studied. Administration of EMS to diabetic rats resulted in a significant reduction in the elevated levels of plasma glucose, TBARS and hydroperoxides as well as TG, PL, FFA, TC, VLDL-C and LDC-C levels. The decreased plasma insulin and serum HDL-C and percentage of AAI in diabetic rats were also reversed towards near normal. The effect produced by EMS was compared with metformin, a reference drug. The results indicates that the administration of EMS and metformin to nicotinamide-streptozotocin diabetic rats normalized plasma glucose, insulin concentrations and caused marked improvement in altered lipids, lipoprotein and lipid peroxidation markers during diabetes. Our results show the antihyperlipidemic properties of EMS and metformin in addition to its antidiabetic action. Moreover, the antihyperlipidemic effect could represent a protective mechanism against the development of atherosclerosis.

  18. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    Yuhei Harada

    2016-02-01

    Full Text Available A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning.

  19. Acute Acidification of Stratum Corneum Membrane Domains Using Polyhydroxyl Acids Improves Lipid Processing and Inhibits Degradation of Corneodesmosomes

    Hachem, Jean-Pierre; Roelandt, Truus; Schürer, Nanna; Pu, Xu; Fluhr, Joachim; Giddelo, Christina; Man, Mao-Qiang; Crumrine, Debra; Roseeuw, Diane; Feingold, Kenneth R.; Mauro, Theodora; Elias, Peter M.

    2009-01-01

    Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PH...

  20. Effect of Lactic Acid Bacteria on Lipid Metabolism and Fat Synthesis in Mice Fed a High-fat Diet

    YONEJIMA, Yasunori; Ushida, Kazunari; Mori, Yoshiro

    2013-01-01

    Visceral fat accumulation is a major risk factor for the development of obesity-related diseases, including diabetes, hyperlipidemia, hypertension, and arteriosclerosis. Stimulation of lipolytic activity in adipose tissue or inhibition of fat synthesis is one way to prevent these serious diseases. Lactic acid bacteria have an anti-obesity effect, but the mechanisms are unclear. Therefore, we evaluated the effect of the administration of lactic acid bacteria (Lactobacillus gasseri NT) on lipid...

  1. Growth, Fatty Acid, and Lipid Composition of Marine Microalgae Skeletonema costatum Available in Bangladesh Coast: Consideration as Biodiesel Feedstock

    Tania Sharmin; Chowdhury Md. Monirul Hasan; Sheikh Aftabuddin; Md. Atiar Rahman; Mala Khan

    2016-01-01

    Among the various potential sources of renewable energy, biofuels are of most interest. Marine microalgae are the most promising oil sources for making biofuels, which can grow very rapidly and convert solar energy to chemical energy via CO2 fixation. The fatty acid profile of almost all the microalgal oil is suitable for the synthesis of biofuel. In this research, fatty acid and lipid contents of Bangladeshi strains of marine microalgae Skeletonema costatum were performed. For this, the crud...

  2. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  3. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L.; Sinninghe Damste, J.S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has be

  4. Objective and sensory measures of meat quality and fatty acid profile of longissimus intramuscular lipid from pigs fed crude glycerol

    The longissimus dorsi from 87 pigs (43 barrows, 44 gilts) fed corn-soybean meal based diets containing 0, 5, or 10% crude glycerol for 138 days were examined for objective and sensory measures of meat quality and the fatty acid profile of LD lipid was determined. Crude glycerol was obtained from AG ...

  5. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160). The harmful marine dinoflagella...

  6. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest

    Budhu, Anuradha S.; Noy, Noa

    2002-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional ac...

  7. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    Edy Subroto1

    2008-12-01

    Full Text Available Structured lipid (SL containing of medium chain fatty acid (MCFA at outer position and polyunsaturated fatty acid (PUFA at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei was used as catalyzed. Factors, such as the incubation time, substrate mole ratio, and reaction temperature were evaluated. The incorporation and the position of lauric acid on glycerol backbone and glyceride profile were determined. The results showed that SL containing of lauric acid at the outer position and PUFA at sn-2 was successfully synthesized, and it was done through one step process. From regiospecific determination, it showed that the position of lauric acid incorporation was only at the sn-1 and sn-3. Only 0.87% of lauric acid was incorporated at the sn-2. The optimum time and temperature of the reaction, and the substrate mole ratio were 12 h, 50C and 1:10, respectively, in which the incorporation of lauric acid was 62.8% (mol. Glyceride profile was affected by incubation time, substrate mole ratio and reaction temperature. Triglyceride concentration decreased with an increase in the incubation time (> 12 h. In contrast, the diglyceride concentration increased at longer incubation time (> 12 h. Beside, triglyceride concentration increased with an increase in substrate mole ratio to 1:10, but it decreased when mole ratio of substrate was 1:15. At higher temperature (50C, triglyceride decreased with an increase in the reaction temperature. In summary, the SL was successfully synthesized by the interesterification of fish oil and lauric acid using specific lipase of Mucor miehei.

  8. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: Its modulation by clofibrate exposure

    Lazzara, Raimondo; Fernandes, Denise, E-mail: deniseferna@gmail.com; Faria, Melissa; Lopez, Jordi F.; Tauler, Roma; Porte, Cinta, E-mail: cinta.porte@cid.csic.es

    2012-08-15

    Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13-24%) followed by docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and palmitoleic acid (16:1n-7). Some individual fatty acids (16:0, 16:2n-4, 18:1n-7, 18:2n-6, 18:3n-4, 18:4n-3, 20:4n-3, 20:5n-3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n-3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%-48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L. -- Highlights: Black-Right-Pointing-Pointer Clofibrate exposure leads to a reduction of total triglycerides in zebra mussel. Black-Right-Pointing-Pointer The amount of fatty acids per gram wet weight increased in exposed mussels. Black-Right-Pointing-Pointer The effects were evidenced at concentrations of clofibrate as low as 200 ng/L. Black-Right-Pointing-Pointer Fatty acid profiles were closely related to reproductive events.

  9. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: Its modulation by clofibrate exposure

    Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13–24%) followed by docosahexaenoic acid (DHA; 22:6n−3), eicosapentaenoic acid (EPA; 20:5n−3) and palmitoleic acid (16:1n−7). Some individual fatty acids (16:0, 16:2n−4, 18:1n−7, 18:2n−6, 18:3n−4, 18:4n−3, 20:4n−3, 20:5n−3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n−3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%–48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L. -- Highlights: ► Clofibrate exposure leads to a reduction of total triglycerides in zebra mussel. ► The amount of fatty acids per gram wet weight increased in exposed mussels. ► The effects were evidenced at concentrations of clofibrate as low as 200 ng/L. ► Fatty acid profiles were closely related to reproductive events.

  10. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Tang Bing

    2011-04-01

    Full Text Available Abstract Background Elevated plasma free fatty acid (FFA levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36 is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs treated with oleic acid (OA. We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L became foam cells based on morphological (Oil Red O staining and biochemical (5 times increase in cellular triglyceride criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results in vivo, we used ApoE-deficient mice fed with normal chow (NC, OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both p 5 μm2 vs. OA plus acipimox: 2.60 ± 0.10 ×105 μm2, p p Conclusions These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.

  11. Predicted Changes in Fatty Acid Intakes, Plasma Lipids, and Cardiovascular Disease Risk Following Replacement of trans Fatty Acid-Containing Soybean Oil with Application-Appropriate Alternatives

    Lefevre, Michael; Mensink, Ronald P.; Kris-Etherton, Penny M.; Petersen, Barbara; Smith, Kim; Flickinger, Brent D.

    2012-01-01

    The varied functional requirements satisfied by trans fatty acid (TFA)—containing oils constrains the selection of alternative fats and oils for use as potential replacements in specific food applications. We aimed to model the effects of replacing TFA-containing partially hydrogenated soybean oil (PHSBO) with application-appropriate alternatives on population fatty acid intakes, plasma lipids, and cardiovascular disease (CVD) risk. Using the National Health and Nutrition Examination Survey 2...

  12. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Ebaid Hossam

    2013-02-01

    Full Text Available Abstract This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1, interferon gamma (IFN-γ, programmed cell death-receptor (Fas and Tumor necrosis factor-alpha (TNF-α mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA, cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.

  13. Lipid Lowering Effect of Antioxidant Alpha-Lipoic Acid in Experimental Atherosclerosis

    Amom, Zulkhairi; Zakaria, Zaiton; Mohamed, Jamaluddin; Azlan, Azrina; Bahari, Hasnah; Taufik Hidayat Baharuldin, Mohd; Aris Moklas, Mohd; Osman, Khairul; Asmawi, Zanariyah; Kamal Nik Hassan, Mohd

    2008-01-01

    Accumulating data demonstrated that hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group N, HCD and ALA (n = 6). Group N (normal control) was fed with normal chow, the rest (HCD and ALA) were fed...

  14. Lipid transmitter signaling as a new target for treatment of cocaine addiction: new roles for acylethanolamides and lysophosphatidic acid.

