WorldWideScience

Sample records for acid decarboxylase-derived epitopes

  1. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.

    Wei, Jiashi; Timler, Jacobe G; Knutson, Carolann M; Barney, Brett M

    2013-09-01

    The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms. In this report, distinct homologs of the L. lactis KDC originally annotated as pyruvate decarboxylases from Psychrobacter cryohalolentis K5 and P. arcticus 273-4 were cloned and characterized, confirming a related activity toward specific branched-chain 2-keto acids derived from branched-chain amino acids. Further, KDC activity was confirmed in intact cells and cell-free extracts of P. cryohalolentis K5 grown on both rich and defined media, indicating that the Ehrlich pathway may also be utilized in some psychrotrophs and psychrophiles. A comparison of the similarities and differences in the P. cryohalolentis K5 and P. arcticus 273-4 KDC activities to other bacterial KDCs is presented. PMID:23826991

  2. Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope.

    Xu, W; Ellington, A. D.

    1996-01-01

    In vitro selection of nucleic acid binding species (aptamers) is superficially similar to the immune response. Both processes produce biopolymers that can recognize targets with high affinity and specificity. While antibodies are known to recognize the sequence and conformation of protein surface features (epitopes), very little is known about the precise interactions between aptamers and their epitopes. Therefore, aptamers that could recognize a particular epitope, a peptide fragment of huma...

  3. Lipophosphoglycan and secreted acid phosphatase of Leishmania tropica share species-specific epitopes.

    Jaffe, C L; Perez, L; Schnur, L F

    1990-06-01

    Several species-specific monoclonal antibodies (T11, T13-T15) which only react with Leishmania tropica, recognize phosphorlated carbohydrate epitopes on lipophosphoglycan and the structurally related molecule, phosphoglycan, which is shed by promastigotes into spent culture medium. During immunoaffinity isolation of [32P]orthophosphate-labeled phosphoglycan on monoclonal antibody T15 conjugated to Sepharose 4B, a high-Mr component (approx. 200,000) was co-purified. The latter material is metabolically labeled with [35S]methionine and [3H]glucosamine. This glycoprotein was separated from phosphoglycan by chromatography on lentil lectin resin. The glycoprotein exhibited a L-tatrate-sensitive acid phosphatase activity, typical of secreted acid phosphatase (EC 3.1.3.2) from Leishmania. Monospecific antibodies to Leishmania donovani-secreted acid phosphatase selectively precipitated the L. tropica enzyme from immunoaffinity purified mixtures of the two antigens, and monoclonal antibodies to lipophosphoglycan precipitate the pure enzyme. Species-specific monoclonal antibodies to L. major lipophosphoglycan also recognized both L. tropica antigens. Treatment of the acid phosphatase with periodate or phosphodiesterase I abolished binding by the monoclonal antibodies to the pure enzyme. These results demonstrate that the two major secreted glycoconjugates of Leishmania tropica, the lipophosphoglycan and the acid phosphatase, share species-specific phosphorylated carbohydrate epitope(s). PMID:1697935

  4. Epitope mapping and identification of amino acids critical for mouse IgG-binding to linear epitopes on Gly m Bd 28K.

    Xi, Jun; Yan, Huili

    2016-10-01

    Gly m Bd 28K is one of the major allergens in soybeans, but there is limited information on its IgG-binding epitopes. Thirty-four overlapping peptides that covered the entire sequence of Gly m Bd 28K were synthesized, and 3 monoclonal antibodies against Gly m Bd 28K were utilized to identify the IgG-binding regions of Gly m Bd 28K. Three dominant peptides corresponding to (28)GDKKSPKSLFLMSNS(42)(G28-S42), (56)LKSHGGRIFYRHMHI(70)(L56-I70), and (154)ETFQSFYIGGGANSH(168)(E154-H168) were recognized. L56-I70 is the most important epitope, and a competitive ELISA indicated that it could inhibit the binding of monoclonal antibody to Gly m Bd 28K protein. Alanine scanning of L56-I70 documented that F64, Y65, and R66 were the critical amino acids of this epitope. Two bioinformatics tools, ABCpred and BepiPred, were used to predict the epitopes of Gly m Bd 28K, and the predictions were compared with the epitopes that we had located by monoclonal antibodies. PMID:27033966

  5. Mapping epitopes of U1-70K autoantibodies at single-amino acid resolution.

    Haddon, David James; Jarrell, Justin Ansel; Diep, Vivian K; Wand, Hannah E; Price, Jordan V; Tangsombatvisit, Stephanie; Credo, Grace M; Mackey, Sally; Dekker, Cornelia L; Baechler, Emily C; Liu, Chih Long; Varma, Madoo; Utz, Paul J

    2015-01-01

    The mechanisms underlying development of ribonucleoprotein (RNP) autoantibodies are unclear. The U1-70K protein is the predominant target of RNP autoantibodies, and the RNA binding domain has been shown to be the immunodominant autoantigenic region of U1-70K, although the specific epitopes are not known. To precisely map U1-70K epitopes, we developed silicon-based peptide microarrays with >5700 features, corresponding to 843 unique peptides derived from the U1-70K protein. The microarrays feature overlapping peptides, with single-amino acid resolution in length and location, spanning amino acids 110-170 within the U1-70K RNA binding domain. We evaluated the serum IgG of a cohort of patients with systemic lupus erythematosus (SLE; n = 26) using the microarrays, and identified multiple reactive epitopes, including peptides 116-121 and 143-148. Indirect peptide ELISA analysis of the sera of patients with SLE (n = 88) revealed that ∼14% of patients had serum IgG reactivity to 116-121, while reactivity to 143-148 appeared to be limited to a single patient. SLE patients with serum reactivity to 116-121 had significantly lower SLE Disease Activity Index (SLEDAI) scores at the time of sampling, compared to non-reactive patients. Minimal reactivity to the peptides was observed in the sera of healthy controls (n = 92). Competitive ELISA showed antibodies to 116-121 bind a common epitope in U1-70K (68-72) and the matrix protein M1 of human influenza B viruses. Institutional Review Boards approved this study. Knowledge of the precise epitopes of U1-70K autoantibodies may provide insight into the mechanisms of development of anti-RNP, identify potential clinical biomarkers and inform ongoing clinical trails of peptide-based therapeutics. PMID:26333287

  6. Serum Collagen Type II Cleavage Epitope and Serum Hyaluronic Acid as Biomarkers for Treatment Monitoring of Dogs with Hip Osteoarthritis

    Vilar, José M.; Rubio, Mónica; Spinella, Giuseppe; Cuervo, Belén; Sopena, Joaquín; Cugat, Ramón; Garcia-Balletbó, Montserrat; Dominguez, Juan M.; Granados, Maria; Tvarijonaviciute, Asta; Ceron, José J.; Carrillo, José M.

    2016-01-01

    The aim of this study was to evaluate the use of serum type II collagen cleavage epitope and serum hyaluronic acid as biomarkers for treatment monitoring in osteoarthritic dogs. For this purpose, a treatment model based on mesenchymal stem cells derived from adipose tissue combined with plasma rich in growth factors was used. This clinical study included 10 dogs with hip osteoarthritis. Both analytes were measured in serum at baseline, just before applying the treatment, and 1, 3, and 6 months after treatment. These results were compared with those obtained from force plate analysis using the same animals during the same study period. Levels of type II collagen cleavage epitope decreased and those of hyaluronic acid increased with clinical improvement objectively verified via force plate analysis, suggesting these two biomarkers could be effective as indicators of clinical development of joint disease in dogs. PMID:26886592

  7. Periodic acid-Schiff granules in the brain of aged mice: From amyloid aggregates to degenerative structures containing neo-epitopes.

    Manich, Gemma; Cabezón, Itsaso; Augé, Elisabet; Pelegrí, Carme; Vilaplana, Jordi

    2016-05-01

    Brain ageing in mice leads to the progressive appearance and expansion of degenerative granular structures frequently referred as "PAS granules" because of their positive staining with periodic acid-Schiff (PAS). PAS granules are present mainly in the hippocampus, although they have also been described in other brain areas such as piriform and entorhinal cortices, and have been observed in other mammals than mice, like rats and monkeys. PAS granules have been identified as a wide range of brain deposits related to numerous neurodegenerative diseases, such as amyloid deposits, neurofibrillary tangles, Lafora bodies, corpora amylacea and polyglucosan bodies, and these identifications have generated controversy and particular theories about them. We have recently reported the presence of a neo-epitope in mice hippocampal PAS granules and the existence of natural IgM auto-antibodies directed against the neo-epitope in the plasma of the animals. The significance of the neo-epitope and the autoantibodies is discussed in this review. Moreover, we observed that the IgM anti-neo-epitope is frequently present as a contaminant in numerous commercial antibodies and is responsible of a considerable amount of false positive immunostainings, which may produce misinterpretations in the identification of the granules. Now that this point has been clarified, this article reviews and reconsiders the nature and physiopathological significance of these degenerative granules. Moreover, we suggest that neo-epitopes may turn into a useful brain-ageing biomarker and that autoimmunity could become a new focus in the study of age-related degenerative processes. PMID:26970374

  8. Applying generalized hydrophobicity scale of amino acids to quantitative prediction of human leukocyte antigen-A*0201-restricted cytotoxic T lymphocyte epitope

    ZHOU Peng; TIAN Feifei; ZHANG Mengjun; LI Zhiliang

    2006-01-01

    Derived from 149 hydrophobic factors of 20 natural amino acids, a novel amino acid descriptor termed as generalized hydrophobicity scale (GH-scale) was proposed by principal component analysis (PCA). Via genetic algorithm-partial least square (GPLS) method, quantitative structure-activity relationship (QSAR) model was constructed by GH-scale for 152 human leukocyte antigen (HLA)-A*0201-restricted cytotoxic T lymphocyte (CTL) epitopes with the model estimated and cross-validated correlative coefficients of R2 = 0.813 and Q2 = 0.725, respectively. It was indicated that hydrophobic interaction played an important role in HLA-A*0201-CTL interaction, prominently at anchor residues.

  9. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes.

    Ilg, T; Harbecke, D; Wiese, M; Overath, P

    1993-10-15

    -6[Glc beta 1,3]Gal beta 1,4Man alpha 1 repeats while six mAbs react with the unmodified repeats. Two antibodies specific for Leishmania major recognize Gal beta 1,3-substituted repeats unique for lipophosphoglycan from this species. Analysis by immunoblotting indicates that the high-molecular-mass proteo-phosphoglycan of L. mexicana secreted acid phosphatase carries epitopes for all anti-lipophosphoglycan mAbs suggesting the presence of capped phosphosaccharide repeats while the enzymically active glycoprotein subunit is modified by caps but probably not by repeats. In the case of Leishmania donovani secreted acid phosphatase, the enzymically active polypeptide may be directly modified by repeats. The mAbs are used to characterize changes in lipophosphoglycan structure, which occur in culture during the transition of promastigotes from the logarithmic to the stationary growth phase.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7693464

  10. Cloning of the non-neuronal intermediate filament protein of the gastropod Aplysia californica; identification of an amino acid residue essential for the IFA epitope.

    Riemer, D; Dodemont, H; Weber, K

    1991-12-01

    We describe the isolation and characterization of a full-length cDNA corresponding to the larger non-neuronal (nn) intermediate filament (IF) protein of the gastropod Aplysia californica. Comparison of the sequences of the nn-IF proteins from Aplysia californica and Helix aspersa shows a strong evolutionary drift. At a 72% sequence identity level, the IF proteins of Opisthobranchia and Pulmonata show a larger distance than vimentins from Xenopus and mammals. The sequence comparison of the two snail proteins provides an important step in understanding the epitope of the monoclonal antibody IFA mapped by previous studies to the consensus sequence at the carboxy-terminal end of the rod domain of IF proteins. We identify for the first time in a naturally occurring IF protein a single amino acid exchange which leads to the loss of the epitope. The consensus sequence YRKLLEGEE present in IFA-positive proteins such as the Helix IF protein is changed in the IFA-negative Aplysia protein only by the conservative substitution of the arginine (R) by a lysine (K). Thus, the IFA epitope is not a necessity of IF structure, and its presence or absence on different IF proteins reflects only small changes in an otherwise conserved consensus sequence. Consequently, lack of IFA reactivity does not exclude the presence of IF. This result predicts that IF are much more universally expressed in lower eukaryotes than currently expected from immunological results with the monoclonal antibody IFA. PMID:1724961

  11. Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2

    Liu Chang M

    2011-08-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is associated with post-weaning multisystemic wasting syndrome (PMWS in pigs. Currently, there is considerable interest in the immunology of PCV2; in particular, the immunological properties of the capsid protein. This protein is involved in PCV2 immunogenicity and is a potential target for vaccine development. In this study, we identified one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of PCV2. Results One monoclonal antibody (mAb; 8E4, against the capsid protein of PCV2, was generated and characterized in this study. 8E4 reacted with the genotype PCV2a (CL, LG and JF2 strains but not PCV2b (YJ, SH and JF strains by an immunoperoxidase monolayer assay (IPMA and a capture ELISA. Furthermore, the mAb had the capacity to neutralize PCV2a (CL, LG and JF2 strains but not PCV2b (YJ, SH and JF strains. One critical amino acid that determined a conformational neutralizing epitope was identified using mAb 8E4 and PCV2 infectious clone technique. Amino acid residues 47-72 in the capsid protein of PCV2a/CL were replaced with the corresponding region of PCV2b/YJ, and the reactivity of mAb 8E4 was lost. Further experiments demonstrated that one amino acid substitution, the alanine for arginine at position 59 (A59R in the capsid protein of PCV2a (CL, LG and JF2 strains, inhibited completely the immunoreactivity of three PCV2a strains with mAb 8E4. Conclusions It is concluded that the alanine at position 59 in the capsid protein of PCV2a (CL, LG and JF2 strains is a critical amino acid, which determines one neutralizing epitope of PCV2a (CL, LG and JF2 strains. This study provides valuable information for further in-depth mapping of the conformational neutralizing epitope, understanding antigenic difference among PCV2 strains, and development of a useful vaccine for control of PCV2-associated disease.

  12. Selection and Identification of Critical Amino Acids in Epitope 187-202 ofPen a1%Pen a1抗原表位187-202关键氨基酸的筛选和鉴定

    牟慧; 高美须; 潘家荣; 支玉香; 赵杰; 刘超超; 李树锦; 赵鑫

    2014-01-01

    Objective Pen a1 is the major allergen in shrimp, and the sensitization mechanism is related with epitopes. The epitope (187-202) of Pen a1 was chosen as the research material, the amino acids’ frequency of occurrence and their conservative property were analyzed, the mutants were synthesized and the IgE capacity of the mutants were analyzed. The critical amino acids of the epitope of Pen a1 were screened out in order to study the shrimp sensitization mechanism and provide a theoretical basis for desensitization.[Method] The amino acid composition and frequency of occurrence in Pen a1, all epitopes and the studied epitope were analyzed using MEGA5, and the amino acids with the highest frequency were chosen. And then the amino acids of tropomyosin in all the allergenic foods in SDAP were also investigated, and the high conservative amino acids were chosen. The common amino acids in the results of both methods were considered to be the potential critical amino acids. Then these amino acids were substituted by alanine, the wild-type peptide and the mutant peptides were then synthesized with solid phase synthesis method. The tested serum was prepared by immuning New Zealand rabbits with wild-type peptide. The capacity of IgE-binding between the wild-type peptide and the mutants were compared with iELISA and competitive Dot-blot methods. The mutant peptides whose capacity of IgE-binding showed a dramatic decline were selected, and the replaced amino acids of the peptides were recognized as the critical amino acids.[Result] The amino acids of glutamic acid (E), leucine (L), arginine (R), glutamine (Q), valine (V), serine (S), aspartic acid (D) were found with higher frequency occurrence in epitope than inPen a1, and were considered as the active amino acids. E, V, L in epitope (187-202) were found with higher frequency occurrence, and were inferred to be the potential critical amino acids of studied epitope. The multiple sequence alignment of tropomyosin from

  13. Identification of critical amino acids in the IgE epitopes of Ric c 1 and Ric c 3 and the application of glutamic acid as an IgE blocker.

    Natalia Deus-de-Oliveira

    Full Text Available BACKGROUND: The allergenicity of Ricinus communis L. (castor bean, Euphorbiaceae is associated with components of its seeds and pollen. Castor bean allergy has been described not only in laboratory workers, but also in personnel working in oil processing mills, fertilizer retail, the upholstery industry and other industrial fields. In the present study, we describe the critical amino acids in the IgE-binding epitopes in Ric c 1 and Ric c 3, two major allergens of R. communis. In addition, we also investigate the cross-reactivity between castor bean and some air and food allergen extracts commonly used in allergy diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: The IgE reactivity of human sera from atopic patients was screened by immune-dot blot against castor bean allergens. Allergenic activity was evaluated in vitro using a rat mast cell activation assay and by ELISA. Cross-reactivity was observed between castor bean allergens and extracts from shrimp, fish, gluten, wheat, soybean, peanut, corn, house dust, tobacco and airborne fungal allergens. We observed that treatment of rat and human sera (from atopic patients with glutamic acid reduced the IgE-epitope interaction. CONCLUSIONS/SIGNIFICANCE: The identification of glutamic acid residues with critical roles in IgE-binding to Ric c 3 and Ric c 1 support the potential use of free amino acids in allergy treatment.

  14. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens

    Peijnenburg Ad ACM

    2002-12-01

    Full Text Available Abstract Background Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. Results Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase and allergenic proteins could be identified as (part of potential linear epitopes. Conclusion Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity.

  15. Epitope discovery with phylogenetic hidden Markov models.

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  16. HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D

    Chentoufi, Aziz Alami; Zhang, Xiuli; Lamberth, Kasper; Dasgupta, Gargi; Bettahi, Ilham; Nguyen, Alex; Wu, Michelle; Zhu, Xiaoming; Mohebbi, Amir; Buus, Soren; Wechsler, Steven L; Nesburn, Anthony B; BenMohamed, Lbachir

    2008-01-01

    epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10...

  17. Analysis of cytotoxic T cell epitopes in relation to cancer

    Stranzl, Thomas

    kill the infected cells. The focus of my PhD project has been on improving a method for CTL epitope pathway prediction, on analyzing the epitope density in the alternative cancer exome, and on a study investigating minor histocompatibility antigens (mHags) associated with leukemia. Part I......CTL methods, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively. Part III reports the results of an analysis investigating how the alternatively spliced cancer exome differs from the exome of normal tissue in terms of containing predicted MHC class I binding...... epitopes. We show that peptides unique to cancer splice variants comprise significantly fewer predicted HLA class I epitopes than peptides unique to spliced transcripts in normal tissue. We furthermore find that hydrophilic amino acids are significantly enriched in the unique carcinoma sequences, which...

  18. Improved method for linear B-cell epitope prediction using antigen's primary sequence.

    Harinder Singh

    Full Text Available One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell's response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/.

  19. Immune epitope database analysis resource

    Kim, Yohan; Ponomarenko, Julia; Zhu, Zhanyang;

    2012-01-01

    homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface......The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide......:MHC binding and T-cell epitope predictive tools have been added. As validated by different labs and in the first international competition for predicting peptide:MHC-I binding, their predictive performances have improved considerably. In addition, a new B-cell epitope prediction tool was added, and the...

  20. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    Buus, Søren; Rockberg, Johan; Forsström, Björn; Nilsson, Peter; Uhlen, Mathias; Schafer-Nielsen, Claus

    2012-01-01

    -resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against...... linear epitopes of the human proteome and obtained very detailed descriptions of the involved specificities. The epitopes identified ranged from 4 to 12 amino acids in size. In general, the antibodies were of exquisite specificity, frequently disallowing even single conservative substitutions. In several...... cases, multiple distinct epitopes could be identified for the same target protein, suggesting an efficient approach to the generation of paired antibodies. Two alternative epitope mapping approaches identified similar, although not necessarily identical, epitopes. These results show that ultrahigh...

  1. Detection of newly antibody-defined epitopes on HLA class I alleles reacting with antibodies induced during pregnancy.

    Duquesnoy, R J; Hönger, G; Hösli, I; Marrari, M; Schaub, S

    2016-08-01

    The determination of HLA mismatch acceptability at the epitope level can be best performed with epitopes that have been verified experimentally with informative antibodies. The website-based International Registry of HLA Epitopes (http://www.epregistry.com.br) has a list of 81 antibody-verified HLA-ABC epitopes but more epitopes need to be added. Pregnancy offers an attractive model to study antibody responses to mismatched HLA epitopes which can be readily determined from the HLA types of child and mother. This report describes a HLAMatchmaker-based analysis of 16 postpregnancy sera tested in single HLA-ABC allele binding assays. Most sera reacted with alleles carrying epitopes that have been antibody-verified, and this study focused on the reactivity of additional alleles that share other epitopes corresponding to eplets and other amino acid residue configurations. This analysis led in the identification of 16 newly antibody-defined epitopes, seven are equivalent to eplets and nine correspond to combinations of eplets in combination with other nearby residue configurations. These epitopes will be added to the repertoire of antibody-verified epitopes in the HLA Epitope Registry. PMID:27312793

  2. Epitope prediction methods

    Karosiene, Edita

    introduces the NetMHCIIpan-3.0 predictor based on artificial neural networks, which is capable of giving binding affinities to any human MHC class II molecule. Chapter 4 of this thesis gives an overview of bioinformatics tools developed by the Immunological Bioinformatics group at Center for Biological...... machine learning techniques. Several MHC class I binding prediction algorithms have been developed and due to their high accuracy they are used by many immunologists to facilitate the conventional experimental process of epitope discovery. However, the accuracy of these methods depends on data defining...... the MHC molecule in question, making it difficult for the non-expert end-user to choose the most suitable predictor. The first paper in this thesis presents a new, publicly available, consensus method for MHC class I predictions. The NetMHCcons predictor combines three state-of-the-art prediction...

  3. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  4. Mapping of T cell epitopes using recombinant antigens and synthetic peptides.

    Lamb, J R; Ivanyi, J.; Rees, A D; Rothbard, J B; Howland, K; Young, R. A.; Young, D B

    1987-01-01

    Two complementary approaches were used to determine the epitope specificity of clonal and polyclonal human T lymphocytes reactive with the 65-kd antigen of Mycobacterium leprae. A recombinant DNA sublibrary constructed from portions of the 65-kd gene was used to map T cell determinants within amino acid sequences 101-146 and 409-526. Independently, potential T cell epitopes within the protein were predicted based on an empirical analysis of specific patterns in the amino acid sequence. Of six...

  5. Immune Epitope Database and Analysis Resource (IEDB)

    U.S. Department of Health & Human Services — This repository contains antibody/B cell and T cell epitope information and epitope prediction and analysis tools for use by the research community worldwide....

  6. Epitope mapping and functional analysis of sigma A and sigma NS proteins of avian reovirus

    We have previously shown that avian reovirus (ARV) σA and σNS proteins possess dsRNA and ssRNA binding activity and suggested that there are two epitopes on σA (I and II) and three epitopes (A, B, and C) on σNS. To further define the location of epitopes on σA and σNS proteins and to further elucidate the biological functions of these epitopes by using monoclonal antibodies (MAbs) 62, 1F9, H1E1, and 4A123 against the ARV S1133 strain, the full-length and deletion fragments of S2 and S4 genes of ARV generated by polymerase chain reaction (PCR) were cloned into pET32 expression vectors and the fusion proteins were overexpressed in Escherichia coli BL21 strain. Epitope mapping using MAbs and E. coli-expressed deletion fragments of σA and σNS of the ARV S1133 strain, synthetic peptides, and the cross reactivity of MAbs to heterologous ARV strains demonstrated that epitope II on σA was located at amino acid residues 340QWVMAGLVSAA350 and epitope B on σNS at amino acid residues 180MLDMVDGRP188. The MAbs (62, 1F9, and H1E1) directed against epitopes II and B did not require the native conformation of σA and σNS, suggesting that their binding activities were conformation-independent. On the other hand, MAb 4A123 only reacted with complete σNS but not with truncated σNS fusion proteins in Western blot, suggesting that the binding activity of MAb to epitope A on σNS was conformation-dependent. Amino acid sequence analysis and the binding assays of MAb 62 to heterologous ARV strains suggested that epitope II on σA was highly conserved among ARV strains and that this epitope is suitable as a serological marker for the detection of ARV antibodies following natural infection in chickens. On the contrary, an amino acid substitution at position 183 (M to V) in epitope B of ARV could hinder the reactivity of the σNS with MAb 1F9. The σNS of ARV with ssRNA-binding activity could be blocked by monoclonal antibody 1F9. The epitope B on σNS is required for ss

  7. Immunochemical characterization of two thyroid-stimulating hormone beta-subunit epitopes.

    Fairlie, W D; Stanton, P G; Hearn, M T

    1995-01-01

    The epitopes of human thyroid-stimulating hormone (hTSH) recognized by two murine monoclonal antibodies (MAbs), designated MAb 279 and MAb 299, have been characterized. These MAbs are highly specific for the beta-subunit of TSH. The epitope recognized by MAb 279 appears to be completely conserved between bovine and human TSH and partially conserved in the porcine species. The TSH beta-subunit epitope recognized by MAb 299 is only partially conserved between the human, bovine and porcine species. Both MAbs are capable of inhibiting the binding of TSH to its receptor in a TSH radioreceptor assay, indicating that the epitopes either coincide or are located close to the TSH beta-subunit receptor-binding sites. The carbohydrate moieties of the TSH beta-subunit appear to play little or no role in the epitope recognition by MAb 279 or MAb 299 while the integrity of the disulphide bonds are essential. The epitopic recognition may also involve lysine residues, as determined by the immunoreactivity with both MAbs following citraconylation of TSH. In addition, the amino acid sequence region between residues bTSH beta 34-44 could be excised by trypsin digestion of bovine TSH beta (bTSH beta) without eliminating epitopic recognition by either MAb. These results provide further insight into the relationship between the structure of the TSH beta-subunit epitopes and location of the receptor-binding sites. Images Figure 2 PMID:7538754

  8. Insert engineering and solubility screening improves recovery of virus-like particle subunits displaying hydrophobic epitopes.

    Abidin, R S; Lua, L H L; Middelberg, A P J; Sainsbury, F

    2015-11-01

    The Polyomavirus coat protein, VP1 has been developed as an epitope presentation system able to provoke humoral immunity against a variety of pathogens, such as Influenza and Group A Streptococcus. The ability of the system to carry cytotoxic T cell epitopes on a surface-exposed loop and the impact on protein solubility has not been examined. Four variations of three selected epitopes were cloned into surface-exposed loops of VP1, and expressed in Escherichia coli. VP1 pentamers, also known as capsomeres, were purified via a glutathione-S-transferase tag. Size exclusion chromatography indicated severe aggregation of the recombinant VP1 during enzymatic tag removal resulting from the introduction the hydrophobic epitopes. Inserts were modified to possess double aspartic acid residues at each end of the hydrophobic epitopes and a high-throughput buffer condition screen was implemented with protein aggregation monitored during tag removal by spectrophotometry and dynamic light scattering. These analyses showed that the insertion of charged residues at the extremities of epitopes could improve solubility of capsomeres and revealed multiple windows of opportunity for further condition optimization. A combination of epitope design, pH optimization, and the additive l-arginine permitted the recovery of soluble VP1 pentamers presenting hydrophobic epitopes and their subsequent assembly into virus-like particles. PMID:26401641

  9. Autoantibody recognition mechanisms of p53 epitopes

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  10. Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell.

    Parra, Gabriel I; Sosnovtsev, Stanislav V; Abente, Eugenio J; Sandoval-Jaime, Carlos; Bok, Karin; Dolan, Michael A; Green, Kim Y

    2016-05-01

    Noroviruses are diverse positive-strand RNA viruses associated with acute gastroenteritis. Cross-reactive epitopes have been mapped primarily to conserved sequences in the capsid VP1 Shell (S) domain, and strain-specific epitopes to the highly variable Protruding (P) domain. In this work, we investigated a strain-specific linear epitope defined by MAb NV10 that was raised against prototype (Genogroup I.1) strain Norwalk virus (NV). Using peptide scanning and mutagenesis, the epitope was mapped to amino acids 21-32 (LVPEVNASDPLA) of the NV S domain, and its specificity was verified by epitope transfer and reactivity with a recombinant MAb NV10 single-chain variable fragment (scFv). Comparative structural modeling of the NV10 strain-specific and the broadly cross-reactive TV20 epitopes identified two internal non-overlapping sites in the NV shell, corresponding to variable and conserved amino acid sequences among strains, respectively. The S domain, like the P domain, contains strain-specific epitopes that contribute to the antigenic diversity among the noroviruses. PMID:26971245

  11. Characterization of two conformational epitopes of the Chlamydia trachomatis serovar L2 DnaK immunogen

    Birkelund, Svend; Mygind, P; Holm, A;

    1996-01-01

    this protein. By use of recombinant DNA techniques, we located the epitopes for two MAbs in the C-terminal variable part. Although the antibodies reacted in an immunoblot assay, it was not possible to map the epitopes completely by use of 16-mer synthetic peptides displaced by one amino acid corresponding...... to the C-terminal part of C. trachomatis DnaK. To determine the limits of the epitopes, C. trachomatis DnaK and glutatione S-transferase fusion proteins were constructed and affinity purified. The purified DnaK fusion proteins were used for a fluid-phase inhibition enzyme-linked immunosorbent assay...... with the two antibodies. The epitopes were found not to overlap. To obtain DnaK fragments recognized by the antibodies with the same affinity as native C. trachomatis DnaK, it was necessary to express, respectively, regions of 127 and 77 amino acids. The MAbs described in this study thus recognized...

  12. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Hua, Rong-Hong; Liu, Li-Ke; Chen, Zhen-Shi; Li, Ye-Nan; Bu, Zhi-Gao

    2013-01-01

    Japanese encephalitis virus (JEV) non-structural protein 1 (NS1) contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA), five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5)AIDITRK(11), (72)RDELNVL(78), (251)KSKHNRREGY(260), (269)DENGIVLD(276), and (341)DETTLVRS(348). Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays. PMID:23825668

  13. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Rong-Hong Hua

    Full Text Available Japanese encephalitis virus (JEV non-structural protein 1 (NS1 contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA, five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5AIDITRK(11, (72RDELNVL(78, (251KSKHNRREGY(260, (269DENGIVLD(276, and (341DETTLVRS(348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.

  14. Epitope Mapping of Fc gamma RIIa Monoclonal Antibodies

    Caroline Tan Sardjono

    2015-11-01

    Full Text Available FcγRIIa (CD32 is an IgG receptor which has been shown to be important in autoimmune disease pathology. IV.3, 8.7, and 7.30 are anti-FcγRIIa monoclonal antibodies (mAbs, which block the interaction between FcγRIIa and complex IgG. In this study, the three mAbs were demonstrated to inhibit FcγRIIa function. The determination of the precise epitopes of the IV.3, 8.7, and 7.30 mAbs may become a potential approach for designing inhibitors for FcγRIIa. The epitope of IV.3, 8.7, and 7.30 were determined using chimeric receptors based on the extracellular domains of FcγRIIa and the FcεRI a chain. The epitopes for IV.3 was found to be mapped on amino acid residues 132-137, while 8.7 and 7.30 were on amino acid residues 112-119 and 157-162. Based on the crystal 3D model of FcγRIIa molecule, these amino acid sequences are clustered together forming a contiguous region within the ligand binding site of the receptor.

  15. The Possible Role of Transplacentally-Acquired Antibodies to Infectious Agents, With Molecular Mimicry to Nervous System Sialic Acid Epitopes, as Causes of Neuromental Disorders: Prevention and Vaccine Implications

    André J. Nahmias

    2006-01-01

    Full Text Available Proof of causality of most neuromental disorders (NMD's is largely unavailable. Lessons from four-decade investigations of the epidemiology, immunology, pathogenesis, prevention and therapy of perinatal infectious agents, which invade directly the nervous system, have led us to propose a new indirect effect hypothesis: maternal transplacentally-acquired antibodies, to agents with epitope molecular mimicry with the developing nervous system, can cross the fetus/infant's blood–nervous system barriers to cause NMD's, clinically manifest years later.

  16. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance

    van Beek, Josine; Hoppes, Rieuwert; Jacobi, Ronald H. J.; Hendriks, Marion; Kapteijn, Kim; Ouwerkerk, Casper; Rodenko, Boris; Ovaa, Huib; de Jonge, Jørgen

    2016-01-01

    T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge. Here, we set out to increase immunogenicity of influenza-specific CD8+ T cell epitopes. By substituting amino acids in wild type sequences with non-proteogenic amino acids, affinity for MHC can be increased, which may ultimately enhance cytotoxic CD8+ T cell responses. Since preventive vaccines against viruses should induce a broad immune response, we used this method to optimize influenza-specific epitopes of varying dominance. For this purpose, HLA-A*0201 epitopes GILGFVFTL, FMYSDFHFI and NMLSTVLGV were selected in order of decreasing MHC-affinity and dominance. For all epitopes, we designed chemically enhanced altered peptide ligands (CPLs) that exhibited greater binding affinity than their WT counterparts; even binding scores of the high affinity GILGFVFTL epitope could be improved. When HLA-A*0201 transgenic mice were vaccinated with selected CPLs, at least 2 out of 4 CPLs of each epitope showed an increase in IFN-γ responses of splenocytes. Moreover, modification of the low affinity epitope NMLSTVLGV led to an increase in the number of mice that responded. By optimizing three additional influenza epitopes specific for HLA-A*0301, we show that this strategy can be extended to other alleles. Thus, enhancing binding affinity of peptides provides a valuable tool to improve the immunogenicity and range of preventive T cell-targeted peptide vaccines. PMID:27333291

  17. The epitope of the VP1 protein of porcine parvovirus

    Zhang Chao-fan

    2010-07-01

    Full Text Available Abstract Porcine parvovirus (PPV is the major causative agent in a syndrome of reproductive failure in swine. Much has been learned about the structure and function of PPV in recent years, but nothing is known about the epitopes of the structural protein VP1, which is an important antigen of PPV. In this study, the monoclonal antibody C4 against VP1 of PPV was prepared and was used to biopan a 12-mer phage peptide library three times. The selected phage clones were identified by ELISA and then sequencing. The amino acid sequences detected by phage display were analyzed, and a mimic immuno-dominant epitope was identified. The epitope of VP1 is located in the N-terminal and contains the role amino acid sequence R-K-R. Immunization of mice indicated that the phage-displayed peptide induces antibodies against PPV. This study shows that peptide mimotopes have potential as alternatives to the complex antigens currently used for diagnosis of PPV infection or for development of vaccines.

  18. Identification and fine mapping of a linear B cell epitope of human vimentin

    Dam, Catharina Essendrup; Houen, Gunnar; Hansen, Paul R.;

    2014-01-01

    sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular...

  19. Analysis of potato virus Y coat protein epitopes recognized by three commercial monoclonal antibodies.

    Yan-Ping Tian

    Full Text Available BACKGROUND: Potato virus Y (PVY, genus Potyvirus causes substantial economic losses in solanaceous plants. Routine screening for PVY is an essential part of seed potato certification, and serological assays are often used. The commercial, commonly used monoclonal antibodies, MAb1128, MAb1129, and MAb1130, recognize the viral coat protein (CP of PVY and distinguish PVYN strains from PVYO and PVYC strains, or detect all PVY strains, respectively. However, the minimal epitopes recognized by these antibodies have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: SPOT peptide array was used to map the epitopes in CP recognized by MAb1128, MAb1129, and MAb1130. Then alanine replacement as well as N- and C-terminal deletion analysis of the identified peptide epitopes was done to determine critical amino acids for antibody recognition and the respective minimal epitopes. The epitopes of all antibodies were located within the 30 N-terminal-most residues. The minimal epitope of MAb1128 was 25NLNKEK30. Replacement of 25N or 27N with alanine weakened the recognition by MAb1128, and replacement of 26L, 29E, or 30K nearly precluded recognition. The minimal epitope for MAb1129 was 16RPEQGSIQSNP26 and the most critical residues for recognition were 22I and 23Q. The epitope of MAb1130 was defined by residues 5IDAGGS10. Mutation of residue 6D abrogated and mutation of 9G strongly reduced recognition of the peptide by MAb1130. Amino acid sequence alignment demonstrated that these epitopes are relatively conserved among PVY strains. Finally, recombinant CPs were produced to demonstrate that mutations in the variable positions of the epitope regions can affect detection with the MAbs. CONCLUSIONS/SIGNIFICANCE: The epitope data acquired can be compared with data on PVY CP-encoding sequences produced by laboratories worldwide and utilized to monitor how widely the new variants of PVY can be detected with current seed potato certification schemes or during the

  20. Induction of multi-epitope specific antibodies against HIV-1 by multi-epitope vaccines

    2001-01-01

    Some neutralizing antibodies against HIV-1 envelope proteins were highly effective to inhibit the infection of different strains in vitro, and existed in the infected individuals with very low levels. We suggested multi-epitope-vaccine as a new strategy to increase levels of neutralizing antibodies and the abilities against HIV mutation in vivo. Two candidate multi-epitope-vaccines induced antibodies with predefined multi-epitope-specificity in rhesus macaque. These antibodies recognized corresponding neutralizing epitopes on epitope-peptides, gp41 peptides, V3 loop peptide, rsgp41 and rgp120. Besides, three candidate epitope-vaccines in combination (another kind of multi-epitopevaccines) showed similar potency to induce predefined multiple immune responses in rabbits. These results suggest that multi-epitope-vaccines may be a new strategy to induce multi-antiviral activities against HIV-1 infection and mutafions.

  1. Enhanced immunogenicity of a functional enzyme by T cell epitope modification

    Collier Kathy

    2002-01-01

    Full Text Available Abstract Background T helper epitopes are necessary for the induction of high titers of antigen-specific IgG antibodies. We are interested in the epitope modification of intact proteins as a method to enhance their immunogenicity for the generation of recombinant protein-based vaccines. Results Hartley strain guinea pig T cell epitopes were mapped for two related bacterial proteases. Two T cell epitopes were found in one of the proteases, while a comparatively reduced immunogenicity protease had no detectable T cell epitopes. A T cell epitope sequence homologous to the immunogenic protease was created in the less immunogenic protease by changing a single amino acid. Proliferative responses to the whole protein parent enzyme were two-fold higher in splenocyte cultures from variant-immunized animals. We found that the single amino acid change in the variant resulted in a protein immunogen that induced higher titers of antigen-specific IgG antibody at low doses and at early time points during the immunization protocol. The serum from parent- and variant-immunized guinea pigs cross-reacted at both the protein and the peptide level. Finally, animals primed to the variant but boosted with the parent enzyme had higher levels of antigen-specific IgG than animals immunized with the parent enzyme alone. Conclusions With a single amino acid change we have introduced a T cell epitope into a comparatively low-immunogenic enzyme and have increased its immunogenicity while retaining the enzyme's original proteolytic function. The ability to immunomodulate proteins while leaving their function intact has important implication for the development of recombinant vaccines and protein-based therapeutics.

  2. Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes

    Peng Peng Ip

    2015-03-01

    Full Text Available Tumor vaccine design requires prediction and validation of immunogenic MHC class I epitopes expressed by target cells as well as MHC class II epitopes expressed by antigen-presenting cells essential for the induction of optimal immune responses. Epitope prediction methods are based on different algorithms and are instrumental for a first screening of possible epitopes. However, their results do not reflect a one-to-one correlation with experimental data. We combined several in silico prediction methods to unravel the most promising C57BL/6 mouse-restricted Hepatitis C virus (HCV MHC class I epitopes and validated these epitopes in vitro and in vivo. Cytotoxic T lymphocyte (CTL epitopes within the HCV non-structural proteins were identified, and proteasomal cleavage sites and helper T cell (Th epitopes at close proximity to these CTL epitopes were analyzed using multiple prediction algorithms. This combined in silico analysis enhances the precision of identification of functional HCV-specific CTL epitopes. This approach will be applicable to the design of human vaccines not only for HCV, but also for other antigens in which T-cell responses play a crucial role.

  3. Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis

    Spangfort, Michael D; Mirza, Osman; Ipsen, Henrik;

    2003-01-01

    surface area of Bet v 1 and is clearly conformational. A synthetic peptide representing a sequential motif in the epitope (11 of 16 residues) did not inhibit the binding of mAb BV16 to Bet v 1, illustrating limitations in the use of peptides for B cell epitope characterization. The single amino acid...

  4. Epitope grafting, re-creating a conformational Bet v 1 antibody epitope on the surface of the homologous apple allergen Mal d 1

    Holm, Jens; Ferreras, Mercedes; Ipsen, Henrik; Würtzen, Peter A; Gajhede, Michael; Larsen, Jørgen N; Lund, Kaare; Spangfort, Michael D

    2011-01-01

    Birch-allergic patients often experience oral allergy syndrome upon ingestion of vegetables and fruits, most prominently apple, that is caused by antibody cross-reactivity of the IgE antibodies in patients to proteins sharing molecular surface structures with the major birch pollen group 1 allergen...... from Betula verrucosa (Bet v 1). Still, to what extent two molecular surfaces need to be similar for clinically relevant antibody cross-reactivity to occur is unknown. Here, we describe the grafting of a defined conformational antibody epitope from Bet v 1 onto the surface of the homologous apple...... allergen Malus domestica group 1 (Mal d 1). Engineering of the epitope was accomplished by genetic engineering substituting amino acid residues in Mal d 1 differing between Bet v 1 and Mal d 1 within the epitope defined by the mAb BV16. The kinetic parameters characterizing the antibody binding interaction...

  5. Rational Design of a Multiepitope Vaccine Encoding T-Lymphocyte Epitopes for Treatment of Chronic Hepatitis B Virus Infections▿

    Depla, Erik; Der Aa, Annegret Van; Livingston, Brian D.; Crimi, Claire; Allosery, Koen; De Brabandere, Veronique; Krakover, Jonathan; Murthy, Sidharta; Huang, Manley; Power, Scott; Babé, Lilia; Dahlberg, Carol; McKinney, Denise; Sette, Alessandro; Southwood, Scott

    2007-01-01

    Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptid...

  6. The Immune Epitope Database 2.0

    Hoof, Ilka; Vita, R; Zarebski, L;

    2010-01-01

    The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive...... unavailable to the public from 129,186 experiments were submitted directly by investigators. The curation of epitopes related to autoimmunity is expected to be completed by the end of 2010. The database can be queried by epitope structure, source organism, MHC restriction, assay type or host organism, among...... other criteria. The database structure, as well as its querying, browsing and reporting interfaces, was completely redesigned for the IEDB 2.0 release, which became publicly available in early 2009....

  7. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope

    Iversen, Astrid K N; Stewart-Jones, Guillaume; Learn, Gerald H; Christie, Natasha; Sylvester-Hviid, Christina; Armitage, Andrew E; Kaul, Rupert; Beattie, Tara; Lee, Jean K; Li, Yanping; Chotiyarnwong, Pojchong; Dong, Tao; Xu, Xiaoning; Luscher, Mark A; MacDonald, Kelly; Ullum, Henrik; Klarlund-Pedersen, Bente; Skinhøj, Peter; Fugger, Lars; Buus, Søren; Mullins, James I; Jones, E Yvonne; van der Merwe, P Anton; McMichael, Andrew J

    2006-01-01

    two principal, diametrically opposed evolutionary pathways that exclusively affect T cell-receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which...

  8. The epitope recognized by a monoclonal antibody in the myelin-associated protein CNP.

    Stricker, R; Kalbacher, H; Reiser, G

    1997-08-18

    The epitope recognized by a monoclonal antibody (MAb-46-1) directed against the myelin-associated protein CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase; EC 3.1.4.37) from several species was characterized. MAb-46-1 can be employed for immunoprecipitation, immunostaining in Western blots and in immunohistochemistry. Short peptides derived from the human CNP1 peptide sequence were synthesized and used in enzyme linked immunosorbent assays to test the reactivity of MAb-46-1. Coarse screening experiments enabled us to localize the epitope recognized by MAb-46-1 to the amino acid residues 9 to 19 close to the N-terminus. Further investigations using shorter peptides comprising this part of the protein allowed us to identify a 9 amino acid residue long peptide (amino acids 11 to 19: ELQFPFLQD) which represents the minimal epitope recognized by MAb-46-1, probably through a 3-dimensional structure and less likely a straight linear peptide. The epitope seems to be stabilized also by the attached amino acids 7 to 10 (KDKP). The peptide sequence 9-19 is conserved in all CNP sequences described so far. Thus, MAb-46-1 might be of general usefulness for further studies of the not yet identified function of the myelin-associated protein CNP. PMID:9268698

  9. Interaction of an immunodominant epitope with Ia molecules in T-cell activation

    Adorini, L; Sette, A; Buus, S;

    1988-01-01

    The amino acid sequence corresponding to residues 107-116 of hen egg-white lysozyme (HEL) has been identified as containing an immunodominant T-cell epitope recognized in association with the I-Ed molecule. The immunodominance of this epitope in HEL-primed H-2d mice was demonstrated by analysis o......-120)-peptide was found to be immunogenic in H-2d mice. Thus, a single semiconservative substitution drastically reduces binding capacity and abolishes immunogenicity, suggesting that a strict correlation exists between binding of a peptide to Ia molecules and its immunogenicity....

  10. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice.

    Jiang, Liping; Fan, Rongjun; Sun, Shiyang; Fan, Peihu; Su, Weiheng; Zhou, Yan; Gao, Feng; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2015-11-27

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71. PMID:26529072

  11. A highly conserved epitope-vaccine candidate against varicella-zoster virus induces neutralizing antibodies in mice.

    Zhu, Rui; Liu, Jian; Chen, Chunye; Ye, Xiangzhong; Xu, Longfa; Wang, Wei; Zhao, Qinjian; Zhu, Hua; Cheng, Tong; Xia, Ningshao

    2016-03-18

    Varicella-zoster virus (VZV) is a highly infectious agent of varicella and herpes zoster (HZ). Vaccination is by far the most effective way to prevent these diseases. More safe, stable and efficient vaccines, such as epitope-based vaccines, now have been increasingly investigated by many researchers. However, only a few VZV neutralizing epitopes have been identified to date. We have previously identified a linear epitope between amino acid residues 121 and 135 of gE. In this study, we validated that this epitope is highly conserved amongst different VZV strains that covered five existing phylogenetic clades with an identity of 100%. We evaluated the immunogenicity of the recombinant hepatitis B virus core (HBc) virus-like particles (VLPs) which included amino acids (121-135). VZV-gE-specific antibodies were detected in immunized mouse serum using ELISA. The anti-peptide antiserum positively detected VZV via Western blot and immunofluorescent staining assays. More importantly, these peptides could neutralize VZV, indicating that these peptides represented neutralizing epitopes. These findings have important implications for the development of epitope-based protective VZV vaccines. PMID:26873057

  12. Comprehensive mapping of common immunodominant epitopes in the eastern equine encephalitis virus E2 protein recognized by avian antibody responses.

    Encheng Sun

    Full Text Available Eastern equine encephalitis virus (EEEV is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211-226 and 331-352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11-26, 30-45 and 151-166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV and Duck Plague Virus (DPV. The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein.

  13. Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein.

    Thompson, Nancy E; Arthur, Terrance M; Burgess, Richard R

    2003-12-15

    Polyol-responsive monoclonal antibodies (mAbs) are useful tools for the gentle purification of proteins and protein complexes. These are high-affinity mAbs that release the antigen in the presence of a nonchaotropic salt and a low-molecular-weight polyhydroxylated compound (polyol). The epitope for the polyol-responsive mAb NT73, which reacts with Escherichia coli RNA polymerase, was located at the C terminus of the beta' subunit. Using recombinant DNA techniques, we have identified the epitope to be within the 13-amino-acid sequence SLAELLNAGLGGS and have developed an epitope tag that can be fused to a protein of interest for use as a purification tag. This epitope tag (designated Softag1) was fused to either the N or the C terminus of the green fluorescent protein. These tagged proteins were expressed in E. coli, and the tagged proteins were purified from the soluble fraction by a single-step immunoaffinity chromatography procedure. This approach extends the powerful technique of gentle-release immunoaffinity chromatography to many expressed proteins. PMID:14656522

  14. The Relationship between B-cell Epitope and Mimotope Sequences.

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint. PMID:26715528

  15. In silico quantitative prediction of B-cell epitope

    Raúl Isea

    2015-11-01

    Full Text Available This paper shows a computational approach for quantitative prediction of B cell epitopes. The function was defined, which reflects the average value of B epitopes, according to eight predictors of different B epitopes, as well as structural and energetic considerations of the origin protein. The proposed methodology could be useful to develop both dengue and chikungunya vaccines

  16. In silico quantitative prediction of B-cell epitope

    Raúl Isea

    2015-01-01

    This paper shows a computational approach for quantitative prediction of B cell epitopes. The function was defined, which reflects the average value of B epitopes, according to eight predictors of different B epitopes, as well as structural and energetic considerations of the origin protein. The proposed methodology could be useful to develop both dengue and chikungunya vaccines

  17. Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC.

