WorldWideScience

Sample records for acid decarboxylase gad

  1. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas.

    Li, Meijia; Wang, Lingling; Qiu, Limei; Wang, Weilin; Xin, Lusheng; Xu, Jiachao; Wang, Hao; Song, Linsheng

    2016-10-01

    Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter γ-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. PMID:27208883

  2. Development of diagnostic RI test method for antiglutamic acid decarboxylase (GAD) in SMS and IDDM patients

    Ota, Mitsuhiro; Ota, Kiyoe; Nishimura, Masataka; Ma Jie; Obayashi, Hiroshi; Saida, Takahiko [Utano National Hospital, Kyoto (Japan)

    2000-02-01

    Western blotting with antigens purified using its specific antibody bound column has demonstrated that patients with Stiff-man syndrome (SMS) and insulin-dependent diabetic mellitus (IDDM) were both positive for anti-GAD antibody. Further, anti-GAD antibodies from various animal brains were characterized using GAD 65 and GAD 67 peptide antibody. The antibody against the anti-N-terminal peptide inhibited the enzyme activity of GAD, suggesting that the active site of GAD might exist in the N-terminal region. Development of a new detection method for anti-GAD antibody was attempted and the amount of GAD protein bound to protein G resin was determined based on the activity to release {sup 14}CO{sub 2} from {sup 14}C glutamic acid. In addition, solid-phase RIA method was developed using GAD purified by the anti-peptide antibody affinity column. The positive detection rate for GAD antibody was 39% for the enzymatic method and 56% for the solid-phase RIA method. To develop a further sensitive detection method for GAD antibody, construction of recombinant GAD was attempted and two GAD65s different in molecular size were constructed using pMal-c vector. Thus obtained antibodies against anti-N-terminal peptides were separately responded to GAD65 and GAD67 isoforms in the rat, mouse and bovine brains, whereas the carboxy-terminal antibodies were reactive to both isoforms together. Therefore, it became possible to make purification of GAD65 and GAD67 by the use of the two N-terminal peptide antibodies. Further, it became possible to purify GAD as a mixture of both isoforms. However, the yield of purification using anti-affinity column was still unsatisfactory ( several percent) and the GAD preparation obtained had little activity. The positive detection by the solid-phase RIA method was 50% for SMS patients and 56% for IDDM ones, indicating that this method was superior to the previous enzyme method. The protein A method in which labeled human recombinant GAD65 was used to

  3. Development of diagnostic RI test method for antiglutamic acid decarboxylase (GAD) in SMS and IDDM patients

    Western blotting with antigens purified using its specific antibody bound column has demonstrated that patients with Stiff-man syndrome (SMS) and insulin-dependent diabetic mellitus (IDDM) were both positive for anti-GAD antibody. Further, anti-GAD antibodies from various animal brains were characterized using GAD 65 and GAD 67 peptide antibody. The antibody against the anti-N-terminal peptide inhibited the enzyme activity of GAD, suggesting that the active site of GAD might exist in the N-terminal region. Development of a new detection method for anti-GAD antibody was attempted and the amount of GAD protein bound to protein G resin was determined based on the activity to release 14CO2 from 14C glutamic acid. In addition, solid-phase RIA method was developed using GAD purified by the anti-peptide antibody affinity column. The positive detection rate for GAD antibody was 39% for the enzymatic method and 56% for the solid-phase RIA method. To develop a further sensitive detection method for GAD antibody, construction of recombinant GAD was attempted and two GAD65s different in molecular size were constructed using pMal-c vector. Thus obtained antibodies against anti-N-terminal peptides were separately responded to GAD65 and GAD67 isoforms in the rat, mouse and bovine brains, whereas the carboxy-terminal antibodies were reactive to both isoforms together. Therefore, it became possible to make purification of GAD65 and GAD67 by the use of the two N-terminal peptide antibodies. Further, it became possible to purify GAD as a mixture of both isoforms. However, the yield of purification using anti-affinity column was still unsatisfactory ( several percent) and the GAD preparation obtained had little activity. The positive detection by the solid-phase RIA method was 50% for SMS patients and 56% for IDDM ones, indicating that this method was superior to the previous enzyme method. The protein A method in which labeled human recombinant GAD65 was used to precipitate 125-I GAD

  4. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  5. Assessment of CD4+ T cell responses to glutamic acid decarboxylase 65 using DQ8 tetramers reveals a pathogenic role of GAD65 121-140 and GAD65 250-266 in T1D development.

    I-Ting Chow

    Full Text Available Susceptibility to type 1 diabetes (T1D is strongly associated with MHC class II molecules, particularly HLA-DQ8 (DQ8: DQA1*03:01/DQB1*03:02. Monitoring T1D-specific T cell responses to DQ8-restricted epitopes may be key to understanding the immunopathology of the disease. In this study, we examined DQ8-restricted T cell responses to glutamic acid decarboxylase 65 (GAD65 using DQ8 tetramers. We demonstrated that GAD65 121-140 and GAD65 250-266 elicited responses from DQ8+ subjects. Circulating CD4+ T cells specific for these epitopes were detected significantly more often in T1D patients than in healthy individuals after in vitro expansion. T cell clones specific for GAD65 121-140 and GAD65 250-266 carried a Th1-dominant phenotype, with some of the GAD65 121-140-specific T cell clones producing IL-17. GAD65 250-266-specific CD4+ T cells could also be detected by direct ex vivo staining. Analysis of unmanipulated peripheral blood mononuclear cells (PBMCs revealed that GAD65 250-266-specific T cells could be found in both healthy and diabetic individuals but the frequencies of specific T cells were higher in subjects with type 1 diabetes. Taken together, our results suggest a proinflammatory role for T cells specific for DQ8-restricted GAD65 121-140 and GAD65 250-266 epitopes and implicate their possible contribution to the progression of T1D.

  6. Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli.