    Orio, Laura; Pavón, Francisco Javier; Blanco, Eduardo; Serrano, Antonia; Araos, Pedro; Pedraz, María; Rivera, Patricia; Calado, Montserrat; Suárez, Juan; de Fonseca, Fernando Rodríguez

    2013-01-01

    This review analyzes the roles of lipid transmitters, especially those derived from the cleavage of membrane phospholipids, in cocaine-associated behaviors. These lipid signals are important modulators of information processing in the brain, affecting transmitter release, neural plasticity, synaptogenesis, neurogenesis, and cellular energetics. This broad range of actions makes them suitable targets for pharmaceutical development of cocaine addiction therapies because they participate in the main cellular processes underlying the neuroadaptations associated with chronic use of this psychostimulant. The main lipid transmitters reviewed here include a) acylethanolamides and acylglycerols acting on cannabinoid receptors, such as anandamide and 2-arachidonoylglycerol; b) acylethanolamides that do not act on cannabinoid receptors, such as oleoylethanolamide; c) eicosanoids derived from arachidonic acid, including prostaglandins; and d) lysophosphatidic acid, focusing on the role of its LPA-1 receptor. Direct experimental evidence for the significance of these lipids in cocaine-related behaviors is presented and discussed. Additionally, the roles for both their biosynthesis and degradation pathways, as well as the participation of their receptors, are examined. Overall, lipid transmitter signaling can offer new targets for the development of therapies for cocaine addiction. PMID:23574441

  15. Inhibitory effect of schisandrin B on free fatty acid-induced steatosis in L-02 cells

    Jian-Hong Chu; Hui Wang; Yan Ye; Ping-Kei Chan; Si-Yuan Pan; Wang-Fun Fong; Zhi-Ling Yu

    2011-01-01

    AIM: To investigate the effects of schisandrin B (Sch B) on free fatty acid (FFA)-induced steatosis in L-02 cells. METHODS: Cellular steatosis was induced by incubating L-02 cells with a FFA mixture (oleate and palmitate at the ratio of 2:1) for 24 h. Cytotoxicity and apoptosis were evaluated by 3-(4, 5-dmethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and Annexin V/propidium iodide staining, respectively. Cellular total lipid was determined using a photocolorimetric method after Nile red staining, and triglyceride content was measured using an enzymatic kit. To study the effects of Sch B on steatosis, L-02 cells were treated with Sch B (1-100 μmol/L) in the absence or presence of 1 mmol/L FFA for 24 h, and cellular total lipid and triglyceride levels were measured. To explore the mechanisms of action of Sch B in the steatotic L-02 cells, mRNA levels of several regulators of hepatic lipid metabolism including adipose differentiation related protein (ADRP), sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ were measured by quantitative real-time polymerase chain reaction (PCR), and protein levels of ADRP and SREBP-1 were measured by immunoblotting. RESULTS: Treatment with 1 mmol/L FFA for 24 h induced intracellular lipid accumulation in L-02 cells comparable to that in human steatotic livers without causing apparent apoptosis and cytotoxicity. Sch B mitigated cellular total lipid and triglyceride accumulations in the steatotic L-02 cells in a dose-dependent manner. Quantitative real-time PCR and Western blot analyses revealed that treatment of L-02 cells with 100 μmol/L Sch B reverted the FFA-stimulated up-regulation of ADRP and SREBP-1.

  16. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis

    Surapaneni Krishna

    2007-01-01

    Full Text Available Background : The exact pro-oxidant and antioxidant status in osteoarthritis patients is still not clear. To add a new insight to the question, changes in the erythrocyte lipid peroxidation products (MDA, levels of glutathione (GSH, ascorbic acid and plasma vitamin E (nonenzymatic antioxidant parameters; and activities of antioxidant enzymes superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase in erythrocytes and plasma glutathione - S - transferase (GST were measured in patients with osteoarthritis. Aim: This work was undertaken to assess oxidative stress and antioxidant status in patients with osteoarthritis. Settings and design: The study was conducted in 20 patients and compared to controls. Levels of erythrocyte MDA, GSH, ascorbic acid, plasma vitamin E; and activities of antioxidant enzymes were measured in patients with osteoarthritis. materials and Methods: Erythrocyte GSH was measured by the method of Beutler et al. Ascorbic acid levels were measured by the method of Tietz. Plasma vitamin E levels were measured by the method of Baker et al. MDA was determined as the measure of thio barbituric acid reactive substances (TBARS. SOD activity in the hemolysate was measured by the method of Misra and Fridovich. Activity of catalase was measured by the method of Beers and Sizer. GPX activity was measured as described by Paglia and Valentine in erythrocytes, and Plasma GST activity was measured as described by Warholm et al. These parameters were measured in 20 patients and compared to controls. Statistical analysis: Statistical analysis between group 1 (controls and group 2 (patients was performed by the student′s t - test using the stat -view package. Results: It was observed that there was a significant increase in erythrocyte MDA levels; SOD, GPX and plasma GST activities; and a significant decrease in erythrocyte GSH, ascorbic acid, plasma vitamin E levels and catalase activity in patients with osteoarthritis when compared to

  17. [Age-related Peculiarities of Succinate Effect on Induced Lipid Peroxidation in Rat Liver Mitochondria].

    Grishina, E V; Khaustova, Ya V; Vasilieva, A A; Mayevsky, E I

    2015-01-01

    The antioxidant effect of succinate and 3-hydroxybutyrate oxidation on the kinetics of lipid peroxidation induced by ATP-Fe2+ complex in isolated rat liver mitochondria of old (1.0-1.5 years) and young (3 months) male rats was investigated. The rate of induced lipid peroxidation V(LPO) in rat liver mitochondria and the half-time of oxygen consumption Δt50, which included the lag period and the initiation. phase, was recorded polarographically. Without exogenous oxidative-substrates V(LPO) was slightly higher in mitochondria of old animals, but the onset of lipid peroxidation cascade was significantly earlier than in young animals. Incubation of mitochondria with 5mM succinate for 1 min inhibited V(LPO) by 15% in young animals and by 35% in old animals. However, only in mitochondria of old animals Δt50 increased by 19% as compared to lipid peroxidation without substrates. V(LPO) in mitochondria of young animals did not significantly change during 3-hydroxybutyrate oxidation, while in mitochondria of old animals it was reduced by 19% with a slight increase in Δt50. To simulate age-dependent dysfunction we damaged isolated mitochondria by a series of freeze-thaw cycles, which caused a significant increase of V(LPO) of.both age groups. Succinate oxidation inhibited V(LPO) in damaged mitochondria in all cases by 56%, as compared to V(LPO) without oxidative substrates and extended At50 twofold in mitochondria of young animals. Oxidation of 3-hydroxybutyrate had no effect on V(LPO) in damaged mitochondria regardless of animal, age and extended Δt50 by 48% in mitochondria of young animals. Thus, the antioxidant effect of succinate oxidation can prevent lipid peroxidation damage and may exhibit geroprotective action at the level of aging mitochondria. Therefore, the antioxidant effect is due to the process of substrate oxidation in the respiratory chain but not because of an interaction of their structures with membrane lipids per se. PMID:26394470

  18. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.

    Rogers, Carlyle; Davis, Barbara; Neufer, P Darrell; Murphy, Michael P; Anderson, Ethan J; Robidoux, Jacques

    2014-02-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused a reduction in MIM potential, oxygen consumption, and ATP synthetic capacity and, ultimately, death. Additionally, we showed that FAs induce a transient increase in intramitochondrial reactive oxygen species (ROS) and lipid peroxide production, lasting roughly 30 and 120min for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor etomoxir, the mitochondrion-selective superoxide and lipid peroxide antioxidants MitoTempo and MitoQ, or the lipid peroxide and reactive carbonyl scavenger l-carnosine. FAs also promoted a delayed oxidative stress phase. However, the beneficial effects of etomoxir, MitoTempo, and l-carnosine were lost by delaying the treatment by 2h, suggesting that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation, as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels. PMID:24269897

  19. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  20. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

    Horn, Patrick J; Silva, Jillian E; Anderson, Danielle; Fuchs, Johannes; Borisjuk, Ljudmilla; Nazarenus, Tara J; Shulaev, Vladimir; Cahoon, Edgar B; Chapman, Kent D

    2013-10-01

    Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues. PMID:23808562

  1. Etude chez une population d’Aquitaine de l’effet des acides gras trans alimentaires sur les lipides plasmatiques et le profil des lipoprotéines

    Boue Carole

    2000-01-01

    Full Text Available The objective of this study was to determine the effect of dietary trans fatty acids (TFA on the risk of coronary heart disease (CHD development, in 90 pregnant and 97 non-pregnant women, who were recruited between 1996 and 1999, in the South-West of France. The contents of TFA in total lipids, cholesteryl esters (CE and total phospholipids (TPL of the women’s plasma, were determined using a combination of thin layer chromatography and capillary gas-liquid chromatography. Results indicate that the mean content of total TFA in plasma total lipids, expressed as proportion of all fatty acids, was 0.7%, with trans 18:1 being the most prevalent isomers (67%, followed by trans 18:2 (25% and trans 16:1 (8%. Trans 18:3 isomers were undetectable. In TPL, the TFA accounted for 0.7% of total fatty acids, whereas in CE, the mean TFA level was twice (0.3% as lower than in TPL. Moreover, these TFA were mainly represented by trans 18:1 isomers in TPL, and by trans 18:2 isomers in CE. Furthermore, there was no evidence of significant correlations between concentrations of low-density-lipoprotein (LDL or high-density-lipoprotein (HDL cholesterol and the TFA percentage in either adipose tissue or plasma. Overall, based on these results, it appears that the TFA intake level of French population does not induce an increase of CHD risk.

  2. Omega-3 fatty acid supplementation in primary nephrotic syndrome: effects on plasma lipids and coagulopathy.

    Hall, A V; Parbtani, A; Clark, W F; Spanner, E; Huff, M W; Philbrick, D J; Holub, B J

    1992-12-01

    The effect of fish oil dietary supplementation on the dyslipidemia and coagulopathy of seven patients with nephrotic syndrome and hypoalbuminemia due to primary kidney disease was studied. Plasma lipids, platelet aggregation studies, simplate bleeding time, and fibrinogen levels were determined before and after 6 wk of treatment with fish oil (15 g/day of MaxEPA; 2.7 g of eicosapentenoic acid (EPA) and 1.8 g of docosahexenoic acid. Urea kinetics were determined from urine-urea concentration, urinary proteina, and urine volume. A 3-day dietary intake record was obtained from each patient before and after 6 wk of fish oil supplementation. There was no significant dietary change in protein, fat, or carbohydrate intake over the time period of the study. At study end, total triglycerides decreased from 2.98 +/- 1.31 to 2.18 +/- 1.14 mmol/L (P = 0.002), and very low-density lipoprotein-triglycerides decreased from 2.35 +/- 1.34 to 1.28 +/- 1.07 mmol/L (P = 0.01). Low-density lipoprotein (LDL) cholesterol increased from 5.18 +/- 1.74 to 7.35 +/- 2.83 mmol/L (P = 0.005). No significant changes occurred in bleeding time, platelet count, hematocrit, red blood cell flexibility, or whole blood viscosity. Platelet aggregation responses to collagen and arachidonic acid were consistently reduced after treatment, but there was no change in platelet response to ADP. The platelet membrane phospolipids showed a significantly increased incorporation of EPA after the fish oil diet (P = 0.03).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1477328

  3. Physical inactivity amplifies the sensitivity of skeletal muscle to the lipid-induced downregulation of lipoprotein lipase activity.