    Vadesilho, Cintia F M; Ferreira, Daniela M; Gordon, Stephen B; Briles, David E; Moreno, Adriana T; Oliveira, Maria Leonor S; Ho, Paulo L; Miyaji, Eliane N

    2014-07-01

    Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) are important candidates for an alternative vaccine against pneumococcal infections. Since these antigens show variability, the use of variants that do not afford broad protection may lead to the selection of vaccine escape bacteria. Epitopes capable of inducing antibodies with broad cross-reactivities should thus be the preferred antigens. In this work, experiments using peptide arrays show that most linear epitopes recognized by antibodies induced in mice against different PspAs were located at the initial 44 amino acids of the mature protein and that antibodies against these linear epitopes did not confer protection against a lethal challenge. Conversely, linear epitopes recognized by antibodies to PspC included the consensus sequences involved in the interaction with human factor H and secretory immunoglobulin A (sIgA). Since linear epitopes of PspA were not protective, larger overlapping fragments containing 100 amino acids of PspA of strain Rx1 were constructed (fragments 1 to 7, numbered from the N terminus) to permit the mapping of antibodies with conformational epitopes not represented in the peptide arrays. Antibodies from mice immunized with fragments 1, 2, 4, and 5 were capable of binding onto the surface of pneumococci and mediating protection against a lethal challenge. The fact that immunization of mice with 100-amino-acid fragments located at the more conserved N-terminal region of PspA (fragments 1 and 2) induced protection against a pneumococcal challenge indicates that the induction of antibodies against conformational epitopes present at this region may be important in strategies for inducing broad protection against pneumococci. PMID:24807052

  18. Mapping of neutralizing epitopes on Renibacterium salmoninarum p57 by use of transposon mutagenesis and synthetic peptides.

    Wiens, Gregory D; Owen, Jennifer

    2005-06-01

    Renibacterium salmoninarum is a gram-positive bacterium that causes bacterial kidney disease in salmonid fish. The virulence mechanisms of R. salmoninarum are not well understood. Production of a 57-kDa protein (p57) has been associated with isolate virulence and is a diagnostic marker for R. salmoninarum infection. Biological activities of p57 include binding to eukaryotic cells and immunosuppression. We previously isolated three monoclonal antibodies (4D3, 4C11, and 4H8) that neutralize p57 activity. These monoclonal antibodies (MAbs) bind to the amino-terminal region of p57 between amino acids 32 though 243; however, the precise locations of the neutralizing epitopes were not determined. Here, we use transposon mutagenesis to map the 4D3, 4C11, and 4H8 epitopes. Forty-five transposon mutants were generated and overexpressed in Escherichia coli BL21(DE3). The ability of MAbs 4D3, 4H8, and 4C11 to bind each mutant protein was assessed by immunoblotting. Transposons inserting between amino acids 51 and 112 disrupted the 4H8 epitope. Insertions between residues 78 and 210 disrupted the 4C11 epitope, while insertions between amino acids 158 and 234 disrupted the 4D3 epitope. The three MAbs failed to bind overlapping, 15-mer peptides spanning these regions, suggesting that the epitopes are discontinuous in conformation. We conclude that recognition of secondary structure on the amino terminus of p57 is important for neutralization. The epitope mapping studies suggest directions for improvement of MAb-based immunoassays for detection of R. salmoninarum-infected fish. PMID:15932983

  19. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    Sebastian Hoppe

    Full Text Available Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is

  20. Identification of a novel B-cell epitope specific for avian leukosis virus subgroup J gp85 protein.

    Li, Xiaofei; Zhu, Haibo; Wang, Qi; Sun, Jiashan; Gao, Yanni; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-04-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused severe economic losses in China. Gp85 protein is the main envelope protein and the most variable structural protein of ALV-J. It is also involved in virus neutralization. In this study, a specific monoclonal antibody, 4A3, was produced against the ALV-J gp85 protein. Immunofluorescence assays showed that 4A3 could react with different strains of ALV-J, including the British prototype isolate HPRS103, the American strains, an early Chinese broiler isolate, and layer isolates. A linear epitope on the gp85 protein was identified using a series of partially overlapping fragments spanning the gp85-encoding gene and subjecting them to western blot analysis. The results indicated that (134)AEAELRDFI(142) was the minimal linear epitope that could be recognized by mAb 4A3. Enzyme-linked immunosorbent assay (ELISA) revealed that chicken anti-ALV-J sera and mouse anti-ALV-J gp85 sera could also recognize the minimal linear epitope. Alignment analysis of amino acid sequences indicated that the epitope was highly conserved among 34 ALV-J strains. Furthermore, the epitope was not conserved among subgroup A and B of avian leukosis virus (ALV). Taken together, the mAb and the identified epitope may provide valuable tools for the development of new diagnostic methods for ALV-J. PMID:25655260

  1. Identification of a novel overlapping sequential E epitope (E') on the bovine leukaemia virus SU glycoprotein and analysis of immunological data.

    Forti, Katia; Rizzo, Giorgia; Cagiola, Monica; Ferrante, Giovanna; Marini, Carla; Feliziani, Francesco; Pezzotti, Giovanni; De Giuseppe, Antonio

    2014-08-01

    Bovine leukaemia virus (BLV), an oncogenic C-type retrovirus, is the causative agent of enzootic bovine leucosis. Binding of BLV to its cellular receptor is mediated by the surface envelope glycoprotein subunit (SU). Previous studies have identified eight different epitopes (A through H) on the BLV SU. In this study, a new sequential epitope was identified using the monoclonal antibody 2G7 (MAb 2G7) on the C-terminal region of the BLV SU. To localise and refine the map of this epitope, a series of deleted forms in the C and N-terminal ends of the glycoprotein were made and synthesised in baculovirus and Escherichia coli expression systems. The synthetic proteins were analysed both in Western blot and MAb-capture ELISA assays. MAb 2G7 recognised a stretch of 11 amino acids, named epitope E', corresponding to residues 189-SDWVPSVRSWA-199 (comprising the 33 amino acids signal peptide) overlapping with the E epitope of the SU. The data obtained by Enzyme-Linked Immunosorbent Assay (ELISA) revealed that the E' epitope was hidden on whole BLV particles and that the variation in reactivity between epitope E' and MAb 2G7 depends on the glycosylation state of SU. Similarly, the analysis of immunological data evidenced that the failure of interaction between the MAb anti-DD' and its epitope was also due to a steric hindrance of the glycosylation. Finally, the ELISA assay analysis performed with the deleted and mutated forms of rSU evidenced that the conformational epitopes F, G and H lied into in the 34-173 amino-acids residues of N-terminal region of SU. PMID:24916842

  2. Detection and Quantification of CD4+ T Cells with Specificity for a New Major Histocompatibility Complex Class II-Restricted Influenza A Virus Matrix Protein Epitope in Peripheral Blood of Influenza Patients

    Linnemann, Thomas; Jung, Günther; Walden, Peter

    2000-01-01

    FVFTLTVPS was identified as the core sequence of a new major histocompatibility complex class II-restricted T-cell epitope of influenza virus matrix protein. Epitope-specific CD4+ T cells were detected in the peripheral blood of patients with frequencies of up to 0.94%, depending on the number of additional terminal amino acids.

  3. IgE-binding epitopes: a reappraisal

    R.C. Aalberse; R. Crameri

    2011-01-01

    Here, we discuss various questions related to IgE epitopes: What are the technical possibilities and pitfalls, what is currently known, how can we put this information into hypothetical frameworks and the unavoidable question: how useful is this information for patient care or allergenicity predicti

  4. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Ann R Hunt

    Full Text Available BACKGROUND: Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. METHODS: We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. FINDINGS: Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. CONCLUSIONS: The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both

  5. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    Kroghsbo, Stine; Andersen, Nanna Birch; Rasmussen, Tina Frid; Jacobsen, Susanne; Madsen, Charlotte Bernhard

    2014-01-01

    BackgroundAcid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis.ObjectivesTo examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten.MethodsHigh IgE-responder Brown Norway (BN) rats bred on...

  6. Expression and immunoreactivity of HCV/HBV epitopes

    Xin-Yu Xiong; Xiao Liu; Yuan-Ding Chen

    2005-01-01

    AIM: To develop the epitope-based vaccines to prevent Hepatitis C virus (HCV)/Hepatitis B virus (HBV) infections.METHODS: The HCV core epitopes C1 STNPKPQRKTKRNTNRRPQD (residuals aa2-21) and C2 VKFPGGGQIVGGVYLLPRR (residuals aa22-40), envelope epitope E GHRMAWDMMMNWSP (residuals aa315-328) and HBsAg epitope S CTTPAQGNSMFPSCCCTKPTDGNC (residuals aa124-147) were displayed in five different sites of the flock house virus capsid protein as a vector, and expressed in E. coli cells (pET-3 system).Immunoreactivity of the epitopes with anti-HCV and anti-HBV antibodies in the serum from hepatitis C and hepatitis B patients were determined.RESULTS: The expressed chimeric protein carrying the HCV epitopes C1, C2, E (two times), L3C1-I2E-L1C2-L2E could react with anti-HCV antibodies. The expressed chimeric protein carrying the HBV epitopes S, I3S could react with anti-HBs antibodies. The expressed chimeric proteins carrying the HCV epitopes C1, C2, E plus HBV epitope S, L3C1-I2E-L1C2-L2E-I3S could react with antiHCV and anti-HBs antibodies.CONCLUSION: These epitopes have highly specific and sensitive immunoreaction and are useful in the development of epitope-based vaccines.

  7. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein.

    Han, Zongxi; Zhao, Fei; Shao, Yuhao; Liu, Xiaoli; Kong, Xiangang; Song, Yang; Liu, Shengwang

    2013-01-01

    The nucleocapsid (N) protein of the infectious bronchitis virus (IBV) may play an essential role in the replication and translation of viral RNA. The N protein can also induce high titers of cross-reactive antibodies and cell-mediated immunity, which protects chickens from acute infection. In this study, we generated two monoclonal antibodies (mAbs), designated as 6D10 and 4F10, which were directed against the N protein of IBV using the whole viral particles as immunogens. Both of the mAbs do not cross react with Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV) and subtype H9 avian influenza virus (AIV). After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 6D10 and 4F10, which corresponded to the amino acid sequences (242)FGPRTK(247) and (195)DLIARAAKI(203), respectively, in the IBV N protein. Alignments of amino acid sequences from a large number of IBV isolates indicated that the two epitopes, especially (242)FGPRTK(247), were well conserved among IBV strains. This conclusion was further confirmed by the relationships of 18 heterologous sequences to the 2 mAbs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections. PMID:23123213

  8. Identification of a novel canine distemper virus B-cell epitope using a monoclonal antibody against nucleocapsid protein.

    Yi, Li; Cheng, Yuening; Zhang, Miao; Cao, Zhigang; Tong, Mingwei; Wang, Jianke; Zhao, Hang; Lin, Peng; Cheng, Shipeng

    2016-02-01

    Canine distemper virus (CDV) is a member of the genus Morbillivirus within the family Paramyxoviridae and has caused severe economic losses in China. Nucleocapsid protein (N) is the major structural viral protein and can be used to diagnose CDV and other morbilliviruses. In this study, a specific monoclonal antibody, 1N8, was produced against the CDV N protein (amino acids 277-471). A linear N protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to enzyme-linked immunosorbent assay (ELISA) analysis. The results indicated that (350)LNFGRSYFDPA(360) was the minimal linear epitope that could be recognized by mAb 1N8. ELISA assays revealed that mouse anti-CDV sera could also recognize the minimal linear epitope. Alignment analysis of the amino acid sequences indicated that the epitope was highly conserved among CDV strains. Furthermore, the epitope was conserved among other morbilliviruses, which was confirmed with PRRV using western blotting. Taken together, the results of this study may have potential applications in the development of suitable diagnostic techniques for CDV or other morbilliviruses. PMID:26514066

  9. Characterization of neutralizing epitopes within the major capsid protein of human papillomavirus type 33

    Sapp Martin

    2006-10-01

    Full Text Available Abstract Background Infections with papillomaviruses induce type-specific immune responses, mainly directed against the major capsid protein, L1. Based on the propensity of the L1 protein to self-assemble into virus-like particles (VLPs, type-specific vaccines have already been developed. In order to generate vaccines that target a broader spectrum of HPV types, extended knowledge of neutralizing epitopes is required. Despite the association of human papillomavirus type 33 (HPV33 with cervical carcinomas, fine mapping of neutralizing conformational epitopes on HPV33 has not been reported yet. By loop swapping between HPV33 and HPV16 capsid proteins, we have identified amino acid sequences critical for the binding of conformation-dependent type-specific neutralizing antibodies to surface-exposed hyper variable loops of HPV33 capsid protein L1. Results Reactivities of monoclonal antibodies (mAbs H33.B6, H33.E12, H33.J3 and H16.56E with HPV16:33 and HPV33:16 hybrid L1 VLPs revealed the complex structures of their conformational epitopes as well as the major residues contributing to their binding sites. Whereas the epitope of mAb H33.J3 was determined by amino acids (aa 51–58 in the BC loop of HPV33 L1, sequences of at least two hyper variable loops, DE (aa 132–140 and FGb (aa 282–291, were found to be essential for binding of H33.B6. The epitope of H33.E12 was even more complex, requiring sequences of the FGa loop (aa 260–270, in addition to loops DE and FGb. Conclusion These data demonstrate that neutralizing epitopes in HPV33 L1 are mainly located on the tip of the capsomere and that several hyper variable loops contribute to form these conformational epitopes. Knowledge of the antigenic structure of HPV is crucial for designing hybrid particles as a basis for intertypic HPV vaccines.

  10. Prediction on Antigenic Epitope Characteristics of Bt Cry2Ab Protein in Transgenic Crops

    Jierong GAO; Ying HE; Zehong ZOU; Ailin TAO; Yuncan AI

    2012-01-01

    Abstract [Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoreti- cal clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were pre- dicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the po- tential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 al- leles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to un- derstand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.

  11. Epitope Mapping of Anti-Interleukin-13 Neutralizing Antibody CNTO607

    Teplyakov, Alexey; Obmolova, Galina; Wu, Sheng-Jiun; Luo, Jinquan; Kang, James; O' Neil, Karyn; Gilliland, Gary L.; (Centocor)

    2009-06-24

    CNTO607 is a neutralizing anti-interleukin-13 (IL-13) human monoclonal antibody obtained from a phage display library. To determine how this antibody inhibits the biological effect of IL-13, we determined the binding epitope by X-ray crystallography. The crystal structure of the complex between CNTO607 Fab and IL-13 reveals the antibody epitope at the surface formed by helices A and D of IL-13. This epitope overlaps with the IL-4Ralpha/IL-13Ralpha1 receptor-binding site, which explains the neutralizing effect of CNTO607. The extensive antibody interface covers an area of 1000 A(2), which is consistent with the high binding affinity. The key features of the interface are the charge and shape complementarity of the molecules that include two hydrophobic pockets on IL-13 that accommodate Phe32 [complementarity-determining region (CDR) L2] and Trp100a (CDR H3) and a number of salt bridges between basic residues of IL-13 and acidic residues of the antibody. Comparison with the structure of the free Fab shows that the CDR residues do not change their conformation upon complex formation, with the exception of two residues in CDR H3, Trp100a and Asp100b, which change rotamer conformations. To evaluate the relative contribution of the epitope residues to CNTO607 binding, we performed alanine-scanning mutagenesis of the A-D region of IL-13. This study confirmed the primary role of electrostatic interactions for antigen recognition.

  12. Docking of B-cell epitope antigen to specific hepatitis B antibody

    R Rajkannan; E J Padma Malar

    2007-09-01

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the crystal structure of monoclonal antibody specific for the pres1 region of the hepatitis B virus. At the optimized docked conformation, the interactions between the amino acids of antigen and antibody were examined. It is found that the docked complex is stabilized by 59.3 kcal/mol. The stability of the docked antigen-antibody complex is due to hydrogen bonding and van der Waals interactions. The amino acids of the antigen and antibody responsible for the interaction were identified.

  13. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity.

    Krause, Anja; Joh, Ju H; Hackett, Neil R; Roelvink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imre; Crystal, Ronald G; Worgall, Stefan

    2006-06-01

    On the basis of the concept that the capsid proteins of adenovirus (Ad) gene transfer vectors can be genetically manipulated to enhance the immunogenicity of Ad-based vaccines, the present study compared the antiantigen immunogenicity of Ad vectors with a common epitope of the hemagglutinin (HA) protein of the influenza A virus incorporated into the outer Ad capsid protein hexon, penton base, fiber knob, or protein IX. Incorporation of the same epitope into the different capsid proteins provided insights into the correlation between epitope position and antiepitope immunity. Following immunization of three different strains of mice (C57BL/6, BALB/c, and CBA) with either an equal number of Ad particles (resulting in a different total HA copy number) or different Ad particle numbers (to achieve the same HA copy number), the highest primary (immunoglobulin M [IgM]) and secondary (IgG) anti-HA humoral and cellular CD4 gamma interferon and interleukin-4 responses against HA were always achieved with the Ad vector carrying the HA epitope in fiber knob. These observations suggest that the immune response against an epitope inserted into Ad capsid proteins is not necessarily dependent on the capsid protein number and imply that the choice of incorporation site in Ad capsid proteins in their use as vaccines needs to be compared in vivo. PMID:16699033

  14. Identification of T. gondii epitopes, adjuvants, & host genetic factors that influence protection of mice & humans

    Tan, Tze Guan; Mui, Ernest; Cong, Hua; Witola, William; Montpetit, Alexandre; Muench, Stephen P.; Sidney, John; Alexander, Jeff; Sette, Alessandro; Grigg, Michael; Maewal, Ajesh; McLeod, Rima

    2010-01-01

    Toxoplasma gondii is an intracellular parasite that causes severe neurologic and ocular disease in immune-compromised and congenitally infected individuals. There is no vaccine protective against human toxoplasmosis. Herein, immunization of Ld mice with HF10 (HPGSVNEFDF) with palmitic acid moieties or a monophosphoryl lipid A derivative elicited potent IFN-γ production from Ld-restricted CD8+ T cells in vitro and protected mice. CD8+ T cell peptide epitopes from T. gondii dense granule protei...

  15. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    Kroghsbo, Stine; Andersen, Nanna Birch; Rasmussen, Tina Frid;

    2014-01-01

    sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products...... (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by...... ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level...

  16. Epitope peptides of influenza H3N2 virus neuraminidase gene designed by immunoinformatics

    Lijun Liang; Ping Huang; Miaoheng Wen; Hanzhong Ni; Songnuan Tan; Yonghui Zhang; Qiuxia Chen

    2012-01-01

    The virus surface protein neuraminidase (NA) is a main subtype-specific antigen in influenza type A viruses.Neuraminidase functions as an enzyme to break the bonds between hemagglutinin (HA) and sialic acid to release newly formed viruses from infected cells.In this study,NA genes from the H3N2 subtype virus were sequenced and NA proteins were screened for B-cell epitopes and assessed based on immunoinformatics.Based on this information,three peptides ES8,RR9,and WK7 (covering amino acid residues 221-228,292-300,and 383-389,respectively) of the NA protein were selected and synthesized artificially.These peptides were used to immunize New Zealand rabbits subcutaneously to raise antisera.Results showed that these three peptides were capable of eliciting antibodies against H3N2 viruses in a specific and sensitive manner,detected in vitro by enzyme-linked immunosorbent assay. Furthermore,hemadsorption anti-releasing effects occurred in three antisera mixtures at a dilution of 1∶40.Alignment using database software showed that amino acid residues in these three epitope peptides were substituted at specific sites in all the NAs sequenced in this study.We suggest that these NA epitope peptides might be used in conjunction with HA proteins as vaccine antigens.

  17. Identification of a highly conserved and surface exposed B-cell epitope on the nucleoprotein of influenza A virus.

    Gui, Xun; Ge, Pinghui; Wang, Xuliang; Yang, Kunyu; Yu, Hai; Zhao, Qinjian; Chen, Yixin; Xia, Ningshao

    2014-06-01

    Influenza virus still poses a major threat to human health worldwide. The nucleoprotein (NP) of influenza A virus plays an essential role in the viral replication and transcription and hence becomes a promising therapeutic target. NP forms a complicated conformation under native conditions and might denature when performing immunoassays such as western blot in the study of NP function. Therefore, it is useful to make an NP specific monoclonal antibody (mAb) that recognizes linear epitope instead of conformational epitope. In this study, a recombinant NP (rNP) of influenza A virus was over-expressed and used to generate a panel of anti-NP mAbs. These anti-NP mAbs were grouped into three classes based on their reactivity in Western blots. Only Class I mAb can react with linear rNP fragments. One of Class I mAb, 4D2, was characterized further by epitope mapping with a series of overlapping synthetic peptides, indicating that the 4D2 epitope is a surface exposed, linear epitope between amino acid residues 243 and 251. This epitope is highly conserved among different influenza A viruses with an identity of 98.4% (17,922/18,210). Western blot, co-immunoprecipitation, immunofluorescence, and immunohistochemistry experiments all indicated 4D2 is highly specific to NP of influenza A virus. The results demonstrated that 4D2 can be used as a research tool for functional study of NP in the replication cycle of influenza A virus. Further work is needed to understand the function and importance of this epitope. PMID:24136709

  18. Proof of principle for epitope-focused vaccine design

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  19. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon.

    Xingui Tian

    Full Text Available Enterovirus 71 (EV71 is responsible for hand, foot and mouth disease with high mortality among children. Various neutralizing B cell epitopes of EV71 have been identified as potential vaccine candidates. Capsid-incorporation of antigens into adenovirus (Ad has been developed for a novel vaccine approach. We constructed Ad3-based EV71 vaccine vectors by incorporating a neutralizing epitope SP70 containing 15 amino acids derived from capsid protein VP1 of EV71 within the different surface-exposed domains of the capsid protein hexon of Ad3EGFP, a recombinant adenovirus type 3 (Ad3 expressing enhanced green fluorescence protein. Thermostability and growth kinetic assays suggested that the SP70 epitope incorporation into hypervariable region (HVR1, HVR2, or HVR7 of the hexon did not affect Ad fitness. The SP70 epitopes were thought to be exposed on all hexon-modified intact virion surfaces. Repeated administration of BALB/c mice with the modified Ads resulted in boosting of the anti-SP70 humoral immune response. Importantly, the modified Ads immunization of mother mice conferred protection in vivo to neonatal mice against the lethal EV71 challenge, and the modified Ads-immunized mice serum also conferred passive protection against the lethal challenge in newborn mice. Compared with the recombinant GST-fused SP70 protein immunization, immunization with the Ads containing SP70 in HVR1 or HVR2 elicited higher SP70-specific IgG titers, higher neutralization titers, and conferred more effective protection to neonatal mice. Thus, this study provides valuable information for hexon-modified Ad3 vector development as a promising EV71 vaccine candidate and as an epitope-delivering vehicle for other pathogens.

  20. Localization of immunodominant epitopes within the "a" determinant of hepatitis B surface antigen using monoclonal antibodies.

    Golsaz-Shirazi, Forough; Mohammadi, Hamed; Amiri, Mohammad Mehdi; Khoshnoodi, Jalal; Kardar, Gholam Ali; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2016-10-01

    The common "a" determinant is the major immunodominant region of hepatitis B surface antigen (HBsAg) shared by all serotypes and genotypes of hepatitis B virus (HBV). Antibodies against this region are thought to confer protection against HBV and are essential for viral clearance. Mutations within the "a" determinant may lead to conformational changes in this region, which can affect the binding of neutralizing antibodies. There is an increasing concern about identification and control of mutant viruses which is possible by comprehensive structural investigation of the epitopes located within this region. Anti-HBs monoclonal antibodies (mAbs) against different epitopes of HBsAg are a promising tool to meet this goal. In the present study, 19 anti-HBs mAbs were employed to map epitopes localized within the "a" determinant, using a panel of recombinant mutant HBsAgs. The topology of the epitopes was analyzed by competitive enzyme-linked immunosorbent assay (ELISA). Our results indicate that all of the mAbs seem to recognize epitopes within or in the vicinity of the "a" determinant of HBsAg. Different patterns of binding with mutant forms were observed with different mAbs. Amino acid substitutions at positions 123, 126, 129, 144, and 145 dramatically reduced the reactivity of antibodies with HBsAg. The T123N mutation had the largest impact on antibody binding to HBsAg. The reactivity pattern of our panel of mAbs with mutant forms of HBsAg could have important clinical implications for immunoscreening, diagnosis of HBV infection, design of a new generation of recombinant HB vaccines, and immunoprophylaxis of HBV infection as an alternative to therapy with hepatitis B immune globulin (HBIG). PMID:27439498

  1. Synthetic Peptide Immunogens Elicit Polyclonal and Monoclonal Antibodies Specific for Linear Epitopes in the D Motifs of Staphylococcus aureus Fibronectin-Binding Protein, Which Are Composed of Amino Acids That Are Essential for Fibronectin Binding

    Huesca, Mario; Sun, Qing; Peralta, Robert; Shivji, Gulnar M.; Sauder, Daniel N.; McGavin, Martin J.

    2000-01-01

    A fibronectin (Fn)-binding adhesin of Staphylococcus aureus contains three tandem 37- or 38-amino-acid motifs (D1, D2, and D3), which function to bind Fn. Plasma from patients with S. aureus infections contain antibodies that preferentially recognize ligand induced binding sites in the D motifs and do not inhibit Fn binding (F. Casolini, L. Visai, D. Joh, P. G. Conaldi, A. Toniolo, M. Höök, and P. Speziale, Infect. Immun. 66:5433–5442, 1998). To eliminate the influence of Fn binding on antibo...

  2. Advances of Bioinformatics Tools Applied in Virus Epitopes Prediction

    Ping Chen; Simon Rayner; Kang-hong Hu

    2011-01-01

    In recent years, the in silico epitopes prediction tools have facilitated the progress of vaccines development significantly and many have been applied to predict epitopes in viruses successfully. Herein, a general overview of different tools currently available, including T cell and B cell epitopes prediction tools, is presented. And the principles of different prediction algorithms are reviewed briefly. Finally, several examples are present to illustrate the application of the prediction tools.

  3. Multiple HLA Epitopes Contribute to Type 1 Diabetes Susceptibility

    Roark, Christina L.; Anderson, Kirsten M.; Simon, Lucas J.; Schuyler, Ronald P.; Aubrey, Michael T; Freed, Brian M.

    2013-01-01

    Disease susceptibility for type 1 diabetes is strongly associated with the inheritance of specific HLA alleles. However, conventional allele frequency analysis can miss HLA associations because many alleles are rare. In addition, disparate alleles that have similar peptide-binding sites, or shared epitopes, can be missed. To identify the HLA shared epitopes associated with diabetes, we analyzed high-resolution genotyping for class I and class II loci. The HLA epitopes most strongly associated...

  4. CTL escape mediated by proteasomal destruction of an HIV-1 cryptic epitope.

    Sylvain Cardinaud

    2011-05-01

    Full Text Available Cytotoxic CD8+ T cells (CTLs play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF. We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D and a majority encoding an asparagine (Q9VF/5N. We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes.

  5. Structure modeling and spatial epitope analysis for HA protein of the novel H1N1 influenza virus

    WU Di; XU TianLei; SUN Jing; DAI JianXin; DING GuoHui; HE YunGang; ZHOU ZhengFeng; XIONG Hui; DONG Hui; JIN WeiRong; BIAN Chao; JIN Li; WANG HongYan; WANG XiaoNing; YANG Zhong; ZHONG Yang; WANG Hao; CHE XiaoYan; HUANG Zhong; LAN Ke; SUN Bing; WU Fan; YUAN ZhenAn; ZHANG Xi; ZHOU XiaoNong; ZHOU JiaHai; MA ZhiYong; TONG GuangZhi; GUO YaJun; ZHAO GuoPing; LI YiXue; CAO ZhiWei

    2009-01-01

    In recent months,a novel influenza virus H1N1 broke out around the world.With bioinformatics technology,the 3D structure of HA protein was obtained,and the epitope residues were predicted with the method developed in our group for this novel flu virus.58 amino acids were identified as potential epitope residues,the majority of which clustered at the surface of the globular head of HA protein.Although it is located at the similar position,the epitope of HA protein for the novel H1N1 flu virus has obvious differences in the electrostatic potential compared to that of HA proteins from previous flu viruses.

  6. Characterization of periplasmic protein BP26 epitopes of Brucella melitensis reacting with murine monoclonal and sheep antibodies.

    Jinlang Qiu

    Full Text Available More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs against recombinant BP26 (rBP26 were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues ⁹³DRDLQTGGI¹⁰¹ (position 93 to 101 or residues ¹⁰⁴QPIYVYPD¹¹¹, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65-70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.

  7. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus.

    Pinghua Li

    Full Text Available Foot-and-mouth disease virus (FMDV is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.

  8. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  9. SELECTION OF NEW EPITOPES FROM MONOVALENT DISPLAYED PHAGE OCTAPEPTIDE LIBRARY

    李全喜; 王琰; 李竞; 王雅明; 徐建军; 王力民; 董志伟

    1998-01-01

    A library of 2×l07 random oetspaptides was constructed by use of phegemid-based monovaient phage display system. The randomly synthesized degenerated oilgodeoxyribonucleotides (oligos) were fused to the truncated gⅢ (p210-p408). Sequeraze analysis of 11 randomly chosen clones suggested that the degenerated inserts and its deduced amino acid (an) sequences are randomly distributed. The library was used to select binding paptides to the morroeloncl antlhody (mAb) 9E10, which recognizes a continuous decapaptide epitope of denatured human c-myc protein. After four to five rounds of panning, most of the eluted clones could bind to 9E10. Sequerlce analysis of the selected positive clones indlcated that the binding sequences could fall into two chsses, one class (clone 1) shares a consensus motif, ISE x x L, with c-mire decapeprider and the sequences of the other class are entirely different. The binding of both classes to 9E10 could be specifically lnhlhited by froe c-myc deeapeptide. The immunogenlcitF cff the phage peptide was further investigsted h5, construction of multivalent displayed phage peptides and immunization of animals with or without adjuvant. ELISA and competitive ELISA showed that anti-serum from both mice and rabbit immunized with either done could bind to the original antigen, c-myc decapeptide. These results denote that in spite of the dissimilarity of the selected psptides with c-myc decapeptide, they are capable of inducing similar immune respones in vivo, thus actually mimicking the antigen epitope.

  10. 4种血清型登革病毒NS1蛋白序列及B细胞抗原表位特异性分析%Analysis on genome and amino acids sequence and B cell epitopes for 4 serotypes of dengue virus NS1 protein

    陈艳佳; 熊建英; 朱利; 曹虹; 赵卫

    2013-01-01

    目的 比较4种血清型登革病毒NS1蛋白型特异性抗原表位基因序列及氨基酸序列之间的差异,为利用基因差异进行血清学分型及疫苗研究提供新的线索.方法 利用DNAstar数据包中的Editseq程序,从20株登革病毒分离株的全基因组序列中将NS1基因型特异性抗原表位序列截取出来,再用Clustal X软件进行多序列比对,进行同源性分析,找出型内最为保守的抗原表位序列.并将比对结果在120株登革病毒序列中进一步验证.结果 NS1蛋白36~45和71~85位氨基酸为型特异性抗原表位,高度保守,型内完全相同,型间不同.结论 NS1蛋白36~45位氨基酸可以作为登革病毒血清分型和研制亚单位疫苗的靶标.%OBJECTIVE To compare genome and amino acids sequences and possible B cell epitopes of 4 serotypes of dengue virus NS1 protein, to explore a new method of gene typing and provide new clues to vaccine research. METHODS Cut off the corresponding gene sequences of NS1 protein from the complete genome of 20 dengue virus isolates, then multisequencing was carried out to find the gene which was conservative within the same serotype and variant in the other serotypes. RESULTS Specific antigens of NS1 protein (36-45 and 71-85 amino acids) were conservative within the same serotype and variant in other serotypes. CONCLUSION Specific antigens of NS1 protein (36-45 amino acids) are the bases of dengue virus typing and targets of subunit vaccine development.

  11. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis.

    Brandt, L; Oettinger, T; Holm, A; Andersen, A B; Andersen, P

    1996-10-15

    The recall of long-lived immunity in a mouse model of tuberculosis (TB) is defined as an accelerated accumulation of reactive T cells in the target organs. We have recently identified Ag 85B and a 6-kilodalton early secretory antigenic target, designated ESAT-6, as key antigenic targets recognized by these cells. In the present study, preferential recognition of the ESAT-6 Ag during the recall of immunity was found to be shared by five of six genetically different strains of mice. Overlapping peptides spanning the sequence of ESAT-6 were used to map two T cell epitopes on this molecule. One epitope recognized in the context of H-2b,d was located in the N-terminal part of the molecule, whereas an epitope recognized in the context of H-2a,k covered amino acids 51 to 60. Shorter versions of the N-terminal epitope allowed the precise definition of a 13-amino acid core sequence recognized in the context of H-2b. The peptide covering the N-terminal epitope was immunogenic, and a T cell response with the same fine specificity as that induced during TB infection was generated by immunization with the peptide in IFA. In the C57BL/6j strain, this single epitope was recognized by an exceedingly high frequency of splenic T cells (approximately 1:1000), representing 25 to 35% of the total culture filtrate-reactive T cells recruited to the site of infection during the first phase of the recall response. These findings emphasize the relevance of this Ag in the immune response to TB and suggest that immunologic recognition in the first phase of infection is a highly restricted event dominated by a limited number of T cell clones. PMID:8871652

  12. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine

    Wang QM; Sun SH; Hu ZL; Zhou FJ; Yin M; Xiao CJ; Zhang JC

    2005-01-01

    Cell-mediated immune responses are crucial in the protection against tuberculosis. In this study, we constructed epitope DNA vaccines (p3-M-38) encoding cytotoxic T lymphocyte (CTL) epitopes of MPT64 and 38 kDa proteins of Mycobacterium tuberculosis. In order to observe the influence of spacer sequence (Ala-Ala-Tyr) or ubiquitin (UbGR) on the efficacy of the two CTL epitopes, we also constructed DNA vaccines, p3-M-S(spacer)-38, p3-Ub (UbGR)-M-S-38 and p3-Ub-M-38. The immune responses elicited by the four DNA vaccines were tested in C57BL/6 (H-2b) mice. The cytotoxicity of T cells was detected by LDH-release method and by enzyme-linked immunospot assay for epitope-specific cells secreting interferon-gamma. The results showed that DNA immunization with p3-M-38 vaccine could induce epitope-specific CD8+ CTL response and that the spacer sequence (AAY) only enhanced M epitope presentation. The protein-targeting sequence (UbGR) enhanced the immunogenicity of the two epitopes. The finding that defined spacer sequences at C-terminus and protein-targeting degradation modulated the immune response of epitope string DNA vaccines will be of importance for the further development of multi-epitope DNA vaccines against tuberculosis.

  13. Dominant epitopes and allergic cross-reactivity

    Mirza, Osman Asghar; Henriksen, A; Ipsen, H; Larsen, J N; Wissenbach, M; Spangfort, M D; Gajhede, M

    2000-01-01

    , that has been solved to 2.9 A resolution by x-ray diffraction. The mAb is shown to inhibit the binding of allergic patients' IgE to Bet v 1, and the allergen-IgG complex may therefore serve as a model for the study of allergen-IgE interactions relevant in allergy. The size of the BV16 epitope is 931 A2...... development of new and safer vaccines for allergen immunotherapy in the form of mutated allergens....

  14. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain.

    Yang, Yang; Cao, Min-Jie; Alcocer, Marcos; Liu, Qing-Mei; Fei, Dan-Xia; Mao, Hai-Yan; Liu, Guang-Ming

    2015-06-01

    Arginine kinase (AK) is a panallergen present in crustaceans, which can induce an immunoglobulin (Ig) E-mediated immune response in humans. The aim of this work was to map and characterize the antigenic epitopes of Scylla paramamosain AK. Specific-protein-A-enriched IgG raised in rabbits against purified S. paramamosain AK was used to screen a phage display random peptide library. Five AK mimotope clones were identified among 20 random clones after biopanning. Four conformational epitopes D3A4K43M1A5T49T44I7, L31K33V35T32E11E18F14S34D37, V177G172M173D176Q178T174L181K175L187, and R202L170Y203E190P205W204L187T206Y145 were identified with the program LocaPep, and mapped to S. paramamosain AK. The key amino acids of these conformational epitopes were D3, K33, T174, and W204, respectively. On the basis of biopanning, six IgE-specific peptides were mapped with synthetic overlapping peptides using the sera from crab-allergic patients, and four seropositive peptides (amino acids 113-127, 127-141, 141-155, and 204-218) were confirmed as linear epitopes in a degranulation assay in RBL-2H3 cells. Stability experiments showed that the structural integrity of AK is essential for its allergenicity, and the intramolecular disulfide bond at Cys201-Cys271 is essential for its structural stability. PMID:25728640

  15. High epitope expression levels increase competition between T cells.

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  16. Immune epitope database analysis resource (IEDB-AR)

    Zhang, Qing; Wang, Peng; Kim, Yohan;

    2008-01-01

    We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total of...

  17. Identification and characterization of a virus-specific continuous B-cell epitope on the PrM/M protein of Japanese Encephalitis Virus: potential application in the detection of antibodies to distinguish Japanese Encephalitis Virus infection from West Nile Virus and Dengue Virus infections

    Liu Wen-Xin

    2010-09-01

    Full Text Available Abstract Background Differential diagnose of Japanese encephalitis virus (JEV infection from other flavivirus especially West Nile virus (WNV and Dengue virus (DV infection was greatly hindered for the serological cross-reactive. Virus specific epitopes could benefit for developing JEV specific antibodies detection methods. To identify the JEV specific epitopes, we fully mapped and characterized the continuous B-cell epitope of the PrM/M protein of JEV. Results To map the epitopes on the PrM/M protein, we designed a set of 20 partially overlapping fragments spanning the whole PrM, fused them with GST, and expressed them in an expression vector. Linear epitope M14 (105VNKKEAWLDSTKATRY120 was detected by enzyme-linked immunosorbent assay (ELISA. By removing amino acid residues individually from the carboxy and amino terminal of peptide M14, we confirmed that the minimal unit of the linear epitope of PrM/M was M14-13 (108KEAWLDSTKAT118. This epitope was highly conserved across different JEV strains. Moreover, this epitope did not cross-react with WNV-positive and DENV-positive sera. Conclusion Epitope M14-13 was a JEV specific lineal B-cell epitpe. The results may provide a useful basis for the development of epitope-based virus specific diagnostic clinical techniques.

  18. EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB)

    Beaver, John E.; Bourne, Philip E.; Ponomarenko, Julia V.

    2007-01-01

    Background Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Bank (PDB) and provided in curated form by the Immune Epitope Database and Analysis Resource (IEDB). With continued growth in these data and the importance in understanding molecular level interactions of immunological interest there is a need for n...

  19. Characterization and specificity of the linear epitope of the enterovirus 71 VP2 protein

    Kiener Tanja K

    2012-02-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 has emerged as a major causative agent of hand, foot and mouth disease in the Asia-Pacific region over the last decade. Hand, foot and mouth disease can be caused by different etiological agents from the enterovirus family, mainly EV71 and coxsackieviruses, which are genetically closely related. Nevertheless, infection with EV71 may occasionally lead to high fever, neurologic complications and the emergence of a rapidly fatal syndrome of pulmonary edema associated with brainstem encephalitis. The rapid progression and high mortality of severe EV71 infection has highlighted the need for EV71-specific diagnostic and therapeutic tools. Monoclonal antibodies are urgently needed to specifically detect EV71 antigens from patient specimens early in the infection process. Furthermore, the elucidation of viral epitopes will contribute to the development of targeted therapeutics and vaccines. Results We have identified the monoclonal antibody 7C7 from a screen of hybridoma cells derived from mice immunized with the EV71-B5 strain. The linear epitope of 7C7 was mapped to amino acids 142-146 (EDSHP of the VP2 capsid protein and was characterized in detail. Mutational analysis of the epitope showed that the aspartic acid to asparagine mutation of the EV71 subgenogroup A (BrCr strain did not interfere with antibody recognition. In contrast, the serine to threonine mutation at position 144 of VP2, present in recently emerged EV71-C4 China strains, abolished antigenicity. Mice injected with this virus strain did not produce any antibodies against the VP2 protein. Immunofluorescence and Western blotting confirmed that 7C7 specifically recognized EV71 subgenogroups and did not cross-react to Coxsackieviruses 4, 6, 10, and 16. 7C7 was successfully used as a detection antibody in an antigen-capture ELISA assay. Conclusions Detailed mapping showed that the VP2 protein of Enterovirus 71 contains a single, linear, non

  20. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6. PMID:25692534

  1. The protective antibodies induced by a novel epitope of human TNF-alpha could suppress the development of collagen-induced arthritis.

    Jie Dong

    Full Text Available Tumor necrosis factor alpha (TNF-alpha is a major inflammatory mediator that exhibits actions leading to tissue destruction and hampering recovery from damage. At present, two antibodies against human TNF-alpha (hTNF-alpha are available, which are widely used for the clinic treatment of certain inflammatory diseases. This work was undertaken to identify a novel functional epitope of hTNF-alpha. We performed screening peptide library against anti-hTNF-alpha antibodies, ELISA and competitive ELISA to obtain the epitope of hTNF-alpha. The key residues of the epitope were identified by means of combinatorial alanine scanning and site-specific mutagenesis. The N terminus (80-91 aa of hTNF-alpha proved to be a novel epitope (YG1. The two amino acids of YG1, proline and valine, were identified as the key residues, which were important for hTNF-alpha biological function. Furthermore, the function of the epitope was addressed on an animal model of collagen-induced arthritis (CIA. CIA could be suppressed in an animal model by prevaccination with the derivative peptides of YG1. The antibodies of YG1 could also inhibit the cytotoxicity of hTNF-alpha. These results demonstrate that YG1 is a novel epitope associated with the biological function of hTNF-alpha and the antibodies against YG1 can inhibit the development of CIA in animal model, so it would be a potential target of new therapeutic antibodies.

  2. Hypervariable region IV of Salmonella gene fliCd encodes a dominant surface epitope and a stabilizing factor for functional flagella.

    He, X S; Rivkina, M; Stocker, B A; Robinson, W S

    1994-01-01

    To identify the major antigenic determinant of native Salmonella flagella of antigenic type d, we constructed a series of mutated fliCd genes with deletions and amino acid alterations in hypervariable region IV and in region of putative epitopes as suggested by epitope mapping with synthetic octameric peptides (T.M. Joys and F. Schödel, Infect. Immun. 59:3330-3332, 1991). The expressed product of most of the mutant genes, with deletions of up to 92 amino acids in region IV, assembled into fun...

  3. Activation of the NLRP3 inflammasome by vault nanoparticles expressing a chlamydial epitope

    Zhu, Ye; Jiang, Janina; Said-Sadier, Najwane; Boxx, Gale; Champion, Cheryl; Tetlow, Ashley; Kickhoefer, Valerie A.; Rome, Leonard H.; Ojcius, David M.; Kelly, Kathleen A.

    2014-01-01

    The full potential of vaccines relies on development of effective delivery systems and adjuvants and is critical for development of successful vaccine candidates. We have shown that recombinant vaults engineered to encapsulate microbial epitopes are highly stable structures and are an ideal vaccine vehicle for epitope delivery which does not require the inclusion of an adjuvant. We studied the ability of vaults which were engineered for use as a vaccine containing an immunogenic epitope of C. trachomatis, polymorphic membrane protein G (PmpG), to be internalized into human monocytes and behave as a “natural adjuvant”. We here show that incubation of monocytes with the PmpG-1-vaults activates caspase-1 and stimulates IL-1β secretion through a process requiring the NLRP3 inflammasome and that cathepsin B and Syk are involved in the inflammasome activation. We also observed that the PmpG-1-vaults are internalized through a pathway that is transiently acidic and leads to destabilization of lysosomes. In addition, immunization of mice with PmpG-1-vaults induced PmpG-1 responsive CD4+ cells upon re-stimulation with PmpG peptide in vitro, suggesting that vault vaccines can be engineered for specific adaptive immune responses. We conclude that PmpG-1-vault vaccines can stimulate NLRP3 inflammasomes and induce PmpG-specific T cell responses. PMID:25448112

  4. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an

  5. A xylogalacturonan epitope is specifically associated with plant cell detachment

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.;

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...... that is specifically associated with a plant cell separation process that results in complete cell detachment....... is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is...... specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified...

  6. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate. PMID:26179420

  7. Dissecting antibodies with regards to linear and conformational epitopes.

    Forsström, Björn; Axnäs, Barbara Bisławska; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias

    2015-01-01

    An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293

  8. Dissecting antibodies with regards to linear and conformational epitopes.

    Björn Forsström

    Full Text Available An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets.

  9. Identification of Autoantigen Epitopes in Alopecia Areata.

    Wang, Eddy H C; Yu, Mei; Breitkopf, Trisia; Akhoundsadegh, Noushin; Wang, Xiaojie; Shi, Feng-Tao; Leung, Gigi; Dutz, Jan P; Shapiro, Jerry; McElwee, Kevin J

    2016-08-01

    Alopecia areata (AA) is believed to be a cell-mediated autoimmune hair loss disease. Both CD4 and cytotoxic CD8 T cells (CTLs) are important for the onset and progression of AA. Hair follicle (HF) keratinocyte and/or melanocyte antigen epitopes are suspected potential targets of autoreactive CTLs, but the specific epitopes have not yet been identified. We investigated the potential for a panel of known epitopes, expressed by HF keratinocytes and melanocytes, to induce activation of CTL populations in peripheral blood mononuclear cells. Specific synthetic epitopes derived from HF antigens trichohyalin and tyrosinase-related protein-2 induced significantly higher frequencies of response in AA CTLs compared with healthy controls (IFN-gamma secretion). Apoptosis assays revealed conditioned media from AA peripheral blood mononuclear cells stimulated with trichohyalin peptides elevated the expression of apoptosis markers in primary HF keratinocytes. A cytokine array revealed higher expression of IL-13 and chemokine ligand 5 (CCL5, RANTES) from AA peripheral blood mononuclear cells stimulated with trichohyalin peptides compared with controls. The data indicate that AA affected subjects present with an increased frequency of CTLs responsive to epitopes originating from keratinocytes and melanocytes; the activated CTLs secreted soluble factors that induced apoptosis in HF keratinocytes. Potentially, CTL response to self-antigen epitopes, particularly trichohyalin epitopes, could be a prognostic marker for human AA. PMID:27094591

  10. Epitope analysis of anti-myeloperoxidase antibodies in patients with ANCA-associated vasculitis.

    Shen-Ju Gou

    Full Text Available OBJECTIVE: Increasing evidences have suggested the pathogenic role of anti-neutrophil cytoplasmic antibodies (ANCA directing myeloperoxidase (MPO in ANCA-associated vasculitis (AAV. The current study aimed to analyze the association between the linear epitopes of MPO-ANCA and clinicopathological features of patients with AAV. METHODS: Six recombinant linear fragments, covering the whole length amino acid sequence of a single chain of MPO, were produced from E.coli. Sera from 77 patients with AAV were collected at presentation. 13 out of the 77 patients had co-existence of serum anti-GBM antibodies. Ten patients also had sequential sera during follow up. The epitope specificities were detected by enzyme-linked immunosorbent assay using the recombinant fragments as solid phase ligands. RESULTS: Sera from 45 of the 77 (58.4% patients with AAV showed a positive reaction to one or more linear fragments of the MPO chain. The Birmingham Vasculitis Activity Scores and the sera creatinine were significantly higher in patients with positive binding to the light chain fragment than that in patients without the binding. The epitopes recognized by MPO-ANCA from patients with co-existence of serum anti-GBM antibodies were mainly located in the N-terminus of the heavy chain. In 5 out of the 6 patients, whose sera in relapse recognize linear fragments, the reactivity to linear fragments in relapse was similar to that of initial onset. CONCLUSION: The epitope specificities of MPO-ANCA were associated with disease activity and some clinicopathological features in patients with ANCA-associated vasculitis.