    Bergholz, Teresa M; Tarr, Cheryl L; Christensen, Lisa M; Betting, David J; Whittam, Thomas S

    2007-10-01

    Escherichia coli have evolved adaptive systems to resist strongly acidic habitats in part through the production of 2 biochemically identical isoforms of glutamate decarboxylase (GAD), encoded by the gadA and gadB genes. These genes occur in E. coli and other members of the genospecies (e.g., Shigella spp.) and originated as part of a genomic fitness island acquired early in Escherichia evolution. The present duplicated gad loci are widely spaced on the E. coli chromosome, and the 2 genes are 97% similar in sequence. Comparison of the nucleotide sequences of the gadA and gadB in 16 strains of pathogenic E. coli revealed 3.8% and 5.0% polymorphism in the 2 genes, respectively. Alignment of the homologous genes identified a total of 120 variable sites, including 21 fixed nucleotide differences between the loci within the first 82 codons of the genes. Twenty-three phylogenetically informative sites were polymorphic for the same nucleotides in both genes suggesting recent gene conversions or intergenic recombination. Phylogenetic analysis based on the synonymous substitutions per synonymous site indicated 2 cases in which specific gadA and gadB alleles were more closely related to one another than to other alleles at the corresponding locus. The results indicate that at least 3 gene conversion events have occurred after the gad gene duplication in the evolution of E. coli. Despite multiple gene conversion events, the upstream regulatory regions and the 5' end of each gene remains distinct, suggesting that maintaining functionally different gad genes is important in this acid-resistance mechanism in pathogenic E. coli. PMID:17675652

  7. Hypercapnic ventilatory response in mice lacking the 65 kDa isoform of Glutamic Acid Decarboxylase (GAD65

    Bissonnette John M

    2004-03-01

    Full Text Available Abstract Background Recent reports have shown that there are developmental changes in theventilatory response to hypercapnia in the rat. These are characterizedby an initial large response to carbon dioxide immediately after birthfollowed by a decline with a trough at one week of age, followed by areturn in sensitivity. A second abnormality is seen at postnatal day 5(P5 rats in that they cannot maintain the increase in frequency for 5min of hypercapnia. In mice lacking GAD65 the release of GABA duringsustained synaptic activation is reduced. We hypothesized that thisdevelopmental pattern would be present in the mouse which is also lessmature at birth and that GABA mediates this relative respiratorydepression. Methods In awake C57BL/6J and GAD65-/- mice the ventilatory response to 5%carbon dioxide (CO2 was examined at P2, P4, P6, P7, P12.5, P14.5 andP21.5, using body plethysmography. Results Minute ventilation (VE relative to baseline during hypercapnia from P2through P7 was generally less than from P12.5 onwards, but there was notrough as in the rat. Breaking VE down into its two components showedthat tidal volume remained elevated for the 5 min of exposure to 5% CO2.At P6, but not at other ages, respiratory frequency declined with timeand at 5 min was less that at 2 and 3 min. GAD65-/- animals at P6 showeda sustained increase in respiratory rate for the five mins exposure toCO2. Conclusion These results show, that in contrast to the rat, mice do not show adecline in minute ventilatory response to CO2 at one week of age.Similiar to the rat at P5, mice at P6 are unable to sustain an increasein CO2 induced respiratory frequency and GAD65 contributes to this falloff.

  8. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice.

    Robert, Sofie; Gysemans, Conny; Takiishi, Tatiana; Korf, Hannelie; Spagnuolo, Isabella; Sebastiani, Guido; Van Huynegem, Karolien; Steidler, Lothar; Caluwaerts, Silvia; Demetter, Pieter; Wasserfall, Clive H; Atkinson, Mark A; Dotta, Francesco; Rottiers, Pieter; Van Belle, Tom L; Mathieu, Chantal

    2014-08-01

    Growing insight into the pathogenesis of type 1 diabetes (T1D) and numerous studies in preclinical models highlight the potential of antigen-specific approaches to restore tolerance efficiently and safely. Oral administration of protein antigens is a preferred method for tolerance induction, but degradation during gastrointestinal passage can impede such protein-based therapies, reducing their efficacy and making them cost-ineffective. To overcome these limitations, we generated a tolerogenic bacterial delivery technology based on live Lactococcus lactis (LL) bacteria for controlled secretion of the T1D autoantigen GAD65370-575 and the anti-inflammatory cytokine interleukin-10 in the gut. In combination with short-course low-dose anti-CD3, this treatment stabilized insulitis, preserved functional β-cell mass, and restored normoglycemia in recent-onset NOD mice, even when hyperglycemia was severe at diagnosis. Combination therapy did not eliminate pathogenic effector T cells, but increased the presence of functional CD4(+)Foxp3(+)CD25(+) regulatory T cells. These preclinical data indicate a great therapeutic potential of orally administered autoantigen-secreting LL for tolerance induction in T1D. PMID:24677716

  9. Anti-glutamic acid decarboxylase antibody positive neurological syndromes.

    Tohid, Hassaan

    2016-07-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were calledhyperexcitability disorders. However, collectively, these syndromes should be known as "anti-GAD positive neurological syndromes." An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  10. Gender differences in associations of glutamate decarboxylase 1 gene (GAD1 variants with panic disorder.

    Heike Weber

    Full Text Available BACKGROUND: Panic disorder is common (5% prevalence and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. METHODOLOGY/PRINCIPAL FINDINGS: Nineteen single nucleotide polymorphisms (SNPs tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584. Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165 in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. CONCLUSIONS/SIGNIFICANCE: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.

  11. Danish children born with glutamic acid decarboxylase-65 and islet antigen-2 autoantibodies at birth had an increased risk to develop type 1 diabetes

    Eising, Stefanie; Nilsson, Anita; Carstensen, Bendix;

    2011-01-01

    A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes.......A large, population-based case-control cohort was used to test the hypothesis that glutamic acid decarboxylase-65 (GAD65) and islet antigen-2 autoantibodies (IA-2A) at birth predict type 1 diabetes....

  12. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid

    Huang, Yan; Su, Lingqia; Wu, Jing

    2016-01-01

    Glutamate decarboxylase (GAD) catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA). In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP)-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V) activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C). Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C), superior thermostability (2.8-fold greater than that of GAD-C), and higher kcat/Km (1.6-fold higher than that of GAD-C). Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG) to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA. PMID:27438707

  13. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g. PMID:27339313

  14. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  15. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation

    Glutamate decarboxylase 1 (GAD1), a rate-limiting enzyme in the production of γ-aminobutyric acid (GABA), is found in the GABAergic neurons of the central nervous system. Little is known about the relevance of GAD1 to oral squamous cell carcinoma (OSCC). We investigated the expression status of GAD1 and its functional mechanisms in OSCCs. We evaluated GAD1 mRNA and protein expressions in OSCC-derived cells using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunoblotting analyses. To assess the critical functions of GAD1, i.e., cellular proliferation, invasiveness, and migration, OSCC-derived cells were treated with the shRNA and specific GAD1 inhibitor, 3-mercaptopropionic acid (3-MPA). GAD1 expression in 80 patients with primary OSCCs was analyzed and compared to the clinicopathological behaviors of OSCC. qRT-PCR and immunoblotting analyses detected frequent up-regulation of GAD1 in OSCC-derived cells compared to human normal oral keratinocytes. Suppression of nuclear localization of β-catenin and MMP7 secretion was observed in GAD1 knockdown and 3-MPA-treated cells. We also found low cellular invasiveness and migratory abilities in GAD1 knockdown and 3-MPA-treated cells. In the clinical samples, GAD1 expression in the primary OSCCs was significantly (P < 0.05) higher than in normal counterparts and was correlated significantly (P < 0.05) with regional lymph node metastasis. Our data showed that up-regulation of GAD1 was a characteristic event in OSCCs and that GAD1 was correlated with cellular invasiveness and migration by regulating β-catenin translocation and MMP7 activation. GAD1 might play an important role in controlling tumoral invasiveness and metastasis in oral cancer