    Zderic, Theodore W; Hamilton, Marc T

    2006-01-01

    Physical inactivity is a risk factor for lipoprotein disorders and the metabolic syndrome. Physical inactivity has a powerful effect on suppressing lipoprotein lipase (LPL) activity in skeletal muscle, the rate-limiting enzyme for hydrolysis of triglyceride (TG)-rich lipoproteins. We tested the ability of several compounds to prevent the decrease in LPL. The present study minimized standing and ordinary light nonexercise movements in rats to compare the effects of inactivity and nonexercise activity thermogenesis (NEAT) on LPL activity. The key new insight was that the typically quick decrease in LPL activity of oxidative muscle caused by physical inactivity was prevented by nicotinic acid (NA), whereas inhibitors of TNF-alpha, inducible nitric oxide synthase, and NF-kappaB had no such effect. NA was administered at a dose known to acutely impede the appearance of plasma TG from the liver and free fatty acids from adipose tissue, and it was effective at intentionally lowering plasma lipid concentrations to the same level in active and inactive groups. As measured from heparin-releasable LPL activity, LPL in the microvasculature of the most oxidative muscles was approximately 90% lower in the inactive group compared with controls, and this suppression was completely blocked by NA. In contrast to inactivity, NA did not raise muscle LPL in ambulatory controls, whereas a large exogenous fat delivery did decrease LPL activity. In vitro control studies revealed that NA did not have a direct effect on skeletal muscle LPL activity. In conclusion, physical inactivity amplifies the ability of plasma lipids to suppress muscle LPL activity. The light ambulatory contractions responsible for NEAT are sufficient for mitigating these deleterious effects. PMID:16195388

  4. [Dynamics of fatty acid composition of total lipids during embryonic development of Atlantic salmon Salmo salar L].

    Murzina, S A; Nefedova, Z A; Ripatti, P O; Nemova, N N; Markova, L V

    2012-01-01

    Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar. PMID:22650081

  5. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

    Dahlia M. El Maghraby

    2015-01-01

    Full Text Available Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae, Ulva linza (Chlorophyceae and Padina pavonica (Phaeophyceae were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens to 4.14% (U. linza of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were analysed using gas chromatography. The highest percentage of total fatty acids was recorded in P. pavonica, with 6.2% in autumn, whereas the lowest was in J. rubens, with 68.6% in summer. The relative amount of saturated to unsaturated fatty acids was significantly higher in P. pavonica than in the other macro-algae. Seasonal variations in pH, salinity and temperature had no significant effect on the total lipid and fatty acid contents. Principal component analysis grouped brown and green algae together, whereas red alga grouped out. Furthermore, methyl ester profiles indicate that brown and green seaweeds are preferred, followed by red seaweeds, which appears to have little potential for oil-based products. Therefore, these seaweeds are not targets for biodiesel production.

  6. Effect of the amino acid composition of cyclic peptides on their self-assembly in lipid bilayers.

    Danial, Maarten; Perrier, Sébastien; Jolliffe, Katrina A

    2015-02-28

    The effect of amino acid composition on the formation of transmembrane channels in lipid bilayers upon self-assembly of alt-(L,D)-α-cyclic octapeptides has been investigated. Cyclic peptides comprising D-leucine, alternating with different combinations of L-azidolysine, L-lysine(Alloc), L-lysine and L-tryptophan were synthesized and the size of pores formed via self-assembly of these molecules in lipid bilayers was elucidated using large unilamellar vesicle fluorescence assays and dynamic light scattering. Pore formation was examined in large unilamellar vesicles made up of egg yolk phosphatidylcholine or Escherichia coli total lipid extract. From these analyses, we have established that cyclic peptides with charged side chains form large pores while those with neutral side chains form unimeric pores. Furthermore, the cyclic peptides that consist of non-symmetric amino acid configurations possess a higher membrane activity than the cyclic peptides with a symmetric amino acid configuration. In addition, we have found that peptide amphiphilicity plays a vital role in selective partitioning between bilayers that consist of egg yolk phosphatidylcholine and those comprised of E. coli total lipid extract. These results suggest that selective transbilayer channel formation via self-assembly may be a viable alternative for many applications that currently use more expensive, multistep synthesis methods. PMID:25566760

  7. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. PMID:26949054

  8. The role of nutritional lipids and antioxidants in UV-induced skin cancer.

    Black, Homer S

    2015-01-01

    Two dietary tenets of the free radical theory of cancer require refinement. The first was dietary reduction of vulnerable free-radical targets, e.g., polyunsaturated lipids. The second was the addition of one or more antioxidants to the diet. Further, it was reported in 1939 that high levels of dietary fat exacerbated UV-carcinogenesis. Both lines of enquiry (dietary lipid and antioxidant effects on UV-carcinogenesis) were investigated. Both dietary lipids and antioxidants modified carcinogenic expression. Increasing levels of omega-6 polyunsaturated fatty acids (PUFA) exacerbated UV-carcinogenesis. However, omega-3 PUFA dramatically inhibited carcinogenic expression. It is probable that the action of omega-6 and-3 PUFA rests with differential metabolic intermediates, both tumor promoting and immune-modulating, that each PUFA generates through lipoxygenase and cyclooxygenase pathways. Antioxidant supplementation with butylated hydroxytoluene or beta-carotene demonstrated that each exerted its own specific antioxidant mechanism(s). When introduced into the complex milieu of the cell with its own intricate and complex antioxidant defense system, detrimental effects may ensue. These results point to oversimplification of these dietary suggestions to reduce cancer risk and the necessity to refine these dietary recommendations. PMID:25961684

  9. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  10. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  11. Hepatitis C virus-induced degradation of cell death-inducing DFFA-like effector B leads to hepatic lipid dysregulation

    Lee, Emily M.; Alsagheir, Ali; Wu, Xianfang; Hammack, Christy; McLauchlan, John; Watanabe, Noriyuki; Wakita, Takaji; Kneteman, Norman M; Douglas, Donna N.; Tang, Hengli

    2016-01-01

    Chronically infected hepatitis C individuals commonly exhibit hepatic intracellular lipid accumulation, termed steatosis. Hepatitis C virus (HCV) infection perturbs host lipid metabolism through both cellular and viral-induced mechanisms, with the viral core protein playing an important role in steatosis development. We have recently identified a liver protein, the cell death-inducing DFFA-like effector B (CIDEB), as a HCV entry host dependence factor that is downregulated by HCV infection in...

  12. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate

    Qiong eZhang

    2015-05-01

    Full Text Available Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA and phosphatidylinositol 4-phosphate (PI4P, and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS generation and SA accumulation during defense activation.

  13. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii

    The aim of this study was to investigate the possible interference of anionic and cationic flocculants in the lipid extraction and fatty acid profiles of two species of marine microalgae: Nannochloropsis oculata and Thalassiosira weissflogii. Cells were grown in batch cultures (f/2 medium, salinity of 28, temperature of 20 oC, light intensity of 40 μmol photons m-2 s-1 and 12/12 h L/D photoperiod) and concentrated using sodium hydroxide (control), sodium hydroxide and the anionic polyacrylamide flocculant Magnafloc® LT-25 (APF treatment) and sodium hydroxide plus the cationic polyacrylamide flocculant Flopam® (CPF treatment). There were no statistically significant differences among treatments with respect to lipid extraction for both species. However, N. oculata which presented higher percentages of C16:0, C16:1 and C20:5 fatty acids showed an increase of C14:0 and a decrease of C20:5 with the use of anionic flocculant. Additionally, T. weissflogii which had high percentages of C16:0, C16:1, C16:3 and C20:5, showed a decrease of C18:0 and C18:1n9c when both flocculants were used and a small decrease of C16:0 in the APF treatment. The results indicate that the choice of flocculant should be based on the level of saturation desirable, i.e., if the goal is to produce more stable biodiesel, with low percentage unsaturated fatty acids, then anionic flocculants should be used. On the other hand, if the aim is to produce unsaturated fatty acids for commercial uses in the pharmacy or food industries, then anionic polymers should be avoided. -- Highlights: → Interference of flocculants on biochemical of two marine microalgae. → Lipids extraction and fatty acids profile from Nannochloropsis oculata and Thalassiosira weissflogii. → No differences in the lipids but some differences on fatty acids profile.

  14. Effect of 2-hydroxy-4-methoxy benzoic acid from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats

    Gayathri M

    2009-01-01

    Full Text Available The aim of the present study was to investigate the effect of 2-hydroxy-4-methoxy benzoic acid isolated from the roots of Hemidesmus indicus on plasma glucose, plasma, erythrocyte and erythrocyte membrane lipid peroxidation and membrane-bound Ca 2+ ATPase activity in streptozotocin-induced diabetic rats. In our study, diabetic rats had increased levels of blood glucose and lipid peroxidation in plasma, erythrocytes and erythrocyte membrane and decreased level of plasma insulin and decreased activity of low affinity Ca 2+ ATPase in erythrocytes. Restoration of plasma insulin and glucose in diabetic rats indicates the effect of HMBA on insulin, glucose and lipid peroxidation. HMBA also restored diabetes-induced alterations in the activity of membrane-bound Ca 2+ ATPase. Based on the results of this study it can be concluded that HMBA mediated normalization of membrane-bound ATPase in erythrocytes is due to improved glycemic control and antioxidant activity.