  11. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine.

    Yu-Chieh Liao

    Full Text Available Classical swine fever (CSF, foot-and-mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are the primary diseases affecting the pig industry globally. Vaccine induced CD8(+ T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV, FMD virus (FMDV and PRRS virus (PRRSV and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES.

  12. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions.

    Nagesh R Aragam

    Full Text Available Circumsporozoite protein (CS is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates and Malawi (235 isolates, we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.

  13. A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route.

    Corthésy, B; Kaufmann, M; Phalipon, A; Peitsch, M; Neutra, M R; Kraehenbuhl, J P

    1996-12-27

    Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses. PMID:8969237

  14. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  15. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    A radioimmunoassay that makes use of whole Schistosomula and 125I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000

  16. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-12-01

    A radioimmunoassay that makes use of whole Schistosomula and /sup 125/I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000.

  17. An assessment on epitope prediction methods for protozoa genomes

    Resende Daniela M

    2012-11-01

    Full Text Available Abstract Background Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve performance and a threshold dependent method that employs a confusion matrix; b integrating data from experimentally validated and in silico predicted epitopes; and c integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results A database-driven epitope prediction method was developed with built-in functions that were capable of: a removing experimental data redundancy; b parsing algorithms predictions and storage experimental validated and predict data; and c evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value

  18. CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS

    Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.

    2013-01-01

    CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibil...

  19. Molecular characterization and T and B cell epitopes prediction of Mycoplasma synoviae 53 strain VlhA hemagglutinin

    Ilana Lopes Camargo

    2007-01-01

    Full Text Available Mycoplasma sinoviae is a major pathogen of poultry causing synovitis and respiratory infection. M. synoviae hemagglutinin (VlhA is a lipoprotein encoded by related multigene families that appear to have arisen by horizontal gene transfer. It is an abundant immunodominant surface protein involved in host-parasite interaction mediating binding to host erythrocytes. Herein, we have performed in silico analysis of the vlhA gene product from the Mycoplasma synoviae 53 strain and compared it to the VlhA protein of M. synoviae WUV1853 strain. The VlhA of the M. synoviae 53 strain possesses 569 amino acids and showed 85% identity with the VlhA protein of the M. synoviae WUV1853 strain. Further, a signal peptide was identified from amino acid M1 to D28 and a cleavage site between D28 and Q29, both located in the N-terminal domain of the molecule. Additionally, an insertion of PAPT amino acids was observed between T30-P35 and a deletion of the amino acids GTPGNP within the PRR region of the VlhA from the M. synoviae 53 strain, which may be related to its reduced virulence. Finally, we have identified 17 B cell epitopes and 22 T cells epitopes within the VlhA from the M. synoviae 53 strain. The B cell epitope S263-D277 and the T cell epitopes N45-N54 and G58-N67 showed 100% and 87-100% identity, respectively, with regions of VlhA protein of tested Mycoplasma synoviae and Mycoplasma galisepticum strains. Thus, these peptides represent new candidate molecules for the development of efficient diagnostic assays and new subunit vaccines.

  20. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Tarigan, Simson; Peaston, Anne; Hemmatzadeh, Farhid

    2016-01-01

    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development. PMID:27362795

  1. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission.

    Kim, Na Young; Jung, Woon-Won; Oh, Yu-Kyung; Chun, Taehoon; Park, Hong-Yang; Lee, Hoon-Taek; Han, In-Kwon; Yang, Jai Myung; Kim, Young Bong

    2007-03-01

    Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission. PMID:17381684

  2. The T210M Substitution in the HLA-a*02:01 gp100 Epitope Strongly Affects Overall Proteasomal Cleavage Site Usage and Antigen Processing.

    Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Henklein, Petra; Sidney, John; Sette, Alessandro; Kloetzel, Peter M; Mishto, Michele

    2015-12-18

    MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope. PMID:26507656

  3. Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus.

    Liang, Weifeng; Zhou, Guohui; Liu, Wenming; Yang, Baolin; Li, Chaosi; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Yu, Li

    2016-10-01

    Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, a series of outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope have the potential to provide protective immunity against diverse subtypes of FMDV serotype A and to protect against future pandemics. In this study, we produced an A serotype FMDV-specific monoclonal antibody (MAb) against the viral capsid protein VP1, designated 9A9, that potently neutralized FMDV A/JLYS/CHA/2014 with a 50 % neutralization titer (NT50) of 4,096. GST-fusion proteins expressing truncated peptides of VP1 were subjected to Western blot analysis using MAb 9A9, and it was found that the peptide (143)RGDLGPLAARL(153) of VP1 was the minimal epitope for MAb 9A9 binding. Western blot analysis also revealed that the epitope peptide could be recognized by positive sera from serotype A FMDV-infected pigs and cattle. Subsequent alanine-scanning mutagenesis analysis revealed that residues Gly(147) and Leu(149) of the 9A9-recognized epitope are crucial for MAb 9A9 binding. Furthermore, under immunological pressure selected by MAb 9A9, a single amino acid residue replacement (L149P) occurred in a viral neutralization-escape mutant, which verified the location of a critical residue of this epitope at Leu(149). Importantly, the epitope (143)RGDLGPLAARL(153) was highly conserved among different topotypes of serotype A FMDV strains in sequence alignment analysis. Thus, the results of this study could have application potential in the development of epitope-based vaccines and a suitable MAb-based diagnostic method for detection of type A FMDV as well as quantitation of antibodies against FMDV serotype A. PMID:27422396

  4. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis.

    Ooi, Joshua D; Chang, Janet; Hickey, Michael J; Borza, Dorin-Bogdan; Fugger, Lars; Holdsworth, Stephen R; Kitching, A Richard

    2012-09-25

    Microscopic polyangiitis is an autoimmune small-vessel vasculitis that often manifests as focal and necrotizing glomerulonephritis and renal failure. Antineutrophil cytoplasmic Abs (ANCAs) specific for myeloperoxidase (MPO) play a role in this disease, but the role of autoreactive MPO-specific CD4(+) T cells is uncertain. By screening overlapping peptides of 20 amino acids spanning the MPO molecule, we identified an immunodominant MPO CD4(+) T-cell epitope (MPO(409-428)). Immunizing C57BL/6 mice with MPO(409-428) induced focal necrotizing glomerulonephritis similar to that seen after whole MPO immunization, when MPO was deposited in glomeruli. Transfer of an MPO(409-428)-specific CD4(+) T-cell clone to Rag1(-/-) mice induced focal necrotizing glomerulonephritis when glomerular MPO deposition was induced either by passive transfer of MPO-ANCA and LPS or by planting MPO(409-428) conjugated to a murine antiglomerular basement membrane mAb. MPO(409-428) also induced biologically active anti-MPO Abs in mice. The MPO(409-428) epitope has a minimum immunogenic core region of 11 amino acids, MPO(415-426), with several critical residues. ANCA-activated neutrophils not only induce injury but lodged the autoantigen MPO in glomeruli, allowing autoreactive anti-MPO CD4(+) cells to induce delayed type hypersensitivity-like necrotizing glomerular lesions. These studies identify an immunodominant MPO T-cell epitope and redefine how effector responses can induce injury in MPO-ANCA-associated microscopic polyangiitis. PMID:22955884

  5. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease.

    Inaba, Hidefumi; De Groot, Leslie J; Akamizu, Takashi

    2016-01-01

    Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  6. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    Fomsgaard, A; Nielsen, H V; Kirkby, N;

    1999-01-01

    degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible......'. This did not improve CTL induction. In another version, one CTL epitope was inserted into a known T-helper protein (HBsAg). This did significantly augment the response probably due to immunological help from HBsAg Th epitopes. Finally, the CTL inducing minigene DNA vaccines were compared with Flu......Cytotoxic T-lymphocyte (CTL) response is an important component of anti-viral immunity. CTLs are specific to short peptides presented by MHC-I molecules and immunisation with the exact peptide sequence introduced in the cytosol is therefore a minimal approach, which potentially affords a high...

  7. On the synthesis of peptide imprinted polymers by a combined suspension-Epitope polymerization method

    In the past, molecularly imprinted polymers (MIPs), prepared by free-radical bulk polymerization, have been used for the selective recognition of small biomolecules (i.e., amino acids and amino acid derivatives). Presently, there is a need for the synthesis of MIPs capable of recognizing larger biomolecules (i.e., peptides and proteins). Moreover, it is highly desirable the production of MIP microparticles with well-defined morphological characteristics (e.g., particle size distribution, porosity, etc.) via particulate polymerization techniques. In the present study, the synthesis of molecularly imprinted microparticles, produced via the suspension and inverse suspension polymerization methods, using the 'epitope approach', is reported. The hydrophobic (i.e., Boc-Trp-Trp-Trp) or hydrophilic (i.e., His-Phe) oligo-peptides were employed as template molecules. The potential of the combined suspension polymerization method with the 'epitope approach' for the production of MIP microparticles is demonstrated, as well as the specificity and selectivity characteristics of the MIP microparticles towards hydrophobic and hydrophilic oligo-peptides. The proposed method appears to be a very promising and efficient technique for separation of proteins.

  8. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein

    The envelope glycoprotein GP64 of Autographa californica nucleopolyhedrovirus (AcMNPV) is necessary and sufficient for the acid-induced membrane fusion activity that is required for fusion of the budded virus (BV) envelope and the endosome membrane during virus entry. Infectivity of the budded virus (BV) is neutralized by AcV1, a monoclonal antibody (MAb) directed against GP64. Prior studies indicated that AcV1 recognizes a conformational epitope and does not inhibit virus attachment to the cell, but instead inhibits entry at a step following virus attachment. We found that AcV1 recognition of GP64 was lost upon exposure of GP64 to low pH (pH 4.5) and restored by returning GP64 to pH 6.2. In addition, the AcV1 epitope was lost upon denaturation of GP64 in SDS, but the AcV1 epitope was restored by refolding the protein in the absence of SDS. Using truncated GP64 proteins expressed in insect cells, we mapped the AcV1 epitope to a 24 amino acid region in the central variable domain of GP64. When sequences within the mapped AcV1 epitope were substituted with a c-Myc epitope and the resulting construct was used to replace wt GP64 in recombinant AcMNPV viruses, the modified GP64 protein appeared to function normally. However, an anti-c-Myc monoclonal antibody did not neutralize infectivity of those viruses. Because binding of the c-Myc MAb to the same site in the GP64 sequence did not result in neutralization, these studies suggest that AcV1 neutralization may result from a specific structural constraint caused by AcV1 binding and not simply by steric hindrance caused by antibody binding at this position in GP64

  9. Minor interspecies variations in the sequence of the gp53 TSL-1 antigen of Trichinella define species-specific immunodominant epitopes.

    Perteguer, M J; Rodríguez, E; Romarís, F; Escalante, M; Bonay, P; Ubeira, F M; Gárate, M T

    2004-06-01

    Among the Trichinella TSL-1 antigens, whose antigenicity is generally due mainly to tyvelose-containing epitopes, gp53 is unusual in that its antigenicity is due mainly to protein epitopes. In the present study we mapped two of these epitopes, recognized by monoclonal antibodies (mAbs) that specifically recognize gp53 from all encysting Trichinella species (mAb US9), or gp53 from Trichinella spiralis alone (mAb US5). Based on previously published sequences of this glycoprotein [Mol. Biochem. Parasitol. 72 (1995) 253], in this study, we cloned the full gp53 cDNA from a new strain, Trichinella britovi (ISS 11; AN: ), and from another T. spiralis isolate (ISS 115; AN: ). The gp53 sequence comprised an ORF of 1239bp, coding for 412 amino acids, with 61 nucleotide differences (resulting in 38 residue changes) between the two species. Mapping of US5- and US9-recognized epitopes was undertaken through the construction and expression in the pGEX4T vector of truncated gp53 peptides, and by the construction of peptides derived from the antigenic regions. The epitope recognized by mAb US9 was a linear peptide of 8 residues, 33Met- 40Ser, located in the amino-terminal region, while the corresponding epitope recognized by mAb US5 was a 47-amino acid sequence containing two alpha-helix regions flanked by random coils, 290Thr- 336Lys. Molecular modeling of these peptides seems to indicate that recognition of the US9 epitope depends on the presence of two available hydroxyl groups provided by one methionine and one serine on T. spiralis gp53 (not present on Trichinella pseudospiralis gp53). Additionally, the stability of the US5 epitope seems to depend on correct folding of the 47-amino acid sequence (only present in T. spiralis). The relevance of these findings for understanding the antigenic recognition of Trichinella TSL-1 antigens, and for further studies to investigate possible function(s) of gp53 in Trichinella, is discussed. PMID:15163539

  10. High Throughput T Epitope Mapping and Vaccine Development

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  11. Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.

    Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang

    2012-05-01

    Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. PMID:22405880

  12. Association of variations of NAb 2F5 and 4E10 epitopes and disease progression in Chinese antiretroviral treatment-na(i)ve patients infected with HIV-1 clade B'

    ZHANG Xiao-li; JIANG Yong-jun; SHANG Hong; HAN Xiao-xu; DAI Di; BAO Ming-jia; XU Dong-bing; ZHANG Zi-ning; WANG Ya-nan; ZHAO Min; Tristan Bice

    2010-01-01

    Background Studies on human immunodeficiency virus type 1 (HIV-1) vaccines have recently focused on targeting the conserved neutralizing epitopes 2F5 and 4E10, and hence it is important to understand the extent of mutations in these two viral epitopes. Here, we investigated the amino acid mutations in epitopes of 2F5 (ELDKWA, HIV-1 HXB2 env 662-667 aa) and 4E10 (NWFDIT, HIV-1 HXB2 env 671-676 aa) in the membrane proximal-external region of gp41 from clade B' HIV-1-infected individuals living in Henan province, China. We also examined the frequency of a mutation and its relation to disease progression.Methods A cohort of 54 treatment-na(i)ve HIV-1-infected individuals was recruited in this study, and 16 individuals were selected for a short-term longitudinal study on sequence evolution. The HIV-1 env gp41 gene was amplified, cloned, and sequenced, and predicted amino acid sequences were aligned for analysis.Results The mutations E662A and K665E on the 2F5 epitope and N671S and T676S on the 4E10 epitope were seen.Simultaneous RNA sequencing showed some discrepancies with proviral DNA sequences. In our longitudinal study,mutation levels of these two neutralizing epitopes were low but diverse and persistent. The frequencies of mutations within the 4E10 peptide NWFDIT in slow progressors were noticeably lower than those in AIDS patients (P <0.05).Conclusions Antigenic variation of the neutralizing epitopes 2F5 and 4E10 is limited in subtype B' infection, and that 4E10 peptide mutation is correlated with disease progression. Monitoring epitope mutations will offer useful data for development of the candidate 2F5-like and 4E10-like antibodies to prevent and treat AIDS.

  13. Phage displaying epitope of Candida albicans HSP90 and serodiagnosis

    杨琼; 王丽; 卢大宁; 邢沈阳; 尹东; 朱筱娟

    2004-01-01

    @@ Recently, the frequent use of immunosuppressants and chemotherapeutic drugs for cancers has caused an increase in the frequency of life-threatening systemic candidiasis.1 Studies by Matthews et al2 indicated HSP90 fragments are major targets for the immune system in infection due to C. albicans, and anti-epitope LKVIRK of HSP90 antibody is a serological marker for diagnosis of invasive candidiasis. Cloning and sequencing HSP90 antigen revealed that the linear epitope LKVIRK, localized near the C-terminus of the 47 kDa protein which circulates in the sera of patients with invasive candidiasis, as a heat-stable breakdown product of large more heat-labile antigen HSP90.2 In this study, epitope LKVIRK was displayed on the surface of phage fd to develop a new serological test for systemic candidiasis.

  14. Phase I trial of thymidylate synthase poly-epitope peptide (TSPP) vaccine in advanced cancer patients.

    Cusi, Maria Grazia; Botta, Cirino; Pastina, Pierpaolo; Rossetti, Maria Grazia; Dreassi, Elena; Guidelli, Giacomo Maria; Fioravanti, Antonella; Martino, Elodia Claudia; Gandolfo, Claudia; Pagliuchi, Marco; Basile, Assunta; Carbone, Salvatore Francesco; Ricci, Veronica; Micheli, Lucia; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Pirtoli, Luigi; Correale, Pierpaolo

    2015-09-01

    Thymidylate synthase (TS) poly-epitope peptide (TSPP) is a 27-mer peptide vaccine containing the amino acidic sequences of three epitopes with HLA-A2.1-binding motifs of TS, an enzyme overexpressed in cancer cells, which plays a crucial role in DNA repair and replication. Based on the results of preclinical studies, we designed a phase Ib trial (TSPP/VAC1) to investigate, in a dose escalation setting, the safety and the biological activity of TSPP vaccination alone (arm A) or in combination with GM-CSF and IL-2 (arm B) in cancer patients. Twenty-one pretreated metastatic cancer patients, with a good performance status (ECOG ≤ 1) and no severe organ failure or immunological disease, were enrolled in the study (12 in arm A, nine in arm B) between April 2011 and January 2012, with a median follow-up of 28 months. TSPP resulted safe, and its maximal tolerated dose was not achieved. No grade 4 toxicity was observed. The most common adverse events were grade 2 dermatological reactions to the vaccine injection, cough, rhinitis, fever, poly-arthralgia, gastro-enteric symptoms and, to a lesser extent, moderate hypertension and hypothyroidism. We detected a significant rise in auto-antibodies and TS-epitope-specific CTL precursors. Furthermore, TSPP showed antitumor activity in this group of pretreated patients; indeed, we recorded one partial response and seven disease stabilizations (SD) in arm A, and three SD in arm B. Taken together, our findings provide the framework for the evaluation of the TSPP anti-tumor activity in further disease-oriented clinical trials. PMID:26031574

  15. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  16. IgE epitopes of intact and digested Ara h 1

    Bøgh, Katrine Lindholm; Nielsen, H.; Madsen, Charlotte Bernhard; Mills, E.N.C.; Rigby, N.; Eiwegger, T.; Szépfalusi, Z.; Roggen, E.L.

    epitopes have been suggested to be of great importance. ObjectiveThe aim of this study was to identify IgE specific epitopes of intact and digested Ara h 1, and to compare epitope patterns between humans and rats. MethodsSera from five peanut allergic patients and five Brown Norway rats were used to......E, which by far accounted for most of the eluted peptide sequences. Epitope patterns were rather similar for both intact and digested Ara h 1 as well as for humans and rats. ConclusionsIndividual patient specific epitope patterns have been identified for the major allergen Ara h 1. IgE binding epitopes......Background Allergen epitope characterization provides valuable information useful for the understanding of proteins as food allergens. It is believed that IgE epitopes in general are conformational, nevertheless, for food allergens known to sensitize through the gastrointestinal tract linear...

  17. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes;

    2013-01-01

    BACKGROUND: Current immunological bioinformatic approaches focus on the prediction of allele-specific epitopes capable of triggering immunogenic activity. The prediction of major histocompatibility complex (MHC) class I epitopes is well studied, and various software solutions exist for this purpose...

  18. Genogeography and Immune Epitope Characteristics of Hepatitis B Virus Genotype C Reveals Two Distinct Types: Asian and Papua-Pacific.

    Meta Dewi Thedja

    Full Text Available Distribution of hepatitis B virus (HBV genotypes/subgenotypes is geographically and ethnologically specific. In the Indonesian archipelago, HBV genotype C (HBV/C is prevalent with high genome variability, reflected by the presence of 13 of currently existing 16 subgenotypes. We investigated the association between HBV/C molecular characteristics with host ethnicity and geographical distribution by examining various subgenotypes of HBV/C isolates from the Asia and Pacific region, with further analysis on the immune epitope characteristics of the core and surface proteins. Phylogenetic tree was constructed based on complete HBV/C genome sequences from Asia and Pacific region, and genetic distance between isolates was also examined. HBV/C surface and core immune epitopes were analyzed and grouped by comparing the amino acid residue characteristics and geographical origins. Based on phylogenetic tree and geographical origins of isolates, two major groups of HBV/C isolates--East-Southeast Asia and Papua-Pacific--were identified. Analysis of core and surface immune epitopes supported these findings with several amino acid substitutions distinguishing the East-Southeast Asia isolates from the Papua-Pacific isolates. A west-to-east gradient of HBsAg subtype distribution was observed with adrq+ prominent in the East and Southeast Asia and adrq- in the Pacific, with several adrq-indeterminate subtypes observed in Papua and Papua New Guinea (PNG. This study indicates that HBV/C isolates can be classified into two types, the Asian and the Papua-Pacific, based on the virus genome diversity, immune epitope characteristics, and geographical distribution, with Papua and PNG as the molecular evolutionary admixture region in the switching from adrq+ to adrq-.

  19. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  20. Antibody protection reveals extended epitopes on the human TSH receptor.

    Rauf Latif

    Full Text Available Stimulating, and some blocking, antibodies to the TSH receptor (TSHR have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD. However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  1. Antibody protection reveals extended epitopes on the human TSH receptor.

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A; Davies, Terry F

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity. PMID:22957097

  2. Carcinoembryonic antigen continuous epitopes determined by the spot method.

    Solassol, I; Granier, C; Pèlegrin, A

    2001-01-01

    Carcinoembryonic antigen (CEA) is a heavily glycosylated tumor-associated protein with an N-A1-B1-A2-B2-A3-B3 domain structure. Circulating CEA immunoassays are used for monitoring digestive cancer patients, and radiolabeled anti-CEA monoclonal antibodies (MAb) are used for the diagnosis and therapy of CEA-positive tumors. The five major nonoverlapping epitopes (Gold 1-5) have been broadly correlated with the domain organization, but there is no precise localization of the epitopes at the sequence level. In an attempt to identify the peptide sequences corresponding to the five Gold epitopes on the CEA molecule, we prepared a set of 227 overlapping fifteen-mer peptides corresponding to the complete CEA sequence with the SPOT method. Using five high affinity MAbs directed against the five CEA Gold epitopes, we demonstrated that none of these epitopes could be mimicked by a fifteen-mer peptide sequence. However, using rabbit and goat anti-CEA sera, we identified six major continuous antigenic regions. All are included in the Ig-like domains of the CEA: two in the A1 domain (residues 120-134 and 153-164), one each in the A2 (329-337) and A3 domains (508-513), one at the junction between the A3 and B3 domains (553-561) and one in the B3 domain (565-573). A very homologous sequence (common residues VSPRL) was mapped in each of the three A domains. Thus, in terms of occurrence of continuous epitopes, the Ig-like domains A1, A2, A3 and B3 seem to be the most antigenic parts of CEA. These peptide sequences should be good candidates for the future development of site-specific anti-CEA MAbs. PMID:11275797

  3. Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis.

    Grosch, Jason S; Yang, Jing; Shen, Alice; Sereda, Yuriy V; Ortoleva, Peter J

    2015-11-01

    Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics. One such metric, epitope fluctuation (and implied flexibility), is shown to be inversely correlated with immunogenicity for each of a broad spectrum of nonenveloped viruses. The molecular metrics and experimentally determined immunogenicities for these viruses are archived in the open-source vaccine computer-aided design database. Results indicate the promise of computer-aided vaccine design to bring greater efficiency to traditional lab-based vaccine discovery approaches. PMID:26187254

  4. The value of HIV protective epitope research for informed vaccine design against diverse viral pathogens

    Kramer, Victor G; Byrareddy, Siddappa N.

    2014-01-01

    The success of vaccine regimens against viral pathogens hinges on the elicitation of protective responses. Hypervariable pathogens such as HIV avoid neutralization by masking protective epitopes with more immunogenic decoys. The identification of protective, conserved epitopes is crucial for future vaccine candidate design. The strategies employed for identification of HIV protective epitopes will also aid towards rational vaccine design for other viral pathogens.

  5. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes

    Moise, Leonard; McMurry, Julie A; Buus, Søren; Frey, Sharon; Martin, William D; De Groot, Anne S

    2009-01-01

    Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia immunization against variola infection. We set out to identify a subset of cross-reactive epitopes using bioinformatics and immunological methods. Putative T-cell epitopes were computationally predicted...... experimental validation of computational predictions illustrates the potential for immunoinformatics methods to identify candidate immunogens for a new, safer smallpox vaccine....

  6. File list: Oth.Prs.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Prs.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084528...,SRX084527,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.10.Epitope_tags.AllCell.bed ...

  7. File list: Oth.Emb.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Emb.10.Epitope_tags.AllCell dm3 TFs and others Epitope tags Embryo SRX066244,SR...X815533,SRX066245,SRX815531,SRX066247 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.Epitope_tags.AllCell.bed ...

  8. File list: Oth.Bld.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Bld.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Blood SRX718015,SRX...,SRX180155,SRX695808 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.Epitope_tags.AllCell.bed ...

  9. File list: Oth.Myo.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Myo.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Muscle SRX344965,SR...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.Epitope_tags.AllCell.bed ...

  10. File list: Oth.Oth.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Oth.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Others SRX228677,SR...X228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.Epitope_tags.AllCell.bed ...

  11. File list: Oth.Prs.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Prs.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084527...,SRX084528,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.20.Epitope_tags.AllCell.bed ...

  12. File list: Oth.Kid.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Kid.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Kidney SRX065541,S...RX644719,SRX527876,SRX644723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Kid.05.Epitope_tags.AllCell.bed ...

  13. File list: Oth.Gon.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Gon.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Gonad SRX153153,SRX...153152,SRX153151 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.Epitope_tags.AllCell.bed ...

  14. File list: Oth.Utr.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Utr.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Uterus SRX188854,S...,SRX210703,SRX679119,SRX095385,SRX210702,SRX968127,SRX095386 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.Epitope_tags.AllCell.bed ...

  15. File list: Oth.CDV.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CDV.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.10.Epitope_tags.AllCell.bed ...

  16. File list: Oth.ALL.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.ALL.20.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags All cell types ...211371,SRX493939,SRX381289 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.20.Epitope_tags.AllCell.bed ...

  17. File list: Oth.PSC.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.PSC.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Pluripotent stem ce...708,ERX320411,SRX647912,SRX204802,SRX352995 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Epitope_tags.AllCell.bed ...

  18. File list: Oth.PSC.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.PSC.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Pluripotent stem ce...822,SRX266828,SRX352996,ERX320411,SRX204802 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Epitope_tags.AllCell.bed ...

  19. File list: Oth.ALL.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.ALL.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags All cell types SRX...322539,SRX170374,SRX644727,SRX644719,SRX644723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.20.Epitope_tags.AllCell.bed ...

  20. File list: Oth.EmF.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.EmF.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryonic fibroblas...RX255459,SRX255462,SRX255460,SRX204643,SRX204642 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.20.Epitope_tags.AllCell.bed ...

  1. File list: Oth.Pan.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Pan.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Pancreas SRX747491,...SRX747492 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.Epitope_tags.AllCell.bed ...

  2. File list: Oth.Brs.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Brs.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Breast SRX667411,S...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.Epitope_tags.AllCell.bed ...

  3. File list: Oth.YSt.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.YSt.50.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags Yeast strain SR...3939 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.50.Epitope_tags.AllCell.bed ...

  4. File list: Oth.Prs.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Prs.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084528...,SRX084527,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.05.Epitope_tags.AllCell.bed ...

  5. File list: Oth.Bon.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Bon.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Bone SRX065557,SRX...096356,SRX096358,SRX316960,SRX065556 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bon.05.Epitope_tags.AllCell.bed ...

  6. File list: Oth.Emb.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Emb.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryo SRX485264,SR...SRX663358,SRX967653 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.50.Epitope_tags.AllCell.bed ...

  7. File list: Oth.ALL.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.ALL.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags All cell types SRX1...995,SRX275809,SRX275811 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Epitope_tags.AllCell.bed ...

  8. File list: Oth.Myo.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Myo.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Muscle SRX1470542,...SRX1470544 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.10.Epitope_tags.AllCell.bed ...

  9. File list: Oth.NoD.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.NoD.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.20.Epitope_tags.AllCell.bed ...

  10. File list: Oth.Adl.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Adl.50.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181419,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.50.Epitope_tags.AllCell.bed ...

  11. File list: Oth.Unc.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Unc.50.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags Unclassified ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.50.Epitope_tags.AllCell.bed ...

  12. File list: Oth.Bld.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Bld.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Blood SRX180156,SRX...,SRX180155,SRX695808 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.Epitope_tags.AllCell.bed ...

  13. File list: Oth.Unc.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Unc.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Unclassified SRX88...9798 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Unc.10.Epitope_tags.AllCell.bed ...

  14. File list: Oth.Gon.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Gon.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Gonad SRX204898,SR...X204899 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Gon.10.Epitope_tags.AllCell.bed ...

  15. File list: Oth.Myo.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Myo.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Muscle SRX1470542,...SRX1470544 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.05.Epitope_tags.AllCell.bed ...

  16. File list: Oth.CDV.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CDV.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Cardiovascular SRX...096360,SRX096362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.Epitope_tags.AllCell.bed ...

  17. File list: Oth.Adl.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Adl.20.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181427,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.20.Epitope_tags.AllCell.bed ...

  18. File list: Oth.NoD.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.NoD.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.50.Epitope_tags.AllCell.bed ...

  19. File list: Oth.Neu.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Neu.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Neural SRX367452,S...RX367451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.Epitope_tags.AllCell.bed ...

  20. File list: Oth.Utr.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Utr.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Uterus SRX188854,S...,SRX210703,SRX968127,SRX610673,SRX610674,SRX610672,SRX095386 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.Epitope_tags.AllCell.bed ...

  1. File list: Oth.Emb.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Emb.20.Epitope_tags.AllCell dm3 TFs and others Epitope tags Embryo SRX815533,SR...X066244,SRX066245,SRX815531,SRX066247 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.20.Epitope_tags.AllCell.bed ...

  2. File list: Oth.CDV.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CDV.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.20.Epitope_tags.AllCell.bed ...

  3. File list: Oth.Gon.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Gon.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Gonad SRX204898,SR...X204899 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Gon.50.Epitope_tags.AllCell.bed ...

  4. File list: Oth.PSC.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.PSC.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Pluripotent stem c...ell SRX555489 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.20.Epitope_tags.AllCell.bed ...

  5. File list: Oth.Unc.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Unc.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Unclassified SRX88...9798 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Unc.50.Epitope_tags.AllCell.bed ...

  6. File list: Oth.Prs.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Prs.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084527...,SRX084528,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.50.Epitope_tags.AllCell.bed ...

  7. File list: Oth.ALL.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.ALL.50.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags All cell types ...493939 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.50.Epitope_tags.AllCell.bed ...

  8. File list: Oth.NoD.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.NoD.20.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags No description ...http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.20.Epitope_tags.AllCell.bed ...

  9. File list: Oth.ALL.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.ALL.10.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags All cell types ...211370,SRX493939,SRX211371 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.ALL.10.Epitope_tags.AllCell.bed ...

  10. File list: Oth.CDV.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CDV.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.50.Epitope_tags.AllCell.bed ...

  11. File list: Oth.Adl.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Adl.05.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181427,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.05.Epitope_tags.AllCell.bed ...

  12. File list: Oth.Liv.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Liv.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165103,S...RX1165095,SRX1165100,SRX1165101,SRX1165090,SRX1165104,SRX1165102,SRX1165096,SRX1165091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.Epitope_tags.AllCell.bed ...

  13. File list: Oth.CeL.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CeL.10.Epitope_tags.AllCell dm3 TFs and others Epitope tags Cell line SRX099635...099636 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.CeL.10.Epitope_tags.AllCell.bed ...

  14. File list: Oth.PSC.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.PSC.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Pluripotent stem c...ell SRX555489 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.Epitope_tags.AllCell.bed ...

  15. File list: Oth.Myo.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Myo.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Muscle SRX1470542,...SRX1470544 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.20.Epitope_tags.AllCell.bed ...

  16. File list: Oth.CDV.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.CDV.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Cardiovascular SRX...096360,SRX096362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.Epitope_tags.AllCell.bed ...

  17. File list: Oth.Neu.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Neu.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Neural SRX367452,S...RX367451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.Epitope_tags.AllCell.bed ...

  18. File list: Oth.Kid.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Kid.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Kidney SRX065541,S...RX644719,SRX170375,SRX644723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Kid.10.Epitope_tags.AllCell.bed ...

  19. File list: Oth.Brs.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Brs.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Breast SRX667411,S...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.Epitope_tags.AllCell.bed ...

  20. File list: Oth.Kid.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Kid.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Kidney SRX065541,S...RX170376,SRX065542,SRX065543 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Kid.50.Epitope_tags.AllCell.bed ...

  1. File list: Oth.Lng.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Lng.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Lung SRX119639,SRX...119641,SRX119640,SRX119642,SRX119638,SRX119637 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.20.Epitope_tags.AllCell.bed ...

  2. File list: Oth.Utr.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Utr.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Uterus SRX248763,S...,SRX735140,SRX735139,SRX210703,SRX210702,SRX095386,SRX968127 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.Epitope_tags.AllCell.bed ...

  3. File list: Oth.Liv.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Liv.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165095,S...RX1165103,SRX1165100,SRX1165096,SRX1165104,SRX1165101,SRX1165090,SRX1165102,SRX1165091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.Epitope_tags.AllCell.bed ...

  4. File list: Oth.Epd.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Epd.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Epidermis SRX71842...0,SRX512368,SRX512366,SRX807621,SRX512367,SRX512372,SRX512373,SRX807620 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Epd.20.Epitope_tags.AllCell.bed ...

  5. File list: Oth.Neu.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Neu.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Neural SRX367452,S...RX367451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.Epitope_tags.AllCell.bed ...

  6. File list: Oth.Gon.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Full Text Available Oth.Gon.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Gonad SRX204899,SR...X204898 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Gon.05.Epitope_tags.AllCell.bed ...

  7. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K.;

    2007-01-01

    BACKGROUND: Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein...

  8. Major histocompatibility complex class I binding predictions as a tool in epitope discovery

    Lundegaard, Claus; Lund, Ole; Buus, Søren;

    2010-01-01

    , highlighting the most useful and historically important. Selected case stories, where these 'reverse immunology' systems have been used in actual epitope discovery, are briefly reviewed. We conclude that this new generation of epitope discovery systems has become a highly efficient tool for epitope discovery...

  9. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses

  10. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  11. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL−1 with the detection limit of 44.3 nmol · mL−1. The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  12. Epitope hunting in rheumatoid arthritis : towards antigen specific immunotherapy

    de Jong, H.

    2013-01-01

    Current treatment options in rheumatoid arthritis aim to dampen the immune response a-specifically. In the last decennia new strategies have emerged that have fewer side effects due to more specificity by focussing on those cells of the immune system that deal with regulation. Epitope specific immun

  13. An epitope delivery system for use with recombinant mycobacteria

    Hetzel, C.; Janssen, R.; Ely, S.J.; Kristensen, N.M.; Bunting, K.; Cooper, J.B.; Lamb, J.R.; Young, D.B.; Thole, J.E.R.

    1998-01-01

    We have developed a novel epitope delivery system based on the insertion of peptides within a permissive loop of a bacterial superoxide dismutase molecule. This system allowed high-level expression of heterologous peptides in two mycobacterial vaccine strains, Mycobacterium bovis bacille Calmette- G

  14. Identification of human linear B-cell epitope sites on the envelope glycoproteins of Crimean-Congo haemorrhagic fever virus.

    Goedhals, D; Paweska, J T; Burt, F J

    2015-05-01

    A peptide library was used to screen for regions containing potential linear B-cell epitope sites in the glycoproteins and nucleoprotein of Crimean-Congo haemorrhagic fever virus (CCHFV) in an enzyme-linked immunosorbent assay (ELISA). The library consisted of 156 peptides, spanning the nucleoprotein and mature GN and GC proteins in a 19-mer with 9-mer overlap format. Using pooled serum samples from convalescent patients to screen the library, six peptides were identified as potential epitope sites. Further testing of these six peptides with individual patient sera identified two of these peptides as probable epitope sites, with peptide G1451-1469 reacting to 13/15 and peptide G1613-1631 to 14/15 human sera. These peptides are situated on the GC protein at amino acid positions 1451-1469 (relative to CCHFV isolate SPU103/97) (TCTGCYACSSGISCKVRIH) and 1613-1631 (FMFGWRILFCFKCCRRTRG). Identified peptides may have application in ELISA for diagnostic or serosurveillance purposes. PMID:25185583

  15. An epitope tag derived from human transcription factor IIB that reacts with a polyol-responsive monoclonal antibody.

    Duellman, Sarah J; Thompson, Nancy E; Burgess, Richard R

    2004-05-01

    Polyol-responsive monoclonal antibodies (PR-mAbs) provide a strategy to purify active, nondenatured proteins by a single-step immunoaffinity chromatography procedure. The high affinity interaction between these antibodies and the antigen can be dissociated in the presence of a nonchaotropic salt and a low molecular weight polyhydroxylated compound (polyol). The epitope for PR-mAb IIB8 is located near the N-terminus of the human transcription factor IIB (TFIIB). The epitope is an eight amino acid sequence, TKDPSRVG, that can be fused to a desired protein for use as a purification tag. This epitope tag (termed hIIB) was fused to the C-terminus of green fluorescent protein (GFP). An additional GFP fusion protein utilized another version of hIIB containing a point mutation at position two. These fusion proteins, expressed in Escherichia coli, allowed successful separation of the desired protein in a single chromatographic step. This strategy extends PR-mAb gentle-release purification to numerous expressed proteins. PMID:15039078

  16. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine. PMID:24054942

  17. MIMOX: a web tool for phage display based epitope mapping

    Honda Wataru

    2006-10-01

    Full Text Available Abstract Background Phage display is widely used in basic research such as the exploration of protein-protein interaction sites and networks, and applied research such as the development of new drugs, vaccines, and diagnostics. It has also become a promising method for epitope mapping. Research on new algorithms that assist and automate phage display based epitope mapping has attracted many groups. Most of the existing tools have not been implemented as an online service until now however, making it less convenient for the community to access, utilize, and evaluate them. Results We present MIMOX, a free web tool that helps to map the native epitope of an antibody based on one or more user supplied mimotopes and the antigen structure. MIMOX was coded in Perl using modules from the Bioperl project. It has two sections. In the first section, MIMOX provides a simple interface for ClustalW to align a set of mimotopes. It also provides a simple statistical method to derive the consensus sequence and embeds JalView as a Java applet to view and manage the alignment. In the second section, MIMOX can map a single mimotope or a consensus sequence of a set of mimotopes, on to the corresponding antigen structure and search for all of the clusters of residues that could represent the native epitope. NACCESS is used to evaluate the surface accessibility of the candidate clusters; and Jmol is embedded to view them interactively in their 3D context. Initial case studies show that MIMOX can reproduce mappings from existing tools such as FINDMAP and 3DEX, as well as providing novel, rational results. Conclusion A web-based tool called MIMOX has been developed for phage display based epitope mapping. As a publicly available online service in this area, it is convenient for the community to access, utilize, and evaluate, complementing other existing programs. MIMOX is freely available at http://web.kuicr.kyoto-u.ac.jp/~hjian/mimox.

  18. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  19. Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray

    Wen, Xuexia; Bao, Hongmei; Shi, Lin; Tao, Qimeng; Jiang, Yongping; Zeng, Xianying; Xu, Xiaolong; Tian, Guobin; Zheng, Shimin; Chen, Hualan

    2016-01-01

    Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza. PMID:26938453

  20. Monoclonal antibodies to HLA-E bind epitopes carried by unfolded β2 m-free heavy chains.

    Tremante, Elisa; Lo Monaco, Elisa; Ingegnere, Tiziano; Sampaoli, Camilla; Fraioli, Rocco; Giacomini, Patrizio

    2015-08-01

    Since HLA-E heavy chains accumulate free of their light β2 -microglobulin (β2 m) subunit, raising mAbs to folded HLA-E heterodimers has been difficult, and mAb characterization has been controversial. Herein, mAb W6/32 and 5 HLA-E-restricted mAbs (MEM-E/02, MEM-E/07, MEM-E/08, DT9, and 3D12) were tested on denatured, acid-treated, and natively folded (both β2 m-associated and β2 m-free) HLA-E molecules. Four distinct conformations were detected, including unusual, partially folded (and yet β2 m-free) heavy chains reactive with mAb DT9. In contrast with previous studies, epitope mapping and substitution scan on thousands of overlapping peptides printed on microchips revealed that mAbs MEM-E/02, MEM-E/07, and MEM-E/08 bind three distinct α1 and α2 domain epitopes. All three epitopes are linear since they span just 4-6 residues and are "hidden" in folded HLA-E heterodimers. They contain at least one HLA-E-specific residue that cannot be replaced by single substitutions with polymorphic HLA-A, HLA-B, HLA-C, HLA-F, and HLA-G residues. Finally, also the MEM-E/02 and 3D12 epitopes are spatially distinct. In summary, HLA-E-specific residues are dominantly immunogenic, but only when heavy chains are locally unfolded. Consequently, the available mAbs fail to selectively bind conformed HLA-E heterodimers, and HLA-E expression may have been inaccurately assessed in some previous oncology, reproductive immunology, virology, and transplantation studies. PMID:25982269

  1. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-γ stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS

  2. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  3. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Ramanathan, Babu; Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  4. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  5. Mapping of T cell epitopes of the 30-kDa {alpha} antigen of Mycobacterium bovis strain bacillus Calmette-Guerin in Purified Protein Derivative (PPD)-positive individuals

    Silver, R.F.; Wallis, R.S.; Ellner, J.J. [Univ. Hospitals of Cleveland, OH (United States)

    1995-05-01

    The fibronectin-binding 30-kDa {alpha} Ag is a major secretory protein of growing mycobacteria that stimulates in vitro lymphocyte blastogenesis in most healthy purified protein derivative-positive individuals, but only a minority of patients with active tuberculosis. T cell epitopes of the {alpha} Ag were assessed using blastogenic responses of PBMC from 12 healthy purified protein derivative-positive subjects to a set of synthetic peptides based on the 325-amino acid sequence of the {alpha} Ag of Mycobacterium bovis BCG. Because epitope-specific precursor cells are infrequent and randomly distributed, we used Poisson analysis to determine positive responses to 10 {mu}g/ml of each peptide in 12 replicate culture wells. Seven immunodominant regions of the {alpha} Ag were identified. Each subject responded to at least one of the two most dominant epitopes, which correspond to amino acids 131-155 and 233-257 (from N terminus). Peptides of these two epitopes induced production of IFN-{gamma} by sorted CD4{sup +} T cells. The immuno-dominant peptides may have use as components of a vaccine and as tools to study the evolution of the immune response to M. tuberculosis. The two most dominant epitopes both occur in regions of the {alpha} Ag that differ from those of the atypical pathogens M. avium and M. kansasii. In addition, the M. bovis epitope of amino acids 133-155 differs from that of M. tuberculosis by a single amino acid. It may be possible to exploit the sequence differences for development of diagnostic tests with increased specificity. 39 refs., 4 figs., 1 tab.

  6. Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences

    Surendra S Negi

    2009-01-01

    Full Text Available Background: Precise determination of conformational epitopes of neutralizing antibodies represents a key step in the rational design of novel vaccines. A powerful experimental method to gain insights on the physical chemical nature of conformational epitopes is the selection of linear peptides that bind with high affinities to a monoclonal antibody of interest by phage display technology. However, the structural characterization of conformational epitopes from these mimotopes is not straightforward, and in the past the interpretation of peptide sequences from phage display experiments focused on linear sequence analysis to find a consensus sequence or common sequence motifs.Results: We present a fully automated search method, EpiSearch that predicts the possible location of conformational epitopes on the surface of an antigen. The algorithm uses peptide sequences from phage display experiments as input, and ranks all surface exposed patches according to the frequency distribution of similar residues in the peptides and in the patch. We have tested the performance of the EpiSearch algorithm for six experimental data sets of phage display experiments, the human epidermal growth factor receptor-2 (HER-2/neu, the antibody mAb Bo2C11 targeting the C2 domain of FVIII, antibodies mAb 17b and mAb b12 of the HIV envelope protein gp120, mAb 13b5 targeting HIV-1 capsid protein and 80R of the SARS coronavirus spike protein. In all these examples the conformational epitopes as determined by the X-ray crystal structures of the antibody-antigen complexes, were found within the highest scoring patches of EpiSearch, covering in most cases more than 50% residues of experimental observed conformational epitopes. Input options of the program include mapping of a single peptide or a set of peptides on the antigen structure, and the results of the calculation can be visualized on our interactive web server.Availability: Users can access the EpiSearch from our web

  7. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  8. Epitope selection from an uncensored peptide library displayed on avian leukosis virus

    Phage display libraries have provided an extraordinarily versatile technology to facilitate the isolation of peptides, growth factors, single chain antibodies, and enzymes with desired binding specificities or enzymatic activities. The overall diversity of peptides in phage display libraries can be significantly limited by Escherichia coli protein folding and processing machinery, which result in sequence censorship. To achieve an optimal diversity of displayed eukaryotic peptides, the library should be produced in the endoplasmic reticulum of eukaryotic cells using a eukaryotic display platform. In the accompanying article, we presented experiments that demonstrate that polypeptides of various sizes could be efficiently displayed on the envelope glycoproteins of a eukaryotic virus, avian leukosis virus (ALV), and the displayed polypeptides could efficiently attach to cognate receptors without interfering with viral attachment and entry into susceptible cells. In this study, methods were developed to construct a model library of randomized eight amino acid peptides using the ALV eukaryotic display platform and screen the library for specific epitopes using immobilized antibodies. A virus library with approximately 2 x 106 different members was generated from a plasmid library of approximately 5 x 106 diversity. The sequences of the randomized 24 nucleotide/eight amino acid regions of representatives of the plasmid and virus libraries were analyzed. No significant sequence censorship was observed in producing the virus display library from the plasmid library. Different populations of peptide epitopes were selected from the virus library when different monoclonal antibodies were used as the target. The results of these two studies clearly demonstrate the potential of ALV as a eukaryotic platform for the display and selection of eukaryotic polypeptides libraries

  9. Identification of critical residues of linear B cell epitope on Goodpasture autoantigen.

    Xiao-yu Jia

    Full Text Available The autoantigen of anti-glomerular basement membrane (GBM disease has been identified as the non-collagenous domain 1 of α3 chain of type IV collagen, α3(IVNC1. Our previous study revealed a peptide on α3(IVNC1 as a major linear epitope for B cells and potentially nephrogenic, designated as P14 (α3129-150. This peptide has also been proven to be the epitope of auto-reactive T cells in anti-GBM patients. This study was aimed to further characterize the critical motif of P14.16 patients with anti-GBM disease and positive anti-P14 antibodies were enrolled. A set of truncated and alanine substituted peptides derived from P14 were synthesized. Circulating antibodies against the peptides were detected by enzyme linked immunosorbent assay (ELISA.We found that all sera with anti-P14 antibodies reacted with the 13-mer sequence in the C-terminus of P14 (P14c exclusively. The level of antibodies against P14 was highly correlated with the level of antibodies against P14c (r=0.970, P<0.001. P14c was the core immunogenic region and the amino acid sequence (ISLWKGFSFIMFT was highly hydrophobic. Each amino acid residue in P14c was sequentially replaced by alanine. Three residues of glycine142, phenylalanine143, and phenylalanine145 were identified crucial for antibody binding based on the remarkable decline (P<0.001 of antibody reaction after each residue replacement.We defined GFxF (α3142, 143,145 as the critical motif of P14. It may provide some clues for understanding the etiology of anti-GBM disease.