  16. Glutamic acid decarboxylase antibody-positive paraneoplastic stiff limb syndrome associated with carcinoma of the breast

    Agarwal Pankaj

    2010-01-01

    Full Text Available Stiff limb syndrome (SLS is a rare "focal" variant of stiff person syndrome which presents with rigidity and painful spasms of a distal limb, and abnormal fixed foot or hand postures. Anti-glutamic acid decarboxylase antibodies (GAD-Ab are variably present in most cases. Most reported cases of SLS are unassociated with cancer. We describe a patient with SLS as a paraneoplastic manifestation of breast carcinoma, in whom GAD-Ab was present. The patient responded very well to oral diazepam, baclofen and steroids.This is the third reported case of SLS as a paraneoplastic accompaniment to cancer.

  17. Amino Acid Decarboxylase Activity of Some Lactic Acid Bacteria

    Pelin ERTÜRKMEN; Turhan, İlkay; Öner, Zübeyde

    2015-01-01

    Microorganisms which have decarboxylase activity can form biogenic amine by enzymatic decarboxylation of amino acids in foods. Histamine poisoning results from consumption of foods typically certain types of fish and cheeses that contain unusually high levels of histamine. Therefore, decarboxylase activity is an important problem at the selection of lactic acid bacteria as a starter culture in fermented products. In this study, decarboxylase activities of 161 lactic acid bacteria (LAB) strain...

  18. Cloning and molecular evolution research of porcine GAD65 gene

    YU Hao; SONG Yuefen; LI Li; LIU Di

    2007-01-01

    Glutamate decarboxylase (GAD) has been found in animal and higher plant tissues as well as in yeasts and microorganisms.In animals the enzyme plays an important role in central nervous system activity because the enzyme substrate glutamic acid is a mediator of excitation process and the product, gamma-aminobutyric acid, is the most important mediator of inhibition process in the central nervous system. GAD65 is one form of the glutamate decarboxylases (GAD), GAD65 has been identified as a major autoantigen in type 1 diabetes, so the GAD65 gene of porcine was cloned by RT-PCR method to construct phylogenetic tree, the homology of 13glutamate decarboxylases (GAD) of different origin was analyzed by multiple alignment.

  19. A radiometric microassay for glutamic acid decarboxylase

    A simple method for purifying L-[3H] glutamic acid and incubation conditions suitable for estimating L-glutamic acid decarboxylase activity are described. Routine and recycled cation-exchange procedure for separating γ-aminobutyric acid from L-glutamate are outlined and compared. Recycling increases the sensitivity of the cation-exchange method by 6-7 fold. L-Glutamate decarboxylase activity can be measured reliably in samples of embryonic neural tissue having wet-weights of approximately 1 μg. The cation-exchange method is compared with the anion-exchange and CO2-trapping methods. L-Glutamate decarboxylase activity has been detected in the lumbar spinal cord of the chick embryo at Day 21/4 (stage 14) using the cation-exchange method. This is 5-6 days earlier than L-glutamate decarboxylase activity has been detected in embryonic neural tissue by previous investigators. L-Glutamate decarboxylase is present in the lumbar spinal cord at least as early as the birth of the first lumbar spinal cord neurons and at least 1-2 days before the initiation of synaptogenesis. (author)

  20. Refractory status epilepticus and glutamic acid decarboxylase antibodies in adults: presentation, treatment and outcomes.

    Khawaja, Ayaz M; Vines, Brannon L; Miller, David W; Szaflarski, Jerzy P; Amara, Amy W

    2016-03-01

    Glutamic acid decarboxylase antibodies (GAD-Abs) have been implicated in refractory epilepsy. The association with refractory status epilepticus in adults has been rarely described. We discuss our experience in managing three adult patients who presented with refractory status epilepticus associated with GAD-Abs. Case series with retrospective chart and literature review. Three patients without pre-existing epilepsy who presented to our institution with generalized seizures between 2013 and 2014 were identified. Seizures proved refractory to first and second-line therapies and persisted beyond 24 hours. Patient 1 was a 22-year-old female who had elevated serum GAD-Ab titres at 0.49 mmol/l (normal: partial seizure control. Patient 2 was a 61-year-old black female whose serum GAD-Ab titre was 0.08 mmol/l. EEG showed persistent generalized periodic discharges despite maximized therapy with anticonvulsants but no immunotherapy, resulting in withdrawal of care and discharge to nursing home. Patient 3 was a 50-year-old black female whose serum GAD-Ab titre was 0.08 mmol/l, and was discovered to have pulmonary sarcoidosis. Treatment with steroids and intravenous immunoglobulin resulted in seizure resolution. Due to the responsiveness to immunotherapy, there may be an association between GAD-Abs and refractory seizures, including refractory status epilepticus. Causation cannot be established since GAD-Abs may be elevated secondary to concurrent autoimmune diseases or formed de novo in response to GAD antigen exposure by neuronal injury. Based on this report and available literature, there may be a role for immuno- and chemotherapy in the management of refractory status epilepticus associated with GAD-Abs. PMID:26878120

  1. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. PMID:26980143

  2. Developmental changes of glutamate acid decarboxylase 67 in mouse brain after hypoxia ischemia

    Fa-Lin XU; Chang-Lian ZHU; Xiao-Yang WANG

    2006-01-01

    Objective To study the developmental changes of glutamic acid decarboxylase-67 ( GAD-67, a GABA synthetic enzyme) in normal and hypoxic ischemic (HI) brain. Methods C57/BL6 mice on postnatal day (P) 5, 9, 21and 60, corresponding developmentally to premature, term, juvenile and adult human brain were investigated by using both Western blot and immunohistochemistry methods either in normal condition or after hypoxic ischemic insult. Results The immunoreactivity of GAD67 was up regulated with brain development and significant difference was seen between mature (P21, P60) and immature (P5, P9) brain. GAD67 immunoreactivity decreased in the ipsilateral hemisphere in all the ages after hypoxia ischemia (HI) insult, but, significant decrease was only seen in the immature brain. Double labeling of GAD67 and cell death marker, TUNEL, in the cortex at 8h post-HI in the P9 mice showed that (15.6 ±7.0)%TUNEL positive cells were GAD67 positive which was higher than that of P60 mice. Conclusion These data suggest that GABAergic neurons in immature brain were more vulnerable to HI insult than that of mature brain.

