WorldWideScience

Sample records for acid dehydrogenase activity

  1. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenyl...

  2. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    Van Hall, Gerrit; MacLean, D A; Saltin, B; Wagenmakers, A J

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one......-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control and...... BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post...

  3. Genetic analysis of central carbon metabolism unveils an amino acid substitution that alters maize NAD-dependent isocitrate dehydrogenase activity.

    Nengyi Zhang

    Full Text Available BACKGROUND: Central carbon metabolism (CCM is a fundamental component of life. The participating genes and enzymes are thought to be structurally and functionally conserved across and within species. Association mapping utilizes a rich history of mutation and recombination to achieve high resolution mapping. Therefore, applying association mapping in maize (Zea mays ssp. mays, the most diverse model crop species, to study the genetics of CCM is a particularly attractive system. METHODOLOGY/PRINCIPAL FINDINGS: We used a maize diversity panel to test the CCM functional conservation. We found heritable variation in enzyme activity for every enzyme tested. One of these enzymes was the NAD-dependent isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, in which we identified a novel amino-acid substitution in a phylogenetically conserved site. Using candidate gene association mapping, we identified that this non-synonymous polymorphism was associated with IDH activity variation. The proposed mechanism for the IDH activity variation includes additional components regulating protein level. With the comparison of sequences from maize and teosinte (Zea mays ssp. Parviglumis, the maize wild ancestor, we found that some CCM genes had also been targeted for selection during maize domestication. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficacy of association mapping for dissecting natural variation in primary metabolic pathways. The considerable genetic diversity observed in maize CCM genes underlies heritable phenotypic variation in enzyme activities and can be useful to identify putative functional sites.

  4. Branched chain amino acid transaminase and branched chain alpha-ketoacid dehydrogenase activity in the brain, liver and skele­tal muscle of acute hepatic failure rats

    Takei,Nobuyuki

    1985-02-01

    Full Text Available Branched chain amino acid (BCAA transaminase activity increased in both the mitochondrial and supernatant fractions of brain from hepatic failure rats, in which a partial hepatectomy was performed 24h following carbon tetrachloride (CCl4 administration, although the activity of liver and skeletal muscle was the same as in control rats. The elevation of mitochondrial BCAA transaminase activity in liver-injured rats was partly due to increased activity of brain specific Type III isozyme. Branched chain alpha-ketoacid (BCKA dehydrogenase in the brain homogenates was not significantly altered in acute hepatic failure rats, while the liver enzyme activity was markedly diminished. BCKA dehydrogenase activity in the brain homogenates was inhibited by adding ATP to the assay system, and was activated in vitro by preincubating the brain homogenate at 37 degrees C for 15 min. These findings suggest that brain BCAA catabolism is accelerated in acute hepatic failure rats.

  5. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2.

    Kratschmar, Denise V; Vuorinen, Anna; Da Cunha, Thierry; Wolber, Gerhard; Classen-Houben, Dirk; Doblhoff, Otto; Schuster, Daniela; Odermatt, Alex

    2011-05-01

    Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors. PMID:21236343

  6. Regulation of human class I alcohol dehydrogenases by bile acids

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  7. Fatty acids and the regulation of pyruvate dehydrogenase interconversion

    Stewart, Melanie Ann.

    1997-01-01

    This thesis presents evidence for a novel mechanism of regulation of pyruvate dehydrogenase (PDH) kinase by fatty acids and also results of a study of muscle triacylglycerol concentration. In animals regulation of PDH complex activity is central to the selection of respiratory fuels and to the conservation of glucose during carbohydrate deprivation. The principal means of regulation of PDH complex is interconversion of phosphorylated (inactive) and dephosphorylated (active) fo...

  8. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between...

  9. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  10. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  11. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  12. Response of cytokinin pool and cytokinin oxidase/dehydrogenase activity to abscisic acid exhibits organ specificity in peas

    Vaseva, I.; Todorova, D.; Malbeck, Jiří; Trávníčková, Alena; Macháčková, Ivana

    2008-01-01

    Roč. 30, č. 2 (2008), s. 151-155. ISSN 0137-5881 Institutional research plan: CEZ:AV0Z50380511 Keywords : Abscisic acid * Cytokinins * Cytokinin Subject RIV: EF - Botanics Impact factor: 0.807, year: 2008

  13. Effect of alkyl polyglucoside and nitrilotriacetic acid combined application on lead/pyrene bioavailability and dehydrogenase activity in co-contaminated soils.

    Chen, Tingru; Liu, Xiaoyan; Zhang, Xinying; Chen, Xiao; Tao, Kaiyun; Hu, Xiaoxin

    2016-07-01

    At present, few research focus on the phytoremediation for organic pollutants and heavy metals enhanced by surfactants and chelate agents in the combined contaminated soils or sediments. In this study, the effect of a novel combined addition of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) into pyrene and lead (Pb) co-contaminated soils on bioaccessiblity of pyrene/Pb and dehydrogenase activities (DHA) was studied. Through the comparison of the results with the alone and combined application, synergistic effect on bioaccessiblity of pyrene and Pb was found while APG and NTA was applied together. Results also indicated a significant promotion on the DHA in mixed addition of APG and NTA. In addition, correlation and principal component analysis were performed to better understand the relationship among APG/NTA, bioaccessiblity of pyrene/Pb and the DHA. Results showed that APG and NTA can affect DHA directly by themselves but also can affect DHA indirectly by changing bioaccessible pyrene and exchangeable Pb. PMID:27085066

  14. Alcohol dehydrogenase activity in immobilized yeast cells

    A method for the immobilization of Saccharomyces cerevisiae was developed and the activity of alcohol dehydrogenase of the immobilized cells was determined. The treatment of the yeast cells with 1 % toluene followed by irradiation with acrylamide and bisacrylamide resulted in a high activity of alcohol dehydrogenase in the immobilized cells. The enzyme of the immobilized cells was stable in the pH range of 7.5 - 8.0 and the optimum pH opposed to be 8.5. Although the immobilized cells showed a rather low level of thermostability, it is suggested that they could be used for a long period of time at a temperature of 27 deg C. The immobilized cells did not exhibit any loss in the enzyme activity when stored at 4 deg C or -20 deg C. (author)

  15. Cloning and expression of bacterial genes coding amino acid dehydrogenases (oxidoreductases)

    Full text: The synthesis of 15N-labeled amino acids from the corresponding α-ketoacids can be accomplished in vitro using bacterial NAD-dependent amino acid dehydrogenases. The example of alanine dehydrogenase (AlaDH) and leucine dehydrogenase (LeuDH) will be presented here. Both enzymes belong to NAD dependent oxidoreductase family. AlaDH or L-alanine NAD-oxidoreductase (EC 1.4.1.1) promotes the reversible oxidative deamination of L-alanine to pyruvate (pyruvic acid). LeuDH or L-leucine NAD-oxidoreductase (EC 1.4.1.9) catalyses the reversible oxidative deamination of many related L-amino acids to corresponding α-ketoacids. The bacterial genes encoding AlaDH from Bacillus subtilis and LeuDH from Bacillus stearothermophilus were cloned separately in pET21b vector, and overexpressed in Escherichia coli BL21(DE3) strain. The [15N]L-alanine was synthesized by reductive amination of pyruvate, in the presence of 15NH4Cl, NADH, AlaDH and glucose dehydrogenase. The [15N]L-leucine, [15N]L-isoleucine, [15N]L-norleucine, [15N]L-valine and [15N]L-norvaline were produced in the same conditions using LeuDH, as a catalyst, and α- ketoisocaproate, DL-α-keto-β-methyl-n-valerate, α-ketocaproate, α-ketoisovalerate and α-ketovalerate, respectively, as substrates. In all cases, the reaction mixtures included glucose dehydrogenase for NADH regeneration with glucose as electron donor. The NADH renewal is more convenient with glucose dehydrogenase than other methods described before using formate dehydrogenase or alcohol dehydrogenase. The glucose dehydrogenase is very active and do not inhibit 15N-labeled amino acid synthesis. As determined by mass spectroscopy, the 15N-labeled amino acids were synthesized with yields between 60% and 95%. Our results demonstrate the usefulness of recombinant amino acid dehydrogenases for in vitro synthesis of 15N-labeled amino acids. (author)

  16. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... activity (P < 0.05) and increased PDH kinase 4 mRNA (P < 0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with...... pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in...

  17. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  18. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  19. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  20. In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

    Mun, Ju-Ae; Doh, Eunjin; Min, Hyesun

    2008-01-01

    Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde an...

  1. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  2. NAD(H recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase

    2006-03-01

    Full Text Available A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens and lactate dehydrogenase (LDH; from Bacillus stearothermophilus was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.

  3. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  4. Purification of a branched-chain keto acid dehydrogenase from Pseudomonas putida.

    Sokatch, J R; McCully, V; Roberts, C M

    1981-01-01

    We purified branched-chain keto acid dehydrogenase to a specific activity of 10 mumol/min per mg of protein from Pseudomonas putida grown on valine. The purified enzyme was active with 2-ketoisovalerate, 2-ketoisocaproate, and 2-keto-3-methylvalerate in a ratio of 1.0:0.8:0.7 but showed no activity with either pyruvate or 2-ketoglutarate. There were four polypeptides in the purified enzyme (molecular weights, 49,000, 46,000, 39,000, and 37,000). The purified enzyme was deficient in the specif...

  5. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia.

    Chowdhury, Suchandra; Chandra, Sarmila; Mandal, Chitra

    2014-10-01

    Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy. PMID:25283637

  6. Identification of essential amino-acid residues in Azotobacter vinelandii isocitrate dehydrogenase by radical anions and H atoms

    Pure TPN+-specific isocitrate dehydrogenase from Azotobacter vinelandii was irradiated with H atoms generated in a γ-irradiated solution at pH 6.5. A G(-activity) = 0.12 +- 0.01 was found. At the same time no corresponding loss in free sulfhydryls was observed. These results confirmed the essentiality of methionine for the enzymatic activity as known from previous studies. Irradiation with the radical anions, (CNS)2- and Br2- generated in γ-irradiated solutions at pH 6.5, strongly inactivated isocitrate dehydrogenase with yields of G(-activity) of 2.1 and 3.9, respectively. Part of the inactivating effect, however, is due to oxidation of sulfhydryl groups. These results lead to the conclusion that tryptophan is an essential amino-acid residue to isocitrate dehydrogenase from A. vinelandii. The presence of tryptophan in the enzyme was demonstrated by pulse radiolysis

  7. Subcellular localization of branched-chain amino acid aminotransferase and lactate dehydrogenase C4 in rat and mouse spermatozoa.

    Montamat, E E; Vermouth, N T; Blanco, A

    1988-11-01

    Spermatozoa isolated from rat and mouse epididymes show a relatively high branched-chain amino acid aminotransferase (leucine aminotransferase, EC 2.6.1.6) activity. There is a significant reduction of leucine aminotransferase and of the isoenzyme C4 of lactate dehydrogenase (EC 1.1.1.27) in the gametes during their epididymal transit. Studies of patterns of liberation of the leucine aminotransferase and of the lactate dehydrogenase C4 from intact spermatozoa, treated with increasing concentrations of digitonin, indicate that both enzymes have the same dual subcellular location, i.e. in the cytosol and in the mitochondria. PMID:3214422

  8. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  9. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange.

    Pettit, F H; Humphreys, J; Reed, L J

    1982-01-01

    Endogenous kinase activity of highly purified pyruvate dehydrogenase complex from bovine kidney is markedly inhibited by N-ethylmaleimide and by certain disulfides. Inhibition by disulfides is highly specific and is reversed by thiols. 5,5'-Dithiobis(2-nitrobenzoate) is the most potent inhibitor, showing significant inhibition at a concentration as low as 1 microM. Cystamine, oxidized glutathione, pantethine, lipoic acid, lipoamide, ergothionine, insulin, oxytocin, and vasopressin were ineffe...

  10. Microbial and xanthine dehydrogenase inhibitory activity of some flavones.

    Khobragade, C N; Bodade, Ragini G; Shinde, M S; Jaju, Deepa R; Bhosle, R B; Dawane, B S

    2008-06-01

    Xanthine dehydrogenase (XDH) is responsible for the pathological condition called Gout. In the present study different flavones synthesized from chalcone were evaluated in vitro for their inhibitory activity. Inhibitory activity of flavones on XDH was determined in terms of inhibition of uric acid synthesis from Xanthine. The enzymatic activity was found maximum at pH 7.5 and temperature 40 degrees C. The flavones 6-chloro-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(1)) and 6-chloro-7methyl-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(2)),were noncompetitive and competitive inhibitor with Ki values 1.1 and 0.22 respectively. The flavones (F(1)), (F(2)), 6-chloro-2-[3-(4-chloro-phenyl)-1phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(3)), 8-bromo-6-chloro-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(4)), 2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(5)) and 6-methyl-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(6)) were also screened for their antimicrobial activity, measured in terms of zone of inhibition. A broad spectrum antifungal activity was obtained against Trichoderma viridae, Candida albicans, Microsporum cannis, Penicillium chrysogenum and Fusarium moniliformae. In case of Aspergillus niger and Aspergillus flavous only spore formation was affected, while antibacterial activity was observed against Staphylococcus aureus, Bacillus subtilis and Serratia marsecens only. The flavones were further analyzed for quantitative structural activity relationship study (QSAR) by using PASS, online software to determine their Pa value. Toxicity and drug relevant properties were revealed by PALLAS software in terms of their molecular weight. Log P values were also studied. The result showed both the F(1) and F(2) flavones as antigout and therefore supports the development of novel drugs for the treatment of gout. PMID:18569337

  11. Solution structures of lipoyl domains of the 2-oxo acid dehydrogenase complexes from Azotobacter vinelandii. Implications for molecular recognition.

    Berg, A.

    1997-01-01

    The 2-oxo acid dehydrogenase complexes are large multienzyme complexes that catalyse the irreversible oxidative decarboxylation of a specific 2-oxo acid to the corresponding acyl-CoA derivative. The pyruvate dehydrogenase complex (PDHC) converts the product of the glycolysis, pyruvate, to acetyl-CoA, which enters the tricarboxylic acid cycle. The 2-oxoglutarate dehydrogenase complex (OGDHC functions in the tricarboxylic acid cycle itself by converting 2-oxoglutarate to succinyl-CoA. The branc...

  12. Novel yeast cell dehydrogenase activity assay in situ.

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  13. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  14. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  15. Overexpression of Lactobacillus casei d-Hydroxyisocaproic Acid Dehydrogenase in Cheddar Cheese†

    Broadbent, Jeffery R.; Gummalla, Sanjay; Hughes, Joanne E.; Johnson, Mark E.; Rankin, Scott A.; Drake, Mary Anne

    2004-01-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that α-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable α-keto acids to more-stable α-hydroxy acids via the action of α-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydro...

  16. Efficient production of (R-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system.

    Binbin Sheng

    Full Text Available (R-2-hydroxy-4-phenylbutyric acid [(R-HPBA] is a key precursor for the production of angiotensin-converting enzyme inhibitors. However, the product yield and concentration of reported (R-HPBA synthetic processes remain unsatisfactory.The Y52L/F299Y mutant of NAD-dependent D-lactate dehydrogenase (D-nLDH in Lactobacillus bulgaricus ATCC 11842 was found to have high bio-reduction activity toward 2-oxo-4-phenylbutyric acid (OPBA. The mutant D-nLDHY52L/F299Y was then coexpressed with formate dehydrogenase in Escherichia coli BL21 (DE3 to construct a novel biocatalyst E. coli DF. Thus, a novel bio-reduction process utilizing whole cells of E. coli DF as the biocatalyst and formate as the co-substrate for cofactor regeneration was developed for the production of (R-HPBA from OPBA. The biocatalysis conditions were then optimized.Under the optimum conditions, 73.4 mM OPBA was reduced to 71.8 mM (R-HPBA in 90 min. Given its high product enantiomeric excess (>99% and productivity (47.9 mM h(-1, the constructed coupling biocatalysis system is a promising alternative for (R-HPBA production.

  17. Soil dehydrogenase activity in the presence of chromium (III) and (VI)

    Wolińska A.; Stępniewska Z.

    2005-01-01

    The paper presents the influence of chromium forms (III) and (VI) on the soil dehydrogenase activity. Enzyme activities can be considered effective indicators of soil quality changes resulting from environmental stress or management practices. It was found that chromium compounds have detrimental effects on soil dehydrogenase activity. After the addition of chromium, a rapid and significant decrease in enzymatic activities was observed.

  18. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  19. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family.

    Belyaeva, Olga V; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y

    2015-06-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  20. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  1. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid.

    Jiang, Xiao-Ping; Lu, Ting-Ting; Liu, Cai-Hong; Ling, Xiao-Ming; Zhuang, Meng-Yao; Zhang, Jiu-Xun; Zhang, Ye-Wang

    2016-07-01

    Epoxy functionalized magnetic Fe3O4@SiO2 nanoparticles were successfully prepared and characterized by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared nanoparticles were used for immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae by covalent attachment. The optimal immobilization conditions were obtained as follows: enzyme/support 4.49mg/g, pH 8.0, buffer concentration 0.05M, time 12h and temperature 30°C. Under these conditions, a high immobilization yield and efficiency of above 92% were obtained after the optimization. Broad pH tolerance and high thermostability were achieved by the immobilization. The immobilized ADH retained about 84% initial activity after five cycles. Kinetic parameters Vmax and Km of free and immobilized ADH were determined as 56.72μM/min, 44.27μM/min and 11.54mM, 31.32mM, respectively. (R)-mandelic acid synthesis with the immobilized ADH was carried out, and the yield of (R)-mandelic acid was as high as 64%. These results indicate that the ADH immobilized onto epoxy-functionalized nanoparticles is an efficient and simple way for preparation of stable ADH, and the immobilized ADH has potential applications in the production of (R)-mandelic acid. PMID:26995611

  2. 17 beta-hydroxysteroid dehydrogenase activity in canine pancreas

    The mitochondrial fraction of the dog pancreas showed NAD(H)-dependent enzyme activity of 17 beta-hydroxysteroid dehydrogenase. The enzyme catalyzes oxidoreduction between androstenedione and testosterone. The apparent Km value of the enzyme for androstenedione was 9.5 +/- 0.9 microM, the apparent Vmax was determined as 0.4 nmol mg-1 min-1, and the optimal pH was 6.5. In phosphate buffer, pH 7.0, maximal rate of androstenedione reduction was observed at 37 degrees C. The oxidation of testosterone by the enzyme proceeded at the same rate as the reduction of the androstenedione at a pH of 6.8-7.0. The apparent Km value and the optimal pH of the enzyme for testosterone were 3.5 +/- 0.5 microM and 7.5, respectively

  3. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Nagaharu, Keiki; Ikemura, Kenji; Yamashita, Yoshiki; Oda, Hiroyasu; Ishihara, Mikiya; Sugawara, Yumiko; Tamaru, Satoshi; Mizuno, Toshiro; Katayama, Naoyuki

    2016-01-01

    Over the past decades, 5-Fluorouracil (5-FU) has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD) activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment. PMID:27195162

  4. Evaluation of Serum Lactate Dehydrogenase Activity in a Virtual Environment

    V.M.T. Trindade

    2013-05-01

    Full Text Available Introduction: Lactate dehydrogenase is a citosolic enzyme involved in reversible transformation of pyruvate to lactate. It participates in anaerobic glycolysis of skeletal muscle and red blood cells, in liver gluconeogenesis and in aerobic metabolism of heart muscle. The determination of its activity helps in the diagnosis of various diseases, because it is increased in serum of patients suffering from myocardial infarction, acute hepatitis, muscular dystrophy and cancer. This paper presents a learning object, mediated by computer, which contains the simulation of the laboratory determination serum lactate dehydrogenase activity measured by the spectrophotometric method, based in the decrease of absorbance at 340 nm. Materials and Methods: Initially, pictures and videos were obtained recording the procedure of the methodology. The most representative images were selected, edited and inserted into an animation developed with the aid of the tool Adobe ® Flash ® CS3. The validation of the object was performed by the students of Biochemistry I (Pharmacy-UFRGS from the second semester of 2009 and both of 2010. Results and Discussion: The analysis of students' answers revealed that 80% attributed the excellence of the navigation program, the display format and to aid in learning. Conclusion: Therefore, this software can be considered an adequate teaching resource as well as an innovative support in the construction of theoretical and practical knowledge of Biochemistry. Available at: http://www6.ufrgs.br/gcoeb/LDH

  5. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibrob...

  6. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity.

    Tiosano, Dov; Eisentein, Israel; Militianu, Daniela; Chrousos, George P; Hochberg, Ze'ev

    2003-01-01

    After extensive suprasellar operations for hypothalamic tumor removal, some patients develop Cushing-like morbid obesity while they receive replacement doses of glucocorticoids. In this study, we examined the hypothesis that target tissue conversion of inactive 11-ketosteroids to active 11 beta-OH glucocorticoids might explain the obesity of some patients with hypothalamic lesions. Toward this aim, we studied 10 patients with hypothalamic obesity and secondary adrenal insufficiency and 6 control Addisonian patients while they were on glucocorticoid replacement therapy. Pituitary hormone deficiencies were replaced when medically indicated. Twenty-four-hour urine was collected after a single oral dose of 12 mg/m(2) hydrocortisone acetate. The ratios of free and conjugated cortisol (F) to cortisone (E) and their metabolites, [tetrahydrocortisol (THF)+5 alpha THF]/tetrahyrdocortisone (THE), dihydrocortisols/dihydrocortisones, cortols/cortolones, and (F+E)/(THF+THE+5 alpha THF), were considered to represent 11 beta-hydroxysteroid dehydrogenase (HSD) activity. The 11-OH/11-oxo ratios were significantly higher in the urine of patients with hypothalamic obesity. The 11-OH/11-oxo ratios, however, did not correlate with the degree of obesity, yet a significant correlation was found between conjugated F/E and the ratio of visceral fat to sc fat measured by computerized tomography at the umbilical level. The consequence of increased 11 beta-HSD1 activity and the shift of the interconversion toward cortisol may contribute to the effects of the latter in adipose tissue. We propose that deficiency of hypothalamic messengers after surgical injury induces a paracrine/autocrine effect of enhanced glucocorticoid activity due to up-regulated 11 beta-HSD1 activity. PMID:12519880

  7. Furosemide and 11beta-hydroxysteroid dehydrogenase activity, in man.

    Palermo, M; Armanini, D; Shackleton, C H L; Sorba, G; Cossu, M; Roitman, E; Scaroni, C; Delitala, G

    2002-09-01

    Mineralocorticoid receptors possess the same affinity for aldosterone and for cortisol and preferential binding of aldosterone is modulated by the 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) enzyme, which converts cortisol to its inactive metabolite cortisone. Several endogenous or exogenous compounds able to inhibit the enzyme have been described and, as a consequence, produce the syndrome of apparent mineralocorticoid excess (AME) characterized by hypertension, hypokalemia, volume repletion and suppression of the renin-angiotensin-aldosterone system. High doses of furosemide, a diuretic that works in the luminal surface of the thick ascending limb of Henle's loop, have been reported to inhibit 11 beta-OHSD activity to the same extent as licorice in vivo and in vitro, in rat. The aim of our study was to verify the effect of the drug on 11 beta-OHSD activity in man at the doses currently used in clinical practice. We tested the activity of 11 beta-OHSD following both acute and protracted administration of furosemide. In the acute study, the drug was administered at low (40 mg i.v. in bolo) and high doses (infusion of 10 mg/kg bw i.v for six hours); the protracted furosemide administration consisted in 50 mg/day for 20 days, by mouth. The ratios between the cortisol metabolites tetrahydrocortisol plus allo-tetrahydrocortisol to tetra-hydrocortisone and urinary free cortisol to urinary free cortisone were used to measure the activity of 11 beta-OHSD. Urinary cortisol, cortisone and their metabolites were tested by a gas-chromatographic/mass spectrometric method. Neither acute nor prolonged administration of furosemide did affect the activity of 11 beta-OHSD although the drug was able to modify plasma aldosterone and PRA secretion and to determine hypokalemia. Our results suggest that furosemide does not play a significant role in 11 beta-OHSD modulation in humans, at least at the dosage used in clinical practice. PMID:12373630

  8. The Function of Retinol Dehydrogenase 1 in Retinoic Acid Synthesis and Metabolic Regulation

    Krois, Charles Robert

    2011-01-01

    Retinol dehydrogenases (RDH) convert retinol into retinal, the intermediate in the biosynthesis of retinoic acid. All-trans-retinoic acid (atRA) regulates gene transcription and/or translation through retinoic acid receptors (RARs) and PPARδ (1). To test function of Rdh1, an efficient (Vmax/Km) and widely distributed RDH (2), our lab created Rdh1 knockout (KO) mice (3). Initial study of Rdh1-KO mice determined that when fed a low or vitamin A-deficient (VAD) diet, Rdh1-KO mice gain 33% ...

  9. [Possible ways of regulating detoxifying processes in the alcohol dehydrogenase reaction with pantothenic acid derivatives].

    Chernikevich, I P; Dorofeev, B F; Moĭseenok, A G

    1993-01-01

    Oxidation of derivatives and precursors of pantothenic acid was studied in alcohol dehydrogenase reactions. Despite the presence of free hydroxymethyl groups in a number of pantothenic acid derivatives only panthenol with Km = 8 x 10(-3) M was shown to serve as a substrate for alcohol dehydrogenase from horse liver tissue (EC 1.1.1.1) Pantethine, sodium phosphopantothenate, CoA and acetyl-CoA decreased the rate of ethanol oxidation, where pantethine and sodium phosphopantothenate were competitive inhibitors, while CoA and acetyl-CoA inhibited the enzyme noncompetitively Ki = 1.2 x 10(-2) M, 2.1 x 10(-2) M, 4.4 x 10(-4) M and 5.1 x 10(-4) M, respectively. Metabolic precursors, which were different from pantothenic acid in their structure, were not involved in the alcohol dehydrogenase reaction. Possible regulation of alcohol intoxication using derivatives and precursors of vitamin B3 is discussed. PMID:8511887

  10. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine.

    Bontpart, Thibaut; Marlin, Thérèse; Vialet, Sandrine; Guiraud, Jean-Luc; Pinasseau, Lucie; Meudec, Emmanuelle; Sommerer, Nicolas; Cheynier, Véronique; Terrier, Nancy

    2016-05-01

    In plants, the shikimate pathway provides aromatic amino acids that are used to generate numerous secondary metabolites, including phenolic compounds. In this pathway, shikimate dehydrogenases (SDH) 'classically' catalyse the reversible dehydrogenation of 3-dehydroshikimate to shikimate. The capacity of SDH to produce gallic acid from shikimate pathway metabolites has not been studied in depth. In grapevine berries, gallic acid mainly accumulates as galloylated flavan-3-ols. The four grapevine SDH proteins have been produced in Escherichia coli In vitro, VvSDH1 exhibited the highest 'classical' SDH activity. Two genes, VvSDH3 and VvSDH4, mainly expressed in immature berry tissues in which galloylated flavan-3-ols are accumulated, encoded enzymes with lower 'classical' activity but were able to produce gallic acid in vitro The over-expression of VvSDH3 in hairy-roots increased the content of aromatic amino acids and hydroxycinnamates, but had little or no effect on molecules more distant from the shikimate pathway (stilbenoids and flavan-3-ols). In parallel, the contents of gallic acid, β-glucogallin, and galloylated flavan-3-ols were increased, attesting to the influence of this gene on gallic acid metabolism. Phylogenetic analysis from dicotyledon SDHs opens the way for the examination of genes from other plants which accumulate gallic acid-based metabolites. PMID:27241494

  11. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS. PMID:22975125

  12. INFLUENCE OF LIMING AND WASTE ORGANIC MATERIALS ON THE ACTIVITY OF UREASE AND DEHYDROGENASE IN SOIL CONTAMINATED WITH NICKEL

    Dorota Kalembasa

    2014-10-01

    Full Text Available In soil sampled after a two-year pot experiment, the activity of urease and dehydrogenase and content of nitrogen have been determined. The experiment included three factors: 1. the amount of nickel added to the soil (0, 75, 150 and 225 mg · kg-1 of soil, 2. liming (0 and Ca according to 1 Hh hydrolytic acidity, 3. organic materials (straw of rye and brown coal. Test plant was cocksfoot, which four cuts were collected in each growing season. It was found that nickel added to the soli in dose of 75 mg · kg-1 activates enzymes studied, whereas higher doses cause them explicit deactivation. Both liming and waste organic materials limited the negative effect of higher doses of nickel on the activity of dehydrogenase and urease. Simultaneously, both straw and brown coal caused a slight increase in the amount of nitrogen in the soil.

  13. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (Putilization during prolonged exercise via effects on PDH. PMID:27327080

  14. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilisation in alcohol dehydrogenase active sites

    Klimacek, Mario; Nidetzky, B

    2009-01-01

    Abstract The side chains of Asn-191 and Asn-300 constitute a characteristic structural motif of the active site of Pseudomonas fluorescens mannitol 2-dehydrogenase that lacks precedent in known alcohol dehydrogenases and resembles the canonical oxyanion binding pocket of serine proteases. We have used steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in substrates and solvent on the enzymatic rates to delineate catalytic con...

  15. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    Corydon, M J; Gregersen, N; Lehnert, W; Ribes, A; Rinaldo, P; Kmoch, S; Christensen, E; Kristensen, T J; Andresen, B S; Bross, P; Winter, V; Martinez, G; Neve, S; Jensen, T G; Bolund, L; Kølvraa, S

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively met...

  16. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

    Rijnen, Liesbeth; Courtin, Pascal; Gripon, Jean-Claude; Yvon, Mireille

    2000-01-01

    The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so ...

  17. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G.; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-01-01

    Background Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this pot...

  18. Lipid-mediated unfolding of 3β-hydroxysteroid dehydrogenase 2 is essential for steroidogenic activity.

    Rajapaksha, Maheshinie; Thomas, James L; Streeter, Michael; Prasad, Manoj; Whittal, Randy M; Bell, John D; Bose, Himangshu S

    2011-12-27

    For inner mitochondrial membrane (IMM) proteins that do not undergo N-terminal cleavage, the activity may occur in the absence of a receptor present in the mitochondrial membrane. One such protein is human 3β-hydroxysteroid dehydrogenase 2 (3βHSD2), the IMM resident protein responsible for catalyzing two key steps in steroid metabolism: the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. Conversion requires that 3βHSD2 serve as both a dehydrogenase and an isomerase. The dual functionality of 3βHSD2 results from a conformational change, but the trigger for this change remains unknown. Using fluorescence resonance energy transfer, we found that 3βHSD2 interacted strongly with a mixture of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC). 3βHSD2 became less stable when incubated with the individual lipids, as indicated by the decrease in thermal denaturation (T(m)) from 42 to 37 °C. DPPG, alone or in combination with DPPC, led to a decrease in α-helical content without an effect on the β-sheet conformation. With the exception of the 20 N-terminal amino acids, mixed vesicles protected 3βHSD2 from trypsin digestion. However, protein incubated with DPPC was only partially protected. The lipid-mediated unfolding completely supports the model in which a cavity forms between the α-helix and β-sheet. As 3βHSD2 lacks a receptor, opening the conformation may activate the protein. PMID:22106846

  19. Simulated ischaemia-reperfusion conditions increase xanthine dehydrogenase and oxidase activities in rat brain slices.

    Battelli, M G; Buonamici, L; Virgili, M; Abbondanza, A; Contestabile, A

    1998-01-01

    Xanthine dehydrogenase and oxidase activities increased by 87% in rat brain slices after 30 min in vitro ischaemia. A further 41% increase was induced by 30 min simulated reperfusion of ischaemic slices. No conversion from the dehydrogenase to the oxidase activity was observed. The increment of enzyme activity was not due to neosynthesis of the enzyme, since it was not affected by the addition of cycloheximide during the ischaemic incubation. The increased oxygen-dependent form of the enzyme could aggravate the ischaemic brain injury by free radicals production, in particular after reperfusion. PMID:9460697

  20. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    Nellemann, Birgitte; Vendelbo, Mikkel H; Nielsen, Thomas S;

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  1. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).

    Buchhaupt, Markus; Guder, Jan; Sporleder, Fenja; Paetzold, Melanie; Schrader, Jens

    2013-03-01

    Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H(2)O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)(+) regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. PMID:23180547

  2. Direct evidence for the inactivation of branched-chain oxo-acid dehydrogenase by enzyme phosphorylation

    The branched-chain 2-oxo-acid dehydrogenase (BCOAD) from mitochondria of several different rat tissues is inactivated by ATP and can be reactivated by incubation in Mg2+-containing buffers. Work carried out on the system from skeletal muscle mitochondria has shown that inactivation requires the cleavage of the γ-phosphate group of ATP and that modification is covalent. The non-metabolized ATP analog, p[NH]ppA, can block the inhibitory effect of ATP when added prior to ATP addition, but cannot reverse the inhibition of the inactivated dehydrogenase. These and other data raise the possibility that BCOAD may be regulated by enzyme phosphorylation. This hypothesis is supported by the finding that various procedures which separate the enzyme from its mitochondrial environment (e.g. detergent treatment, ammonium sulfate precipitation and freeze-thawing) do not alter the degree of inhibition induced by ATP in the mitochondrial preincubation. These experiments suggested the feasibility of labelling the enzyme with 32P and purifying it. (Auth.)

  3. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    Ilmén, Marja; Koivuranta, Kari; Ruohonen, Laura; Rajgarhia, Vineet; Suominen, Pirkko; Penttilä, Merja

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expre...

  4. Asp295 Stabilizes the Active-Site Loop Structure of Pyruvate Dehydrogenase, Facilitating Phosphorylation of Ser292 by Pyruvate Dehydrogenase-Kinase

    Hirani, Tripty A.; Alejandro Tovar-Méndez; Miernyk, Ján A.; Randall, Douglas D.