  10. Identification of the Immunodominant H-2Kk-Restricted Cytotoxic T-Cell Epitope in the Borna Disease Virus Nucleoprotein

    Schamel, Karin; Staeheli, Peter; Hausmann, Jürgen

    2001-01-01

    Borna disease virus (BDV)-induced immunopathology in mice is most prominent in strains carrying the major histocompatibility complex H-2k allele and is mediated by CD8+ T cells that are directed against the viral nucleoprotein p40. We now identified the highly conserved octamer peptide TELEISSI, located between amino acid residues 129 and 136 of BDV p40, as a potent H-2Kk-restricted cytotoxic T-cell (CTL) epitope. When added to the culture medium of L929 target cells, TELEISSI conferred sensi...

  11. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella.

    Wu, J Y; Newton, S; Judd, A; Stocker, B; Robinson, W S

    1989-01-01

    A nonvirulent Salmonella dublin flagellin-negative, aromatic-dependent live vaccine strain has been used to express hepatitis B virus surface antigen epitopes in an immunogenic form. The envelope proteins of the virion are encoded by the S gene, which contains the pre-S1, pre-S2, and S coding regions. Synthetic oligonucleotides corresponding to amino acid residues S-(122-137) and pre-S2-(120-145) were inserted in-frame into the hypervariable region of a cloned Salmonella flagellin gene, and t...

  12. Simian virus 40 T antigen as a carrier for the expression of cytotoxic T-lymphocyte recognition epitopes.

    Fu, T. M.; Bonneau, R H; Tevethia, M J; Tevethia, S S

    1993-01-01

    Simian virus 40 (SV40) large T antigen can immortalize a wide variety of mammalian cells in culture. We have taken advantage of this property of T antigen to use it as a carrier for the expression of cytotoxic T-lymphocyte (CTL) recognition epitopes. DNA sequences corresponding to an H-2Db-restricted SV40 T-antigen site I (amino acids 205 to 215) were translocated into SV40 T-antigen DNA at codon positions 350 and 650 containing EcoRI linkers. An H-2Kb-restricted herpes simplex virus glycopro...

  13. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.; Normann, Preben; Storgaard, Torben

    2001-01-01

    We screened phage display libraries of porcine reproductive and respiratory syndrome virus (PRRSV) protein fragments with sera from experimentally infected pigs to identify linear B-cell epitopes that are commonly recognized during infection in vivo. We identified 10 linear epitope sites (ES) 11 to...

  14. Construction and immunogenicity prediction of Plasmodium falciparum CTL epitope minigene vaccine

    2001-01-01

    The minigenes encoding Plasmodium falciparum CTL epitopesrestricted to human MHC class I molecular HLA-A2 and HLA-B51, which were both at high frequency among Chinese population, were constructed as mono-epitope CTL vaccines named pcDNA3.1/tr and pcDNA3.1/ sh. The minigenes of the two epitopes were then tandem linked to form a dimeric CTL epitope minigene recombinant vaccine. After DNA transfection, the epitope minigenes were expressed respectively in two human cell lines, each bearing one MHC class I molecule named CIR/HLA-A2.1 and K562/HLA-B51. The intracellular expression of the CTL epitope minigenes not only enhanced the stability of HLA-A2.1 and HLA-B51 molecules but also increased the assemblage of MHC class I molecules on cell surfaces, which testified the specific process and presentation of those endogenous expressed epitopes. For the cells transfected with the dimeric minigene encoding two tandem linked epitopes, the expression and presentation of each epitope were also detected on cell membranes that bore different MHC class I molecules. It meant that the adjacency of the two CTL epitopes did not interfere with the specific process and presentation of each epitope. Compared with the ordinary CTL studies that inoculated synthesized epitope peptides with peripheral blood cells, this work aimed to process the epitopes directly inside HLA class I allele specific human cells, and thus theoretically imitated the same procedure in vivo. It was also an economical way to predict the immunogenicity of CTL epitopes at an early stage especially in laboratories with limited financial resource.

  15. Three Candidate Epitope-Vaccines in Combination Inducing High Levels of Multiantibodies Against HIV-1

    刘祖强; 田海军; 王颖; 陈应华

    2003-01-01

    HIV-1 mutation results in immune evasion, which presents a serious challenge for conventional strategies for developing effective vaccines.So far, much experimental evidence indicates that HIV-1 particles in the blood of patients can be cleaned principally by neutralizing antibodies.Based on these facts, we prepared triple combination of epitope-vaccines with the objective of inducing antibodies with predefined multi-epitope-specificity against HIV-1.According to the sequences of three neutralizing epitopes (RILAVERYLKD, ELDKWA and GPGRAFY, designated E1, E2, and E3, respectively) on HIV-1 envelope proteins, three epitope-peptides ((E1)2: C-(RILAVERYLKDG)2; (E2)4: C-(ELDKWAG)4; and (E3)2: C-(GPGRAFY)2) were synthesized and then conjugated with carrier protein keyhole limpet hemocyanin (KLH) or bovine serum albumin (BSA), and used for immunizing rabbits.After the vaccine course, the triple combination of epitope-vaccines induced high levels of predefined multi-epitope-specific antibodies.An immunoblotting-analysis demonstrated that the antibodies could recognize the native epitopes on both gp41 protein and V3 loop peptide.Furthermore, we compared the immune responses of three doses of epitope-peptides in the candidate epitope-vaccine.Strong antibody responses to three epitopes were observed in a dose dependent manner, with increasing dose raising the immune response.This result indicated that immunotolerance did not occur using an epitope vaccine dose of 80 μg.Thus, our results demonstrate that epitope-vaccines in combination can synchronously induce high levels of antibodies with predefined multi-epitope-specificity against HIV-1, and may be used to develop effective vaccines against HIV as a new strategy.

  16. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  17. Preparation and epitope characterization of monoclonal antibodies against firefly luciferase

    徐沁; 丁建芳; 胡红雨; 许根俊

    1999-01-01

    The 6-His tagged firefly luciferase was highly expressed in E. coli and purified to homogeneity by affinity chromatography and gel filtration. After immunizing Balb/c mice with the antigen, 6 hybridomas clones were found to secrete monoelonal antibodies (mAbs) and the mAbs were also purified separately. The competitive binding experiments show that 2 mAbs can bind heat-denatured antigen or its proteolytic fragments but not the native lueiferase, suggesting that their epitopes might be accommodated in the internal segments of the protein. On the other hand, the other 4 mAbs are capable of binding both native and denatured antigens. It infers that their epitopes locate in the segments on the protein surface. The results also suggest that the six mAbs are all sequence-specific.

  18. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides.

    Nathali Kaushansky

    Full Text Available Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and "epitope spread", have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such "multi-epitope-targeting" approach in murine experimental autoimmune encephalomyelitis (EAE associated with a single ("classical" or multiple ("complex" anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as "multi-epitope-targeting" agents. Y-MSPc was superior to peptide(s in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells. Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of "classical" or "complex EAE" or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a "multi-epitope-targeting" strategy is required for

  19. Antibody Protection Reveals Extended Epitopes on the Human TSH Receptor

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M. Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A.; Davies, Terry F.

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22–260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore,...

  20. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide.

    Apicella, M A; Shero, M; Jarvis, G A; Griffiss, J. M.; Mandrell, R E; Schneider, H.

    1987-01-01

    Gonococcal lipooligosaccharides (LOSs) are a series of antigenically complex heteropolymers. To investigate whether all members of clonally selected populations of Neisseria gonorrhoeae express antigenically similar LOS, we studied gonococcal strains 4505 and 220 with monoclonal antibodies 6B4 and 3F11 which have specificity for different oligosaccharide epitopes on the same or comigrating LOS unit(s) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fluorescent-antibody and immun...

  1. Common food allergens and their IgE-binding epitopes

    Hiroaki Matsuo

    2015-10-01

    Full Text Available Food allergy is an adverse immune response to certain kinds of food. Although any food can cause allergic reactions, chicken egg, cow's milk, wheat, shellfish, fruit, and buckwheat account for 75% of food allergies in Japan. Allergen-specific immunoglobulin E (IgE antibodies play a pivotal role in the development of food allergy. Recent advances in molecular biological techniques have enabled the efficient analysis of food allergens. As a result, many food allergens have been identified, and their molecular structure and IgE-binding epitopes have also been identified. Studies of allergens have demonstrated that IgE antibodies specific to allergen components and/or the peptide epitopes are good indicators for the identification of patients with food allergy, prediction of clinical severity and development of tolerance. In this review, we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg, cow's milk, wheat, shrimp, and peanut.

  2. Common food allergens and their IgE-binding epitopes.

    Matsuo, Hiroaki; Yokooji, Tomoharu; Taogoshi, Takanori

    2015-10-01

    Food allergy is an adverse immune response to certain kinds of food. Although any food can cause allergic reactions, chicken egg, cow's milk, wheat, shellfish, fruit, and buckwheat account for 75% of food allergies in Japan. Allergen-specific immunoglobulin E (IgE) antibodies play a pivotal role in the development of food allergy. Recent advances in molecular biological techniques have enabled the efficient analysis of food allergens. As a result, many food allergens have been identified, and their molecular structure and IgE-binding epitopes have also been identified. Studies of allergens have demonstrated that IgE antibodies specific to allergen components and/or the peptide epitopes are good indicators for the identification of patients with food allergy, prediction of clinical severity and development of tolerance. In this review, we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg, cow's milk, wheat, shrimp, and peanut. PMID:26433529

  3. Mapping epitopes and antigenicity by site-directed masking

    Paus, Didrik; Winter, Greg

    2006-06-01

    Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to -lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with -lactamase in Freund's adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund's adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. backbone flexibility | Freund's adjuvant | conformational epitope | antisera

  4. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  5. Characterization of a cashew allergen, 11S globulin (Ana o 2), conformational epitope.

    Robotham, Jason M; Xia, Lixin; Willison, LeAnna N; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2010-05-01

    Both linear and conformational epitopes likely contribute to the allergenicity of tree nut allergens, yet, due largely to technical issues, few conformational epitopes have been characterized. Using the well studied recombinant cashew allergen, Ana o 2, an 11S globulin or legumin, we identified a murine monoclonal antibody which recognizes a conformational epitope and competes with patient IgE Ana o 2-reactive antibodies. This epitope is expressed on the large subunit of Ana o 2, but only when associated with an 11S globulin small subunit. Both Ana o 2 and the homologous soybean Gly m 6 small subunits can foster epitope expression, even when the natural N-terminal to C-terminal subunit order is reversed in chimeric molecules. The epitope, which is also expressed on native Ana o 2, is readily susceptible to destruction by physical and chemical denaturants. PMID:20362336

  6. Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing.

    Kowalsky, Caitlin A; Faber, Matthew S; Nath, Aritro; Dann, Hailey E; Kelly, Vince W; Liu, Li; Shanker, Purva; Wagner, Ellen K; Maynard, Jennifer A; Chan, Christina; Whitehead, Timothy A

    2015-10-30

    Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human pathogens affords a better understanding of the structural basis of antibody efficacy, which will expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of the wealth of information from single cell techniques and antibody repertoire sequencing awaits the development of a high throughput, inexpensive method to map the conformational epitopes for antibody-antigen interactions. Here we show such an approach that combines comprehensive mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to identify epitope positions and show the method effectiveness by mapping the fine epitope for different antibodies targeting TNF, pertussis toxin, and the cancer target TROP2. In all three cases, the experimentally determined conformational epitope was consistent with previous experimental datasets, confirming the reliability of the experimental pipeline. Once the comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of four per day. PMID:26296891

  7. Identification of Cytotoxic T Lymphocyte Epitopes on Swine Viruses: Multi-Epitope Design for Universal T Cell Vaccine

    Liao, Yu-Chieh; Lin, Hsin-Hung; Lin, Chieh-Hua; Chung, Wen-Bin

    2013-01-01

    Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8+ T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an ex...

  8. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein.

    Sun, Jianhui; Huang, Liping; Wei, Yanwu; Wang, Yiping; Chen, Dongjie; Du, Wenjuan; Wu, Hongli; Feng, Li; Liu, Changming

    2015-11-01

    Porcine parvovirus type 1 (PPV1) is a major causative agent of embryonic and fetal death in swine. The PPV1 VP2 protein is closely associated with viral immunogenicity for eliciting neutralizing antibodies, but its antigenic structures have been largely unknown. We generated three monoclonal antibodies (MAbs) against baculovirus-expressed recombinant PPV1 VP2 protein. A PEPSCAN analysis identified the minimal B cell linear epitopes of PPV1 VP2 based on these MAbs. Three core epitopes, (228)QQITDA(233), (284)RSLGLPPK(291), and (344)FEYSNGGPFLTPI(356), were defined and mapped onto three-dimensional models of the PPV1 virion and VP2 monomer. The epitope (228)QQITDA(233) is exposed on the virion surface, and the other two are located inside the protein. An alignment of the PPV1 VP2 amino acid sequences showed that (284)RSLGLPPK(291) and (344)FEYSNGGPFLTPI(356) are absolutely conserved, whereas (228)QQITDA(233) has a single substitution at residue 233 in some (S → A or T). We developed a VP2 epitope-based indirect enzyme-linked immunosorbent assay (iELISA) to test for anti-PPV1 antibodies. In a comparative analysis with an immunoperoxidase monolayer assay using 135 guinea pig sera, the VP2-epitope-based iELISA had a concordance rate of 85.19 %, sensitivity of 83.33 %, and specificity of 85.47 %. MAb 8H6 was used to monitor VP2 during the PPV1 replication cycle in vitro with an indirect immunofluorescence assay, which indicated that newly encapsulated virions are released from the nucleus at 24 h postinfection and the PPV1 replication cycle takes less than 24 h. This study provides valuable information clarifying the antigenic structure of PPV1 VP2 and lays the foundations for PPV1 serodiagnosis and antigen detection. PMID:26153140

  9. Conserved regions ofPlasmodium vivax potential vaccine candidate antigens in Sri Lanka:Consciousin silico analysis of prospective conformational epitope regions

    Shanika Amarasinghe; Hashendra Kathriarachchi; Preethi Udagama

    2014-01-01

    Objective:To do mapping and modeling of conformationalB cell epitope regions of highly conserved and protective regions of three merozoitecandidate vaccine proteins ofPlasmodium vivax(P. vivax) ,ie. merozoite purface protein-1(PvMSP-1), apical membrane antigen -1 domainⅡ(PvAMA1-DⅡ) and regionⅡ of theDuffy binding protein(PvDBPⅡ), and to analyze the immunogenic properties of these predicted epitopes.Methods:3-D structures of amino acid haplotypes fromSriLanka(available inGeneBank) ofPvMSP-119(n=27),PvAMA1-DⅡ(n=21) andPvDBPⅡ(n=33) were modeled.SEPPA, selected as the best online server was used for conformational epitope predictions, while prediction and modeling of protein structure and properties related to immunogenicity was carried out withGeno3D server,SCRATCHProtein Server,NetSurfPServer and standalonesoftware,Genious5.4.4.Results:SEPPA revealed that regions of predicted conformational epitopes formed4 clusters inPvMSP-I19, and3 clusters each inPvAMA1-DⅡ andPvDBPⅡ, all of which displayed a high degree of hydrophilicity, contained solvent exposed residues, displayed high probability of antigenicity and showed positive antigenic propensity values, that indicated high degree of immunogenicity.Conclusions:Findings of this study revealed and confirmed that different parts of the sequences of each of the conserved regions of the three selected potential vaccine candidate antigens ofP. vivax are important with regard to conformational epitope prediction that warrants further laboratory experimental investigations in in vivo animal models.

  10. HLA-A2–Restricted Cytotoxic T Lymphocyte Epitopes from Human Heparanase as Novel Targets for Broad-Spectrum Tumor Immunotherapy

    Ting Chen

    2008-09-01

    Full Text Available Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2– restricted cytotoxic T lymphocyte (CTL epitopes in the protein of human Hpa. For this purpose, HLA-A2–restricted CTL epitopes were identified using the following four-step procedure: 1 a computer-based epitope prediction from the amino acid sequence of human Hpa, 2 a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3 stimulation of the primary T-cell response against the predicted peptides in vitro, and 4 testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525, 277-285 (KMLKSFLKA, Hpa277, and 405-413 (WLSLLFKKL, Hpa405 could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-γ–producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2–restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide–based vaccines may be useful for the immunotherapy for patients with advanced tumors.

  11. Positive-unlabeled learning for the prediction of conformational B-cell epitopes

    Ren, Jing; Liu, Qian; Ellis, John; Li, Jinyan

    2015-01-01

    Background The incomplete ground truth of training data of B-cell epitopes is a demanding issue in computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen are confirmed as antigenic residues (positive training data); the remaining residues are unlabeled. As some of these uncertain residues can possibly be grouped to form novel but currently unknown epitopes, it is misguided to unanimously classify all the unlabeled residues as negati...

  12. Structural characterization of the epitopes of the monoclonal antibodies 473HD, CS-56, and MO-225 specific for chondroitin sulfate D-type using the oligosaccharide library.

    Ito, Yumi; Hikino, Megumi; Yajima, Yuki; Mikami, Tadahisa; Sirko, Swetlana; von Holst, Alexer; Faissner, Andreas; Fukui, Shigeyuki; Sugahara, Kazuyuki

    2005-06-01

    The variation in the sulfation profile of chondroitin sulfate (CS)/dermatan sulfate (DS) chains regulates central nervous system development in vertebrates. Notably, the disulfated disaccharide D-unit, GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate), correlates with the promotion of neurite outgrowth through the DSD-1 epitope that is embedded in the CS moiety of the proteoglycan DSD-1-PG/phosphacan. Monoclonal antibody (mAb) 473HD inhibits the DSD-1-dependent neuritogenesis and also recognizes shark cartilage CS-D, which is characterized by the prominent D-unit and is also recognized by two other mAbs, CS-56 and MO-225. We investigate the oligosaccharide epitope structures of these CS-D-reactive mAbs by ELISA and oligosaccharide microarrays using lipid-derivatized CS oligosaccharides. CS-56 and MO-225 recognized the octa- and larger oligosaccharides, though the latter also bound one unique hexasaccharide D-A-D, where A denotes the disaccharide A-unit GlcUA-GalNAc(4-O-sulfate). The octasaccharides reactive with CS-56 and MO-225 shared a core A-D tetrasaccharide, whereas the neighboring structural elements located on the reducing and/or nonreducing sides of the A-D gave a differential preference additionally to the recognition sequence for each antibody. In contrast, 473HD reacted with multiple hexa- and larger oligosaccharides, which also contained A-D or D-A tetrasaccharide sequences. Consistent with the distinct specificity of 473HD as compared with CS-56 and MO-225, the 473HD epitope displayed a different expression pattern in peripheral mouse organs as revealed by immunohistology, extending the previously reported CNS-restricted expression. The epitope of 473HD, but not of CS-56 or MO-225, was eliminated from DSD-1-PG by digestion with chondroitinase B, suggesting the close association of L-iduronic acid with the 473HD epitope. Despite such supplemental information, the integral epitope remains to be isolated for identification and comprehensive analytical

  13. Quasispecies dynamics in main core epitopes of hepatitis B virus by ultra-deep-pyrosequencing

    Maria Homs; Maria Buti; David Tabernero; Josep Quer; Alex Sanchez; Noelia Corral; Rafael Esteban

    2012-01-01

    AIM:To investigate the variability of the main immunodominant motifs of hepatitis B virus (HBV) core gene by ultra-deep-pyrosequencing (UDPS).METHODS:Four samples (2 genotype A and 2 genotype D) from 4 treatment-naive patients were assessed for baseline variability.Two additional samples from one patient (patient 4,genotype D) were selected for analysis:one sample corresponded to a 36-mo treatment-free period from baseline and the other to the time of viral breakthrough after 18 mo of lamivudine treatment.The HBV region analyzed covered amino acids 40 to 95 of the core gene,and included the two main epitopic regions,Th50-69 and B74-84.UDPS was carried out in the Genome Sequencer FLX system (454 Life Sciences,Roche).After computer filtering of UDPS data based on a Poisson statistical model,122 813 sequences were analyzed.The most conserved position detected by UDPS was analyzed by site-directed mutagenesis and evaluated in cell culture.RESULTS:Positions with highest variability rates were mainly located in the main core epitopes,confirming their role as immune-stimulating regions.In addition,the distribution of variability showed a relationship with HBV genotype.Patient 1 (genotype A) presented the lowest variability rates and patient 2 (genotype A) had 3 codons with variability higher than 1%.Patient 3 and 4 (both genotype D) presented 5 and 8 codons with variability higher than 1%,respectively.The median baseline frequencies showed that genotype A samples had higher variability in epitopic positions than in the other positions analyzed,approaching significance (P =0.07,sample 1 and P =0.05,sample 2).In contrast,there were no significant differences in variability between the epitopic and other positions in genotype D cases.Interestingly,patient 1 presented a completely mutated motif from amino acid 64 to 67 (E64LMT67),which is commonly recognized by T helper cells.Additionally,the variability observed in all 4 patients was particularly associated with the E64

  14. Identification of HLA-A*2402-restricted HCMV immediate early-1 (IE-1 epitopes as targets for CD8+ HCMV-specific cytotoxic T lymphocytes

    Lee Sang-Guk

    2009-08-01

    Full Text Available Abstract Background To identify novel HLA-A*2402-restricted human cytomegalovirus (HCMV immediate early-1 (IE-1 epitopes for adoptive immunotherapy, we explored 120 overlapping 15-amino acid spanning IE-1. Methods These peptides were screened by measuring the frequency of polyclonal CD8+ T cells producing intracellular interferon-γ (IFN-γ using flow cytometry and the epitopes were validated with a HCMV-infected target Cr release cytotoxicity assay. Results Initial screening was performed with 12 mini-pools of 10 consecutive peptides made from 120 overlapping peptides15-amino acids in length that spanned IE-1. When peripheral blood mononuclear cells (PBMCs from HLA-A*2402 HCMV-seropositive donors were sensitized with each of the 12 mini-pools, mini-pools 1 and 2 induced the highest frequency of CD8+ cytotoxic T lymphocytes (CTLs producing IFN-γ. When PBMCs were stimulated with each of the twenty peptides belonging to mini-pools 1 and 2, peptides IE-11–15MESSAKRKMDPDNPD and IE-15–19AKRKMDPDNPDEGPS induced the greatest quantities of IFN-γ production and cytotoxicity of HLA-matched HCMV-infected fibroblasts. To determine the exact HLA-A*2402-restricted epitopes within the two IE-1 proteins, we synthesized a total of twenty-one overlapping 9- or 10 amino acid peptides spanning IE-11–15 and IE-15–19. Peptide IE-13–12SSAKRKMDPD induced the greatest quantities of IFN-γ production and target cell killing by CD8+ CTLs. Conclusion HCMV IE-13–12SSAKRKMDPD is a HLA-A*2402-restricted HCMV IE-1 epitope that can serve as a common target for CD8+ HCMV-specific CTLs.

  15. Determination of B-Cell Epitopes in Patients with Celiac Disease: Peptide Microarrays.

    Rok Seon Choung

    Full Text Available Most antibodies recognize conformational or discontinuous epitopes that have a specific 3-dimensional shape; however, determination of discontinuous B-cell epitopes is a major challenge in bioscience. Moreover, the current methods for identifying peptide epitopes often involve laborious, high-cost peptide screening programs. Here, we present a novel microarray method for identifying discontinuous B-cell epitopes in celiac disease (CD by using a silicon-based peptide array and computational methods.Using a novel silicon-based microarray platform with a multi-pillar chip, overlapping 12-mer peptide sequences of all native and deamidated gliadins, which are known to trigger CD, were synthesized in situ and used to identify peptide epitopes.Using a computational algorithm that considered disease specificity of peptide sequences, 2 distinct epitope sets were identified. Further, by combining the most discriminative 3-mer gliadin sequences with randomly interpolated3- or 6-mer peptide sequences, novel discontinuous epitopes were identified and further optimized to maximize disease discrimination. The final discontinuous epitope sets were tested in a confirmatory cohort of CD patients and controls, yielding 99% sensitivity and 100% specificity.These novel sets of epitopes derived from gliadin have a high degree of accuracy in differentiating CD from controls, compared with standard serologic tests. The method of ultra-high-density peptide microarray described here would be broadly useful to develop high-fidelity diagnostic tests and explore pathogenesis.

  16. Immunogenicity of multiple antigen peptides containing Plasmodium vivax CS epitopes in BALB/c mice

    Myriam A. Herrera

    1994-01-01

    Full Text Available Multiple antigen peptide systems (MAPs allow the incorporation of various epitopes in to a single synthetic peptide immunogen. We have characterized the immune response of BALB/c mice to a series of MAPs assembled with different B and T cell epitopes derived from the Plasmodium vivax circumsporozoite (CS protein. A B-cell epitope from the central repeat domain and two T-cell epitopes from the amino and carboxyl flanking regions were used to assembled eight different MAPs. An additional universal T cell epitope (ptt-30 from tetanus toxin protein was included. Immunogenicity in terms of antibody responses and in vitro T lymphocyte proliferation was evaluated. MAPs containing B and T cell epitopes induced high titers of anti-peptides antibodies, which recognized the native protein on sporozoites as determined by IFAT. The antibody specificity was also determined by a competitive inhibition assay with different MAPs. A MAP containing the B cell epitope (p11 and the universal epitope ptt-30 together with another composed of p11 and the promiscuous T cell epitope (p25 proved to be the most immunogenic. The strong antibody response and specificity for the cognate protein indicates that further studies designed to assess the potential of these proteins as human malaria vaccine candidates are warranted.

  17. EpiJen: a server for multistep T cell epitope prediction

    Guan Pingping

    2006-03-01

    Full Text Available Abstract Background The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP to the endoplasmic reticulum (ER, where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM, EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.

  18. A versatile PCR-based tandem epitope tagging system for Streptomyces coelicolor genome.

    Kim, Ji-Nu; Yi, Jeong Sang; Lee, Bo-Rahm; Kim, Eun-Jung; Kim, Min Woo; Song, Yoseb; Cho, Byung-Kwan; Kim, Byung-Gee

    2012-07-20

    Epitope tagging approaches have been widely used for the analysis of functions, interactions and subcellular distributions of proteins. However, incorporating epitope sequence into protein loci in Streptomyces is time-consuming procedure due to the absence of the versatile tagging methods. Here, we developed a versatile PCR-based tandem epitope tagging tool for the Streptomyces genome engineering. We constructed a series of template plasmids that carry repeated sequence of c-myc epitope, Flp recombinase target (FRT) sites, and apramycin resistance marker to insert epitope tags into any desired spot of the chromosomal loci. A DNA module which includes the tandem epitope-encoding sequence and a selectable marker was amplified by PCR with primers that carry homologous extensions to the last portion and downstream region of the targeted gene. We fused the epitope tags at the 3' region of global transcription factors of Streptomyces coelicolor to test the validity of this system. The proper insertion of the epitope tag was confirmed by PCR and western blot analysis. The recombinants showed the identical phenotype to the wild-type that proved the conservation of in vivo function of the tagged proteins. Finally, the direct binding targets were successfully detected by chromatin immunoprecipitation with the increase in the signal-to-noise ratio. The epitope tagging system describes here would provide wide applications to study the protein functions in S. coelicolor. PMID:22704935

  19. Conformational epitope mapping of Pru du 6, a major allergen from almond nut.

    Willison, LeAnna N; Zhang, Qian; Su, Mengna; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2013-10-01

    Tree nuts are a widely consumed food. Although enjoyed safely by most individuals, allergic reactions to tree nuts, including almond, are not uncommon. Almond prunin (Pru du 6), an 11S globulin (legumin), is an abundant nut seed protein and a major allergen. Conformational epitope mapping studies of prunin have been performed with a murine monoclonal antibody (mAb) 4C10. This mAb reacts with non-reduced but not reduced prunin in immunoblotting assays, indicating the recognition of a conformational epitope. 4C10 competes with patient IgE, as assessed by ELISA, indicating clinical significance of the epitope. To characterize the 4C10 epitope, hydrogen/deuterium exchange (HDX) monitored by 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (MS) was performed on the native prunin-4C10 complex and on uncomplexed native prunin. Several epitope candidate peptides that differ in deuterium uptake between the complexed and uncomplexed forms were identified. The epitope was further mapped by analyzing chimeric molecules incorporating segments of the homologous soybean allergen, Gly m 6, in immunoassays. These data indicate that the 4C10 epitope overlaps with a subset of patient IgE binding epitopes on almond prunin and further supports HDX-MS as a valid technique for mapping conformational epitopes. PMID:23498967

  20. Optimization and immune recognition of multiple novel conserved HLA-A2, human immunodeficiency virus type 1-specific CTL epitopes

    Corbet, Sylvie; Nielsen, Henrik Vedel; Vinner, Lasse;

    2003-01-01

    more conserved. Such epitope peptides were anchor-optimized to improve immunogenicity and further increase the number of potential vaccine epitopes. About 67 % of anchor-optimized vaccine epitopes induced immune responses against the corresponding non-immunogenic naturally occurring epitopes. This...... study demonstrates the potency of ANNs for identifying putative virus CTL epitopes, and the new HIV-1 CTL epitopes identified should have significant implications for HIV-1 vaccine development. As a novel vaccine approach, it is proposed to increase the coverage of HIV variants by including multiple...

  1. Characterization and phylogenetic epitope mapping of CD38 ADPR cyclase in the cynomolgus macaque

    Titti Fausto

    2004-09-01

    Full Text Available Abstract Background The CD38 transmembrane glycoprotein is an ADP-ribosyl cyclase that moonlights as a receptor in cells of the immune system. Both functions are independently implicated in numerous areas related to human health. This study originated from an inherent interest in studying CD38 in the cynomolgus monkey (Macaca fascicularis, a species closely related to humans that also represents a cogent animal model for the biomedical analysis of CD38. Results A cDNA was isolated from cynomolgus macaque peripheral blood leukocytes and is predicted to encode a type II membrane protein of 301 amino acids with 92% identity to human CD38. Both RT-PCR-mediated cDNA cloning and genomic DNA PCR surveying were possible with heterologous human CD38 primers, demonstrating the striking conservation of CD38 in these primates. Transfection of the cDNA coincided with: (i surface expression of cynomolgus macaque CD38 by immunofluorescence; (ii detection of ~42 and 84 kDa proteins by Western blot and (iii the appearance of ecto-enzymatic activity. Monoclonal antibodies were raised against the cynomolgus CD38 ectodomain and were either species-specific or cross-reactive with human CD38, in which case they were directed against a common disulfide-requiring conformational epitope that was mapped to the C-terminal disulfide loop. Conclusion This multi-faceted characterization of CD38 from cynomolgus macaque demonstrates its high genetic and biochemical similarities with human CD38 while the immunological comparison adds new insights into the dominant epitopes of the primate CD38 ectodomain. These results open new prospects for the biomedical and pharmacological investigations of this receptor-enzyme.

  2. Epitopes associated with the MHC restriction site of T cells. II. Somatic generation of Iat epitopes on T cells in radiation bone marrow chimeras

    Asano, Y.; Tada, T.

    1987-01-01

    We described in this paper systematic alterations in the expression of unique I region controlled epitopes on helper T cells (Th) in chimeras according to the changes in their H-2 restriction specificity. Taking advantage of the reactivity of monoclonal antibodies (anti-Iat) putatively specific for the epitopes indirectly controlled by I region and expressed in association with the Iak restriction site of Th, we examined the alterations of these epitopes on Th cells from various bone marrow chimeras. Iatk epitopes were physiologically expressed on Iak-restricted but not on Iab-restricted Th cells in (H-2k X H-2b)F1 mice. In the chimeric condition, the H-2k-restricted Th of B6----F1 chimera acquired the expression of Iatk even though B6 Th is unable to express Iatk when developed under the physiologic condition. Iatk are also found on Th of fully allogeneic chimera of B6----C3H, whereas Th cells of C3H----B6 completely lost the Iatk expression. These results indicate that Iat epitopes originally defined as unique I region-controlled determinants selectively expressed on T cells are not encoded by the I region genes but are associated with the T cell receptor that sees the self Ia. The epitopes undergo the adaptive alterations according to the acquisition of a new MHC restriction. This is the first example to demonstrate the epitope associated with T cell receptor which undergo the systematic adaptive differentiation.

  3. Epitopes associated with the MHC restriction site of T cells. II. Somatic generation of Iat epitopes on T cells in radiation bone marrow chimeras

    We described in this paper systematic alterations in the expression of unique I region controlled epitopes on helper T cells (Th) in chimeras according to the changes in their H-2 restriction specificity. Taking advantage of the reactivity of monoclonal antibodies (anti-Iat) putatively specific for the epitopes indirectly controlled by I region and expressed in association with the Iak restriction site of Th, we examined the alterations of these epitopes on Th cells from various bone marrow chimeras. Iatk epitopes were physiologically expressed on Iak-restricted but not on Iab-restricted Th cells in (H-2k X H-2b)F1 mice. In the chimeric condition, the H-2k-restricted Th of B6----F1 chimera acquired the expression of Iatk even though B6 Th is unable to express Iatk when developed under the physiologic condition. Iatk are also found on Th of fully allogeneic chimera of B6----C3H, whereas Th cells of C3H----B6 completely lost the Iatk expression. These results indicate that Iat epitopes originally defined as unique I region-controlled determinants selectively expressed on T cells are not encoded by the I region genes but are associated with the T cell receptor that sees the self Ia. The epitopes undergo the adaptive alterations according to the acquisition of a new MHC restriction. This is the first example to demonstrate the epitope associated with T cell receptor which undergo the systematic adaptive differentiation

  4. Construction and characterization of an HCV-derived multi-epitope peptide antigen containing B-cell HVR1 mimotopes and T-cell conserved epitopes

    GAO; Jun; GONG; Yuping; ZHAO; Ping; ZHU; Qing; YANG; Xiaoping; QI; Zhongtian

    2006-01-01

    Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1(HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMER The immunogenic properties of CEMP were characterized by HCV infected patients' sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP.Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.

  5. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  6. Characterisation and epitope analysis of monoclonal antibodies to virions of clover yellow vein and Johnsongrass mosaic potyviruses.

    Hewish, D R; Xiao, X W; Mishra, A; Gough, K H; Shukla, D D

    1993-01-01

    Mouse monoclonal antibodies (MAbs) against the Australian B strain of clover yellow vein (ClYVV-B) and the JG strain of Johnsongrass mosaic (JGMV) potyviruses were produced, characterised and the epitopes with which they reacted were deduced. Using intact particles of ClYVV a total of ten MAbs were obtained which reacted strongly with ClYVV-B in an enzyme-linked immunosorbent assay and Western blots. Four of these MAbs (1, 2, 4, and 13) were found to be ClYVV-specific, as they reacted with all five ClYVV strains from Australia and the U.S.A. but not with 11 strains of bean yellow mosaic (BYMV), pea mosaic (PMV), and white lupin mosaic (WLMV) viruses which, together with ClYVV, form the BYMV subgroup of potyvirses. These MAbs failed to react with eight other potyvirus species, including six which infect legumes like the viruses in the BYMV subgroup. The ClYVV MAb 10 was found to be BYMV subgroup-specific. It reacted strongly with 15 of the 16 strains of viruses in the subgroup and gave no reaction with eight other potyviruses. The other five ClYVV MAbs reacted with varying degrees of specificity with the BYMV subgroup viruses and also with other potyviruses. Eight of the ClYVV MAbs (1, 2, 4, 5, 13, 17, 21, and 22) reacted with the intact coat proteins only and not with the truncated (minus amino terminus) coat protein of ClYVV suggesting that the epitopes for these MAbs are located in the surface-exposed, amino-terminal region of the ClYVV coat protein. Comparison of published coat protein sequences of BYMV and ClYVV isolates indicated that the epitopes for the four ClYVV-specific MAbs may be in the amino-terminal region spanning amino acid residues 18 to 30, whereas those for the other four MAbs may be located in the first 17 amino-terminal amino acid residue region. The epitopes that reacted with BYMV subgroup-specific MAb 10 and MAb 30 which reacted with 20 of the 24 potyvirus isolates, are probably located in the core region of ClYVV coat protein as these MAbs

  7. Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions

    Tambunan, Usman Sumo Friend; Sipahutar, Feimmy Ruth Pratiwi; Parikesit, Arli Aditya; Kerami, Djati

    2016-01-01

    From 2003 to 2013, Indonesia had the highest number of avian influenza A cases in humans, with 192 cases and 160 fatalities. Avian influenza is caused by influenza virus type A, such as subtype H5N1. This virus has two glycoproteins: hemagglutinin and neuraminidase, which will become the primary target to be neutralized by vaccine. Vaccine is the most effective immunologic intervention. In this study, we use the epitope-based vaccine design from hemagglutinin and neuraminidase of H5N1 Indonesian strain virus by using immunoinformatics approach in order to predict the binding of B-cell and T-cell epitopes (class I and class II human leukocyte antigen [HLA]). BCPREDS was used to predict the B-cell epitope. Propred, Propred I, netMHCpan, and netMHCIIpan were used to predict the T-cell epitope. Two B-cell epitopes of hemagglutinin candidates and one B-cell epitope of neuraminidase candidates were obtained to bind T-cell CD4+ (class II HLA), and also five T-cell epitope hemagglutinin and four T-cell epitope neuraminidase were obtained to bind T-cell CD8+ (class I HLA). The visualization of epitopes was done using MOE 2008.10. It shows that the binding affinity of epitope–HLA was based on minimum binding free energy (ΔGbinding). Based on this result, visualization, and dynamic simulation, four hemagglutinin epitopes (MEKIVLLLA, CPYLGSPSF, KCQTPMGAI, and IGTSTLNQR) and two neuraminidase epitopes (NPNQKIITI and CYPDAGEIT) were computed as having the best binding affinity from HLA ligand. The results mentioned above are from in silico experiments and need to be validated using wet experiment. PMID:27147821

  8. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.

    Mark D Hicar

    Full Text Available Numerous broadly neutralizing antibodies (Abs target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes. Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs, we previously used HIV virus-like particles (VLPs to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.

  9. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.

    Hicar, Mark D; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U; Kalams, Spyros A; Doranz, Benjamin J; Spearman, Paul; Crowe, James E

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  10. IMMUNOCAT—A Data Management System for Epitope Mapping Studies

    Jo L. Chung

    2010-01-01

    Full Text Available To enable rationale vaccine design, studies of molecular and cellular mechanisms of immune recognition need to be linked with clinical studies in humans. A major challenge in conducting such translational research studies lies in the management and integration of large amounts and various types of data collected from multiple sources. For this purpose, we have established “IMMUNOCAT”, an interactive data management system for the epitope discovery research projects conducted by our group. The system provides functions to store, query, and analyze clinical and experimental data, enabling efficient, systematic, and integrative data management. We demonstrate how IMMUNOCAT is utilized in a large-scale research contract that aims to identify epitopes in common allergens recognized by T cells from human donors, in order to facilitate the rational design of allergy vaccines. At clinical sites, demographic information and disease history of each enrolled donor are captured, followed by results of an allergen skin test and blood draw. At the laboratory site, T cells derived from blood samples are tested for reactivity against a panel of peptides derived from common human allergens. IMMUNOCAT stores results from these T cell assays along with MHC:peptide binding data, results from RAST tests for antibody titers in donor serum, and the respective donor HLA typing results. Through this system, we are able to perform queries and integrated analyses of the various types of data. This provides a case study for the use of bioinformatics and information management techniques to track and analyze data produced in a translational research study aimed at epitope identification.

  11. The epitope of the VP1 protein of porcine parvovirus

    Zhang Chao-fan; Cui Shang-jin; Wang Zhao; Xie Hong-ling; Cui Yu-dong

    2010-01-01

    Abstract Porcine parvovirus (PPV) is the major causative agent in a syndrome of reproductive failure in swine. Much has been learned about the structure and function of PPV in recent years, but nothing is known about the epitopes of the structural protein VP1, which is an important antigen of PPV. In this study, the monoclonal antibody C4 against VP1 of PPV was prepared and was used to biopan a 12-mer phage peptide library three times. The selected phage clones were identified by ELISA and th...

  12. Plasmodium falciparum: an epitope within a highly conserved region of the 47-kDa amino-terminal domain of the serine repeat antigen is a target of parasite-inhibitory antibodies.

    Fox, B A; Xing-Li, P; Suzue, K; Horii, T; Bzik, D J

    1997-02-01

    Previously, the Plasmodium falciparum serine repeat antigen has been shown to be protective in primate models of malaria immunity and also to be a target of in vitro parasite-inhibitory antibodies. To further define parasite-inhibitory epitopes a series of deletions from the amino-terminal 47-kDa domain of the serine repeat antigen (SERA) were constructed as glutathione-S-transferase fusion proteins. Several GST-SERA fusion proteins were used to vaccinate mice with Freund's adjuvant and the resulting immune sera were used to assay for the inhibition of P. falciparum invasion of erythrocytes in vitro. The minimal epitope shown to be the target of invasion-blocking antibodies was SERA amino acids 17-165. Additional GST-SERA deletion constructs of the 47-kDa domain were developed and evaluated for reactivity, by Western immunoblot analysis, with a parasite-inhibitory murine monoclonal antibody (mAb 43E5), a parasite-inhibitory pooled goat polyclonal sera, and a pooled human Nigerian immune serum. The parasite-inhibitory epitope defined by mAb 43E5 was mapped to SERA amino acids 17-110 and, at least, part of the epitope was defined to include amino acids in the region of amino acids 59-72. The parasite-inhibitory epitope recognized by mAb 43E5 appears to be well conserved between diverse geographical isolates of P. falciparum. The results have relevance for malaria vaccine development and suggest that an appropriately designed recombinant SERA antigen produced from a synthetic gene in Escherichia coli may be an effective component of a candidate malaria vaccine. PMID:9030663

  13. High-Level Systemic Expression of Conserved Influenza Epitope in Plants on the Surface of Rod-Shaped Chimeric Particles

    Natalia V. Petukhova

    2014-04-01

    Full Text Available Recombinant viruses based on the cDNA copy of the tobacco mosaic virus (TMV genome carrying different versions of the conserved M2e epitope from influenza virus A cloned into the coat protein (CP gene were obtained and partially characterized by our group previously; cysteines in the human consensus M2e sequence were changed to serine residues. This work intends to show some biological properties of these viruses following plant infections. Agroinfiltration experiments on Nicotiana benthamiana confirmed the efficient systemic expression of M2e peptides, and two point amino acid substitutions in recombinant CPs significantly influenced the symptoms and development of viral infections. Joint expression of RNA interference suppressor protein p19 from tomato bushy stunt virus (TBSV did not affect the accumulation of CP-M2e-ser recombinant protein in non-inoculated leaves. RT-PCR analysis of RNA isolated from either infected leaves or purified TMV-M2e particles proved the genetic stability of TMV‑based viral vectors. Immunoelectron microscopy of crude plant extracts demonstrated that foreign epitopes are located on the surface of chimeric virions. The rod‑shaped geometry of plant-produced M2e epitopes is different from the icosahedral or helical filamentous arrangement of M2e antigens on the carrier virus-like particles (VLP described earlier. Thereby, we created a simple and efficient system that employs agrobacteria and plant viral vectors in order to produce a candidate broad-spectrum flu vaccine.

  14. Identification of a human immunodominant B-cell epitope within the immunoglobulin A1 protease of Streptococcus pneumoniae

    De Paolis, Francesca; Beghetto, Elisa; Spadoni, Andrea; Montagnani, Francesca; Felici, Franco; Oggioni, Marco R; Gargano, Nicola

    2007-01-01

    Background The IgA1 protease of Streptococcus pneumoniae is a proteolytic enzyme that specifically cleaves the hinge regions of human IgA1, which dominates most mucosal surfaces and is the major IgA isotype in serum. This protease is expressed in all of the known pneumococcal strains and plays a major role in pathogen's resistance to the host immune response. The present work was focused at identifying the immunodominant regions of pneumococcal IgA1 protease recognized by the human antibody response. Results An antigenic sequence corresponding to amino acids 420–457 (epiA) of the iga gene product was identified by screening a pneumococcal phage display library with patients' sera. The epiA peptide is conserved in all pneumococci and in two out of three S. mitis strains, while it is not present in other oral streptococci so far sequenced. This epitope was specifically recognized by antibodies present in sera from 90% of healthy adults, thus representing an important target of the humoral response to S. pneumoniae and S. mitis infection. Moreover, sera from 68% of children less than 4 years old reacted with the epiA peptide, indicating that the human immune response against streptococcal antigens occurs during childhood. Conclusion The broad and specific recognition of the epiA polypeptide by human sera demonstrate that the pneumococcal IgA1 protease contains an immunodominant B-cell epitope. The use of phage display libraries to identify microbe or disease-specific antigens recognized by human sera is a valuable approach to epitope discovery. PMID:18088426

  15. HLA-DP, HLA-DQ, and HLA-DR-restricted epitopes in GRA5 of toxoplasma gondii strains

    Haryati, S.; Sari, Y.; APrasetyo, A.; Sariyatun, R.

    2016-02-01

    The dense granular (GRA) proteins of Toxoplasma gondii(T. gondii) have been demonstrated as potential sources of T. gondii vaccine antigens. However, data of the GRA5 protein are limited. This study analyzed twenty-one complete GRA5 sequences of T. gondii GT1, RH, ME49, VEG, MAS, RUB, FOU, p89, VAND, and GAB2-2007-GAL-DOM2 strains to identify potential epitopes restricted by Major Histocompatibility Complex class II (MHC- II) molecules (human leukocyte antigen (HLA)-DP, HLA-DQ, and HLA-DR) in the protein. In all T. gondii strains, peptides positioned at amino acid (aa) 15-29, 16-30, 17-31, 18-32, 19-33, 83-97, 84-98, 86-100, 87-101, 89-103, and 90-104 were predicted to pose high affinity and binding with HLA-DRB1*0101, HLA-DRB1*0301 (DR17), HLA-DRB1*0401 (DR4Dw4), HLA-DRB1*0701, HLA-DRB1*1101, HLA-DRB1*1501 (DR2b), and/or HLA-DRB5*0101. Considering the epitope's affinity, ligation strength, and hydrophilicity, LRLLRRRRRRAIQEE sequence (aa 90-104) restricted by HLA-DRB1*0101, HlA- DRB1*0301 (DR17), and HLA-DRB1*0401 (DR4Dw4) was considered as the most potential MHC-II epitope in GRA5 of T. gondii. These results would be useful for studies concerning in developing T. gondii vaccine and diagnostic method.

  16. Identification of a human immunodominant B-cell epitope within the immunoglobulin A1 protease of Streptococcus pneumoniae

    Felici Franco

    2007-12-01

    Full Text Available Abstract Background The IgA1 protease of Streptococcus pneumoniae is a proteolytic enzyme that specifically cleaves the hinge regions of human IgA1, which dominates most mucosal surfaces and is the major IgA isotype in serum. This protease is expressed in all of the known pneumococcal strains and plays a major role in pathogen's resistance to the host immune response. The present work was focused at identifying the immunodominant regions of pneumococcal IgA1 protease recognized by the human antibody response. Results An antigenic sequence corresponding to amino acids 420–457 (epiA of the iga gene product was identified by screening a pneumococcal phage display library with patients' sera. The epiA peptide is conserved in all pneumococci and in two out of three S. mitis strains, while it is not present in other oral streptococci so far sequenced. This epitope was specifically recognized by antibodies present in sera from 90% of healthy adults, thus representing an important target of the humoral response to S. pneumoniae and S. mitis infection. Moreover, sera from 68% of children less than 4 years old reacted with the epiA peptide, indicating that the human immune response against streptococcal antigens occurs during childhood. Conclusion The broad and specific recognition of the epiA polypeptide by human sera demonstrate that the pneumococcal IgA1 protease contains an immunodominant B-cell epitope. The use of phage display libraries to identify microbe or disease-specific antigens recognized by human sera is a valuable approach to epitope discovery.