  3. Neuronal circuit-dependent alterations in expression of two isoforms of glutamic acid decarboxylase in the hippocampus following electroconvulsive shock: A stereology-based study.

    Jinno, Shozo; Kosaka, Toshio

    2009-11-01

    There is an increasing body of evidence suggesting that GABAergic dysfunction is involved in various psychiatric disorders. The goal of our study was to investigate the influences of electroconvulsive therapy (ECT), one of the most effective treatments for depression, on the GABAergic system in the hippocampus. In this stereology-based study, we identified GABAergic neurons by immunostaining for two isoforms of glutamic acid decarboxylase (GAD), GAD65, and GAD67 and estimated the expression changes induced by single or repeated electroconvulsive shock (ECS; an animal model of ECT). The numerical density (ND) of entire population of GABAergic neurons (expressing GAD65 and/or GAD67) was seldom altered by the administration of ECS. GAD67-positive (GAD67(+)) neurons were also rarely affected by ECS. On the other hand, the ND of GAD65(+) neurons was changed in a layer-specific manner. In the CA1 region, the ND of GAD65(+) neurons was increased in the strata radiatum/lacunosum-moleculare (SR/SLM) by repeated ECS. In the CA3 region, the ND of GAD65(+) neurons was decreased in the stratum oriens and SR/SLM after single ECS. The expression ratio of GAD65 in GABAergic neurons was increased specifically in layers receiving afferents from the entorhinal cortex (EC), i.e., SR/SLM of the CA1 region and molecular layer of the dentate gyrus (DG), after repeated ECS administration, whereas the expression ratio of GAD67 in GABAergic neurons was decreased in several layers by the same treatment. These results indicate that the ECS-induced changes in ND of GAD65(+) or GAD67(+) neurons were most likely due to alterations in GAD expression rather than actual increases or decreases in cell numbers. Altogether, the neuronal circuit-dependent alterations in GABA-mediated signaling may play a contributory role in the depression treatment process introduced by ECT. PMID:19283776

  4. Removal kinetics of antibodies against glutamic acid decarboxylase by various plasmapheresis modalities in the treatment of neurological disorders.

    Ohkubo, Atsushi; Okado, Tomokazu; Kurashima, Naoki; Maeda, Takuma; Miyamoto, Satoko; Nakamura, Ayako; Seshima, Hiroshi; Iimori, Soichiro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2014-06-01

    Plasmapheresis is one of the acute treatment modalities for neurological disorders associated with antibodies against glutamic acid decarboxylase (anti-GAD). However, there is little information about the removal kinetics of anti-GAD by various plasmapheresis modalities. Here, we investigated the removal rate of anti-GAD and fibrinogen (Fib) by immunoadsorption (IA), plasma exchange using a conventional plasma separator (OP-PE), and plasma exchange using a high cut-off selective membrane plasma separator (EC-PE) in two cases of anti-GAD-associated neurological diseases. In case 1, IA and OP-PE were used, and the percent reductions were as follows: anti-GAD: 38.2% and 69.1% and Fib: 67.7% and 68.2%, respectively. In case 2, OP-PE and EC-PE were used, and the percent reductions were as follows: anti-GAD: 65.8% and 48.5% and Fib: 68.5% and 19.8%, respectively. OP-PE could remove anti-GAD more efficiently than IA. Further, EC-PE could maintain coagulation factors such as Fib better than IA and OP-PE. It is important to select the appropriate plasmapheresis modality on the basis of the removal kinetics. PMID:24965288

  5. Transcriptional regulation of glutamic acid decarboxylase in the male mouse amygdala by dietary phyto-oestrogens.

    Sandhu, K V; Yanagawa, Y; Stork, O

    2015-04-01

    Phyto-oestrogens are biologically active components of many human and laboratory animal diets. In the present study, we investigated, in adult male mice with C57BL/6 genetic background, the effects of a reduced phyto-oestrogens intake on anxiety-related behaviour and associated gene expression in the amygdala. After 6 weeks on a low-phyto-oestrogen diet (fear memory task, in contrast, was not affected. We hypothesised that this mildly increased anxiety may involve changes in the function of GABAergic local circuit neurones in the amygdala. Using GAD67(+/GFP) mice, we could demonstrate reduced transcription of the GAD67 gene in the lateral and basolateral amygdala under the low-phyto-oestrogen diet. Analysis of mRNA levels in microdissected samples confirmed this regulation and demonstrated concomitant changes in expression of the second glutamic acid decarboxylase (GAD) isoform, GAD65, as well as the anxiolytic neuropeptide Y. These molecular and behavioural alterations occurred without apparent changes in circulating oestrogens or testosterone levels. Our data suggest that expression regulation of interneurone-specific gene products in the amygdala may provide a mechanism for the control of anxiety-related behaviour through dietary phyto-oestrogens. PMID:25650988

  6. The role of anti-glutamic acid decarboxylase autoantibodies in mood disorders

    Marco Liguori

    2015-01-01

    Full Text Available Gamma-aminobutyric acid (GABA possibly plays a causative role in mood disorders. This hypothesis originated with studies on the beneficial effect of valproate in mania and as a mood stabilizer. Since valproate is known for its action in increasing the level of GABA, it was indirectly suggested that decreasing levels of GABA were responsible for mood alterations. To identify factors causing the decreased levels of GABA, studies have concentrated on the activity of the enzyme L-glutamic acid decarboxylase (GAD, which catalyzes the transformation of glutamate to GABA, as a decreasing function of this enzyme induces lower levels of the neurotransmitter. Moreover, a very limited amount of research investigated the possible role of glutamic acid decarboxylase antibodies (GADA in determining a decreased enzymatic function of GAD. If these findings are confirmed, it will be possible to improve diagnosis and treatment of mood disorders. In addition, if the presence of GADA is associated with a genetic trait, this would allow and facilitate early diagnoses.

  7. Similar peptides from two beta cell autoantigens, proinsulin and glutamic acid decarboxylase, stimulate T cells of individuals at risk for insulin-dependent diabetes.