    2011-01-01

    We have developed an in vitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thalianaα2β2-heterotetrameric pyruvate dehydrogenase (E1) plus A. thaliana E1-kinase (AtPDK). Upon addition of MgATP, Ser292, which is located within the active-site loop structure of E1α, is phosphorylated. In addition to Ser292, Asp295 and Gly297 are highly conserved in the E1α active-site loop sequences. Mutat...

  5. [Aldehyde dehydrogenase activity and level of dopamine in certain sections of the brain of rats preferring and refusing ethanol].

    Kharchenko, N K

    2000-01-01

    Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol. PMID:10979563

  6. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity.

    Bonam, D; Lehman, L.; Roberts, G P; Ludden, P W

    1989-01-01

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of [35S]methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo an...

  7. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  8. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  9. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus

    Mohan, D.; Verma, S.R.

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  10. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor.

    Zhang, Y. X.; Tang, L.; Hutchinson, C R

    1996-01-01

    A homolog of the mmsA gene of Pseudomonas aeruginosa, which encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is involved in valine catabolism in pseudomonads and mammals, was cloned and sequenced from Streptomyces coelicolor. Of the two open reading frames (ORFs) found, which are convergently transcribed and separated by a 62-nucleotide noncoding region, the deduced amino acid sequence of the msdA ORF (homologous to mmsA) is similar to a variety of prokaryotic and eukaryotic a...

  11. Nuclear Magnetic Resonance Approaches in the Study of 2-Oxo Acid Dehydrogenase Multienzyme Complexes—A Literature Review

    Mulchand S. Patel

    2013-09-01

    Full Text Available The 2-oxoacid dehydrogenase complexes (ODHc consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP, coenzyme A (CoA, Mg2+ and NAD+, to generate CO2, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc, 2-oxoglutarate dehydrogenase (OGDHc and branched-chain 2-oxo acid dehydrogenase (BCKDHc. In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components. Where studied, NMR has also provided information about mobile loops and the possible relationship of mobility and catalysis.

  12. NAD(P-DEPENDENT DEHYDROGENASE ACTIVITY IN PERIPHERAL BLOOD LYMPHOCYTES OF INFANTS WITH ENLARGEMENT OF PHARYNGEAL TONSILS

    L. M. Kurtasova

    2014-08-01

    Full Text Available We have observed and examined 57 children 1 to 3 years old diagnosed with enlargement of pharyngeal tonsils. A control group was presented by 35 healthy children. Bioluminescence technique was applied for studying NAD(P-dependent dehydrogenase activity in peripheral blood lymphocytes. Activation of aerobic respiration and increasing activity of pentose phosphate cycle-dependent plastic processes were registered in blood lymphocytes of children with hypertrophic pharyngeal tonsils; along with decreased function of malate-aspartate shunt in energy metabolism of the cells, diminished anaerobic reaction of NADHdependent LDH, lower interaction between Krebs cycle and reactions of amino acid metabolism, and reduced activity of glutathione reductase.

  13. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  14. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase.

    Makinen, M W; Yim, M B

    1981-01-01

    The coordination environment of the catalytically active metal ion of horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) has been investigated by electron paramagnetic resonance (EPR) methods with use of the active-site-specific Co2+-reconstituted enzyme. The EPR absorption spectrum of the metal-substituted enzyme is characteristic of a rhombically distorted environment. The spectrum of the enzyme--NAD+ complex shows approximate axial symmetry of the metal ion site, i...

  15. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALD...

  16. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  17. Certain enzymatic activities in brain and liver mitochondria of rats treated with pantothenic acid after irradiation

    Whole body caesium-137 gamma irradiation of rats with single dose of 5 Gy induced significant decrease in the activities of glutamate dehydrogenase, isocitrate dehydrogenase and succunate dehydrogenase in mitochondria of brain and liver. Intraperitoneal administration of pantothenic acid (20 mg/Kg body weight/day) for 5 consecutive days after irradiation resulted of detectable improvement in the radiation-induced decrease inactivities of mitochondrial enzymes. It is postulated that pantothenic acid administered to rats after irradiation might play a role in the regulation of certain mitochondrial enzymes activities

  18. FERROFLUIDS INFLUENCE ON DEHYDROGENASES ACTIVITY IN CELLULOLYTIC FUNGUS CHAETOMIUM GLOBOSUM

    Alexandru Manoliu; Lacramioara Oprica; Zenovia Olteanu; Dorina Creanga

    2003-01-01

    he activity of dehy drogenases was studied after ferrofluids supply ing in the culture medium of Chaetomium globosum. Spectral measurements were carried out after 7 and, respectively , 11 day s of growth. Different results were noticed for different ferrofluids concentrations: 20, 40, 60, 80 and 100 μl/L. Inhibitory or stimulatory ferrofluids effect was obtained depending on the nature of the investigated enzyme.

  19. Differential pulse voltammetric studies on the effects of Al(Ⅲ) on the lactate dehydrogenase activity

    2007-01-01

    In this paper, differential pulse voltammetry (DPV) was applied to study the effects of aluminum Al(Ⅲ) on the lactate dehydrogenase (LDH) activity. Michaelis-Menten constant (KNADHm) and maximum velocity (vmax) in the enzyme promoting catalytic reaction of "pyruvate(Pyr) + NADH + H+ LDH(=) lactate + NAD+" under different conditions by monitoring DPV reduction current of NAD+ were reported.(C) 2007 Shu Ping Bi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  20. Lactate Dehydrogenase and Citrate Synthase activity in cardiac and skeletal muscle of lowland and highland tinamous

    Aira, Naomi

    2013-01-01

    Tinamous (Tinamidae) have the smallest heart in relation to body mass compared to any other flying bird today (Bishop 1997). This means that heart size is likely to restrict aerobic metabolism. Tinamous inhabit areas from sea level to 4800 m a.s.l., which means that the high altitude living species, Nothoprocta ornata (NO), is exposed to hypoxia. In this study the activity of the two metabolic enzymes Lactate Dehydrogenase (LDH) and Citrate Synthase (CS) was measured and the ratio between the...

  1. Structure of d-lactate dehydrogenase from Aquifex aeolicus complexed with NAD+ and lactic acid (or pyruvate)

    Antonyuk, Svetlana V.; Strange, Richard W.; Ellis, Mark J.; Bessho, Yoshitaka; Kuramitsu, Seiki; Inoue, Yumiko; Yokoyama, Shigeyuki; Hasnain, S. Samar

    2009-01-01

    The structure of d-lactate dehydrogenase from Aquifex aeolicus has been determined with each subunit of the homodimer in a ‘closed’ conformation and with the NAD+ cofactor and lactate (or pyruvate) bound at the inter-domain active-site cleft.

  2. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH)

    Keyser, B.; Muhlhausen, C.; Dickmanns, A.; Muschol, N.; Ullrich, K.; Braulke, T.; Christensen, Ernst

    2008-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive neurometabolic disorder caused by mutations in the glutaryl-CoA dehydrogenase gene (GCDH), leading to an accumulation and high excretion of glutaric acid and 3-hydroxyglutaric acid. Considerable variation in severity of the clinical phenotype...

  3. Alcohol and Aldehyde Dehydrogenases: Retinoid Metabolic Effects in Mouse Knockout Models

    Kumar, Sandeep; Sandell, Lisa L.; Trainor, Paul A; Koentgen, Frank; Duester, Gregg

    2011-01-01

    Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and development. The first step of RA synthesis is controlled by enzymes of the alcohol dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH) that further oxidize retinaldehyde to produce RA. RA fun...

  4. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways. PMID:14705962

  5. Dehydrogenase activity of technogenic soils of former sulphur mines (Yavoriv and Nemyriv, Ukraine)

    T. Włodarczyk; M. Brzezińska; Maryskevych, O.; V. Levyk

    2007-01-01

    The dehydrogenase activity (an index of the total soil biological activity), sulphur content, pH and Corg were determined in technogenic soils of the former (1954-1994) sulphur mines in Ukraine (open pit and underground sulphur melting, Yavoriv and Nemyriv, respectively). The soils were neither managed nor reclaimed, and underwent natural self-restoration processes. Soils of former open pit sulphur mine showed Corg of 0.07-1.29%, pH of 7-7.9 and a high SO4-S content (1.7-14.7 g kg-1). Dehydro...

  6. In vitro and in situ activity of carboxymethyl cellulase and glutamate dehydrogenase according to supplementation with different nitrogenous compounds

    Isabela Pena Carvalho de Carvalho

    2012-03-01

    Full Text Available Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase and glutamate dehydrogenase (GDH. In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp. ad libitum. The treatments consisted of control (no supplementation, supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1 and supplementation with protein (albumin. In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.

  7. Active oxygen species and a degree of UV-modification of structural and functional properties of lactate dehydrogenase

    The spectrophotometry and photofluorescence techniques were used in the studies on photochemical transformations of lactate dehydrogenase exposed to UV-irradiation with a dose of 2.25 kJ/m2, in the native state and in the presence of exogenous modifiers: sodium azide, β-carotene, histidine, D-mannitol, and tret-butanol. It was shown that UV-irradiation of the mixtures of lactate dehydrogenase with sodium azide, β-carotene and histidine results in restoration (by 99, 65 and 63 %, respectively) of the level of catalytic activity of the enzyme as compared to that observed after irradiating in the absence of the protectors. The protective effect provided by mannitol during UV-irradiation of the lactate dehydrogenase was 23 %. Thus, it was shown that active oxygen species - singlet molecular oxygen and hydroxyl radical - make significant contributions to photomodification of lactate dehydrogenase. (author)

  8. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  9. Radiation-induced alterations in succinate dehydrogenase activity in the muscle of pigeon

    The histochemical changes in succinate dehydrogenase were investigated in pectoralis major muscle of pigeon exposed to sub-lethal dose (400 rad) of γ-irradiation. Biochemical study was also carried out after 200, 300 and 400 rad of irradiation. In the present study the overall decrease in enzyme activity could be due to the structural and/or functional damage to mitochondria after treatment of pigeon to different sub-lethal doses of γ-irradiation. The significance of these results has been discussed with special reference to oxidative metabolism. (author)

  10. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of [35S]methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo and in vitro. In contrast to CO dehydrogenase, the CO-induced hydrogenase was 95% inactivated by heating at 70 degrees C for 5 min. Unlike other hydrogenases, this CO-induced hydrogenase was inhibited only 60% by a 100% CO gas phase

  11. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  12. Inhibitory effects of ofloxacin and cefepime on enzyme activity of 6-phosphogluconate dehydrogenase from chicken liver.

    Erat, Mustafa; Sakiroğlu, Halis

    2007-01-01

    In this study, effects of some antibiotics, namely, ofloxacin, cefepime, cefazolin, and ampicillin on the in vitro enzyme activity of 6-phosphogluconate dehydrogenase have been investigated. For this purpose, 6-phosphogluconate dehydrogenase was purified from chicken liver 535-fold with a yield of 18% by using ammonium sulphate precipitation, 2',5'-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. In order to check the purity of the enzyme, SDS polyacylamide gel electrophoresis (SDS-PAGE) was performed. This analysis revealed a highly pure enzyme band on the gel. Among the antibiotics, ofloxacin and cefepime exhibited inhibitory effects, but cefazolin and ampicillin showed neither important inhibitory nor activatory effects on the enzyme activity. The measured I(50) values by plotting activity percent vs. inhibitor concentration, [I(50)] were 0.1713 mM for ofloxacin and 6.0028 mM for cefepime. Inhibition constants, K(i), for ofloxacin and cefepime were also calculated as 0.2740 +/- 0.1080 mM and 12.869 +/- 16.6540 mM by means of Lineweaver-Burk graphs, and inhibition types of the antibiotics were found out to be non-competitive and competitive, respectively. It has been understood from the calculated inhibitory parameters that the purified chicken enzyme has been quite inhibited by these two antimicrobials. PMID:17305608

  13. Comparative study of the activity of lactate dehydrogenase (LDH) in different forms of disease

    The activity of lactate dehydrogenase (LDH) was determined in the fluid gingival crevicular (FGC) from different sites of the anterior sector of the oral cavity in a clinically healthy subjects, and other with moderate gingivitis and with chronic severe generalized periodontists. Patients were treated and followed for three months, after the which has proceeded to make measurements of activity in the same sites discussed above. The results have showed statistically significant differences when comparing the activity of LDH in healthy individuals, and in other patients, treated by the pathology that presenting. On the other hand, were found without statistically significant differences between patients treated with clinically healthy subjects. The conclusion has been that the activity of LDH could be a quantitative marker for assessing cellular damage and evolution of treatment. (author)

  14. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests

    Kahn, Maria; LaRue, Nicole; Bansil, Pooja; Kalnoky, Michael; McGray, Sarah; Domingo, Gonzalo J

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-c...

  15. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  16. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1.

    Wu, Tung-Yun; Chen, Chang-Ting; Liu, Jessica Tse-Jin; Bogorad, Igor W; Damoiseaux, Robert; Liao, James C

    2016-06-01

    Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation. PMID:26846745

  17. Glutathione metabolism and glucose 6-phosphate dehydrogenase activity in experimental liver injury.

    Watanabe,Akiharu

    1983-12-01

    Full Text Available Increased activities of liver glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49 and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44 in the pentose phosphate cycle were accompanied with a depletion of reduced glutathione (GSH following an intragastric administration of carbon tetrachloride (CCl4 to rats. Oxidized glutathione (GSSG also decreased remarkably, keeping the GSSG: GSH ratio constant. No significant alteration of glutathione reductase (EC 1.6.4.2., glutathione peroxidase (EC 1.11.1.9 and malic enzyme (EC 1.1.1.40 activities in the supernatant and gamma-glutamyl transpeptidase (gamma-GTP, EC 2.3.2.2 activity in the homogenate of the injured liver were observed. Furthermore, no marked difference in the GSH-synthesizing activity was found between control and CCl4-intoxicated liver. An intraperitoneal injection of GSH produced a significant increase in liver GSH content in control rats but not in CCl4-treated rats; G6PD activity was not affected. Intraperitoneal injections of diethylmaleate resulted in continuously diminished levels of liver GSH without any alteration of liver G6PD activity. In vitro disappearance of GSH added to the liver homogenate from CCl4-treated rats occurred enzymatically and could not be prevented by the addition of a NADPH-generating system. The results suggest that increased G6PD activity in CCl4-injured liver does not play an important role in the maintenance of glutathione in the reduced form and that the decreased GSH content in the injured liver might be caused by enhanced GSH catabolism not due to gamma-GTP.

  18. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Research highlights: → A new mutant of PQQ-GDH designed for glucose biosensors application. → First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. → Position N428 is a key point to increase the enzyme activity. → Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  19. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.

    Spangler, N J; Meyers, M R; Gierke, K L; Kerby, R L; Roberts, G P; Ludden, P W

    1998-02-13

    In carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum, histidine 265 was replaced with valine by site-directed mutagenesis of the cooS gene. The altered form of CODH (H265V) had a low nickel content and a dramatically reduced level of catalytic activity. Although treatment with NiCl2 and CoCl2 increased the activity of H265V CODH by severalfold, activity levels remained more than 1000-fold lower than that of wild-type CODH. Histidine 265 was not essential for the formation and stability of the Fe4S4 clusters. The Km and KD for CO as well as the KD for cyanide were relatively unchanged as a result of the amino acid substitution in CODH. The time-dependent reduction of the [Fe4S4]2+ clusters by CO occurred on a time scale of hours, suggesting that, as a consequence of the mutation, a rate-limiting step had been introduced prior to the transfer of electrons from CO to the cubanes in centers B and C. EPR spectra of H265V CODH lacked the gav = 1.86 and gav = 1.87 signals characteristic of reduced forms of the active site (center C) of wild-type CODH. This indicates that the electronic properties of center C have been modified possibly by the disruption or alteration of the ligand-mediated interaction between the nickel site and Fe4S4 chromophore. PMID:9461598

  20. Effect of ionizing radiation on the colour and activity of lactate dehydrogenase of pork

    The most significant sensory and quality characteristic of meat is colour. The effect of irradiation of pork was studied in relation to color changes. Samples of M. longissimus lumborum et thoracic were obtained from the pork carcasses 24 h post mortem. Samples were irradiated using a 60Co source, at dose of 2.5 and 5 kGy; dose rate of 2.86 kGy/h. Unirradiated controls were stored in the same condition as irradiated samples. Measurement of colour was realised with portable spectrophotometer Superchroma S-Spex in CIELAB system. The colour of a freshly cut interior surface of control and irradiated pork was measured before and after irradiation. L* and b* values of controls and irradiated pork did not change after irradiation. The a* values (red colour) of irradiated pork were significantly higher than unirradiated. The activity of lactate dehydrogenase of pork was measured after irradiation. The activity did not change after irradiation. (authors)

  1. Lactate dehydrogenase-elevating virus induces systemic lymphocyte activation via TLR7-dependent IFNalpha responses by plasmacytoid dendritic cells.

    Christoph G Ammann

    Full Text Available BACKGROUND: Lactate dehydrogenase-elevating virus (LDV is a natural infectious agent of mice. Like several other viruses, LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood. The mechanism of this activation has not been fully described and is the focus of the current studies. PRINCIPAL FINDINGS: A known inducer of early lymphocyte activation is IFNalpha, a cytokine strongly induced by LDV infection. Neutralization of IFNalpha in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary source of virus-induced IFNalpha in vivo is often plasmacytoid dendritic cells (pDC's, we depleted these cells prior to LDV infection and tested for lymphocyte activation. Depletion of pDC's in vivo eradicated both the LDV-induced IFNalpha response and lymphocyte activation. A primary receptor in pDC's for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7 pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNalpha response and lymphocyte activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNalpha response. CONCLUSION: Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7 pattern recognition receptors in pDC's that respond with a lymphocyte-inducing IFNalpha response.

  2. MFE1, a Member of the Peroxisomal Hydroxyacyl Coenzyme A Dehydrogenase Family, Affects Fatty Acid Metabolism Necessary for Morphogenesis in Dictyostelium spp.

    Matsuoka, Satomi; Saito, Tamao; Kuwayama, Hidekazu; Morita, Naoki; Ochiai, Hiroshi; Maeda, Mineko

    2003-01-01

    β-Oxidation of long-chain fatty acids and branched-chain fatty acids is carried out in mammalian peroxisomes by a multifunctional enzyme (MFE) or d-bifunctional protein, with separate domains for hydroxyacyl coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and steroid carrier protein SCP2. We have found that Dictyostelium has a gene, mfeA, encoding MFE1 with homology to the hydroxyacyl-CoA dehydrogenase and SCP2 domains. A separate gene, mfeB, encodes MFE2 with homology to the enoyl-CoA h...

  3. A new bianthron glycoside as inhibitor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity

    A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi- 10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 +-2.47 μmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease. (author)

  4. The effect of ionizing radiation on the colour and the activity of lactate dehydrogenase in pork

    The effect of the irradiation of pork was studied in relation to colour changes. Samples of m. longissimus lumborum et thoracis were obtained from pork carcasses 24 hours post mortem. Samples were irradiated using a 6OCo source, at a dose of 2.5 and 5 kGy; a dose rate of 2.86 kGy·h-1. Non-irradiated controls were stored in the same condition as irradiated samples. The colour of a freshly cut interior surface of control and irradiated pork was measured (portable spectrophotometer Superchroma S-Spex in CIELAB system) before and after irradiation. L* and b* values of controls and irradiated pork did not change after irradiation. The a* values (red colour) of irradiated pork were significantly higher than non-irradiated pork. The activity of lactate dehydrogenase of pork was measured and did not change after irradiation (authors)

  5. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  6. Vitality Improvement of the Mediterranean Fruit Fly, Ceratitis capitata Wied 1- Measured by using dehydrogenase Enzyme Activities

    The present study searches for the improvement vitality of the Mediterranean fruit fly, Ceratitis capitata Wied. Through the induction of a specific variance (mutation) in the genetic material. Several types of treatments that were thought to cause this mutation were used, as IGR's, temperature, formaldehyde, colchicine, alcohols, several types of larval rearing media and gamma-rays. Generally, the activities of the energy enzymes alpha-glycerophosphate dehydrogenase (alpha-GPDH) enzyme lactate dehydrogenase (LDH) enzyme and malate dehydrogenase (MDH) enzyme, when used as a direct measure for the fly vitality, increased due to treatments of the egg stage by the previously mentioned treatments specially by the usage of rice hulls in the larval rearing medium alone or followed by irradiation of the pupal stage with 90 Gy

  7. Influence of spaceflight on succinate dehydrogenase activity and soma size of rat ventral horn neurons

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1996-01-01

    Succinate dehydrogenase (SDH) activities and soma cross-sectional areas (CSA) of neurons in the dorsolateral region of the ventral horn at the L5 segmental level of the spinal cord in the rat were determined after 14 days of spaceflight and after 9 days of recovery on earth. The results were compared to those in age-matched ground-based control rats. Spinal cords were quick-frozen, and the SDH activity and CSA of a sample of neurons with a visible nucleus were determined using a digitizer and a computer-assisted image analysis system. An inverse relationship between CSA and SDH activity of neurons was observed in all groups of rats. No change in mean CSA or mean SDH activity or in the size distribution of neurons was observed following spaceflight or recovery. However, there was a selective decrease in the SDH activity of neurons with soma CSA between 500 and 800 microns2 in the flight rats, and this effect persisted for at least 9 days following return to 1 g. It remains to be determined whether the selected population of motoneurons or the specific motor pools affected by spaceflight may be restricted to specific muscles.

  8. In Vitro and In Vivo Effects and Safety Assessment of Corn Peptides on Alcohol Dehydrogenase Activities

    LI Hong-mei; WEN Lian-kui; LI Shi-jun; ZHANG Da-li; LIN Bai-song

    2011-01-01

    The in vitro and in vivo effects of corn peptides(CPs) prepared from corn gluten meal by proteolysis with an alkaline protease and fractions of CPs from Sephadex G-15 and G-10 columns on activities of alcohol dehydrogenase(ADH) were studied.The results show that CPs and fraction 3 of CPs from Sephadex G-10 column enhance in vitro ADH activity.Furthermore,the in vitro accelerating effect of the fraction 3 of CPs on ADH activity was superior to that of glutathione,which was also found even in the presence of ADH inhibitor,such as pyrazole.In the in vivo experiments,the animals were fed with different dosages of CPs and with a dose of Chinese distilled spirit orally,and sacrificed for the measurement of ADH activity.In vivo experimental results indicate that CPS enhanced hepatic ADH activities.To test the safety of CPs as health food,30 d feeding test was performed.No obvious toxic effects were detected in treated Wistar rats.

  9. Changes in microbial biomass and dehydrogenase activity following organic and inorganic tratments of a trace element contaminated in soil

    Pérez de Mora, Alfredo A; Cabrera, Francisco; Ortega Calvo, J. J.; Madejón, Engracia

    2003-01-01

    The aim of this research was to study the effect of different amendments and a plant cover on the remediation of a trace element contaminated soil through three microbiological paramaters: dehydrogenase activity (DH), microbial biomass carbon (MBC) and substrate induced respiration (SIR).

  10. Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a caucasian population

    Parlesak, Alexandr; Billinger, M. H.; Bode, C.;

    2002-01-01

    AIMS: The stomach is involved in first-pass metabolism of alcohol in humans. As conflicting data were published regarding the influence of age and gender on the activity of alcohol dehydrogenase (ADH) in human gastric mucosa, the present study aimed at the investigation of these and other potenti...

  11. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase.

    Akita, Hironaga; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2014-02-01

    D-Branched-chain amino acids (D-BCAAs) such as D-leucine, D-isoleucine, and D-valine are known to be peptide antibiotic intermediates and to exhibit a variety of bioactivities. Consequently, much effort is going into achieving simple stereospecific synthesis of D-BCAAs, especially analogs labeled with stable isotopes. Up to now, however, no effective method has been reported. Here, we report the establishment of an efficient system for enantioselective synthesis of D-BCAAs and production of D-BCAAs labeled with stable isotopes. This system is based on two thermostable enzymes: D-amino acid dehydrogenase, catalyzing NADPH-dependent enantioselective amination of 2-oxo acids to produce the corresponding D-amino acids, and glucose dehydrogenase, catalyzing NADPH regeneration from NADP(+) and D-glucose. After incubation with the enzymes for 2 h at 65°C and pH 10.5, 2-oxo-4-methylvaleric acid was converted to D-leucine with an excellent yield (>99 %) and optical purity (>99 %). Using this system, we produced five different D-BCAAs labeled with stable isotopes: D-[1-(13)C,(15)N]leucine, D-[1-(13)C]leucine, D-[(15)N]leucine, D-[(15)N]isoleucine, and D-[(15)N]valine. The structure of each labeled D-amino acid was confirmed using time-of-flight mass spectrometry and nuclear magnetic resonance analysis. These analyses confirmed that the developed system was highly useful for production of D-BCAAs labeled with stable isotopes, making this the first reported enzymatic production of D-BCAAs labeled with stable isotopes. Our findings facilitate tracer studies investigating D-BCAAs and their derivatives. PMID:23661083

  12. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  13. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    Ridvan Kizilkaya

    2007-03-01

    Full Text Available Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geostatistical methods to soil science. Measurement of soil dehydrogenase activity (DHA has been used to establish indices of soil microbiological activity. The objective of this study was to assess the spatial variability of the DHA using the geostatistics in the topsoils of an urban area. DHA along a transect in an urban area was determined using 39 soil samples from the upper 20 cm of soil varied from 10.7-258.4 μg TPF g-1 soil respectively. The spherical model fits the best semivariogram model for DHA and exhibited spatial dependence with range of influence of approximately 48.2 km.

  14. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower Ki. Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance. PMID:26946085

  15. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  16. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. PMID:26743658

  17. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Jr., Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara; Garuti, Helen; Wittlin, Sergio; Papastogiannidis, Petros; Lin, Jing-wen; Janse, Chris J.; Khan, Shahid M.; Duraisingh, Manoj; Coleman, Bradley; Goldsmith, Elizabeth J.; Phillips, Margaret A.; Munoz, Benito; Wirth, Dyann F.; Klinger, Jeffrey D.; Wiegand, Roger; Sybertz, Edmund (Leiden-MC); (Puerto Rico); (STPHI); (Harvard); (GSK); (Genzyme); (UTSMC)

    2010-11-22

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED{sub 50} values in the 4-day murine P. berghei efficacy model of 13-21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.

  18. 2-ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization.

    Kumar, Chanchal; Yadav, Kavita; Archana, G; Naresh Kumar, G

    2013-09-01

    Enterobacter asburiae PSI3 is known to efficiently solubilize rock phosphate by secretion of approximately 50 mM gluconic acid in Tris-buffered medium in the presence of 75 mM glucose and in a mixture of seven aldosugars each at 15 mM concentration, mimicking alkaline vertisol soils. Efficacy of this bacterium in the rhizosphere requires P release in the presence of low amount of sugars. To achieve this, E. asburiae PSI3 has been manipulated to express gluconate dehydrogenase (gad) operon of Pseudomonas putida KT 2440 to produce 2-ketogluconic acid. E. asburiae PSI3 harboring gad operon had 438 U of GAD activity, secreted 11.63 mM 2-ketogluconic and 21.65 mM gluconic acids in Tris-rock phosphate-buffered medium containing 45 mM glucose. E. asburiae PSI3 gad transformant solubilized 0.84 mM P from rock phosphate in TRP-buffered liquid medium. In the presence of a mixture of seven sugars each at 12 mM, the transformant brought about a drop in pH to 4.1 and released 0.53 mM P. PMID:23666029

  19. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity.

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang; Lu, Weiqiang; Huang, Jin

    2016-09-01

    Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. PMID:27378425

  20. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants. PMID:27181251

  1. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours

    Golias, Tereza; Papandreou, Ioanna; Sun, Ramon; Kumar, Bhavna; Brown, Nicole V.; Swanson, Benjamin J.; Pai, Reetesh; Jaitin, Diego; Le, Quynh-Thu; Teknos, Theodoros N.; Denko, Nicholas C.

    2016-01-01

    Tumour cells fulfil the bioenergetic and biosynthetic needs of proliferation using the available environmental metabolites. Metabolic adaptation to hypoxia causes decreased mitochondrial function and increased lactate production. This work examines the biological importance of the hypoxia-inducible inhibitory phosphorylations on the pyruvate dehydrogenase E1α subunit. Pancreatic cancer cell lines were genetically manipulated to alter the net phosphorylation of PDH E1α through reduced kinase expression or enhanced phosphatase expression. The modified cells were tested for hypoxic changes in phosphorylated E1α, mitochondrial metabolism and growth as xenografted tumours. Even though there are four PDHK genes, PDHK1 is essential for inhibitory PDH phosphorylation of E1α at serine 232, is partially responsible for modification of serines 293 and 300, and these phosphorylations are necessary for model tumour growth. In order to determine the clinical relevance, a cohort of head and neck cancer patient biopsies was examined for phosphorylated E1α and expression of PDHK1. Patients with detectable 232 phosphorylation or expression of PDHK1 tend to have worse clinical outcome. These data show that PDHK1 activity is unique and non-redundant in the family of PHDK enzymes and a PDHK1 specific inhibitor would therefore have anti-cancer activity with reduced chance of side effects from inhibition of other PDHKs. PMID:27498883

  2. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum

    Germain, P.; Toukourou, F.; Donaduzzi, L.

    1986-07-01

    The enzyme lactate dehydrogenase (LDH) in Clostridium thermohydrosulfuricum is controlled by the type and the concentration of the substrate. In batch fermentations an increase of the initial concentration of glucose leads to an increase in the activity of LDH. This increase in activity is related to the accumulation of fructose 1,6-diphosphate (F 1,6-DP), an intermediate of the Embden-Meyerhof-Parnas (EMP) pathway, which stimulates the enzyme by increasing its affinity for pyruvate and NADH. The Ksub(m) values of LDH for pyruvate and NADH, which are 2.5 x 10/sup -3/ M and 9.1 x 10/sup -5/ M respectively in absence of F 1,6-DP, fall considerably in the presence of this substrate. In presence of 0.2 mM of F 1,6-DP we observed a Ksub(m) of 3.3 x 10/sup -4/ M for pyruvate and 4.1 x 10/sup -5/ M for NADH.

  3. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  4. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  5. Phosphorylation site on yeast pyruvate dehydrogenase complex

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  6. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling.

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-05-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a (13)CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1 The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and (13)C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  7. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  8. Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen, 1804

    Valentina Grazioli

    2016-02-01

    Full Text Available The metabolic effects of low oxygen content on alcohol-dehydrogenase (ADH activity and hemoglobin (Hb concentration were investigated in IV-instar larvae of Chironomus riparius (Diptera: Chironomidae from an Italian stream. Two series of short-term (48 h experiments were carried out: exposure to (1 progressive hypoxia (95 to 5% of oxygen saturation and (2 anoxia (at <5% of oxygen saturation. In (1, Hb amount increased with increasing oxygen depletion up to a critical value of oxygenation (about 70% of oxygen saturation. Below this percentage, the Hb amount declined to values comparable with those present in the control. The respiration rate (R remained almost constant at oxygen saturation >50% and decreased significantly only after 48 h of treatment (= <5% of oxygen saturation reaching values <100 mmolO2 gAFDW-1 h-1. ADH activity showed two phases of growth, within the first 14 h and over 18 h of exposure. Overall, we inferred that i Hb might function as short-term oxygen storage, enabling animals to delay the on-set of anaerobiosis; and ii alcoholic fermentation co-occurs for a short time with aerobic respiration, becoming the prevalent metabolic pathway below 5% of oxygen saturation (<1 mg L-1. These considerations were supported also by results from anoxia exposure (2. In such condition, larvae were visibly stressed, becoming immobile after few minutes of incubation, and ADH reached higher values than in the hypoxia treatment (2.03±0.15 UADH mg prot-1. Overall, this study showed a shift from aerobic to anaerobic activity in C. riparius larvae exposed to poorly oxygenated water with an associated alteration of ADH activity and the Hb amount. Such metabolites might be valid candidate biomarkers for the environmental monitoring of running waters.

  9. Estimating the number of viable animal cells in multi-well cultures based on their lactate dehydrogenase activities.

    Haslam, G; Wyatt, D; Kitos, P A

    2000-01-01

    A method is described for estimating the numbers ofanimal cells in multi-well culture by simultaneouslymeasuring the lactate dehydrogenase activity of thetotal culture and the medium. The difference betweenthe two reflects the dehydrogenase content of thecells and correlates with cell number. This LDH/INTmethod was tested using several lines of normal andtransformed suspension and adherent cells. Thelactate dehydrogenase activities of duplicate cultureswere determined colourimetrically using reactioncocktails containing lactate, NAD(+), diaphorase,and p-iodonitrotetrazolium violet, with and withoutTriton X-100. The difference in absorbance at 490 nm(DeltaA(490) = A(490, test) - A(490, control)) was used to calculate the lactatedehydrogenase activity of the total culture (+ Triton)and the medium (- Triton). The cellular lactatedehydrogenase activity (difference between totaland medium dehydrogenaseactivities) was proportional to viable cell number. The effects on cell growth of four metabolicinhibitors, sodium azide, actinomycin D,cycloheximide, and taxol, were determined using theLDH/INT assay and direct cell counting. The inhibitorconcentrations that caused decreases in the LDHactivity and cell number by 50% were similar. TheLDH/INT assay is quick and sensitive, works equallywell for adherent and suspension cells, and providesinformation about LDH activities of both the mediumand cells. It is particularly useful for screeningpotential cell-growth inhibitors. PMID:19002967

  10. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats

    Noushin Naghsh

    2013-03-01

    Full Text Available Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue.   Materials &Methods: In this study, 40 adult male wistar rats of 220±20gr were divided in to five groups including control and four experimental groups. The latter groups were injected intraperitoneally spherical nano silver particles of 50, 100, 200 and 400 ppm respectively for five consecutive days. Then three, eight and twelve days after the last injection, blood samples were collected and lactate dehydrogenase (LDH activity was assayed . Also, tissue samples from the heart muscle were prepared and studied after staining with Hematoxiline-Eosine. Data of LDH activity was analyzed by One way- ANOVA- test and P-value of ≤ 0.05 were considered as significant.   Results : The result showed that different concentrations of silver nanoparticles have no significant effect on the lactate dehydrogenase (p=0.192 . T he histological study of the tissue after exposure to 400 ppm concentration of silver nanoparticles showed the start of primary apoptosis in heart tissue.   Conclusion: The LDH activity was not changed significantly after exposure to different concentration of silver nanoparticles, which shows the safety of these particles on LDH activity.