  17. Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection.

    Xiao Fang Lim

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the main causative agent of Hand, Foot and Mouth disease (HFMD and is associated with severe neurologic complications and mortalities. At present, there is no vaccine or therapeutic available for treatment. METHODOLOGY/PRINCIPAL FINDING: In this study, we generated two mAbs, denoted as mAb 51 and 53, both targeting the same linear epitope on VP1 capsid protein, spanning amino acids 215-219. In comparison, mAb 51 belonging to isotype IgM possesses neutralizing activity in vitro, whereas, mAb 53 belonging to isotype IgG1 does not have any neutralizing ability, even towards its homologous strain. When mAb 51 at 10 µg/g of body weight was administered to the 2-week-old AG129 mice one day prior to lethal challenge, 100% in vivo passive protection was observed. In contrast, the isotype control group mice, injected with an irrelevant IgM antibody before the challenge, developed limb paralysis as early as day 6 post-infection. Histological examination demonstrated that mAb 51 was able to protect against pathologic changes such as neuropil vacuolation and neuronal loss in the spinal cord, which were typical in unprotected EV-71 infected mice. BLAST analyses of that epitope revealed that it was highly conserved among all EV71 strains, but not coxsachievirus 16 (CA16. CONCLUSION: We have defined a linear epitope within the VP1 protein and demonstrated its neutralizing ability to be isotype dependent. The neutralizing property and highly conserved sequence potentiated the application of mAb 51 and 53 for protection against EV71 infection and diagnosis respectively.

  18. Highly conserved influenza A virus epitope sequences as candidates of H3N2 flu vaccine targets.

    Wu, Ko-Wen; Chien, Chih-Yi; Li, Shiao-Wen; King, Chwan-Chuen; Chang, Chuan-Hsiung

    2012-08-01

    This study focused on identifying the conserved epitopes in a single subtype A (H3N2)-as candidates for vaccine targets. We identified a total of 32 conserved epitopes in four viral proteins [22 HA, 4PB1, 3 NA, 3 NP]. Evaluation of conserved epitopes in coverage during 1968-2010 revealed that (1) 12 HA conserved epitopes were highly present in the circulating viruses; (2) the remaining 10 HA conserved epitopes appeared with lower percentage but a significantly increasing trend after 1989 [p<0.001]; and (3) the conserved epitopes in NA, NP and PB1 are also highly frequent in wild-type viruses. These conserved epitopes also covered an extremely high percentage of the 16 vaccine strains during the 42 year period. The identification of highly conserved epitopes using our approach can also be applied to develop broad-spectrum vaccines. PMID:22698979

  19. HLA-DQ molecules as affinity matrix for identification of gluten T cell epitopes.

    Dørum, Siri; Bodd, Michael; Fallang, Lars-Egil; Bergseng, Elin; Christophersen, Asbjørn; Johannesen, Marie K; Qiao, Shuo-Wang; Stamnaes, Jorunn; de Souza, Gustavo A; Sollid, Ludvig M

    2014-11-01

    Even though MHC class II is a dominant susceptibility factor for many diseases, culprit T cell epitopes presented by disease-associated MHC molecules remain largely elusive. T cells of celiac disease lesions recognize cereal gluten epitopes presented by the disease-associated HLA molecules DQ2.5, DQ2.2, or DQ8. Employing celiac disease and complex gluten Ag digests as a model, we tested the feasibility of using DQ2.5 and DQ2.2 as an affinity matrix for identification of disease-relevant T cell epitopes. Known gluten T cell epitope peptides were enriched by DQ2.5, whereas a different set of peptides was enriched by DQ2.2. Of 86 DQ2.2-enriched peptides, four core sequences dominated. One of these core sequences is a previously known epitope and two others are novel epitopes. The study provides insight into the selection of gluten epitopes by DQ2.2. Furthermore, the approach presented is relevant for epitope identification in other MHC class II-associated disorders. PMID:25261484

  20. Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding

    He, Linling; Cheng, Yushao; Kong, Leopold; Azadnia, Parisa; Giang, Erick; Kim, Justin; Wood, Malcolm R.; Wilson, Ian A.; Law, Mansun; Zhu, Jiang

    2015-08-01

    Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.

  1. MHC class I epitope binding prediction trained on small data sets

    Lundegaard, Claus; Nielsen, Morten; Lamberth, K.;

    2004-01-01

    The identification of potential T-cell epitopes is important for development of new human or vetenary vaccines, both considering single protein/subunit vaccines, and for epitope/peptide vaccines as such. The highly diverse MHC class I alleles bind very different peptides, and accurate binding...... situations where only very limited data are available for training....

  2. Molecular modeling and conformational IgG epitope mapping on bovine β-casein

    Liu, Fahui; Gao, Jinyan; Li, Xin; Chen, Hongbing

    2016-01-01

    Characterizing conformational B-cell epitopes is a key step for understanding the immunological basis of allergy contributed by β-casein. There is no resolved conformational structure of β-casein in protein data bank, and most of the previous research on epitope identification of β-casein focused

  3. Structural analysis of B-cell epitopes in antibody:protein complexes

    Kringelum, Jens Vindahl; Nielsen, Morten; Padkjær, Søren Berg; Lund, Ole

    developed a novel framework for comparing and superimposing B-cell epitopes and applied it on a dataset of 107 non-similar antigen:antibody structures extracted from the PDB database. With the presented framework, we were able to describe the general B-cell epitope as a flat, oblong, oval shaped volume......The binding of antigens to antibodies is one of the key events in an immune response against foreign molecules and is a critical element of several biomedical applications including vaccines and immunotherapeutics. For development of such applications, the identification of antibody binding sites...... (B-cell epitopes) is essential. However experimental epitope mapping is highly cost-intensive and computer-aided methods do in general have moderate performance. One major reason for this moderate performance is an incomplete understanding of what characterizes an epitope. To fill this gap, we here...

  4. High-throughput epitope binning of therapeutic monoclonal antibodies: why you need to bin the fridge.

    Brooks, Benjamin D; Miles, Adam R; Abdiche, Yasmina N

    2014-08-01

    Analytical tools are evolving to meet the need for the higher-throughput characterization of therapeutic monoclonal antibodies. An antibody's epitope is arguably its most important property because it underpins its functional activity but, because epitope selection is innate, it remains an empirical process. Here, we focus on the emergence of label-free biosensors with throughput capabilities orders of magnitude higher than the previous state-of-the-art, which can facilitate large assays such as epitope binning so that they can be incorporated alongside functional activity screens, enabling the rapid identification of leads that exhibit unique and functional epitopes. In addition to streamlining the drug development process by saving time and cost, the information from epitope binning assays could provide the basis for intellectual property protection. PMID:24880105

  5. T Cell Epitope Peptide Therapy for Allergic Diseases.

    O'Hehir, Robyn E; Prickett, Sara R; Rolland, Jennifer M

    2016-02-01

    Careful selection of dominant T cell epitope peptides of major allergens that display degeneracy for binding to a wide array of MHC class II molecules allows induction of clinical and immunological tolerance to allergen in a refined treatment strategy. From the original concept of peptide-induced T cell anergy arising from in vitro studies, proof-of-concept murine models and flourishing human trials followed. Current randomized, double-blind, placebo-controlled clinical trials of mixtures of T cell-reactive short allergen peptides or long contiguous overlapping peptides are encouraging with intradermal administration into non-inflamed skin a preferred delivery. Definitive immunological mechanisms are yet to be resolved but specific anergy, Th2 cell deletion, immune deviation, and Treg induction seem implicated. Significant efficacy, particularly with short treatment courses, in a range of aeroallergen therapies (cat, house dust mite, grass pollen) with inconsequential non-systemic adverse events likely heralds a new class of therapeutic for allergy, Synthetic Peptide Immuno-Regulatory Epitopes (SPIRE). PMID:26768622

  6. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  7. Conservation of HIV-1 T cell epitopes across time and clades: validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine.

    Levitz, Lauren; Koita, Ousmane A; Sangare, Kotou; Ardito, Matthew T; Boyle, Christine M; Rozehnal, John; Tounkara, Karamoko; Dao, Sounkalo M; Koné, Youssouf; Koty, Zoumana; Buus, Soren; Moise, Leonard; Martin, William D; De Groot, Anne S

    2012-12-14

    HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the "Achilles' heel" of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNγ response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine. PMID:23102976

  8. ElliPro: a new structure-based tool for the prediction of antibody epitopes

    Fusseder Nicholas

    2008-12-01

    Full Text Available Abstract Background Reliable prediction of antibody, or B-cell, epitopes remains challenging yet highly desirable for the design of vaccines and immunodiagnostics. A correlation between antigenicity, solvent accessibility, and flexibility in proteins was demonstrated. Subsequently, Thornton and colleagues proposed a method for identifying continuous epitopes in the protein regions protruding from the protein's globular surface. The aim of this work was to implement that method as a web-tool and evaluate its performance on discontinuous epitopes known from the structures of antibody-protein complexes. Results Here we present ElliPro, a web-tool that implements Thornton's method and, together with a residue clustering algorithm, the MODELLER program and the Jmol viewer, allows the prediction and visualization of antibody epitopes in a given protein sequence or structure. ElliPro has been tested on a benchmark dataset of discontinuous epitopes inferred from 3D structures of antibody-protein complexes. In comparison with six other structure-based methods that can be used for epitope prediction, ElliPro performed the best and gave an AUC value of 0.732, when the most significant prediction was considered for each protein. Since the rank of the best prediction was at most in the top three for more than 70% of proteins and never exceeded five, ElliPro is considered a useful research tool for identifying antibody epitopes in protein antigens. ElliPro is available at http://tools.immuneepitope.org/tools/ElliPro. Conclusion The results from ElliPro suggest that further research on antibody epitopes considering more features that discriminate epitopes from non-epitopes may further improve predictions. As ElliPro is based on the geometrical properties of protein structure and does not require training, it might be more generally applied for predicting different types of protein-protein interactions.

  9. Identification and validation of T-cell epitopes in outer membrane protein (OMP) of Salmonella typhi.

    Tanu, Arifur Rahman; Ashraf, Mohammad Arif; Hossain, Md Faruk; Ismail, Md; Shekhar, Hossain Uddin

    2014-01-01

    This study aims to design epitope-based peptides for the utility of vaccine development by targeting outer membrane protein F (Omp F), because two available licensed vaccines, live oral Ty21a and injectable polysaccharide, are 50% to 80% protective with a higher rate of side effects. Conventional vaccines take longer time for development and have less differentiation power between vaccinated and infected cells. On the other hand, Peptide-based vaccines present few advantages over other vaccines, such as stability of peptide, ease to manufacture, better storage, avoidance of infectious agents during manufacture, and different molecules can be linked with peptides to enhance their immunogenicity. Omp F is highly conserved and facilitates attachment and fusion of Salmonella typhi with host cells. Using various databases and tools, immune parameters of conserved sequences from Omp F of different isolates of Salmonella typhi were tested to predict probable epitopes. Binding analysis of the peptides with MHC molecules, epitopes conservancy, population coverage, and linear B cell epitope prediction were analyzed. Among all those predicted peptides, ESYTDMAPY epitope interacted with six MHC alleles and it shows highest amount of interaction compared to others. The cumulative population coverage for these epitopes as vaccine candidates was approximately 70%. Structural analysis suggested that epitope ESYTDMAPY fitted well into the epitope-binding groove of HLA-C*12:03, as this HLA molecule was common which interact with each and every predicted epitopes. So, this potential epitope may be linked with other molecules to enhance its immunogenicity and used for vaccine development. PMID:25258481

  10. Structural basis for epitope sharing between group 1 allergens of cedar pollen.

    Midoro-Horiuti, Terumi; Schein, Catherine H; Mathura, Venkatarajan; Braun, Werner; Czerwinski, Edmund W; Togawa, Akihisa; Kondo, Yasuto; Oka, Tetsuo; Watanabe, Masanao; Goldblum, Randall M

    2006-02-01

    The group 1 allergens are a major cause of cedar pollen hypersensitivity in several geographic areas. Allergens from several taxa have been shown to cross-react. The goal of these studies was to compare the structural features of the shared and unique epitopes of the group 1 allergen from mountain cedar (Jun a 1) and Japanese cedar (Cry j 1). An array of overlapping peptides from the sequence of Jun a 1 and a panel of monoclonal anti-Cry j 1 antibodies were used to identify the IgE epitopes recognized by cedar-sensitive patients from Texas and Japan. IgE from Japanese patients reacted with peptides representing one of the two linear epitopes within the highly conserved beta-helical core structure and both epitopes within less ordered loops and turns near the N- and C-termini of Jun a 1. A three-dimensional (3D) model of the Cry j 1, based on the crystal structure of Jun a 1, indicated a similar surface exposure for the four described epitopes of Jun a 1 and the homologous regions of Cry j 1. The monoclonal antibodies identified another shared epitope, which is most likely conformational and a unique Cry j 1 epitope that may be the previously recognized glycopeptide IgE epitope. Defining the structural basis for shared and unique epitopes will help to identify critical features of IgE epitopes that can be used to develop mimotopes or identify allergen homologues for vaccine development. PMID:15975657

  11. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy.

    Janet Lei

    Full Text Available The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA, human tyrosinase-related protein 2 (TRP-2, and oncoprotein E7 of human papillomavirus type 16 (HPV16E7. Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication

  12. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Tapan Bhattacharyya

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70% of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001. Among northern chagasic sera 4/20 (20% from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS

  13. Epitope mapping of PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum

    He Zhicheng

    2010-04-01

    Full Text Available Abstract Background Apical membrane antigen 1 (AMA-1 and merozoite surface protein 1 (MSP1 of Plasmodium falciparum are two leading blood-stage malaria vaccine candidates. A P. falciparum chimeric protein 2.9 (PfCP-2.9 has been constructed as a vaccine candidate, by fusing AMA-1 domain III (AMA-1 (III with a C-terminal 19 kDa fragment of MSP1 (MSP1-19 via a 28-mer peptide hinge. PfCP-2.9 was highly immunogenic in animal studies, and antibodies elicited by the PfCP-2.9 highly inhibited parasite growth in vitro. This study focused on locating the distribution of epitopes on PfCP-2.9. Methods A panel of anti-PfCP-2.9 monoclonal antibodies (mAbs were produced and their properties were examined by Western blot as well as in vitro growth inhibition assay (GIA. In addition, a series of PfCP-2.9 mutants containing single amino acid substitution were produced in Pichia pastoris. Interaction of the mAbs with the PfCP-2.9 mutants was measured by both Western blot and enzyme-linked immunosorbent assay (ELISA. Results Twelve mAbs recognizing PfCP-2.9 chimeric protein were produced. Of them, eight mAbs recognized conformational epitopes and six mAbs showed various levels of inhibitory activities on parasite growth in vitro. In addition, seventeen PfCP-2.9 mutants with single amino acid substitution were produced in Pichia pastoris for interaction with mAbs. Reduced binding of an inhibitory mAb (mAb7G, was observed in three mutants including M62 (Phe491→Ala, M82 (Glu511→Gln and M84 (Arg513→Lys, suggesting that these amino acid substitutions are critical to the epitope corresponding to mAb7G. The binding of two non-inhibitory mAbs (mAbG11.12 and mAbW9.10 was also reduced in the mutants of either M62 or M82. The substitution of Leu31 to Arg resulted in completely abolishing the binding of mAb1E1 (a blocking antibody to M176 mutant, suggesting that the Leu residue at this position plays a crucial role in the formation of the epitope. In addition, the Asn15

  14. Clustered epitopes within a new poly-epitopic HIV-1 DNA vaccine shows immunogenicity in BALB/c mice.

    Jafarpour, Nazli; Memarnejadian, Arash; Aghasadeghi, Mohammad Reza; Kohram, Fatemeh; Aghababa, Haniyeh; Khoramabadi, Nima; Mahdavi, Mehdi

    2014-08-01

    Despite a huge number of studies towards vaccine development against human immunodeficiency virus-1, no effective vaccine has been approved yet. Thus, new vaccines should be provided with new formulations. Herein, a new DNA vaccine candidate encoding conserved and immunogenic epitopes from HIV-1 antigens of tat, pol, gag and env is designed and constructed. After bioinformatics analyses to find the best epitopes and their tandem, nucleotide sequence corresponding to the designed multiepitope was synthesized and cloned into pcDNA3.1+ vector. Expression of pcDNA3.1-tat/pol/gag/env plasmid was evaluated in HEK293T cells by RT-PCR and western-blotting. Seven groups of BALB/c mice were intramuscularly immunized three times either with 50, 100, 200 µg of plasmid in 2-week intervals or with similar doses of insert-free plasmid. Two weeks after the last injection, proliferation of T cells and secretion of IL4 and IFN-γ cytokines were evaluated using Brdu and ELISA methods, respectively. Results showed the proper expression of the plasmid in protein and mRNA levels. Moreover, the designed multiepitope plasmid was capable of induction of both proliferation responses as well as IFN-γ and IL-4 cytokine production in a considerable level compared to the control groups. Overall, our primary data warranted further detailed studies on the potency of this vaccine. PMID:24842263

  15. General characterization of Tityus fasciolatus scorpion venom. Molecular identification of toxins and localization of linear B-cell epitopes.

    Mendes, T M; Guimarães-Okamoto, P T C; Machado-de-Avila, R A; Oliveira, D; Melo, M M; Lobato, Z I; Kalapothakis, E; Chávez-Olórtegui, C

    2015-06-01

    This communication describes the general characteristics of the venom from the Brazilian scorpion Tityus fasciolatus, which is an endemic species found in the central Brazil (States of Goiás and Minas Gerais), being responsible for sting accidents in this area. The soluble venom obtained from this scorpion is toxic to mice being the LD50 is 2.984 mg/kg (subcutaneally). SDS-PAGE of the soluble venom resulted in 10 fractions ranged in size from 6 to 10-80 kDa. Sheep were employed for anti-T. fasciolatus venom serum production. Western blotting analysis showed that most of these venom proteins are immunogenic. T. fasciolatus anti-venom revealed consistent cross-reactivity with venom antigens from Tityus serrulatus. Using known primers for T. serrulatus toxins, we have identified three toxins sequences from T. fasciolatus venom. Linear epitopes of these toxins were localized and fifty-five overlapping pentadecapeptides covering complete amino acid sequence of the three toxins were synthesized in cellulose membrane (spot-synthesis technique). The epitopes were located on the 3D structures and some important residues for structure/function were identified. PMID:25817000

  16. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes

    Sue D. Xiang

    2015-10-01

    Full Text Available Sperm protein antigen 17 (Sp17, expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17 sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional “mix-in” pro-inflammatory adjuvant CpG, both mapping to amino acids (aa 111–142. However, delivery of hSp17111–142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111–142, from an immuno-dominant region 134–142 aa for CpG, to region 121–138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses.

  17. A Nanoparticle Based Sp17 Peptide Vaccine Exposes New Immuno-Dominant and Species Cross-reactive B Cell Epitopes.

    Xiang, Sue D; Gao, Qian; Wilson, Kirsty L; Heyerick, Arne; Plebanski, Magdalena

    2015-01-01

    Sperm protein antigen 17 (Sp17), expressed in primary as well as in metastatic lesions in >83% of patients with ovarian cancer, is a promising ovarian cancer vaccine candidate. Herein we describe the formulation of nanoparticle based vaccines based on human Sp17 (hSp17) sequence derived peptides, and map the immuno-dominant T cell and antibody epitopes induced using such formulations. The primary T and B cell immuno-dominant region within Sp17 was found to be the same when using biocompatible nanoparticle carriers or the conventional "mix-in" pro-inflammatory adjuvant CpG, both mapping to amino acids (aa) 111-142. However, delivery of hSp17111-142 as a nanoparticle conjugate promoted a number of new properties, changing the dominant antibody isotype induced from IgG2a to IgG1 and the fine specificity of the B cell epitopes within hSp17111-142, from an immuno-dominant region 134-142 aa for CpG, to region 121-138 aa for nanoparticles. Associated with this change in specificity was a substantial increase in antibody cross-reactivity between mouse and human Sp17. These results indicate conjugation of antigen to nanoparticles can have major effects on fine antigen specificity, which surprisingly could be beneficially used to increase the cross-reactivity of antibody responses. PMID:26529027

  18. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein.

    Antu K Dey

    Full Text Available The identification of HIV-1 envelope glycoprotein (Env structures that can generate broadly neutralizing antibodies (BNAbs is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4 receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i epitope(s known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH, was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140 using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1 complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s. These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s here, and its potential role in vaccine application.

  19. Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza.

    Zarnitsyna, Veronika I; Ellebedy, Ali H; Davis, Carl; Jacob, Joshy; Ahmed, Rafi; Antia, Rustom

    2015-09-01

    The immune responses to influenza, a virus that exhibits strain variation, show complex dynamics where prior immunity shapes the response to the subsequent infecting strains. Original antigenic sin (OAS) describes the observation that antibodies to the first encountered influenza strain, specifically antibodies to the epitopes on the head of influenza's main surface glycoprotein, haemagglutinin (HA), dominate following infection with new drifted strains. OAS suggests that responses to the original strain are preferentially boosted. Recent studies also show limited boosting of the antibodies to conserved epitopes on the stem of HA, which are attractive targets for a 'universal vaccine'. We develop multi-epitope models to explore how pre-existing immunity modulates the immune response to new strains following immunization. Our models suggest that the masking of antigenic epitopes by antibodies may play an important role in describing the complex dynamics of OAS and limited boosting of antibodies to the stem of HA. Analysis of recently published data confirms model predictions for how pre-existing antibodies to an epitope on HA decrease the magnitude of boosting of the antibody response to this epitope following immunization. We explore strategies for boosting of antibodies to conserved epitopes and generating broadly protective immunity to multiple strains. PMID:26194761

  20. Epitope specific T-cell responses against influenza A in a healthy population.

    Savic, Miloje; Dembinski, Jennifer L; Kim, Yohan; Tunheim, Gro; Cox, Rebecca J; Oftung, Fredrik; Peters, Bjoern; Mjaaland, Siri

    2016-02-01

    Pre-existing human CD4(+) and CD8(+) T-cell-mediated immunity may be a useful correlate of protection against severe influenza disease. Identification and evaluation of common epitopes recognized by T cells with broad cross-reactivity is therefore important to guide universal influenza vaccine development, and to monitor immunological preparedness against pandemics. We have retrieved an optimal combination of MHC class I and class II restricted epitopes from the Immune Epitope Database (www.iedb.org), by defining a fitness score function depending on prevalence, sequence conservancy and HLA super-type coverage. Optimized libraries of CD4(+) and CD8(+) T-cell epitopes were selected from influenza antigens commonly present in seasonal and pandemic influenza strains from 1934 to 2009. These epitope pools were used to characterize human T-cell responses in healthy donors using interferon-γ ELISPOT assays. Upon stimulation, significant CD4(+) and CD8(+) T-cell responses were induced, primarily recognizing epitopes from the conserved viral core proteins. Furthermore, the CD4(+) and CD8(+) T cells were phenotypically characterized regarding functionality, cytotoxic potential and memory phenotype using flow cytometry. Optimized sets of T-cell peptide epitopes may be a useful tool to monitor the efficacy of clinical trials, the immune status of a population to predict immunological preparedness against pandemics, as well as being candidates for universal influenza vaccines. PMID:26489873

  1. Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres

    Murata Yoshihiko

    2009-06-01

    Full Text Available Abstract Background Human papillomavirus (HPV L1 capsid proteins can self-assemble into pentamers (capsomeres that are immunogenic and can elicit neutralizing antibodies. Structural modelling of L1 inter-pentameric interactions predicts that helix 4 (h4 of each of the five L1 monomers project laterally and outwards from the pentamer. We sought to utilize HPV L1 capsomeres as a vaccine platform by engineering heterologous epitopes within L1 derivatives deleted for h4 domain. Results We used baculovirus – infected Trichoplusia ni cells and ultracentrifugation to synthesize and purify three 16L1 derivatives: one bearing a short deletion (amino acids 404–436 encompassing the h4 domain, and two others, each bearing a conserved neutralizing epitope of the human respiratory syncytial virus (RSV fusion (F protein (residues 255–278 and 423–436 that was substituted for the deleted L1 h4 domain residues. Each of the three capsomere derivatives was recognized by anti-L1 antibodies, while two bearing the RSV F-derived moieties were recognized by anti-RSV F antibodies. All three L1 derivatives formed ring-like structures that were similar in morphology and size to those described for native 16L1 capsomeres. When injected into mice, each of the capsomere derivatives was immunogenic with respect to L1 protein, and immunization with chimeric L1-RSV F pentamers resulted in RSV non-neutralizing antisera that recognized purified RSV F protein in immunoblots. Conclusion HPV L1 monomers bearing heterologous epitopes within the L1 h4 region can self-assemble into capsomeres that elicit antibody response against such non-HPV encoded epitopes. Thus, the L1 h4 region can function as a novel antigen display site within the L1 pentamer, which in turn may serve as a potential vaccine template.

  2. Epitope Mapping of a Monoclonal Antibody Directed against Neisserial Heparin Binding Antigen Using Next Generation Sequencing of Antigen-Specific Libraries

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Donnarumma, Danilo; Bartolini, Erika; Borgogni, Erica; Bruttini, Marco; Santini, Laura; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Patanè, Francesco; Biondo, Carmelo; Norais, Nathalie; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We explore here the potential of a newly described technology, which is named PROFILER and is based on next generation sequencing of gene-specific lambda phage-displayed libraries, to rapidly and accurately map monoclonal antibody (mAb) epitopes. For this purpose, we used a novel mAb (designated 31E10/E7) directed against Neisserial Heparin-Binding Antigen (NHBA), a component of the anti-group B meningococcus Bexsero® vaccine. An NHBA phage-displayed library was affinity-selected with mAb 31E10/E7, followed by massive sequencing of the inserts present in antibody-selected phage pools. Insert analysis identified an amino acid stretch (D91-A128) in the N-terminal domain, which was shared by all of the mAb-enriched fragments. Moreover, a recombinant fragment encompassing this sequence could recapitulate the immunoreactivity of the entire NHBA molecule against mAb 31E10/E7. These results were confirmed using a panel of overlapping recombinant fragments derived from the NHBA vaccine variant and a set of chemically synthetized peptides covering the 10 most frequent antigenic variants. Furthermore, hydrogen-deuterium exchange mass-spectrometry analysis of the NHBA-mAb 31E10/E7 complex was also compatible with mapping of the epitope to the D91-A128 region. Collectively, these results indicate that the PROFILER technology can reliably identify epitope-containing antigenic fragments and requires considerably less work, time and reagents than other epitope mapping methods. PMID:27508302

  3. Identification of immunodominant regions and linear B cell epitopes of the gE envelope protein of varicella-zoster virus.

    Fowler, W J; Garcia-Valcarcel, M; Hill-Perkins, M S; Murphy, G; Harper, D R; Jeffries, D J; Burns, N R; Adams, S E; Kingsman, A J; Layton, G T

    1995-12-20

    The envelope proteins of varicella-zoster virus (VZV) are highly immunogenic and one of the most abundant is glycoprotein E (gE). However, its immunodominant regions and epitopes have not been identified. In this study, using human sera from individuals with recent varicella or zoster infections, we have localized antigenic sequences of gE using recombinant hybrid Ty-virus-like particles (VLPs) carrying overlapping fragments of the gE protein. gE(1-134)-VLPs (particles carrying amino acids 1-134 of gE) and, to a lesser extent, gE(101-161)-VLPs were found to be the most antigenic when tested by Western blotting and ELISA. Other fragments of gE (spanning residues 161-623) showed weak or no antigenicity. Pepscan analysis of human sera on overlapping synthetic peptides representing residues 1-135 of gE revealed that the most antigenic region was between residues 50 and 135. Three immunodominant sequences (residues 86-105, 116-135, and, to a lesser extent, 56-75) were detected using sera from both varicella and zoster patients. All sera from varicella, but not zoster, patients reacted strongly with an epitope in peptide 66-85. Other epitopes were recognized weakly by some varicella or zoster sera. More sera need to be tested to assess the potential disease specificity of these epitopes. The neutralizing monoclonal antibody (MAb) IF-B9 reacted with residues 71-90; however, another neutralizing MAb, SG1A, which bound to both gE(1-134)-VLPs and gE(101-161)-VLPs did not bind to any peptide. The identification of immunodominant sequences of gE will help toward the development of a subunit VZV vaccine. PMID:8553555

  4. The MEPS server for identifying protein conformational epitopes

    Castrignanò Tiziana

    2007-03-01

    Full Text Available Abstract Background One of the most interesting problems in molecular immunology is epitope mapping, i.e. the identification of the regions of interaction between an antigen and an antibody. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues involved in the interaction and could be instrumental both in designing peptides able to mimic the interacting surface of the antigen and in understanding where immunologically important regions are located in its three-dimensional structure. From an experimental point of view, both genetically encoded and chemically synthesised peptide libraries can be used to identify sequences recognized by a given antibody. The problem then arises of which region of a folded protein the selected peptides correspond to. Results We have developed a method able to find the surface region of a protein that can be effectively mimicked by a peptide, given the structure of the protein and the maximum number of side chains deemed to be required for recognition. The method is implemented as a publicly available server. It can also find and report all peptide sequences of a specified length that can mimic the surface of a given protein and store them in a database. The immediate application of the server is the mapping of antibody epitopes, however the system is sufficiently flexible for allowing other questions to be asked, for example one can compare the peptides representing the surface of two proteins known to interact with the same macromolecule to find which is the most likely interacting region. Conclusion We believe that the MEPS server, available at http://www.caspur.it/meps, will be a useful tool for immunologists and structural and computational biologists. We plan to use it ourselves to implement a database of "surface mimicking peptides" for all proteins of known structure and proteins that can be reliably modelled by comparative modelling.

  5. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome

    Bresciani, Anne Gøther; Paul, Sinu; Schommer, Nina;

    2016-01-01

    allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably...... as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and...

  6. Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence

    Singh, Harinder; Ansari, Hifzur Rahman; Gajendra P. S. Raghava

    2013-01-01

    One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting ...

  7. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  8. Refinement of a DNA based Alzheimer disease epitope vaccine in rabbits

    Ghochikyan, Anahit; Davtyan, Hayk; Petrushina, Irina; Hovakimyan, Armine; Movsesyan, Nina; Davtyan, Arpine; Kiyatkin, Anatoly; Cribbs, David H.; Agadjanyan, Michael G.

    2013-01-01

    We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ11-PADRE by modifying this vaccine to express protein 3Aβ11-PADRE with a free N-ter...

  9. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.

  10. Identification of a variant antigenic neutralizing epitope in hypervariable region 1 of avian leukosis virus subgroup J.

    Hou, Minbo; Zhou, Defang; Li, Gen; Guo, Huijun; Liu, Jianzhu; Wang, Guihua; Zheng, Qiankun; Cheng, Ziqiang

    2016-03-01

    Avian leukosis virus subgroup J (ALV-J) is a hypervariable oncogenic retrovirus that causes great economic loss in poultry. Antigenic variations in the variable regions make the development of an effective vaccine a challenging task. In the present study, we identified a variant antigenic neutralizing epitope using reverse vaccinology methods. First, we predicted the B-cell epitopes in gp85 gene of ALV-J strains by DNAman and bioinformatics. Fourteen candidate epitopes were selected and linked in tandem with glycines or serines as a multi-epitope gene. The expressed protein of multi-epitope gene can induce high-titer antibody that can recognize nature ALV-J and neutralize the infectivity of ALV-J strains. Next, we identified a high effective epitope using eight overlapping fragments of gp85 gene reacting with mAb 2D5 and anti-multi-epitope sera. The identified epitope contained one of the predicted epitopes and localized in hyervariable region 1 (hr1), indicating a variant epitope. To better understand if the variants of the epitope have a good antigenicity, we synthesized four variants to react with mAb 2D5 and anti-ALV-J sera. The result showed that all variants could react with the two kinds of antibodies though they showed different antigenicity, while could not react with ALV-J negative sera. Thus, the variant antigenic neutralizing epitope was determined as 137-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-158. The result shows a potential use of this variant epitopes as a novel multi-epitope vaccine against ALV-J in poultry. PMID:26850757

  11. An Improved Method for Predicting Linear B-cell Epitope Using Deep Maxout Networks.

    Lian, Yao; Huang, Ze Chi; Ge, Meng; Pan, Xian Ming

    2015-06-01

    To establish a relation between an protein amino acid sequence and its tendencies to generate antibody response, and to investigate an improved in silico method for linear B-cell epitope (LBE) prediction. We present a sequence-based LBE predictor developed using deep maxout network (DMN) with dropout training techniques. A graphics processing unit (GPU) was used to reduce the training time of the model. A 10-fold cross-validation test on a large, non-redundant and experimentally verified dataset (Lbtope_Fixed_ non_redundant) was performed to evaluate the performance. DMN-LBE achieved an accuracy of 68.33% and an area under the receiver operating characteristic curve (AUC) of 0.743, outperforming other prediction methods in the field. A web server, DMN-LBE, of the improved prediction model has been provided for public free use. We anticipate that DMN-LBE will be beneficial to vaccine development, antibody production, disease diagnosis, and therapy. PMID:26177908

  12. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein

    Hybridoma cell lines (2E8, 8G8 and 5G12) producing fully human monoclonal antibodies (hMAbs) specific for the pre-membrane (prM) protein of West Nile virus (WNV) were prepared using a human fusion partner cell line, MFP-2, and human peripheral blood lymphocytes from a blood donor diagnosed with WNV fever in 2004. Using site-directed mutagenesis of a WNV-like particle (VLP) we identified 4 amino acid residues in the prM protein unique to WNV and important in the binding of these hMAbs to the VLP. Residues V19 and L33 are important epitopes for the binding of all three hMAbs. Mutations at residue, T20 and T24 affected the binding of hMAbs, 8G8 and 5G12 only. These hMAbs did not significantly protect AG129 interferon-deficient mice or Swiss Webster outbred mice from WNV infection.

  13. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes.

    De Groot, Anne S; Levitz, Lauren; Ardito, Matthew T; Skowron, Gail; Mayer, Kenneth H; Buus, Soren; Boyle, Christine M; Martin, William D

    2012-07-01

    Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response and that are conserved in sequence and across time may represent the "Achilles' heel" of HIV and would be excellent candidates for vaccine development. In this study, T-cell epitopes were selected using immunoinformatics tools, combining HLA-A3 binding predictions with relative sequence conservation in the context of global HIV evolution. Twenty-seven HLA-A3 epitopes were chosen from an analysis performed in 2003 on 10,803 HIV-1 sequences, and additional sequences were selected in 2009 based on an expanded set of 43,822 sequences. These epitopes were tested in vitro for HLA binding and for immunogenicity with PBMCs of HIV-infected donors from Providence, Rhode Island. Validation of these HLA-A3 epitopes conserved across time, clades, and geography supports the hypothesis that epitopes such as these would be candidates for inclusion in our globally relevant GAIA HIV vaccine constructs. PMID:22777092

  14. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    Ying Gu; Jun Zhang; Ying-Bing Wang; Shao-Wei Li; Hai-Jie Yang; Wen-Xin Luo; Ning-Shao Xia

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3.METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E. coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.RESULTS: Twenty-one positive monoclonal phages (10for 8CL1, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N′-His-Pro-Thr-LeuLeu-Arg-Ile-C′, named 8C11A) and 8H3 (N′-Ser-Ile-LeuPro- Tyr-Pro-Tyr-C′, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E. coli.The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemosynthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  15. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes.

    Wüthrich, Marcel; Brandhorst, Tristan T; Sullivan, Thomas D; Filutowicz, Hanna; Sterkel, Alana; Stewart, Douglas; Li, Mengyi; Lerksuthirat, Tassanee; LeBert, Vanessa; Shen, Zu Ting; Ostroff, Gary; Deepe, George S; Hung, Chiung Yu; Cole, Garry; Walter, Jennifer A; Jenkins, Marc K; Klein, Bruce

    2015-04-01

    Fungal infections remain a threat due to the lack of broad-spectrum fungal vaccines and protective antigens. Recent studies showed that attenuated Blastomyces dermatitidis confers protection via T cell recognition of an unknown but conserved antigen. Using transgenic CD4(+) T cells recognizing this antigen, we identify an amino acid determinant within the chaperone calnexin that is conserved across diverse fungal ascomycetes. Calnexin, typically an ER protein, also localizes to the surface of yeast, hyphae, and spores. T cell epitope mapping unveiled a 13-residue sequence conserved across Ascomycota. Infection with divergent ascomycetes, including dimorphic fungi, opportunistic molds, and the agent causing white nose syndrome in bats, induces expansion of calnexin-specific CD4(+) T cells. Vaccine delivery of calnexin in glucan particles induces fungal antigen-specific CD4(+) T cell expansion and resistance to lethal challenge with multiple fungal pathogens. Thus, the immunogenicity and conservation of calnexin make this fungal protein a promising vaccine target. PMID:25800545

  16. Construction and immunogenicity prediction of Plasmodium falciparum CTL epitope minigene vaccine

    TANG; Yuyang

    2001-01-01

    [1]Hill, A. V., Elvin, J., Willis, A. C. et al., Molecular analysis of the association of HLA-B53 and resistance to severe malaria, Nature, 1992, 360: 434.[2]Perlmann, P., Miller, L., Fogarty/WHO international conference on cellular mechanisms in malaria immunity, Immun. Letter, 1990, 25: 1.[3]Perkus, M. E., Tartaglia, J., Paoletti, E. et al., Poxvirus-based vaccine candidates for cancer, AIDS and other infectious diseases, J. Leukocyte Biol., 1995, 58(1): 1.[4]Shen, H., Slifka, M. K., Matloubian, M. et al., Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity, Proc. Natl. Acad. Sci. USA, 1995, 92: 3987.[5]Waine, G. J., McManus, D. P., Nucleic acids: vaccines of the future, Parasitol Today, 1995, 11: 113.[6]Whitton, J. L., Sheng, N., Oldstone, M. B. A. et al., A "string-of beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge, J. Virol., 1993, 67: 348.[7]Lalvani, A., Aidoo, M., Allsopp, C. E. et al., An-HLA-based approach to design of a CTL-inducing vaccine against Plasmodium falciparum, Res. Immunol., 1994, 145: 461.[8]Sidney, J., Grey, H. M., Kubo, R. T. et al., Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs, Immunology Today, 1996, 17: 261.[9]Thomson, S. A., Elliott, S. L., Sherritt, M. A. et al., Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes, J. Immun., 1996, 157: 822.[10] Hanke, T., Schneider, J., Gilbert, S. C. et al., DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice, Vaccine, 1998, 16: 426.[11] Townsend, A. R. M., Rothbard, J., Gotch, F. M. et al., The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides, Cell, 1986, 44: 959.[12] Ojcius, D. M., Abastado, J. P., Casrouge, A. et al., Dissociation of

  17. Alpha S1-casein polymorphisms in camel (Camelus dromedarius) and descriptions of biological active peptides and allergenic epitopes.

    Erhardt, Georg; Shuiep, El Tahir Salih; Lisson, Maria; Weimann, Christina; Wang, Zhaoxin; El Zubeir, Ibtisam El Yas Mohamed; Pauciullo, Alfredo

    2016-06-01

    Milk samples of 193 camels (Camelus dromedarius) from different regions of Sudan were screened for casein variability by isoelectric focusing. Kappa-casein and beta-casein were monomorphic, whereas three protein patterns named αs1-casein A, C, and D were identified. The major allele A revealed frequencies of 0.79 (Lahaoi), 0.75 (Shanbali), 0.90 (Arabi Khali), and 0.88 (Arabi Gharbawi) in the different ecotypes. CSN1S1*C shows a single G > T nucleotide substitution in the exon 5, leading to a non-synonymous amino acid exchange (p.Glu30 > Asp30) in comparison to CSN1S1*A and D. At cDNA level, no further single nucleotide polymorphisms could be identified in CSN1S1* A, C, and D, whereas the variants CSN1S1*A and CSN1S1*C are characterized by missing of exon 18 compared to the already described CSN1S1*B, as consequence of DNA insertion of 11 bp at intron 17 which alter the pre-mRNA spliceosome machinery. A polymerase chain-restriction fragment length polymorphism method (PCR-RFLP) was established to type for G > T nucleotide substitution at genomic DNA level. The occurrence and differences of IgE-binding epitopes and bioactive peptides between αs1-casein A, C, and D after digestion were analyzed in silico. The amino acid substitutions and deletion affected the arising peptide pattern and thus modifications between IgE-binding epitopes and bioactive peptides of the variants were found. The allergenic potential of these different peptides will be investigated by microarray immunoassay using sera from milk-sensitized individuals, as it was already demonstrated for bovine αs1-casein variants. PMID:26922739

  18. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine

    De Groot, Anne S; Levitz, Lauren; Ardito, Matthew T;

    2012-01-01

    Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response and that...... context of global HIV evolution. Twenty-seven HLA-A3 epitopes were chosen from an analysis performed in 2003 on 10,803 HIV-1 sequences, and additional sequences were selected in 2009 based on an expanded set of 43,822 sequences. These epitopes were tested in vitro for HLA binding and for immunogenicity...... with PBMCs of HIV-infected donors from Providence, Rhode Island. Validation of these HLA-A3 epitopes conserved across time, clades, and geography supports the hypothesis that epitopes such as these would be candidates for inclusion in our globally relevant GAIA HIV vaccine constructs....

  19. Conservation of HIV-1 T cell epitopes across time and clades

    Levitz, Lauren; Koita, Ousmane A; Sangare, Kotou;

    2012-01-01

    HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the "Achilles' heel" of HIV. In this study, highly conserved T-cell epitopes were selected using...... immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with...... time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine....

  20. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  1. Identification of murine T-cell epitopes in Ebola virus nucleoprotein

    CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2d-restricted epitope (NP279-288) and two H-2b-restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection

  2. Reliable B cell epitope predictions: impacts of method development and improved benchmarking

    Kringelum, Jens Vindahl; Lundegaard, Claus; Lund, Ole;

    2012-01-01

    biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping...

  3. Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope.

    Westendorf, J M; Rao, P. N.; Gerace, L.

    1994-01-01

    The MPM2 monoclonal antibody binds to a phospho amino acid-containing epitope present on more than 40 proteins of M-phase eukaryotic cells. We have developed a technique for cloning cDNAs encoding MPM2-reactive phosphoproteins from bacteriophage lambda expression libraries. Proteins from phage plaques were absorbed to nitrocellulose filters, phosphorylated by M-phase kinases, and screened for MPM2 binding. Partial-length cDNAs encoding two MPM2-reactive proteins termed MPM2-reactive phosphopr...

  4. Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1

    Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng

    2013-01-01

    Background The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Findings Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. T...

  5. Conformational epitopes of myelin oligodendrocyte glycoprotein are targets of potentially pathogenic antibody responses in multiple sclerosis

    Menge Til; Lalive Patrice H; von Büdingen H -Christian; Genain Claude P

    2011-01-01

    Abstract Background Myelin/oligodendrocyte glycoprotein (MOG) is a putative autoantigen in multiple sclerosis (MS). Establishing the pathological relevance and validity of anti-MOG antibodies as biomarkers has yielded conflicting reports mainly due to different MOG isoforms used in different studies. Because epitope specificity may be a key factor determining anti-MOG reactivity we aimed at identifying a priori immunodominant MOG epitopes by monoclonal antibodies (mAbs) and at assessing clini...

  6. Conserved B-Cell Epitopes among Human Bocavirus Species Indicate Potential Diagnostic Targets

    Zhou, Zhuo; Xin GAO; Wang, Yaying; Zhou, Hongli; Wu, Chao; Paranhos-Baccalà, Gláucia; Vernet, Guy; Guo, Li; Wang, Jianwei

    2014-01-01

    Background Human bocavirus species 1–4 (HBoV1–4) have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explore...

  7. Mapping Epitopes on a Protein Antigen by the Proteolysis of Antigen-Antibody Complexes

    Jemmerson, Ronald; Paterson, Yvonne

    1986-05-01

    A monoclonal antibody bound to a protein antigen decreases the rate of proteolytic cleavage of the antigen, having the greatest effect on those regions involved in antibody contact. Thus, an epitope can be identified by the ability of the antibody to protect one region of the antigen more than others from proteolysis. By means of this approach, two distinct epitopes, both conformationally well-ordered, were characterized on horse cytochrome c.

  8. Epitope Discovery for a Synthetic Polymer Nanoparticle: A New Strategy for Developing a Peptide Tag

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Hoshino, Yu; Rose, Paul E.; Epstein, Linda F.; Miranda, Les P.; Tagari, Philip; Beierle, John M.; Yonamine, Yusuke; Shea, Kenneth J

    2014-01-01

    We describe a novel epitope discovery strategy for creating an affinity agent/peptide tag pair. A synthetic polymer nanoparticle (NP) was used as the “bait” to catch an affinity peptide tag. Biotinylated peptide tag candidates of varied sequence and length were attached to an avidin platform and screened for affinity against the polymer NP. NP affinity for the avidin/peptide tag complexes was used to provide insight into factors that contribute NP/tag binding. The identified epitope sequence ...

  9. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De La Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. viva...

  10. ElliPro: a new structure-based tool for the prediction of antibody epitopes

    Fusseder Nicholas; Bourne Philip E; Li Wei; Bui Huynh-Hoa; Ponomarenko Julia; Sette Alessandro; Peters Bjoern

    2008-01-01

    Abstract Background Reliable prediction of antibody, or B-cell, epitopes remains challenging yet highly desirable for the design of vaccines and immunodiagnostics. A correlation between antigenicity, solvent accessibility, and flexibility in proteins was demonstrated. Subsequently, Thornton and colleagues proposed a method for identifying continuous epitopes in the protein regions protruding from the protein's globular surface. The aim of this work was to implement that method as a web-tool a...

  11. Identification of the rheumatoid arthritis shared epitope binding site on calreticulin.

    Song Ling

    Full Text Available BACKGROUND: The rheumatoid arthritis (RA shared epitope (SE, a major risk factor for severe disease, is a five amino acid motif in the third allelic hypervariable region of the HLA-DRbeta chain. The molecular mechanisms by which the SE affects susceptibility to--and severity of--RA are unknown. We have recently demonstrated that the SE acts as a ligand that interacts with cell surface calreticulin (CRT and activates innate immune signaling. In order to better understand the molecular basis of SE-RA association, here we have undertaken to map the SE binding site on CRT. PRINCIPAL FINDINGS: Surface plasmon resonance (SPR experiments with domain deletion mutants suggested that the SE binding site is located in the P-domain of CRT. The role of this domain as a SE-binding region was further confirmed by a sulfosuccinimidyl-2-[6-(biotinamido-2-(p-azido-benzamido hexanoamido] ethyl-1,3-dithiopropionate (sulfo-SBED photoactive cross-linking method. In silico analysis of docking interactions between a conformationally intact SE ligand and the CRT P-domain predicted the region within amino acid residues 217-224 as a potential SE binding site. Site-directed mutagenesis demonstrated involvement of residues Glu(217 and Glu(223--and to a lesser extent residue Asp(220--in cell-free SPR-based binding and signal transduction assays. SIGNIFICANCE: We have characterized here the molecular basis of a novel ligand-receptor interaction between the SE and CRT. The interaction represents a structurally and functionally well-defined example of cross talk between the adaptive and innate immune systems that could advance our understanding of the pathogenesis of autoimmunity.

  12. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses

    Shahla; Shahsavandi; Mohammad; Majid; Ebrahimi; Kaveh; Sadeghi; Homayoon; Mahravani

    2015-01-01

    Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1(HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte(CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin(HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.