  15. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  16. Plasma lipid oxidation induced by peroxynitrite, hypochlorite, lipoxygenase and peroxyl radicals and its inhibition by antioxidants as assessed by diphenyl-1-pyrenylphosphine

    Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo

    2016-01-01

    Lipid oxidation has been implicated in the pathogenesis of many diseases. Lipids are oxidized in vivo by several different oxidants to give diverse products, in general lipid hydroperoxides as the major primary product. In the present study, the production of lipid hydroperoxides in the oxidation of mouse plasma induced by multiple oxidants was measured using diphenyl-1-pyrenylphosphine (DPPP) as a probe. DPPP itself is not fluorescent, but it reacts with lipid hydroperoxides stochiometrically to give highly fluorescent DPPP oxide and lipid hydroxides. The production of lipid hydroperoxides could be followed continuously in the oxidation of plasma induced by peroxynitrite, hypochlorite, 15-lipoxygenase, and peroxyl radicals with a microplate reader. A clear lag phase was observed in the plasma oxidation mediated by aqueous peroxyl radicals and peroxynitrite, but not in the oxidation induced by hypochlorite and lipoxygenase. The effects of several antioxidants against lipid oxidation induced by the above oxidants were assessed. The efficacy of antioxidants was dependent markedly on the type of oxidants. α-Tocopherol exerted potent antioxidant effects against peroxyl radical-mediated lipid peroxidation, but it did not inhibit lipid oxidation induced by peroxynitrite, hypochlorite, and 15-lipoxygenase efficiently, suggesting that multiple antioxidants with different selectivities are required for the inhibition of plasma lipid oxidation in vivo. This is a novel, simple and most high throughput method to follow plasma lipid oxidation induced by different oxidants and also to assess the antioxidant effects in biologically relevant settings. PMID:26774081

  17. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule

    Lee SG

    2013-12-01

    Full Text Available Sang Gon Lee,1,* Jae Han Jeong,1,* Kyung Min Lee,1 Kyu Ho Jeong,1 Huisuk Yang,2 Miroo Kim,2 Hyungil Jung,2 Sangkil Lee,3 Young Wook Choi11College of Pharmacy, Chung-Ang University, Seoul, South Korea; 2Department of Biotechnology, Yonsei University, Seoul, South Korea; 3College of Pharmacy, Keimyung University, Daegu, South Korea *These authors contributed equally to this workAbstract: Nanostructured lipid carriers (NLCs were employed to formulate a lipophilic drug into hydrophilic polymeric microneedles (MNs. Hyaluronic acid (HA was selected as a hydrophilic and bioerodible polymer to fabricate MNs, and nile red (NR was used as a model lipophilic molecule. NR-loaded NLCs were consolidated into the HA-based MNs to prepare NLC-loaded MNs (NLC-MNs. A dispersion of NLCs was prepared by high-pressure homogenization after dissolving NR in Labrafil and mixing with melted Compritol, resulting in 268 nm NLCs with a polydispersity index of 0.273. The NLC dispersion showed a controlled release of NR over 24 hours, following Hixson–Crowell's cube root law. After mixing the NLC dispersion with the HA solution, the drawing lithography method was used to fabricate NLC-MNs. The length, base diameter, and tip diameter of the NLC-MNs were approximately 350, 380, and 30 µm, respectively. Fluorescence microscopic imaging of the NLC-MNs helped confirm that the NR-loaded NLCs were distributed evenly throughout the MNs. In a skin permeation study performed using a Franz diffusion cell with minipig dorsal skin, approximately 70% of NR was localized in the skin after 24-hour application of NLC-MNs. Confocal laser scanning microscopy (z-series of the skin at different depths showed strong fluorescence intensity in the epidermal layer, which appeared to spread out radially with the passage of time. This study indicated that incorporation of drug-loaded NLCs into MNs could represent a promising strategy for controlled dermal delivery of lipophilic drugs

  18. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil

    Hassanien, M. F.R.

    2014-06-01

    Full Text Available The aim of this study was to characterize the chemical composition and radical scavenging activity of Canterbury bells (Campanula medium seed oil. C. medium seeds contained 9.2% extractable oil. The lipid classes, fatty acids, phytosterol and tocopherol composition of C. medium seed oil were determined. The amount of neutral lipids in the oil was the highest, followed by glycolipids and phospholipids. Linoleic and oleic were the main fatty acids. C. medium oil is characterized by high levels of phytosterols and β-sitosterol was the main compound. β-Tocopherol constituted 42.5% of the total tocopherol content followed by γ-tocopherol. The radical scavenging activity (RSA toward 1,1-diphenyl-2-picrylhydrazyl (DPPH radicals and galvinoxyl radicals of C. medium oil were higher than those of extra virgin olive oil. The diverse potential uses of C. medium oil may make this plant industrially important.El objetivo de este estudio fue caracterizar la composición química y la actividad de captación de radicales de aceites de semillas de campanillas de Canterbury (Campanula medium. Las semillas de C. medium contenían 9,2 % de aceite extraíble. Se determinó la composición de las diferentes clases de lípidos, ácidos grasos, fitoesteroles y tocoferoles. La cantidad de lípidos neutros en el aceite fue mayoritario, seguido de glicolípidos y fosfolípidos. Linoleico y oleico fueron los ácidos grasos principales. El aceite de C. medium se caracteriza por altos niveles de fitoesteroles y β-sitosterol fue el compuesto principal. β-tocoferol constituía 42,5 % del contenido total de tocoferol seguido de γ-tocoferol. La actividad de captación de radicales (RSA a 1,1-difenil-2- picrilhidrazil (DPPH y radicales galvinoxil de C. medium fueron superiores a las de aceite de oliva virgen extra. Los diversos usos potenciales de los aceites de C. medium pueden hacer que esta planta pueda ser importante industrialmente.

  19. Effects of Garcinia kola on the Lipid Profile of Alloxan-Induced Diabetic Wistar Rats

    Nwangwa, E. K.

    2012-01-01

    In this study, the effects of Garcinia kola on the lipid profile of alloxan-induced diabetic Wistar rats were studied. A total of twenty four (24) albino rats of wistar strain weighing between 100-150 g were made diabetic by single freshly prepared intraperitoneal injection of 150 mg/dL of alloxan monohydrate. Eight (8) weeks after confirmation of diabetes, the rats were randomly divided into four (4) experimental groups (n = 6). Group I (Control) rats were treated with 1ml of 5% ethanol, Gro...

  20. Micrometer-sized network structure of novel DNA-lipid conjugates induced by heat stimulation.

    Takahashi, K; Matsuo, M; Banno, T; Toyota, T

    2015-09-21

    We have developed a novel lipid-bearing DNA that forms hairpin modules, including a single RNA monomer; this can be used to create micrometer-sized structures from nanometer-sized building blocks during breakage at the RNA site. In the presence of divalent metal ions and heat stimulation, we observed transition of the self-assembly, which results in the formation of a three-dimensional network structure. To our knowledge, this is also the first report of heat-induced micrometer-sized molecular self-assembly of molecules that carry biological information. PMID:26249035

  1. Radioprotective effect of 2-mercaptopropionyl glycine on radiation-induced lipid peroxidation and enzyme release in erythrocytes

    γ-Irradiation of erythrocyte suspensions resulted in lipid peroxidation and enzyme (acetylcholinesterase, AChE) release. The presence of 2-mercapto-propionyl glycine (MPG) during irradiation decreased lipid peroxidation and enzyme (acetylcholinesterase, AChE) release. The presence of 2-mercapto-propionyl glycine (MPG) during irradiation decreased lipid peroxidation and erythrocytes of high and low concentrations was observed at 480 and 320 Cy, respectively. This implied that the extent of enzyme release is likely to be masked when only a single dose of radiation is used, unless it happens to be an optimum dose. MPG mediated inhibition of lipid peroxidation and enzyme release indicated that lipid peroxidation may induce the breakdown of the phosphatidylinositol/enzyme interaction. Further, the enzyme damage was assigned to the direct and indirect effects of radiation on the enzyme in situ. (author)

  2. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties

    Bolumar Garcia, Jose Tomas; Lapena Gomez, David; Skibsted, Leif Horsfelt;

    2016-01-01

    packaging was the most effective method to protect pork patties from the HPP-induced lipid oxidation, while oxygen scavenger packaging was not effective since residual oxygen remained in the package in the initial period of storage. The kinetics of the oxygen trapping by oxygen scavengers appears......Three different packaging systems: vacuum packaging, rosemary active packaging, and oxygen scavenger packaging were compared for their ability to counteract lipid oxidation in pork patties upon storage at 5 °C for 60 days following high pressure processing (HPP) (700 MPa, 10 min, 5 °C). Lipid...... oxidation was studied at the surface and the inner part by measuring secondary lipid oxidation products (TBARs) and the tendency to form radicals by electron spin resonance (ESR) spectroscopy. Lipid oxidation was lower in the inner part than at the surface for all three packaging systems. Rosemary active...

  3. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    Jinying Zheng

    2016-01-01

    Full Text Available The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD. We investigated the effects of docosahexaenoic acid (DHA on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM or fructose plus 4-phenylbutyric acid (PBA for 24 h. Intracellular triglyceride (TG accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC, two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α and acyl-CoA oxidase 1 (ACOX1. DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78, total inositol-requiring kinase 1 (IRE1α and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.

  4. Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction.

    Toral, Marta; Romero, Miguel; Jiménez, Rosario; Mahmoud, Ayman Moawad; Barroso, Emma; Gómez-Guzmán, Manuel; Sánchez, Manuel; Cogolludo, Ángel; García-Redondo, Ana B; Briones, Ana M; Vázquez-Carrera, Manuel; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2015-11-01

    Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition. PMID:26253087

  5. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    Dänicke Sven; Kuhnt Katrin; Keller Sylvia; Lochner Alfred; Degen Christian; Jahreis Gerhard

    2011-01-01

    Abstract Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA) are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA) solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adeno...

  6. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes

    Ries, Oliver; Löffler, Philipp M. G.; Vogel, Stefan

    2015-01-01

    Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers. Membrane-anchor modified oligonucleotides are applicable in biomedicine leading to new delivery strategies as well as in biophysical investigations towards assembly and fusion of liposomes...... or the construction of DNA origami structures. We herein present the synthesis and applications of versatile lipid membrane anchor building blocks suitable for solid phase oligonucleotide synthesis. These are readily synthesized in bulk in five to seven steps from commercially available precursors...... and can be incorporated at any position within an oligonucleotide without significantly altering duplex stability and structure as proven by thermal denaturation experiments and circular dichroism. Furthermore, applicability could be demonstrated by assembly and fusion of liposomes mediated by lipid...

  7. Dietary fat interacts with PCBs to induce changes in lipid metabolism in LDL receptor deficient mice

    Hennig, B.; Reiterer, G.; Toborek, M.; Matveev, S.V.; Daugherty, A.; Smart, E. [Univ. of Kentucky, Lexington (United States); Robertson, L.W. [Univ. of Iowa, Iowa City (United States)

    2004-09-15

    From epidemiological studies, there is substantial evidence that cardiovascular diseases are linked to environmental pollution and that exposure to polycyclic and/or polyhalogenated aromatic hydrocarbons can lead to human cardiovascular toxicity. A major route of exposure to PCBs in humans is via oral ingestion of contaminated food products. Therefore, circulating environmental contaminants derived from diets, such as PCBs, are in intimate contact with the vascular endothelium. Endothelial activation and dysfunction is an important factor in the overall regulation of vascular lesion pathology. In addition to endothelial barrier dysfunction, another functional change in atherosclerosis is the activation of the endothelium that is manifested as an increase in the expression of specific cytokines and adhesion molecules. These cytokines and adhesion molecules are proposed to mediate the inflammatory aspects of the disease by regulating the vascular entry of leukocytes. Alterations in lipid profile and lipid metabolism as a result of exposure to PCBs may be important components of endothelial cell dysfunction. Little is known about the interaction of dietary fats and PCBs in the pathology of atherosclerosis. We have reported a significant disruption in endothelial barrier function when cells were exposed to linoleic acid. In the current study we aimed to demonstrate the PCB-fatty acid interaction in vivo and hypothesized that PCB toxicity can be modulated by the type of fat consumed.