  11. A new bianthron glycoside as inhibitor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity

    Macedo, Edangelo M.S. de; Silva, Maria G.V. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Wiggers, Helton J.; Montanari, Carlos A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, (Brazil). Setor de Quimica de Produtos Naturais; Andricopulo, Adriano D. [Universidade de Sao Paulo (USP), Sao Carlos SP (Brazil). Inst. de Fisica

    2009-07-01

    A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi- 10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (K{sub i}) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 +-2.47 {mu}mol L{sup -1}. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease. (author)

  12. Age-related responses of right ventricle in swim-trained rats: changes in lactate and pyruvate contents and lactate dehydrogenase activity.

    Anitha, V; Asha Devi, S

    1996-09-18

    Age related changes in carbohydrate substrates such as, glucose, glycogen, pyruvic acid and lactic acid and the activity of lactate dehydrogenase (LDH) and LDH isoenzyme profile were evaluated in the right ventricle (RV) of swim-trained rats of 6- (adult), 12- (middle-aged) and 18- (old) months-of-age. Moderate hypertrophy was seen in the heart and RV in response to training in all age groups with the 12 months exhibiting a significant increase. While resting levels of pyruvate and glucose in the RV showed small elevations in adult and middle-aged rats, lactic acid showed reductions in all ages. Glycogen supercompensation was seen in the RV of trained animals. These age-related alterations in RV were associated with decreases in blood lactic acid and glucose in the trained rats belonging to all ages. Total protein of the RV decreased with age and exercise increased the content. Total LDH and M4-LDH activities decreased with age. However, training increased their activities in all ages. These changes in the RV suggests that swimming activity produces adaptations (e.g. increased LDH and M4) in all age groups. Considering the degree of adaptations, it can be suggested that adult and middle-aged are suitable for initiating swim-training programs, but not in old age. PMID:8869911

  13. Cytotoxicity and characterization of an active metabolite of benzamide riboside, a novel inhibitor of IMP dehydrogenase.

    Gharehbaghi, K; Paull, K D; Kelley, J A; Barchi, J J; Marquez, V E; Cooney, D A; Monks, A; Scudiero, D; Krohn, K; Jayaram, H N

    1994-03-15

    Benzamide riboside exhibits significant cytotoxicity against a variety of human tumor cells in culture. On the basis of metabolic studies, the primary target of this drug's action appears to be IMP dehydrogenase (IMPDH). Incubation of human myelogenous leukemia K562 cells with an IC50 concentration of benzamide riboside resulted in an expansion of IMP pools (5.9-fold), with a parallel reduction in the concentration of GMP (90%), GDP (63%), GTP (55%) and dGTP (40%). On kinetic grounds, it was deduced that benzamide riboside (whose Ki versus IMPDH is 6.4 mM, while that of its 5'-monophosphate is 3.9 mM) or its 5'-monophosphate were unlikely to be responsible for inhibition of this target enzyme, IMPDH, since only micromolar concentrations of benzamide riboside were needed to exert potent inhibition of tumor-cell growth. Studies on the metabolism of this C-nucleoside have revealed the presence of a new peak eluting in the nucleoside diphosphate area on HPLC. Treatment of this peak with venom phosphodiesterase degraded it and concurrently nullified its inhibitory activity versus IMPDH; alkaline phosphatase, on the other hand, totally failed to digest the anabolite. These results suggest that the metabolite in question is the phosphodiester, benzamide adenine dinucleotide (BAD). Evidence that the inhibitor was an analog of NAD, wherein the nicotinamide moiety has been replaced by benzamide, was provided by both NMR and mass spectrometric analysis and confirmed by enzymatic synthesis. Further insight into the nature of the active principle was obtained from kinetic studies, which established that BAD competitively inhibited NAD utilization by partially purified IMPDH from K562 cells with a Ki of 0.118 microM. In concert, these studies establish that benzamide riboside exhibits potent antiproliferative activity by inhibiting IMPDH through BAD. PMID:7907081

  14. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  15. Death mode-dependent reduction in succinate dehydrogenase activity in hair cells of aging rat cochleae

    YANG Wei-ping; HU Bo-hua; SUN Jian-he; ZHAI Suo-qiang; Donald Henderson

    2010-01-01

    Background Our previous studies have shown that both apoptosis and necrosis are involved in hair cell (HC) pathogenesis in aging cochleae. To better understand the biological mechanisms responsible for the regulation of HC death, we examined the activity of succinate dehydrogenase (SDH), a mitochondrial bioenergetic enzyme, in the HCs of aging cochleae.Methods The auditory brainstem response thresholds elicited by tone bursts at 4, 10 and 20 kHz were measured in both young (2-3 months) and aging (22-23 months) Wistar rats. SDH activity was evaluated with a colorimetric assay using nitroblue tetrazolium monosodium salt. The SDH-labeled organs of Corti were double stained with propidium iodide, a DNA intercalating fluorescent probe for illustration of HC nuclei. All the specimens were examined with fluorescence microscopy and confocal microscopy.Results Aging rats exhibited a significant elevation of ABR thresholds with threshold shifts being 34 dB at 20 kHz, 28 dB at 10 kHz, and 25 dB at 4 kHz. Consistent with the reduction in the cochlear function, aging cochleae exhibited the reduction of SDH staining intensity in the apical and the basal ends of the cochleae, where a large number of apoptotic, necrotic, and missing HCs were evident. The reduction in SDH staining appeared in a cell-death-mode dependent fashion. Specifically, SDH labeling remained in apoptotic HCs. In contrast, SDH staining was markedly reduced or absent in necrotic HCs.Conclusions In the aging cochlea, SDH activity is preserved in HCs undergoing apoptosis, but is substantially reduced in necrosis. These results suggest that mitochondrial energetic function is involved in the regulation of cell death pathways in the pathogenesis of aging cochleae.

  16. Local Glucocorticoid Activation by 11β-Hydroxysteroid Dehydrogenase 1 in Keratinocytes: The Role in Hapten-Induced Dermatitis.

    Terao, Mika; Itoi, Saori; Matsumura, Sayaka; Yang, Lingli; Murota, Hiroyuki; Katayama, Ichiro

    2016-06-01

    Over the past decade, extra-adrenal cortisol production was reported in various tissues. The enzyme that catalyzes the conversion of hormonally inactive cortisone into active cortisol in cells is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is also expressed in keratinocytes and regulates inflammation and keratinocyte proliferation. To investigate the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific 11β-HSD1 knockout (K5-Hsd11b1-KO) mice and analyzed the inflammatory response in models of hapten-induced contact irritant dermatitis. K5-Hsd11b1-KO mice showed enhanced ear swelling in low-dose oxazolone-, 2,4,6-trinitro-1-chlorobenzene (TNCB)-, and 2,4-dinitrofluorobenzene-induced irritant dermatitis associated with increased inflammatory cell infiltration. Topical application of corticosterone dose dependently suppressed TNCB-induced ear swelling and cytokine expression. Similarly in mouse keratinocytes in vitro, corticosterone dose dependently suppressed 2,4,6-trinitrobenzenesulfonic acid-induced IL-1α and IL-1β expression. The effect of 11-dehydrocorticosterone was attenuated in TNCB-induced irritant dermatitis in K5-Hsd11b1-KO mice compared with wild-type mice. In human samples, 11β-HSD1 expression was decreased in epidermis of psoriasis vulgaris compared with healthy skin. Taken together, these data suggest that corticosterone activation by 11β-HSD1 in keratinocytes suppresses hapten-induced irritant dermatitis through suppression of expression of cytokines, such as IL-1α and IL-1β, in keratinocytes. PMID:27070821

  17. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    de Reggi Max

    2010-04-01

    Full Text Available Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  18. Serial lumbar and ventricle cerebrospinal fluid lactate dehydrogenase activities in patients with leptomeningeal metastases from solid and haematological tumours.

    Twijnstra, A; van Zanten, A. P.; Hart, A A; Ongerboer De Visser, B W

    1987-01-01

    Lactate dehydrogenase (LDH) activities were measured in cerebrospinal fluid in 350 patients with various neurological diseases to establish the sensitivity and specificity of the CSF LDH as a marker for the diagnosis of leptomeningeal metastases. Slight elevations of CSF LDH were observed in nonmalignant diseases, while marked elevations were observed in a considerable number of patients with bacterial meningitis. A sensitivity of 79% and a specificity of 83% were calculated. In the 34 patien...

  19. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii

    Alsafadi, Diya; Paradisi, Francesca

    2013-01-01

    The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous–organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic...

  20. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats

    Noushin Naghsh; Amir Masoud Mashayekh; Samaneh Khodadadi

    2013-01-01

    Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue.   Materials &Methods: In this study, 40 adult male wistar rats of 220±20gr were divided in to five groups including control and four experimental groups. The la...

  1. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66

    Muhammad Naveed; Iftikhar Ahmed; Nauman Khalid; Abdul Samad Mumtaz

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and roo...

  2. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Tahereh Esmaeilpour; Mohmmad-Reza Zarei; Soghra Bahmanpour; Elham Aliabadi; Ahmad Hosseini; Mansooreh Jaberipour

    2014-01-01

    Background: Application of follicular fluid (FF) and platelet-activating factor (PAF) in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C) is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase ...

  3. Luteal 3beta-hydroxysteroid dehydrogenase and 20alpha-hydroxysteroid dehydrogenase activities in the rat corpus luteum of pseudopregnancy: Effect of the deciduoma reaction

    Telleria Carlos M

    2004-05-01

    Full Text Available Abstract Background In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL, which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP, in which the CL are mainly under the control of pituitary prolactin (PRL, is not well known. The objectives of this investigation were: i to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD, involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD, involved in progesterone catabolism; and ii to determine the role of decidualization on progesterone metabolism in PSP. Methods PSP was induced mechanically at 10:00 h on the estrus of 4-day cycling Wistar rats, and the stimulus for decidualization was provided by scratching the uterus on day 4 of PSP. 3betaHSD and 20alphaHSD activities were measured in the CL isolated from ovaries of PSP rats using a spectrophotometric method. Serum concentrations of progesterone, PRL, androstenedione, and estradiol were measured by radioimmunoassay (RIA. Results The PSP stage induced mechanically in cycling rats lasted 11.3 ± 0.09 days (n = 14. Serum progesterone concentration was high until day 10 of PSP, and declined thereafter. Serum PRL concentration was high on the first days of PSP but decreased significantly from days 6 to 9, having minimal values on days 10 and 11. Luteal 3betaHSD activities were elevated until day 6 of PSP, after which they progressively declined, reaching minimal values at the end of PSP. Luteal 20alphaHSD activities were very low until day 9, but abruptly increased at the end of PSP. When the deciduoma was induced by scratching the uterus of pseudopregnant animals on day 4 (PSP

  4. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity.

    Hess, David A; Meyerrose, Todd E; Wirthlin, Louisa; Craft, Timothy P; Herrbrich, Phillip E; Creer, Michael H; Nolta, Jan A

    2004-09-15

    Human hematopoietic stem cells (HSCs) are commonly purified by the expression of cell surface markers such as CD34. Because cell phenotype can be altered by cell cycle progression or ex vivo culture, purification on the basis of conserved stem cell function may represent a more reliable way to isolate various stem cell populations. We have purified primitive HSCs from human umbilical cord blood (UCB) by lineage depletion (Lin(-)) followed by selection of cells with high aldehyde dehydrogenase (ALDH) activity. ALDH(hi)Lin(-) cells contained 22.6% +/- 3.0% of the Lin(-) population and highly coexpressed primitive HSC phenotypes (CD34(+) CD38(-) and CD34(+)CD133(+)). In vitro hematopoietic progenitor function was enriched in the ALDH(hi)Lin(-) population, compared with ALDH(lo)Lin(-) cells. Multilineage human hematopoietic repopulation was observed exclusively after transplantation of ALDH(hi)Lin(-) cells. Direct comparison of repopulation with use of the nonobese diabetic/severe combined immunodeficient (NOD/SCID) and NOD/SCID beta2 microglobulin (beta2M) null models demonstrated that 10-fold greater numbers of ALDH(hi)-Lin(-) cells were needed to engraft the NOD/SCID mouse as compared with the more permissive NOD/SCID beta2M null mouse, suggesting that the ALDH(hi)Lin(-) population contained committed progenitors as well as primitive repopulating cells. Cell fractionation according to lineage depletion and ALDH activity provides a viable and prospective purification of HSCs on the basis of cell function rather than cell surface phenotype. PMID:15178579

  5. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  6. Lactate dehydrogenase activity of rat epididymis and spermatozoa: effect of constant light.

    Ponc, R H; Carriazo, C S; Vermouth, N T

    2001-01-01

    During its passage through the epididymis, the gamete undergoes a process of "maturation" leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27) and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light:10 h dark (group L:D). At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L). In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively). Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content) and in spermatozoa, values of enzyme activities expressed per weight unit were

  7. Lactate dehydrogenase activity of rat epididymis and spermatozoa: Effect of constant light

    RH Ponce

    2009-12-01

    Full Text Available During its passage through the epididymis, the gamete undergoes a process of “maturation” leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27 and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light: 10 h dark (group L:D. At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L. In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively. Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content and in spermatozoa, values of enzyme activities expressed per

  8. Electrochemical Studies of the Inhibition and Activation Effects of Al (III on the Activity of Bovine Liver Glutamate Dehydrogenase

    Shuping Bi

    2005-04-01

    Full Text Available Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5, the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III concentration solutions (80μM, the inhibition effects of Al (III were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples.

  9. Correlation of viral RNA biosynthesis with glucose-6-phosphate dehydrogenase activity and host resistance

    Šindelář, Luděk; Šindelářová, Milada

    2002-01-01

    Roč. 215, - (2002), s. 862-869. ISSN 0032-0935 R&D Projects: GA ČR GA522/99/1264 Institutional research plan: CEZ:AV0Z5038910 Keywords : Glucose 6 phosphate dehydrogenase * Nicotiana (viral infection) * Plant viruses Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  10. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jeppesen, Jacob;

    2015-01-01

    It is well known that exercise has a major impact on substrate metabolism for many hours after exercise. However, the regulatory mechanisms increasing lipid oxidation and facilitating glycogen resynthesis in the post-exercise period are unknown. To address this, substrate oxidation was measured...... in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 -deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators, HDAC4 and SIRT1. Interestingly, PDK4 protein content...... regulates muscle metabolism post-exercise through inhibition of the PDH complex and hence glucose oxidation, subsequently creating conditions for increased fatty acid oxidation. This article is protected by copyright. All rights reserved....

  11. Structural and Functional Studies of WlbA: A Dehydrogenase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid

    Thoden, James B.; Holden, Hazel M. (UW)

    2010-09-08

    2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to use {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.

  12. Examining the anti-candidal activity of 10 selected Indian herbs and investigating the effect of Lawsonia inermis extract on germ tube formation, protease, phospholipase, and aspartate dehydrogenase enzyme activity in Candida albicans

    Ravichandran, Sripathy; Muthuraman, Sundararaman

    2016-01-01

    Objective: The objective of the study is to identify potential anti-candidal agents from natural resources and elucidate the effect of Lawsonia inermis extract on major virulent factors of Candida albicans. Materials and Methods: Plants, the most abundant and readily available resource of diverse bioactives, were chosen for the anti-candidal screening study. Ten different plants that were proven to have antimicrobial activity but not explored much for anti-candidal activity were chosen for this study. Ethyl acetate extract of these plant leaves were tested for the anti-candidal activity. Extracts with good anti-candidal activity were further screened for its effect in C. albicans germ tube formation and enzyme (protease, phospholipase, and aspartate dehydrogenase) activity. Results: Among 10 plants screened, L. inermis extract showed complete inhibition of C. albicans. On further evaluation, this extract completely inhibited C. albicans germ tube formation in serum until the end of incubation period (3 h). This extract also exhibited dose-dependent inhibitory activity against two major virulent enzymes of C. albicans, proteases (27–33%) and phospholipases (44.5%). In addition to it, this extract completely inhibited both the isoforms of constitutive candidal enzyme aspartate dehydrogenase, thereby affecting amino acid biosynthesis. Conclusion: Thus, this study confirms the anti-candidal potential of L. inermis and hence can be considered further for development of anti-candidal drug. PMID:26997722

  13. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Benedito Barraviera; Paulo Câmara Marques Pereira; Jussara Marcondes Machado; Maria Julia de Souza; Carlos Roberto G. Lima; Paulo Roberto Curi; Rinaldo Poncio Mendes; Domingos Alves Meira

    1991-01-01

    The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females) aged 17 to 58 years. Twenty one (53.84%) of the patients presented a slow acetylatingphenotype and 18(46.16%) a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD) acti vity was decreased in 5(23.80%) slow acetylator...

  14. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    Yuxun Zhang

    Full Text Available SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD, a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.

  15. Novel Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase with Anti-malarial Activity in the Mouse Model*

    Booker, Michael L.; Bastos, Cecilia M.; Kramer, Martin L.; Barker, Robert H.; Skerlj, Renato; Sidhu, Amar Bir; Deng, Xiaoyi; Celatka, Cassandra; Cortese, Joseph F.; Guerrero Bravo, Jose E.; Crespo Llado, Keila N.; Serrano, Adelfa E.; Angulo-Barturen, Iñigo; Jiménez-Díaz, María Belén; Viera, Sara

    2010-01-01

    Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low ...

  16. Coimmobilization of L-asparaginase and glutamate dehydrogenase onto highly activated supports

    Balcão, Victor M.; Mateo, Cesar; Fernández-Lafuente, R.; Malcata, F. Xavier; Guisán, José M.

    2001-01-01

    In the present research work, production of coimmobilized derivatives of L-asparaginase and glutamate dehydrogenase was attempted. Comparison of immobilization of each enzyme independently with coimmobilization of the two enzymes unfolded important advantages of the latter, namely a decrease in the induction period (time before the maximum reaction rate is virtually achieved) and an increase in the maximum reaction rate. The effectiveness of the independent enzyme derivatives was low; however...

  17. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    Ramakrishnan Krithika; Prabhakar Lal Srivastava; Bajaj Rani; Kolet, Swati P.; Manojkumar Chopade; Mantri Soniya; Hirekodathakallu V. Thulasiram

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-...

  18. Molecular, biochemical, and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase

    Kloosterman, H; Vrijbloed, JW; Dijkhuizen, L.

    2002-01-01

    The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C-1-C-4 primary alcohols is a decameric protein with 1 Zn2+-ion and 1-2 Mg2+-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg2+-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C-1-C-4 primary alcohols is strongly stimulated by a seco...

  19. Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication

    Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication was studied. In brains of rats tested on the 20, 30 and 60th minute of exposure to CO and immediately after removal from the chamber the enzyme activity showed no essential deviation from the control level. In the group of rats tested 1 hour after taking them out from the chamber increase of the enzyme activity was noticed, amounting to about 33% of the control value. The brains tested 24 hours after exposure showed the largest increase of the enzyme activity by about 94%. In the next time periods, 48 and 72 hours after intoxication, the enzyme activity was decreasing. The glycogen content in brains of control animals increased 3 hours after CO intoxication by about 69%. The increase of glycogen synthesis was expressed by increase of the total radioactivity, which amounted to 160% of the control value. (Z.M.)

  20. Effect of thoracic x-irradiation on glucose-6-phosphate dehydrogenase activity of the pectoral muscle of guinea pig

    The histochemical distribution of glucose-6-phosphate dehydrogenase (G6PD) was observed in the major pectoral muscle of a guinea pig that had received 240 R thoracic X-irradiation. The irradiation effects were studied at 24, 48 and 72 hrs after X-irradiation. Type I fibres of the pectoral muscle were deeply stained showing high activity whereas type II fibres demonstrated minimum enzyme activity. The intermediate fibres had medium levels of G6PD activity. Type II fibres showed more staining at 24 and 48 hrs as compared with control muscle. However, at 72 hrs all three fibre types showed a marked inhibition of G6PD activity. The significance of these changes suggests that muscle G6PD metabolism generally altered after irradiation, but the specific nature of these changes and their causes still remain unclear. (author)

  1. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers: EVIDENCE FOR A “DIRECT PATHWAY” BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS*

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway...

  2. Radioprotective activity of folic acid

    The radioprotective activity of folic acid has been studied using rat liver mitochondria membrane, protein and superoxide dismutase (SOD) as well as pBR 322 plasmid DNA as the model in vitro systems. The vitamin could effectively prevent the γ-ray induced lipid peroxidation as assessed by measuring thiobarbituric acid reactive substrates and protein carbonyl formation effectively. It also could also prevent radiation-induced damage of mitochondrial SOD and restore its level to normalcy Likewise; it prevented radiation-induced DNA strand breaks in a concentration dependent manner. The radioprotective activity could be attributed to its ability to scavenge the hydroxyl and superoxide radicals wherein its pseudo-phenolic moiety and C-9 methylene group play the key role. Radioprotective activity of a polysaccharide preparation from the Indian medicinal plant, Tinospora cordifolia Miers has been established using Saccharomyces cerevisiae X2180 strain as the in vivo test model. The entire activity could be attributed to the radical scavenging capacity of the preparation, as it did not enhance the expression of the protective enzymes, catalase and superoxide dismutase in the yeast cells. (author)

  3. Identification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum.

    Lee, Jung-Hoon; Kim, Yong-Jae; Shin, Hee-Sung; Lee, Heung-Shick; Jin, Shouguang; Ha, Un-Hwan

    2016-06-01

    Expression of a putative acyltransferase encoded by NCgl- 0350 of Corynebacterium glutamicum is induced by cell-free culture fluids obtained from stationary-phase growth of both C. glutamicum and Pseudomonas aeruginosa, providing evidence for interspecies communication. Here, we further confirmed that such communication occurs by showing that acyltransferase expression is induced by culture fluid obtained from diverse Gram-negative and -positive bacterial strains, including Escherichia coli, Salmonella Typhimurium, Bacillus subtilis, Staphylococcus aureus, Mycobacterium sp. strain JC1, and Mycobacterium smegmatis. A homologous acyltransferase encoded by PA5238 of P. aeruginosa was also induced by fluids obtained from P. aeruginosa as well as other bacterial strains, as observed for NCgl0350 of C. glutamicum. Because C. glutamicum is difficult to study using molecular approaches, the homologous gene PA5238 of P. aeruginosa was used to identify PA5309 as an upstream regulator of expression. A homologous D-amino acid dehydrogenase encoded by NCgl- 2909 of C. glutamicum was cloned based on amino acid similarity to PA5309, and its role in the regulation of NCgl0350 expression was confirmed. Moreover, NCgl2909 played positive roles in growth of C. glutamicum. Thus, we identified a D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in C. glutamicum. PMID:27225460

  4. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam;

    2016-01-01

    developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions......, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering....

  5. The effect of fullerenol C60(OH)∼30 on the alcohol dehydrogenase activity irradiated with X-rays

    In the present study the effect of X-irradiation on the alcohol dehydrogenase (ADH) activity in the presence of nanoparticles of fullerenol C60(OH)∼30 under aerobic conditions was investigated in order to assess the potential radioprotective properties of fullerenol. Fullerenol at 75 mg/mL decreased the radiation yield of inactivation of ADH irradiated with fullerenol by 20% comparing to ADH irradiated without fullerenol. Under conditions used during irradiation, 50% of ·OH radicals could react with fullerenol and 50% could react with ADH. Thus, it can be assumed that protective effect of fullerenol on the radiation inactivation of ADH was mostly due to scavenging ·OH radicals by fullerenol. Moreover, fullerenol did not protect against post-irradiation damage as the Ginact for ADH irradiated with fullerenol was still 20% lower than for ADH irradiated without fullerenol after 24 h from irradiation. Additionally, fullerenol at 75 mg/L had no influence on the activity of unirradiated ADH up to 24 h. We concluded that fullerenol C60(OH)∼30 protected ADH against radiation inactivation due to simple competition for the ·OH radicals and did not modify its activity by association with the protein as it was proved in our previous papers for erythrocyte membrane proteins. - Highlights: • Fullerenol C60(OH)∼30 itself do not modify the activity of alcohol dehydrogenase (ADH). • Fullerenol protects ADH against radiation inactivation due to simple competition for the ·OH radicals. • Fullerenol has the reduced ability to prevent the formation of protein peroxides. • Since the main role in radiosensitivity of ADH is played by –SH groups, fullerenol could prevent oxidation of –SH groups by electrostatic interactions

  6. Amino Acid Decarboxylase Activity of Some Lactic Acid Bacteria

    Pelin ERTÜRKMEN; Turhan, İlkay; Öner, Zübeyde

    2015-01-01

    Microorganisms which have decarboxylase activity can form biogenic amine by enzymatic decarboxylation of amino acids in foods. Histamine poisoning results from consumption of foods typically certain types of fish and cheeses that contain unusually high levels of histamine. Therefore, decarboxylase activity is an important problem at the selection of lactic acid bacteria as a starter culture in fermented products. In this study, decarboxylase activities of 161 lactic acid bacteria (LAB) strain...

  7. Sorbitol dehydrogenase is a zinc enzyme.

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  8. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base. PMID:10076069

  9. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  10. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal;

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  11. Succinate-dependent energy generation and pyruvate dehydrogenase complex activity in isolated Ascaris suum mitochondria

    Body wall muscle from the parasitic nematode, Ascaris suum, contain unique anaerobic mitochondria that preferentially utilize fumarate and branched-chain enoyl CoA's as terminal electron acceptors instead of oxygen. While electron transport in these organelles is well characterized, the role of oxygen in succinate-dependent phosphorylation is still not clearly defined. Therefore, the present study was designed to more fully characterize succinate metabolism in these organelles as well as the in vitro regulation of a key mitochondrial enzyme, the pyruvate dehydrogenase complex (PDC). In the absence of added adenine nucleotides, incubations in succinate resulted in substantial elevations in intramitochrondrial ATP levels, but ATP/ADP ratios were considerably higher in incubations with malate. The stimulation of phosphorylation in aerobic incubations with succinate was rotenone sensitive and appears to be Site I dependent. Increase substrate level phosphorylation, coupled to propionate formation, or additional sites of electron-transport associated ATP synthesis were not significant. Under aerobic conditions, 14CO2 evolution from 1,4-[14C]succinate was stimulated and NADH/NAD+ ratios were elevated, but the formation of 14C propionate was unchanged

  12. Succinate-dependent energy generation and pyruvate dehydrogenase complex activity in isolated Ascaris suum mitochondria

    Campbell, T.A.

    1988-01-01

    Body wall muscle from the parasitic nematode, Ascaris suum, contain unique anaerobic mitochondria that preferentially utilize fumarate and branched-chain enoyl CoA's as terminal electron acceptors instead of oxygen. While electron transport in these organelles is well characterized, the role of oxygen in succinate-dependent phosphorylation is still not clearly defined. Therefore, the present study was designed to more fully characterize succinate metabolism in these organelles as well as the in vitro regulation of a key mitochondrial enzyme, the pyruvate dehydrogenase complex (PDC). In the absence of added adenine nucleotides, incubations in succinate resulted in substantial elevations in intramitochrondrial ATP levels, but ATP/ADP ratios were considerably higher in incubations with malate. The stimulation of phosphorylation in aerobic incubations with succinate was rotenone sensitive and appears to be Site I dependent. Increase substrate level phosphorylation, coupled to propionate formation, or additional sites of electron-transport associated ATP synthesis were not significant. Under aerobic conditions, {sup 14}CO{sub 2} evolution from 1,4-({sup 14}C)succinate was stimulated and NADH/NAD{sup +} ratios were elevated, but the formation of {sup 14}C propionate was unchanged.

  13. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues.

    Hara, Masakazu; Monna, Shuhei; Murata, Takae; Nakano, Taiyo; Amano, Shono; Nachbar, Markus; Wätzig, Hermann

    2016-04-01

    Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93 μM Cu(2+) but totally inactivated by 9.3 μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3 μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress. PMID:26940498

  14. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase

    Fabian C. Herrmann

    2015-09-01

    Full Text Available As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany, against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH, a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9% were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69% showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  15. Aldehyde Dehydrogenase Type 2 Activation by Adenosine and Histamine Inhibits Ischemic Norepinephrine Release in Cardiac Sympathetic Neurons: Mediation by Protein Kinase Cε

    Robador, Pablo A.; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-01-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sym...

  16. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons

    Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.

    1997-01-01

    The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.

  17. Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies short-term beneficial physiological stress in mitochondria.

    Zakharchenko, Marina V; Zakharchenko, A V; Khunderyakova, N V; Tutukina, M N; Simonova, M A; Vasilieva, A A; Romanova, O I; Fedotcheva, N I; Litvinova, E G; Maevsky, E I; Zinchenko, V P; Berezhnov, A V; Morgunov, I G; Gulayev, A A; Kondrashova, M N

    2013-01-01

    Conditions for the realization in rats of moderate physiological stress (PHS) (30-120 min) were selected, which preferentially increase adaptive restorative processes without adverse responses typical of harmful stress (HST). The succinate dehydrogenase (SDH) and α-ketoglutarate dehydrogenase (KDH) activity and the formation of reactive oxygen species (ROS) in mitochondria were measured in lymphocytes by the cytobiochemical method, which detects the regulation of mitochondria in the organism with high sensitivity. These mitochondrial markers undergo an initial 10-20-fold burst of activity followed by a decrease to a level exceeding the quiescent state 2-3-fold by 120 min of PHS. By 30-60 min, the rise in SDH activity was greater than in KDH activity, while the activity of KDH prevailed over that of SDH by 120 min. The attenuation of SDH hyperactivity during PHS occurs by a mechanism other than oxaloacetate inhibition developed under HST. The dynamics of SDH and KDH activity corresponds to the known physiological replacement of adrenergic regulation by cholinergic during PHS, which is confirmed here by mitochondrial markers because their activity reflects these two types of nerve regulation, respectively. The domination of cholinergic regulation provides the overrestoration of expenditures for activity. In essence, this phenomenon corresponds to the training of the organism. It was first revealed in mitochondria after a single short-time stress episode. The burst of ROS formation was congruous with changes in SDH and KDH activity, as well as in ucp2 and cox3 expression, while the activity of SDH was inversely dependent on the expression of the gene of its catalytic subunit in the spleen. As the SDH activity enhanced, the expression of the succinate receptor decreased with subsequent dramatic rise when the activity was becoming lower. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaption and therapy. PMID:22814171

  18. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms.

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-04-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4'-aminopyrimidine N1' atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu(571), Glu(235), and Glu(237)) and Arg(606) resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu(235) makes no direct contact with the cofactor. The role of the conserved Glu(571) residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  19. Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat.

    Hutson, N J; Kerbey, A L; Randle, P J; Sugden, P H

    1978-08-01

    1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with

  20. Preparation of 15N-labeled L-alanine by coupling the alanine dehydrogenase and alcohol dehydrogenase reactions

    A simple enzymatic procedure for the preparation of L-[15N]alanine, one of the metabolically most active amino acids in all types of cells, is reported. The procedure is based on the coupling of two reactions, one catalyzed by bacterial alanine dehydrogenase, the second catalyzed by yeast alcohol dehydrogenase. An impediment in the use of this procedure could be the high cost of commercial AlaDH. However, the enzyme is widespread in the Bacillus species and partially purified samples, adequate preparative purposes, could be obtained relatively easily by chromatography on blue-Sepharose. (Auth.)

  1. Acid Rain: Activities for Science Teachers.

    Johnson, Eric; And Others

    1983-01-01

    Seven complete secondary/college level acid rain activities are provided. Activities include overview; background information and societal implications; major concepts; student objectives; vocabulary/material lists; procedures; instructional strategies; and questions/discussion and extension suggestions. Activities consider effects of acid rain on…

  2. Assessment of lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase activities in cow's milk as an indicator of subclinical mastitis.

    Babaei, H; Mansouri-Najand, L; Molaei, M M; Kheradmand, A; Sharifan, M

    2007-05-01

    This study examined the activities of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in the milk of lactating Holstein cows in association with subclinical mastitis (SCM). A total of 94 milk samples were collected from 58 lactating dairy cows representing stages of lactation from the second to the tenth week after calving. Those which were classified as positive by California mastitis test (CMT) were deemed to have subclinical mastitis. All the milk samples were skimmed by centrifugation at 10 000g at 0 degrees C and were used for enzyme activities estimations. The mean activities of LDH and ALP were higher in the milk from udders with SCM than in the milk from healthy udders (p CMT results and LDH and ALP values were seen at thresholds of > 180 IU/L and > 40 IU/L respectively (kappa values 0.65 and 0.79, respectively). However, the sensitivity of the tests for identifying SCM at these thresholds was higher for ALP (96.4%) than for LDH (68.5%). In this study, LDH and ALP tests were standardized for cow's milk and results showed that only the ALP test was reliable in the early diagnosis of subclinical mastitis. PMID:17268916

  3. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii.