  13. B-cell epitope mapping for the design of vaccines and effective diagnostics

    Tarek A. Ahmad

    2016-01-01

    Full Text Available The increasing resistance of many microbial strains to antibiotics, delayed laboratory results, and side effects of many chemotherapeutics has raised the need to search for sensitive diagnostics and new prophylactic strategies especially prevention by vaccination. Understanding the epitope/antibody interaction is the key to constructing potent vaccines and effective diagnostics. B-cell epitope mapping is a promising approach to identifying the main antigenic determinants of microorganisms, in special concern the discontinuous conformational ones. Epitope-based vaccines have remarkable privilege over the conventional ones since they are specific, able to avoid undesirable immune responses, generate long lasting immunity, and are reasonably cheaper. This up-to-date review discusses and compares the different physical, computational, and molecular methods that have been used in epitope mapping. The role of each method in the identification of potent epitopes in viruses, bacteria, fungi, parasites, as well as human diseases are tagged and documented. Simultaneously, frequent combinatorial methods are highlighted. The article aims to assist researchers to design the most suitable protocol for mapping their B-cell epitopes.

  14. Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species.

    Maria Elisa Perez-Muñoz

    Full Text Available Host T cell reactivity toward gut bacterial epitopes has been recognized as part of disease pathogenesis. However, the specificity of T cells that recognize this vast number of epitopes has not yet been well described. After colonizing a C57BL/6J germ-free mouse with the human gut symbiotic bacteria Bacteroides thetaiotaomicron, we isolated a T cell that recognized these bacteria in vitro. Using this T cell, we mapped the first known non-carbohydrate T cell epitope within the phylum Bacteroidetes. The T cell also reacted to two other additional Bacteroides species. We identified the peptide that stimulated the T cell by using a genetic approach. Genomic data from the epitope-positive and epitope-negative bacteria explain the cross-reactivity of the T cell to multiple species. This epitope degeneracy should shape our understanding of the T cell repertoire stimulated by the complex microbiome residing in the gastrointestinal tract in both healthy and disease states.

  15. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle.

    Bai, Lanlan; Takeshima, Shin-Nosuke; Isogai, Emiko; Kohara, Junko; Aida, Yoko

    2015-12-16

    Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T cell leukemia virus (HTLV). The cytotoxic T lymphocyte (CTL) plays a key role in suppressing the progression of disease caused by BLV. T and B cell epitopes in BLV have been studied, but CD8(+) CTL epitopes remain poorly understood. We used a library of 115 synthetic peptides covering the entirety of the Env proteins (gp51 and gp30), the Gag proteins (p15, p24, and p12), and the Tax protein of BLV to identify 11 novel CD8(+) T cell epitopes (gp51N5, gp51N11, gp51N12, gp30N5, gp30N6, gp30N8, gp30N16, tax16, tax18, tax19, and tax20) in four calves experimentally infected with BLV. The number of CD8(+) T cell epitopes that could be identified in each calf correlated with the BLV proviral load. Interestingly, among the 11 epitopes identified, only gp51N11 was capable of inducing CD8(+) T cell-mediated cytotoxicity in all four calves, but it is not a suitable vaccine target because it shows a high degree of polymorphism according to the Wu-Kabat variability index. By contrast, no CTL epitopes were identified from the Gag structural protein. In addition, several epitopes were obtained from gp30 and Tax, indicating that cellular immunity against BLV is strongly targeted to these proteins. CD8(+) CTL epitopes from gp30 and Tax were less polymorphic than epitopes from. Indeed, peptides tax16, tax18, tax19, and tax20 include a leucine-rich activation domain that encompasses a transcriptional activation domain, and the gp30N16 peptide contains a proline-rich region that interacts with a protein tyrosine phosphatase SHP1 to regulate B cell activation. Moreover, at least one CD8(+) CTL epitope derived from gp30 was identified in each of the four calves. These results indicate that BLV gp30 may be the best candidate for the development of a BLV vaccine. PMID:26552001

  16. PreS1 epitope recognition in newborns after vaccination with the third-generation Sci-B-Vac™ vaccine and their relation to the antibody response to hepatitis B surface antigen

    Madalinski Kazimierz

    2009-01-01

    Full Text Available Abstract Background Sci-B-Vac™ is a recombinant, hepatitis B vaccine derived from a mammalian cell line and containing hepatitis B surface antigen (HBsAg as well as preS1 and preS2 antigens. Few studies have been performed on the antibody responses to preS1 in relation to the antibody to hepatitis B surface antigen (anti-HBs response during immunisation of healthy children with preS-containing vaccines. Results In this study 28 healthy newborns were randomly selected to receive either 2.5 ug or 5.0 ug of the Sci-B-Vac vaccine. Children received three doses of vaccine according to a 0-, 1-, 6-month scheme. Antibodies against the S-protein and three synthetic peptides mimicking three B-cell preS1 epitopes, (21–32 amino acid epitope, (32–47 amino acid epitope and the C-terminal (amino acid epitope 94–117 were determined at 6 and 9 months. Fourteen (50% of the 28 newborns had detectable levels of anti-preS1 (21–32 antibodies; 15 (54% were anti-preS1 (32–47 reactive and 12 (43% were anti-preS1 (94–117 reactive at 6 or 9 months after initiation of the vaccination. Significantly higher levels of anti-HBs were observed in the sera of patients with detectable anti-preS1 (32–47 reactivity (24 550 ± 7375 IU/L, mean ± SEM as compared with the non-reactive sera (5991 ± 1530 IU/L, p Conclusion Recognition of several preS1 epitopes, and in particular, the epitope contained within the second half of the hepatocyte binding site localised in the hepatitis B surface protein of the third-generation hepatitis B vaccine is accompanied by a more pronounced antibody response to the S-gene-derived protein in healthy newborns.

  17. Identification of a naturally processed cytotoxic CD8 T-cell epitope of coxsackievirus B4, presented by HLA-A2.1 and located in the PEVKEK region of the P2C nonstructural protein.

    Varela-Calvino, Ruben; Skowera, Ania; Arif, Sefina; Peakman, Mark

    2004-12-01

    The adaptive immune system generates CD8 cytotoxic T lymphocytes (CTLs) as a major component of the protective response against viruses. Knowledge regarding the nature of the peptide sequences presented by HLA class I molecules and recognized by CTLs is thus important for understanding host-pathogen interactions. In this study, we focused on identification of a CTL epitope generated from coxsackievirus B4 (CVB4), a member of the enterovirus group responsible for several inflammatory diseases in humans and often implicated in the triggering and/or acceleration of the autoimmune disease type 1 diabetes. We identified a 9-mer peptide epitope that can be generated from the P2C nonstructural protein of CVB4 (P2C(1137-1145)) and from whole virus by antigen-presenting cells and presented by HLA-A2.1. This epitope is recognized by effector memory (gamma interferon [IFN-gamma]-producing) CD8 T cells in the peripheral blood at a frequency of responders that suggests that it is a major focus of the anti-CVB4 response. Short-term CD8 T-cell lines generated against P2C(1137-1145) are cytotoxic against peptide-loaded target cells. Of particular interest, the epitope lies within a region of viral homology with the diabetes-related autoantigen, glutamic acid decarboxylase-65 (GAD(65)). However, P2C(1137-1145)-specific cytotoxic T lymphocyte (CTL) lines were not activated to produce IFN-gamma by the GAD(65) peptide homologue and did not show cytotoxic activity in the presence of appropriately labeled targets. These results describe the first CD8 T-cell epitope of CVB4 that will prove useful in the study of CVB4-associated disease. PMID:15564450

  18. Analyzing the H19- and T65-epitopes in 38 kd phosphorylated protein of Marek's disease viruses and comparing chicken immunological reactions to viruses point-mutated in the epitopes.

    Zhizhong, Cui; Zhi, Zhang; Aijian, Qin; Lucy, Lee F

    2004-02-01

    DNA sequencing analysis in 38 kd phosphorylated protein (pp38) ORF of Marek's disease viruses (MDV) indicated that all tested 10 virulent strains with different pathotypes had 'A' at base #320 and glutamine at aa#107 while reacted with monoclonal antibody (Mab) H19 in indirect fluorescence antibody test (IFA). However, vaccine strain CVI988 had 'G' at base#320 and arginine at aa#107 instead, when it was negative in IFA with Mab H19. Some strains were also reactive with Mab T65 in IFA while there was 'G' at base #326 and glycine at aa#109, but the other strains, which had 'A' at base #326 and glutamic acid at aa#109, did not react with Mab T65. By comparison of CVI988 to its point mutants CVI/rpp38(AG) and CVI/rpp38(AA) with 1 or 2 base(s) changes at bases #320 and /or #326 of pp38 gene for their reactivity with Mab H19 and T65, it was confirmed that the glutamine at aa#107 and glycine at aa#109 were critical to epitopes H19 and T65 respectively. Immuno-reactions to MDV were compared in SPF chickens inoculated with cloned CVI988 and its mutant CVI/rpp38(AG). It was found that antibody responses to MDV in chickens inoculated with CVI/rpp38(AG) were delayed and significantly lower than that in chickens inoculated with the native CVI988. By differential comparison of antibody titers to different antigens, a third epitope specific to CVI988 and dependent on arginine at aa#107 was suggested to be responsible for the big difference in antibody responses induced by native CVI988 and its mutant. PMID:15382680

  19. From viral genome to specific peptide epitopes: methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndah, Mikkel;

    2013-01-01

    applicability of methods originally developed for analysis of human leukocyte antigen (HLA) presentation of peptides. The methods presented provide a timely and cost-effective approach to CTL epitope discovery that can be applied to diseases of swine and of other mammalian species of interest....

  20. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells

    Bidlingmaier, Scott; Zhu, Xiaodong; Liu, Bin

    2008-01-01

    Human CD133 (human prominin-1), a five transmembrane domain glycoprotein, was originally identified as a cell surface antigen present on CD34+ hematopoietic stem cells. Although the biological function of CD133 is not well understood, antibodies to CD133 epitopes have been widely used to purify hematopoietic stem and progenitor cells. The cancer stem cell (CSC) hypothesis postulates that a rare population of tumor cells possessing increased capacities for self-renewal and tumor initiation is responsible for maintaining the growth of neoplastic tissue. The expression of the CD133 epitopes, AC133 and AC141, has been shown to define a subpopulation of brain tumor cells with significantly increased capacity for tumor initiation in xenograft models. Following the discovery of the AC133/AC141+ population of brain tumor stem cells, the AC133 and AC141 epitopes have been extensively used as markers for purifying CSCs in other solid tumors. There are, however, several issues associated with the use of the AC133 and AC141 CD133 epitopes as markers for CSCs. The antibodies routinely used for purification of AC133 and AC141-positive cells target poorly characterized glycosylated epitopes of uncertain specificity. Discordant expression of the AC133 and AC141 epitopes has been observed, and the epitopes can be absent despite the presence of CD133 protein. In addition, CD133 expression has recently been shown to be modulated by oxygen levels. These factors, in combination with the uncertain biological role of CD133, suggest that the use of CD133 expression as a marker for CSCs should be critically evaluated in each new experimental system and highlight the need for additional CSC surface markers that are directly involved in maintaining CSC properties. PMID:18535813

  1. Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches.

    Hao, Gang; Wesolowski, John S; Jiang, Xuliang; Lauder, Scott; Sood, Vanita D

    2015-04-01

    The binding of programmed death ligand 1 protein (PD-L1) to its receptor programmed death protein 1 (PD-1) mediates immunoevasion in cancer and chronic viral infections, presenting an important target for therapeutic intervention. Several monoclonal antibodies targeting the PD-L1/PD-1 signaling axis are undergoing clinical trials; however, the epitopes of these antibodies have not been described. We have combined orthogonal approaches to localize and characterize the epitope of a monoclonal antibody directed against PD-L1 at good resolution and with high confidence. Limited proteolysis and mass spectrometry were applied to reveal that the epitope resides in the first immunoglobulin domain of PD-L1. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was used to identify a conformational epitope comprised of discontinuous strands that fold to form a beta sheet in the native structure. This beta sheet presents an epitope surface that significantly overlaps with the PD-1 binding interface, consistent with a desired PD-1 competitive mechanism of action for the antibody. Surface plasmon resonance screening of mutant PD-L1 variants confirmed that the region identified by HDX-MS is critical for the antibody interaction and further defined specific residues contributing to the binding energy. Taken together, the results are consistent with the observed inhibitory activity of the antibody on PD-L1-mediated immune evasion. This is the first report of an epitope for any antibody targeting PD-L1 and demonstrates the power of combining orthogonal epitope mapping techniques. PMID:25664688

  2. The relationship between colonization and haemagglutination inhibiting and B cell epitopes of Porphyromonas gingivalis

    KELLY, C G; BOOTH, V; KENDAL, H; SLANEY, J M; CURTIS, M A; LEHNER, T

    1997-01-01

    Passive immunization with the monoclonal antibody 61BG1.3 selectively prevents colonization by Porphyromonas gingivalis in humans (Booth V, Ashley FP, Lehner T. Infect Immun 1996; 64:422-7). The protective MoAb recognizes the j3 component of the RI protease of P. gingivalis which is formed by proteolytic processing of a polyprotein precursor termed PrpRl. This subunit is both a haemagglutinin and an antigen which is recognized by sera from patients with periodontitis. In this study the relationship was investigated between a colonization epitope which is recognized by the MoAb 61BG1.3, a haemagglutinating and B cell epitope which are recognized by sera from patients with periodontitis. B cell epitopes were mapped by Western blotting with a series of truncated recombinant polypeptides spanning the adhesion domain within residues 784–1130 of PrpRl and by ELISA using a panel of synthetic peptides spanning the same sequence. The epitope which is recognized by the protective MoAb was mapped within residues 907–931 of PrpRl, while serum responses of patients were directed predominantly to the adjacent carboxy-terminal sequence within residues 934–1042. The haemagglutinating epitope was mapped to residues 1073–1112. In view of our previous findings that the MoAb 61BG1.3 prevents colonization of P. gingivalis in vivo and inhibits haemagglutination, these two epitopes may be in proximity in the native protein. Active or passive immunization strategies which target the protective or haemagglutinating epitopes of the adhesion domain of PrpRl may provide a means of preventing infection with P. gingivalis. PMID:9367414

  3. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    2014-01-01

    Virus-like particles (VLPs) of chimeric porcine circovirus type 2 (PCV2) were generated by replacing the nuclear localization signal (NLS; at 1–39 aa) of PCV2 capsid protein (Cap) with classical swine fever virus (CSFV) T-cell epitope (1446–1460 aa), CSFV B-cell epitope (693–716 aa) and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The ab...

  4. Epitope mapping and structural basis for the recognition of phosphorylated tau by the anti-tau antibody AT8.

    Malia, Thomas J; Teplyakov, Alexey; Ernst, Robin; Wu, Sheng-Jiun; Lacy, Eilyn R; Liu, Xuesong; Vandermeeren, Marc; Mercken, Marc; Luo, Jinquan; Sweet, Raymond W; Gilliland, Gary L

    2016-04-01

    Microtubule-associated protein tau becomes abnormally phosphorylated in Alzheimer's disease and other tauopathies and forms aggregates of paired helical filaments (PHF-tau). AT8 is a PHF-tau-specific monoclonal antibody that is a commonly used marker of neuropathology because of its recognition of abnormally phosphorylated tau. Previous reports described the AT8 epitope to include pS202/pT205. Our studies support and extend previous findings by also identifying pS208 as part of the binding epitope. We characterized the phosphoepitope of AT8 through both peptide binding studies and costructures with phosphopeptides. From the cocrystal structure of AT8 Fab with the diphosphorylated (pS202/pT205) peptide, it appeared that an additional phosphorylation at S208 would also be accommodated by AT8. Phosphopeptide binding studies showed that AT8 bound to the triply phosphorylated tau peptide (pS202/pT205/pS208) 30-fold stronger than to the pS202/pT205 peptide, supporting the role of pS208 in AT8 recognition. We also show that the binding kinetics of the triply phosphorylated peptide pS202/pT205/pS208 was remarkably similar to that of PHF-tau. The costructure of AT8 Fab with a pS202/pT205/pS208 peptide shows that the interaction interface involves all six CDRs and tau residues 202-209. All three phosphorylation sites are recognized by AT8, with pT205 acting as the anchor. Crystallization of the Fab/peptide complex under acidic conditions shows that CDR-L2 is prone to unfolding and precludes peptide binding, and may suggest a general instability in the antibody. Proteins 2016; 84:427-434. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26800003

  5. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    Kuhn Andreas

    2011-09-01

    Full Text Available Abstract Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  6. Expression of meningococcal epitopes in LamB of Escherichia coli and the stimulation of serosubtype-specific antibody responses.

    McCarvil, J; McKenna, A J; Grief, C; Hoy, C S; Sesardic, D; Maiden, M C; Feavers, I M

    1993-10-01

    The class 1 outer membrane protein (OMP), a major variable surface antigen of Neisseria meningitidis, is a component of novel meningococcal vaccines currently in field trials. Serological variants of the protein are also used to serosubtype meningococci. Most of the amino acid changes that give rise to antigenic variants of the protein occur in two variable regions (VR1 and VR2) that are thought to form loops on the cell surface. The polymerase chain reaction (PCR) was used to amplify the nucleotide sequences encoding VR1 and VR2 from the chromosomal DNA of N. meningitidis strain M1080. These were cloned in frame into the lamB gene of the Escherichia coli expression vector pAJC264. Whole-cell enzyme-linked immunosorbent assays (ELISAs), using monoclonal antibodies, and SDS-PAGE confirmed that, upon induction, strains of E. coli carrying these constructs expressed hybrid LamB proteins containing the N. meningitidis surface loops. These strains were used to immunize rabbits and the resultant polyclonal antisera reacted specifically with the class 1 OMP of reference strain M1080 (P1.7). Immunogold labelling of meningococcal cells and whole-cell dot-blot analyses with these antisera showed that the variable epitopes were exposed on the cell surface and confirmed that this approach could be used to obtain serosubtype-specific antisera. The binding profiles of the antisera were determined from their reactions with overlapping synthetic peptides and their reactivity compared with that of relevant serosubtype-specific monoclonal antibodies. This approach was used successfully to raise antisera against two other class 1 OMP VR2s. A fourth antiserum raised against a VR2, including the P1.1 epitope, was not subtype specific. PMID:7526119

  7. Characterization of epitopes on the rabies virus glycoprotein by selection and analysis of escape mutants.

    Fallahi, Firouzeh; Wandeler, Alexander I; Nadin-Davis, Susan A

    2016-07-15

    The glycoprotein (G) is the only surface protein of the lyssavirus particle and the only viral product known to be capable of eliciting the production of neutralizing antibodies. In this study, the isolation of escape mutants resistant to monoclonal antibody (Mab) neutralization was attempted by a selection strategy employing four distinct rabies virus strains: the extensively passaged Evelyn Rokitnicki Abelseth (ERA) strain and three field isolates representing two bat-associated variants and the Western Canada skunk variant (WSKV). No escape mutants were generated from either of the bat-associated viral variants but two neutralization mutants were derived from the WSKV isolate. Seven independent ERA mutants were recovered using Mabs directed against antigenic sites I (four mutants) and IIIa (three mutants) of the glycoprotein. The cross-neutralization patterns of these viral mutants were used to determine the precise location and nature of the G protein epitopes recognized by these Mabs. Nucleotide sequencing of the G gene indicated that those mutants derived using Mabs directed to antigenic site (AS) III all contained amino acid substitutions in this site. However, of the four mutants selected with AS I Mabs, two bore mutations within AS I as expected while the remaining two carried mutations in AS II. WSKV mutants exhibited mutations at the sites appropriate for the Mabs used in their selection. All ERA mutant preparations were more cytopathogenic than the parental virus when propagated in cell culture; when in vivo pathogenicity in mice was examined, three of these mutants exhibited reduced pathogenicity while the remaining four mutants exhibited comparable pathogenic properties to those of the parent virus. PMID:27132040

  8. Analysis of structures and epitopes of a novel secreted protein MYR1 in Toxoplasma gondii.

    Zhou, Jian; Lu, Gang; He, Shenyi

    2016-01-01

    Toxoplasma gondii (Nicolle et Manceaux, 1908) is an obligate intracellular apicomplexan parasite and can infect warmblooded animals and humans all over the world. Development of effective vaccines is considered the only ideal way to control infection with T. gondii. However, only one live vaccine is commercially available for use in sheep and goats. Thus more effective antigenic proteins are searched for. In the present study we report a novel protein by secreted T. gondii termed Myc regulation 1 (MYR1). The physical and chemical characteristics, epitopes, hydrophilicity and functional sites of MYR1 were analysed by multiple bioinformatic approaches. The 3D models of MYR1 proteins were constructed and analysed. Furthermore, liner B-cell epitopes and T-cell epitopes of MYR1 protein and SAG1 were predicted. Compared to SAG1, MYR1 with good B-cell epitopes and T-cell epitopes had a potentiality to become a more successful vaccine against T. gondii. The bioinformatics analysis of MYR1 proteins could laid the foundation for further studies of its biological function experimentally and provide valuable information necessary for a better prevention and treatment of toxoplasmosis. PMID:27580381

  9. Anti-beta-2 glycoprotein I epitope specificity: from experimental models to diagnostic tools.

    Meroni, P L

    2016-07-01

    Beta-2 glycoprotein I (β2GPI) is the main antigenic target for anti-phospholipid antibodies (aPL), the serological markers of anti-phospholipid syndrome (APS). Conformational changes of the molecule seem to be essential for exposing the cryptic epitope for aPL binding and to trigger pathogenic pathways. There is increasing evidence that a conformational epitope located in the Domain I (DI) of the molecule is the main epitope targeted by human autoantibodies. The pathogenic role of the DI epitope has been recently supported by in vivo models and by immuno-histopathological findings in APS patients. Antibodies targeting β2GPI-DI are more frequently detected in patients with full-blown APS compared to asymptomatic aPL carriers or patients with infectious diseases who have antibodies directed against the whole molecule. Anti-DI antibodies are positively correlated with medium to high titres of aPL, with the presence of lupus anticoagulant and thrombotic and pregnancy manifestations, enabling identification of patients at higher risk of clinical events. However, some APS patients develop antibodies reacting against β2GPI epitopes other than DI, suggesting that other anti-β2GPI antibody subsets may be clinically relevant. Although preliminary results suggest that anti-DI antibodies can be detected by different assays in a comparable manner, further prospective studies are needed to support their use in the clinical setting and their predictive value. PMID:27252268

  10. Epitope Mapping of Metuximab on CD147 Using Phage Display and Molecular Docking

    Bifang He

    2013-01-01

    Full Text Available Metuximab is the generic name of Licartin, a new drug for radioimmunotherapy of hepatocellular carcinoma. Although it is known to be a mouse monoclonal antibody against CD147, the complete epitope mediating the binding of metuximab to CD147 remains unknown. We panned the Ph.D.-12 phage display peptide library against metuximab and got six mimotopes. The following bioinformatics analysis based on mimotopes suggested that metuximab recognizes a conformational epitope composed of more than 20 residues. The residues of its epitope may include T28, V30, K36, L38, K57, F74, D77, S78, D79, D80, Q81, G83, S86, N98, Q100, L101, H102, G103, P104, V131, P132, and K191. The homology modeling of metuximab and the docking of CD147 to metuximab were also performed. Based on the top one docking model, the epitope was predicted to contain 28 residues: AGTVFTTV (23–30, I37, D45, E84, V88, EPMGTANIQLH (92–102, VPP (131–133, Q164, and K191. Almost half of the residues predicted on the basis of mimotope analysis also appear in the docking result, indicating that both results are reliable. As the predicted epitopes of metuximab largely overlap with interfaces of CD147-CD147 interactions, a structural mechanism of metuximab is proposed as blocking the formation of CD147 dimer.

  11. A novel IgE-binding epitope of cat major allergen, Fel d 1.

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-02-12

    Information on the antigenic repertoire, especially the IgE-binding epitopes of an allergen is important for understanding the allergen induced immune response and cross-reactivity, as well as for generating the hypoallergenic variants for specific component resolved immunotherapy/diagnosis (CRIT and CRD). Data on the IgE-binding epitopes of cat allergens are scarce. In this study, a novel IgE-binding epitope of the cat major allergen, Fel d 1, was identified. Mouse monoclonal antibody (MAb) specific to the Fel d 1 was produced. Computerized intermolecular docking was used for determining the residues of the Fel d 1 bound by the specific MAb. The presumptive surface exposed residues of the Fel d 1 intrigued by the MAb are located on the chain 1. They are: L34 and T37 (helix 1); T39 (between helices 1 and 2); P40, E42 and E45 (helix 2); R61, K64, N65 and D68 (helix 3); and E73 and K76 (helix 4). The MAb competed efficiently with the cat allergic patients' serum IgE for Fel d 1 binding in the competitive IgE binding assay, indicating allergenicity of the MAb epitope. The newly identified allergenic epitope of the Fel d 1 is useful in a design of the CRIT and CRD for cat allergy. PMID:26797272

  12. Prediction and preliminary screening of HLA-A*0201-restricted epitope peptides of human GPC3.

    Hu, P; Wei, Z; Li, R; Wu, D; Meng, Z

    2016-06-01

    In response to the limited therapeutic option for hepatocellular carcinoma (HCC), immunotherapy as a promising approach points out a new direction to the cure of tumours through specific recognition and elimination of tumour cells by the immunity-enhanced autologous immunocytes of patients. Few effective tumour antigens, however, are alternative in addition to alpha fetoprotein or tumour cell lysates. Recent studies have demonstrated that glypican-3 (GPC3) is not only a promising diagnostic marker, but also ideal therapeutic target to HCC. In this study, potential HLA-A*0201 GPC3 peptides were screened with three epitope prediction software, the binding affinity of 13 predicted epitopes with high scores was determined by T2 cells binding assay and four optimal epitopes were identified. This is the first study in which the optimal HLA-A*0201 GPC3 epitopes were screened from a large number of candidates predicted by three software. The optimized HLA-A*0201 GPC3 peptides will provide new epitope candidates for HCC immunotherapy. PMID:27102087

  13. The Utilization and Limitation of CD133 Epitopes in Lung Cancer Stem Cells Research

    Yin CHEN

    2011-10-01

    Full Text Available Lung cancer is one of the most common tumor, which lacks of effective clinical treatment to lead to desirable prognosis. According to cancer stem cell hypothesis, lung cancer stem cells are considered to be responsible for carcinogenesis, development, metastasis, recurrence, invasion, resistance to chemotherapy and radiotherapy of lung cancer. In recent years, more and more institutes used glycosylated CD133 epitopes to define, isolate, purify lung cancer stem cells. However, along with deeply research, the application of CD133 epitopes in lung cancer stem cell research is questioned. The utilization and limitation of CD133 epitopes in lung cancer stem cells research for the past few years is summaried in this review.

  14. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    Larsen, Mette V; Lundegaard, Claus; Lamberth, Kasper; Buus, Søren; Lund, Ole; Nielsen, Morten

    2007-01-01

    . It does so by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At least four other methods have been developed recently that likewise attempt to predict CTL epitopes: EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of...... prediction methods, objective benchmarks and standardized performance measures are needed. Here, we develop such large-scale benchmark and corresponding performance measures and report the performance of an updated version 1.2 of NetCTL in comparison with the four other methods. RESULTS: We define a number...... of performance measures that can handle the different types of output data from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes; all other 9 mers...

  15. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools

    Greenbaum, Jason A.; Andersen, Pernille; Blythe, Martin;

    2007-01-01

    and immunology communities. Improving the accuracy of B-cell epitope prediction methods depends on a community consensus on the data and metrics utilized to develop and evaluate such tools. A workshop, sponsored by the National Institute of Allergy and Infectious Disease (NIAID), was recently held in Washington......, DC to discuss the current state of the B-cell epitope prediction field. Many of the currently available tools were surveyed and a set of recommendations was devised to facilitate improvements in the currently existing tools and to expedite future tool development. An underlying theme...... of the recommendations put forth by the panel is increased collaboration among research groups. By developing common datasets, standardized data formats, and the means with which to consolidate information, we hope to greatly enhance the development of B-cell epitope prediction tools. (c) 2007 John Wiley & Sons, Ltd....

  16. Trichinella spiralis: intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen-derived 30mer epitope elicits protection in BALB/c mice.

    Pompa-Mera, E N; Yépez-Mulia, L; Ocaña-Mondragón, A; García-Zepeda, E A; Ortega-Pierres, G; González-Bonilla, C R

    2011-12-01

    Trichinellosis is a public health problem and is considered an emergent/re-emergent disease in various countries. The etiological agent of trichinellosis is the nematode Trichinella, which infects domestic animals such as pigs and horses, as well as wild animals and humans. A veterinary vaccine could be an option to control the disease in domestic animals. Although several vaccine candidates have shown promising results, a vaccine against trichinellosis remains unavailable to date. Attenuated Salmonella strains are especially attractive live vectors because they elicit mucosal immunity, which is known to be important for the control of Trichinella spiralis infection at the intestinal level and can be administered by oral or intranasal routes. In this study, the autotransporter ShdA was used to display, on the surface of the Salmonella enterica serovar Typhimurium SL3261, the 210-239 amino acid epitope, (designated as Ag30) derived from the 43 kDa glycoprotein of T. spiralis muscle larvae. The fusion protein elicited antibodies in BALB/c mice that were able to recognize the native epitope on the surface of T. spiralis muscle larvae. Mice immunized by intranasal route with the recombinant Salmonella induced a protective immune response against the T. spiralis challenge, reducing by 61.83% the adult burden at day eight postinfection. This immune response was characterized by the induction of antigen-specific IgG1 and of IL-5 production. This study demonstrates the usefulness of Salmonella as a carrier of nematode epitopes providing a surface display system for intestinal parasite vaccine applications. PMID:21907709

  17. Immunization with synthetic peptides containing epitopes of the class 1 outer-membrane protein of Neisseria meningitidis: production of bactericidal antibodies on immunization with a cyclic peptide.

    Christodoulides, M; McGuinness, B T; Heckels, J E

    1993-08-01

    The class 1 outer-membrane protein of Neisseria meningitidis is the target for subtype-specific, bactericidal monoclonal antibodies (mAbs). The epitopes recognized by these antibodies have been mapped previously to linear peptides corresponding to the sequences thought to be exposed at the apices of surface-exposed loops of the protein. In this work several synthetic peptides containing the subtype Pl.16b epitope have been synthetized with the aim of inducing a polyclonal immune response resembling the reactivity of the mAbs. Initially, peptides of 9 and 15 amino acid residues were synthesized and used for immunization after coupling to a carrier protein. The reactivity of the resulting antisera, with synthetic linear decapeptides, resembled that seen in previous epitope mapping experiments with the protective mAbs. However, despite the induction of antibodies having the desired specificity, the antisera reacted poorly with the native protein in outer membranes, and were non-bactericidal. A 36mer peptide, consisting of the entire surface-exposed loop 4 of the class 1 protein was then synthesized and used for immunization as (i) free peptide, (ii) peptide coupled to carrier and (iii) peptide subjected to cyclization, in an attempt to restrict it to conformations that might more closely resemble the native loop structure. In contrast to antisera raised against linear peptides, antibodies raised by immunization with the 36mer cyclic peptide, did not react with linear peptides recognized by the mAbs, but instead appeared to recognize conformational determinants. This antiserum promoted complement-mediated bactericidal killing of the homologous meningococcal strain, demonstrating the potential of synthetic peptide immunogens for inducing a protective immune response against group B meningococci. PMID:7691983

  18. Homology Modeling and Conformational Epitope Prediction of Envelope Protein of Alkhumra Haemorrhagic Fever Virus

    Naghmeh Poorinmohammad

    2015-10-01

    Full Text Available Background: The aim of this study was to generate in silico 3D-structure of the envelope protein of AHFV using homology modeling method to further predict its conformational epitopes and help other studies to investigate itsstructural features using the model.Methods: A 3D-structure prediction was developed for the envelope protein of Alkhumra haemorrhagic fever virus (AHFV, an emerging tick-borne flavivirus, based on a homology modeling method using M4T and Modwebservers, as the 3D-structure of the protein is not available yet. Modeled proteins were validated using Modfold 4 server and their accuracies were calculated based on their RSMDs. Having the 3D predicted model with high quality, conformational epitopes were predicted using DiscoTope 2.0.Results: Model generated by M4T was more acceptable than the Modweb-generated model. The global score and Pvalue calculated by Modfold 4 ensured that a certifiable model was generated by M4T, since its global score was almost near 1 which is the score for a high resolution X-ray crystallography structure. Furthermore, itsthe P-value was much lower than 0.001 which means that the model is completely acceptable. Having 0.46 Å rmsd, this model was shown to be highly accurate. Results from DiscoTope 2.0 showed 26 residues as epitopes, forming conformational epitopes of the modeled protein.Conclusion: The predicted model and epitopes for envelope protein of AHFV can be used in several therapeutic and diagnostic approaches including peptide vaccine development, structure based drug design or diagnostic kit development in order to facilitate the time consuming experimental epitope mapping process.

  19. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide

    Blanco, Esther; Guerra, Beatriz; Torre, de la Beatriz; Defaus, Sira; Dekker, A.; Andreu, D.; Sobrino, Francisco

    2016-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have reported (Cubillos et al., 2008) that a synthetic dendrimeric peptide consisting of four copies of a B-cell epitope [VP1(136–154)] linked through thioether bonds to a T-cell epitope [3A(21–35)] o

  20. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.; Landry, Samuel J.

    2014-01-01

    Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-te...

  1. P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections.

    David C Whitacre

    Full Text Available In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs. Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer >1x10(6 and provided 80-100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78, which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P. falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine.

  2. Structural basis for epitope sharing between group 1 allergens of cedar pollen

    Midoro-Horiuti, Terumi; Schein, Catherine H.; Mathura, Venkatarajan; Braun, Werner; Czerwinski, Edmund W.; Togawa, Akihisa; Kondo, Yasuto; Oka, Tetsuo; Watanabe, Masanao; Goldblum, Randall M.

    2005-01-01

    The group 1 allergens are a major cause of cedar pollen hypersensitivity in several geographic areas. Allergens from several taxa have been shown to cross-react. The goal of these studies was to compare the structural features of the shared and unique epitopes of the group 1 allergen from mountain cedar (Jun a 1) and Japanese cedar (Cry j 1). An array of overlapping peptides from the sequence of Jun a 1 and a panel of monoclonal anti-Cry j 1 antibodies were used to identify the IgE epitopes r...

  3. New insights into wheat toxicity: Breeding did not seem to contribute to a prevalence of potential celiac disease's immunostimulatory epitopes.

    Ribeiro, Miguel; Rodriguez-Quijano, Marta; Nunes, Fernando M; Carrillo, Jose Maria; Branlard, Gérard; Igrejas, Gilberto

    2016-12-15

    Gluten proteins, namely gliadins, are the primary trigger of the abnormal immune response in celiac disease. It has been hypothesised that modern wheat breeding practices may have contributed to the increase in celiac disease prevalence during the latter half of the 20th century. Our results do not support this hypothesis as Triticum aestivum spp. vulgare landraces, which were not subjected to breeding practices, presented higher amounts of potential celiac disease's immunostimulatory epitopes when compared to modern varieties. Furthermore, high variation between wheat varieties concerning the toxic epitopes amount was observed. We carried out quantitative analysis of gliadin types by RP-HPLC to verify its correlation with the amount of toxic epitopes: ω-type gliadins content explain about 40% of the variation of toxic epitopes in tetraploid wheat varieties. This research provides new insights regarding wheat toxicity and into the controversial idea that human practices may have conducted to an increased exposure to toxic epitopes. PMID:27451149

  4. In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs.

    Ashok Kumar, Hassan G; Venkatesh, Yeldur P

    2014-02-01

    Thaumatin-like proteins (TLPs) belong to the pathogenesis-related family (PR-5) of plant defense proteins. TLPs from only 32 plant genera have been identified as pollen or food allergens. IgE epitopes on allergens play a central role in food allergy by initiating cross-linking of specific IgE on basophils/mast cells. A comparative analysis of pollen- and food-allergenic TLPs is lacking. The main objective of this investigation was to study the structural and allergenicity features of sapodilla (Manilkara zapota) acidic TLP (TLP 1) by in silico methods. The allergenicity prediction of composite sequence of sapodilla TLP 1 (NCBI B3EWX8.1, G5DC91.1) was performed using FARRP, Allermatch and Evaller web tools. A homology model of the protein was generated using banana TLP template (1Z3Q) by HHPRED-MODELLER. B-cell linear epitope prediction was performed using BCpreds and BepiPred. Sapodilla TLP 1 matched significantly with allergenic TLPs from olive, kiwi, bell pepper and banana. IgE epitope prediction as performed using AlgPred indicated the presence of 2 epitopes (epitope 1: residues 36-48; epitope 2: residues 51-63), and a comprehensive analysis of all allergenic TLPs displayed up to 3 additional epitopes on other TLPs. It can be inferred from these analyses that plant allergenic TLPs generally carry 2-3 IgE epitopes. ClustalX alignments of allergenic TLPs indicate that IgE epitopes 1 and 2 are common in food allergenic TLPs, and IgE epitopes 2 and 3 are common in pollen allergenic TLPs; IgE epitope 2 overlaps with a portion of the thaumatin family signature. The secondary structural elements of TLPs vary markedly in regions 1 and 2 which harbor all the predicted IgE epitopes in all food and pollen TLPs in either of the region. Further, based on the number of IgE epitopes, food TLPs are grouped into rosid and non-rosid clades. The number and distribution of the predicted IgE epitopes among the allergenic TLPs may explain the specificity of food or pollen allergy as

  5. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel;

    The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine...... immunity during viral infections and disease. Here we combine the ability of complete nonamer peptide based binding matrices for three different SLA proteins to predict good candidates for peptide-SLA (pSLA) binding with that of an online available algorithm, NetMHCpan. Further we analyze the correlation...... between high affinity and high stability peptides bound by the highly expressed SLA molecules, SLA-1*0401, SLA-2*0401, and SLA-3*0401, using a luminescence oxygen channeling (LOCI) and a scintillation proximity assay, respectively. With this procedure, high affinity and highly stable SLA peptide epitopes...

  6. Targeting of conserved gag-epitopes in early HIV infection is associated with lower plasma viral load and slower CD4+ T cell depletion

    Perez, Carina L.; Milush, Jeffrey M.; Buggert, Marcus;

    2013-01-01

    epitopes had a significantly lower median viral load over time compared to patients with responses targeting a variable epitope (0.63 log10 difference). Furthermore, the rate of CD4+ T cell decline was slower for subjects targeting a conserved epitope (0.85% per month) compared to subjects targeting a...

  7. Significance of monoclonal antibodies against the conserved epitopes within non-structural protein 3 helicase of hepatitis C virus.

    Yixin Bian

    Full Text Available Nonstructural protein 3 (NS3 of hepatitis C virus (HCV, codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192-1459. Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope (1231PTGSGKSTK(1239 (EP05 or core motif (1373IPFYGKAI(1380 (EP21, respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59-79% chronic and weakly with 30-58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.

  8. EpViX: A cloud-based tool for epitope reactivity analysis and epitope virtual crossmatching to identify low immunologic risk donors for sensitized recipients.

    Anunciação, Fernando Antonio Costa; Sousa, Luiz Claudio Demes da Mata; da Silva, Adalberto Socorro; Marroquim, Mário Sérgio Coelho; Coelho, Antônio Gilberto Borges; Willcox, Glauco Henrique; de Andrade, João Marcelo Medeiros; Corrêa, Bruno de Melo; Guimarães, Elisabeth Lima; do Monte, Semiramis Jamil Hadad

    2015-11-01

    One of the challenges facing solid organ transplantation programs globally is the identification of low immunological risk donors for sensitized recipients by HLA allele genotype. Because recognition of donor HLA alleles by host antibodies is at the core of organ rejection, the objective of this work was to develop a new version of the EpHLA software, named EpViX, which uses an HLAMatchmaker algorithm and performs automated epitope virtual crossmatching at the initiation of the organ donation process. EpViX is a free, web-based application developed for use over the internet on a tablet, smartphone or computer. This program was developed using the Ruby programming language and the Ruby-on-Rails framework. To improve the user experience, the EpViX software interface was developed based on the best human–computer interface practices. To simplify epitope analysis and virtual crossmatching, the program was integrated with important available web-based resources, such as OPTN, IMGT/HLA and the International HLA Epitope Registry. We successfully developed a program that allows people to work collaboratively and effectively during the donation process by accurately predicting negative crossmatches, saving time and other resources. PMID:26531328

  9. Characterization of C-strain “Riems” TAV-epitope escape variants obtained through selective antibody pressure in cell culture

    Leifer Immanuel

    2012-04-01

    Full Text Available Abstract Classical swine fever virus (CSFV C-strain “Riems” escape variants generated under selective antibody pressure with monoclonal antibodies and a peptide-specific antiserum in cell culture were investigated. Candidates with up to three amino acid exchanges in the immunodominant and highly conserved linear TAV-epitope of the E2-glycoprotein, and additional mutations in the envelope proteins ERNS and E1, were characterized both in vitro and in vivo. It was further demonstrated, that intramuscular immunization of weaner pigs with variants selected after a series of passages elicited full protection against lethal CSFV challenge infection. These novel CSFV C-strain variants with exchanges in the TAV-epitope present potential marker vaccine candidates. The DIVA (differentiating infected from vaccinated animals principle was tested for those variants using commercially available E2 antibody detection ELISA. Moreover, direct virus differentiation is possible using a real-time RT-PCR system specific for the new C-strain virus escape variants or using differential immunofluorescence staining.

  10. Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein.

    van Binnendijk, R S; Versteeg-van Oosten, J P; Poelen, M C; Brugghe, H F; Hoogerhout, P; Osterhaus, A D; Uytdehaag, F G

    1993-01-01

    The transmembrane fusion (F) glycoprotein of measles virus is an important target antigen of human HLA class I- and class II-restricted cytotoxic T lymphocytes (CTL). Genetically engineered F proteins and nested sets of synthetic peptides spanning the F protein were used to determine sequences of F recognized by a number of F-specific CTL clones. Combined N- and C-terminal deletions of the respective peptides revealed that human HLA class I and HLA class II-restricted CTL efficiently recognize nonapeptides or decapeptides representing epitopes of F. Three distinct sequences recognized by three different HLA class II (DQw1, DR2, and DR4/w53)-restricted CTL clones appear to cluster between amino acids 379 and 466 of F, thus defining an important T-cell epitope area of F. Within this same region, a nonamer peptide of F was found to be recognized by an HLA-B27-restricted CTL clone, as expected on the basis of the structural homology between this peptide and other known HLA-B27 binding peptides. PMID:7680390

  11. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants

    Noemi Cerovska; Hana Hoffmeisterova; Tomas Moravec; Helena Plchova; Jitka Folwarczna; Helena Synkova; Helena Ryslava; Viera Ludvikova; Michal Smahel

    2012-03-01

    Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108–120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2108-120 epitope were found after both methods of vaccine delivery.

  12. Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays.

    Tiago Antônio de Oliveira Mendes

    Full Text Available BACKGROUND: The factors influencing variation in the clinical forms of Chagas disease have not been elucidated; however, it is likely that the genetics of both the host and the parasite are involved. Several studies have attempted to correlate the T. cruzi strains involved in infection with the clinical forms of the disease by using hemoculture and/or PCR-based genotyping of parasites from infected human tissues. However, both techniques have limitations that hamper the analysis of large numbers of samples. The goal of this work was to identify conserved and polymorphic linear B-cell epitopes of T. cruzi that could be used for serodiagnosis and serotyping of Chagas disease using ELISA. METHODOLOGY: By performing B-cell epitope prediction on proteins derived from pair of alleles of the hybrid CL Brener genome, we have identified conserved and polymorphic epitopes in the two CL Brener haplotypes. The rationale underlying this strategy is that, because CL Brener is a recent hybrid between the TcII and TcIII DTUs (discrete typing units, it is likely that polymorphic epitopes in pairs of alleles could also be polymorphic in the parental genotypes. We excluded sequences that are also present in the Leishmania major, L. infantum, L. braziliensis and T. brucei genomes to minimize the chance of cross-reactivity. A peptide array containing 150 peptides was covalently linked to a cellulose membrane, and the reactivity of the peptides was tested using sera from C57BL/6 mice chronically infected with the Colombiana (TcI and CL Brener (TcVI clones and Y (TcII strain. FINDINGS AND CONCLUSIONS: A total of 36 peptides were considered reactive, and the cross-reactivity among the strains is in agreement with the evolutionary origin of the different T. cruzi DTUs. Four peptides were tested against a panel of chagasic patients using ELISA. A conserved peptide showed 95.8% sensitivity, 88.5% specificity, and 92.7% accuracy for the identification of T. cruzi in

  13. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø;

    1997-01-01

    inserted. Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  14. A novel monoclonal antibody to a defined peptide epitope in MUC16

    Marcos-Silva, Lara; Ricardo, Sara; Chen, Kowa;

    2015-01-01

    the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of...

  15. A dominant EV71-specific CD4+ T cell epitope is highly conserved among human enteroviruses.

    Ruicheng Wei

    Full Text Available CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD, has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine.

  16. Characterization of a linear epitope on Chlamydia trachomatis serovar L2 DnaK-like protein

    Birkelund, Svend; Larsen, B; Holm, A; Lundemose, AG; Christiansen, Gunna

    1994-01-01

    A cytoplasmic 75-kDa immunogen from Chlamydia trachomatis serovar L2 has previously been characterized as being similar to the Escherichia coli heat shock protein DnaK. We have localized a linear epitope for one monoclonal antibody specific for C. trachomatis DnaK. By use of a recombinant DNA...

  17. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  18. Thioreductase containing epitopes inhibit the development of type 1 diabetes in the NOD mouse model

    Elin eMalek Abrahimians

    2016-03-01

    Full Text Available Autoreactive CD4+ T cells recognizing islet-derived antigens play a primary role in type 1 diabetes. Specific suppression of such cells therefore represents a strategic target for the cure of the disease. We have developed a methodology by which CD4+ T cells acquire apoptosis-inducing properties on antigen-presenting cells after cognate recognition of natural sequence epitopes. We describe here that inclusion of a thiol-disulfide oxidoreductase (thioreductase motif within the flanking residues of a single MHC class II-restricted GAD65 epitope induces GAD65-specific cytolytic CD4+ T cells (cCD4+ T. The latter, obtained either in vitro or by active immunization, acquire an effector memory phenotype and lyse APCs by a Fas-FasL interaction. Further, cCD4+ T cells eliminate by apoptosis activated bystander CD4+ T cells recognizing alternative epitopes processed by the same APC. Active immunization with a GAD65 class II-restricted thioreductase-containing T cell epitope protects mice from diabetes and abrogates insulitis. Passive transfer of in vitro-elicited cCD4+ T cells establishes that such cells are efficient in suppressing autoimmunity. These findings provide strong evidence for a new vaccination strategy to prevent type 1 diabetes.

  19. Identification of novel HLA-A(*)0201-restricted CTL epitopes from Pokemon.

    Yuan, Bangqing; Zhao, Lin; Xian, Ronghua; Zhao, Gang

    2012-01-01

    Pokemon is a member of the POK family of transcriptional repressors and aberrant overexpressed in various human cancers. Therefore, the related peptide epitopes derived from Pokemon is essential for the development of specific immunotherapy of malignant tumors. In this study, we predicted and identified HLA-A(*)0201-restricted cytotoxic T lymphocyte (CTL) epitopes derived from Pokemon with computer-based epitope prediction, peptide-binding assay and testing of the induced CTLs toward different kinds of carcinoma cells. The results demonstrated that effectors induced by peptides of Pokemon containing residues 32-40, 61-69, 87-95, and 319-327 could specifically secrete IFN-γ and lyse tumor cell lines of Pokemon-positive and HLA-A2-matched. The results suggest that Pokemon32, Pokemon61, Pokemon87, and Pokemon319 peptides are novel HLA-A(*)0201-restricted restricted CTL epitopes, and could be utilized in the cancer immunotherapy against a broad spectrum of tumors. PMID:22405859

  20. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø; Christiansen, Gunnar; Klemm, Per

    inserted. Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  1. The Epitope Study on the SARS-CoV Nucleocapsid Protein

    Shuting Li; Xiaolei Li; Jingqiang Wang; Zhengfeng Zhou; Jinxiu Liu; Jianmin Shao; Tingting Lei; Jianqiu Fang; Ningzhi Xu; Siqi Liu; Liang Lin; Hao Wang; Jianning Yin; Yan Ren; Zhe Zhao; Jie Wen; Cuiqi Zhou; Xumin Zhang

    2003-01-01

    The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA),the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins,whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS.