  8. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II : oleic acid toxicity and biodegradability

    Alves, M.M.; Vieira, J. A. Mota; Pereira, R. M. Álvares; M. A. PEREIRA; Mota, M.

    2001-01-01

    Oleic acid toxicity and biodegradability were followed during long-term operation of two similar anaerobic fixed-bed units. When treating an oleate based effluent, the sludge from the bioreactor that was acclimated with lipids during the first operation period, showed a higher tolerance to oleic acid toxicity (IC50=137 mg/l) compared with the sludge fed with a non-fat substrate (IC50=80 mg/l). This sludge showed also the highest biodegradation capacity of oleic acid, achieving max...

  9. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  10. Evaluation of the effect of n-3 PUFA-rich dietary fish oils on lipid profile and membrane fluidity in alloxan-induced diabetic mice (Mus musculus).

    Kamat, Shantal Ganapati; Roy, Ramaballav

    2016-05-01

    Marine fishes are important to health due to their high content of polyunsaturated fatty acids particularly those of the omega-3 family. These fatty acids play an important role in various physiological processes and as a consequence they may modulate and even prevent some human diseases. The aim of the present study was to investigate and compare the effect of fish oils of different origins (Sardinella longiceps, Rastrelliger kanagurta and Clarias batrachus) on lipid metabolism and membrane fluidity in diabetes. Alloxan was injected in repetitive doses for 1 month (100 mg/kg body weight every 5th day) to induce diabetes in Swiss albino mice. 10 % S. longiceps, R. kanagurta or C. batrachus fish oil was freshly blended with pellet feed which was provided to diabetic mice for 1 month. The serum lipid profile (serum total cholesterol, triglyceride, HDL, VLDL and LDL) along with liver, kidney and heart tissue lipid profile (i.e. triglyceride, total cholesterol, glycolipid and phospholipid) was analysed. Besides, the enzymatic activity of HMG-CoA reductase, HMG-CoA synthase and glucose-6-phosphate-dehydrogenase along with the membrane fluidity of these tissues was evaluated. Altered tissue lipid composition, enzyme activities and membrane fluidity due to diabetes were returned towards normal with the supplementation of 10 % fish oils. Fish oil from S. longiceps brought maximum changes in level of neutral lipid composition in heart, and increased the concentration of phospholipid and decreased the activity of HMG-CoA reductase in comparison with the fish oil from R. kanagurta and C. batrachus. PMID:27101827

  11. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  12. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-01

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  13. Co-treatment of chlorpyrifos and lead induce serum lipid disorders in rats: Alleviation by taurine.

    Akande, Motunrayo G; Aliu, Yusuf O; Ambali, Suleiman F; Ayo, Joseph O

    2016-07-01

    The aim of this study was to investigate the effects of taurine (TA) on serum lipid profiles following chronic coadministration of chlorpyrifos (CP) and lead acetate (Pb) in male Wistar rats. Fifty rats randomly distributed into five groups served as subjects. Distilled water (DW) was given to DW group, while soya oil (SO; 1 mL kg(-1)) was given to SO group. The TA group was treated with TA (50 mg kg(-1)). The CP + Pb group was administered sequentially with CP (4.25 mg kg(-1); 1/20th median lethal dose (LD50)) and Pb at 233.25 mg kg(-1) (1/20th LD50), while the TA + CP + Pb group received TA (50 mg kg(-1)), CP (4.25 mg kg(-1)), and Pb (233.25 mg kg(-1)) sequentially. The treatments were administered once daily by oral gavage for 16 weeks. The rats were euthanised, and the blood samples were collected at the termination of the study. Sera obtained from the blood samples were analyzed for total cholesterol, high-density lipoprotein cholesterol, triglycerides, and malondialdehyde, and also the activities of serum antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase were analyzed. The low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, and atherogenic index were calculated. The results showed that CP and Pb induced alterations in the serum lipid profiles and evoked oxidative stress. TA alleviated the disruptions in the serum lipid profiles of the rats partially by mitigating oxidative stress. It was concluded that TA may be used for prophylaxis against serum lipid disorders in animals that were constantly co-exposed to CP and Pb in the environment. PMID:25537622

  14. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro.

    Ulrikke Voss

    Full Text Available OBJECTIVE: Obese and/or diabetic patients have elevated levels of free fatty acids and increased susceptibility to gastrointestinal symptoms. Since the enteric nervous system is pivotal in regulating gastrointestinal functions alterations or neuropathy in the enteric neurons are suspected to occur in these conditions. Lipid induced intestinal changes, in particular on enteric neurons, were investigated in vitro and in vivo using primary cell culture and a high fat diet (HFD mouse model. DESIGN: Mice were fed normal or HFD for 6 months. Intestines were analyzed for neuronal numbers, remodeling and lipid accumulation. Co-cultures of myenteric neurons, glia and muscle cells from rat small intestine, were treated with palmitic acid (PA (0 - 10(-3 M and / or oleic acid (OA (0 - 10(-3 M, with or without modulators of intracellular lipid metabolism. Analyses were by immunocyto- and histochemistry. RESULTS: HFD caused substantial loss of myenteric neurons, leaving submucous neurons unaffected, and intramuscular lipid accumulation in ileum and colon. PA exposure in vitro resulted in neuronal shrinkage, chromatin condensation and a significant and concentration-dependent decrease in neuronal survival; OA exposure was neuroprotective. Carnitine palmitoyltransferase 1 inhibition, L-carnitine- or alpha lipoic acid supplementation all counteracted PA-induced neuronal loss. PA or OA alone both caused a significant and concentration-dependent loss of muscle cells in vitro. Simultaneous exposure of PA and OA promoted survival of muscle cells and increased intramuscular lipid droplet accumulation. PA exposure transformed glia from a stellate to a rounded phenotype but had no effect on their survival. CONCLUSIONS: HFD and PA exposure are detrimental to myenteric neurons. Present results indicate excessive palmitoylcarnitine formation and exhausted L-carnitine stores leading to energy depletion, attenuated acetylcholine synthesis and oxidative stress to be main

  15. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  16. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (acid lines and identify loci affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  17. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    Joy, Jordan M; Gundermann, David M.; Ryan P. Lowery; Jäger, Ralf; McCleary, Sean A; Purpura, Martin; Roberts, Michael D.; Wilson, Stephanie MC; Hornberger, Troy A.; Wilson, Jacob M.

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimula...

  18. Nicotinic acid supplementation in diet favored intramuscular fat deposition and lipid metabolism in finishing steers.

    Yang, Zhu-Qing; Bao, Lin-Bin; Zhao, Xiang-Hui; Wang, Can-Yu; Zhou, Shan; Wen, Lu-Hua; Fu, Chuan-Bian; Gong, Jian-Ming; Qu, Ming-Ren

    2016-06-01

    Nicotinic acid (NA) acting as the precursor of NAD(+)/NADH and NADP(+)/NADPH, participates in many biochemical processes, e.g. lipid metabolism. The main purpose of this study was to investigate the effects of dietary NA on carcass traits, meat quality, blood metabolites, and fat deposition in Chinese crossbred finishing steers. Sixteen steers with the similar body weight and at the age of 24 months were randomly allocated into control group (feeding basal diet) and NA group (feeding basal diet + 1000 mg/kg NA). All experimental cattle were fed a 90% concentrate diet and 10% forage straw in a 120-day feeding experiment. The results showed that supplemental NA in diet increased longissimus area, intramuscular fat content (17.14% vs. 9.03%), marbling score (8.08 vs. 4.30), redness (a*), and chroma (C*) values of LD muscle, but reduced carcass fat content (not including imtramuscular fat), pH24 h and moisture content of LD muscle, along with no effect on backfat thickness. Besides, NA supplementation increased serum HDL-C concentration, but decreased the serum levels of LDL-C, triglyceride, non-esterified fatty acid, total cholesterol, and glycated serum protein. In addition, NA supplementation increased G6PDH and ICDH activities of LD muscle. These results suggested that NA supplementation in diet improves the carcass characteristics and beef quality, and regulates the compositions of serum metabolites. Based on the above results, NA should be used as the feed additive in cattle industry. PMID:27048556

  19. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment. PMID:27137808

  20. The effects of anaerobic training in serum lipids and arachidonic acid metabolites

    GEORGIOS KIPREOS

    2010-01-01

    Full Text Available Coronary arteries are subjected daily in high shear stress and manifest atherosclerosis very early in life in comparison to other arteries in the human body. Some factors that are implicated in the evolution and progress of this process are the concentration of lipids and arachidonic acid metabolites, such prostacyclin and thromboxane. It has been reported that those who participate in aerobic activities such as walking, cycling, jogging or brisk walking might have normal values of the mentioned chemical substances. On the other hand, it is reported that the effects of anaerobic and strength activities has negative effects on the vascular endothelium, which is essential for the maintenance of hemostatic balance and the local regulation of vascular tone.Therefore, even although extensive research has been conducted in this field, there are crucial gaps in our knowledge. Consequently, the purpose of this brief review is to describe what is known about the effects of anaerobic activities in which the competitive athletes have participated on the following blood parameters: Total cholesterol, triglycerides, high density lipoprotein cholesterol (HDL - C, low density lipoproteins cholesterol (LDL - C, prostacyclin & thromboxane.