    Rudy, G; N. Stone; Harrison, L C; Colman, P. G.; McNair, P; Brusic, V.; French, M. B.; Honeyman, M. C.; Tait, B.; Lew, A M

    1995-01-01

    BACKGROUND: Insulin (1) and glutamic acid decarboxylase (GAD) (2) are both autoantigens in insulin-dependent diabetes mellitus (IDDM), but no molecular mechanism has been proposed for their association. We have identified a 13 amino acid peptide of proinsulin (amino acids 24-36) that bears marked similarity to a peptide of GAD65 (amino acids 506-518) (G. Rudy, unpublished). In order to test the hypothesis that this region of similarity is implicated in the pathogenesis of IDDM, we assayed T c...

  8. Characterization of the Intracellular Glutamate Decarboxylase System: Analysis of Its Function, Transcription, and Role in the Acid Resistance of Various Strains of Listeria monocytogenes

    Karatzas, Kimon-Andreas G.; Suur, Laura; O'Byrne, Conor P.

    2012-01-01

    The glutamate decarboxylase (GAD) system is important for the acid resistance of Listeria monocytogenes. We previously showed that under acidic conditions, glutamate (Glt)/γ-aminobutyrate (GABA) antiport is impaired in minimal media but not in rich ones, like brain heart infusion. Here we demonstrate that this behavior is more complex and it is subject to strain and medium variation. Despite the impaired Glt/GABA antiport, cells accumulate intracellular GABA (GABAi) as a standard response aga...

  9. Association of the −243A>G, +61450C>A Polymorphisms of the Glutamate Decarboxylase 2 (GAD2) Gene with Obesity and Insulin Level in North Indian Population

    PRAKASH, Jai; MITTAL, Balraj; AWASTHI, Shally; SRIVASTAVA, Neena

    2016-01-01

    Background: Obesity associated with type 2 diabetes, and hypertension increased mortality and morbidity. Glutamate decarboxylase 2 (GAD2) gene is associated with obesity and it regulate food intake and insulin level. We investigated the association of GAD-2gene −243A>G (rs2236418) and +61450C>A (rs992990) polymorphisms with obesity and related phenotypes. Methods: Insulin, glucose and lipid levels were estimated using standard protocols. All subjects were genotyped (PCR-RFLP) method. Results: The −243A>G polymorphism of the GAD-2 gene was significantly associated with higher risk of obesity (Pobesity and related phenotype in complex manner, probably by regulating the food intake, insulin and body weight.

  10. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    ... features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010 Jul 6;75(1):64-71. doi: ... WNL.0b013e3181e620ae. Epub 2010 May 26. Erratum in: Neurology. 2010 Aug 10;75(6):576. Dosage error ...

  11. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.;

    2015-01-01

    . We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other...... comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites...... regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress....

  12. A systematic review on aromatic L-amino acid decarboxylase (5-hydroxytryptophan decarboxylase)

    Aromatic L-amino acid decarboxylase (AADC, EC. 4.1.1.28) with L-5-hydroxytryptophan as a substrate (also called L-5-hydroxytryptophan decarboxylase, 5-HTPDC) decarboxylates L-5-hydroxytryptophan to serotonin (5-HT), an important neurotransmitter that involved in the regulation of neuronal functions, behaviour and emotion of higher animals. As it is an important enzyme, many researchers are now working on its physiological functions and properties and also on its isolation, purification and characterization from mammalian tissues. But up to now no systematic review studies have been done on this enzyme. We made systematic studies on this enzyme in tissues and brains of rats, and human subjects. We also developed highly sensitive assay methods of the enzyme. This new method led us to discover the enzyme in the sera of various animals. We examined the developmental changes of 5-HTPDC in the sera of animals. We discovered an endogenous inhibitor of the enzyme in the monkey blood. The purification of the enzyme were performed by us and other researches from the sera, brains, adrenals, liver and kidneys of mammals. These and other results of up to date research papers on 5-HTPDC have been reviewed in this paper. (author). 71 refs, 10 figs, 14 tabs

  13. Stereochemical course of rat liver cysteinesulfinic acid decarboxylase

    Rat liver homogenate, exhibiting very high cysteinesulfinic acid (CSA) decarboxylase activity, was used to decarboxylate [2-2H1]-L-CSA to [2-2H1]-hypotaurine (HT)2. The latter was desulfurized with Raney nickel to [1-2H1]-ethylamine. A 2H NMR spectrum of the (-)camphanamide derivative of the latter revealed the labeling stereochemistry. Similarly, unlabeled CSA was decarboxylated by rat liver homogenate in a D2O containing medium, and the product HT similarly desulfurized and derivatized. The reactions were followed by use of a new HPLC-based assay for CSA decarboxylase which allows simultaneous measurement of glutamate decarboxylation (which was negligible with rat liver homogenates). The results show that the decarboxylation proceeds with retention of configuration

  14. Purification and Characterization of Gallic Acid Decarboxylase from Pantoea agglomerans T71

    Zeida, Mitsuhiro; Wieser, Marco; Yoshida, Toyokazu; Sugio, Tsuyoshi; Nagasawa, Toru

    1998-01-01

    Oxygen-sensitive gallic acid decarboxylase from Pantoea (formerly Enterobacter) agglomerans T71 was purified from a cell extract after stabilization by reducing agents. This enzyme has a molecular mass of approximately 320 kDa and consists of six identical subunits. It is highly specific for gallic acid. Gallic acid decarboxylase is unique among similar decarboxylases in that it requires iron as a cofactor, as shown by plasma emission spectroscopy (which revealed an iron content of 0.8 mol pe...

  15. Branched-chain 2-keto acid decarboxylases derived from Psychrobacter.

    Wei, Jiashi; Timler, Jacobe G; Knutson, Carolann M; Barney, Brett M

    2013-09-01

    The conversion of branched-chain amino acids to branched-chain acids or alcohols is an important aspect of flavor in the food industry and is dependent on the Ehrlich pathway found in certain lactic acid bacteria. A key enzyme in the pathway, the 2-keto acid decarboxylase (KDC), is also of interest in biotechnology applications to produce small branched-chain alcohols that might serve as improved biofuels or other commodity feedstocks. This enzyme has been extensively studied in the model bacterium Lactococcus lactis, but is also found in other bacteria and higher organisms. In this report, distinct homologs of the L. lactis KDC originally annotated as pyruvate decarboxylases from Psychrobacter cryohalolentis K5 and P. arcticus 273-4 were cloned and characterized, confirming a related activity toward specific branched-chain 2-keto acids derived from branched-chain amino acids. Further, KDC activity was confirmed in intact cells and cell-free extracts of P. cryohalolentis K5 grown on both rich and defined media, indicating that the Ehrlich pathway may also be utilized in some psychrotrophs and psychrophiles. A comparison of the similarities and differences in the P. cryohalolentis K5 and P. arcticus 273-4 KDC activities to other bacterial KDCs is presented. PMID:23826991

  16. Tolerogenic dendritic cells induce antigen-specific hyporesponsiveness in insulin- and glutamic acid decarboxylase 65-autoreactive T lymphocytes from type 1 diabetic patients.