    Alsafadi, Diya; Paradisi, Francesca

    2013-01-01

    The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry. PMID:23179592

  4. Activity and electrophoretic profiles of liver aldehyde dehydrogenases from mice of inbred strains with different alcohol preference.

    Yamazaki, H; Nishiguchi, K; Miyamoto, R; Ogita, Z I; Nakanishi, S

    1983-01-01

    1. The activity of low Km-aldehyde dehydrogenase (ALDH) in the liver mitochondrial fraction (MT-fraction) from male C57BL/6J strain mice (alcohol preferring) was significantly higher than that from DBA/2 mice (alcohol avoiding). The F1 hybrids (C57BL/6J X DBA/2) did not exhibit the intermediate activity to these two strains. 2. Strain differences in liver mitochondrial ALDH isozymes were observed by isoelectric focusing. C57BL/6J strain had two isozymes at pH 7.1 while DBA/2 had no band at this pH. F1 hybrid mice had similar two bands with lower density to those of C57BL/6J at pH 7.1. There was no difference in zymograms of the soluble fraction between C57BL/6J and DBA/2 strains. 3. The present results suggest that the difference in alcohol preference of mice may depend on some restricted ALDH isozymes with different pl or electric mobility rather than the enzymatic activity in the liver MT-fraction. PMID:6822317

  5. Biological activities of substituted trichostatic acid derivatives

    Cédric Charrier; Joëlle Roche; Jean-Pierre Gesson; Philippe Bertrand

    2009-07-01

    New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid and aminobenzamide derivatives. The first fluorinated derivatives of trichostatic acid are described, such as 6-fluoro trichostatin A, with antiproliferative activities in the micromolar range and with histone deacetylase inhibitory activity.

  6. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  7. Comparison of Activity of Four Dehydrogenases in Ginseng from Different Origins%不同产地人参中4种脱氢酶活力比较

    杨菲; 赵雨; 王思明; 刘美辰; 李晓华

    2012-01-01

    The aim was to provide theoretical basis for the cultivation and optimization of ginseng.Adopt neutral buffer solution to extract the enzyme solution of Radix Ginseng.The activities of malate dehydrogenase (MDH), lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) were detected by spectrophotometry, and compared.The clustering analysis was performed using the software SPSS 13.0 to system for 15 batch sample.There were obvious differences of the activities dehydrogenase of ginseng from different origin.The activities of four dehydrogenases from the same origin were basically same.In Antu County Wanbao Town, MDH, LDH and G6PDH had the highest activities, 124.58 LV(g·FW), 129.88 U/(g·FW) and 109.84 U/(g·FW) respectively.The four kinds of enzymes activity of two origins in Heilongjiang Province were generally low.The sample was divided into four categories.The activities of MDH, LDH, ADH and G6PDH could provide theoretical basis for the cultivation and optimization of ginseng.%为了给人参的培育和优选提供理论依据,采用中性缓冲液提取粗酶液,应用分光光度法对15个不同产地的人参中苹果酸脱氢酶(malate dehydrogenase,MDH)、乳酸脱氢酶(lactate dehydrogenase,LDH)、乙醇脱氢酶(alcohol dehydrogenase,ADH)、葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PDH)4种脱氢酶活力进行比较.运用SPSS 13.0软件对15批样品进行系统聚类分析.结果表明不同产地人参脱氢酶活力差别明显,同一产地4种脱氢酶活力趋势基本相同.其中安图县万宝镇的人参样品的MDH、LDH、G6PDH 3种酶活力均是最高值,分别为124.58 U/(g· FW)、129.88 U/(g·FW)、109.84U/(g·FW);黑龙江2个产地的4种酶活力普遍比较低.聚类分析的结果将样品分为4类.MDH、LDH、ADH、G6PDH的活力可以作为人参培育和优选提供理论依据.

  8. Glycyrrhetinic acid, the active principle of licorice, can reduce the thickness of subcutaneous thigh fat through topical application.

    Armanini, Decio; Nacamulli, Davide; Francini-Pesenti, Francesco; Battagin, Giuliana; Ragazzi, Eugenio; Fiore, Cristina

    2005-07-01

    Cortisol is involved in the distribution and deposition of fat, and its action is regulated by the activity of 11beta-hydroxysteroid dehydrogenase. Glycyrrhetinic acid, the active principle of licorice root, blocks 11beta-hydroxysteroid dehydrogenase type 1, thus reducing the availability of cortisol at the level of adipocytes. We evaluated the effect of topical application of a cream containing glycyrrhetinic acid in the thickness of fat at the level of the thigh. Eighteen healthy women (age range 20-33 years) with normal BMI were randomly allocated to treatment, at the level of the dominant thigh, with a cream containing 2.5% glycyrrhetinic acid (n=9) or with a placebo cream containing the excipients alone (n=9). Before and after 1 month of treatment both the circumference and the thickness of the superficial fat layer of the thighs (by ultrasound analysis) were measured. The circumference and the thickness of the superficial fat layer were significantly reduced in comparison to the controlateral untreated thigh and to control subjects treated with the placebo cream. No changes were observed in blood pressure, plasma renin activity, plasma aldosterone or cortisol. The effect of glycyrrhetinic acid on the thickness of subcutaneous fat was likely related to a block of 11beta-hydroxysteroid dehydrogenase type 1 at the level of fat cells; therefore, glycyrrhetinic acid could be effectively used in the reduction of unwanted local fat accumulation. PMID:15894038

  9. Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid.

    Maischberger, Thomas; Nguyen, Thu-Ha; Sukyai, Prakit; Kittl, Roman; Riva, Sergio; Ludwig, Roland; Haltrich, Dietmar

    2008-08-11

    Galacto-oligosaccharides, complex mixtures of various sugars, are produced by transgalactosylation from lactose using beta-galactosidase and are of great interest for food and feed applications because of their prebiotic properties. Most galacto-oligosaccharide preparations currently available in the market contain a significant amount of monosaccharides and lactose. The mixture of galacto-oligosaccharides (GalOS) in this study produced from lactose using recombinant beta-galactosidase from Lactobacillus reuteri contains 48% monosaccharides, 26.5% lactose and 25.5% GalOS. To remove efficiently both monosaccharides and lactose from this GalOS mixture containing significant amounts of prebiotic non-lactose disaccharides, a biocatalytic approach coupled with subsequent chromatographic steps was used. Lactose was first oxidised to lactobionic acid using fungal cellobiose dehydrogenases, and then lactobionic acid and monosaccharides were removed by ion-exchange and size-exclusion chromatography. Two different cellobiose dehydrogenases (CDH), originating from Sclerotium rolfsii and Myriococcum thermophilum, were compared with respect to their applicability for this process. CDH from S. rolfsii showed higher specificity for the substrate lactose, and only few other components of the GalOS mixture were oxidised during prolonged incubation. Since these sugars were only converted once lactose oxidation was almost complete, careful control of the CDH-catalysed reaction will significantly reduce the undesired oxidation, and hence subsequent removal, of any GalOS components. Removal of ions and monosaccharides by the chromatographic steps gave an essentially pure GalOS product, containing less than 0.3% lactose and monosaccharides, in a yield of 60.3%. PMID:18353295

  10. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Jørck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E.; Sibirny, Andriy A.; Piškur, Jure; Ishchuk, Olena P

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alco...

  11. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.

    Adhish S Walvekar

    Full Text Available NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol resulted in preferential attenuation of AnGDH reductive amination (forward activity but with a negligible effect on oxidative deamination (reverse activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH, resembling a hypothetical 'one-way' active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme.

  12. Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain†

    Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David

    2010-01-01

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ± 10 μM. The concentration of Nox4 in cell lysates was esti...

  13. Affinity alkylators, 11α-bromoacetoxyprogesterone and estrone 3-bromoacetate, modify a common active site-histidine in human placental 17β,20-α-hydroxysteroid dehydrogenase

    Purified human placental 17β,20α-hydroxysteroid dehydrogenase (17,20-HSD), after complete inactivation by estrone 3-bromoacetate (3-BAE) in the presence of NADPH, was reactivated to 100% activity by base-catalyzed hydrolysis of the steroidal ester-enzyme conjugate and then repurified. Computer modeling predicted that 3-BAE and 11α-bromoacetoxyprogesterone (11-BAP) alkylate a common region of the enzyme active site. Kinetic studies argued that reactivated enzyme (RE) and native enzyme (NE) bind 11-BAP in the same orientation. 11-14C-BAP produced 5-fold less radiolabeled 3-(carboxymethyl)histidine (3-CM-His) in RE than in NE. Despite having the same affinity for RE and NE, 11-BAP re-inactivated RE5-fold slower than NE. These results demonstrate that the nonradiolabeled 3-CM-His originally produced by 3-BAE in the enzyme active site hindered radioalkylation of this histidyl reside in RE by 11-14C-BAP. Thus, 11-BAP and 3-BAE modify a common histidine in the enzyme active site, and this is direct evidence that the estradiol 17β-dehydrogenase and 20α-hydroxysteroid dehydrogenase activities of 17,20-HSD reside at a single locus on one protein

  14. Lipoxygenase inhibitory activity of anacardic acids.

    Ha, Tae Joung; Kubo, Isao

    2005-06-01

    6[8'(Z)-pentadecenyl]salicylic acid, otherwise known as anacardic acid (C15:1), inhibited the linoleic acid peroxidation catalyzed by soybean lipoxygenase-1 (EC 1.13.11.12, type 1) with an IC50 of 6.8 microM. The inhibition of the enzyme by anacardic acid (C15:1) is a slow and reversible reaction without residual activity. The inhibition kinetics analyzed by Dixon plots indicates that anacardic acid (C15:1) is a competitive inhibitor and the inhibition constant, KI, was obtained as 2.8 microM. Although anacardic acid (C15:1) inhibited the linoleic acid peroxidation without being oxidized, 6[8'(Z),11'(Z)-pentadecadienyl]salicylic acid, otherwise known as anacardic acid (C15:2), was dioxygenated at low concentrations as a substrate. In addition, anacardic acid (C15:2) was also found to exhibit time-dependent inhibition of lipoxygenase-1. The alk(en)yl side chain of anacardic acids is essential to elicit the inhibitory activity. However, the hydrophobic interaction alone is not enough because cardanol (C15:1), which possesses the same side chain as anacardic acid (C15:1), acted neither as a substrate nor as an inhibitor. PMID:15913294

  15. EFFECT OF TRIGONELLA FOENUM GRAECUM ON LACTATE DEHYDROGENASE (LDH ACTIVITY OF BLOOD, LIVER AND PANCREAS IN NORMAL AND ALLOXAN- INDUCED DIABETIC MICE

    Sekaran Sridhar et al.

    2012-02-01

    Full Text Available The effect of aqueous seeds extract of Trigonella foenum graecum Linn was studied on Lactate dehydrogenase (LDH activity of blood, liver and pancreas in normal and alloxan- induced diabetic mice. Our study showed that aqueous seeds extract, Oral administration of 50 mg/animal (0.5 ml of extract in alternative days up to 7 days (1st, 3rd, 5th & 7th day. In alloxan induced diabetic mice, there was a significant increase in LDH activity of all the three tissues. The enzyme Lactate dehydrogenase showed significant decrease in the diabetic group treated with aqueous extract of tested plant when compared with the diabetic group. It is clear from the current data in this study that ginseng aqueous extract was the most efficient of the tested plant.

  16. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-01-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis ...

  17. Effects of L-carnitine and Pentoxifylline on the Activity of Lactate Dehydrogenase C4 isozyme and Motility of Testicular Spermatozoa in Mice

    Aliabadi, Elham; Karimi, Fatemeh; Rasti, Mozhgan; Akmali, Masoumeh; Esmaeilpour, Tahereh

    2013-01-01

    Background Extracted sperm from the testis have poor motility. Moreover, their motility changes during their journey through epidydimis. Meanwhile, they face high concentration of L-carnitin. In addition, lactate dehydrogenase C4 (LDH-C4) gene disorders has been shown to cause impaired sperm motility, leading to infertility in male mice. The aim of this study was to evaluate sperm motility and LDH-C4 enzyme activity upon L-carnitine (LC) and Pentoxifylline (PTX) administrations in mice. Metho...

  18. Molybdenum center of xanthine dehydrogenase

    Cyanolysis of native, oxidized xanthine dehydrogenase is known to inactivate the enzyme by removing a unique sulfur as thiocyanate. Chemical, genetic, and spectroscopic evidence indicates that this sulfur is a terminal ligand of Mo and is present in native xanthine dehydrogenase, but not in cyanolyzed xanthine dehydrogenase or native sulfite oxidase. A procedure for rapid, reproducible, and quantitative reconstitution of desulfo Mo hydroxylases with sulfide was developed. The cyanolyzable sulfur of xanthine dehydrogenase was specifically radiolabeled with 35sulfide using this procedure. Various chemical properties of the cyanolyzable sulfur could be determined with the radiolabelled enzyme. The data support the conclusion that the cyanolyzable sulfur is a terminal sulfur ligand of the Mo atoms, and is not part of an organic moiety. Application of the resulfuration procedure to crude extracts of Drosophila melanogaster ma-1 flies, which are pleiotropically deficient in xanthine dehydrogenase and aldehyde oxidase, led to the emergence of these enzyme activities. Evidence for the identity of in vitro reconstituted xanthine dehydrogenase from ma-1 mutants with wild type enzyme is presented. A system for efficient reconstitution of the apo-subunits of the molybdoenzyme nitrate reductase from the Neurospora crassa mutant nit-1 with molybdenum cofactor from denatured purified molybdoenzymes in the absence of exogenous molybdate was developed

  19. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH).

    Wang, Tao; Chen, Xiangjun; Han, Jun; Ma, Sichun; Wang, Jianmei; Li, Xufeng; Zhang, Hui; Liu, Zhibin; Yang, Yi

    2016-07-01

    SADHs from Thermoanaerobacter ethanolicus are enzymes that, together with various cofactors, catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. To explore how cofactors bind to SADH, TeSADH was cloned in this study, and Ser(199) and Arg(200) were replaced by Tyr and Asp, respectively. Both sites were expected to be inside or adjacent to the cofactor-binding domain according to computational a prediction. Analysis of TeSADH activities revealed that the enzymatic efficiency (kcat/Km) of the S199Y mutant was noticeably enhanced using by NADH, NADPH as cofactors, and similar with that of wild-type using by NADP(+), NAD(+). Conversely, the activity of the R200D mutant significantly decreased with all cofactors. Furthermore, in yeast, the S199Y mutant substantially elevated the ethanol concentration compared with the wild type. Molecular dynamics simulation results indicated the H-bonding network between TeSADH and the cofactors was stronger for the S199Y mutant and the binding energy was simultaneously increased. Moreover, the fluorescence results indicated the S199Y mutant exhibited an increased preference for NAD(P)H, binding with NAD(P)H more compactly compared with wild type. PMID:27016086

  20. NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenases from bacteroides fragilis.

    Macdonald, I A; Williams, C N; Mahony, D E; Christie, W M

    1975-03-28

    Twenty strains of Bacteroides fragilis were screened for hydroxysteroid oxidoreductase activity in cell-free preparations. Eighteen strains were shown to contain NAD-dependent 7alpha-hydroxysteroid dehydrogenase. Sixteen of the strains containing the NAD-dependent enzyme also contained NADP-depedent 7alpha-hydroxysteroid dehydrogenase, but invariably in lesser amounts. A strain particulary rich in both 7alpha-hydroxysteroid dehydrogenase activities was selected for further study. Measurement of activity as a function of pH revealed a fairly sharp optimal activity range of 9.5--10.0 for the NAD-dependent enzyme and a broad flat optimal range of 7.0--9.0 for the NADP-dependent enzyme. Michaelis constants for trihydroxy-bile acids for the NAD-dependent enzyme were in the range of 0.32--0.34 mM, whereas dihydroxy-bile acids gave a Km of 0.1 mM. Thin-layer chromatography studies on the oxidation product of 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid (chenodeoxycholic acid) by the dehydrogenase revealed a band corresponding to that of synthetic 3alpha-hydroxy, 7-keto-5beta-cholanoic acid. Similarly the oxidation product of chenodeoxycholic acid by both 7alpha-hydroxysteroid dehydrogenase and commercially available 3alpha-hy-droxysteroid dehydrogenase revealed a band corresponding to that of synthetic 3,7-diketo-5beta-cholanoic acid. Neither of these two oxidation products could be distinguished from those by the Escherichia coli dehydrogenase oxidation previously reported. Disc-gel electrophoresis of a cell-free lyophilized preparation indicated one active band for NAD-dependent activity of mobility similar to that for the NADP-dependent E. coli enzyme. The NADP-dependent dehydrogenase was unstable and rapidly lost activity after polyacylamide disc-gel electrophoresis, ultracentrifugation, freezing on refrigeration at 4 degrees C. No 3 alpha- or 12alpha-oriented oxidoreductase activity was demonstrated in any of the strains examined. PMID:236764

  1. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Bruno M Oliveira

    Full Text Available During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  2. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  3. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Tahereh Esmaeilpour

    2014-01-01

    Full Text Available Background: Application of follicular fluid (FF and platelet-activating factor (PAF in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase chain reaction (q-RT PCR and western blotting after it was treated with optimized concentrations of FF and PAF in twenty asthenozoospermic samples. Also, LDH-C expression was evaluated in five normozoospermic samples. Results: Samples with 75% FF and 100 nM of PAF had an increase in their percentages of progressive and slowly motile sperms and a decrease in their percentages of non-progressive and non-motile sperms. Moreover, LDH-C mRNA transcripts were not changed following PAF and FF treatment, and LDH-C protein was detected in highly progressive motile specimens treated with FF in the asthenozoospermic samples. Furthermore, LDH-C expression was more detectable in the normal sperms. Conclusion: Our results indicated that PAF had more beneficial effects than FF on sperm motility in the asthenozoospermic samples (P=0.0001, although the LDH-C expressions of the sperms were not changed significantly in both groups. We found no association between LDH-C expression and sperm motility after FF and PAF actions. This finding, however, requires further investigation. The fact that LDH-C protein was detected in the normozoospermic, but not asthenozoospermic, samples could be cited as a reason for the infertility in these patients.

  4. Role of 11β-hydroxysteroid dehydrogenase 2 renal activity in potassium homeostasis in rats with chronic renal failure

    N.L. Yeyati

    2010-01-01

    Full Text Available Aldosterone concentrations vary in advanced chronic renal failure (CRF. The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2, which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR, in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9 and sham rats (N = 10 were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg·kg-1·day-1 for 7 days and 11β-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg and Pcr (Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL were higher (P < 0.05 while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 ± 0.06 mL/min was lower (P < 0.05 in CRF, and plasma aldosterone (Pald was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before vs 0.89 ± 0.09 µEq/min (after and CRF = 1.05 ± 0.05 (before vs 0.37 ± 0.07 µEq/min (after; P < 0.05. 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05, although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This adaptation may be mediated by

  5. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity

    Sahin, Ali [Faculty of Medicine, Department of Nuclear Medicine, Ataturk University, Erzurum 25240 (Turkey)], E-mail: alibabam2001@yahoo.com; Senturk, Murat [Science Faculty, Department of Chemistry, Ataturk University, Erzurum 25240 (Turkey); Ciftci, Mehmet [Science and Arts Faculty, Department of Chemistry, Agri Ibrahim Cecen University, 04100, Agri (Turkey); Varoglu, Erhan [Faculty of Medicine, Department of Nuclear Medicine, Ataturk University, Erzurum 25240 (Turkey); Kufrevioglu, Omer Irfan [Science and Arts Faculty, Department of Chemistry, Agri Ibrahim Cecen University, 04100, Agri (Turkey)

    2010-04-15

    Aim: The inhibitory effects of thallium-201 ({sup 201}Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. Methods: For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the {sup 201}Tl solution including Tl{sup +}, Fe{sup +3} and Cu{sup +2} metals and the in vitro effects of the radiation effect of the {sup 201}Tl solution and non-radioactive Tl{sup +}, Fe{sup +3} and Cu{sup +2} metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 deg. C. Results: {sup 201}Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC{sub 50} value of {sup 201}Tl solution was 36.86 {mu}l ([Tl{sup +}]: 0.0036 {mu}M, [Cu{sup +2}]: 0.0116 {mu}M, [Fe{sup +3}]: 0.0132 {mu}M), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of {sup 201}Tl solution. Furthermore, non-radioactive Tl{sup +}, Fe{sup +3} and Cu{sup +2} were found not to have influenced the enzyme in vitro. Conclusion: Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg {sup 201}Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of {sup 201}Tl solution.

  6. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Wang, Shihua; Buchko, Garry W.; Garavito, Michael R.

    2014-07-30

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.

  7. Atividade da 6-fosfogliconato desidrogenase em deficientes de glicose-6-fosfato desidrogenase Activity of 6-phosphogluconate dehydrogenase in glucose-6-phosphate dehydrogenase deficiency

    Daniela B. Nicolielo

    2006-06-01

    to know better the actuation of these enzymes. The goal of this study was to evaluate the 6PGD enzymatic activity on a population with G6PD deficiency, to verify if there is an elevation of the activity of this enzyme, and try to correlate to a possible increase on the number of reticulocytes or the presence of alterations on red series. The research with 2657 male individuals detected 97 deficient for G6PD, which determined a 3.65% prevalence for the Bauru (SP region, with mean enzymatic activity of 1.74 UI.g Hb-1. min-1 at 37ºC, 14,4% of the normal G6PD activity. Mean 6PGD enzymatic activity was 9.5 UI.g Hb-1. min-1 at 37ºC, and was elevated in 47.4% of the G6PD deficient individuals. The result obtained did not confirm the hypothesis that the elevation of the 6PGD enzymatic activity, in G6PD deficient individuals, was due to the presence of an increase of reticulocytes in blood stream, age or erythrocytometric alterations that could denote anemia. The most plausible theory is that the auto-limited hemolysis, imposed by oxidative processes, preserves young erythrocytes that have an elevated enzymatic activity, as naturally these enzymes lose activity with cellular aging.

  8. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males

    Tong, Ming-Han; Yang, Qi-En; Davis, Jeffrey C.; Griswold, Michael D.

    2012-01-01

    Retinoic acid (RA), an active vitamin A derivative, is essential for mammalian spermatogenesis. Genetic studies have revealed that oxidation of vitamin A to retinal by retinol dehydrogenase 10 (RDH10) is critical for embryonic RA biosynthesis. However, physiological roles of RDH10 in postnatal RA synthesis remain unclear, given that Rdh10 loss-of-function mutations lead to early embryonic lethality. We conducted in vivo genetic studies of Rdh10 in postnatal mouse testes and found that an RDH1...

  9. Regenerative Capacity of Cacti Schlumbergera and Rhipsalidopsis in Relation to Endogenous Phytohormones, Cytokinin Oxidase/Dehydrogenase, and Peroxidase Activities

    Sriskandarajah, S.; Prinsen, E.; Motyka, Václav; Dobrev, Petre; Serek, M.

    2006-01-01

    Roč. 25, č. 1 (2006), s. 79-88. ISSN 0721-7595 R&D Projects: GA ČR GA206/03/0313 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinin dehydrogenase * Cytokinin oxidase * Endogenous phytohormones * In vitro regeneration * Peroxidase * Rhipsalidopsis * Schlumbergera Subject RIV: EF - Botanics Impact factor: 2.107, year: 2006

  10. Characterization of 17α-hydroxysteroid dehydrogenase activity (17α-HSD and its involvement in the biosynthesis of epitestosterone

    Breton Rock

    2005-07-01

    Full Text Available Abstract Background Epi-testosterone (epiT is the 17α-epimer of testosterone. It has been found at similar level as testosterone in human biological fluids. This steroid has thus been used as a natural internal standard for assessing testosterone abuse in sports. EpiT has been also shown to accumulate in mammary cyst fluid and in human prostate. It was found to possess antiandrogenic activity as well as neuroprotective effects. So far, the exact pathway leading to the formation of epiT has not been elucidated. Results In this report, we describe the isolation and characterization of the enzyme 17α-hydroxysteroid dehydrogenase. The name is given according to its most potent activity. Using cells stably expressing the enzyme, we show that 17α-HSD catalyzes efficienty the transformation of 4-androstenedione (4-dione, dehydroepiandrosterone (DHEA, 5α-androstane-3,17-dione (5α-dione and androsterone (ADT into their corresponding 17α-hydroxy-steroids : epiT, 5-androstene-3β,17α-diol (epi5diol, 5α-androstane-17α-ol-3-one (epiDHT and 5α-androstane-3α,17α-diol (epi3α-diol, respectively. Similar to other members of the aldo-keto reductase family that possess the ability to reduce the keto-group into hydroxyl-group at different position on the steroid nucleus, 17α-HSD could also catalyze the transformation of DHT, 5α-dione, and 5α-pregnane-3,20-dione (DHP into 3α-diol, ADT and 5α-pregnane-3α-ol-20-one (allopregnanolone through its less potent 3α-HSD activity. We also have over-expressed the 17α-HSD in Escherichia coli and have purified it by affinity chromatography. The purified enzyme exhibits the same catalytic properties that have been observed with cultured HEK-293 stably transfected cells. Using quantitative Realtime-PCR to study tissue distribution of this enzyme in the mouse, we observed that it is expressed at very high levels in the kidney. Conclusion The present study permits to clarify the biosynthesis pathway of epiT. It

  11. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  12. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  13. Glucose-6-phosphate dehydrogenase

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  14. Efficient Production of Optically Pure d-Lactic Acid from Raw Corn Starch by Using a Genetically Modified l-Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting Lactobacillus plantarum Strain▿

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2008-01-01

    In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation,...

  15. Diagnostic Value of Serum Lactate Dehydrogenase Isoenzyme and Amino Acid Patterns in Several Schistosomal and Non-Schistosomal Disorders as Compared to other Biochemical Parameters

    Samia A. Ahmed

    1996-01-01

    Full Text Available Serum lactate dehydrogenase (LDH isoenzyme and amino acid (a. a patterns were evaluated in comparison to several other biochemical parameters for liver and renal function with the objective of clarifying the differential diagnosis of hepatic disorders and predicting the outcome of schistosomal infection in Egyptian patients. Patients examined included those with complicated hepatic disorders and others with different stages of schistosomal infestation, hepatoma or bladder cancer, in addition to a normal control group. Several biochemical parameters appeared to be useful in establishing consistent differences or similarities between the studied groups. Examples are; elevated serum AST/ AL T ratio and methionine content in chronic schistosomiasis, elevated serum urea/creatinine ratio and leucine content in all schistosomal patients and extremely high levels of N-acetyl-β-D-glucosaminidase (NAG in the urine of non-schistosomal bladder cancer patients. In addition, characteristic LDH isoenzyme profiles distinguish between the studied groups, in particular separating chronic schistosomiasis from schistosomal bladder cancer and hepatoma from other hepatic disorders.

  16. Effect of repeated pesticide applications on soil properties in cotton fields: II. Insecticide residues and impact on dehydrogenase and arginine deaminase activities

    Insecticides were applied sequentially at recommended dosages post crop emergence in cotton fields and soil was sampled at regular intervals after each treatment. Soil was analysed for insecticide residues and activity of the enzymes dehydrogenase and arginine deaminase. Insecticide residues detected in the soil were in small quantities and they did not persist for long. Only endosulfan leached below 15 cm. Insecticides had only temporary effects on enzyme activities which disappeared either before the next insecticide treatment or by the end of the experimental period. (author)

  17. Cytokinin oxidase/dehydrogenase activity as a tool in gibberellic acid/cytokinin cross talk

    Todorova, D.; Vaseva, I.; Malbeck, Jiří; Trávníčková, Alena; Macháčková, Ivana; Karanov, E.

    2007-01-01

    Roč. 51, č. 3 (2007), s. 579-583. ISSN 0006-3134 Institutional research plan: CEZ:AV0Z50380511 Keywords : isopentenyladenine * pea * Pisum sativum * zeatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.259, year: 2007

  18. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  19. Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of l-Lysine, l-Valine, and 2-Ketoisovalerate

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J.; Blombach, Bastian

    2013-01-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it wa...

  20. Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts

    Kwon, Hyun Jin; Rhim, Ji Heon; Jang, Ik-Soon; Kim, Go-Eun; Park, Sang Chul; Yeo, Eui-Ju

    2010-01-01

    In addition to its well-known glycolytic activity, GAPDH displays multiple functions, such as nuclear RNA export, DNA replication and repair, and apoptotic cell death. This functional diversity depends on its intracellular localization. In this study, we explored the signal transduction pathways involved in the nuclear translocation of GAPDH using confocal laser scanning microscopy of immunostained human diploid fibroblasts (HDFs). GAPDH was present mainly in the cytoplasm when cultured wi...

  1. Excitotoxic increase of xanthine dehydrogenase and xanthine oxidase in the rat olfactory cortex.

    Battelli, M G; Buonamici, L; Abbondanza, A; Virgili, M; Contestabile, A; Stirpe, F

    1995-05-26

    Excitotoxic lesions induced by systemic injection of kainic acid, resulted in 2-3-fold increase of xanthine dehydrogenase and xanthine oxidase activities in the rat olfactory cortex 48-72 h after drug administration. A significant increase of the xanthine oxidase/dehydrogenase ratio was also observed at 4 and 48 h post-injection. No similar changes were noticed in the hippocampus. The enhancement of enzyme activity seems to be primarily a consequence of the altered cell composition in damaged area. Free radicals produced by the increased oxygen-dependent form of the enzyme could in turn aggravate the excitotoxic brain injury. PMID:7656426

  2. Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn²⁺.

    Cheng, Xin; Dong, Ying; Su, Ping; Xiao, Xiang

    2014-11-01

    Production of lactic acid bacteria (LAB) starter with raw material has received much scientific investigation, but little information is available on the influences of some trace elements on the growth and fermentative activity of LAB. Based on this fact, this paper aimed to investigate the effects of Mn(2+) on the performance of Lactobacillus plantarum CX-15 starter with Jerusalem artichoke (JA) as the main medium substrate. The results showed that Mn(2+) addition had a significant beneficial affect on the fermentative activity of L. plantarum CX-15 starter. In contrast, the lack of Mn(2+) would cause the subsequent fermentation significantly slower, whether the cell density in starter culture was higher or lower. The possible mechanism of these phenomenons was further elucidated by the time course analysis of the specific activities of metabolism key enzymes during the culture processes of L. plantarum CX-15 starter. Compared to the fermentation processes without Mn(2+) addition, it was found that Mn(2+) addition would enhance the lactate dehydrogenase (LDH) activity but reduce the activities of pyruvate dehydrogenase (PDH) and ATPase activity. Therefore, it could be concluded that the improvement of L. plantarum starter fermentative activity was probably a consequence of Mn(2+) acting as "metabolic switch," which regulated the metabolic flux from pyruvic acid to lactic acid and other metabolism pathway. PMID:25146195

  3. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone.

    Saito, Rie; Kato, Chiaki; Nakayama, Akihiko

    2006-02-01

    To examine the occurrence in other deep-sea bacteria of two amino acid substitutions (Ala-180 and His-229) in malate dehydrogenase (MDH) found previously in the deep-sea piezophilic Moritella sp. strain 2D2, we cloned and sequenced MDH genes of deep-sea piezophilic Moritella and Shewanella strains isolated from intestinal contents of deep-sea fishes, as well as other Moritella species from deep-sea water and sediments: M. marina, M. japonica, and M. yayanosii. The piezophilic Moritella strains had a Val residue or an Ala residue at position 180 and all the Moritella strains except for one had a His residue at position 229. However, four piezophilic-strain-specific substitutions at positions 103, 111, 229, and 283 were found to be completely conserved in the MDH of the intestinal Moritella strains of deep-sea fishes, indicating the substitutions may be habitat-specific. The piezophilic Shewanella strains had a Val residue and a Gln residue at positions 180 and 229, respectively. However, the MDHs of the Shewanella strains had five piezophilic-strain-specific substitutions at positions 61, 65, 107, 161, and 202. Therefore, the enzymatic strategies for responding to deep-sea high pressure environments of the MDHs between the genera Moritella and Shewanella are potentially different. Moreover, homology modeling shows these substitutions found in the MDHs of both genera except for position 229 in the subunit interface are located on the exposed region of the MDH molecules, indicating the substitutions may be related to the hydration state of the molecules. PMID:16598154

  4. Effect of noise exposure (85 dB ) on testicular adrenocortical steroidogenic key enzymes, acid and alkaline phosphatase activities of sex organs in mature albino rats

    2000-01-01

    Changes in the activities of △5-3β-hydroysteroid dehydrogenase (HSD) in testis and adrenal gland, 17β-hydroxysteroid dehydrogenase in testis, acid and alkaline phosphatase in testis, prostate and seminal vesicle were observed in noise exposed mature rats at the intensity of 85 dB for 8 h/day for 45 days. The results indicated that noise exposed group showed a significant diminution in the activities of androgenic key enzymes △5-3β and 17β-HSD, acid phosphatase in testis, prostate and seminal vesicle. There was a significant elevation in the activities of adrenal △5-3β-HSD, alkaline phosphatase in testis and other accessory sex organ in noise exposed group. Gonadosomatic, prostatosomatic and seminal vesiculo-somatic indexes were decreased significantly in noise exposed group. Therefore, it is evident that noise exposure at 85dB exerts a deleterious effect on testicular and adrenocortical activities.