  2. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike

    Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de La Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.

    2015-09-01

    The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120-gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120-gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes.

  3. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses.

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Pazgier, Marzena; Haynes, Barton F; Ferrari, Guido

    2013-07-01

    Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC. PMID:24191939

  4. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens.

    Xu, Qingqing; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2015-12-01

    The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J. PMID:26196055

  5. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram;

    2014-01-01

    recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only...

  6. NetTepi: an integrated method for the prediction of T cell epitopes

    Trolle, Thomas; Nielsen, Morten

    Multiple factors determine the ability of a peptide to elicit a cytotoxic T cell lymphocyte response. Binding to a major histocompatibility complex class I (MHC-I) molecule is one of the most essential factors, as no peptide can become a T cell epitope unless presented on the cell surface in comp...

  7. Reliable B cell epitope predictions: impacts of method development and improved benchmarking.

    Jens Vindahl Kringelum

    Full Text Available The interaction between antibodies and antigens is one of the most important immune system mechanisms for clearing infectious organisms from the host. Antibodies bind to antigens at sites referred to as B-cell epitopes. Identification of the exact location of B-cell epitopes is essential in several biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping of B-cell epitopes has been moderate. Several issues regarding the evaluation data sets may however have led to the performance values being underestimated: Rarely, all potential epitopes have been mapped on an antigen, and antibodies are generally raised against the antigen in a given biological context not against the antigen monomer. Improper dealing with these aspects leads to many artificial false positive predictions and hence to incorrect low performance values. To demonstrate the impact of proper benchmark definitions, we here present an updated version of the DiscoTope method incorporating a novel spatial neighborhood definition and half-sphere exposure as surface measure. Compared to other state-of-the-art prediction methods, Discotope-2.0 displayed improved performance both in cross-validation and in independent evaluations. Using DiscoTope-2.0, we assessed the impact on performance when using proper benchmark definitions. For 13 proteins in the training data set where sufficient biological information was available to make a proper benchmark redefinition, the average AUC performance was improved from 0.791 to 0.824. Similarly, the average AUC performance on an independent evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve

  8. The immune epitope database: a historical retrospective of the first decade.

    Salimi, Nima; Fleri, Ward; Peters, Bjoern; Sette, Alessandro

    2012-10-01

    As the amount of biomedical information available in the literature continues to increase, databases that aggregate this information continue to grow in importance and scope. The population of databases can occur either through fully automated text mining approaches or through manual curation by human subject experts. We here report our experiences in populating the National Institute of Allergy and Infectious Diseases sponsored Immune Epitope Database and Analysis Resource (IEDB, http://iedb.org), which was created in 2003, and as of 2012 captures the epitope information from approximately 99% of all papers published to date that describe immune epitopes (with the exception of cancer and HIV data). This was achieved using a hybrid model based on automated document categorization and extensive human expert involvement. This task required automated scanning of over 22 million PubMed abstracts followed by classification and curation of over 13 000 references, including over 7000 infectious disease-related manuscripts, over 1000 allergy-related manuscripts, roughly 4000 related to autoimmunity, and 1000 transplant/alloantigen-related manuscripts. The IEDB curation involves an unprecedented level of detail, capturing for each paper the actual experiments performed for each different epitope structure. Key to enabling this process was the extensive use of ontologies to ensure rigorous and consistent data representation as well as interoperability with other bioinformatics resources, including the Protein Data Bank, Chemical Entities of Biological Interest, and the NIAID Bioinformatics Resource Centers. A growing fraction of the IEDB data derives from direct submissions by research groups engaged in epitope discovery, and is being facilitated by the implementation of novel data submission tools. The present explosion of information contained in biological databases demands effective query and display capabilities to optimize the user experience. Accordingly, the

  9. Prediction of Secondary Structure and B Cell Epitope of GH Protein from Acipenser sinensis%中华鲟GH蛋白二级结构和B细胞抗原表位的预测

    刘红艳; 杨东; 张繁荣; 余来宁

    2009-01-01

    [Objective] The aim was to predict the secondary structure and B cell epitope of growth hormone (GH) protein from Acipenser sinensis. [Method] With the amino acid sequence of GH protein from A.sinensis as the base, the secondary structure of GH protein from A.sinensis was predicted by the method of Garnier-Robson, Chou-Fasman and Karplus-Schulz, and its cell epitope was predicted by the method of Kyte-Doolittle, Emini and Jameson-Wolf. [Result] The sections of 18-23, 55-56, 67-73, 83-86, 112-114, 151-157 and 209-211 in the N terminal of GH protein molecule had softer structure and these sections could sway or fold to produce more complex tertiary structure. The sections of 19-23, 51-71, 84-95, 128-139, 164-176 and 189-196 in the N terminal of GH protein could be the epitope of B cell and there were flexible regions in these sections or near these sections of GH protein molecule. So the dominant regions could be in these sections or near these sections. [Conclusion] The research provided the basis for the preparation of monoclonal antibody of GH protein from A.sinensis and provided the reference for the discussion for the molecular regulation mechanism of A.sinensis.

  10. Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering

    Jian Zhang

    2014-01-01

    Full Text Available B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction, is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs of 0.721 and 0.703 on two benchmark datasets (bound and unbound using the leave-one-out cross-validation (LOOCV. When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.

  11. Conformational B-cell epitopes prediction from sequences using cost-sensitive ensemble classifiers and spatial clustering.

    Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang

    2014-01-01

    B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use. PMID:25045691

  12. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia

    2016-01-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  13. Phage display revisited: Epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology.

    Cariccio, Veronica Lanza; Domina, Maria; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Faleri, Agnese; Bruttini, Marco; Bartolini, Erika; Giuliani, Marzia Monica; Santini, Laura; Brunelli, Brunella; Norais, Nathalie; Borgogni, Erica; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero(®) anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes. PMID:26963435

  14. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras.

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia; Ahlborg, Niklas

    2016-09-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  15. Distribution of lipophosphoglycan-associated epitopes in different Leishmania species and in African trypanosomes.

    Tolson, D L; Schnur, L F; Jardim, A; Pearson, T W

    1994-01-01

    Monoclonal antibody (mAb) CA7AE binds specifically to the phosphorylated Gal-beta 1,4-Man disaccharide repeat epitope of Leishmania donovani lipophosphoglycan (LPG). This mAb detected the repeat epitope in most but not all of a wide variety of Leishmania species and strains examined. MAb CA7AE also bound to both glycoprotein and carbohydrate antigens in medium from L. donovani promastigote cultures. Specifically, mAb CA7AE bound the delipidated form of LPG, the phosphoglycan, and a glycoprotein both of which are released into the medium by the parasite indicating that both share a specific phosphorylated carbohydrate epitope. The epitope was detected in sera from L. donovani-infected (kala-azar positive) patients when mAb CA7AE was used in an antigen-capture enzyme-linked immunosorbent assay (ELISA). MAb L157 is specific for a protein that is found associated with L. donovani LPG, the lipophosphoglycan-associated protein (LPGAP). This mAb bound to molecules in all 19 strains (representing 9 species) of Leishmania promastigotes and to molecules in 2 species of Trypanosoma procyclic culture forms. This wide distribution of the LPGAP epitope implies that it may have a conserved function, for example, in the biochemistry or arrangement of parasite surface molecules. In addition, since the LPGAP is involved in the stimulation of T lymphocyte proliferation, its wide distribution amongst different Leishmania species suggests that it may be an ideal molecule for testing as a vaccine for leishmaniasis. PMID:7528916

  16. Expressing Redundancy among Linear-Epitope Sequence Data Based on Residue-Level Physicochemical Similarity in the Context of Antigenic Cross-Reaction

    2016-01-01

    Epitope-based design of vaccines, immunotherapeutics, and immunodiagnostics is complicated by structural changes that radically alter immunological outcomes. This is obscured by expressing redundancy among linear-epitope data as fractional sequence-alignment identity, which fails to account for potentially drastic loss of binding affinity due to single-residue substitutions even where these might be considered conservative in the context of classical sequence analysis. From the perspective of immune function based on molecular recognition of epitopes, functional redundancy of epitope data (FRED) thus may be defined in a biologically more meaningful way based on residue-level physicochemical similarity in the context of antigenic cross-reaction, with functional similarity between epitopes expressed as the Shannon information entropy for differential epitope binding. Such similarity may be estimated in terms of structural differences between an immunogen epitope and an antigen epitope with reference to an idealized binding site of high complementarity to the immunogen epitope, by analogy between protein folding and ligand-receptor binding; but this underestimates potential for cross-reactivity, suggesting that epitope-binding site complementarity is typically suboptimal as regards immunologic specificity. The apparently suboptimal complementarity may reflect a tradeoff to attain optimal immune function that favors generation of immune-system components each having potential for cross-reactivity with a variety of epitopes.

  17. Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98).

    Gulati, Upma; Hwang, Chi-Ching; Venkatramani, Lalitha; Gulati, Shelly; Stray, Stephen J; Lee, Janis T; Laver, W Graeme; Bochkarev, Alexey; Zlotnick, Adam; Air, Gillian M

    2002-12-01

    We have characterized monoclonal antibodies raised against the neuraminidase (NA) of a Sydney-like influenza virus (A/Memphis/31/98, H3N2) in a reassortant virus A/NWS/33(HA)-A/Mem/31/98(NA) (H1N2) and nine escape mutants selected by these monoclonal antibodies. Five of the antibodies use the same heavy chain VDJ genes and may not be independent. Another antibody, Mem5, uses the same V(H) and J genes with a different D gene and different isotype. Sequence changes in escape mutants selected by these antibodies occur in two loops of the NA, at amino acid 198, 199, 220, or 221. These amino acids are located on the opposite side of the NA monomer to the major epitopes found in N9 and early N2 NAs. Escape mutants with a change at 198 have reduced NA activity compared to the wild-type virus. Asp198 points toward the substrate binding pocket, and we had previously found that a site-directed mutation of this amino acid resulted in a loss of enzyme activity (M. R. Lentz, R. G. Webster, and G. M. Air, Biochemistry 26:5351-5358, 1987). Mutations at residue 199, 220, or 221 did not alter the NA activity significantly compared to that of wild-type NA. A 3.5-A structure of Mem5 Fab complexed with the Mem/98 NA shows that the Mem5 antibody binds at the sites of escape mutation selected by the other antibodies. PMID:12414967

  18. Conformational differences between linear α(2 → 8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide

    The α-(2 → 8)-linked sialic acid oligosaccharides (NeuAc)/sub n/ exhibit an unusual degree of heterogeneity in the conformation of their linkages. This was diagnosed by observation in the 13C NMR spectra of an equivalent and unique heterogeneity in the chemical shifts of their anomeric carbons and subsequently confirmed by more comprehensive 1H and 13C NMR studies. In these studies both one-dimensional and two-dimensional experiments were carried out on the trisaccharide (NeuAc)3 and colominic acid. In addition to the unambiguous assignment of the signals in the spectra, these experiments demonstrated that both linkage of (NeuAc)3 differed in conformation from each other and from the inner linkages of colominic acid. The NMR data indicate that these conformational differences extend to both terminal disaccharides of oligosaccharides larger than (NeuAc)5, a result that has considerable physical and biological significance. In the context of the group B meningococcal polysaccharide, it provides an explanation for the conformational epitope of the group B meningococcal polysaccharide, which was proposed on the evidence that (NeuAc)10, larger than the optimum size of an antibody site, was the smallest oligosaccharide able to bind to group B polysaccharide specific antibodies. Because the two terminal disaccharides of (NeuAc)10 differ in conformation to its inner residues, the immunologically functional part of (NeuAc)10 resides in its inner six residues. This number of residues is now consistent with the maximum size of an antibody site

  19. Computational Analysis of Cysteine Proteases(Clan CA, Family C1)of Leishmania major to Find Potential Epitopic Regions

    Babak Saffari; Hassan Mohabatkar

    2009-01-01

    Leishmania is associated with a broad spectrum of diseases, ranging from simple cutaneous to invasive visceral leishmaniasis. Here, the sequences of ten cysteine proteases of types A, B and C of Leishmania major were obtained from GeneDB database. Prediction of MHC class I epitopes of these cysteine proteases was per-formed by NetCTL program version 1.2. In addition, by using BcePred server, different structural properties of the proteins were predicted to find out their po-tential B cell epitopes. According to this computational analysis, nine regions were predicted as B cell epitopes. The results provide useful information for designing peptide-based vaccines.

  20. Conserved region at the COOH terminus of human immunodeficiency virus gp120 envelope protein contains an immunodominant epitope

    A highly immunogenic epitope from a conserved COOH-terminal region of the human immunodeficiency virus (HIV) gp120 envelope protein has been identified with antisera from HIV-seropositive subjects and a synthetic peptide (SP-22) containing 15 amino acids from this region (Ala-Pro-Thr-Lys-Ala-Lys-Arg-Arg-Val-Val-Gln-Arg-Glu-Lys-Arg). Peptide SP-22 absorbed up to 100% of anti-gp120 antibody reactivity from select HIV+ patient sera in immunoblot assays and up to 79% of serum anti-gp120 antibody reactivity in competition RIA. In RIA, 45% of HIV-seropositive subjects had antibodies that bound to peptide SP-22. Human anti-SP-22 antibodies that bound to and were eluted from an SP-22 affinity column reacted with gp120 in RIA and immunoblot assays but did not neutralize HIV or inhibit HIV-induced syncytium formation in vitro, even though these antibodies comprised 70% of all anti-gp120 antibodies in the test serum. In contrast, the remaining 30% of SP-22 nonreactive anti-gp120 antibodies did not react with gp120 in immunoblot assays but did react in RIA and neutralized HIV in vitro. Thus, ≅ 50% of HIV-seropositive patients make high titers of nonneutralizing antibodies to an immunodominant antigen on gp120 defined by SP-22. Moreover, the COOH terminus of gp120 contains the major antigen or antigens identified by human anti-gp120 antibodies in immunoblot assays

  1. A monoclonal antibody targeting a highly conserved epitope in influenza B neuraminidase provides protection against drug resistant strains.

    Doyle, Tracey M; Li, Changgui; Bucher, Doris J; Hashem, Anwar M; Van Domselaar, Gary; Wang, Junzhi; Farnsworth, Aaron; She, Yi-Min; Cyr, Terry; He, Runtao; Brown, Earl G; Hurt, Aeron C; Li, Xuguang

    2013-11-01

    All influenza viral neuraminidases (NA) of both type A and B viruses have only one universally conserved sequence located between amino acids 222-230. A monoclonal antibody against this region has been previously reported to provide broad inhibition against all nine subtypes of influenza A NA; yet its inhibitory effect against influenza B viral NA remained unknown. Here, we report that the monoclonal antibody provides a broad inhibition against various strains of influenza B viruses of both Victoria and Yamagata genetic lineage. Moreover, the growth and NA enzymatic activity of two drug resistant influenza B strains (E117D and D197E) are also inhibited by the antibody even though these two mutations are conformationally proximal to the universal epitope. Collectively, these data suggest that this unique, highly-conserved linear sequence in viral NA is exposed sufficiently to allow access by inhibitory antibody during the course of infection; it could represent a potential target for antiviral agents and vaccine-induced immune responses against diverse strains of type B influenza virus. PMID:24140051

  2. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

    Andrew J Bordner

    Full Text Available The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with

  3. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

    Bordner, Andrew J

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC

  4. B-Pred, a structure based B-cell epitopes prediction server

    Giacò L

    2012-07-01

    Full Text Available Luciano Giacò,1 Massimo Amicosante,2 Maurizio Fraziano,1 Pier Federico Gherardini,1 Gabriele Ausiello,1 Manuela Helmer-Citterich,1 Vittorio Colizzi,1 Andrea Cabibbo11Department of Biology, 2Department of Internal Medicine, University of Rome "Tor Vergata", Rome, ItalyAbstract: The ability to predict immunogenic regions in selected proteins by in-silico methods has broad implications, such as allowing a quick selection of potential reagents to be used as diagnostics, vaccines, immunotherapeutics, or research tools in several branches of biological and biotechnological research. However, the prediction of antibody target sites in proteins using computational methodologies has proven to be a highly challenging task, which is likely due to the somewhat elusive nature of B-cell epitopes. This paper proposes a web-based platform for scoring potential immunological reagents based on the structures or 3D models of the proteins of interest. The method scores a protein's peptides set, which is derived from a sliding window, based on the average solvent exposure, with a filter on the average local model quality for each peptide. The platform was validated on a custom-assembled database of 1336 experimentally determined epitopes from 106 proteins for which a reliable 3D model could be obtained through standard modeling techniques. Despite showing poor sensitivity, this method can achieve a specificity of 0.70 and a positive predictive value of 0.29 by combining these two simple parameters. These values are slightly higher than those obtained with other established sequence-based or structure-based methods that have been evaluated using the same epitopes dataset. This method is implemented in a web server called B-Pred, which is accessible at http://immuno.bio.uniroma2.it/bpred. The server contains a number of original features that allow users to perform personalized reagent searches by manipulating the sliding window's width and sliding step, changing the

  5. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  6. Antibody specificities of children living in a malaria endemic area to inhibitory and blocking epitopes on MSP-1 19 of Plasmodium falciparum.

    Omosun, Y O; Adoro, S; Anumudu, C I; Odaibo, A B; Uthiapibull, C; Holder, A A; Nwagwu, M; Nwuba, R I

    2009-03-01

    Merozoite surface protein-1(19) (MSP-1(19)) specific antibodies which include processing inhibitory, blocking and neutral antibodies have been identified in individuals exposed to Plasmodium falciparum. Here we intend to look at the effect of single and multiple amino acid substitutions of MSP-1(19) on the recognition by polyclonal antibodies from children living in Igbo-Ora, Nigeria. This would provide us with information on the possibility of eliciting mainly processing inhibitory antibodies with a recombinant MSP-1(19) vaccine. Blood was collected from children in the rainy season and binding of anti-MSP-1(19) antibodies to modified mutants of MSP-1(19) was analysed by ELISA. The MSP-1(19) mutant proteins with single substitutions at positions 22 (Leu-->Arg), 43 (Glu-->Leu) and 53 (Asn-->Arg) and the MSP-1(19) mutant protein with multiple substitutions at positions 27+31+34+43 (Glu-->Tyr, Leu-->Arg, Tyr-->Ser, Glu-->Leu); which had inhibitory epitopes; had the highest recognition. Children recognised both sets of mutants with different age groups having different recognition levels. The percentage of malaria positive individuals (32-80%) with antibodies that bound to the mutants MSP-1(19) containing epitopes that recognise only processing inhibitory and not blocking antibodies, were significantly different from those with antibodies that did not bind to these mutants (21-28%). The amino acid substitutions that abolished the binding of blocking antibodies without affecting the binding of inhibitory antibodies are of particular interest in the design of MSP-1(19) based malaria vaccines. Although these MSP-1(19) mutants have not been found in natural population, their recognition by polyclonal antibodies from humans naturally infected with malaria is very promising for the future use of MSP-1(19) mutants in the design of a malaria vaccine. PMID:19081386

  7. Thermal processing effects on peanut allergen Ara h 2 allergenicity in mice and its antigenic epitope structure.

    Zhang, Wenju; Zhu, Qingqing; Zhang, Tong; Cai, Qin; Chen, Qin

    2016-12-01

    Ara h 2 was purified from peanuts that were thermally treated by various processes, including boiling, glycation, frying and roasting. The allergenicity of Ara h 2 in Balb/c mice and the influence of thermal processing on the structural characteristics, and binding capacity of three core antigenic epitopes were studied. The results demonstrated that boiling, glycation and frying induced the down-regulation of the allergenicity of Ara h 2 in Balb/c mice, the collapse of its tertiary/secondary structure, and a reduction in the core epitope binding capacity; roasting showed a comparable allergenicity and the weakest inhibitory effect on core epitope binding capacity. These results indicate that thermal processing causes alteration of the protein structure and core epitopes of Ara h 2, and may affect its allergenicity. PMID:27374581

  8. 76 FR 51374 - Direct Discovery of HLA Associated Influenza Epitopes Isolated From Human Cells for Vaccine and...

    2011-08-18

    ..., Office of Chief Scientist, is to develop technology to molecularly characterize peptide epitopes that are... technology and have published the first reports on applying this method to influenza. Support of this...

  9. Protective immunity against Trichinella spiralis infection induced by a multi-epitope vaccine in a murine model.

    Yuan Gu

    Full Text Available Trichinellosis is one of the most important food-borne parasitic zoonoses throughout the world. Because infected pigs are the major source of human infections, and China is becoming the largest international producer of pork, the development of a transmission-blocking vaccine to prevent swine from being infected is urgently needed for trichinellosis control in China. Our previous studies have demonstrated that specific Trichinella spiralis paramyosin (Ts-Pmy and Ts-87 antigen could provide protective immunity against T. spiralis infection in immunized mice. Certain protective epitopes of Ts-Pmy and Ts-87 antigen have been identified. To identify more Ts-Pmy protective epitopes, a new monoclonal antibody, termed 8F12, was produced against the N-terminus of Ts-Pmy. This antibody elicited significant protective immunity in mice against T. spiralis infection by passive transfer and was subsequently used to screen a random phage display peptide library to identify recognized epitopes. Seven distinct positive phage clones were identified and their displayed peptides were sequenced. Synthesized epitope peptides conjugated to keyhole limpet hemocyanin were used to immunize mice, four of which exhibited larval reduction (from 18.7% to 26.3%, respectively in vaccinated mice in comparison to the KLH control. To increase more effective protection, the epitope 8F7 that was found to induce the highest protection in this study was combined with two other previously identified epitopes (YX1 from Ts-Pmy and M7 from Ts-87 to formulate a multi-epitope vaccine. Mice immunized with this multi-epitope vaccine experienced a 35.0% reduction in muscle larvae burden after being challenged with T. spiralis larvae. This protection is significantly higher than that induced by individual-epitope peptides and is associated with high levels of subclasses IgG and IgG1. These results showed that a multi-epitope vaccine induced better protective immunity than an individual

  10. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method.

    J Field; Nikawa, J; Broek, D; MacDonald, B.; Rodgers, L; Wilson, I A; Lerner, R A; Wigler, M

    1988-01-01

    We developed a method for immunoaffinity purification of Saccharomyces cerevisiae adenylyl cyclase based on creating a fusion with a small peptide epitope. Using oligonucleotide technology to encode the peptide epitope we constructed a plasmid that expressed the fusion protein from the S. cerevisiae alcohol dehydrogenase promoter ADH1. A monoclonal antibody previously raised against the peptide was used to purify adenylyl cyclase by affinity chromatography. The purified enzyme appeared to be ...

  11. The Selection of DNA Aptamers for Two Different Epitopes of Thrombin Was Not Due to Different Partitioning Methods

    Wilson, Robert; Cossins, Andrew; Nicolau, Dan V.; Missailidis, Sotiris

    2013-01-01

    Nearly all aptamers identified so far for any given target molecule have been specific for the same binding site (epitope). The most notable exception to the 1 aptamer per target molecule rule is the pair of DNA aptamers that bind to different epitopes of thrombin. This communication refutes the suggestion that these aptamers exist because different partitioning methods were used when they were selected. The possibility that selection of these aptamers was biased by conflicting secondary stru...

  12. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  13. Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani.

    Tolson, D L; Turco, S J; Pearson, T W

    1990-01-01

    Murine peritoneal macrophages were infected with living, virulent Leishmania donovani promastigotes. At intervals after infection, the macrophage surfaces were probed for the expression of lipophosphoglycan (LPG) epitopes by immunofluorescence with anti-LPG monoclonal antibodies. A repeating phosphorylated disaccharide epitope of LPG was detected as early as 5 to 10 min postinfection and was initially localized to the immediate area of internalization of the promastigote into the macrophage. ...

  14. Immunization of rabbits with synthetic peptides derived from a highly conserved β-sheet epitope region underneath the receptor binding site of influenza A virus

    Ideno S

    2013-11-01

    Full Text Available Shoji Ideno,1,3 Kaoru Sakai,1 Mikihiro Yunoki,2–4 Ritsuko Kubota-Koketsu,3,5 Yuji Inoue,3 Shota Nakamura,6 Teruo Yasunaga,6 Yoshinobu Okuno,5 Kazuyoshi Ikuta3 1Infectious Pathogen Research Section, Central Research Laboratory, Research and Development Division, Japan Blood Products Organization, Kobe, Japan; 2Research and Development Promotion Section, Research and Development Division, Japan Blood Products Organization, Tokyo, Japan; 3Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; 4Department of Veterinary Microbiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan; 5Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan; 6Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan Background: There is increasing concern about the speed with which health care providers can administer prophylaxis and treatment in an influenza pandemic. Generally, it takes several months to manufacture an influenza vaccine by propagation of the virus in chicken eggs or cultured cells. Newer, faster protocols for the production of vaccines that induce broad-spectrum immunity are therefore highly desirable. We previously developed human monoclonal antibody B-1 that shows broadly neutralizing activity against influenza A virus H3N2. B-1 recognizes an epitope region that includes an antiparallel β-sheet structure underneath the receptor binding site of influenza hemagglutinin (HA. In this study, the efficacy of a synthetic peptide vaccine derived from this epitope region against influenza A was evaluated. Materials and methods: Two peptides were synthesized, the upper and lower peptides. These peptides comprise amino acid residues 167–187 and 225–241, respectively, of the B-1 epitope region of HA, which is involved in

  15. Mapping of linear antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus

    Fernandez-Alonso, M.; Lorenzo, G.; Perez, L.; Bullido, R.; Estepa, A.; Lorenzen, Niels; Coll, J.M.

    1998-01-01

    Antibody Linear epitopes of the glycoprotein G (gpG) of the viral haemorrhagic septicaemia virus (VHSV), a rhabdovirus of salmonids, were mapped by pepscan using overlapping 15-mer peptides covering the entire gpG sequence and ELISA with polyclonal and monoclonal murine and polyclonal trout...... antibodies (MAbs), only 2 non-neutralizing MAbs, I10 (aa 139-153) and IP1H3 (aa 399-413), could be mapped to specific peptides in the pepscan of the gpG. Mapping of these MAbs was confirmed by immunoblotting with recombinant proteins and/or other synthetic peptides covering those sequences. None of the...... neutralizing MAbs tested reacted with any of the gpG peptides. Previously mapped MAb resistant mutants in the gpG did not coincide with any of the Linear epitopes defined by the pepscan strategy, suggesting the complementarity of the 2 methods for the identification of antibody recognition sites....

  16. Identifying multiple tumor-specific epitopes from large-scale screening for overexpressed mRNA

    Buus, Søren; Claesson, Mogens Helweg

    2004-01-01

    The rationale of a T-cell epitope-based approach to cancer treatment is primarily rooted in the hypothesis that CD8(+) cytotoxic T cells (CTLs) can be manipulated to specifically identify and kill cancer cells. A solid understanding of CTL specificity and activation is a fundamental requirement for...... tumor immunotherapy. The means to identify tumor-specific CTL epitopes and to monitor corresponding CTL responses are important enabling technologies. Recent advances in these enabling technologies include their ability to exploit genomic, transcriptomic and proteomic information. These advances...... constitute new opportunities, which will enable approaches to tumor immunotherapy that encompass both human diversity and tumor heterogeneity, increase the efficacy of tumor immunotherapy and potentially provide the opportunity for individualized therapy....

  17. NetCTLpan: pan-specific MHC class I pathway epitope predictions

    Stranzl, Thomas; Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten

    2010-01-01

    predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I...... ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal...... cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying...

  18. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    Brock, I; Weldingh, K; Leyten, EM; Arend, SM; Ravn, Pernille; Andersen, P

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... recently identified antigens (Rv2653, Rv2654, Rv3873, and Rv3878) from genomic regions that are lacking from the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine strains as well as from the most common nontuberculous mycobacteria. The fine specificity of potential epitopes in these molecules was...

  19. Design and Antigenic Epitopes Prediction of a New Trial Recombinant Multiepitopic Rotaviral Vaccine: In Silico Analyses.

    Jafarpour, Sima; Ayat, Hoda; Ahadi, Ali Mohammad

    2015-01-01

    Rotavirus is the major etiologic factor of severe diarrheal disease. Natural infection provides protection against subsequent rotavirus infection and diarrhea. This research presents a new vaccine designed based on computational models. In this study, three types of epitopes are considered-linear, conformational, and combinational-in a proposed model protein. Several studies on rotavirus vaccines have shown that VP6 and VP4 proteins are good candidates for vaccine production. In the present study, a fusion protein was designed as a new generation of rotavirus vaccines by bioinformatics analyses. This model-based study using ABCpred, BCPREDS, Bcepred, and Ellipro web servers showed that the peptide presented in this article has the necessary properties to act as a vaccine. Prediction of linear B-cell epitopes of peptides is helpful to investigate whether these peptides are able to activate humoral immunity. PMID:25965449

  20. State of the art and challenges in sequence based T-cell epitope prediction

    Lundegaard, Claus; Hoof, Ilka; Lund, Ole;

    2010-01-01

    field has evolved significantly. Methods have now been developed that produce highly accurate binding predictions for many alleles and integrate both proteasomal cleavage and transport events. Moreover have so-called pan-specific methods been developed, which allow for prediction of peptide binding to......Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of peptide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and no good estimates of the other events in the antigen-processing pathway, the...... MHC alleles characterized by limited or no peptide binding data. Most of the developed methods are publicly available, and have proven to be very useful as a shortcut in epitope discovery. Here, we will go through some of the history of sequence-based predictions of helper as well as cytotoxic T cell...

  1. Identification of a highly immunoreactive epitope of Brugia malayi TPx recognized by the endemic sera.

    Madhumathi, Jayaprakasam; Prince, Prabhu Rajaiah; Gayatri, Subash Chellam; Aparnaa, Ramanathan; Kaliraj, Perumal

    2010-12-01

    Filarial thiordoxin peroxidase is a major antioxidant that plays a crucial role in parasite survival. Although Brugia malayi TPx has been shown to be a potential vaccine candidate, it shares 63% homology with its mammalian counterpart, limiting its use as a vaccine or drug target. In silico analysis of TPx sequence revealed a linear B epitope in the host's nonhomologous region. The peptide sequence (TPx peptide(27-48)) was synthesized, and its reactivity with clinical sera from an endemic region was analyzed. The peptide showed significantly high reactivity (P patent infection. The high reactivity of the peptide with endemic immune sera equivalent to that of whole protein shows that it forms a dominant B epitope of TPx protein and thus could be utilized for incorporation into a multiepitope vaccine construct for filariasis. PMID:21158641

  2. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile;

    2008-01-01

    BACKGROUND: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally...... regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. RESULTS: Using a neoglycoprotein approach, in which a XXXG heptasaccharide...... hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and...

  3. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  4. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-01

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process. PMID:26430814

  5. Virus-like particles of chimeric recombinant porcine circovirus type 2 as antigen vehicle carrying foreign epitopes.

    Zhang, Huawei; Qian, Ping; Liu, Lifeng; Qian, Suhong; Chen, Huanchun; Li, Xiangmin

    2014-12-01

    Virus-like particles (VLPs) of chimeric porcine circovirus type 2 (PCV2) were generated by replacing the nuclear localization signal (NLS; at 1-39 aa) of PCV2 capsid protein (Cap) with classical swine fever virus (CSFV) T-cell epitope (1446-1460 aa), CSFV B-cell epitope (693-716 aa) and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine. PMID:25490764

  6. Prediction of CD8+ Epitopes in Leishmania braziliensis Proteins Using EPIBOT: In Silico Search and In Vivo Validation.

    Angelo Duarte

    Full Text Available Leishmaniasis is caused by intracellular Leishmania parasites that induce a T-cell mediated response associated with recognition of CD4+ and CD8+ T cell Line 1Lineepitopes. Identification of CD8+ antigenic determinants is crucial for vaccine and therapy development. Herein, we developed an open-source software dedicated to search and compile data obtained from currently available on line prediction algorithms.We developed a two-phase algorithm and implemented in an open source software called EPIBOT, that consolidates the results obtained with single prediction algorithms, generating a final output in which epitopes are ranked. EPIBOT was initially trained using a set of 831 known epitopes from 397 proteins from IEDB. We then screened 63 Leishmania braziliensis vaccine candidates with the EPIBOT trained tool to search for CD8+ T cell epitopes. A proof-of-concept experiment was conducted with the top eight CD8+ epitopes, elected by EPIBOT. To do this, the elected peptides were synthesized and validated for their in vivo cytotoxicity. Among the tested epitopes, three were able to induce lysis of pulsed-target cells.Our results show that EPIBOT can successfully search across existing prediction tools, generating a compiled list of candidate CD8+ epitopes. This software is fast and a simple search engine that can be customized to search over different MHC alleles or HLA haplotypes.

  7. Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties.

    Behrendt, Izabela; Prądzińska, Martyna; Spodzieja, Marta; Kołodziejczyk, Aleksandra S; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Czaplewska, Paulina

    2016-07-01

    Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process. PMID:27143169

  8. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses

    Shorter, Shayla K.; Schnell, Frederick J.; McMaster, Sean R.; Pinelli, David F.; Andargachew, Rakieb; Evavold, Brian D.

    2016-01-01

    T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant. PMID:26915099

  9. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  10. Phase Variation in H Type I and Lewis a Epitopes of Helicobacter pylori Lipopolysaccharide

    Appelmelk, Ben J; Martino, M. Celeste; Veenhof, Eveline; Monteiro, Mario A.; Maaskant, Janneke J.; Negrini, Riccardo; Lindh, Frank; Perry, Malcolm; Del Giudice, Giuseppe; Vandenbroucke-Grauls, Christina M. J. E.

    2000-01-01

    Helicobacter pylori NCTC 11637 lipopolysaccharide (LPS) expresses the human blood group antigens Lewis x (Lex), Ley, and H type I. In this report, we demonstrate that the H type I epitope displays high-frequency phase variation. One variant expressed Lex and Ley and no H type I as determined by serology; this switch was reversible. Insertional mutagenesis in NCTC 11637 of JHP563 (a poly(C) tract containing an open reading frame homologous to glycosyltransferases) yielded a transformant with a...

  11. The Utilization and Limitation of CD133 Epitopes in Lung Cancer Stem Cells Research

    Chen, Yin; Hong ZHONG

    2011-01-01

    Lung cancer is one of the most common tumor, which lacks of effective clinical treatment to lead to desirable prognosis. According to cancer stem cell hypothesis, lung cancer stem cells are considered to be responsible for carcinogenesis, development, metastasis, recurrence, invasion, resistance to chemotherapy and radiotherapy of lung cancer. In recent years, more and more institutes used glycosylated CD133 epitopes to define, isolate, purify lung cancer stem cells. However, along with deepl...

  12. Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice

    Li, Yue-Xiang; Zhao, Hui; Cao, Rui-Yuan; Deng, Yong-Qiang; Han, Jian-Feng; Shun-ya ZHU; Ma, Jie; Liu, Long; Qin, E-De; Qin, Cheng-Feng

    2014-01-01

    Background Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children, especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection. Results In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem linear neutralizing epitopes (mTLNE) was prop...

  13. A High Throughput MHC II Binding Assay for Quantitative Analysis of Peptide Epitopes

    Salvat, Regina; Moise, Leonard; Bailey-Kellogg, Chris; Griswold, Karl E

    2014-01-01

    Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design1,2. Here, a peptide-MHC II binding assay is scaled to 384-well format. The scaled down protocol reduces reagent costs by 75% and is higher throughput than previously described 96-well protocols1,3-5. Specifically, the experimental design permits robust and reproducible analysis of up to 15 peptides against one MHC II allele per 384-we...

  14. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells

    Bidlingmaier, Scott; Zhu, Xiaodong; Liu, Bin

    2008-01-01

    Human CD133 (human prominin-1), a five transmembrane domain glycoprotein, was originally identified as a cell surface antigen present on CD34+ hematopoietic stem cells. Although the biological function of CD133 is not well understood, antibodies to CD133 epitopes have been widely used to purify hematopoietic stem and progenitor cells. The cancer stem cell (CSC) hypothesis postulates that a rare population of tumor cells possessing increased capacities for self-renewal and tumor initiation is ...

  15. Epitope Prediction Based on Random Peptide Library Screening: Benchmark Dataset and Prediction Tools Evaluation

    Yanxin Huang; Hongyan Wang; Zhiqiang Ma; Yinghua Lv; Pingping Sun; Wenhan Chen

    2011-01-01

    Epitope prediction based on random peptide library screening has become a focus as a promising method in immunoinformatics research. Some novel software and web-based servers have been proposed in recent years and have succeeded in given test cases. However, since the number of available mimotopes with the relevant structure of template-target complex is limited, a systematic evaluation of these methods is still absent. In this study, a new benchmark dataset was defined. Using this benchmark ...

  16. Immunohistochemical detection of transgene expression in the brain using small epitope tags

    Debyser Zeger; Van den Haute Chris; Gijsbers Rik; Thiry Irina; Paesen Kirsten; Ibrahimi Abdelilah; Reumers Veerle; Lobbestael Evy; Baekelandt Veerle; Taymans Jean-Marc

    2010-01-01

    Abstract Background In vivo overexpression of proteins is a powerful approach to study their biological function, generate disease models or evaluate gene therapy approaches. In order to investigate an exogenously expressed protein, specific and sensitive detection is essential. Unfortunately, antibodies that allow histological detection of the protein of interest are not always readily available. The use of an epitope tag fused to the protein can circumvent this problem as well as provide th...

  17. Expression of Epitope-Tagged Proteins in Mammalian Cells in Culture.

    Bhatt, Jay M; Styers, Melanie L; Sztul, Elizabeth

    2016-01-01

    Before the advent of molecular methods to tag proteins, visualization of proteins within cells required the use of antibodies directed against the protein of interest. Thus, only proteins for which antibodies were available could be visualized. Epitope tagging allows the detection of all proteins with existing sequence information, irrespective of the availability of antibodies directed against them. This technique involves the generation of DNA constructs that express the protein of interest tagged with an epitope that can be recognized by a commercially available antibody. Proteins can be tagged with a wide variety of epitopes using commercially available vectors that allow expression in mammalian cells. Epitope-tagged proteins are easily transfected into mammalian cell lines and, in most cases, tightly mimic the behavior of the endogenous protein. Tagged proteins exogenously expressed in cells provide different types of information depending on the subsequent detection approaches. Using immunofluorescence and immunoelectron microscopy with anti-tag antibodies, relative to known markers of cellular organelles, can provide information on the subcellular localization of the tagged protein and may provide clues regarding the protein's function. Immunofluorescence with anti-tag antibodies can also be utilized to assess the tagged protein's responses to cellular signals and pharmacological treatments. Immunoprecipitations with anti-tag antibodies can recover protein complexes containing the protein of interest, resulting in the identification of interacting proteins. Recovery of tagged proteins on affinity matrices allows their purification for use in biochemical assays. In addition, specialized fluorescent tags, such as the green fluorescent protein (GFP) allow the analysis of cellular dynamics in live cells in real time. PMID:27515071

  18. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes.

    Zhou, Minghai; Xu, Dongping; Li, Xiaojuan; Li, Hongtao; Shan, Ming; Tang, Jiaren; Wang, Min; Wang, Fu-Sheng; Zhu, Xiaodong; Tao, Hua; He, Wei; Tien, Po; Gao, George F

    2006-08-15

    Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines. PMID:16887973

  19. B-Pred, a structure based B-cell epitopes prediction server.

    Giacò, Luciano; Amicosante, Massimo; Fraziano, Maurizio; Gherardini, Pier Federico; Ausiello, Gabriele; Helmer-Citterich, Manuela; Colizzi, Vittorio; Cabibbo, Andrea

    2012-01-01

    The ability to predict immunogenic regions in selected proteins by in-silico methods has broad implications, such as allowing a quick selection of potential reagents to be used as diagnostics, vaccines, immunotherapeutics, or research tools in several branches of biological and biotechnological research. However, the prediction of antibody target sites in proteins using computational methodologies has proven to be a highly challenging task, which is likely due to the somewhat elusive nature of B-cell epitopes. This paper proposes a web-based platform for scoring potential immunological reagents based on the structures or 3D models of the proteins of interest. The method scores a protein's peptides set, which is derived from a sliding window, based on the average solvent exposure, with a filter on the average local model quality for each peptide. The platform was validated on a custom-assembled database of 1336 experimentally determined epitopes from 106 proteins for which a reliable 3D model could be obtained through standard modeling techniques. Despite showing poor sensitivity, this method can achieve a specificity of 0.70 and a positive predictive value of 0.29 by combining these two simple parameters. These values are slightly higher than those obtained with other established sequence-based or structure-based methods that have been evaluated using the same epitopes dataset. This method is implemented in a web server called B-Pred, which is accessible at http://immuno.bio.uniroma2.it/bpred. The server contains a number of original features that allow users to perform personalized reagent searches by manipulating the sliding window's width and sliding step, changing the exposure and model quality thresholds, and running sequential queries with different parameters. The B-Pred server should assist experimentalists in the rational selection of epitope antigens for a wide range of applications. PMID:22888263

  20. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy.

    Prickett, S R; Rolland, J M; O'Hehir, R E

    2015-06-01

    Allergen immunotherapy (AIT) has been practised since 1911 and remains the only therapy proven to modify the natural history of allergic diseases. Although efficacious in carefully selected individuals, the currently licensed whole allergen extracts retain the risk of IgE-mediated adverse events, including anaphylaxis and occasionally death. This together with the need for prolonged treatment regimens results in poor patient adherence. The central role of the T cell in orchestrating the immune response to allergen informs the choice of T cell targeted therapies for down-regulation of aberrant allergic responses. Carefully mapped short synthetic peptides that contain the dominant T cell epitopes of major allergens and bind to a diverse array of HLA class II alleles, can be delivered intradermally into non-inflamed skin to induce sustained clinical and immunological tolerance. The short peptides from allergenic proteins are unable to cross-link IgE and possess minimal inflammatory potential. Systematic progress has been made from in vitro human models of allergen T cell epitope-based peptide anergy in the early 1990s, through proof-of-concept murine allergy models and early human trials with longer peptides, to the current randomized, double-blind, placebo-controlled clinical trials with the potential new class of synthetic short immune-regulatory T cell epitope peptide therapies. Sustained efficacy with few adverse events is being reported for cat, house dust mite and grass pollen allergy after only a short course of treatment. Underlying immunological mechanisms remain to be fully delineated but anergy, deletion, immune deviation and Treg induction all seem contributory to successful outcomes, with changes in IgG4 apparently less important compared to conventional AIT. T cell epitope peptide therapy is promising a safe and effective new class of specific treatment for allergy, enabling wider application even for more severe allergic diseases. PMID:25900315

  1. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  2. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition.

    Liang, Yu; Guttman, Miklos; Davenport, Thaddeus M; Hu, Shiu-Lok; Lee, Kelly K

    2016-04-19

    Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes. PMID:27003615

  3. De Novo Transcriptome Analysis of Allium cepa L. (Onion Bulb to Identify Allergens and Epitopes.

    Hemalatha Rajkumar

    Full Text Available Allium cepa (onion is a diploid plant with one of the largest nuclear genomes among all diploids. Onion is an example of an under-researched crop which has a complex heterozygous genome. There are no allergenic proteins and genomic data available for onions. This study was conducted to establish a transcriptome catalogue of onion bulb that will enable us to study onion related genes involved in medicinal use and allergies. Transcriptome dataset generated from onion bulb using the Illumina HiSeq 2000 technology showed a total of 99,074,309 high quality raw reads (~20 Gb. Based on sequence homology onion genes were categorized into 49 different functional groups. Most of the genes however, were classified under 'unknown' in all three gene ontology categories. Of the categorized genes, 61.2% showed metabolic functions followed by cellular components such as binding, cellular processes; catalytic activity and cell part. With BLASTx top hit analysis, a total of 2,511 homologous allergenic sequences were found, which had 37-100% similarity with 46 different types of allergens existing in the database. From the 46 contigs or allergens, 521 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. This is the first comprehensive insight into the transcriptome of onion bulb tissue using the NGS technology, which can be used to map IgE epitopes and prediction of structures and functions of various proteins.

  4. Molecular Design and Immunogenicity of a Multiple-epitope FMDV Antigen and DNA Vaccination

    2008-01-01

    This article reports the design and construction of a multiple-epitope foot and mouth disease virus (FMDV)antigen, designated as OAAT. This recombinant antigen consists of the structural protein VP1 genes from serotypes A and O FMDV, five major VP1 immunodominant epitopes from two genotypes of Asia1 serotype, and three Th2 epitopes originating from the nonstructural protein, three ABC gene and structural protein VP4 gene. Expressions of target gene from these plasmids in HeLa cells were verified by Western-blot. BALB/c mice were immunized intramuscularly with the DNA vaccines thrice every two weeks. We found that pA could induce simultaneously specific antibodies against serotypes A, Asia1, and O FMDV. Compared to those of the controls, the spots of FMDV-specific IFN-γ and cytotoxic activity from mice immunized with pA were significantly increased. pA provided full protection in 2/4 guinea pigs from challenge with FMDV O/NY00 and Asia1/YNBS/58, respectively. The results show that although pA did not give full protection in 100% immunized guinea pigs from challenge with type O and Asia1 FMDV, respectively, OAAT may be potential immunogen against FMDV and pA may be potential DNA vaccines against FMDV.

  5. A novel recombinant multi-epitope protein against Brucella melitensis infection.

    Yin, Dehui; Li, Li; Song, Dandan; Liu, Yushen; Ju, Wen; Song, Xiuling; Wang, Juan; Pang, Bo; Xu, Kun; Li, Juan

    2016-07-01

    Live, attenuated Brucella vaccines are considered effective but can induce abortions in pregnant animals and are potentially infectious to humans. There is a strong need to improve the immunoprotective effects and safety of vaccines against Brucella. Currently, subunit vaccines have been demonstrated to be safe and efficacious alternatives in both humans and animals. In this study, we employed bioinformatics tools to predict B and T cell epitopes to aid development of a novel recombinant multi-epitope antigen for brucellosis vaccination. To evaluate the protective capacity of the recombinant antigen, the antigen's efficacy was studied in a mouse model of brucellosis. Our results indicated that BALB/c mice immunized with this recombinant multi-epitope antigen showed mixed Th1-Th2 immune responses with high levels of specific IgG and exhibited high degrees of IFN-γ and IL-6 and significantly higher CD3, CD4, and CD8 frequencies compared to the control group. The recombinant antigen and vaccine strain M5-90 also provided protection against Brucella melitensis 16 M infection. Using bioinformatics tools to develop candidate vaccines is a promising strategy for the development of Brucella vaccines. PMID:27133932

  6. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes.