    Segovia-Gamboa, Norma; Rodríguez-Arellano, Martha Eunice; Rangel-Cruz, Rafael; Sánchez-Díaz, Moisés; Ramírez-Reyes, Julio César; Faradji, Raquel; González-Domínguez, Érika; Sánchez-Torres, Carmen

    2014-09-01

    Tolerogenic dendritic cells (tDC) constitute a promising therapy for autoimmune diseases, since they can anergize T lymphocytes recognizing self-antigens. Patients with type 1 diabetes mellitus (T1D) have autoreactive T cells against pancreatic islet antigens (insulin, glutamic acid decarboxylase 65 -GAD65-). We aimed to determine the ability of tDC derived from T1D patients to inactivate their insulin- and GAD65-reactive T cells. CD14+ monocytes and CD4+CD45RA- effector/memory lymphocytes were isolated from 25 patients. Monocyte-derived DC were generated in the absence (control, cDC) or presence of IL-10 and TGF-β1 (tDC), and loaded with insulin or GAD65. DC were cultured with T lymphocytes (primary culture), and cell proliferation and cytokine secretion were determined. These lymphocytes were rechallenged with insulin-, GAD65- or candidin-pulsed cDC (secondary culture) to assess whether tDC rendered T cells hyporesponsive to further stimulation. In the primary cultures, tDC induced significant lower lymphocyte proliferation and IL-2 and IFN-γ secretion than cDC; in contrast, tDC induced higher IL-10 production. Lymphocytes from 60% of patients proliferated specifically against insulin or GAD65 (group 1), whereas 40% did not (group 2). Most patients from group 1 had controlled glycemia. The secondary cultures showed tolerance induction to insulin or GAD65 in 14 and 10 patients, respectively. A high percentage of these patients (70-80%) belonged to group 1. Importantly, tDC induced antigen-specific T-cell hyporesponsiveness, since the responses against unrelated antigens were unaffected. These results suggest that tDC therapy against multiple antigens might be useful in a subset of T1D patients. PMID:24993292

  17. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons

    Kanaani, Jamil; Cianciaruso, Chiara; Phelps, Edward A; Pasquier, Miriella; Brioudes, Estelle; Baekkeskov, Steinunn; Billestrup, Nils

    2015-01-01

    The inhibitory neurotransmitter GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD) in neurons and in pancreatic β-cells in islets of Langerhans where it functions as a paracrine and autocrine signaling molecule regulating the function of islet endocrine cells. The localization of...

  18. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  19. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  20. Evolution and expression analysis of the soybean glutamate decarboxylase gene family

    Tae Kyung Hyun; Seung Hee Eom; Xiao Han; Ju-Sung Kim

    2014-12-01

    Glutamate decarboxylase (GAD) is an enzyme that catalyses the conversion of L-glutamate into -aminobutyric acid (GABA), which is a four-carbon non-protein amino acid present in all organisms. Although plant GAD plays important roles in GABA biosynthesis, our knowledge concerning GAD gene family members and their evolutionary relationship remains limited. Therefore, in this study, we have analysed the evolutionary mechanisms of soybean GAD genes and suggested that these genes expanded in the soybean genome partly due to segmental duplication events. The approximate dates of duplication events were calculated using the synonymous substitution rate, and we suggested that the segmental duplication of GAD genes in soybean originated 9.47 to 11.84 million years ago (Mya). In addition, all segmental duplication pairs (GmGAD1/3 and GmGAD2/4) are subject to purifying selection. Furthermore, GmGAD genes displayed differential expression either in their transcript abundance or in their expression patterns under abiotic stress conditions like salt, drought, and cold. The expression pattern of paralogous pairs suggested that they might have undergone neofunctionalization during the subsequent evolution process. Taken together, our results provide valuable information for the evolution of the GAD gene family and represent the basis for future research on the functional characterization of GAD genes in higher plants.

  1. Glutamic acid decarboxylase autoantibody-positivity post-partum is associated with impaired β-cell function in women with gestational diabetes mellitus

    Lundberg, T. P.; Højlund, K.; Snogdal, L. S.;

    2015-01-01

    AIMS: To investigate whether the presence of glutamic acid decarboxylase (GAD) autoantibodies post-partum in women with prior gestational diabetes mellitus was associated with changes in metabolic characteristics, including β-cell function and insulin sensitivity. METHODS: During 1997-2010, 407...... women with gestational diabetes mellitus were offered a 3-month post-partum follow-up including anthropometrics, serum lipid profile, HbA1c and GAD autoantibodies, as well as a 2-h oral glucose tolerance test (OGTT) with blood glucose, serum insulin and C-peptide at 0, 30 and 120 min. Indices of insulin...... similar age and prevalence of diabetes mellitus. Women who were GAD+ve had significantly higher 2-h OGTT glucose concentrations during their index-pregnancy (10.5 vs. 9.8 mmol/l, P = 0.001), higher fasting glucose (5.2 vs. 5.0 mmol/l, P = 0.02) and higher 2-h glucose (7.8 vs. 7.1 mmol/l, P = 0.05) post...