  5. On the anticonvulsant activity of kaurenic acid.

    Daló, Nelson L; Sosa-Sequera, Miriam C; Usubillaga, Alfredo

    2007-09-01

    Kaurenic acid [(-)-kaur-16-en-19-oic acid] is a diterpene isolated from the aerial parts of Espeletia semiglobulata, one of 85 species of Espeletiinae found in Venezuela. Its anticonvulsive activity was studied using two different models of experimental seizures: spinal seizures induced by sudden cooling (SSSC) in amphibians and seizures induced by pentylenetetrazol (PTZ) in mice. In SSSC, kaurenic acid (KA) inhibited the tonic hind-limb extension with an ED50 of 2.5 mg/kg. It was 4-fold more potent than known anticonvulsant drugs such as carbamazepine and phenytoin and 100-fold more potent than valproic acid. However, KA as well as valproic acid were ineffective against the clonic phase of SSSC. In the PTZ-induced seizures, KA at doses of 0.625 and 1.25 mg/kg increased the latency of seizure onset and protected against generalized clonic-tonic seizures by 45% and 65%, respectively. The sedative effects of KA had an ED50 of 8.5 mg/kg in mice and 75 mg/kg in amphibians. This work provides experimental evidence supporting the potential value of kaurenic acid as an anticonvulsive drug. PMID:17853794

  6. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes.

    Varol, Mehmet; Türk, Ayşen; Candan, Mehmet; Tay, Turgay; Koparal, Ayşe Tansu

    2016-01-01

    Vulpinic and gyrophoric acids are known as ultraviolet filters for natural lichen populations because of their chemical structures. However, to the best of our knowledge, there has been no reference to their cosmetic potential for skin protection against ultraviolet B (UVB)-induced damage and, consequently, we propose to highlight their photoprotective profiles in human keratinocytes (HaCaT). Therefore, vulpinic acid and gyrophoric acid were isolated from acetone extracts of Letharia vulpina and Xanthoparmelia pokornyi, respectively. Their photoprotective activities on irradiated HaCaT cells and destructive effects on non-irradiated HaCaT cells were compared through in vitro experimentation: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays, 4',6-diamino-2-phenylindole and tetramethylrhodamine B isothiocyanate-phalloidin staining protocols. Both of the lichen substances effectively prevented cytotoxic, apoptotic and cytoskeleton alterative activities of 2.5 J/cm(2) UVB in a dose-dependent manner. Moreover, vulpinic and gyrophoric acids showed no toxic, apoptotic or cytoskeleton alterative effects on non-irradiated HaCaT cells, except at high doses (≥400 μM) of gyrophoric acid. The findings suggest that vulpinic and gyrophoric acids can be promising cosmetic ingredients to photo-protect human skin cells and should therefore be further investigated by in vitro and in vivo multiple bioassays. PMID:26463741

  7. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx.

    Strauss, Kevin A; Brumbaugh, Joan; Duffy, Alana; Wardley, Bridget; Robinson, Donna; Hendrickson, Christine; Tortorelli, Silvia; Moser, Ann B; Puffenberger, Erik G; Rider, Nicholas L; Morton, D Holmes

    2011-01-01

    Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine

  8. Combined Effect of L-Cysteine and Vitamin E Injected Pre-Irradiation on Glucose-6-Phosphate Dehydrogenase Activity and Certain products of Glycolysis in Blood of Female Rats

    The present work aims to evaluate the protective limits of L-cysteine and vitamin E combination against deleterious effects of gamma radiation on glucose-6-phosphate dehydrogenase activity, liver glycogen, blood glucose, pyruvic and lactic acids and their correlations in adult female rats. Mature female white rats were divided into four groups: 1- Control group. 2- Whole body gamma irradiated group at a dose level two Gy. 3-Group injected with 120 mg/100 g b.wt. L-cysteine+10 mg/100 g b.wt. vitamin E. 4- Group injected with cysteine+ vitamin E one hour before irradiation at 2 Gy dose level. Results revealed that combined administration of cysteine and vitamin E before gamma-irradiation have accelerated the radiation injury on liver glycogen, plasma glucose and G 6 Pd activity, while they showed a protective effect on lactic and pyruvic acids. This could be due to different mechanisms or a biphasic mechanism related to hormonal (like E2, T3 and insulin), enzymatic or metabolic (e.g. oxidation/reduction, catabolic, anabolic factors) control

  9. Yeast and horse liver alcohol dehydrogenases: potential problems in target size analysis and evidence for a monomer active unit

    Yeast and horse alcohol dehydrogenases are commonly used as standards for radiation inactivation analysis of proteins, usually assuming that the minimal functional unit corresponds to the physical size in solution, a tetramer (M/sub r/ = 148,000) and a dimer (M/sub r/ = 80,000), respectively. Results described in this paper demonstrate that molecular weight overestimates may be obtained for the yeast protein as a result of its unusual sensitivity to secondary radiation products. Irradiation in the presence of sulhydryl reagents results in a smaller functional size estimate (67,000 +/- 3000) than that obtained in their absence (128,000 +/- 5000), indicating that some sulfhydryl groups in the enzyme may be particularly susceptible to attack by radiolytic species. Analysis of the horse liver enzyme reveals that although it has structural and functional similarities to the yeast protein, it is not as prone to secondary radiation damage and gives a minimal functional size estimate (33,000 +/= 1000) that most closely corresponds to a monomer. Quantitation of disappearance of the protein from a sodium dodecyl sulfate gel as a function of radiation dose also gives a target size (48,000 +/- 3000) in reasonable agreement with the monomer molecular weight. These results indicate that the individual subunits of horse liver alcohol dehydrogenase have independent catalytic capacity and imply that the same may be true for the yeast enzyme

  10. Derivatives of (phenylsulfonamido-methyl)nicotine and (phenylsulfonamido-methyl)thiazole as novel 11β-hydroxysteroid dehydrogenase type 1 inhibitors: synthesis and biological activities in vitro

    Xu ZHANG; Yang ZHOU; Yu SHEN; Li-li DU; Jun-hua CHEN; Ying LENG; Jian-hua SHEN

    2009-01-01

    Aim: To design and synthese a novel class of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors, featuring the (phenylsul-fonamido-methyl)pyridine and (phenyisulfonamido-methyl)thiazole framework. Methods: Our initial lead 4-(phenylsulfonamido-methyl)benzamides were modified. Inhibition of human and mouse 11β-HSD1 enzy-matic activities by the new compounds was determined by a scintillation proximity assay (SPA) using microsomes containing 11β-HSD1.Results: Sixteen new compounds (6a-6h, 7a-7h) were designed, synthesized and bioassayed. In dose-response studies, several com-pounds showed strong inhibitory activities with IC_(50) values at nanomolar or low nanomolar concentrations. Structure-activity relation-ships are also discussed with respect to molecular docking results. Conclusion: This study provides two promising new templates for 11β-HSD1 inhibitors.

  11. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  12. Lithocholic acid and derivatives: Antibacterial activity.

    do Nascimento, Patrícia G G; Lemos, Telma L G; Almeida, Macia C S; de Souza, Juliana M O; Bizerra, Ayla M C; Santiago, Gilvandete M P; da Costa, José G M; Coutinho, Henrique D M

    2015-12-01

    In order to develop bioactive lithocholic acid derivatives, we prepared fifteen semi-synthetic compounds through modification at C-3 and/or C-24. The reactions showed yields ranging from 37% to 100%. The structures of all compounds obtained were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR). The activity of lithocholic acid and derivatives was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Bacillus cereus and Pseudomonas aeruginosa. The derivative 3α-formyloxy-5β-cholan-24-oic acid (LA-06) showed the best activity, with MIC values of 0.0790 mM against E. coli (Ec 27) and B. cereus in both cases, and 0.0395 mM against S. aureus (ATCC 12692). Lithocholic acid and the derivatives with MIC⩽1.2 mM were evaluated on the susceptibility of some bacterial pathogens to the aminoglycoside antibiotics neomycin, amikacin and gentamicin was evaluated. There are no previously reported studies about these compounds as modifiers of the action of antibiotics or any other drugs. PMID:26216208

  13. Screening of aspartate dehydrogenase of bacteria

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  14. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  15. Maternal coordination of the daily rhythm of malate dehydrogenase activity in testes from young rats: effect of maternal sympathetic denervation of the pineal gland and administration of melatonin.

    Vermouth, N T; Carriazo, C S; Gallará, R V; Carpentieri, A R; Bellavía, S L

    1995-02-01

    Chronic sympathetic denervation of the pineal gland by bilateral removal of the superior cervical ganglia (SCG) was performed on female rats 30 days before impregnation. The offspring, maintained in the dark from birth, had disruption of the malate dehydrogenase circadian rhythm in the testes at 25 days of age. A daily injection of melatonin (1 mg/kg s.c. at 10:00 or 18:00 h) to denervated mothers from the 14th day of pregnancy up to the 10th day postpartum produced one daily phase in the enzyme activity of tests in the offspring. Entrainment of daily enzyme activity also was obtained when the hormone was administered orally to the pups during the postnatal period or when pups were reared by intact (not denervated) foster mothers. The results indicate the involvement of the maternal pineal gland in the maternal transfer of photoperiodic information necessary for the coordination of the circadian system in young rats. PMID:7750160

  16. Glucose-6-phosphate dehydrogenase (G6PD. Response of the human erythrocyte and another cells to the decrease in their activity.

    Javier Fernando Bonilla

    2009-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway and the main intracellular source of reduced nicotidamineadenine nucleotidephosphate (NADPH, involved in diverse physiological processes such as antioxidant defense, (for instance in the erythrocyte endothelial growth modulation, erithropoyesis, vascularization and phagocitosis. G6PDH deficiency is the most common X-chromosome-linked enzymopathy in human beings. Although it is present in any type cell, its absolute deficiency is incompatible with life. According to WHO, 400 million people are affected by G6PD deficiency in the world but in Colombia, the severe form prevalence is about 3% to 7%. There are no data related to slight and moderate alterations, that also have clinical effects. This paper reviews some G6PD biomolecular aspects, its classification according to activity and electrophoretic mobility, as well as some main clinical aspects related to its activity alteration.

  17. Enhanced acyl-CoA dehydrogenase activity is associated with improved mitochondrial and contractile function in heart failure

    Heart failure is associated with decreased myocardial fatty acid oxidation capacity and has been likened to energy starvation. Increased fatty acid availability results in an induction of genes promoting fatty acid oxidation. The aim of the present study was to investigate possible mechanisms by whi...

  18. The effects of inhaled formaldehyde on the activities of some metabolic enzymes in the liver of male rats: subchronic (13-weeks) effects

    Yılmaz, H.Ramazan; ÖZEN, O. Aslan; Özyurt, Hüseyin; Songur, Ahmet; Şahin, Şemsettin; Sarsılmaz, Mustafa

    2013-01-01

    Abstract. We aimed to investigate the effects of different formaldehyde (FA) concentrations on some enzyme activities that take part in metabolic pathways in the liver. The enzymes studied were hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) which are included in the three main metabolic pathways; glycolysis, citric acid cycle, and pentose phosphate pathway. Thirty male Wistar albin...

  19. Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU. This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors. While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity. TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT

  20. New nalidixic acid resistance mutations related to deoxyribonucleic acid gyrase activity.

    Yamagishi, J; Furutani, Y; Inoue, S.; Ohue, T; Nakamura, S; Shimizu, M

    1981-01-01

    In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were ...

  1. HISTIDINE MUTAGENESIS OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE KINASE

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-compone...

  2. Real-time monitoring of glucose-6-phosphate dehydrogenase activity using liquid droplet arrays and its application to human plasma samples.

    Jung, Se-Hui; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-05-15

    Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (pG6PD-associated diseases and utilizing kinetic studies. PMID:26802575

  3. Combined influence of γ-irradiation and nitrocompounds on the activity of the main ferments of the glutamic acid metabolism

    Activity of aspartate aminotransferase, glutamate dehydrogenase in the liver of rats in 1, 7 and 15 days after γ-irradiation effect of the dose of 0.5 Gy on the background of consumption by animals of sodium nitrate, sodium nitrite and nitrosodiethylamine was studied. The combined influence of chemical agents and γ-irradiation modified the effects of nitrocompounds-xenobiotics on the processes of synthesis and dissociation of the glutamic acid as well as the intensity of transamination of reamination by aspartate aminotransferase

  4. Activation of the biochemical processes in an oil-contaminated soil using a light-correcting film and humic acids

    Filatov, D. A.; Ivanov, A. A.; Svarovskaya, L. I.; Yudina, N. V.

    2011-02-01

    It was shown that the use of a light-correcting film as a covering material for an oil-contaminated soil in combination with humic acids increased the number of the main physiological groups of the soil microorganisms responsible for the development of the soil's fertility (heterotrophic bacteria, actinomycetes, and micromycetes) by 60-100 times. The activity of the soil enzymes (catalase, dehydrogenase, polyphenoloxidase, peroxidase, and urease) increased by 3-6 times. The biochemical oxidation of oil hydrocarbons in the soil became significantly more intense.

  5. Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases

    Gani, Osman A B S M; Adekoya, Olayiwola A; Giurato, Laura; Spyrakis, Francesca; Cozzini, Pietro; Guccione, Salvatore; Winberg, Jan-Olof; Sylte, Ingebrigt

    2007-01-01

    Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that...

  6. Boswellic acids synergize antitumor activity and protect against the cardiotoxicity of doxorubicin in mice bearing Ehrlich's carcinoma.

    Ali, Shimaa A; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-08-01

    This study aimed to test whether boswellic acids add to the antitumor effects of doxorubicin against solid tumors of Ehrlich's ascites carcinoma (EAC) grown in mice, and to investigate the protective effects of boswellic acids against doxorubicin-induced cardiotoxicity. Sixty-four female Swiss albino mice bearing EAC solid tumors were distributed among 8 groups as follows: group 1, EAC control group; group 2, doxorubicin treatment group [mice were injected with doxorubicin (6 mg·(kg body mass)(-1)·week(-1)) for 3 weeks]; groups 3-5, these mice were treated with boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively; groups 6-8, these mice were treated with a combination of doxorubicin and boswellic acids (125, 250, or 500 mg·kg(-1)·day(-1)), respectively, for 3 weeks. The results indicated that boswellic acids synergized the antitumor activity of doxorubicin. Doxorubicin-treated mice showed elevated serum activities of lactate dehydrogenase and creatine kinase isoenzyme MB as well as cardiac malondialdehyde. Further, decreases in cardiac levels of reduced glutathione, superoxide dismutase, and catalase activities were observed. These effects were accompanied by an increase in cardiac expression of caspase 3. Thus, treatment with boswellic acids attenuated doxorubicin-evoked disturbances in the above-mentioned parameters, highlighting antioxidant and antiapoptotic activities. Therefore, boswellic acids could be potential candidates for ameliorating the cardiotoxicity of doxorubicin. PMID:26230640

  7. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank [Pitt; (Goettingen); (VA); (Rutgers)

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.

  8. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  9. Plant Formate Dehydrogenase

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  10. Studies on the acid activation of Brazilian smectitic clays

    Francisco R. Valenzuela Díaz; Pérsio de Souza Santos

    2001-01-01

    Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites), activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizi...

  11. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  12. Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea.

    Endo, Noriyuki; Kan-no, Nobuhiro; Nagahisa, Eizoh

    2007-06-01

    Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor. PMID:17350870

  13. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch. PMID:19011066

  14. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Göttlicher, M; Widmark, E; Q. Li; Gustafsson, J.A.

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring acti...

  15. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.

    Robador, Pablo A; Seyedi, Nahid; Chan, Noel Yan-Ki; Koda, Kenichiro; Levi, Roberto

    2012-10-01

    During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that

  16. Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C ε-dependent aldehyde dehydrogenase type-2 activation.

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y-K; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L; Levi, Roberto

    2014-06-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype-ε (PKCε)-aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow-derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  17. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    Clair Crewe

    Full Text Available Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance

  18. NdhV subunit regulates the activity of type-1 NAD(P)H dehydrogenase under high light conditions in cyanobacterium Synechocystis sp. PCC 6803.

    Chen, Xin; He, Zhihui; Xu, Min; Peng, Lianwei; Mi, Hualing

    2016-01-01

    The cyanobacterial NAD(P)H dehydrogenase (NDH-1) complexes play crucial roles in variety of bioenergetic reactions. However, the regulative mechanism of NDH-1 under stressed conditions is still unclear. In this study, we detected that the NDH-1 activity is partially impaired, but the accumulation of NDH-1 complexes was little affected in the NdhV deleted mutant (ΔndhV) at low light in cyanobacterium Synechocystis sp. PCC 6803. ΔndhV grew normally at low light but slowly at high light under inorganic carbon limitation conditions (low pH or low CO2), meanwhile the activity of CO2 uptake was evidently lowered than wild type even at pH 8.0. The accumulation of NdhV in thylakoids strictly relies on the presence of the hydrophilic subcomplex of NDH-1. Furthermore, NdhV was co-located with hydrophilic subunits of NDH-1 loosely associated with the NDH-1L, NDH-1MS' and NDH-1M complexes. The level of the NdhV was significantly increased at high light and deletion of NdhV suppressed the up-regulation of NDH-1 activity, causing the lowered the photosynthetic oxygen evolution at pH 6.5 and high light. These data indicate that NdhV is an intrinsic subunit of hydrophilic subcomplex of NDH-1, required for efficient operation of cyclic electron transport around photosystem I and CO2 uptake at high lights. PMID:27329499

  19. Effects of temperature, pH-values and sodium chloride concentrations on the glucose-6-phosphate dehydrogenase activity by thermotolerant Bacillus strains

    HAZEM AQEL

    2012-01-01

    Full Text Available Thirteen new isolated thermotolerant Bacillus strains and four known Bacillus species were used to evaluate the effect of growth temperature, pH-values and NaCl concentrations on the intracellular glucose-6-phosphate dehydrogenase (G6PDH activity. Results had shown a significant difference in G6PDH production among all species at all used temperatures (p<0.05. The response of individual new isolates and controls for production of G6PDH under growth conditions was variable. The optimal growth conditions did not correspond to the optimal cultivation conditions for maximum G6PDH production. The growth temperature showed the most significant effect on G6PDH activity. The combined effect of temperature and NaCl on the G6PDH activity was strongly pronounced in comparison with the combined effect of temperature and pH or pH and NaCl. Thermal stability at 53ºC and electrophoretic mobility were also investigated. G6PDH from HUTB41 was the most thermostable G6PDH enzyme with T50% of more than 360 minutes. Electrophoretic study demonstrated that G6PDH was composed of two isoenzymes for all strains except B. marinus and B. schlegelii that had three isoenzymes.

  20. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  1. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures. PMID:24770718

  2. Inhibition of osteoblast activity by zoledronic acid

    Fernanda Gonçalves Basso

    2013-10-01

    Full Text Available INTRODUCTION: Patients treated with nitrogen-containing bisphosphonates, such as zoledronic acid (ZA, have frequently shown oral bone exposure areas, termed osteonecrosis. In addition, these patients may also present low repair and regeneration potential, mainly after tooth extractions. These side-effects caused by bisphosphonates may be due to their inhibitory effects on oral mucosa and local bone cells. OBJECTIVE: To evaluate the effects of ZA on the mineralization capacity of cultured osteoblasts. MATERIALS AND METHODS: Human immortalized osteoblasts (SaOs-2 were grown in plain culture medium (Dulbecco's Modified Eagle Medium [DMEM] + 10% fetal bovine serum [FBS] in wells of 24-well plates. After 48-hour incubation, the plain DMEM was replaced by a solution with ZA at 5 µM which was maintained in contact with cells for seven, 14 or 21 days. After these periods, cells were evaluated regarding alkaline phosphatase (ALP activity and mineral nodule formation (alizarin red. Data were statistically analyzed by Mann-Whitney test, at 5% of significance level. RESULTS: ZA caused significant reduction on ALP activity and mineral nodules formation by cultured osteoblasts in all evaluated periods (p < 0.05. CONCLUSION: These data indicate that ZA causes inhibition on the osteogenic phenotype of cultured human osteoblasts, which, in turn, may reduce bone repair in patients subjected to ZA therapy.

  3. An Orange Ripening Mutant Links Plastid NAD(P)H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation[C][W

    Nashilevitz, Shai; Melamed-Bessudo, Cathy; Izkovich, Yinon; Rogachev, Ilana; Osorio, Sonia; Itkin, Maxim; Adato, Avital; Pankratov, Ilya; Hirschberg, Joseph; Fernie, Alisdair R.; Wolf, Shmuel; Usadel, Björn; Levy, Avraham A.; Rumeau, Dominique; Aharoni, Asaph

    2010-01-01

    In higher plants, the plastidial NADH dehydrogenase (Ndh) complex supports nonphotochemical electron fluxes from stromal electron donors to plastoquinones. Ndh functions in chloroplasts are not clearly established; however, its activity was linked to the prevention of the overreduction of stroma, especially under stress conditions. Here, we show by the characterization of OrrDs, a dominant transposon-tagged tomato (Solanum lycopersicum) mutant deficient in the NDH-M subunit, that this complex is also essential for the fruit ripening process. Alteration to the NDH complex in fruit changed the climacteric, ripening-associated metabolites and transcripts as well as fruit shelf life. Metabolic processes in chromoplasts of ripening tomato fruit were affected in OrrDs, as mutant fruit were yellow-orange and accumulated substantially less total carotenoids, mainly β-carotene and lutein. The changes in carotenoids were largely influenced by environmental conditions and accompanied by modifications in levels of other fruit antioxidants, namely, flavonoids and tocopherols. In contrast with the pigmentation phenotype in mature mutant fruit, OrrDs leaves and green fruits did not display a visible phenotype but exhibited reduced Ndh complex quantity and activity. This study therefore paves the way for further studies on the role of electron transport and redox reactions in the regulation of fruit ripening and its associated metabolism. PMID:20571113

  4. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  5. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle.

    Si Young Cho

    Full Text Available Although Artemisia iwayomogi (AI has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1 and pyruvate dehydrogenase kinase isozyme 4 (PDK4, and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity.

  6. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  7. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  8. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vani...

  9. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    Smelt, A H; Poorthuis, B J; Onkenhout, W; Scholte, H R; Andresen, B S; van Duinen, S G; Gregersen, N; Wintzen, A R

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  10. Experimental study of single external gamma-irradiation effect on the succinate dehydrogenase activity in the tongue mucous membrane epithelium

    The effect of single whole-body prenatal gamma-irradiation in 0,5 Gy dose on SD activity of rat tongue epithelium cells is shown. The enzyme activity decreased in 2-weeks old and 4-weeks old rats especially after irradiation in the early stage of organogenesis. 11 refs., 1 fig

  11. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  12. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Kenan Yıldız

    2010-01-01

    Acidic leaching of mechanically activated manganese ore from Denizli Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accele...

  13. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Yıldız, Kenan

    2000-01-01

    Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and acce...

  14. Glucose-6-phosphate dehydrogenase deficiency

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  15. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance

    Lacour, S.; Bechet, E.; Cozzone, A.J.;

    2008-01-01

    -kinases have been characterized. BY-kinases have been shown to participate in various physiological processes. Nevertheless, we are at a very early stage of defining their importance in the bacterial cell. In Escherichia coli, two BY-kinases, Wzc and Etk, have been characterized biochemically. Wzc has been...... shown to phosphorylate the UDP-glucose dehydrogenase Ugd in vitro. Not only is Ugd involved in the biosynthesis of extracellular polysaccharides, but also in the production of UDP-4-amino-4-deoxy-L-arabinose, a compound that renders E. coli resistant to cationic antimicrobial peptides. Methodology....../Principal Findings: Here, we studied the role of Ugd phosphorylation. We first confirmed in vivo the phosphorylation of Ugd by Wzc and we demonstrated that Ugd is also phosphorylated by Etk, the other BY-kinase identified in E. coli. Tyrosine 71 (Tyr71) was characterized as the Ugd site phosphorylated by both Wzc...

  16. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  17. Effect of n-3 and n-6 Polyunsaturated Fatty Acids on Microsomal P450 Steroidogenic Enzyme Activities and In Vitro Cortisol Production in Adrenal Tissue From Yorkshire Boars.

    Xie, Xuemei; Wang, Xudong; Mick, Gail J; Kabarowski, Janusz H; Wilson, Landon Shay; Barnes, Stephen; Walcott, Gregory P; Luo, Xiaoping; McCormick, Kenneth

    2016-04-01

    Dysregulation of adrenal glucocorticoid production is increasingly recognized to play a supportive role in the metabolic syndrome although the mechanism is ill defined. The adrenal cytochrome P450 (CYP) enzymes, CYP17 and CYP21, are essential for glucocorticoid synthesis. The omega-3 and omega-6 polyunsaturated fatty acids (PUFA) may ameliorate metabolic syndrome, but it is unknown whether they have direct actions on adrenal CYP steroidogenic enzymes. The aim of this study was to determine whether PUFA modify adrenal glucocorticoid synthesis using isolated porcine microsomes. The enzyme activities of CYP17, CYP21, 11β-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase (H6PDH), and CYP2E1 were measured in intact microsomes treated with fatty acids of disparate saturated bonds. Cortisol production was measured in a cell-free in vitro model. Microsomal lipid composition after arachidonic acid (AA) exposure was determined by sequential window acquisition of all theoretical spectra-mass spectrometry. Results showed that adrenal microsomal CYP21 activity was decreased by docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid, α-linolenic acid, AA, and linoleic acid, and CYP17 activity was inhibited by DPA, DHA, eicosapentaenoic acid, and AA. Inhibition was associated with the number of the PUFA double bonds. Similarly, cortisol production in vitro was decreased by DPA, DHA, and AA. Endoplasmic enzymes with intraluminal activity were unaffected by PUFA. In microsomes exposed to AA, the level of AA or oxidative metabolites of AA in the membrane was not altered. In conclusion, these observations suggest that omega-3 and omega-6 PUFA, especially those with 2 or more double bonds (DPA, DHA, and AA), impede adrenal glucocorticoid production. PMID:26889941

  18. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays

    Wiggers, Henrik; Cheleski, J; Zottis, A;

    2007-01-01

    In drug discovery programs, dimethyl sulfoxide (DMSO) is a standard solvent widely used in biochemical assays. Despite the extensive use and study of enzymes in the presence of organic solvents, for some enzymes the effect of organic solvent is unknown. Macromolecular targets may be affected by the...... presence of different solvents in such a way that conformational changes perturb their active site structure accompanied by dramatic variations in activity when performing biochemical screenings. To address this issue, in this work we studied the effects of two organic solvents, DMSO and methanol (Me...... up to 5.0% for MeOH and up to 7.5% for DMSO. The results show that when GAPDH is assayed in the presence of DMSO (5%, v/v) using the ITC experiment, the enzyme exhibits approximately twofold higher activity than that of GAPDH with no cosolvent added. When MeOH (5%, v/v) is the cosolvent, the GAPDH...

  19. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5’-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris, semiaquatic (Lontra longicaudis annectens and terrestrial (Sus scrofa

    Myrna eBarjau Perez-Milicua

    2015-07-01

    Full Text Available Aquatic and semiaquatic mammals have the capacity of breath hold (apnea diving. Northern elephant seals (Mirounga angustirostris have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens can hold their breath for about 30 sec. Such periods of apnea may result in reduced oxygen concentration (hypoxia and reduced blood supply (ischemia to tissues. Production of adenosine 5’-triphosphate (ATP requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa, are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal (n=11, semiaquatic (neotropical river otter (n=4 and terrestrial (domestic pig (n=11. Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT was determined by spectrophotometry, and activity of inosine 5’-monophosphate dehydrogenase (IMPDH and the concentration of hypoxanthine (HX, inosine 5’-monophosphate (IMP, adenosine 5’-monophosphate (AMP, adenosine 5’-diphosphate (ADP, ATP, guanosine 5’-diphosphate (GDP, guanosine 5’-triphosphate (GTP, and xanthosine 5’-monophosphate (XMP were determined by high-performance liquid chromatography (HPLC. The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise, aquatic and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

  20. The thiocarbamate disulphide drug, disulfiram induces osteopenia in rats by inhibition of osteoblast function due to suppression of acetaldehyde dehydrogenase activity.

    Mittal, Monika; Khan, Kainat; Pal, Subhashis; Porwal, Konica; China, Shyamsundar Pal; Barbhuyan, Tarun K; Baghel, Khemraj S; Rawat, Tara; Sanyal, Sabyasachi; Bhadauria, Smrati; Sharma, Vishnu L; Chattopadhyay, Naibedya

    2014-05-01

    Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function. PMID:24496638

  1. Local corticosterone activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in narrow-band UVB-induced dermatitis

    Itoi-Ochi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2016-01-01

    ABSTRACT Keratinocytes are known to synthesize cortisol through activation of the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). To confirm the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific-11β-HSD1 knockout mice (K5-Hsd11b1-KO mice) and analyzed the response to narrow-band ultraviolet B (NB-UVB) irradiation. Firstly, we measured the mRNA and protein levels of 11β-HSD1 following NB-UVB irradiation and found that the expression of 11β-HSD1 in keratinocytes of mouse ear skin was enhanced at 3 and 24 hours after 250 mJ/cm2, 500 mJ/cm2, 1 J/cm2, and 2 J/cm2 NB-UVB irradiation. Next, we determined that 24 hours after exposure to 1 J/cm2 NB-UVB irradiation, the numbers of F4/80-, CD45-, and Gr-1-positive cells were increased in K5-Hsd11b1-KO mice compared to wild type (WT) mice. Furthermore, the expression of the chemokine (C-X-C-motif) ligand 1 (CXCL1) and interleukin (IL)-6 was also significantly enhanced in NB-UVB-irradiated K5-Hsd11b1-KO mice compared with WT mice. In addition, activation of nuclear factor-kappa B (NF-κB) after NB-UVB irradiation was enhanced in K5-Hsd11b1-KO mice compared to that in WT mice. Thus, NB-UVB-induced inflammation is augmented in K5-Hsd11b1-KO mice compared with WT mice. These results indicate that 11β-HSD1 may suppress NB-UVB-induced inflammation via inhibition of NF-κB activation. PMID:27195053

  2. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels.

    Gabotti, Damiano; Negrini, Noemi; Morgutti, Silvia; Nocito, Fabio F; Cocucci, Maurizio

    2015-07-01

    Development of fruit flesh texture quality traits may involve the metabolism of phenolic compounds. This study presents molecular and biochemical results on the possible role played by cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) during ripening [S3, S4 I (pre-climacteric) and S4 III (climacteric) stages] of peach [Prunus persica (L.) Batsch] fruit with different flesh firmness [non-melting flesh (NMF) 'Oro A'/melting flesh (MF) 'Springcrest' and 'Sanguinella'] and color (blood-flesh Sanguinella). A total of 24 putative full-length PRUPE_CAD genes were identified (in silico analysis) in the peach genome. The most abundant CAD isoforms, encoded by genes located on scaffolds 8 and 6, were probed by specifically developed anti-PRUPE_CAD sc8 and by anti-FaCAD (PRUPE_CAD sc6) polyclonal antibodies, respectively. PRUPE_CAD sc8 proteins (SDS-PAGE and native-PAGE/western blot) appeared responsible for the CAD activity (in vitro/in-gel assays) that increased with ripening (parallel to PRUPE_ACO1 transcripts accumulation and ethylene evolution) only in the mesocarp of Oro A and blood-flesh Sanguinella. Accumulation of PRUPE_CAD sc8 transcripts (semi-quantitative RT-PCR) occurred in all three cultivars, but in Oro A and Springcrest it was not always accompanied by that of the related proteins, suggesting possible post-transcriptional regulation. Flesh firmness, as well as levels of lignin, total phenolics and, where present (Sanguinella), anthocyanins, declined with ripening, suggesting that, at least in the studied peach cultivars, CAD activity is related to neither lignification nor differences in flesh firmness (NMF/MF). Further studies are necessary to clarify whether the high levels of CAD activity/expression in Sanguinella play a role in determining the characteristics of this blood-flesh fruit. PMID:25534876

  3. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5'-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa).

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E; Gallo-Reynoso, Juan P

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  4. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice.

    Zhang, Zhe; Cheng, Zhi-Jun; Gan, Lu; Zhang, Huan; Wu, Fu-Qing; Lin, Qi-Bing; Wang, Jiu-Lin; Wang, Jie; Guo, Xiu-Ping; Zhang, Xin; Zhao, Zhi-Chao; Lei, Cai-Lin; Zhu, Shan-Shan; Wang, Chun-Ming; Wan, Jian-Min

    2016-08-01

    Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. PMID:27297988

  5. Diacetyl and α-Acetolactate Overproduction by Lactococcus lactis subsp. lactis Biovar Diacetylactis Mutants That Are Deficient in α-Acetolactate Decarboxylase and Have a Low Lactate Dehydrogenase Activity

    Monnet, Christophe; Aymes, Frédéric; Corrieu, Georges

    2000-01-01

    Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemente...

  6. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  7. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  8. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  9. The response of electron transport mediated by active NADPH dehydrogenase complexes to heat stress in the cyanobacterium Synechocystis 6803

    2008-01-01

    The electron-transport machinery in photosynthetic membranes is known to be very sensitive to heat. In this study, the rate of electron transport (ETR) driven by photosystem I (PSI) and photosystem II (PSII) during heat stress in the wild-type Synechocystis sp. strain PCC 6803 (WT) and its ndh gene inactiva-tion mutants △ndhB (M55) and △ndhD1/ndhD2 (D1/D2) was simultaneously assessed by using the novel Dual-PAM-100 measuring system. The rate of electron transport driven by the photosystems (ETRPSs) in the WT, M55, and D1/D2 cells incubated at 30℃ and at 55℃ for 10 min was compared. Incubation at 55 ℃ for 10 min significantly inhibited PSII-driven ETR (ETRPSII) in the WT, M55 and D1/D2 cells, and the ex-tent of inhibition in both the M55 and D1/D2 cells was greater than that in the WT cells. Further, PSI-driven ETR (ETRPSI) was stimulated in both the WT and D1/D2 cells, and this rate was increased to a greater extent in the D1/D2 than in the WT cells. However, ETRPSI was considerably inhibited in the M55 cells. Analysis of the effect of heat stress on ETRPSs with regard to the alterations in the 2 active NDH-1 complexes in the WT, M55, and D1/D2 cells indicated that the active NDH-1 supercomplex and medi-umcomplex are essential for alleviating the heat-induced inhibition of ETRPSII and for accelerating the heat-induced stimulation of ETRPSI, respectively. Further, it is believed that these effects are most likely brought about by the electron transport mediated by each of these 2 active NDH-1 complexes.