  1. Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice

    Yeon-Jeong Moon

    2014-03-01

    Full Text Available The effect of Pediococcus acidilactici M76 (lactic acid bacteria isolated from makgeolli on mice fed a high fat diet was investigated to clarify the lipid lowering function. C57BL/6J male mice were randomly divided into a normal diet (ND group, high fat diet (HD group, HD plus Pediococcus acidilactici DSM 20284 reference strain (PR group, and HD plus Pediococcus acidilactici M76 strain (PA groups. The lyophilized PA and PR strain were dissolved in distilled water at a final concentration of 1.25 × 109 cfu/mL and was given orally to animals at a dose of 4 mL/kg body weight for 12 weeks. The PA group had a lower final body weight, adipose tissue weight, and lipid profile than those in the HD group. Additionally, level of ACC, FAS and PPAR-γ, a key lipid synthesis enzyme, was markedly suppressed in the PA compared to those in the HD group. These data suggest that P. acidilactici M76 may exert a lipid-lowering effect in high fat diet- induced obese mice.

  2. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Borate AR

    2012-02-01

    Full Text Available Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in highdensity lipoprotein cholesterol. Hence by considering the effects observed in this model, it has beensuggested that Protocatechuic acid was found to possess significant hypolipidemic activity, this may bedue to its effect on increasing the metabolism of the cholesterol by activating lipoprotein lipase or byincreasing reverse cholesterol transport.

  3. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S; Loor, Juan J

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  4. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet.

    Zeeshan Muhammad Iqbal

    Full Text Available The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON or high-energy (OVE diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA did not differ, among the polyunsaturated fatty acids (PUFA, the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation.

  5. Digital Cushion Fatty Acid Composition and Lipid Metabolism Gene Network Expression in Holstein Dairy Cows Fed a High-Energy Diet

    Iqbal, Zeeshan Muhammad; Akbar, Haji; Hosseini, Afshin; Bichi Ruspoli Forteguerri, Elena; Osorio, Johan S.

    2016-01-01

    The hoof digital cushion is a complex structure composed of adipose tissue beneath the distal phalanx, i.e. axial, middle and abaxial fat pad. The major role of these fat depots is dampening compression of the corium underneath the cushion. The study aimed to determine expression of target genes and fatty acid profiles in the hoof of non-pregnant dry Holstein cows fed low (CON) or high-energy (OVE) diets. The middle fat pad of the hoof digital cushion was collected soon after slaughter. Despite the lack of effect on expression of the transcription regulators SREBF1 and PPARG, the expression of the lipogenic enzymes ACACA, FASN, SCD, and DGAT2 was upregulated with OVE. Along with the upregulation of G6PD and IDH1, important for NADPH synthesis during lipogenesis, and the basal glucose transporter SLC2A1, these data indicated a pro-lipogenic response in the digital cushion with OVE. The expression of the lipid droplet-associated protein PLIN2 was upregulated while expression of lipolytic enzymes (ATGL, ABDH5, and LIPE) only tended to be upregulated with OVE. Therefore, OVE induced lipogenesis, lipid droplet formation, and lipolysis, albeit to different extents. Although concentration of monounsaturated fatty acids (MUFA) did not differ, among the polyunsaturated fatty acids (PUFA), the concentration of 20:5n3 was lower with OVE. Among the saturated fatty acids, 20:0 concentration was greater with OVE. Although data indicated that the hoof digital cushion metabolic transcriptome is responsive to higher-energy diets, this did not translate into marked differences in the fatty acid composition. The decrease in concentration of PUFA, which could contribute to synthesis of inflammatory molecules, in OVE-fed cows indicated that feeding higher-energy diets might be detrimental for the mediation of inflammation in digital cushion. This effect could be further exacerbated by physiologic and endocrine changes during the peripartal period that favor inflammation. PMID:27441691

  6. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  7. Depletion of Rab32 decreases intracellular lipid accumulation and induces lipolysis through enhancing ATGL expression in hepatocytes.

    Li, Qing; Wang, Jun; Wan, Ying; Chen, Dongfeng

    2016-03-18

    Nonalcoholic fatty liver disease (NAFLD) is a disease caused by the accumulation of lipids in hepatocytes. To date, however, the pathogenesis of NAFLD is still unclear. Recent studies have shown that Rab GTPases, a major protein family in vesicle trafficking, are associated with intracellular lipid accumulation. Here, we show that Rab32, the only Rab GTPase located in mitochondria, participates in hepatic steatosis. Ablation of Rab32 can decrease intracellular lipid accumulation in hepatocytes (HepG2, L02). Further studying the possible mechanism, we found that knockdown of Rab32 can enhance lipolysis instead of lipogenesis via inducing the expression of adipose triglyceride lipase (ATGL), a key enzyme on the surface of lipid droplets which has been proved to be significant in controlling intracellular lipid accumulation. Co-immunoprecipitation shows that Rab32 and ATGL are not directly associated. These findings suggest that knockdown of Rab32 indirectly affects lipolysis through increasing the expression of ATGL. Taken together, our study reveals that Rab32 can participate in regulating intracellular lipid accumulation and that knockdown of Rab32 can decrease intracellular lipid accumulation in hepatocytes. We also demonstrated that ablation of Rab32 can induce intracellular lipolysis by enhancing the expression of ATGL. PMID:26882978

  8. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  9. Amber Light (590 nm) Induces the Breakdown of Lipid Droplets through Autophagy-Related Lysosomal Degradation in Differentiated Adipocytes.

    Choi, Min Sik; Kim, Hyoung-June; Ham, Mira; Choi, Dong-Hwa; Lee, Tae Ryong; Shin, Dong Wook

    2016-01-01

    Lipolysis in the adipocytes provides free fatty acids for other tissues in response to the energy demand. With the rapid increase in obesity-related diseases, finding novel stimuli or mechanisms that regulate lipid metabolism becomes important. We examined the effects of visible light (410, 457, 505, 530, 590, and 660 nm) irradiation on lipolysis regulation in adipocytes differentiated from human adipose-derived stem cells (ADSCs). Interestingly, 590 nm (amber) light irradiation significantly reduced the concentration of lipid droplets (LDs). We further investigated the lipolytic signaling pathways that are involved in 590 nm light irradiation-induced breakdown of LDs. Immunoblot analysis revealed that 590 nm light irradiation-induced phosphorylation of hormone-sensitive lipase (HSL) was insufficient to promote reduction of LDs. We observed that 590 nm light irradiation decreased the expression of perilipin 1. We found that 590 nm light irradiation, but not 505 nm, induced conversion of LC3 I to LC3 II, a representative autophagic marker. We further demonstrated that the lysosomal inhibitors leupeptin/NH4Cl inhibited 590 nm light irradiation-induced reduction of LDs in differentiated adipocytes. Our data suggest that 590 nm light irradiation-induced LD breakdown is partially mediated by autophagy-related lysosomal degradation, and can be applied in clinical settings to reduce obesity. PMID:27346059

  10. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  11. Effects of Mad Honey on Blood Glucose and Lipid Levels in Rats With Streptozocin-Induced Diabetes

    ÖZTAŞAN, Nuray

    2005-01-01

    This study investigated whether mad honey affects blood glucose and lipid levels in experimental animals. It was found that mad honey caused significant decreases in blood glucose and lipid levels in animals with streptozocin-induced diabetes mellitus (n = 10) and controls (n = 10). These decreases may be due to grayanotoxins in the mad honey causing the islets of Langerhans in the pancreas to secrete insulin by stimulating the parasympathetic nervous system or M2-muscarinic receptors.

  12. Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism.

    Salas-Salvadó, J; Márquez-Sandoval, F; Bulló, M

    2006-01-01

    Studies performed on different species show that the consumption of conjugated linoleic acid (CLA) leads to a loss of fat and total body weight, reduces the plasma concentrations of total and LDL cholesterol, and has an antiinflammatory effect. This article reviews the clinical trials on human beings that evaluate how mixtures of CLA isomers administered as supplements or CLA-enriched products can affect total body weight, body composition, plasma lipid profile, glycemia, insulinemia, insulin sensitivity, lipid oxidation, and inflammation. After analyzing the few studies published to date in reduced samples of healthy humans or patients with overweight, obesity, metabolic syndrome, or diabetes, we deduce that there is not enough evidence to show that conjugated linoleic acid has an effect on weight and body composition in humans. However, some of these studies have observed that the administration of various CLA isomers has adverse effects on lipid profile (it decreases HDL cholesterol concentration and increases Lp(a) circulating levels), glucose metabolism (glycemia, insulinemia or insulin sensitivity), lipid oxidation, inflammation, or endothelial function. Therefore, long-term randomized clinical trials, controlled with placebo, need to be made in large samples of patients to evaluate the efficacy and safety of CLA isomers before its indiscriminate use in human beings can be recommended. PMID:16864141

  13. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). PMID:23294646

  14. GC-MS evaluation of fatty acid profile and lipid bioactive of partially hydrogenated cooking oil consumed in Pakistan

    Evaluation of fatty acid profile including trans fat and lipid bioactive (tocopherol and sterol contents) of most commonly used vanaspati ghee and cooking oil brands was made by gas chromatography coupled with mass spectrometer detector (GC-MSD). Among the saturated fatty acids (SFA), palmitic and stearic acid were dominant fatty acids; the mean value of SFA in ghee and oil was 44.98 and 30.83%, respectively. Mean values of monounsaturated, polyunsaturated and trans fatty acids in ghee were 47.51, 7.49 and 8.08%, and in oil 49.26, 19.90 and 0.91%, respectively. alpha-tocopherol was the major tocopherol while campesterol, stigmasterol and sitosterol were main phytosterols in terms of their quantity. (author)

  15. Impact of lipid-induced degradation on the mechanical properties of ultra-high molecular weight polyethylene for joint replacements.

    Sakoda, Hideyuki; Niimi, Shingo

    2016-01-01

    Gamma or electron beam irradiation of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints for sterilization and/or crosslinking purposes generates free radicals in the material, which causes long-term oxidative degradation of UHMWPE. Recently, another mechanism for the degradation of UHMWPE by the absorption of lipids during in vivo clinical use was proposed. However, knowledge on lipid-induced degradation is quite limited, compared with that on radical-induced degradation. In this study, lipid-induced degradation was simulated using squalene absorption and subsequent accelerated aging, and its impact on the mechanical properties of UHMWPE was evaluated. The simulated lipid-induced degradation caused an increased elastic modulus and decreased elongation with maximum degradation at the surfaces. These results imply that degradation of UHMWPE may occur during in vivo long-term use, even if free radicals are completely eliminated. Therefore, further investigation is required to clarify the impact of lipid-induced degradation on clinical outcomes, such as the wear and fatigue characteristics of UHMWPE components. PMID:26340645

  16. Effects of melatonin on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rat testis

    Abdullah Armagan; Efkan Uz; H. Ramazan Yilmaz; Sedat Soyupek; Taylan Oksay; Nurten Ozcelik

    2006-01-01

    Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced,Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of group Ⅱ, increased levels of malondialdehyde (MDA) (P < 0.01) and superoxide dismutase (SOD) (P < 0.01) as well as decreased levels of catalase (CAT) (P < 0.01)and glutathione peroxidase (GSH-Px) (P > 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P > 0.05) and SOD (P < 0.01) as well as CAT (P < 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight.Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.