  2. Detection of GAD-Ab index in diabetic patients using 35S labeled recombinant human GAD65 antigen

    Objective: To establish a novel method for measuring glutamic acid decarboxylase autoanti-bodies(GAD-Ab). Methods: Recombinant human GAD65 was used as the antigen, in vitro transcribed and translated 35S-GAD65 as the tracer, a self-designed rotating incubation apparatus as the incubator, protein-A sepharose as the precipitator, and the liquid scintillation counter was used to measure radioactive count value to detect GAD-Ab. The positive cut-off point of GAD-Ab index was determined as > 0.05 by the 99.5% percentile in 109 healthy individuals. GAD-Ab levels were determined in 43 type 1 and 226 type 2 diabetic patients. Results: The optimized working conditions included SJ1515 35S-methionine for in vitro transcription and translation, 20-30 r/min setup of rotating incubation apparatus, test temperature 4-25 degree C, freshly prepared buffer of pH 7.2-7.4, and horizontal rotor centrifuge. The new method was better than original one, with intra-assay CV of 4.9%-8.3% and inter-assay CV of 7.1%-10.8 %, specificity of 98.2%. The results were comparable with the figures issued by an international standardized laboratory (concordance was 98.3%, Kappa value 0.971). The positive rate of GAD-Ab was 58.1% (25 of 43) in type 1 and 10.2%(23 of 226) in type 2 diabetes patients, but only 1.8% (2 of 109) in healthy individuals. Conclusion: The new assay for GAD-Ab is a highly sensitive, accurate, specific and reproducible method for clinical use

  3. Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey

    In situ hybridization histochemistry, using cRNA probes, revealed a complementarity in the distributions of cells in the basal ganglia, basal nucleus of Meynert, thalamus, hypothalamus, and rostral part of the midbrain that showed gene expression for glutamic acid decarboxylase (GAD) or the alpha-subunit of type II calcium-calmodulin-dependent protein kinase (CAM II kinase-alpha). Cells in certain nuclei such as the thalamic reticular nucleus, globus pallidus, and pars reticulata of the substantia nigra show GAD gene expression only; others in nuclei such as the basal nucleus of Meynert, medial mamillary nuclei, and ventromedial hypothalamic nuclei show CAM II kinase-alpha gene expression only. A few nuclei, for example, the pars compacta of the substantia nigra and the greater part of the subthalamic nucleus, display gene expression for neither GAD nor CAM II kinase-alpha. In other nuclei, notably those of the dorsal thalamus, and possibly in the striatum, GAD- and CAM II kinase-expressing cells appear to form two separate populations that, in most thalamic nuclei, together account for the total cell population. In situ hybridization reveals large amounts of CAM II kinase-alpha mRNA in the neuropil of most nuclei containing CAM II kinase-alpha-positive cells, suggesting its association with dendritic polyribosomes. The message may thus be translated at those sites, close to the synapses with which the protein is associated. The in situ hybridization results, coupled with those from immunocytochemical staining for CAM II kinase-alpha protein, indicate that CAM II kinase-alpha is commonly found in certain non-GABAergic afferent fiber systems but is not necessarily present in the postsynaptic cells on which they terminate. It appears to be absent from most GABAergic fiber systems but can be present in the cells on which they terminate

  4. Stiff-person syndrome (SPS) and anti-GAD-related CNS degenerations: protean additions to the autoimmune central neuropathies.

    Ali, Fatima; Rowley, Merrill; Jayakrishnan, Bindu; Teuber, Suzanne; Gershwin, M Eric; Mackay, Ian R

    2011-09-01

    Stiff Person Syndrome (SPS) is a rare autoimmune neurological disease attributable to autoantibodies to glutamic acid decarboxylase (anti-GAD) more usually associated with the islet beta cell destruction of autoimmune type 1 diabetes (T1D). SPS is characterized by interference in neurons with the synthesis/activity of the inhibitory neurotransmitter gamma amino butyric acid (GABA) resulting in the prototypic progressive spasmodic muscular rigidity of SPS, or diverse neurological syndromes, cerebellar ataxia, intractable epilepsy, myoclonus and several others. Remarkably, a single autoantibody, anti-GAD, can be common to widely different disease expressions, i.e. T1D and SPS. One explanation for these data is the differences in epitope engagement between the anti-GAD reactivity in SPS and T1D: in both diseases, anti-GAD antibody reactivity is predominantly to a conformational epitope region in the PLP- and C-terminal domains of the 65 kDa isoform but, additionally in SPS, there is reactivity to conformational epitope(s) on GAD67, and short linear epitopes in the C-terminal region and at the N-terminus of GAD65. Another explanation for disease expressions in SPS includes ready access of anti-GAD to antigen sites due to immune responsiveness within the CNS itself according to intrathecal anti-GAD-specific B cells and autoantibody. Closer study of the mysterious stiff-person syndrome should enhance the understanding of this disease itself, and autoimmunity in general. PMID:21680149

  5. AUTOANTIBODIES TO GLUTAMIC ACID DECARBOXYLASE AS A PATHOGENETIC MARKER OF TYPE I DIABETES MELLITUS

    N. V. Piven

    2014-07-01

    Full Text Available Abstract. A new method of enzyme-linked immunosorbent assay (in solid-phase ELISA format has been developed to determine concentrations of autoantibodies to glutamic acid decarboxylase, as well as an evidencebased methodology is proposed for its medical implications, as a quantitative pathogenetic predictive marker of autoimmune diagnostics in type 1 diabetes mellitus. This technique could be implied for serial production of diagnostic reagent kits, aimed for detection of autoantibodies to glutamic acid decarboxylase by means of ELISA approach. (Med. Immunol., 2011, vol. 13, N 2-3, pp 257-260

  6. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

    Romagnoli, Gabriele; Luttik, Marijke A H; Kötter, Peter; Pronk, Jack T; Daran, Jean-Marc

    2012-11-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  7. Miller-Fisher Syndrome: Are Anti-GAD Antibodies Implicated in Its Pathophysiology?

    Papagiannopoulos, Sotirios; Theodoridou, Varvara; Argyropoulou, Ourania; Bostantjopoulou, Sevasti

    2016-01-01

    Miller-Fisher syndrome (MFS) is considered as a variant of the Guillain-Barre syndrome (GBS) and its characteristic clinical features are ophthalmoplegia, ataxia, and areflexia. Typically, it is associated with anti-GQ1b antibodies; however, a significant percentage (>10%) of these patients are seronegative. Here, we report a 67-year-old female patient who presented with the typical clinical features of MFS. Workup revealed antibodies against glutamic acid decarboxylase (GAD) in relatively high titers while GQ1b antibodies were negative. Neurological improvement was observed after intravenous gamma globulin and follow-up examinations showed a continuous clinical amelioration with simultaneous decline of anti-GAD levels which finally returned to normal values. This case indicates that anti-GAD antibodies may be associated with a broader clinical spectrum and future studies in GQ1b-seronegative patients could determine ultimately their clinical and pathogenetic significance in this syndrome. PMID:27239355

  8. Miller-Fisher Syndrome: Are Anti-GAD Antibodies Implicated in Its Pathophysiology?

    Ioannis E. Dagklis

    2016-01-01

    Full Text Available Miller-Fisher syndrome (MFS is considered as a variant of the Guillain-Barre syndrome (GBS and its characteristic clinical features are ophthalmoplegia, ataxia, and areflexia. Typically, it is associated with anti-GQ1b antibodies; however, a significant percentage (>10% of these patients are seronegative. Here, we report a 67-year-old female patient who presented with the typical clinical features of MFS. Workup revealed antibodies against glutamic acid decarboxylase (GAD in relatively high titers while GQ1b antibodies were negative. Neurological improvement was observed after intravenous gamma globulin and follow-up examinations showed a continuous clinical amelioration with simultaneous decline of anti-GAD levels which finally returned to normal values. This case indicates that anti-GAD antibodies may be associated with a broader clinical spectrum and future studies in GQ1b-seronegative patients could determine ultimately their clinical and pathogenetic significance in this syndrome.