  10. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P41212, P3221 and P212121 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  11. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  12. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    Guzman, Juan David

    2014-01-01

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships. PMID:25429559

  13. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  14. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  15. Hibernation impact on the catalytic activities of the mitochondrial D-3-hydroxybutyrate dehydrogenase in liver and brain tissues of jerboa (Jaculus orientalis

    Hafiani Assia

    2003-09-01

    Full Text Available Abstract Background Jerboa (Jaculus orientalis is a deep hibernating rodent native to subdesert highlands. During hibernation, a high level of ketone bodies i.e. acetoacetate (AcAc and D-3-hydroxybutyrate (BOH are produced in liver, which are used in brain as energetic fuel. These compounds are bioconverted by mitochondrial D-3-hydroxybutyrate dehydrogenase (BDH E.C. 1.1.1.30. Here we report, the function and the expression of BDH in terms of catalytic activities, kinetic parameters, levels of protein and mRNA in both tissues i.e brain and liver, in relation to the hibernating process. Results We found that: 1/ In euthemic jerboa the specific activity in liver is 2.4- and 6.4- fold higher than in brain, respectively for AcAc reduction and for BOH oxidation. The same differences were found in the hibernation state. 2/ In euthermic jerboa, the Michaelis constants, KM BOH and KM NAD+ are different in liver and in brain while KM AcAc, KM NADH and the dissociation constants, KD NAD+and KD NADH are similar. 3/ During prehibernating state, as compared to euthermic state, the liver BDH activity is reduced by half, while kinetic constants are strongly increased except KD NAD+. 4/ During hibernating state, BDH activity is significantly enhanced, moreover, kinetic constants (KM and KD are strongly modified as compared to the euthermic state; i.e. KD NAD+ in liver and KM AcAc in brain decrease 5 and 3 times respectively, while KD NADH in brain strongly increases up to 5.6 fold. 5/ Both protein content and mRNA level of BDH remain unchanged during the cold adaptation process. Conclusions These results cumulatively explained and are consistent with the existence of two BDH enzymatic forms in the liver and the brain. The apoenzyme would be subjected to differential conformational folding depending on the hibernation state. This regulation could be a result of either post-translational modifications and/or a modification of the mitochondrial membrane state

  16. Genetics Home Reference: lactate dehydrogenase deficiency

    ... throughout the body and is important for creating energy for cells. There are five different forms of this enzyme, each made up of four ... and lactate dehydrogenase-B subunits make up the different forms of the ... large amounts of energy during high-intensity physical activity when the body's ...

  17. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  18. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  19. Peroxisome proliferator-activated receptor-gamma stimulates 11beta-hydroxysteroid dehydrogenase type 1 in rat vascular smooth muscle cells

    Vagnerová, Karla; Loukotová, Jana; Ergang, Peter; Musílková, Jana; Mikšík, Ivan; Pácha, Jiří

    2011-01-01

    Roč. 76, č. 6 (2011), s. 577-581. ISSN 0039-128X R&D Projects: GA ČR(CZ) GAP303/10/0969 Institutional research plan: CEZ:AV0Z50110509 Keywords : 11beta-hydroxysteroid dehydrogenase * thiazolidinediones Subject RIV: ED - Physiology Impact factor: 2.829, year: 2011

  20. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling.

    Dusan Bilbija

    Full Text Available BACKGROUND: All-trans retinoic acid (atRA, an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs acting on retinoic acid response elements (RARE. We hypothesized that the retinoic acid (RA signalling pathway is activated in myocardial ischemia and postischemic remodelling. METHODS AND FINDINGS: Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM and cardiofibroblasts (CF were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001, which was ascribed to the heart through ex vivo imaging (p = 0.002 with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein, while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007. Concomitantly, retinol accumulated in the infarcted zone (p = 0.02. CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008. AtRA inhibited CF proliferation in vitro (p = 0.02. CONCLUSION: The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and

  1. A straightforward radiometric technique for measuring IMP dehydrogenase.

    Cooney, D A; Wilson, Y; McGee, E

    1983-04-15

    [2-3H]Inosinic acid ([2-3H]IMP) has been biosynthesized in good yield from [2-3H]hypoxanthine and PRPP via the action of a partially purified preparation of hypoxanthine/guanine phosphoribosyl transferase from mouse brain. The product was purified in one step by ascending paper chromatography, and used to assess the activity of IMP dehydrogenase. To conduct the assay, tritiated substrate is admixed with enzyme in a final volume of 10 microliters; NAD is present to serve as cofactor for the reaction, and allopurinol to inhibit the oxidation of any hypoxanthine generated as a consequence of side reactions. After an appropriate period of incubation, the 3H2O arising from the oxidation of tritiated IMP via [3H]NAD is isolated by quantitative microdistillation. Performed as described, the assay is facile, sensitive, and accurate, with the capability of detecting the dehydrogenation of as little as 1 pmol of [3H]IMP. Using it, measurements have been made of IMP dehydrogenase in a comprehensive array of mouse organs. Of these, pancreas contained the enzyme at the highest specific activity. PMID:6135372

  2. Design and Characterization of an Acid-Activated Antimicrobial Peptide

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2009-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/ remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals creation of an acidic environment favors growth of acid enduring and acid generating species, which causes further reduction in the plaque pH. In this study we developed a prototype antimicrobial peptide ...

  3. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  4. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQua...

  5. Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships

    Gregersen, Niels; Bross, Peter; Andresen, Brage S

    2004-01-01

    Mitochondrial fatty acid oxidation deficiencies are due to genetic defects in enzymes of fatty acid beta-oxidation and transport proteins. Genetic defects have been identified in most of the genes where nearly all types of sequence variations (mutation types) have been associated with disease. In...... on biogenesis, stability and kinetic properties for this variant enzyme will be discussed in detail and used as a paradigm for the study of other mis-sense variant proteins. We conclude that the total effect of mis-sense sequence variations may comprise an invariable--sequence variation specific...

  6. Synthesis and Antiviral Activity of Hydrogenated Ferulic Acid Derivatives

    Can Cui; Zhi-Peng Wang; Xiu-jiang Du; Li-Zhong Wang; Shu-Jing Yu; Xing-Hai Liu; Zheng-Ming Li; Wei-Guang Zhao

    2013-01-01

    A series of hydrogenated ferulic acid amide derivatives 4 were synthesized. The molecular structures of the synthesized compounds were analyzed by H1 NMR and HRMS. The biological activity study showed that some of them displayed excellent protection activity and curative activity against TMV at 500 μg/mL.

  7. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    Girio, F.M.; Amaral-Collaco, M.T. [INETI, Lisboa (Portugal); Pelica, F. [ITQB, Oeiras (Portugal)

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  8. GROWTH-REGULATING ACTIVITY OF SOME SALTS OF 1-NAPHTHALENACETIC ACID AND 2-NAPHTHOXYACETIC ACID

    Maria Laichici

    2001-01-01

    Full Text Available The salts of 1-naphthalene acetic acid and 2-naphthoxyacetic acid with ethanolamine have been synthetized. The two salts have been assessed using Tsibulskaya-Vassiliev biological test using agar-agar as the medium. Statistical processing of the data has been carried out. The good results of the bioassay indicate an auxinic growth-regulating activity of the two salts.

  9. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  10. Antioxidant Activity and Mechanism of Protocatechuic Acid in vitro

    Shuzhi Chen; Xiaozhen Wang; Xican Li; Dongfeng Chen

    2011-01-01

    Background: Protocatechuic acid (PCA) is a natural phenolic acid widely distributed in plantsand is considered as an active component of some traditional Chinese herbal medicines such as Cibotium barometz (L.) J.Sm, Stenoloma chusanum (L.) Ching, Ilex chinensis Sims. PCA was reported to possess various pharmacological effects which may be closely correlated with its antioxidant activities. However, the antioxidant of PCA has not been investigatedsystematically yet. Methods: In the study,...

  11. Research on Activators for Lead-Acid Batteries

    Sugawara, Michio; Kozawa, Akiya

    2008-01-01

    Abstract : The ITE Battery Research group has developed a new organic battery activator for new and used lead-acid batteries. Ten years of investigation have established the validity of the ITE activator that prolongs the useful life of lead-acid batteries. It has been shown that the specific gravity of spent batteries can be restored to the original level in automotive, motive power; uninterruptible power supplies (UPS) and stationary energy storage batteries. Our results show that the disca...

  12. Acetic acid treatment in S.cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of mitochondrial transcriptional complex Hap2-3-4-5.

    AnaKitanovic

    2012-09-01

    Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, pyruvate kinase (PYK and glucose-6-phosphate dehydrogenase (G6PDH we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  13. Structural requirements for the procoagulant activity of nucleic acids.

    Julia Gansler

    Full Text Available Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects.

  14. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  15. Antimicrobial activity of poly(acrylic acid) block copolymers

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  16. Antimicrobial activity of poly(acrylic acid) block copolymers

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  17. Effect of exogenous cytokinins, auxins and adenine on cytokinin N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings

    Blagoeva, Elitsa; Dobrev, Petre; Malbeck, Jiří; Motyka, Václav; Gaudinová, Alena; Vaňková, Radomíra

    2004-01-01

    Roč. 44, č. 1 (2004), s. 15-23. ISSN 0167-6903 R&D Projects: GA ČR GA522/99/1130; GA AV ČR IAA6038002; GA MŠk LN00A081; GA MŠk ME 505 Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin * Cytokinin * Cytokinin oxidase/dehydrogenase Subject RIV: GE - Plant Breeding Impact factor: 0.693, year: 2004

  18. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus;

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and...... attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to...

  19. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    Juliana da Silva Agostini; Rosicler Balduíno Nogueira; Elza Iouko Ida

    2010-01-01

    The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA) content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p < 0.05). The phytase and acid phosphatase activities of sunflowers BRS191 and C11 were the highest on the 4th and 5th days of germination, respectively, with the release of the phosphor...

  20. Spectroscopic studies on the antioxidant activity of ellagic acid

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  1. Thyroid peroxidase activity is inhibited by amino acids

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  2. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.

    Ahvazi, B; Coulombe, R; Delarge, M; Vedadi, M; Zhang, L; Meighen, E; Vrielink, A

    2000-01-01

    Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provide the basis for understanding the molecular features that dictate these unique properties and will enhance our understanding of the mechanism of catalysis for this class of enzyme. The X-ray structure of aldehyde dehydrogenase from V. harveyi has been solved to 2.5-A resolution as a partial complex with the cofactor NADP(+) and to 2. 1-A resolution as a fully bound 'holo' complex. The cofactor preference exhibited by different forms of the enzyme is predominantly determined by the electrostatic environment surrounding the 2'-hydroxy or the 2'-phosphate groups of the adenosine ribose moiety of NAD(+) or NADP(+), respectively. In the NADP(+)-dependent structures the presence of a threonine and a lysine contribute to the cofactor specificity. In the V. harveyi enzyme an arginine residue (Arg-210) contributes to the high cofactor affinity through a pi stacking interaction with the adenine ring system of the cofactor. Further differences between the V. harveyi enzyme and other aldehyde dehydrogenases are seen in the active site, in particular a histidine residue which is structurally conserved with phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This may suggest an alternative mechanism for activation of the reactive cysteine residue for nucleophilic attack. PMID:10903148

  3. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-01-01

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways. PMID:27120592

  4. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  5. Antileishmanial activity of diterpene acids in copaiba oil.

    Santos, Adriana Oliveira dos; Izumi, Erika; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Veiga-Júnior, Valdir Florêncio da; Nakamura, Celso Vataru

    2013-02-01

    Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50) values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs. PMID:23440116

  6. Antileishmanial activity of diterpene acids in copaiba oil

    Adriana Oliveira dos Santos

    2013-02-01

    Full Text Available Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. Methyl copalate and agathic, hydroxycopalic, kaurenoic, pinifolic and polyaltic acids isolated from Copaifera officinales oleoresins were utilised. Ultrastructural changes and the specific organelle targets of diterpenes were investigated with electron microscopy and flow cytometry, respectively. All compounds had some level of activity against L. amazonensis. Hydroxycopalic acid and methyl copalate demonstrated the most activity against promastigotes and had 50% inhibitory concentration (IC50 values of 2.5 and 6.0 µg/mL, respectively. However, pinifolic and kaurenoic acid demonstrated the most activity against axenic amastigote and had IC50 values of 3.5 and 4.0 µg/mL, respectively. Agathic, kaurenoic and pinifolic acid caused significant increases in plasma membrane permeability and mitochondrial membrane depolarisation of the protozoan. In conclusion, copaiba oil and its diterpene acids should be explored for the development of new antileishmanial drugs.

  7. Adsorption of uranium from crude phosphoric acid using activated carbon

    The adsorption of uranium from crude phosphoric acid has been investigated using conventional activated carbons. It was found that treatment with nitric acid oxidized the surface of activated carbon and significantly increased the adsorption capacity for uranium in acidic solutions. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated. Equilibrium data were fitted to a simplified Langmuir and Freundlich isotherms for the oxidized samples which indicate that the uranium adsorption onto the activated carbon fitted well with Langmuir isotherm than Freundlich isotherm. Equilibrium studies evaluate the theoretical capacity of activated carbon to be 45.24 g kg-1. (author)

  8. Fungicidal Activity of a Medium-chain Fatty Acids Mixture Comprising Caprylic, Pelargonic and Capric Acids

    Xiaojin Liu

    2014-01-01

    Full Text Available This study examines the fungicidal activity of a medium-chain fatty acids mixture comprising caprylic acid (C8:0, pelargonic acid (C9:0 and capric acid (C10:0, against Rhizoctonia solani, Phytophthora infestans, Colletotrichum gloeosporioides, Botrytis cinerea, Fusarium oxysporum and Sphaerotheca cucurbitae. The mixture of caprylic, pelargonic and capric acids (2/5/3, w/w/w is prepared into a micro-emulsion concentrate and tested for its inhibitory effect on fungal growth using disc diffusion method except for S. cucurbitae using pot bioassay method. Results show that the fatty acids mixture is self-stabilized under either 4°C during a seven-day-storage or 54°C during fortnight. The doses of the mixed fatty acids completely inhibiting the mycelial growth are 100 ppm for P. infestans and 125 ppm C. gloeosporioides after three days and 200 ppm for B. cinerea after 4 days. A dose of 100 ppm reduces the mycelial growth in R. solani by 93.7% after 4 days and that in F. oxysporum by 92.9% after 3 days. For S. cucurbitae, a dose of 250 ppm results in a control effect of 81.0% in the pot bioassay. Our study provides so far the first report of the fungicidal activity of medium-chain saturated fatty acids mixture at relative low dosage rates.

  9. Lactate dehydrogenase in sickle cell disease.

    Stankovic Stojanovic, Katia; Lionnet, François

    2016-07-01

    Lactate dehydrogenase (LDH) activity is elevated in many pathological states. Interest in LDH activity in sickle cell disease (SCD) has developed out of an increased comprehension of the pathophysiological process and the clinical course of the disease. Elevated LDH activity in SCD comes from various mechanisms, especially intravascular hemolysis, as well as ischemia-reperfusion damage and tissular necrosis. Intravascular hemolysis is associated with vasoconstriction, platelet activation, endothelial damage, and vascular complications. LDH has been used as a diagnostic and prognostic factor of acute and chronic complications. In this review we have evaluated the literature where LDH activity was examined during steady-state or acute conditions in SCD. PMID:27138446

  10. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  11. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  12. Design and characterization of an acid-activated antimicrobial peptide.

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  13. Enhancement of mononuclear procoagulant activity by platelet 12-hydroxyeicosatetraenoic acid.

    Lorenzet, R; Niemetz, J; Marcus, A J; Broekman, M J

    1986-01-01

    Platelets induce generation of procoagulant tissue factor activity (TFa) by mononuclear leukocytes, and also enhance the TFa induced by endotoxin. Our present investigation demonstrated that arachidonic acid, which by itself had no effect on mononuclear TFa, greatly enhanced platelet-induced TFa. The effect was concentration dependent for both platelets and arachidonate (1-20 microM); other fatty acids tested were inactive. The enhancing effect of arachidonate was more pronounced if platelets...

  14. Autoproteolytic Cleavage and Activation of Human Acid Ceramidase*

    Shtraizent, Nataly; Eliyahu, Efrat; Park, Jae-Ho; He, Xingxuan; Shalgi, Ruth; Schuchman, Edward H.

    2008-01-01

    Herein we report the mechanism of human acid ceramidase (AC; N-acylsphingosine deacylase) cleavage and activation. A highly purified, recombinant human AC precursor underwent self-cleavage into α and β subunits, similar to other members of the N-terminal nucleophile hydrolase superfamily. This reaction proceeded with first order kinetics, characteristic of self-cleavage. AC self-cleavage occurred most rapidly at acidic pH, but also at neutral pH. Site-directed mutagene...

  15. First total synthesis of prasinic acid and its anticancer activity.

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  16. Antiparasitic activity of prenylated benzoic acid derivatives from Piper species.

    Flores, Ninoska; Jiménez, Ignacio A; Giménez, Alberto; Ruiz, Grace; Gutiérrez, David; Bourdy, Genevieve; Bazzocchi, Isabel L

    2009-03-01

    Fractionation of dichloromethane extracts from the leaves of Piper heterophyllum and P. aduncum afforded three prenylated hydroxybenzoic acids, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid, 3-[(2E,6E,10E)-11-carboxy-13-hydroxy-3,7,15-trimethyl-2,6,10,14-hexadecatetraenyl]-4,5-dihydroxybenzoic acid and 3-[(2E,6E,10E)-11-carboxy-14-hydroxy-3,7,15-trimethyl-2,6,10,15-hexadecatetraenyl]-4,5-dihydroxybenzoic acid, along with the known compounds, 4,5-dihydroxy-3-(E,E,E-11-formyl-3,7,15-trimethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid (arieianal), 3,4-dihydroxy-5-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 4-hydroxy-3-(E,E,E-3,7,11,15-tetramethyl-hexadeca-2,6,10,14-tetraenyl)benzoic acid, 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid, 4-hydroxy-3-(3,7-dimethyl-2,6-octadienyl)benzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid. Their structures were elucidated on the basis of spectroscopic data, including homo- and heteronuclear correlation NMR experiments (COSY, HSQC and HMBC) and comparison with data reported in the literature. Riguera ester reactions and optical rotation measurements established the compounds as racemates. The antiparasitic activity of the compounds were tested against three strains of Leishmania spp., Trypanosoma cruzi and Plasmodium falciparum. The results showed that 3-(3,7-dimethyl-2,6-octadienyl)-4-methoxy-benzoic acid exhibited potent and selective activity against L. braziliensis (IC(50) 6.5 microg/ml), higher that pentamidine used as control. Moreover, 3-[(2E,6E,10E)-11-carboxy-3,7,15-trimethyl- 2,6,10,14-hexadecatetraenyl)-4,5-dihydroxybenzoic acid and 4-hydroxy-3-(3-methyl-1-oxo-2-butenyl)-5-(3-methyl-2-butenyl)benzoic acid showed moderate antiplasmodial (IC(50) 3.2 microg/ml) and trypanocidal (16.5 microg/ml) activities, respectively. PMID:19361822

  17. Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvate dehydrogenase.

    Clarke, B; Spedding, M; Patmore, L.; McCormack, J G

    1993-01-01

    1. In isolated Langendorff-perfused, electrically-paced, hearts of guinea-pigs, global low-flow-ischaemia (LFI; at 0.7 ml min-1) resulted in marked increases in the rates of release of lactate, lactate dehydrogenase (LDH) and creatine kinase (CK) over a 30 min period. At the end of the LFI period, tissue ATP content was significantly reduced from a control value of 11.8 +/- 0.8 (5) to 5.6 +/- 0.8 (5) mumol g-1 dry weight. 2. The presence of ranolazine [(+/-)-N-(2,6-dimethyl-phenyl)-4[2-hydrox...

  18. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase

    The pathway of acetate catabolism in Methanosarcina barkeri strain MS was studied by using a recently developed assay for methanogenesis from acetate by soluble enzymes in cell extracts. Extracts incubated with [2-14C]acetate, hydrogen, and ATP formed 14CH4 and [14C]methyl coenzyme M as products. The apparent Km for acetate conversion to methane was 5 mM. In the presence of excess acetate, both the rate and duration of methane production was dependent on ATP. Acetyl phosphate replaced the cell extract methanogenic requirement for both acetate and ATP (the Km for ATP was 2 mM). Low concentrations of bromoethanesulfonic acid and cyanide, inhibitors of methylreductase and carbon monoxide dehydrogenase, respectively, greatly reduced the rate of methanogenesis. Precipitation of CO dehydrogenase in cell extracts by antibodies raised to 95% purified enzyme inhibited both CO dehydrogenase and acetate-to-methane conversion activity. The data are consistent with a model of acetate catabolism in which methylreductase, methyl coenzyme M, CO dehydrogenase, and acetate-activating enzymes are components. These results are discussed in relation to acetate uptake and rate-limiting transformation mechanisms in methane formation

  19. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes.

    Wang, Xiaoxin X; Edelstein, Michal Herman; Gafter, Uzi; Qiu, Liru; Luo, Yuhuan; Dobrinskikh, Evgenia; Lucia, Scott; Adorini, Luciano; D'Agati, Vivette D; Levi, Jonathan; Rosenberg, Avi; Kopp, Jeffrey B; Gius, David R; Saleem, Moin A; Levi, Moshe

    2016-05-01

    Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid β-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid β-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes. PMID:26424786

  20. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.

    Peterson, J. B.; LaRue, T A

    1982-01-01

    A soluble aldehyde dehydrogenase (EC 1.2.1.3) was partially purified from Rhizobium japonicum bacteroids and from free-living R. japonicum 61A76. The enzyme was activated by NAD+, NADH, and dithiothreitol, and it reduced NAD(P)+. Acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, and succinic semialdehyde were substrates. The Km for straight-chain aldehydes decreased with increasing carbon chain length. The aldehyde dehydrogenase was inhibited by 6-cyanopurine, but not by metronidazo...

  1. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  2. Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (Egb 761 )

    Chang-suo LIU; Yong CHENG; Jin-feng HU; Wei ZHANG; Nai-hong CHEN; Jun-tian ZHANG

    2006-01-01

    Aim: To investigate and compare the antioxidant activities of salvianolic acid B (SalB) and Ginkgo biloba extract (EGb 761) in aqueous solution, rat microsomes and the cellular system. Methods: Superoxide anion (O-·2) was generated using xanthine/xanthine oxidase system and phenazine methosulate/NADH system, and the effects of SalB and EGb 761 on the generation of (O-·2) were achieved by spectrophotometric measurement of the product formed on reduction of nitro blue tetrazolium. Two different methods were used to assess the scavenging effects of the extracts on hydroxyl radical (·OH): HPLC method was used for quantitation of ·OH by oxy-radical trapping of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form DMPO-OH adducts in Fe2+-EDTA-H2O2 system. To confirm the HPLC data,·OH was also measured by spectrophotometry using a commercial detection kit. The anti-lipid peroxidation effects of the extracts in microsomes of rat brain, liver and kidney induced by ascorbate-NADPH were determined by thiobarbituric acid (TBA) method. The protective effects of the extracts on peroxide hydrogen (H2O2)-induced oxidative damage in SH-SY5Y cells were investigated by assessing cell viability assay, the level of lipid peroxidation, and the lactate dehydrogenase (LDH) release. Results: Both SalB and EGb 761 were able to scavenge O-·2 and ·OH, inhibit lipid peroxidation of microsomes, and protect SH-SY5Y cells against H2O2-induced oxidative damage. However, the concentration of SalB was far lower than that of EGb 761 when a similar effect was obtained. Conclusion: The antioxidant efficiency of SalB was greater than that of EGb 761. These results suggest that SalB, like EGb 761, has promising potential in treating oxidative damagederived neurodegenerative disorders.

  3. Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme.

    Hempel, J; Bühler, R; Kaiser, R; Holmquist, B; de Zalenski, C; von Wartburg, J P; Vallee, B; Jörnvall, H

    1984-12-17

    Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges. PMID:6391920

  4. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase

    Soreze, Yohan; Boutron, Audrey; Habarou, Florence; Barnerias, Christine; Nonnenmacher, Luc; Delpech, Hélène; Mamoune, Asmaa; Chrétien, Dominique; Hubert, Laurence; Bole-Feysot, Christine; Nitschke, Patrick; Correia, Isabelle; Sardet, Claude; Boddaert, Nathalie; Hamel, Yamina

    2013-01-01

    Background Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes....

  5. Cloning, expression and characterization of 3-hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867.

    Shengfang Zhou

    Full Text Available The gene encoding an NAD(+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3 and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP. The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag(+ and Hg(2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5-1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.

  6. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T. (GSU)

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  7. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  8. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.

    Brozic, P; Lanisnik Risner, T; Gobec, S

    2008-01-01

    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  9. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major......Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh......B), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce...

  10. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase

    Ralph, John; Hatfield, Ronald D.; Piquemal, Joël; Yahiaoui, Nabila; Pean, Michel; Lapierre, Catherine; Boudet, Alain M.

    1998-01-01

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR....

  11. Lactic Acid Bacteria Differentially Activate Natural Killer Cells

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    antigen presenting cells and T-cells. Bacteria translocating across the gastrointestinal mucosa are presumed to gain access to NK cell compartments, as consumption of certain strains of lactic acid bacteria has been shown to increase in vivo NK cytotoxic activity. On-going research in our lab aims at...... describing strain-dependent effects of lactic acid bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactic acid bacteria affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon...... bacterial stimulation. Methods: CD3-CD56+ NK cells were isolated from buffy coats by negative isolation using a lineage specific antibody cocktail and magnetic beads binding the labelling antibodies on non-NK cells. NK cells were incubated either with 10 microg/ml UV-inactivated lactic acid bacteria or 10...

  12. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  13. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg2+, and [γ-32P]ATP. The protein-bound radioactivity was localized in the PDH α subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg2+, and Ca2+. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the α subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg

  14. Phytase-active lactic acid bacteria from sourdoughs

    Nuobariene, Lina; Cizeikiene, Dalia; Gradzeviciute, Egle;

    2015-01-01

    Whole-grain foods play an important role in human diet as they are relatively rich in minerals, however, the absorption of those minerals in human gut can be very low due to high content of the mineral binding phytate. Therefore, the object of this study was to identify phytase-active lactic acid...... bacteria (LAB) which could be used as a starter to increase mineral bioavailability in whole-meal bread. Hence, LAB isolates were isolated from Lithuanian sourdoughs, tested for phytase activity, and phytase active isolates were identified. Studies of phytase activity of the isolates were carried out at...

  15. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR

  16. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-direc...... insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k...

  17. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development

    Sandell, Lisa L.; Sanderson, Brian W.; Moiseyev, Gennadiy; Johnson, Teri; Mushegian, Arcady; Young, Kendra; Rey, Jean-Philippe; Ma, Jian-xing; Staehling-Hampton, Karen; Trainor, Paul A

    2007-01-01

    Regulation of patterning and morphogenesis during embryonic development depends on tissue-specific signaling by retinoic acid (RA), the active form of Vitamin A (retinol). The first enzymatic step in RA synthesis, the oxidation of retinol to retinal, is thought to be carried out by the ubiquitous or overlapping activities of redundant alcohol dehydrogenases. The second oxidation step, the conversion of retinal to RA, is performed by retinaldehyde dehydrogenases. Thus, the specific spatiotempo...

  18. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin

    Fahmy T. Ali

    2016-04-01

    Conclusions: Quercetin and moringinine are responsible to a great extent for the antitumor activity of the whole extract. Chlorogenic acid is a potent hepatoprotective in alloxan induced liver toxicity. [Int J Res Med Sci 2016; 4(4.000: 1147-1153

  19. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides.

    Begum, Parvin; Hashidoko, Yasuyuki; Islam, Md Tofazzal; Ogawa, Yuko; Tahara, Satoshi

    2002-01-01

    The EtOAc soluble constituents of the unripe fruits of Ginkgo biloba showed motility inhibition followed by lysis of zoospores of the phytopathogenic Aphanomyces cochlioides. We purified 22:1-omega7-anacardic acid (1), 24:1-omega9-anacardic acid (2) and 22:0-anacardic acid (3), together with other related compounds, 21:1-omega7-cardol (4) and 21:1-omega7-cardanol (5) from the crude extracts of Ginkgo fruits. Amongst them, compound 1 was a major active agent in quality and quantity, and showed potent motility inhibition (98% in 30 min) followed by lysis (55% in 3 h) of the zoospores at 1 x 10(-7) M. The 2-O-methyl derivative (1-c) of 1 displayed antibacterial activity against Bacillus subtilis, but practically inactive to Escherichia coli. A brief study on structure-activity relationships revealed that a carboxyl group on the aromatic ring and an unsaturated side chain in the anacardic acid derivative are important for strong motility inhibitory and lytic activities against the zoospore. PMID:12440727

  20. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  1. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  3. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis

  4. Medium-chain acyl-CoA dehydrogenase deficiency

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin; Bennetts, Bruce; Angel, Lyn; Andresen, Brage S; Wilcken, Bridget

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  5. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  6. Properties of Lactate Dehydrogenase in a Psychrophilic Marine Bacterium

    Mitchell, P; Yen, H. C.; Mathemeier, P. F.

    1985-01-01

    Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30...

  7. Screening on Gibberellic Acid Producing Activity of Azospirillum Isolates

    Six strains of Azopirillum spp were isolated from rice, sugarcane, corn, maize, sunflower and pepper roots and screened the gibberellic acid productivity. Only three strains of Azospirillum species showed the activity and were indentified by cultural, biochemical and drug sensitivity patterns. Among them,one strain isolated from rice root can produce microbial gibberellic acid. It showed greenish yellow colour in chromatogram under UV absorption. This screening method was studied from 1 to 14 days incubation. Qualitative measurement of GA productivity was determined by thin layer chromatography.

  8. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats. PMID:22159964

  9. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  10. Aldehyde dehydrogenase protein superfamily in maize.

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  11. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. PMID:27016821

  12. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    Dash Ranjan K

    2011-09-01

    Full Text Available Abstract Background Mitochondrial 2-oxoglutarate (α-ketoglutarate dehydrogenase complex (OGDHC, a key regulatory point of tricarboxylic acid (TCA cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP, pH, and metal ion cofactors (Ca2+ and Mg2+. Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function.

  13. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Fabrizio Anella

    2014-12-01

    Full Text Available The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment.

  14. Reduction of 3-mercaptopyruvate in rat liver is catalyzed by lactate dehydrogenase.

    Ohta,Jun; Ubuka,Toshihiko

    1989-01-01

    It has been assumed that the in vivo reduction of 3-mercaptopyruvate, an intermediate of cysteine metabolism, to 3-mercaptolactate is catalyzed by lactate dehydrogenase (EC 1.1.1.27) though no definitive evidence has been presented. In order to examine this assumption, reduction of 3-mercaptopyruvate and its inhibition were studied using rat liver homogenate, lactate dehydrogenase purified from rat liver and anti-lactate dehydrogenase antiserum. Reduction of 3-mercaptopyruvate was actively ca...

  15. A guide to 17beta-hydroxysteroid dehydrogenases.

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  16. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  17. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  18. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by dl-{alpha}-lipoic acid

    Shila, Samuel; Subathra, Marimuthu; Devi, Muthuswamy Anusuya; Panneerselvam, Chinnakkannu [University of Madras, Department of Medical Biochemistry, Chennai (India)

    2005-03-01

    The purpose of this study was to examine the effects of dl-{alpha}-lipoic acid (LA) on arsenic (As) induced alteration of glutathione (GSH) level and of the activity of glutathione-related enzymes - glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) - in rat brain regions (cortex, hypothalamus, striatum, cerebellum and hippocampus). Male Wistar rats of 150{+-}10 g weight were divided into four groups: control and three experimental groups supplemented with arsenic (sodium arsenite) alone (100 ppm mixed in drinking water), lipoic acid alone (70 mg kg{sup -1} body weight), arsenic plus lipoic acid (100 ppm arsenic in drinking water plus 70 mg lipoic acid kg{sup -1} body weight). The arsenic content of brain regions was found to increase with the administration of sodium arsenite. Arsenic exposure elicited a significant decline in glutathione content and in the activity of related enzymes, with the greatest decreases seen in the cortex, striatum, and hippocampus, whereas there were no significant differences between control rats and the group treated with lipoic acid alone. Highly elevated content of the thiobarbituric acid-reactive substance malondialdehyde (MDA) in the brain regions of arsenic-exposed rats reflected extensive lipid peroxidation (LPO) processes. Simultaneous lipoic acid treatment was effective in reducing brain regional arsenic levels and lipid peroxidation and in increasing the glutathione content and the activity of its related enzymes. Lipoic acid, by acting as an alternative sulfhydryl nucleophile to glutathione, prevents its oxidation to glutathione disulfide in detoxifying reactions against reactive oxygen species and consequently increases the activity of glutathione-related enzymes. (orig.)