  17. Gas chromatographic measurement of 3- and 4-thia fatty acids incorporated into various classes of rat liver lipids during feeding experiments.

    Grav, H J; Asiedu, D K; Berge, R K

    1994-08-01

    A practical procedure is described for the quantitative measurement of the amount of acyl units derived from tetradecylthioacetic acid (effecting hypolipemia in rats) and tetradecylthiopropionic acid (effecting hyperlipidemia). The procedure involves three main successive steps: (1) extraction; (2) solid-phase lipid class separation yielding free fatty acids, phospholipids, triacylglycerides, cholesterol esters, and diacylglycerides without crosscontamination; and (3) gas chromatography of hydrolyzed lipids derivatized to picolinyl esters, combined with unambiguous identification by gas chromatography-mass spectrometry. The overall recoveries of heptadecanoyl lipids added as internal standards during extraction were 94-96%, except for cholesteryl heptadecanoate where the recovery was 60% owing to incomplete hydrolysis. Recoveries of thia fatty acids from samples spiked with these compounds were 95%. Flame-ionization response factors were found to be 0.92 and 0.81 for the tetradecylthioacetic acid and tetradecylthiopropionic acid picolinyl esters, respectively, compared to that of heptadecanoic acid. The lower limit of quantitation was 25 pmol as injected. Measurement of the amount of thia fatty acyl units in rat plasma and in liver lipids 4 h after administration of single doses by gastric intubation indicated efficient absorbtion and rapid incorporation into liver lipids, particularly in the phospholipid fraction. Both plasma clearance and channelling into lipids was slower for the 4-thia fatty acid. PMID:7952108

  18. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.

    Pan, Jianjun; Khadka, Nawal K

    2016-05-26

    Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin. PMID:27167473

  19. Long-term fatty liver-induced insulin resistance in orotic acid-induced nonalcoholic fatty liver rats.

    Han, Xiuqing; Liu, Chunhua; Xue, Yong; Wang, Jingfeng; Xue, Changhu; Yanagita, Teruyoshi; Gao, Xiang; Wang, Yuming

    2016-01-01

    We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model. PMID:26775542

  20. Vasoconstriction Potency Induced by Aminoamide Local Anesthetics Correlates with Lipid Solubility

    Hui-Jin Sung

    2012-01-01

    Full Text Available Aminoamide local anesthetics induce vasoconstriction in vivo and in vitro. The goals of this in vitro study were to investigate the potency of local anesthetic-induced vasoconstriction and to identify the physicochemical property (octanol/buffer partition coefficient, pKa, molecular weight, or potency of local anesthetics that determines their potency in inducing isolated rat aortic ring contraction. Cumulative concentration-response curves to local anesthetics (levobupivacaine, ropivacaine, lidocaine, and mepivacaine were obtained from isolated rat aorta. Regression analyses were performed to determine the relationship between the reported physicochemical properties of local anesthetics and the local anesthetic concentration that produced 50% (ED50 of the local anesthetic-induced maximum vasoconstriction. We determined the order of potency (ED50 of vasoconstriction among local anesthetics to be levobupivacaine > ropivacaine > lidocaine > mepivacaine. The relative importance of the independent variables that affect the vasoconstriction potency is octanol/buffer partition coefficient > potency > pKa > molecular weight. The ED50 in endothelium-denuded aorta negatively correlated with the octanol/buffer partition coefficient of local anesthetics (r2=0.9563; P<0.001. The potency of the vasoconstriction in the endothelium-denuded aorta induced by local anesthetics is determined primarily by lipid solubility and, in part, by other physicochemical properties including potency and pKa.

  1. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  2. Repeated Batch Fermentation Biotechnology for the Biosynthesis of Lipid and Gamma-Linolenic Acid by Cunninghamella bainieri 2A1

    Marjan Ganjali Dashti; Peyman Abdeshahian; Wan Mohtar Wan Yusoff; Mohd Sahaid Kalil; Aidil Abdul Hamid

    2014-01-01

    The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1–4 g/L) and...

  3. Effect of n-3 fatty acid supplementation on blood glucose, lipid profile and cytokines in humans: A pilot study

    Raghu, B.; Venkatesan, P

    2008-01-01

    This study was undertaken to evaluate the effects of n-3 fatty acid supplementation on blood glucose, lipid profile and cytokines in humans. Twenty adult healthy subjects were supplemented with 1g/day fish oil concentrate capsules for 2 weeks. Fasting blood samples were taken at baseline and again after 2 week intervention. Fish oil supplementation significantly lowered fasting serum concentrations of total cholesterol, triacylglycerol, very low density lipoprotein and low density lipoprotein...

  4. Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues.

    Botsoglou, N A; Florou-Paneri, P; Christaki, E; Fletouris, D J; Spais, A B

    2002-05-01

    1. We studied the effect of dietary oregano essential oil (50 and 100 mg/kg of feed) on the performance of broilers, and determined the susceptibility of the resulting broiler meat to iron-induced lipid oxidation. 2. Performance of the birds was unaffected by the experimental diets. Therefore, dietary oregano oil exerted no growth-promoting effect on broilers. 3. Iron-induced lipid oxidation showed that as oregano oil increased in the diet, malondialdehyde values decreased in tissue samples, suggesting that the oil, particularly at 100 mg/kg of feed, exerted an antioxidant effect on chicken tissues. 4. Dietary alpha-tocopheryl acetate supplementation at 200 mg/kg of feed displayed greater antioxidant activity than oregano oil at either supplementation rate. 5. Thigh muscle was more susceptible to oxidation than breast muscle, although the former contained alpha-tocopherol at higher concentration. Muscle alpha-tocopherol is an important factor influencing lipid oxidation, but the influence of polyunsaturated fatty acids and content of pro-oxidants must be taken into consideration too. PMID:12047086

  5. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-01-01

    Background Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Results Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We preve...

  6. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  7. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10−7 and 2.0 × 10−8 mol L−1 Cd) under varying nitrogen (2.9 × 10−6, 1.1 × 10−5 and 1.1 × 10−3 mol L−1 N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production

  8. Coping with sub-optimal water temperature: modifications in fatty acid profile of barramundi as influenced by dietary lipid.

    Alhazzaa, Ramez; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2013-06-01

    Metabolic responses to sub-optimal temperature deplete lipid depots, remodel membrane lipid and alter the fatty acid profile in the whole body and tissues of ectothermic vertebrates including fish. The magnitude of these changes may depend on dietary history including oil sources with different fatty acid compositions. Barramundi, Lates calcarifer (Perciformes, Latidae), a tropical ectothermic fish, was fed on diets either rich in dietary long-chain (≥C(20)) polyunsaturated fatty acids (LC-PUFA) from fish oil, rich in stearidonic and γ-linolenic acid (SDA and GLA, respectively) from Echium plantagineum, or rapeseed oil deficient in LC-PUFA. Following 5 weeks at the optimum temperature of 30 °C when growth rates were comparable amongst dietary treatments, water temperature was dropped to 20 °C for 1 week for half of the animals and maintained at 30 °C for the other half. Decreased temperature increased the liver and skeletal muscle content of LC-PUFA in fish fed on echium oil compared with rapeseed oil, while dietary LC-PUFA depots in fish oil fed-fish depleted rapidly in the week of sub-optimal temperature. The lipid unsaturation index of cellular membrane in the liver and muscle increased under low temperature at the same rate regardless of dietary oil. Therefore, rapid exposure of an ectothermic vertebrate to a lower and sub-optimal temperature caused significant modulation in fatty acid composition. We propose that the tolerance of barramundi, a representative of tropical farmed fish, to sub-optimal temperature will be enhanced when fatty acid substrates closer to the LC-PUFA are available in their diet. PMID:23524056

  9. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions...

  10. Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans.

    Garcia, Anastacia M; Ladage, Mary L; Dumesnil, Dennis R; Zaman, Khadiza; Shulaev, Vladimir; Azad, Rajeev K; Padilla, Pamela A

    2015-05-01

    Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases. PMID:25762526

  11. 3-Iodothyronamine-mediated metabolic suppression increases the phosphorylation of AMPK and induces fuel choice toward lipid mobilization.

    Ju, H; Shin, H; Son, C; Park, K; Choi, I

    2015-07-01

    Despite broad medical application, induction of artificial hypometabolism in vitro and its biochemical consequence have been rarely addressed. This study aimed to elucidate whether 3-iodothyronamine (T1AM) induces hypometabolism in an in vitro model with activation of AMP-activated protein kinase (AMPK) and whether it leads to a switch in primary fuel from carbohydrates to lipids as observed in in vivo models. Mouse C2C12 myotube and T1AM, a natural derivative of thyroid hormone, were used in this study. The oxygen consumption rate (OCR) decreased in a dose-dependent manner in response to 0-100 μM T1AM for up to 10 h. Upon 6-h of exposure to 75 μM T1AM, the OCR was reduced to 60 vs. ~ 95% for the control. The intracellular [AMP]/[ATP] was 1.35-fold higher in T1AM-treated cells. RT-PCR and immunoblotting analyses revealed that treated cells had upregulated p-AMPK/AMPK (1.8-fold), carnitine palmitoyl transferase 1 mRNA, and pyruvate dehydrogenase kinase, and downregulated acetyl CoA carboxylase (0.4-fold) and pyruvate dehydrogenase phosphatase. The treated cells had darker periodic acid-Schiff staining with 1.2-fold greater glycogen content than controls. Taken together, the hypometabolic response of myotubes to T1AM was dramatic and accompanied by increases in both the relative abundance of AMP and AMPK activation, and fuel choice favoring lipids over carbohydrates. These results are consistent with the general trends observed for rodent models and true hibernators. PMID:25372779

  12. Promotion of radiation peroxidation in models of lipid membranes by caesium and rubidium counter-ions: micellar linolenic acids

    Caesium and rubidium counter-ions increase peroxidation in irradiated micelles of linoleic (18 : 2) and linolenic (18 :3) acids. The effect was specific to Cs+ and Rb+ in the alkali metal series. The effect was independent of the salts used (Cl-, NO3-, Cl04-) and, therefore, independent of the chaotropic nature, and reactivity with hydroxyl radicals of Cl-, NO3- and ClO4-. The promotion of peroxidation by Cs+ and Rb+ is interpreted in terms of their effect on fatty acid micelle structure. The dependence of radiation peroxidation on lipid structure in the micelles may be significant for studies of peroxidation in highly structured cell membranes. (author)

  13. Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562

    Isoda, Hiroko; Nakahara, Tadaatsu

    1997-01-01

    Mannosylerythritol lipid (MEL), which induced granulocytic differentiation of human promyelocytic leukemia cell line HL60, also induced differentiation of human myelogenous leukemia cell line K562. MEL inhibited insulin-dependent cell proliferation and induced leukocyte esterase activity of K562 cells. MEL markedly increased the differentiation-associated characteristics in granulocytes, such as nitroblue tetrazolium (NBT) reducing ability, expression of Fc receptors, and phagocytic activity ...