    Ramesh, Kumar Ramagoni; Hemalatha, R; Vijayendra, Chary Anchoju; Arshi, Uz Zaman Syed; Dushyant, Singh Baghel; Dinesh, Kumar Bharadwaj

    2016-01-15

    Eggplant is the third most important Solanaceae crop after tomato and potato, particularly in India and China. A transcriptome analysis of eggplant's fruit was performed to study genes involved in medicinal importance and allergies. Illumina HiSeq 2000 system generated 89,763,638 raw reads (~18 Gb) from eggplant. High quality reads (59,039,694) obtained after trimming process, were assembled into a total of 149,224 non redundant set of transcripts. Out of 80,482 annotated sequences of eggplant fruit (BLASTx results against nr-green plant database), 40,752 transcripts showed significant similarity with predicted proteins of Solanum tuberosum (51%) followed by Solanum lycopersicum (34%) and other sequenced plant genomes. With BLASTx top hit analysis against existing allergens, a total of 1986 homologous allergen sequences were found, which had >37% similarity with 48 different allergens existing in the database. From the 48 putative allergens, 526 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. Transcript sequences generated from this study can be used to map epitopes of monoclonal antibodies and polyclonal sera from patients. With the support of this whole transcriptome catalogue of eggplant fruit, complete list of genes can be predicted based on which secondary structures of proteins may be modeled. PMID:26424595

  7. The Analysis of B-Cell Epitopes of Influenza Virus Hemagglutinin.

    Shcherbinin, D N; Alekseeva, S V; Shmarov, M M; Smirnov, Yu A; Naroditskiy, B S; Gintsburg, A L

    2016-01-01

    Vaccination has been successfully used to prevent influenza for a long time. Influenza virus hemagglutinin (HA), which induces a humoral immune response in humans and protection against the flu, is the main antigenic component of modern influenza vaccines. However, new seasonal and pandemic influenza virus variants with altered structures of HA occasionally occur. This allows the pathogen to avoid neutralization with antibodies produced in response to previous vaccination. Development of a vaccine with the new variants of HA acting as antigens takes a long time. Therefore, during an epidemic, it is important to have passive immunization agents to prevent and treat influenza, which can be monoclonal or single-domain antibodies with universal specificity (broad-spectrum agents). We considered antibodies to conserved epitopes of influenza virus antigens as universal ones. In this paper, we tried to characterize the main B-cell epitopes of hemagglutinin and analyze our own and literature data on broadly neutralizing antibodies. We conducted a computer analysis of the best known conformational epitopes of influenza virus HAs using materials of different databases. The analysis showed that the core of the HA molecule, whose antibodies demonstrate pronounced heterosubtypic activity, can be used as a target for the search for and development of broad-spectrum antibodies to the influenza virus. PMID:27099781

  8. Antibody response to hidden epitope of influenza a hemagglutinin elicited by anti-idiotypic antibodies

    Monoclonal antibody (MoAb) IIF4 defines an epitope on the HA2 part of influenza hemagglutinin (HA)It was also found this epitope becomes fully accessible after pH 5 treatment of the antigen and is shared by strains of H3 subtype. In this study we found binding of MoAb IIF4 also to some strains belonging to H2, H4, H7, and H10 subtypes. We prepared rabbit polyclonal anti-IIF4 anti-idiotype (anti-Id) antibody. In competitive assays, the inhibition potential of anti-Id was considerably higher than that of native HA. Anti-Id was used for the preparation of mouse Ab3 (anti-anti-IIF4) serum. Reactivity pattern of Ab3 with influenza virus strains differed from Ab1 in in (i) appearance of binding to some strains of H2 and H7 subtype and (ii) decreased dependency of Ab3 binding on the pH forms of antigen. The reactivity of Ab1 and Ab3 with two amantadine-resistant virus mutants indicates that IIF4 epitope (and its related region recognized by Ab3) becomes accessible in consequence of destabilization of trimeric arrangement of HA and it it also correlates with expulsion of N-terminus of HA2. (author)

  9. Epitopia: a web-server for predicting B-cell epitopes

    Martz Eric

    2009-09-01

    Full Text Available Abstract Background Detecting candidate B-cell epitopes in a protein is a basic and fundamental step in many immunological applications. Due to the impracticality of experimental approaches to systematically scan the entire protein, a computational tool that predicts the most probable epitope regions is desirable. Results The Epitopia server is a web-based tool that aims to predict immunogenic regions in either a protein three-dimensional structure or a linear sequence. Epitopia implements a machine-learning algorithm that was trained to discern antigenic features within a given protein. The Epitopia algorithm has been compared to other available epitope prediction tools and was found to have higher predictive power. A special emphasis was put on the development of a user-friendly graphical interface for displaying the results. Conclusion Epitopia is a user-friendly web-server that predicts immunogenic regions for both a protein structure and a protein sequence. Its accuracy and functionality make it a highly useful tool. Epitopia is available at http://epitopia.tau.ac.il and includes extensive explanations and example predictions.

  10. Scope for using plant viruses to present epitopes from animal pathogens.

    Porta; Lomonossoff

    1998-01-01

    Epitope presentation to the immune system for vaccination purposes can be achieved either via an inactivated or attenuated form of a pathogen or via its isolated antigenic sequences. When free, these peptides can adopt a variety of conformations, most of which will not exist in their native environment. Conjugation to carrier proteins restricts mobility of the peptides and increases their immunogenicity. A high local concentration of epitopes boosts the immune response further and can be generated by the use of self-aggregating carriers, such as the capsid proteins of viruses. In this regard plant viruses have in recent years started to make an impact as safer alternatives to the use of bacterial and attenuated animal viruses: the latter both require propagation in costly cell-culture systems where they can undergo reversion towards a virulent form and/or become contaminated by other pathogens. Plant virus-based vectors can be multiplied cheaply and to high yields (exceeding 1 mg/g plant tissue) in host plants. Both helical (tobacco mosaic virus, potato virus X, alfalfa mosaic virus) and icosahedral (cowpea mosaic virus, tomato bushy stunt virus) particles have been used to express a number of animal B-cell epitopes, whose immunogenic properties have been explored to varying degrees. Copyright 1998 John Wiley & Sons, Ltd. PMID:10398492

  11. Discrimination and Variable Impact of ANCA Binding to Different Surface Epitopes on Proteinase 3, the Wegener’s Autoantigen

    Silva, Francisco; Hummel, Amber M.; Jenne, Dieter E.; Specks, Ulrich

    2010-01-01

    Proteinase 3 (PR3)-specific antineutrophil cytoplasmic antibodies (ANCA) are highly specific for the autoimmune small vessel vasculitis, Wegener’s granulomatosis (WG). PR3-ANCA have proven diagnostic value but their pathogenic potential and utility as a biomarker for disease activity remain unclear. PR3-ANCA recognize conformational epitopes, and epitope-specific PR3-ANCA subsets with variable impact on biological functions of PR3 have been postulated. The aims of this study were to identify specific PR3 surface epitopes recognized by monoclonal antibodies (moAbs) and to determine whether the findings can be used to measure the functional impact of epitope-specific PR3-ANCA and their potential relationship to disease activity. We used a novel flow cytometry assay based on TALON-beads coated with recombinant human (H) and murine (M) PR3 and 10 custom-designed chimeric human/mouse rPR3-variants (Hm1–5/Mh1–5) identifying 5 separate non-conserved PR3 surface epitopes. Anti-PR3 moAbs recognize 4 major surface epitopes, and we identified the specific surface location of 3 of these with the chimeric rPR3-variants. The ability of PR3-ANCA to inhibit the enzymatic activity of PR3 was measured indirectly using a capture-ELISA system based on the different epitopes recognized by capturing moAbs. Epitope-specific PR3-ANCA capture-ELISA results obtained from patient plasma (n=27) correlated with the inhibition of enzymatic activity of PR3 by paired IgG preparations (r=0.7, P<0.01). The capture-ELISA results also seem to reflect disease activity. In conclusion, insights about epitopes recognized by anti-PR3 moAbs can be applied to separate PR3-ANCA subsets with predictable functional qualities. The ability of PR3-ANCA to inhibit the enzymatic activity of PR3, a property linked to disease activity, can now be gauged using a simple epitope-based capture-ELISA system. PMID:20810247

  12. MimoPro: a more efficient Web-based tool for epitope prediction using phage display libraries

    Guo William W

    2011-05-01

    Full Text Available Abstract Background A B-cell epitope is a group of residues on the surface of an antigen which stimulates humoral responses. Locating these epitopes on antigens is important for the purpose of effective vaccine design. In recent years, mapping affinity-selected peptides screened from a random phage display library to the native epitope has become popular in epitope prediction. These peptides, also known as mimotopes, share the similar structure and function with the corresponding native epitopes. Great effort has been made in using this similarity between such mimotopes and native epitopes in prediction, which has resulted in better outcomes than statistics-based methods can. However, it cannot maintain a high degree of satisfaction in various circumstances. Results In this study, we propose a new method that maps a group of mimotopes back to a source antigen so as to locate the interacting epitope on the antigen. The core of this method is a searching algorithm that is incorporated with both dynamic programming (DP and branch and bound (BB optimization and operated on a series of overlapping patches on the surface of a protein. These patches are then transformed to a number of graphs using an adaptable distance threshold (ADT regulated by an appropriate compactness factor (CF, a novel parameter proposed in this study. Compared with both Pep-3D-Search and PepSurf, two leading graph-based search tools, on average from the results of 18 test cases, MimoPro, the Web-based implementation of our proposed method, performed better in sensitivity, precision, and Matthews correlation coefficient (MCC than both did in epitope prediction. In addition, MimoPro is significantly faster than both Pep-3D-Search and PepSurf in processing. Conclusions Our search algorithm designed for processing well constructed graphs using an ADT regulated by CF is more sensitive and significantly faster than other graph-based approaches in epitope prediction. MimoPro is a

  13. Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches.

    Nezafat, Navid; Karimi, Zeinab; Eslami, Mahboobeh; Mohkam, Milad; Zandian, Sanam; Ghasemi, Younes

    2016-06-01

    Cholera continues to be a major global health concern. Among different Vibrio cholerae strains, only O1 and O139 cause acute diarrheal diseases that are related to epidemic and pandemic outbreaks. The currently available cholera vaccines are mainly lived and attenuated vaccines consisting of V. cholerae virulence factors such as toxin-coregulated pili (TCP), outer membrane proteins (Omps), and nontoxic cholera toxin B subunit (CTB). Nowadays, there is a great interest in designing an efficient epitope vaccine against cholera. Epitope vaccines consisting of immunodominant epitopes and adjuvant molecules enhance the possibility of inciting potent protective immunity. In this study, V. cholerae protective antigens (OmpW, OmpU, TcpA and TcpF) and the CTB, which is broadly used as an immunostimulatory adjuvant, were analyzed using different bioinformatics and immunoinformatics tools. The common regions between promiscuous epitopes, binding to various HLA-II supertype alleles, and B-cell epitopes were defined based upon the aforementioned protective antigens. The ultimately selected epitopes and CTB adjuvant were fused together using proper GPGPG linkers to enhance vaccine immunogenicity. A three-dimensional model of the thus constructed vaccine was generated using I-TASSER. The model was structurally validated using the ProSA-web error-detection software and the Ramachandran plot. The validation results indicated that the initial 3D model needed refinement. Subsequently, a high-quality model obtained after various refinement cycles was used for defining conformational B-cell epitopes. Several linear and conformational B-cell epitopes were determined within the epitope vaccine, suggesting likely antibody triggering features of our designed vaccine. Next, molecular docking was performed between the 3D vaccine model and the tertiary structure of the toll like receptor 2 (TLR2). To gain further insight into the interaction between vaccine and TLR2, molecular dynamics

  14. Epitope Spreading of Autoantibody Response to PLA2R Associates with Poor Prognosis in Membranous Nephropathy.

    Seitz-Polski, Barbara; Dolla, Guillaume; Payré, Christine; Girard, Christophe A; Polidori, Joel; Zorzi, Kevin; Birgy-Barelli, Eléonore; Jullien, Perrine; Courivaud, Cécile; Krummel, Thierry; Benzaken, Sylvia; Bernard, Ghislaine; Burtey, Stéphane; Mariat, Christophe; Esnault, Vincent L M; Lambeau, Gérard

    2016-05-01

    The phospholipase A2 receptor (PLA2R1) is the major autoantigen in idiopathic membranous nephropathy. However, the value of anti-PLA2R1 antibody titers in predicting patient outcomes is unknown. Here, we screened serum samples from 50 patients positive for PLA2R1 for immunoreactivity against a series of PLA2R1 deletion mutants covering the extracellular domains. We identified reactive epitopes in the cysteine-rich (CysR), C-type lectin domain 1 (CTLD1), and C-type lectin domain 7 (CTLD7) domains and confirmed the reactivity with soluble forms of each domain. We then used ELISAs to stratify 69 patients positive for PLA2R1 by serum reactivity to one or more of these domains: CysR (n=23), CysRC1 (n=14), and CysRC1C7 (n=32). Median ELISA titers measured using the full-length PLA2R1 antigens were not statistically different between subgroups. Patients with anti-CysR-restricted activity were younger (P=0.008), had less nephrotic range proteinuria (P=0.02), and exhibited a higher rate of spontaneous remission (P=0.03) and lower rates of renal failure progression (P=0.002) and ESRD (P=0.01) during follow-up. Overall, 31 of 69 patients had poor renal prognosis (urinary protein/creatinine ratio >4 g/g or eGFR<45 ml/min per 1.73 m(2) at end of follow-up). High anti-PLA2R1 activity and epitope spreading beyond the CysR epitope were independent risk factors of poor renal prognosis in multivariable Cox regression analysis. Epitope spreading during follow-up associated with disease worsening (n=3), whereas reverse spreading from a CysRC1C7 profile back to a CysR profile associated with favorable outcome (n=1). We conclude that analysis of the PLA2R1 epitope profile and spreading is a powerful tool for monitoring disease severity and stratifying patients by renal prognosis. PMID:26567246

  15. Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of Plasmodium falciparum circumsporozoite protein.

    Aric L Gregson

    Full Text Available UNLABELLED: The objectives of this non-randomized, non-blinded, dose-escalating Phase I clinical trial were to assess the safety, reactogenicity and immunogenicity of ICC-1132 formulated with Alhydrogel (aluminum hydroxide in 51 healthy, malaria-naive adults aged 18 to 45 years. ICC-1132 (Malariavax is a recombinant, virus-like particle malaria vaccine comprised of hepatitis core antigen engineered to express the central repeat regions from Plasmodium falciparum circumsporozoite protein containing an immunodominant B [(NANP(3] epitope, an HLA-restricted CD4 (NANPNVDPNANP epitope and a universal T cell epitope (T* (amino acids 326-345, NF54 isolate. We assessed an Alhydrogel (aluminum hydroxide-adjuvanted vaccine formulation at three ICC-1132 dose levels, each injected intramuscularly (1.0 mL on study days 0, 56 and 168. A saline vaccine formulation was found to be unstable after prolonged storage and this formulation was subsequently removed from the study. Thirty-two volunteers were followed for one year. Local and systemic adverse clinical events were measured and immune responses to P. falciparum and hepatitis B virus core antigens were determined utilizing the following assays: IgG and IgM ELISA, indirect immunofluorescence against P. falciparum sporozoites, circumsporozoite precipitin (CSP and transgenic sporozoite neutralization assays. Cellular responses were measured by proliferation and IL-2 assays. Local and systemic reactions were similarly mild and well tolerated between dose cohorts. Depending on the ICC-1132 vaccine concentration, 95 to 100% of volunteers developed antibody responses to the ICC-1132 immunogen and HBc after two injections; however, only 29-75% and 29-63% of volunteers, respectively, developed malaria-specific responses measured by the malaria repeat synthetic peptide ELISA and IFA; 2 of 8 volunteers had positive reactions in the CSP assay. Maximal transgenic sporozoite neutralization assay inhibition was 54%. Forty

  16. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay

    Bottino, Carolina G; Gomes, Luciano P; Pereira, José B; José R. Coura; Provance, David William; De-Simone, Salvatore G

    2013-01-01

    Background The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Methods Twent...

  17. Crystallization and X-ray study of the artificial TBI protein, an experimental multiple-epitope vaccine against type 1 human immunodeficiency virus

    The artificial protein TBI constructed from four T-cell epitopes and five neutralizing B-cell epitopes is an experimental new-generation multiple-epitope vaccine against human immunodeficiency virus (HIV-1). The TBI protein was expressed in Escherichia coli cells, isolated, and purified to the homogeneous state. The growth conditions for protein crystal were found, and the crystals thus grown were studied by the method of X-ray diffraction analysis

  18. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions

    Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K;

    2005-01-01

    Reverse immunogenetic approaches attempt to optimize the selection of candidate epitopes, and thus minimize the experimental effort needed to identify new epitopes. When predicting cytotoxic T cell epitopes, the main focus has been on the highly specific MHC class I binding event. Methods have al.......The method is available at http://www.cbs.dtu.dk/services/NetCTL. Supplementary material is available at http://www.cbs.dtu.dk/suppl/immunology/CTL.php....

  19. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  20. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.

  1. Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus.

    Daryl W Borley

    Full Text Available Understanding virus antigenicity is of fundamental importance for the development of better, more cross-reactive vaccines. However, as far as we are aware, no systematic work has yet been conducted using the 3D structure of a virus to identify novel epitopes. Therefore we have extended several existing structural prediction algorithms to build a method for identifying epitopes on the appropriate outer surface of intact virus capsids (which are structurally different from globular proteins in both shape and arrangement of multiple repeated elements and applied it here as a proof of principle concept to the capsid of foot-and-mouth disease virus (FMDV. We have analysed how reliably several freely available structure-based B cell epitope prediction programs can identify already known viral epitopes of FMDV in the context of the viral capsid. To do this we constructed a simple objective metric to measure the sensitivity and discrimination of such algorithms. After optimising the parameters for five methods using an independent training set we used this measure to evaluate the methods. Individually any one algorithm performed rather poorly (three performing better than the other two suggesting that there may be value in developing virus-specific software. Taking a very conservative approach requiring a consensus between all three top methods predicts a number of previously described antigenic residues as potential epitopes on more than one serotype of FMDV, consistent with experimental results. The consensus results identified novel residues as potential epitopes on more than one serotype. These include residues 190-192 of VP2 (not previously determined to be antigenic, residues 69-71 and 193-197 of VP3 spanning the pentamer-pentamer interface, and another region incorporating residues 83, 84 and 169-174 of VP1 (all only previously experimentally defined on serotype A. The computer programs needed to create a semi-automated procedure for carrying out

  2. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2 predicts novel potential therapeutic epitopes.

    Xiaohong Deng

    Full Text Available Overexpression of human epidermal growth factor receptor 2 (HER2 is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2 contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.

  3. Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells.

    Zimmermann, L; Schwaller, B

    2002-01-01

    Monoclonal antibodies are very helpful tools to investigate the localization and sometimes even the function of specific proteins in cells and tissues. By generating monoclonal antibodies against calretinin-22k (CR-22k), a C-terminally truncated isoform of calretinin (CR) as a result of alternative splicing of the CR mRNA, we envisaged that screening multiple monoclonal antibodies would allow the identification of CR-22k as well as CR. Both proteins share the first 178 amino acids, but have different C-termini. All three antibodies 10C10, 6B3 and 2H4 recognize recombinant CR-22k and the specificity to also recognize CR was demonstrated in brain extracts of different species and human tumour cells, which express CR. All monoclonal antibodies did not crossreact with the closely related protein calbindin D-28k. Antibody binding was depending on the Ca2+-binding status of both forms of calretinin. Generally, the Ca2+-bound form was better recognized than the Ca2+-free form. Carboxy- and amino-terminally truncated CR proteins were expressed in E. coli in order to characterize the epitopes recognized by the three antibodies. Additionally, tryptic and cyanogen bromide fragments were produced to further narrow down the sequences recognized by the three antibodies. 10C10 recognizes an epitope consisting of the linker region between EF-hand domains I and II and the N-terminal part of EF-hand II, while the others (6B3, 2H4) bind to a region including the linker between EF-hand domains III and IV. These antibodies are valuable tools to further investigate the distribution and eventually the specific function of these two proteins in the nervous tissue and under pathological conditions, e.g. in colon tumours and mesotheliomas. PMID:11990296

  4. Comparing HLA shared epitopes in French Caucasian patients with scleroderma.

    Doua F Azzouz

    Full Text Available Although many studies have analyzed HLA allele frequencies in several ethnic groups in patients with scleroderma (SSc, none has been done in French Caucasian patients and none has evaluated which one of the common amino acid sequences, (67FLEDR(71, shared by HLA-DRB susceptibility alleles, or (71TRAELDT(77, shared by HLA-DQB1 susceptibility alleles in SSc, was the most important to develop the disease. HLA-DRB and DQB typing was performed for a total of 468 healthy controls and 282 patients with SSc allowing FLEDR and TRAELDT analyses. Results were stratified according to patient's clinical subtypes and autoantibody status. Moreover, standardized HLA-DRß1 and DRß5 reverse transcriptase Taqman PCR assays were developed to quantify ß1 and ß5 mRNA in 20 subjects with HLA-DRB1*15 and/or DRB1*11 haplotypes. FLEDR motif is highly associated with diffuse SSc (χ(2 = 28.4, p<10-6 and with anti-topoisomerase antibody (ATA production (χ(2 = 43.9, p<10-9 whereas TRAELDT association is weaker in both subgroups (χ(2 = 7.2, p = 0.027 and χ(2 = 14.6, p = 0.0007 respectively. Moreover, FLEDR motif- association among patients with diffuse SSc remains significant only in ATA subgroup. The risk to develop ATA positive SSc is higher with double dose FLEDR than single dose with respectively, adjusted standardised residuals of 5.1 and 2.6. The increase in FLEDR motif is mostly due to the higher frequency of HLA-DRB1*11 and DRB1*15 haplotypes. Furthermore, FLEDR is always carried by the most abundantly expressed ß chain: ß1 in HLA DRB1*11 haplotypes and ß5 in HLA-DRB1*15 haplotypes.In French Caucasian patients with SSc, FLEDR is the main presenting motif influencing ATA production in dcSSc. These results open a new field of potential therapeutic applications to interact with the FLEDR peptide binding groove and prevent ATA production, a hallmark of severity in SSc.

  5. Functional Exposed Amino Acids of BauA as Potential Immunogen Against Acinetobacter baumannii.

    Sefid, Fatemeh; Rasooli, Iraj; Jahangiri, Abolfazl; Bazmara, Hadise

    2015-06-01

    Multidrug-resistant Acinetobacter baumannii is recognized to be among the most difficult antimicrobial-resistant gram negative bacilli to control and treat. One of the major challenges that the pathogenic bacteria face in their host is the scarcity of freely available iron. To survive under such conditions, bacteria express new proteins on their outer membrane and also secrete iron chelators called siderophores. Antibodies directed against these proteins associated with iron uptake exert a bacteriostatic or bactericidal effect against A. baumanii in vitro, by blocking siderophore mediated iron uptake pathways. Attempts should be made to discover peptides that could mimic protein epitopes and possess the same immunogenicity as the whole protein. Subsequently, theoretical methods for epitope prediction have been developed leading to synthesis of such peptides that are important for development of immunodiagnostic tests and vaccines. The present study was designed to in silico resolving the major obstacles in the control or in prevention of the diseases caused by A. baumannii. We exploited bioinformatic tools to better understand and characterize the Baumannii acinetobactin utilization structure of A. baumannii and select appropriate regions as effective B cell epitopes. In conclusion, amino acids 26-191 of cork domain and 321-635 of part of the barrel domain including L4-L9, were selected as vaccine candidates. These two regions contain functional exposed amino acids with higher score of B cell epitopes properties. Majority of amino acids are hydrophilic, flexible, accessible, and favorable for B cells from secondary structure point of view. PMID:25840681

  6. Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes.

    Alvarenga, L M; Diniz, C R; Granier, C; Chávez-Olórtegui, C

    2002-01-01

    We have used the Spot method of multiple peptide synthesis to prepare sets of immobilized overlapping peptides of uniform size (15 mer), covering the complete amino acid sequences of TsNTxP a non-toxic and immunogenic protein and TsIV, an alpha-type toxin that is the major lethal component of the venom of scorpion Tityus serrulatus. Anti-TsNTxP antibodies binding to peptides, revealed three antigenic regions, one in the N-terminal, the second in the central part and the other in the C-terminal part of TsNTxP. One peptide epitope in the C-terminal part of TsIV was identified with anti-TsIV neutralizing rabbit antibodies. Anti-peptide antibodies were raised against these four peptides all together covalently coupled to keyhole limpet hemocyanin (KLH) and found to neutralize in vitro the toxic effects of the T. serrulatus venom. Quantities of venom equivalent to 13.5 LD(50) were effectively neutralized by 1ml of the anti-peptide serum. The antigenic specificities of the anti-peptides were compared by an indirect enzyme-linked immunosorbent assay (ELISA) using synthetic peptides and crude venoms from T. serrulatus, T. bahiensis, T. cambridgei, T. stigmurus, Androctonus autralis Hector and Centruroides sculpturatus to coat the microtitration plates. The anti-peptide antibodies had a comparable high reactivity with the crude venom of T. serrulatus, moderate binding to T. bahiensis, T. cambridgei, T. stigmurus and Centruroides sculpturatus venoms but were unable to recognize the venom of Androctonus autralis Hector. These results show that by using peptides derived from the sequence of scorpion toxins, the generation of anti-peptide antibodies able to neutralize the cognate venom appears to be an alternative strategy for the easy preparation of antivenoms. PMID:11602284

  7. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine.

    McComb, Ryan C; Ho, Chi-Lee; Bradley, Kenneth A; Grill, Laurence K; Martchenko, Mikhail

    2015-11-27

    The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines. PMID:26514421

  8. Analysis of the immune response of a new malaria vaccine based on the modification of cryptic epitopes.

    Shen, Yan; Wang, Jun; Huang, Yuxiao; Liang, Jiao; Liu, Xuewu; Wu, Dudu; Jiang, He; Zhao, Ya; Li, Yinghui

    2016-05-01

    Malaria is a severe, life-threatening infectious disease that endangers human health. However, there are no vaccines or immune strategy of vaccines succeeding in both erythrocytic and pre-erythrocytic stage. During the liver stage of the Plasmodium life cycle, sporozoites invade the host liver cells. The sporozoites, then, induce a cellular immune response via the major histocompatibility complex (MHC) molecules on their surfaces. The cytotoxic T lymphocytes (CTLs) then recognize the corresponding antigen-MHC complex on the surfaces of these infected liver cells and kill them. However, dominant epitopes with high MHC affinity are prone to mutation due to immune selection pressure. CTLs evoked by the original dominant epitopes cannot recognize the mutated epitopes, leading to immune evasion. In this study, we have modified the cryptic epitopes of different antigens in the sporozoite and liver stages of Plasmodium falciparum to increase their immunogenicity without changing T cell antigen receptor (TCR)-peptide binding specificity. In addition, we have also added an important erythrocytic phase protective antigen, named apical membrane antigen 1 (AMA-1), to this process with the goal of constructing a complex multi-stage, multi-epitope recombinant DNA vaccine against P. falciparum. The vaccine was tested in HHD-2 mice. The method involved multiple stages of the P. falciparum life cycle as well as elucidation both humoral and cellular immunity. The conclusion drawn from the study was that the vaccine might provide an important theoretical and practical basis for generating effective preventative or therapeutic vaccine against P. falciparum. PMID:26833322

  9. IgE and IgG4 Epitope Mapping of Food Allergens with a Peptide Microarray Immunoassay.

    Martínez-Botas, Javier; de la Hoz, Belén

    2016-01-01

    Peptide microarrays are a powerful tool to identify linear epitopes of food allergens in a high-throughput manner. The main advantages of the microarray-based immunoassay are the possibility to assay thousands of targets simultaneously, the requirement of a low volume of serum, the more robust statistical analysis, and the possibility to test simultaneously several immunoglobulin subclasses. Among them, the last one has a special interest in the field of food allergy, because the development of tolerance to food allergens has been associated with a decrease in IgE and an increase in IgG4 levels against linear epitopes. However, the main limitation to the clinical use of microarray is the automated analysis of the data. Recent studies mapping the linear epitopes of food allergens with peptide microarray immunoassays have identified peptide biomarkers that can be used for early diagnosis of food allergies and to predict their severity or the self-development of tolerance. Using this approach, we have worked on epitope mapping of the two most important food allergens in the Spanish population, cow's milk and chicken eggs. The final aim of these studies is to define subsets of peptides that could be used as biomarkers to improve the diagnosis and prognosis of food allergies. This chapter describes the protocol to produce microarrays using a library of overlapping peptides corresponding to the primary sequences of food allergens and data acquisition and analysis of IgE- and IgG4-binding epitopes. PMID:26490480

  10. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    CD8+ T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc18-27, was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C18-27 encoding gene. ERTS fusion significantly enhanced specific CD8+ T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  11. Structure-Based Design of a Protein Immunogen that Displays an HIV-1 gp41 Neutralizing Epitope

    Stanfield, Robyn L.; Julien, Jean-Philippe; Pejchal, Robert; Gach, Johannes S.; Zwick, Michael B.; Wilson, Ian A. (Scripps)

    2012-06-27

    Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a K{sub d} of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.

  12. Characterization of HPV16 L1 loop domains in the formation of a type-specific, conformational epitope

    Schlegel Richard

    2004-07-01

    Full Text Available Abstract Background Virus-like particles (VLPs formed by the human papillomavirus (HPV L1 capsid protein are currently being tested in clinical trials as prophylactic vaccines against genital warts and cervical cancer. The efficacy of these vaccines is critically dependent upon L1 type-specific conformational epitopes. To investigate the molecular determinants of the HPV16 L1 conformational epitope recognized by monoclonal antibody 16A, we utilized a domain-swapping approach to generate a series of L1 proteins composed of a canine oral papillomavirus (COPV L1 backbone containing different regions of HPV16 L1. Results Gross domain swaps, which did not alter the ability of L1 to assemble into VLPs, demonstrated that the L1 N-terminus encodes at least a component of the 16A antigenic determinant. Finer epitope mapping, using GST-L1 fusion proteins, mapped the 16A epitope to the L1 variable regions I and possibly II within the N-terminus. Conclusions These results suggest that non-contiguous loop regions of L1 display critical components of a type-specific, conformational epitope.

  13. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza

    Zarnitsyna, Veronika I.; Lavine, Jennie; Ellebedy, Ali; Ahmed, Rafi; Antia, Rustom

    2016-01-01

    The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza’s major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza. PMID:27336297

  14. Potential T cell epitopes of Mycobacterium tuberculosis that can instigate molecular mimicry against host: implications in autoimmune pathogenesis

    Babu Chodisetti Sathi

    2012-03-01

    Full Text Available Abstract Background Molecular mimicry between microbial antigens and host-proteins is one of the etiological enigmas for the occurrence of autoimmune diseases. T cells that recognize cross-reactive epitopes may trigger autoimmune reactions. Intriguingly, autoimmune diseases have been reported to be prevalent in tuberculosis endemic populations. Further, association of Mycobacterium tuberculosis (M. tuberculosis has been implicated in different autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Although, in silico analyses have identified a number of M. tuberculosis specific vaccine candidates, the analysis on prospective cross-reactive epitopes, that may elicit autoimmune response, has not been yet attempted. Here, we have employed bioinformatics tools to determine T cell epitopes of homologous antigenic regions between M. tuberculosis and human proteomes. Results Employing bioinformatics tools, we have identified potentially cross-reactive T cell epitopes restricted to predominant class I and II alleles of human leukocyte antigens (HLA. These are similar to peptides of mycobacterial proteins and considerable numbers of them are promiscuous. Some of the identified antigens corroborated with established autoimmune diseases linked with mycobacterial infection. Conclusions The present study reveals many target proteins and their putative T cell epitopes that might have significant application in understanding the molecular basis of possible T cell autoimmune reactions during M. tuberculosis infections.

  15. Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Idrees Muhammad

    2011-02-01

    Full Text Available Abstract Background HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An in silico approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin. Results Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide. Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100% conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2. Conclusions The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was

  16. Analysis of epitopes on dengue virus envelope protein recognized by monoclonal antibodies and polyclonal human sera by a high throughput assay.

    Hong-En Lin

    2012-01-01

    Full Text Available BACKGROUND: The envelope (E protein of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217 at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC' loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. CONCLUSIONS/SIGNIFICANCE: Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level.

  17. Immunodominant West Nile Virus T Cell Epitopes Are Fewer in Number and Fashionably Late.

    Kaabinejadian, Saghar; McMurtrey, Curtis P; Kim, Sojung; Jain, Rinki; Bardet, Wilfried; Schafer, Fredda B; Davenport, Jason L; Martin, Aaron D; Diamond, Michael S; Weidanz, Jon A; Hansen, Ted H; Hildebrand, William H

    2016-05-15

    Class I HLA molecules mark infected cells for immune targeting by presenting pathogen-encoded peptides on the cell surface. Characterization of viral peptides unique to infected cells is important for understanding CD8(+) T cell responses and for the development of T cell-based immunotherapies. Having previously reported a series of West Nile virus (WNV) epitopes that are naturally presented by HLA-A*02:01, in this study we generated TCR mimic (TCRm) mAbs to three of these peptide/HLA complexes-the immunodominant SVG9 (E protein), the subdominant SLF9 (NS4B protein), and the immunorecessive YTM9 (NS3 protein)-and used these TCRm mAbs to stain WNV-infected cell lines and primary APCs. TCRm staining of WNV-infected cells demonstrated that the immunorecessive YTM9 appeared several hours earlier and at 5- to 10-fold greater density than the more immunogenic SLF9 and SVG9 ligands, respectively. Moreover, staining following inhibition of the TAP demonstrated that all three viral ligands were presented in a TAP-dependent manner despite originating from different cellular compartments. To our knowledge, this study represents the first use of TCRm mAbs to define the kinetics and magnitude of HLA presentation for a series of epitopes encoded by one virus, and the results depict a pattern whereby individual epitopes differ considerably in abundance and availability. The observations that immunodominant ligands can be found at lower levels and at later time points after infection suggest that a reevaluation of the factors that combine to shape T cell reactivity may be warranted. PMID:27183642

  18. A transplant "immunome" screening platform defines a targetable epitope fingerprint of multiple myeloma.

    Schieferdecker, Aneta; Oberle, Anna; Thiele, Benjamin; Hofmann, Fabian; Göthel, Markus; Miethe, Sebastian; Hust, Michael; Braig, Friederike; Voigt, Mareike; von Pein, Ute-Marie; Koch-Nolte, Friedrich; Haag, Friedrich; Alawi, Malik; Indenbirken, Daniela; Grundhoff, Adam; Bokemeyer, Carsten; Bacher, Ulrike; Kröger, Nicolaus; Binder, Mascha

    2016-06-23

    Multiple myeloma (MM) is a hematological cancer for which immune-based treatments are currently in development. Many of these rely on the identification of highly disease-specific, strongly and stably expressed antigens. Here, we profiled the myeloma B-cell immunome both to explore its predictive role in the context of autologous and allogeneic hematopoietic stem cell transplantation (HSCT) and to identify novel immunotherapeutic targets. We used random peptide phage display, reverse immunization, and next-generation sequencing-assisted antibody phage display to establish a highly myeloma-specific epitope fingerprint targeted by B-cell responses of 18 patients in clinical remission. We found that allogeneic HSCT more efficiently allowed production of myeloma-specific antibodies compared with autologous HSCT and that a highly reactive epitope recognition signature correlated with superior response to treatment. Next, we performed myeloma cell surface screenings of phage-displayed patient transplant immunomes. Although some of the screenings yielded clear-cut surface binders, the majority of screenings did not, suggesting that many of the targeted antigens may in fact not be accessible to the B-cell immune system in untreated myeloma cells. This fit well with the identification of heat-shock proteins as a class of antigens that showed overall the broadest reactivity with myeloma patient sera after allogeneic HSCT and that may be significantly translocated to the cell surface upon treatment as a result of immunogenic cell death. Our data reveal a disease-specific epitope signature of MM that is predictive for response to treatment. Mining of transplant immunomes for strong myeloma surface binders may open up avenues for myeloma immunotherapy. PMID:27034429

  19. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  20. Kinetic epitope mapping of monoclonal antibodies raised against the Yersinia pestis virulence factor LcrV.

    Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M

    2014-10-01

    Five monoclonal antibodies, mAb7.3, mAb29.3, mAb46.3, mAb12.3 and mAb36.3, raised to the LcrV virulence factor from Yersinia pestis were characterised for their Fab affinity against the purified protein and their Fc affinity to Protein A/G as a proxy for the FcγR receptor. Kinetic measurements were performed label-free in a localised particle plasmon array reader. The Fc-ProteinA/G complex first-order half-life was determined for each antibody and fell in the range of 0.8-3.8h. The Fab first-order half-lives had ranged from 3.4 to 9.2h although two antibodies, mAb12.3 and mAb36.3, showed low affinity interactions. Competitive binding studies of mixtures of the Fab-active antibodies were performed to measure the relative binding efficiency of one antibody in the presence of the other. A geometric relative positioning of the epitopes of mAb7.3, mAb29.3 and mAb46.3 was determined based on the footprint locus of the antibody and the percentage of competitive binding. The two known protective antibodies mAb7.3 and mAb29.3 showed greater interference, indicating epitopes close to one another compared to the non-protective mAb46.3 antibody. The Fab-Fc complex half-life screen and epitope mapping are potentially useful tools in the screening of therapeutic antibodies or vaccine candidates. PMID:25461137

  1. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies.

    Niu, Yange; Liu, Ye; Yang, Limin; Qu, Hongren; Zhao, Jingyi; Hu, Rongliang; Li, Jing; Liu, Wenjun

    2016-04-01

    Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies. PMID:27068655

  2. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes.

    Sepúlveda, Maria; Armangue, Thaís; Martinez-Hernandez, Eugenia; Arrambide, Georgina; Sola-Valls, Nuria; Sabater, Lidia; Téllez, Nieves; Midaglia, Luciana; Ariño, Helena; Peschl, Patrick; Reindl, Markus; Rovira, Alex; Montalban, Xavier; Blanco, Yolanda; Dalmau, Josep; Graus, Francesc; Saiz, Albert

    2016-07-01

    The aim of this study was to report the clinical spectrum associated with antibodies to myelin oligodendrocyte glycoprotein (MOG) in adult patients, and to assess whether phenotypic variants are dependent on recognition of rodent MOG epitopes. We retrospectively analyzed the features, course and outcome of 56 patients whose samples were investigated by brain tissue immunohistochemistry and cell-based assays using human and rodent MOG. The median age at symptom onset was 37 years (range 18-70); 35 patients (63 %) were female. After a median follow-up of 43 months (range 4-554), only 14 patients (25 %) developed a neuromyelitis optica spectrum disorder (NMOSD), 27 patients (47 %) retained the initial diagnosis of isolated optic neuritis, 7 (12 %) of longitudinally extensive transverse myelitis, and 2 (4 %) of acute disseminated encephalomyelitis; 6 patients (11 %) developed atypical demyelinating syndromes (4 had relapsing episodes of short myelitis lesions which in one occurred with optic neuritis; 1 had relapsing brainstem symptoms, and 1 relapsing demyelinating encephalomyelitis). The course was frequently associated with relapses (71 %) and good outcome. Twenty-seven patients (49 %) had antibodies that recognized rodent MOG epitopes, and 9 of them (16 %) showed a myelin staining pattern in rodent tissue. Only the myelin staining pattern was linked to NMOSD (p = 0.005). In conclusion, MOG autoimmunity in adult patients associates with a clinical spectrum wider than the one expected for patients with suspected NMOSD and overall good outcome. Antibodies to rodent MOG epitopes do not associate with any phenotypic variant. PMID:27147513

  3. Expression of a suppressive p15E-related epitope in colorectal and gastric cancer.

    Foulds, S.; Wakefield, C. H.; Giles, M.; Gillespie, J.; Dye, J. F.; Guillou, P. J.

    1993-01-01

    mRNA for the suppressive epitope of p15E was found to be present in 24 of 30 samples of human colorectal cancer and in all four specimens of gastric cancer. mRNA for p15E was seldom seen in nonmalignant colonic or gastric mucosa but, when present, was associated with inflammatory or pre-malignant conditions of the digestive tract. Synthetic peptides derived from the conserved p15E sequence were found to suppress some aspects of the immune response implicated in anti-tumour activity. These dat...

  4. Expression and immunological characterization of cardamom mosaic virus coat protein displaying HIV gp41 epitopes.

    Damodharan, Subha; Gujar, Ravindra; Pattabiraman, Sathyamurthy; Nesakumar, Manohar; Hanna, Luke Elizabeth; Vadakkuppattu, Ramanathan D; Usha, Ramakrishnan

    2013-05-01

    The coat protein of cardamom mosaic virus (CdMV), a member of the genus Macluravirus, assembles into virus-like particles when expressed in an Escherichia coli expression system. The N and C-termini of the coat protein were engineered with the Kennedy peptide and the 2F5 and 4E10 epitopes of gp41 of HIV. The chimeric proteins reacted with sera from HIV positive persons and also stimulated secretion of cytokines by peripheral blood mononuclear cells from these persons. Thus, a system based on the coat protein of CdMV can be used to display HIV-1 antigens. PMID:23668610

  5. Prediction of T-cell Epitopes for Therapeutic and Prophylactic Vaccines

    Larsen, Mette Voldby

    2007-01-01

    The spread of existing infectious diseases and the emergence of new ones call for efficient methods for vaccine development. Some of the important players in conferring immunity against pathogens are the Cytotoxic T Lymphocytes (CTL), which eliminate infected cells. Due to their deleterious effects...... in specific pathogens: The bacteria Mycobacterium tuberculosis, Influenza A virus, HIV, Yellow fever virus, and West Nile virus. For each of the above-mentioned viruses, a number of predicted CTL epitopes was subsequently selected in such a way that they together constitute a broad coverage of the...

  6. Identification of an immunodominant epitope within the capsid protein of hepatitis C virus.

    Nasoff, M S; Zebedee, S L; Inchauspé, G; Prince, A. M.

    1991-01-01

    We have isolated cDNA clones from the 5' end of the Hutchinson strain of hepatitis C virus. Sequences encoding various segments of the HCV structural region were fused to the gene for glutathione S-transferase and analyzed for the expression of hepatitis C virus-capsid fusion proteins. With a set of these fusion proteins, both human and chimpanzee immune responses to capsid were studied. An immunodominant epitope was located within the amino-terminal portion of capsid that is preferentially r...

  7. Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread

    He Yong

    2012-09-01

    Full Text Available Abstract Background A33 is a type II integral membrane protein expressed on the extracellular enveloped form of vaccinia virus (VACV. Passive transfer of A33-directed monoclonal antibodies or vaccination with an A33 subunit vaccine confers protection against lethal poxvirus challenge in animal models. Homologs of A33 are highly conserved among members of the Orthopoxvirus genus and are potential candidates for inclusion in vaccines or assays targeting extracellular enveloped virus activity. One monoclonal antibody directed against VACV A33, MAb-1G10, has been shown to target a conformation-dependent epitope. Interestingly, while it recognizes VACV A33 as well as the corresponding variola homolog, it does not bind to the monkeypox homolog. In this study, we utilized a random phage display library to investigate the epitope recognized by MAb-1G10 that is critical for facilitating cell-to-cell spread of the vaccinia virus. Results By screening with linear or conformational random phage libraries, we found that phages binding to MAb-1G10 display the consensus motif CEPLC, with a disulfide bond formed between two cysteine residues required for MAb-1G10 binding. Although the phage motif contained no linear sequences homologous to VACV A33, structure modeling and analysis suggested that residue D115 is important to form the minimal epitope core. A panel of point mutants expressing the ectodomain of A33 protein was generated and analyzed by either binding assays such as ELISA and immunoprecipitation or a functional assessment by blocking MAb-1G10 mediated comet inhibition in cell culture. Conclusions These results confirm L118 as a component of the MAb-1G10 binding epitope, and further identify D115 as an essential residue. By defining the minimum conformational structure, as well as the conformational arrangement of a short peptide sequence recognized by MAb-1G10, these results introduce the possibility of designing small molecule mimetics that may

  8. Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA

    Andersen, P; Nielsen, MA; Resende, M; Rask, Thomas Salhøj; Dahlbäck, M; Theander, T; Lund, Ole; Salanti, A

    2008-01-01

    Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein of...... the PfEMP1 family, is the main parasite ligand for CSA binding, and identification of protective antibody epitopes is essential for VAR2CSA vaccine development. Attempts to determine the crystallographic structures of VAR2CSA or its domains have not been successful yet. In this study, we propose 3D...

  9. Delineation of Several DR-Restricted Tetanus Toxin T Cell Epitopes

    Demotz, Stephane; Lanzavecchia, Antonio; Eisel, Ulrich; Niemann, Heiner; Widmann, Christian; Corradin, Giampietro

    1989-01-01

    We have characterized five human T cell clones specific for tetanus toxin. The combination of different techniques allowed us to precisely map two T cell epitopes within fragments 830-843 and 1273-1284 of tetanus toxin, as formally demonstrated by the use of corresponding synthetic peptides. The three other T cell clones were specific for regions 2-602, 604-742, and 865-1315 of tetanus toxin, respectively. The five T cell clones were shown to be restricted to HLA-DR Ag. Furthermore, the allel...

  10. Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project."

    Lauemøller, S L; Kesmir, C; Corbet, S L;

    2000-01-01

    processing, as these become available. The ability to translate the accumulating primary sequence databases in terms of immune recognition should enable scientists and clinicians to analyze any protein of interest for the presence of potentially immunogenic epitopes. The computational tools to scan entire...... discrimination, even at the peptide level. It is not surprising that peptides are key targets of the immune system. It follows that proteomes can be translated into immunogens once it is known how the immune system generates and handles peptides. Recent advances have identified many of the basic principles...

  11. Identification of a Coccidioides immitis antigen 2 domain that expresses B-cell-reactive epitopes.

    Zhu, Y; Tryon, V; Magee, D M; Cox, R. A.

    1997-01-01

    Antigen 2 (Ag2), a major immunoreactive component of Coccidioides immitis mycelium- and spherule-phase cell walls, was recently cloned in our laboratory and was shown to elicit T-cell responses in Coccidioides-immune mice. In this investigation, we evaluated recombinant Ag2 (rAg2) and PCR-generated Ag2 truncations for expression of B-cell-reactive epitopes in enzyme-linked immunosorbent and immunoblot assays with sera from patients with active coccidioidomycosis, a hyperimmune goat anti-Ag2 s...

  12. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla;

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived...... peptides were identified as T cell epitopes using fluorescent influenza: SLA tetramers. In addition, multiple CTL specificities were analyzed using peptide sequence substitutions in two of the four epitope candidates analyzed. Interestingly both conserved and substituted peptides were found to stain the CD...

  13. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    Buggert, M.; Norström, M.; Lundegaard, Claus; Lund, Ole; Nielsen, Morten; Karlsson, A. C.

    2011-01-01

    Background: CD4+ T cells orchestrate immune protection by ‘‘helping’’ other cells of our immune system to clear viral infections. It is well known that the preferential infection and depletion of CD4+ T cells contributes to hampered systemic T cell help following HIV infection. However, the...... functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... bioinformatic prediction program NetMHCIIpan to select 64 optimized MHC II restricted epitopes located in the HIV Gag, Pol, Env, Nef and Tat regions. The epitopes were selected to cover the global diversity of the virus (multiple subtypes) and the human immune system(diverse MHC II types). Optimized...

  14. Mapping of B-cell epitopes in E. coli asparaginase II, an enzyme used in leukemia treatment.

    Werner, Anne; Röhm, Klaus-Heinrich; Müller, Hans-Joachim

    2005-06-01

    The enzyme L-asparaginase is a crucial component in the treatment of acute lymphoblastic leukemia (ALL). As all asparaginases in clinical use are derived from microorganisms, immunological reactions are the most important adverse events associated with asparaginase treatment. Two different methods, phage display and the SPOTs method, were used for the determination of clinically relevant epitopes. Comparison of the results showed that essentially the same domains were identified by the two methods, and thus ascertainment of relevant epitopes can be assumed. Determination of the specificity of the epitopes will be performed with serum from patients with different modes of immunological reactions and from individuals without evidence of an immune response after asparaginase administration. PMID:16006240

  15. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  16. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Sun, Encheng; Zhao, Jing; Liu, Nihong; Yang, Tao; Xu, Qingyuan; Qin, Yongli; Bu, Zhigao; Yang, Yinhui; Lunt, Ross A; Wang, Linfa; Wu, Donglai

    2012-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines

  17. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  18. Celiac disease T cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    Salentijn, E.M.J.; Mitea, D.C.; Goryunova, S.V.; Meer, van der I.M.; Padioleau, I.; Gilissen, L.J.W.J.; Koning, de F.; Smulders, M.J.M.

    2012-01-01

    Background - Celiac disease (CD) is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes) that mediate

  19. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent;

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  20. Porcine B-cells recognize epitopes that are conserved between the structural proteins of American- and European-type porcine reproductive and respiratory syndrome virus

    Oleksiewicz, Martin B.; Bøtner, Anette; Normann, Preben

    2002-01-01

    By selecting phage display libraries with immune sera from experimentally infected pigs, porcine B-cell epitopes in the open reading frame (ORF) 2, 3, 5 and 6 proteins of European-type porcine reproductive and respiratory syndrome virus (PRRSV) were identified. The sequences of all the epitopes...