  19. Adsorption of naphthenic acids on high surface area activated carbons.

    Iranmanesh, Sobhan; Harding, Thomas; Abedi, Jalal; Seyedeyn-Azad, Fakhry; Layzell, David B

    2014-01-01

    In oil sands mining extraction, water is an essential component; however, the processed water becomes contaminated through contact with the bitumen at high temperature, and a portion of it cannot be recycled and ends up in tailing ponds. The removal of naphthenic acids (NAs) from tailing pond water is crucial, as they are corrosive and toxic and provide a substrate for microbial activity that can give rise to methane, which is a potent greenhouse gas. In this study, the conversion of sawdust into an activated carbon (AC) that could be used to remove NAs from tailings water was studied. After producing biochar from sawdust by a slow-pyrolysis process, the biochar was physically activated using carbon dioxide (CO2) over a range of temperatures or prior to producing biochar, and the sawdust was chemically activated using phosphoric acid (H3PO4). The physically activated carbon had a lower surface area per gram than the chemically activated carbon. The physically produced ACs had a lower surface area per gram than chemically produced AC. In the adsorption tests with NAs, up to 35 mg of NAs was removed from the water per gram of AC. The chemically treated ACs showed better uptake, which can be attributed to its higher surface area and increased mesopore size when compared with the physically treated AC. Both the chemically produced and physically produced AC provided better uptake than the commercially AC. PMID:24766592

  20. Isoproterenol stimulates 5'-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts.

    Jaswal, Jagdip S; Lund, Chad R; Keung, Wendy; Beker, Donna L; Rebeyka, Ivan M; Lopaschuk, Gary D

    2010-10-01

    Isoproterenol increases phosphorylation of LKB, 5'-AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC), enzymes involved in regulating fatty acid oxidation. However, inotropic stimulation selectively increases glucose oxidation in adult hearts. In the neonatal heart, fatty acid oxidation becomes a major energy source, while glucose oxidation remains low. This study tested the hypothesis that increased energy demand imposed by isoproterenol originates from fatty acid oxidation, secondary to increased LKB, AMPK, and ACC phosphorylation. Isolated working hearts from 7-day-old rabbits were perfused with Krebs solution (0.4 mM palmitate, 11 mM glucose, 0.5 mM lactate, and 100 mU/l insulin) with or without isoproterenol (300 nM). Isoproterenol increased myocardial O(2) consumption (in J·g dry wt(-1)·min(-1); 11.0 ± 1.4, n = 8 vs. 7.5 ± 0.8, n = 6, P < 0.05), and the phosphorylation of LKB (in arbitrary density units; 0.87 ± 0.09, n = 6 vs. 0.59 ± 0.08, n = 6, P < 0.05), AMPK (0.82 ± 0.08, n = 6 vs. 0.51 ± 0.06, n = 6, P < 0.05), and ACC-β (1.47 ± 0.14, n = 6 vs. 0.97 ± 0.07, n = 6, P < 0.05), with a concomitant decrease in malonyl-CoA levels (in nmol/g dry wt; 0.9 ± 0.9, n = 8 vs. 7.5 ± 1.3, n = 8, P < 0.05) and increase in palmitate oxidation (in nmol·g dry wt(-1)·min(-1); 272 ± 45, n = 8 vs. 114 ± 9, n = 6, P < 0.05). Glucose and lactate oxidation were increased (in nmol·g dry wt(-1)·min(-1); 253 ± 75, n = 8 vs. 63 ± 15, n = 9, P < 0.05 and 246 ± 43, n = 8 vs. 82 ± 11, n = 6, P < 0.05, respectively), independent of alterations in pyruvate dehydrogenase phosphorylation, but occurred secondary to a decrease in acetyl-CoA content and acetyl-CoA-to-free CoA ratio. As acetyl-CoA levels decrease in response to isoproterenol, despite an acceleration of the rates of palmitate and carbohydrate oxidation, these data suggest net rates of acetyl-CoA utilization exceed the net rates of acetyl-CoA generation. PMID:20656883

  1. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica]. E-mail: gracito@ufpi.br; Oliveira, E.H. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Microbiologia e Parasitologia; Reis, F.A.M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Quimica

    2008-07-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by {sup 1}H and {sup 13}C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  2. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by 1H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  3. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-14C-pyruvate to 14CO2 in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P 125I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group

  4. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  5. Toxocara canis: Larvicidal activity of fatty acid amides.

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  6. Antileishmanial activity of diterpene acids in copaiba oil

    Adriana Oliveira dos Santos; Erika Izumi; Tânia Ueda-Nakamura; Benedito Prado Dias-Filho; Valdir Florêncio da Veiga-Júnior; Celso Vataru Nakamura

    2013-01-01

    Leishmaniasis is a neglected tropical disease. According to the World Health Organization, there are approximately 1.5-two million new cases of cutaneous leishmaniasis each year worldwide. Chemotherapy against leishmaniasis is based on pentavalent antimonials, which were developed more than a century ago. The goals of this study were to investigate the antileishmanial activity of diterpene acids in copaiba oil, as well as some possible targets of their action against Leishmania amazonensis. M...

  7. Intraluminal acid activates esophageal nodose C fibers after mast cell activation.

    Zhang, Shizhong; Liu, Zhenyu; Heldsinger, Andrea; Owyang, Chung; Yu, Shaoyong

    2014-02-01

    Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2-3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation. PMID:24264049

  8. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    Fabrizio Anella; Christophe Danelon

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristol...

  9. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway. PMID:27329155

  10. Comparing the impact of melatonin and captopril on early effects of radiation on the heart tissue by studying glutathione, malondialdehyde, and lactate dehydrogenase enzyme activity in rats

    Prevention of secondary malignancy while the patient is receiving radiotherapy for the management of primary cancer has been an enormous challenge for biological and medical safety. The aim of the study is to compare protective effects of melatonin and captopril on early effects of radiation on the heart tissue of rats. Forty-eight adult male Wistar rats weighing 180-220 g were used. The rats were divided into six groups and the rats were exposed to 8 Gy whole body dose from Cobalt-60 sources. Thirty minutes prior to irradiation, six animals received melatonin (100 mg/kg body weight), and six animals received captopril (50 mg/kg body weight). All groups were sacrificed 10 days post-irradiation, and hearts were collected. Malondialdehyde (MDA), lactate dehydrogenase (LDH), and glutathione (GSH) were measured to evaluate cellular oxidative stress-induced injury. The biochemical data are presented as mean ± standard error of the mean, and the difference between the groups was analyzed using a two-way variance analysis. Treatment with captopril resulted in a significant increase in LDH and MDA, although the level of GSH was decreased (P < 0.01). MDA and LDH levels were decreased after melatonin treatment while GSH level was increased (P < 0.001). Melatonin has protective effects following radiation, while treatment with captopril post-irradiation seems to be radiosensitizing and does not have protective effects against radiation exposure. (author)

  11. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  12. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri

    Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 μM KCN and was rapidly inactivated by O2. The enzyme was nearly homogenous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent K/sub m/ of 5 mM for CO and a V/sub max/ of 1300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed

  13. Human liver alcohol dehydrogenase. 2. The primary structure of the gamma 1 protein chain.

    Bühler, R; Hempel, J; Kaiser, R; de Zalenski, C; von Wartburg, J P; Jörnvall, H

    1984-12-17

    The primary structure of the gamma 1 subunit of human liver alcohol dehydrogenase isoenzyme gamma 1 gamma 1 was deduced by characterization of 36 tryptic and 2 CNBr peptides. The polypeptide chain is composed of 373 amino acid residues. gamma 1 differs from the beta 1 subunit of human liver alcohol dehydrogenase at 21 positions, and from the E subunit of horse liver alcohol dehydrogenase at 43 positions including a gap at position 128 as in the beta 1 subunit. All zinc-liganding residues from the E subunit of the horse protein and the beta 1 subunit of the human enzyme are conserved, but like beta 1, gamma 1 also has an additional cysteine residue at position 286 (in the positional numbering system of the horse enzyme) due to a Tyr----Cys exchange. Most amino acid exchanges preserve the properties of the residues affected and are largely located on the surface of the molecules, away from the active site and the coenzyme binding region. However, eight positions with charge differences in relation to the E subunit of the horse enzyme are noticed. These result in a net positive charge increase of one in gamma 1 versus E, explaining the electrophoretic mobilities on starch gels. Of functional significance is the conservation of Ser-48 in gamma 1 relative to E. The residue is close to the active site but different (Thr-48) in the beta 1 subunit of the human enzyme. Thus, the closer structural relationship between human gamma 1 and horse E enzyme subunit than between beta 1 and E is also reflected in functionally important residues, explaining a greater similarity between gamma 1 gamma 1 and EE than between beta 1 beta 1 and EE. PMID:6391921

  14. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  15. Determination of estradiol, estrone and progesterone in serum and human endometrium in correlation to the content of steroid receptors and 17β-hydroxysteroid dehydrogenase activity during menstrual cycle

    A study has been carried out to compare the influence of estradiol estrone and progesterone on the estradiol and progesterone receptor levels and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in human endometrium. The steroid hormone concentrations were measured simultaneously in both serum and endometrial tissue. The estradiol receptor levels were highest during the early proliferative phase and were inversely correlated to the endometrial tissue and serum concentrations of estradiol and progesterone. The highest progesterone binding capacity was found in endometrical cytosol during the late proliferative phase (midcycle) of the menstrual cycle. The midcycle peak of the progesterone receptor level correlated well with the first peak of the serum and tissue concentrations of estradiol. During,the luteal phase, in contrast to the proliferative phase, the progesterone receptor level decreased whereas serum progesterone concentrations were high. Estrone concentrations were higher in secretory than proliferative endometrium and were correlated to the increase of progesterone receptor content and 17β-HSD activity during early secretory phase. The 17β-HSD activity was approximately 10-fold higher during the early secretory than during the proliferative phase. The progesterone receptor level was highly correlated to the specific 17β-HSD activity of the microsomal fraction whereas a significant inverse correlation between the enzyme activity and the estradiol receptor level was observed. (orig.)

  16. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  17. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA in Groundwater under Acidic Conditions

    Penghua Yin

    2016-06-01

    Full Text Available Perfluorooctanoic acid (PFOA is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C, persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH. The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  18. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  19. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  20. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  1. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Information Center (GARD) Print friendly version Glucose-6-phosphate dehydrogenase deficiency Table of Contents Overview Symptoms Cause ... National Institutes of Health. Overview Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary condition in ...

  2. Oxidation of Exogenous Lactate by Lactate Dehydrogenase C in the Midpiece of Rat Epididymal Sperm is Essential for Motility and Oxidative Activity

    Hideaki Yamashiro

    2009-01-01

    Full Text Available Problem statement: To identify the metabolic reaction-glycolysis or oxidative phosphorylation that is mainly involved in the production of energy required for rat sperm mobilization. Approach: Epididymal sperm were collected from Wistar rats and extended in lactate-containing or lactate-free raffinose-modified Krebs-Ringer Bicarbonate solution (mKRB-egg yolk medium supplemented with 0, 1, 2, or 3 mM 2-Deoxy-D-Glucose (2 DG and 1, 2, or 3 mM sodium Oxamate (OX. Sperm motility, straight-line velocity (VSL and oxygen consumption were evaluated. Further, immunofluorescent localization of Lactate Dehydrogenase C (LDH-C in sperm was also performed. Results: Low concentrations of 2DG (1 and 2 mM did not significantly affect motility, VSL and oxygen consumption of sperm extended in the lactate-containing medium. While sperm motility and oxygen consumption were significantly inhibited by even 1mM 2DG in sperm extended in lactate-free medium. Sperm motility significantly inhibited in the case of sperm extended in lactate-containing and free-medium with 1 mM OX. We also found that sperm motility was not maintained in the absence of lactate throughout the 3 h incubation period. Immunofluorescence study revealed that mainly LDH-C was may be localized in the intramitochondrial region of the sperm. Conclusion: These results suggest that exogenous lactate enhances lactate oxidation by LDH-C, thereby promoting mitochondrial oxidative reactions in the midpiece and maintaining the mobilization of rat epididymal sperm.

  3. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    de Reggi Max; Nieoullon André; Khrestchatisky Michel; Abou-Hamdan Mhamad; Cornille Emilie; Gharib Bouchra

    2010-01-01

    Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasi...

  4. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children

    Nahid KHOSROSHAHI

    2015-01-01

    mortality after hemispheric ischemic stroke. Crit care med 2004; 32: 241-5.Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974; 2: 81-4.Wityk RJ, Stern BJ. Ischemic stroke: today and tomorrow. Crit care med 1994; 22: 1278-93.Vázquez Jorge Alejandro, Adducci Maria del Carmen, Monzón Daniel Godoy, Iserson Kenneth V. Lactic dehyrogenase in cerebrospinal fluid may differentiate between structural and non-strucfiular central nervous system lesion in patient with diminished levels of consciousness. The Journal of Emergency Medicine2009; 37(1: 93–97.Kärkelä J, Pasanen M, Kaukinen S, Mörsky P, Harmoinen A. Evaluation of hypoxic brain injury with spinal fluid enzymes, lactate, and pyruvate. Crit Care Med. 1992 Mar; 20(3:378-86. 2007: pp. 835. ISBN 0-7817-7087-4.DV Kamat, BP Chakravorty. Comparative values of CSF-LDH isoenzymes in neurological disorders. Indian Journal of Medical Sciences 1999; 53 (1: 1-6.Pollak AN, Gupton CL. Emergency Care and Transportation of the Sick and Injured. Boston: Jones and Bartlett 2002: pp. 140. ISBN 0-7637-1666-9.Nayak BS, Bhat R. Cerebrospinal fluid lactate dehydrogenase and glutamine in meningitis. Indian J Physiol Pharmacol. 2005 Jan; 49(1:108-10.A Twijnstra, A P van Zanten, A A Hart, et al. al. Serial lumbar and ventricle cerebrospinal fluid lactate dehydrogenase activities in patients with leptomeningeal metastases from solid and haematological tumours. J Neurol Neurosurg Psychiatry 1987 50: 313-320.Nussinovitch M, Finkelstein Y, Politi K, Harel D, Klinger G, Razon Y, Nussinovitch U, Nussinovitch N. Cerebrospinal fluid lactate dehydrogenase isoenzymes in children with bacterial and aseptic meningitis. Translational Research 2009. 154 (4: 214-218.Feldman William E. Cerebrospinal Fluid Lactic Acid Dehydrogenase Activity. Levels in Untreated and Partially Antibiotic-Treated Meningitis. Am J Dis Child. 1975; 129(1: 77-80.Lutsar I, Haldre S, Topman M, Talvik T. Enzymatic changes in the

  5. Synthesis and Insecticidal Activities of Novel Phthalic Acid Diamides

    闫涛; 李玉新; 李永强; 王多义; 陈伟; 刘卓; 李正名

    2012-01-01

    In order to discover novel insecticides with the new action mode on ryanodine receptor (RyR), a series of novel phthalic acid diamide derivatives were designed and synthesized. All compounds were characterized by 1H NMR spectra and HRMS. The preliminary results of biological activity assessment indicated that some title compounds exhibited excellent insecticidal activities against Mythimna separata, Spodoptera exigua, and Plutella xylostella. The title compound 3-nitro-N-cyclopropyl-N'-[2-methyl-4-(perfluoropropan-2-yl)phenyl]phthalamidte (4a) was more efficient against diamondback moths than the control (chlorantraniliprole). The effects of some title compounds on intracellular calcium of neurons from the Spodoptera exigua proved that the title compounds were RyR activators.

  6. Specific biotinylation of IMP dehydrogenase

    Hoefler, B. Christopher; Gollapalli, Deviprasad R.; Hedstrom, Lizbeth

    2011-01-01

    IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.

  7. RESEARCH ON THE INFLUENCE OF H+ IONS CONCENTRATION ON THE DYNAMICS OF THE ACTIVITIES OF CERTAIN DEHYDROGENASES OF THE KREBS CYCLE IN THE MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS PARASITIC ON PLUM TREES

    Tutu Elena

    2010-09-01

    Full Text Available During the process of nutrition, thus in that of their growth, microorganisms are subject to the influences of certain environmental factors that condition the microbial activity determining either the growth and reproduction, or the inhibition of activity and the inactivation of microorganisms. A well known means of expressing the H+ ions concentration in a certain environment is the pH, an important chemical factor that is closely observed when growing ascomycetes, for any alteration of its value entails conformational alterations of their enzymes, the characteristics of the substrate, such that they can no longer interact with the active site of the enzyme or be subject to catalysis. The present study comprises the results of our research on certain oxidoreductase implied in the steps of the Krebs cycle in the Monilinia laxa (Aderh.&Ruhl. Honey, a fungus that parasites the prune. The enzymatic determinations took place at 7 and 14 days from the mycelium of the fungus cultivated in Leonian media, whose pH was adjusted to values between 2.0 and 9.0 by using NaOH 1N and HCl 0,1N solutions. We registered different values of the dehydrogenasic activity, directly correlated with the physiological condition of the fungus (given its age and with the initial pH value of the culture’s environment.

  8. Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress.

    Snodgrass, Ryan G; Huang, Shurong; Namgaladze, Dmitry; Jandali, Ola; Shao, Tiffany; Sama, Spandana; Brüne, Bernhard; Hwang, Daniel H

    2016-06-01

    Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume. PMID:27142735

  9. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus.

    Hammel, K E; Cornwell, K L; Diekert, G B; Thauer, R K

    1984-01-01

    In growing cultures of Methanobrevibacter arboriphilicus (Methanobrevibacter arboriphilus), the synthesis of active carbon monoxide dehydrogenase required nickel. The 21-fold-purified enzyme from 63Ni-labeled cells of M. arboriphilicus comigrated with 63Ni during gel filtration. These results provide evidence that the carbon monoxide dehydrogenase of methanogens is a nickel protein.

  10. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    2010-04-01

    ... assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  11. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.; Sime, Patricia J.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.

  12. Enzyme Activities in Perfluorooctanoic Acid (PFOA)-Polluted Soils

    ZHANG Wei; LIN Kuang-Fei; YANG Sha-Sha; ZHANG Meng

    2013-01-01

    Perfluorooctanoic acid (PFOA) is a popular additive of the chemical industry; its effect on activities of important soil enzymes is not well understood.A laboratory incubation experiment was carried out to analyze the PFOA-induced changes in soil urease,catalase,and phosphatase activities.During the entire incubation period,the activities of the three soil enzymes generally declined with increasing PFOA concentration,following certain dose-response relationships.The values of EC10,the contaminant concentration at which the biological activity is inhibited by 10%,of PFOA for the soil enzyme activity calculated from the modeling equation of the respective dose-response curve suggested a sensitivity order of phosphatase > catalase > urease.The effect of PFOA on soil enzyme activities provided a basic understanding of the eco-toxicological effect of PFOA in the environment.Results of this study supported using soil phosphatase as a convenient biomarker for ecological risk assessment of PFOA-polluted soils.

  13. Synthesis of heteropoly acids and their salts using mechanochemical activation

    A method of heteropolyacid synthesis from oxides of molybdenum, tungsten and vanadium based on increase in the oxides reactivity via mechanochemical activation is suggested. Scientific grounds for the method of synthesis of heteropolyacids with different ligand atoms and heteroatoms were developed. A high reactive ability of new compounds i.e. V2O5 · nMoO3, during interaction with phosphoric acid was detected, stemming from the lack of coordination saturation of vanadium cations and defective compounds. The applications of the method of heteropolyacid were defined. It has the most promising application for the synthesis of phosphorus-molybdenum-vanadium and phosphorus-molybdenum heteropolyacids

  14. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  15. Clostridium difficile Testing Algorithms Using Glutamate Dehydrogenase Antigen and C. difficile Toxin Enzyme Immunoassays with C. difficile Nucleic Acid Amplification Testing Increase Diagnostic Yield in a Tertiary Pediatric Population

    Ota, Kaede V.; McGowan, Karin L.

    2012-01-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined a...

  16. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives.

    Gonçalves, Bruno M F; Salvador, Jorge A R; Marín, Silvia; Cascante, Marta

    2016-05-23

    A series of novel fluorinated Asiatic Acid (AA) derivatives were successfully synthesized, tested for their antiproliferative activity against HeLa and HT-29 cell lines, and their structure activity relationships were evaluated. The great majority of fluorinated derivatives showed stronger antiproliferative activity than AA in a concentration dependent manner. The most active compounds have a pentameric A-ring containing an α,β-unsaturated carbonyl group. The compounds with better cytotoxic activity were then evaluated against MCF-7, Jurkat, PC-3, A375, MIA PaCa-2 and BJ cell lines. Derivative 14 proved to be the most active compound among all tested derivatives and its mechanism of action was further investigated in HeLa cell line. The results showed that compound 14 induced cell cycle arrest in G0/G1 stage as a consequence of up-regulation of p21(cip1/waf1) and p27(kip1) and down-regulation of cyclin D3 and Cyclin E. Furthermore, compound 14 was found to induce caspase driven-apoptosis with activation of caspases-8 and caspase-3 and the cleavage of PARP. The cleavage of Bid into t-Bid, the up-regulation of Bax and the down-regulation of Bcl-2 were also observed after treatment of HeLa cells with compound 14. Taken together, these mechanistic studies revealed the involvement of extrinsic and intrinsic pathways in the apoptotic process induced by compound 14. Importantly, the antiproliferative activity of this compound on the non-tumor BJ human fibroblast cell line is weaker than in the tested cancer cell lines. The enhanced potency (between 45 and 90-fold more active than AA in a panel of cancer cell lines) and selectivity of this new AA derivative warrant further preclinical evaluation. PMID:26974379

  17. Reversible inactivation of CO dehydrogenase with thiol compounds

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H2-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H2O → CO2 + 2e− + 2H+) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([MoVI(=O)OH(2)SCuI(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed

  18. Reversible inactivation of CO dehydrogenase with thiol compounds

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  19. Activity of capryloyl collagenic acid against bacteria involved in acne.

    Fourniat, J; Bourlioux, P

    1989-12-01

    Synopsis Capryloyl collagenic acid (Lipacide C8Co) has similar bacteriostatic activity in vitro to that of benzoyl peroxide towards the bacteria found in acne lesions (Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes) (MIC between 1 and 4 mg ml(-1) for C8Co, and between 0.5 and 5 mg ml(-1) for benzoyl peroxide). The presence of Emulgine M8 did not affect the bacteriostatic activity of C8Co. A 4% w/v solution of C8Co (incorporating Emulgine M8) fulfilled the criteria for an antiseptic preparation as laid down by the French Pharmacopoeia (10th Edition), and had a spectrum 5 bactericidal activity according to the French Standard AFNOR NF T 72-151. The excellent cutaneous tolerance of capryloyl collagenic acid would indicate that an aqueous solution might be of value for topical treatment of the bacterial component of acne. Résumé Activité antibactérienne de l'acide capryloyl-collagénique vis à vis des bactéries impliquées dans l'etiologie de l'acné L'acide capryloyl-collagénique (Lipacide C8Co) et le peroxyde de benzoyle présentent une activité bactériostatique in-vitroéquivalente vis à vis des espèces bactériennes retrouvées au niveau des lésions acnéiques (Staphylococcus aureus, S. epidermidis et Propionibacterium acnes) (CMI comprise entre 1 et 4 mg ml(-1) pour le lipoaminoacide, et 0,5 et 5 mg ml(-1) pour le peroxyde de benzoyle). La mise en solution aqueuse de l'acide capryloyl-collagénique en présence d'Emulgine M8 ne modifie pas son activité bactériostatique. Une telle solution, à 4% m/V d'acide capryloyl-collagénique et 5% m/V d'Emulgine M8, satisfait à l'essai d'activité des préparations antiseptiques décrit à la Pharmacopée Française (Xème Ed.) (concentration minimale antiseptique: 10% v/V, pour un temps de contact de 5 min à 32 degrees C entre les germes tests et la solution diluée en eau distillée), et posséde une activité bactéricide antiseptique spectre 5 conforme à la norme AFNOR NF T

  20. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels.

    Smith, Sabrina; Boitz, Jan; Chidambaram, Ehzilan Subramanian; Chatterjee, Abhishek; Ait-Tihyaty, Maria; Ullman, Buddy; Jardim, Armando

    2016-06-01

    The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools. PMID:26853689

  1. Fast internal dynamics in alcohol dehydrogenase

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains

  2. Characterization of acid sphingomyelinase activity in human cerebrospinal fluid.

    Christiane Mühle

    Full Text Available BACKGROUND: As a key enzyme in sphingolipid metabolism, acid sphingomyelinase (ASM is involved in the regulation of cell fate and signaling via hydrolysis of sphingomyelin to form ceramide. While increased activity of the lysosomal form has been associated with various pathological conditions, there are few studies on secretory ASM limited only to cell models, plasma or serum. METHODS: An optimized assay based on a fluorescent substrate was applied to measure the ASM activity in cerebrospinal fluid (CSF collected from mice and from 42 patients who were classified as controls based on normal routine CSF values. RESULTS: We have detected ASM activity in human CSF, established a sensitive quantitative assay and characterized the enzyme's properties. The enzyme resembles plasmatic ASM including protein stability and Zn(2+-dependence but the assays differ considerably in the optimal detergent concentration. Significantly increased activities in the CSF of ASM transgenic mice and undetectable levels in ASM knock-out mice prove that the measured ASM activity originates from the ASM-encoding gene SMPD1. CSF localized ASM activities were comparable to corresponding serum ASM levels at their respective optimal reaction conditions, but no correlation was observed. The large variance in ASM activity was independent of sex, age or analyzed routine CSF parameters. CONCLUSIONS: Human and mouse CSF contain detectable levels of secretory ASM, which are unrelated to serum ASM activities. Further investigations in humans and in animal models will help to elucidate the role of this enzyme in human disease and to assess its value as a potential biomarker for disease type, severity, progress or therapeutic success.

  3. Histochemical activity of 5-4-isomerase-3-B hydroxy steroid dehydrogenase in the ovary of the viviparous mexican lizardSceloporus mucronatus (Reptilia:Prhynosomatidae) and interelationship with progesterone levels during pregnancy

    Martn Martnez-torres; E Martha Prez-armendariz; M Elena Hernndez Caballero; Juana luis; guadalupe ortz-Lpez

    2012-01-01

    Objective:To relate the histological characteristics and histochemicalΔ5-4-isomerase-3 beta hydroxy steroid dehydrogenase(Δ5-43β-HSD) activity of the corpora lutea(CL) and the atresic vitellogenic follicles(AVF) with progesterone(P4) plasma concentrations in three different times of gestation (early, medium and late) in the viviparous lizardSceloporus mucronatus (S. mucronatus).Methods:The histological characteristics as well as histochemical activity ofΔ5-43β-HSD of theCL andAVF and their relationship with plasmaP4 levels were studied during three different times of pregnancy of the viviparous lizardS. mucronatus.Results:Corpora lutea develops during the first third of gestation.In second third, the luteal tissue reaches maturity and starts the first regressive changes.The last third of gestation was characterized by a considerably advance in the luteolysis.Activity ofΔ5-43β-HSD was observed in he luteal cell mas.The activity of this enzyme were high during the first third and scantle activity was detected in the last third.Even though atresic vitellogenic follicles are found throughout the whole period of gestation,Δ5-43β-HSD activity is very low in relation with showed byCL and does not change significantly in the studied period of time.Another hand, we observed a direct relationship among the histological aspect of the corpus luteum,Δ5-43β-HSD activity and progesterone levels. Conclusions:These observations suggests that the corpus luteum is the most important source of ovarian progesterone(P4) during pregnancy and that the participation of theAVF in the production of this hormone is little or non-existent.

  4. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  5. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  6. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  7. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.

    Zheng, Anmin; Li, Shenhui; Liu, Shang-Bin; Deng, Feng

    2016-04-19

    Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules

  8. The roles of aldehyde dehydrogenases (ALDHs in the PDH bypass of Arabidopsis

    Lin Ming

    2009-03-01

    Full Text Available Abstract Background Eukaryotic aldehyde dehydrogenases (ALDHs, EC 1.2.1, which oxidize aldehydes into carboxylic acids, have been classified into more than 20 families. In mammals, Family 2 ALDHs detoxify acetaldehyde. It has been hypothesized that plant Family 2 ALDHs oxidize acetaldehyde generated via ethanolic fermentation, producing acetate for acetyl-CoA biosynthesis via acetyl-CoA synthetase (ACS, similar to the yeast pathway termed the "pyruvate dehydrogenase (PDH bypass". Evidence for this pathway in plants has been obtained from pollen. Results To test for the presence of the PDH bypass in the sporophytic tissue of plants, Arabidopsis plants homozygous for mutant alleles of all three Family 2 ALDH genes were fed with 14C-ethanol along with wild type controls. Comparisons of the incorporation rates of 14C-ethanol into fatty acids in mutants and wild type controls provided direct evidence for the presence of the PDH bypass in sporophytic tissue. Among the three Family 2 ALDHs, one of the two mitochondrial ALDHs (ALDH2B4 appears to be the primary contributor to this pathway. Surprisingly, single, double and triple ALDH mutants of Arabidopsis did not exhibit detectable phenotypes, even though a Family 2 ALDH gene is required for normal anther development in maize. Conclusion The PDH bypass is active in sporophytic tissue of plants. Blocking this pathway via triple ALDH mutants does not uncover obvious visible phenotypes.

  9. The Effect of Prolonged Fasting on Total Lipid Synthesis and Enzyme Activities in the Liver of the European Eel (Anguilla anguilla)

    Abraham, S. A.; Hansen, Heinz Johs. Max; Hansen, F.N.

    1984-01-01

    reduced (acetyl-CoA carboxylase decreased 2-fold and fatty acid synthetase declined 5-fold); others remained unchanged (G-6-P dehydrogenase, 6-phosphogluconate dehydrogenase, .alpha.-glycerol phosphate dehydrogenase as well as malic enzyme and ATP-citrate lyase). The optimum temperature for measuring both......The extent of fatty acid synthesis from [1-14C]acetate in liver slices was reduced 6-fold when eels were fasted for 1-7 wk and 20-fold when fasted for 39 wk, thereafter hepatic lipogenesis seemed to remain constant for up to 95 wk of fasting. After a 1-3 wk fast some hepatic enzyme activities were...

  10. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  11. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  12. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.

    Yamashita, Yuki; Ferri, Stefano; Huynh, Mai Linh; Shimizu, Hitomi; Yamaoka, Hideaki; Sode, Koji

    2013-02-01

    The FAD-dependent glucose dehydrogenase (FADGDH) from Burkholderia cepacia has several attractive features for glucose sensing. However, expanding the application of this enzyme requires improvement of its substrate specificity, especially decreasing its high activity toward maltose. A three-dimensional structural model of the FADGDH catalytic subunit was generated by homology modeling. By comparing the predicted active site with that of glucose oxidase, the two amino acid residues serine 326 and serine 365 were targeted for site-directed mutagenesis. The single mutations that produced the highest glucose specificity were combined, leading to the creation of the S326Q/S365Y double mutant, which was virtually nonreactive to maltose while retaining high glucose dehydrogenase activity. The engineered FADGDH was used to develop a direct electron transfer-type, disposable glucose sensor strip by immobilizing the enzyme complex onto a carbon screen-printed electrode. While the electrode employing wild-type FADGDH provided dangerously flawed results in the presence of maltose, the sensor employing our engineered FADGDH showed a clear glucose concentration-dependent response that was not affected by the presence of maltose. PMID:23273282

  13. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    Dolferus, R; Osterman, J. C.; Peacock, W. J.; Dennis, E.S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved fr...

  14. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154→Cys forms of yeast xylitol dehydrogenase

    Klimacek, Mario; Hellmer, Heidemarie; Nidetzky, Bernd

    2007-01-01

    Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10–0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19±0.03 s−1 and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019±0.003% and 0.74±0.03% of wild-type catalytic efficiency (kcat/Ksorbitol=7800±700 M−1· s−1) and kcat (=161±4 s−1) for NAD+-dependent oxidation of sorbitol at 25 °C respectively. The pH profile of kcat/Ksorbitol for E154C decreased below an apparent pK of 9.1±0.3, reflecting a shift in pK by about +1.7–1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (≈+0.2 log units), suggesting that the observed pK in the binary enzyme–NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7±0.2 (E154C, 1.7±0.1) and 1.9±0.3 (E154C, 2.4±0.2) on kcat/Ksorbitol respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687±12 s−1 in the pre-steady state, which features a turnover of 0.9±0.1 enzyme equivalents as NADH was produced with a rate constant of 409±3 s−1. The

  15. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.;

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  16. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. PMID:26948102

  17. Function of C-terminal hydrophobic region in fructose dehydrogenase

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  18. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium. PMID:19818021

  19. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme.