  14. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats

    Snehal S Patel

    2011-01-01

    Full Text Available Background: Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. Objective: This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. Materials and Methods: Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.. Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o. for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. Results: Injection of STZ produced significant loss of body weight (BW, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUC glucose level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. Conclusion: The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes.

  15. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule.

    Lee, Sang Gon; Jeong, Jae Han; Lee, Kyung Min; Jeong, Kyu Ho; Yang, Huisuk; Kim, Miroo; Jung, Hyungil; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    Nanostructured lipid carriers (NLCs) were employed to formulate a lipophilic drug into hydrophilic polymeric microneedles (MNs). Hyaluronic acid (HA) was selected as a hydrophilic and bioerodible polymer to fabricate MNs, and nile red (NR) was used as a model lipophilic molecule. NR-loaded NLCs were consolidated into the HA-based MNs to prepare NLC-loaded MNs (NLC-MNs). A dispersion of NLCs was prepared by high-pressure homogenization after dissolving NR in Labrafil and mixing with melted Compritol, resulting in 268 nm NLCs with a polydispersity index of 0.273. The NLC dispersion showed a controlled release of NR over 24 hours, following Hixson-Crowell's cube root law. After mixing the NLC dispersion with the HA solution, the drawing lithography method was used to fabricate NLC-MNs. The length, base diameter, and tip diameter of the NLC-MNs were approximately 350, 380, and 30 μm, respectively. Fluorescence microscopic imaging of the NLC-MNs helped confirm that the NR-loaded NLCs were distributed evenly throughout the MNs. In a skin permeation study performed using a Franz diffusion cell with minipig dorsal skin, approximately 70% of NR was localized in the skin after 24-hour application of NLC-MNs. Confocal laser scanning microscopy (z-series) of the skin at different depths showed strong fluorescence intensity in the epidermal layer, which appeared to spread out radially with the passage of time. This study indicated that incorporation of drug-loaded NLCs into MNs could represent a promising strategy for controlled dermal delivery of lipophilic drugs. PMID:24403833

  16. Understanding interactions of oleic acid with basic drugs in solid lipids on different biopharmaceutical levels

    Zdravka Misic

    2014-06-01

    Full Text Available Recently, the impact of intestinal supersaturation on absorption of poorly water-soluble drugs has raised much interest among researchers. A focus has been mostly to study excipient effects on maintenance of drug supersaturation. The aim of the present study was to better understand the effects of drug-excipient interactions on the level of the anhydrous formulation, upon dispersion in simple buffer media and, in particular, regarding precipitation kinetics. A solid lipid-based formulation comprising PEG-32 stearate and oleic acid (OA (8:2 w/w was developed as a model. Loratadine (pKa = 4.33 and carvedilol (pKa = 8.74 were chosen as basic drugs. UV/FTIR spectroscopy and viscometry were used to characterize drug-OA molecular interactions in solution, while solid formulations were studied using x-ray diffraction, thermal analysis and van’t Hoff solubility-temperature plots. Precipitation kinetics of drug formulations was real-time monitored in phosphate buffer (pH = 6.5 by focused beam reflectance measurements. It was found that the addition of OA in the formulations resulted in substantial drug solubility increase. Although the drug-OA interactions appeared to be partially lost upon formulation dispersion, the extent of precipitation was markedly lowered compared to the formulations without OA. A Precipitation number (Pnc was introduced as a ratio of a relevant residence time of drug in the gastrointestinal tract (GIT to the induction time (the onset time of crystalline precipitation. Without OA, Pnc was already taking critical values (>1, while the anhydrous formulation was still below saturation for both model drugs. Interestingly, the addition of OA resulted in amorphous instead of crystalline precipitates, which is advantageous for drug re-dissolution and absorption. In conclusion, this study provides an improved understanding of OA and basic drug interactions on different levels of in vitro performance for more rational oral formulation

  17. Effect of folic acid on hematological changes in methionine-induced hyperhomocysteinemia in rats

    Ansari M

    2009-01-01

    Full Text Available The present study was designed to investigate the effect of folic acid on homocysteine, lipid profile and hematological changes in methionine-induced hyperhomocysteinemic rats. Hyperhomocysteinemia was induced by methionine (1 g/kg, p.o. administration for 30 days. Biochemical and hematological observations were further substantiated with histopathological examination. The increase in homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides levels with reduction in the levels of high density lipoprotein in serum were the salient features observed in methionine treated toxicologic control rats (i.e. group II. Hematological observations of the peripheral blood smears of toxicologic rats also showed crenation of red blood cells membrane and significant (P< 0.01 increase in total leukocyte count, differential leukocyte count and platelet counts with significant (P< 0.01 decrease in the mean hemoglobin levels, as compared to vehicle control rats. Administration of folic acid (100 mg/kg, p.o. for 30 days to methionine- induced hyperhomocysteinemic rats produced a significant (P< 0.01 decrease in the levels of homocysteine, total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol and triglycerides with significant (P< 0.01 increase in high density lipoprotein-cholesterol levels in serum when compared with toxicologic control rats. The present study, for the first time, investigates the effect of folic acid treatment on hematological changes in rats with methionine-induced hyperhomocysteinemia.

  18. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells

    Lovrić Jasmina

    2007-02-01

    Full Text Available Abstract Background Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable. Results We show here that QD surface modifications with N-acetylcysteine (NAC alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye. Conclusion QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.

  19. Isolation and Characterization of Chicken Yolk Vitelline Membrane Lipids Using Eggs Enriched With Conjugated Linoleic Acid.

    Shinn, Sara Elizabeth; Liyanage, Rohana; Lay, Jackson O; Proctor, Andrew

    2016-06-01

    The vitelline membrane (VM) encloses the chicken egg yolk, separating it from albumen. The VM weakens during storage, and dietary lipid modification significantly affects its strength. However, no studies have characterize the fatty acyl residue (FA) composition of the VM, and reports of VM isolation and quantified lipid content are inconsistent. Therefore, the objectives of this study were: (1) to develop a washing and isolation method that removes residual yolk from VM without damage; (2) to determine the FA and lipid composition of CLA-rich egg yolk VM, relative to controls; (3) to determine the effect of 20 days of refrigeration on VM FA and lipid composition. To determine VM FA and lipid composition, 36 hens received either a corn-soybean meal-based control diet ("Control"), or the Control supplemented with either 10 % soy oil ("Soy control"), or 10 % CLA-rich soy oil ("CLA") for 30 days. VM were analyzed the day of collection ("fresh"), or after 20 days of refrigeration ("refrigerated"). There were no differences in FA compositions of fresh and refrigerated membranes within a treatment. CLA-rich yolk VM contains CLA, greater SFA, and significantly greater DHA relative to controls. Direct MALDI-TOF-MS identified 15 phosphatidylcholines, three phosphatidylethanolamines, one sphingomyelin, and 15 triacylglycerols in VM. Lipid species that showed significant differences among egg types included nine phosphatidylcholines and six triacylglycerols. MALDI analysis indicated significant differences in nine lipid classes on the VM inner layer. After refrigeration, five lipid classes on the inner layer and seven lipid classes on the outer layer had statistically significant differences among VM types. PMID:27108035

  20. Investigation of lipid profile and occular oxidative stress of Chloroxylon swietenia on Streptozotocin-nicotinamide-induced diabetic rats

    Aravind Patchimatla

    2014-01-01

    Full Text Available Background: Diabetes mellitus is a chronic metabolic disorder, characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. Aim: This investigation was designed to study the antidiabetic effect of Ethanolic extract of Chloroxylon swietenia (EECS in Streptozotocin-Nicotinamide-induced type-II diabetes in rats. Materials and Methods: The extract at doses of 250 and 500 mg/kg was given to the overnight-fasted Wistar albino rats for 14 days and the antidiabetic, lipid profile and ocular oxidative stress in Streptozotocin-Nicotinamide-induced diabetic rats were evaluated. The parameters studied were blood glucose, lipid profile [total cholesterol (TC, triglyceride (TG, high-density lipoprotein (HDL, low-density lipoprotein (LDL and very low-density lipoprotein (VLDL], serum enzymes such as serum glutamate pyruvate transaminase (SGPT, serum glutamate oxaloacetate transaminase (SGOT, antioxidant enzymes like catalase (CAT, thiobarbituric acid reactive substances (TBARS, glutathione (GSH, complete blood picture (RBC, haemoglobin, WBC, insulin and liver glycogen levels. The result of test drug was compared with diabetic control. Glibenclamide (10 mg/kg was selected as standard hypoglycaemic drug. Statistical Analysis: Results were expressed as Mean ± SD. Dunnet′s and one-way ANOVA test was used to compare the mean values of test groups and diabetic control. Results: Administration of EECS prior to glucose overload resulted significant attenuation in blood sugar level at 60 and 120 min in comparison to glucose control group. The antidiabetic activity of EECS showed significant (P < 0.001 reduction in blood glucose level at 250 mg/kg and 500 mg/kg dose levels at 14 th day. EECS with (250 and 500 mg/kg also decreased in serum SGOT, SGPT, TG, TC, VLDL-C, LDL-C, WBC and TBARS, in diabetic-induced rats. In addition EECS at (250 and 500 mg/kg increased liver glycogen, insulin, complete blood picture RBC, haemoglobin