    Jensen, D E; Belka, G K; Du Bois, G C

    1998-04-15

    An enzyme isolated from rat liver cytosol (native molecular mass 78. 3 kDa; polypeptide molecular mass 42.5 kDa) is capable of catalysing the NADH/NADPH-dependent degradation of S-nitrosoglutathione (GSNO). The activity utilizes 1 mol of coenzyme per mol of GSNO processed. The isolated enzyme has, as well, several characteristics that are unique to alcohol dehydrogenase (ADH) class III isoenzyme: it is capable of catalysing the NAD+-dependent oxidations of octanol (insensitive to inhibition by 4-methylpyrazole), methylcrotyl alcohol (stimulated by added pentanoate) and 12-hydroxydodecanoic acid, and also the NADH/NADPH-dependent reduction of octanal. Methanol and ethanol oxidation activity is minimal. The enzyme has formaldehyde dehydrogenase activity in that it is capable of catalysing the NAD+/NADP+-dependent oxidation of S-hydroxymethylglutathione. Treatment with the arginine-specific reagent phenylglyoxal prevents the pentanoate stimulation of methylcrotyl alcohol oxidation and markedly diminishes the enzymic activity towards octanol, 12-hydroxydodecanoic acid and S-hydroxymethylglutathione; the capacity to catalyse GSNO degradation is also checked. Additionally, limited peptide sequencing indicates 100% correspondence with known ADH class III isoenzyme sequences. Kinetic studies demonstrate that GSNO is an exceptionally active substrate for this enzyme. S-Nitroso-N-acetylpenicillamine and S-nitrosated human serum albumin are not substrates; the activity towards S-nitrosated glutathione mono- and di-ethyl esters is minimal. Product analysis suggests that glutathione sulphinamide is the major stable product of enzymic GSNO processing, with minor yields of GSSG and NH3; GSH, hydroxylamine, nitrite, nitrate and nitric oxide accumulations are minimal. Inclusion of GSH in the reaction mix decreases the yield of the supposed glutathione sulphinamide in favor of GSSG and hydroxylamine. PMID:9531510

  20. Study on determination of biofilm activity in BAF by TTC-dehydrogenase assay%优化TTC-脱氢酶还原法测定陶粒负载微生物活性

    齐鲁青; 汪晓军; 詹德明

    2012-01-01

    利用氯化三苯基四氮唑(TTC)-脱氢酶还原法定量测定了曝气生物滤池中陶粒负载生物膜的活性,并对影响生物活性测定的因素进行了分析和优化.实验表明,经优化后得出最佳培养条件是:陶粒采用原位法制样,依次加入pH为8.0的Tris-HCl缓冲液,质量分数为0.4%的TTC溶液,0.1 mol/L葡萄糖溶液,在温度40℃下培养4h,最后生成的三苯基甲臢(TriphenylFormazone,TF)用甲苯萃取可以除去有色废水的颜色影响.采用TTC-脱氢酶还原法可以快速、方便的检测曝气生物滤池中陶粒负载生物膜的生物活性,并能很好的进行定量化测定.%The biofilms activity in Biological Aerated Filters (BAF) is quantitatively determined by 2,3,5-triphenyl tetrazolium chloride (TTC) -dehydrogenase assay and some major factors influencing the determination are studied in this paper. The optimum parameters are shown as follows: Tris-HCl buffers and 8. 0 of pH, 0. 4% ( mass fraction) of TTC and 0. 1 mol/L of dextrose solution. The incubation time and temperature are 4 h and 401 , respectively. The formazan reduction product can be efficiently extracted by methylbenzene, which can reduce the disturbance of dye color. This study demonstrates that the TTC-dehydrogenase assay can be successfully applied to the determination of biofilms activity in BAF.

  1. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    Dash Ranjan K; Pradhan Ranjan K; Qi Feng; Beard Daniel A

    2011-01-01

    Abstract Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, an...

  2. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  3. Visual modeling mutants for D-lactate dehydrogenase form aquifex aeolicus and the effect of mutants on the production of phenyl lactate acid in E.coli%耐热菌D-乳酸脱氢酶突变体的可视化建模和大肠杆菌中突变体对产苯乳酸的影响

    田晋红; 刘琦; 战丽萍; 李小丽

    2012-01-01

    Based on bioinformatics,the amino acid residues of conservative and activity center of D-lactate dehydrogenase(D-LDH),and the three-dimensional structure model of protein was analysised.The space conformation of visualization mutant had been constructed by homology modeling,the best mutant models were selected by the calculation of the distance and angle.The results showed that the 4 amino acid residues were relevant to the activity center in 20 conservative residues of D-LDH.After the models were compared,it was found that the big molecules substrates were obstructed by the benzyl of the residues of Phenylalanine(phe)or Tyrosine(try)on the 49 and 297 position.When F49A,Y279A,F49A and Y279A were mutated,the obstacles would disappear or weaken.The three mutants constructed were made a preliminary study,the results showed that IPTG or lactose could induce mutant to produce phenyl lactic acid in E.coli.The yield of phenyl lactic acid was higher in static culture than in vibration incubator,and the one of the F49A mutant(A.a.D-LDH-F49A strains)was higher than the one of the wild type(A.a.D-LDH strains)with lactose inducing.It would be a method of constructing gene engineering strain that visualization mutants models were compared and selected.%以生物信息学为基础,分析D-乳酸脱氢酶(D-LDH)的保守氨基酸残基、活性中心氨基酸残基、蛋白质三维结构和同源建模,可视化比较建模突变体空间构象,优选最佳突变体模型。结果显示,在D-LDH的20个保守氨基酸中,4个与酶活性中心有关。比较突变体模型发现,49和297位的phe或try的苯环形成空间位阻,F49A或Y279A及F49A和Y279A双突变体可解除位阻。对已构建的三个突变体初步发酵显示,IPTG和乳糖都能诱导突变体酶在大肠杆菌中产生苯乳酸,静置培养比摇振培养产量高,用乳糖诱导时,突变体F49A(A.a D-LDH-F49A株)苯乳酸的量比野生型(A.a.D-LDH株)的高。优选可视化突变体可

  4. Regulation of synthesis and activity of NAD(+)-dependent 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) by dexamethasone and phorbol ester in human erythroleukemia (HEL) cells

    Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and [35S]methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism

  5. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis ...

  6. Optimization of production, purification and lyophilisation of cellobiose dehydrogenase by Sclerotium rolfsii

    Fischer, Christin; Krause, Annett; Kleinschmidt, Thomas

    2014-01-01

    Background The enzyme cellobiose dehydrogenase (CDH) can be used to oxidize lactose to lactobionic acid. As Sclerotium rolfsii is known to be a good producer of CDH, the aim of this paper was to simplify its production and secondly to systematically study its purification aiming for a high yield. Two preservation methods (freezing and freeze-drying) and the influence of several protectants were investigated. Results Production of cellobiose dehydrogenase was optimized leading to a more simpli...

  7. Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

    Taniyama, Kosuke; Itoh, Hideomi; Takuwa, Atsushi; Sasaki, Yasuyuki; Yajima, Shunsuke; Toyofuku, Masanori; Nomura, Nobuhiko; Takaya, Naoki

    2012-01-01

    Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD+- or NADP+-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological...

  8. Acid Rain: A Teacher's Guide. Activities for Grades 4 to 12.

    National Wildlife Federation, Washington, DC.

    This guide on acid rain for elementary and secondary students is divided into three study areas: (1) What Causes Acid Rain; (2) What Problems Acid Rain Has Created; (3) How You and Your Students Can Help Combat Acid Rain. Each section presents background information and a series of lessons pertaining to the section topic. Activities include…

  9. Acid Rain. Activities for Grades 4 to 12. A Teacher's Guide.

    Wood, David; Bryant, Jeannette

    This teacher's guide on acid rain is divided into three study areas to explain: (1) what causes acid rain; (2) what problems acid rain has created; and (3) what teachers and students can do to help combat acid rain. Instructions for activities within the study areas include suggested grade levels, objectives, materials needed, and directions for…

  10. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: Interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin

    The enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) catalyzes an obligatory step in the conversion of pregnenolone and other 5-ene-3 beta-hydroxysteroids into progesterone as well as precursors of all androgens and estrogens in the ovary. Since 3 beta-HSD is likely to be an important target for regulation by pituitary hormones, we have studied the effect of chronic treatment with LH (hCG), FSH, and PRL on ovarian 3 beta-HSD expression and activity in hypophysectomized adult female rats. Human CG (hCG) [10 IU, twice a day (bid)], ovine FSH (0.5 microgram, bid), and ovine PRL (1 mg, bid) were administered, singly or in combination, for a period of 10 days starting 15 days after hypophysectomy. In hypophysectomized rats, PRL exerted a potent inhibitory effect on all the parameters studied. In fact, PRL caused a 81% decrease in ovarian 3 beta-HSD mRNA content accompanied by a similar decrease in 3 beta-HSD activity and protein levels. In addition, ovarian weight decreased by 40% whereas serum progesterone fell dramatically from 1.92 nmol/liter to undetectable levels after treatment with PRL. Whereas hCG alone had only slight stimulatory effects on 3 beta-HSD mRNA, protein content and activity levels, treatment with the gonadotropin partially or completely reversed the potent inhibitory effects of oPRL on all the parameters measured. FSH, on the other hand, had no significant effect on 3 beta-HSD expression and activity. In situ hybridization experiments using the 35S-labeled rat ovary 3 beta-HSD cDNA probe show that the inhibitory effect of PRL is exerted primarily on luteal cell 3 beta-HSD expression and activity. On the other hand, it can be seen that hCG stimulates 3 beta-HSD mRNA accumulation in interstitial cells

  11. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  12. Influence of acid and bile acid on ERK activity, PPARY expression and cell proliferation in normal human esophageal epithelial cells

    Zhi-Ru Jiang; Jun Gong; Zhen-Ni Zhang; Zhe Qiao

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor Y (PPARy) in normal human esophageal epithelial cells in vitro.METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0-6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively.Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARy protein were determined by the immunoblotting technique.RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio,S phase of the cell cycle (P<0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P<0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P<0.05)and phosphorylated ERK1/2 expression. On the contrary,deoxycholic acid (DCA) exposure (>20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P<0.05). There was no expression of PPARY in normal human esophageal epithelial cells.CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway.

  13. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity

    Oksana Sytar

    2015-04-01

    Full Text Available The comparative analysis of total phenolics and phenolic acid composition together with parameters of antioxidant activities was studied in the inflorescences of three varieties of buckwheat (F. esculentum, Fagopyrum tataricum rotundatum and Fagopyrum esculentum, forma green-flowers. Antioxidant activity of extracts of these buckwheat varieties has been found high and at the same time extracts of inflorescences of green flower buckwheat have been characterized by the highest total phenolic content. Eight phenolic acids (ferulic acid, vanillic acid, chlorogenic acid, p-coumaric acid, trans-ferulic acid, p-anisic acid, salicylic acid and methoxycinnamic acid were found in the investigated buckwheat inflorescences with HPLC analysis. Inflorescences of F. esculentum, forma green-flowers have a high content of chlorogenic acid (16 mg 100 g−1 DW and p-anisic acid (872 mg 100 g−1 DW. The highest content among the investigated buckwheat inflorescences of vanillic acid, trans-ferulic acid, chlorogenic acid and p-anisic acid was found in the F. tataricum, F. esculentum inflorescences have been characterized by the highest content of salicylic acid (115 mg 100 g−1 DW and methoxycinnamic acid (74 mg 100 g−1 DW.

  14. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity.

    Liu, Jun; Meng, Chen-Guang; Yan, Ye-Hua; Shan, Ya-Na; Kan, Juan; Jin, Chang-Hai

    2016-08-01

    In this study, protocatechuic acid (PA) was grafted onto chitosan (CS) by a carbodiimide mediated cross-linking reaction. The structural characterization, physical property and antioxidant activity of PA grafted CS (PA-g-CS) was investigated. As results, three copolymers with different grafting ratios (61.64, 190.11 and 279.69mg PAE/g) were obtained by varying the molar ratios of reaction substrates. PA-g-CS showed the same UV absorption peaks as PA at 258 and 292nm. As compared to CS, PA-g-CS exhibited a decreased band at 1596cm(-1) and a new band at 1716cm(-1), suggesting the formation of amide and ester linkages between PA and CS. New proton signals at δ6.77-7⋅33ppm were observed on (1)H NMR spectrum of PA-g-CS, assigning to the methine protons of PA. Signals at δ 150.8-116.6 ppm on (13)C NMR spectrum of PA-g-CS was assigned to the aromatic ring carbon of PA moieties. All the structural information confirmed the successful grafting of PA onto CS. SEM observation showed CS had a smooth surface, while PA-g-CS had a rough surface. TGA revealed the thermal stability of PA-g-CS was lower than CS. Antioxidant activity assays further verified the reducing power and DDPH radical scavenging activity of PA-g-CS was much higher than CS. PMID:27164501

  15. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection

    Sonia López-García

    2015-08-01

    Full Text Available Oleanolic (OA and ursolic acids (UA are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB. We evaluated production of nitric oxide (NO, reactive oxygen species (ROS, and cytokines (TNF-α and TGF-β as well as expression of cell membrane receptors (TGR5 and CD36 in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated to M1 (classically activated.

  16. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  17. A modern mode of activation for nucleic acid enzymes.

    Dominique Lévesque

    Full Text Available Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes, a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.

  18. Antifungal Activity of Ellagic Acid In Vitro and In Vivo.

    Li, Zhi-Jian; Guo, Xin; Dawuti, Gulina; Aibai, Silafu

    2015-07-01

    Ellagic acid (EA) has been shown to have antioxidant, antibacterial, and anti-inflammatory activities. In Uighur traditional medicine, Euphorbia humifusa Willd is used to treat fungal diseases, and recent studies suggest that it is the EA content which is responsible for its therapeutic effect. However, the effects of EA on antifungal activity have not yet been reported. This study aimed to investigate the inhibitory effect of EA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the National Committee for Clinical Laboratory Standards (M38-A and M27-A2) standard method in vitro. EA had a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 18.75 and 58.33 µg/ml. EA was also active against two Candida strains, with MICs between 25.0 and 75.0 µg/ml. It was inactive against Candida glabrata. The susceptibility of six species of dermatophytes to EA was comparable with that of the commercial antifungal, fluconazole. The most sensitive filamentous species was Trichophyton rubrum (MIC = 18.75 µg/ml). Studies on the mechanism of action using an HPLC-based assay and an enzyme linked immunosorbent assay showed that EA inhibited ergosterol biosynthesis and reduced the activity of sterol 14α-demethylase P450 (CYP51) in the Trichophyton rubrum membrane, respectively. An in vivo test demonstrated that topical administration of EA (4.0 and 8.0 mg/cm(2) ) significantly enhanced the cure rate in a guinea-pig infection model of Trichophyton rubrum. The results suggest that EA has the potential to be developed as a natural antifungal agent. PMID:25919446

  19. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  20. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug....

  1. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase, a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a λgt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced for the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins

  2. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought.

    Weretilnyk, E A; Hanson, A D

    1990-04-01

    Many plants, as well as other organisms, accumulate betaine (N,N,N-trimethylglycine) as a nontoxic or protective osmolyte under saline or dry conditions. In plants, the last step in betaine synthesis is catalyzed by betaine-aldehyde dehydrogenase (BADH, EC 1.2.1.8), a nuclear-encoded chloroplastic enzyme. A cDNA clone for BADH (1812 base pairs) was selected from a lambda gt10 cDNA library derived from leaves of salt-stressed spinach (Spinacia oleracea L.). The library was screened with oligonucleotide probes corresponding to amino acid sequences of two peptides prepared from purified BADH. The authenticity of the clone was confirmed by nucleotide sequence analysis; this analysis demonstrated the presence of a 1491-base-pair open reading frame that contained sequences encoding 12 peptide fragments of BADH. The clone hybridized to a 1.9-kilobase mRNA from spinach leaves; this mRNA was more abundant in salt-stressed plants, consistent with the known salt induction of BADH activity. The amino acid sequence deduced from the BADH cDNA sequence showed substantial similarities to those for nonspecific aldehyde dehydrogenases (EC 1.2.1.3 and EC 1.2.1.5) from several sources, including absolute conservation of a decapeptide in the probable active site. Comparison of deduced and determined amino acid sequences indicated that the transit peptide may comprise only 7 or 8 residues, which is atypically short for precursors to stromal proteins. PMID:2320587

  3. Behaviour of Some Activated Nitriles Toward Barbituric Acid, Thiobarbituric Acid and 3-Methyl-1-Phenylpyrazol-5-one

    M. M. Habashy; M. H. Nassar; Mahmoud, M. R.; H. M. F. Madkour

    2000-01-01

    The effect of some active methylene containing heterocyclic compounds, namely barbituric acid, thiobarbituric acid and 3-methyl-1-phenylpyrazol-5-one on a-cyano-3,4,5-trimethoxycinnamonitrile and ethyl a-cyano-3,4,5-trimethoxycinnamate (1a,b) was investigated. The structure of the new products was substantiated by their IR,1H-NMR and mass spectra.

  4. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  5. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  6. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the αPDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the αPDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated αPDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles 32P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated αPDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated αPDH subunit. Tryptic digests of the 32P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined

  7. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    Smit, M.J.; Beekhuis, H.; Duursma, A.M.; Bouma, J.M.; Gruber, M.

    1988-12-01

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected SVI-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of T I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats.

  8. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits.

    Smit, M J; Beekhuis, H; Duursma, A M; Bouma, J M; Gruber, M

    1988-12-01

    Lactate dehydrogenase-1 (EC 1.1.1.27), intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected 125I-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of 131I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats. PMID:3197286

  9. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected 125I-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of 131I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats

  10. Immunoaffinity purification and characterization of mitochondrial membrane-bound D-3-hydroxybutyrate dehydrogenase from Jaculus orientalis

    Cherkaoui-Malki Mustapha

    2008-09-01

    Full Text Available Abstract Background The interconversion of two important energy metabolites, 3-hydroxybutyrate and acetoacetate (the major ketone bodies, is catalyzed by D-3-hydroxybutyrate dehydrogenase (BDH1: EC 1.1.1.30, a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa (Jaculus orientalis, a hibernating rodent adapted to extreme diet and environmental conditions. Results Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for further biochemical characterization of the enzyme. This new procedure is based on the use of polyclonal antibodies raised against BDH from bacterial Pseudomonas aeruginosa. This study improves the procedure for purification of both soluble microbial and mammalian membrane-bound BDH. Even though the Jaculus orientalis genome has not yet been sequenced, for the first time a D-3-hydroxybutyrate dehydrogenase cDNA from jerboa was cloned and sequenced. Conclusion This study applies immunoaffinity chromatography to purify BDH, the membrane-bound and lipid-dependent enzyme, as a 31 kDa single polypeptide chain. In addition, bacterial BDH isolation was achieved in a two-step purification procedure, improving the knowledge of an enzyme involved in the lipid metabolism of a unique hibernating mammal. Sequence alignment revealed conserved putative amino acids for possible NAD+ interaction.

  11. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    Juliana da Silva Agostini

    2010-08-01

    Full Text Available The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p O objetivo deste trabalho foi investigar a germinação de girassóis híbridos BRS 191 e C11 com finalidade de reduzir o teor de AF e aumentar as atividades de phytases e fosfatases endógenas. A concentração do AF nos aquênios de girassóis híbridos variou de 2,16 a 2,83 g /100g de amostra (p< 0,005. As atividades de fitases e fosfatases de girassóis BRS191 e C11 foram elevadas no 4º e 5º dia de germinação, respectivamente, com liberação do fósforo necessário para o desenvolvimento da semente. Estes resultados indicam que o AF do girassol hibrido reduz e a atividade de phytase aumenta em períodos distintos da germinação, possibilitando assim a aplicação desta enzima no controle do teor de AF em cereais, melhorando o seu valor nutricional.

  12. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly

  13. Characterization of mannitol-2-dehydrogenase in Saccharina japonica: evidence for a new polyol-specific long-chain dehydrogenases/reductase.

    Zhanru Shao

    Full Text Available Mannitol plays a crucial role in brown algae, acting as carbon storage, organic osmolytes and antioxidant. Transcriptomic analysis of Saccharina japonica revealed that the relative genes involved in the mannitol cycle are existent. Full-length sequence of mannitol-2-dehydrogenase (M2DH gene was obtained, with one open reading frame of 2,007 bp which encodes 668 amino acids. Cis-regulatory elements for response to methyl jasmonic acid, light and drought existed in the 5'-upstream region. Phylogenetic analysis indicated that SjM2DH has an ancient prokaryotic origin, and is probably acquired by horizontal gene transfer event. Multiple alignment and spatial structure prediction displayed a series of conserved functional residues, motifs and domains, which favored that SjM2DH belongs to the polyol-specific long-chain dehydrogenases/reductase (PSLDR family. Expressional profiles of SjM2DH in the juvenile sporophytes showed that it was influenced by saline, oxidative and desiccative factors. SjM2DH was over-expressed in Escherichia coli, and the cell-free extracts with recombinant SjM2DH displayed high activity on D-fructose reduction reaction. The analysis on SjM2DH gene structure and biochemical parameters reached a consensus that activity of SjM2DH is NADH-dependent and metal ion-independent. The characterization of SjM2DH showed that M2DH is a new member of PSLDR family and play an important role in mannitol metabolism in S. japonica.

  14. [Effect of heavy metals on activity of key enzymes of glyoxylate cycle and content of thiobarbituric acid reactive substances in the germinating soybean Glicine max L.seeds].

    Bezdudnaia, E F; Kaliman, P A

    2008-01-01

    The influence of CoCl2 and CdCl2 on the activity of isocytrate lyase, malate synthase and NAD-malate dehydrogenase in the seed lobes and the composition of malondialdehyde products at early stages of germinating of soybean seeds: after first 24-hours, 72 hours and 96 hours are investigated. It is shown that when germinating in the medium containing no metal salts, isocytrate lyase activity is greatly increased during 96 h and malate synthase is increased after 72 h and is decreased after 96 h of germination period. CoCl2 activated isocytrate lyase activity after 72 hours and decreased malate synthase activity after 96 hours. The lengthening of the primary root under such conditions is noted. CdCl2 inhibited isocytrate lyase activity during first 24 hours and suppressed malate synthase activity after 96 hours. During this process the germ growth is suppressed. CoCl2 increased the composition of malondialdehyde products during each period of germination, and CdCl2 increased malondialdehyde content after 72 and 96 hours. The role of glyoxylate cycle enzymes in transforming fatty acids into carbohydrates and in forming the primary root under the process of germination of seed lobes of soybean is discussed. PMID:18710031

  15. The Role of Fatty Acids and Caveolin-1 in TNF-α-Induced Endothelial Cell Activation

    Wang, Lei; Lim, Eun-Jin; Toborek, Michal; Hennig, Bernhard

    2008-01-01

    Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors of atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are requ...

  16. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids.

    Kashiwada, Y; Wang, H K; Nagao, T; Kitanaka, S; Yasuda, I; Fujioka, T; Yamagishi, T; Cosentino, L M; Kozuka, M; Okabe, H; Ikeshiro, Y; Hu, C Q; Yeh, E; Lee, K H

    1998-09-01

    Oleanolic acid (1) was identified as an anti-HIV principle from several plants, including Rosa woodsii (leaves), Prosopis glandulosa (leaves and twigs), Phoradendron juniperinum (whole plant), Syzygium claviflorum (leaves), Hyptis capitata (whole plant), and Ternstromia gymnanthera (aerial part). It inhibited HIV-1 replication in acutely infected H9 cells with an EC50 value of 1.7 microg/mL, and inhibited H9 cell growth with an IC50 value of 21.8 microg/mL [therapeutic index (T. I.) 12.8]. Pomolic acid, isolated from R. woodsii and H. capitata, was also identified as an anti-HIV agent (EC50 1.4 microg/mL, T. I. 16.6). Although ursolic acid did show anti-HIV activity (EC50 2.0 microg/mL), it was slightly toxic (IC50 6.5 microg/mL, T. I. 3.3). A new triterpene (11) was also isolated from the CHCl3-soluble fraction of R. woodsii, though it showed no anti-HIV activity. The structure of 11 was determined to be 1beta-hydroxy-2-oxopomolic acid by spectral examination. Based on these results, we examined the anti-HIV activity of oleanolic acid- or pomolic acid-related triterpenes isolated from several plants. In addition, we previously demonstrated that derivatives of betulinic acid, isolated from the leaves of S. claviflorum as an anti-HIV principle, exhibited extremely potent anti-HIV activity. Accordingly, we prepared derivatives of oleanolic acid and evaluated their anti-HIV activity. Among the oleanolic acid derivatives, 18 demonstrated most potent anti-HIV activity, with an EC50 value of 0. 0005 microg/mL and a T. I. value of 22 400. PMID:9748372

  17. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid.

    Sheng Geng

    Full Text Available In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG was prepared and its chemically antioxidant, cellular antioxidant (CAA and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL in comparison to catechin (IC50 value, 239.27 μg/mL. Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes.

  18. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  19. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  20. Impact of structural modifications at positions 13, 16 and 17 of 16β-(m-carbamoylbenzyl)-estradiol on 17β-hydroxysteroid dehydrogenase type 1 inhibition and estrogenic activity.

    Maltais, René; Trottier, Alexandre; Barbeau, Xavier; Lagüe, Patrick; Perreault, Martin; Thériault, Jean-François; Lin, Sheng-Xiang; Poirier, Donald

    2016-07-01

    The chemical synthesis of four stereoisomers (compounds 5a-d) of 16β-(m-carbamoylbenzyl)-estradiol, a potent reversible inhibitor of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), and two intermediates (compounds 3a and b) was performed. Assignment of all nuclear magnetic resonance signals confirmed the stereochemistry at positions 13, 16 and 17. Nuclear overhauser effects showed clear correlations supporting a C-ring chair conformation for 5a and b and a C-ring boat conformation for 5c and d. These compounds were tested as 17β-HSD1 inhibitors and to assess their proliferative activity on estrogen-sensitive breast cancer cells (T-47D) and androgen-sensitive prostate cancer cells (LAPC-4). Steroid derivative 5a showed the best inhibitory activity for the transformation of estrone to estradiol (95, 82 and 27%, at 10, 1 and 0.1μM, respectively), but like the other isomers 5c and d, it was found to be estrogenic. The intermediate 3a, however, was weakly estrogenic at 1μM, not at all at 0.1μM, and showed an interesting inhibitory potency on 17β-HSD1 (90, 59 and 22%, at 10, 1 and 0.1μM, respectively). As expected, no compound showed an androgenic activity. The binding modes for compounds 3a and b, 5a-d and CC-156 were evaluated from molecular modeling. While the non-polar interactions were conserved for all the inhibitors in their binding to 17β-HSD1, differences in polar interactions and in binding conformational energies correlated to the inhibitory potencies. PMID:26519987

  1. Hypoxanthine-guanine phosphoribosyltransferase and inosine 5′-monophosphate dehydrogenase activities in three mammalian species: aquatic (Mirounga angustirostris), semi-aquatic (Lontra longicaudis annectens) and terrestrial (Sus scrofa)

    Barjau Pérez-Milicua, Myrna; Zenteno-Savín, Tania; Crocker, Daniel E.; Gallo-Reynoso, Juan P.

    2015-01-01

    Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5′-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5′-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), ATP, guanosine 5′-diphosphate (GDP), guanosine 5′-triphosphate (GTP), and xanthosine 5′-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts. PMID:26283971

  2. Hyaluronic acid induces activation of the κ-opioid receptor.

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  3. Retinoic acid activates two pathways required for meiosis in mice.

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  4. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  5. Understanding fatty acid metabolism through an active learning approach.

    Fardilha, M; Schrader, M; da Cruz E Silva, O A B; da Cruz E Silva, E F

    2010-03-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less emphasis is placed on transmitting information and the focus is shifted toward developing higher order thinking (analysis, synthesis, and evaluation). However, MALA should always involve clearly identified objectives and well-defined targets. Understanding fatty acid metabolism was one of the proposed goals of the Medical Biochemistry unit. To this end, students were challenged with a variety of learning strategies to develop skills associated with group conflict resolution, critical thinking, information access, and retrieval, as well as oral and written communication skills. Overall, students and learning facilitators were highly motivated by the diversity of learning activities, particularly due to the emphasis on correlating theoretical knowledge with human health and disease. As a quality control exercise, the students were asked to answer a questionnaire on their evaluation of the whole teaching/learning experience. Our initial analysis of the learning outcomes permits us to conclude that the approach undertaken yields results that surpass the traditional teaching methods. PMID:21567798

  6. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  7. Analgesic and antiinflammatory activity of kaur-16-en-19-oic acid from Annona reticulata L. bark.

    Chavan, Machindra J; Kolhe, Dinesh R; Wakte, Pravin S; Shinde, Devanand B

    2012-02-01

    Kaur-16-en-19-oic acid was isolated from the bark of Annona reticulata and studied for its analgesic and antiinflammatory activity. Analgesic activity was assessed using the hot plate test and acetic acid-induced writhing, and the antiinflammatory activity using the carrageenan induced rat paw oedema method. Kaur-16-en-19-oic acid, at doses of 10 and 20 mg/kg, exhibited significant (p < 0.05) analgesic and antiinflammatory activity. These activities were comparable to the standard drugs used, and furthermore the analgesic effect of kaur-16-en-19-oic acid was blocked by naloxone (2 mg/kg) in both analgesic models. PMID:21674631

  8. Modification of Rhizopus lactate dehydrogenase for improved resistance to fructose 1,6-bisphosphate

    Rhizopus oryzae is frequently used for fermentative production of lactic acid. We determined that one of the key enzymes, lactate dehydrogenase (LDH), involved in synthesis of lactic acid by R. oryzae was significantly inhibited by fructose 1,6-bisphosphate (FBP) at physiological concentrations. Thi...

  9. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines.

    Gibson, Gary E; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis T; Zhang, Sheng

    2015-07-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl-CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. Reversible post-translation modifications of proteins are common and may regulate many processes. Succinylation of proteins occurs and causes large changes in the structure of proteins. However, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remains unknown. The results demonstrate that the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) can succinylate multiple mitochondrial proteins and alter their function. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  10. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs.

    McDonald, I R; Murrell, J.C.

    1997-01-01

    The methanol dehydrogenase gene mxaF, encoding the large subunit of the enzyme, was amplified from the DNA of a number of representative methanotrophs, methyletrophs, and environmental samples by PCR using primers designed from regions of conserved amino acid sequence identified by comparison of three known sequences of the large subunit of methanol dehydrogenase. The resulting 550-bp PCR products were cloned and sequenced. Analysis of the predicted amino acid sequences corresponding to these...

  11. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  12. Characterization of phenolic acid reductase and decarboxylase activities of lactic acid bateria

    Soares, Ana de Seabra Leão Ferreira

    2014-01-01

    Hydroxycinnamic acids are natural constituents of grape juice and wine, and are precursors of volatile phenols produced by yeasts and lactic acid bacteria (LAB). The organoleptic defects due to the presence of this volatile phenols are usually associated with “animal”, “horsey”, “leather”, “phenolic” or “spicy” aromatic notes. The most common pathway for the degradation of hydroxycinnamic acids involves two enzymes. In first place, it occurs a decarboxylation by the phenolic acid decarboxylas...

  13. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

  14. Increase in activity, glycosylation and expression of cytokinin oxidase/dehydrogenase during the senescence of barley leaf segments in the dark

    Conrad, K.; Motyka, Václav; Schlüter, T.

    2007-01-01

    Roč. 130, č. 4 (2007), s. 572-579. ISSN 0031-9317 R&D Projects: GA ČR GA206/03/0313 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : OXIDASE ACTIVITY * GENE-EXPRESSION * ZEA - MAYS Subject RIV: EF - Botanics Impact factor: 2.192, year: 2007

  15. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  16. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Ma YM; Zhao S

    2016-01-01

    Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1) activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, th...

  17. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  18. Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra

    Gihan Ahmed El Shoubaky; Essam Abd El Rahman Salem

    2014-01-01

    Objective: To estimate the fatty acids content in the brown algae Padina pavonica (P. pavonica) and Hormophysa triquetra (H. triquetra) and evaluate their potential antimicrobial activity as bioactive compounds.Methods:The fatty acid compositions of the examined species were analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of crude and fatty acids was assessed using the agar plug technique.Results:The fatty acids profile ranged from C8:0 to C20:4. Concentration of saturated fatty acids in P. pavonica was in the order palmitic>myristic>stearic whereas concentration of the unsaturated fatty acids was oleic acid>palmitoleic>9-cis-hexadecenoic>linoleic acid>α-linolenic>arachidonic> elaidic acid. H. triquetra contained high concentration of saturated fatty acids than those of P. pavonica which was in the order as follows: palmitic>margaric>myristic>nonadecyclic>stearic>caprylic>tridecylic>pentadecylic>lauric while the unsaturated fatty acids consisted of oleic>nonadecenoic>non adecadienoate>margaroleic. The crude and fatty acid extracts of H. triquetra and P. pavonica were biologically active on the tested pathogens. H.triquetra exhibited a larger inhibitory zone than P. pavonica. Conclusions: The brown algae P. pavonica and H. triquetra have high efficient amount of fatty acids and showed strong antibacterial activity, especially H. triquetra.

  19. L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone.

    Si, Dayong; Urano, Nobuyuki; Nozaki, Shinya; Honda, Kohsuke; Shimizu, Sakayu; Kataoka, Michihiko

    2012-07-01

    The 1,2-propanediol (1,2-PD) inducible membrane-bound L-pantoyl lactone (L-PL) dehydrogenase (LPLDH) has been isolated from Rhodococcus erythropolis AKU2103 (Kataoka et al. in Eur J Biochem 204:799, 1992). Based on the N-terminal amino acid sequence of LPLDH and the highly conserved amino acid sequence in homology search results, the LPLDH gene (lpldh) was cloned. The gene consists of 1,179 bases and encodes a protein of 392 amino acid residues. The deduced amino acid sequence showed high similarity to the proteins of the FMN-dependent α-hydroxy acid dehydrogenase/oxidase family. The overexpression vector pKLPLDH containing lpldh with its upstream region (1,940 bp) was constructed and introduced into R. erythropolis AKU2103. The recombinant R. erythropolis AKU2103 harboring pKLPLDH showed six times higher LPLDH activity than the wild-type strain. Conversion of L-PL to ketopantoyl lactone was achieved with 92% or 80% conversion yield when the substrate concentration was 0.768 or 1.15 M, respectively. Stereoinversion of L-PL to D-PL was also carried out by using the combination of recombinant R. erythropolis AKU2103 harboring pKLPLDH and ketopantoic acid-reducing Escherichia coli. PMID:22398860

  20. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE).

    Endo, Akihito; Tanaka, Naoto; Oikawa, Yo; Okada, Sanae; Dicks, Leon

    2014-04-01

    Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD(+)/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD(+), and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution. PMID:24352296