  9. Differential expression of glutamic acid decarboxylase in rat and human islets

    Petersen, J S; Russel, S; Marshall, M O;

    1993-01-01

    The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat isl...

  10. Detection of GAD65 antibodies in diabetes and other autoimmune diseases using a simple radioligand assay.

    Petersen, J S; Hejnaes, K R; Moody, A; Karlsen, A E; Marshall, M O; Høier-Madsen, M; Boel, E; Michelsen, B K; Dyrberg, T

    1994-03-01

    Autoantibodies to glutamic acid decarboxylase (GAD) are frequent at or before the onset of insulin-dependent diabetes mellitus (IDDM). We have developed a simple, reproducible, and quantitative immunoprecipitation radioligand assay using as antigen in vitro transcribed and translated [35S]methionine-labeled human islet GAD65. By using this assay, 77% (77 of 100) of serum samples from recent-onset IDDM patients were positive for GAD65 antibodies compared with 4% (4 of 100) of serum samples from healthy control subjects. In competition analysis with unlabeled purified recombinant human islet GAD65, binding to tracer was inhibited in 74% (74 of 100) of the GAD65-positive IDDM serum samples compared with 2% of the control samples. The levels of GAD antibodies expressed as an index value relative to a standard serum, analyzed with or without competition, were almost identical (r = 0.991). The intra- and interassay variations of a positive control serum sample were 2.9 and 7.6%, respectively (n = 4). The frequency of GAD antibodies was significantly higher with IDDM onset before the age of 30 (80%, 59 of 74) than after the age of 30 (48%, 10 of 21) (P DNA autoantibodies (8% [2 of 25] and 4% [1 of 25] in competition analysis) or rheuma factor autoantibodies [12% (4 of 35) and 3% (1 of 35) in competition analysis] was not different from that in control samples. In contrast, in sera positive for ribonucleoprotein antibodies the frequency of GAD antibodies was significantly increased (73% [51 of 70] and 10% [7 of 70] in competition analysis [P history of IDDM for the presence of this marker. PMID:8314020

  11. The spatiotemporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons.

    Vastagh, Csaba; Schwirtlich, Marija; Kwakowsky, Andrea; Erdélyi, Ferenc; Margolis, Frank L; Yanagawa, Yuchio; Katarova, Zoya; Szabó, Gábor

    2015-03-01

    Gamma-aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin-releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. PMID:25125027

  12. ELISA Test for Analyzing of Incidence of Type 1 Diabetes Autoantibodies (GAD and IA2) in Children and Adolescents

    Delic-Sarac, Marina; Mutevelic, Selma; Karamehic, Jasenko; Subasic, Djemo; Jukic, Tomislav; Coric, Jozo; Ridjic, Ognjen; Panjeta, Mirsad; Zunic, Lejla

    2016-01-01

    Introduction: Anti GAD (antibodies on glutamic acid decarboxylase) and anti-IA2 antibodies (against tyrosine phosphatase), today, have their place and importance in diagnosis and prognosis of Type 1 diabetes. Huge number of patients with diabetes mellitus type 1 have these antibodies. Insulin antibodies are of critical importance in diagnosis of diabetes mellitus type 1 for pediatric population. Materials and methods: During 2014, the samples of 80 patients from Clinical Center University Sarajevo (CCUS) Pediatrics clinic’s, Endocrinology department were analyzed on anti-GAD and IA2 antibodies. The samples of serums of all patients were analyzed with ELISA tests using Anti GAD ELISA (IgG) kites from EUROIMMUN company. These are quantitative in vitro tests for human antibodies against decarboxylase of glutamine acid (GAD) and IA2, in serum or EDTA plasm. Results: During the period of one year, in CCUS’s Organizational unit, Institute for Clinical Immunology, 80 samples of patients with anti GAD and IA2 antibodies were analyzed. Out of total number of samples, 41 were male patients, or 51% and 39 female, or 49%. The youngest patient was born in 2012, and the oldest in 1993. Age average was represented by the patients born in 2001. Share of positive results for IA2 antibodies and GAD antibodies was 37% for IA2 antibodies, and 63% for GAD antibodies. Discussion: During an autoimmune – mediated Diabetes mellitus type 1 leads to T-cell mediated destruction of beta cells of pancreatic islets, reduced production of insulin and glucose metabolism. Studies have shown that these bodies are the most intense single marker for identifying persons with increased risk for diabetes development. PMID:27041813

  13. VGluT1- and GAD-immunoreactive terminals in synaptic contact with PAG-immunopositive neurons in principal sensory trigeminal nucleus of rat

    Yu-lin DONG; Fu-xing ZHANG; You-wang PANG; Jin-lian LI

    2007-01-01

    Aim: To trace the origin of abundant vesicular glutamate transporter 1-like immu-noreactive (VGIuT1-LI) axon terminals in the dorsal division of the principal sensory trigeminal nucleus (Vpd) and the relationships between VGIuT1-LI, as well as the glutamic acid decarboxylase (GAD)-LI axon terminals, and phosphate-activated glutaminase (PAG)-LI thalamic projecting neurons in the Vpd. Methods: Following unilateral trigeminal rhizotomy, triple-immunofluorescence histoche-mistry for VGluT1, GAD and PAG and the immunogold-silver method for VGIuT1or GAD, combined with the immunoperoxidase method for PAG were performed, respectively. Results: After unilateral trigeminal rhizotomy, the density of VGluT1-like immunoreactivity (IR) in the Vpd on the lesion side was reduced compared to its contralateral counterpart. Under the confocal laser-scanning microscope, theVGIuT1-LI or GAD-LI axon terminals were observed to be in close apposition to the PAG-LI thalamic projecting neuronal profiles, and further electron microscope immunocytochemistry confirmed that VGluT1- and GAD-LI axon terminals made asymmetrical and symmetrical synapses upon the PAG-LI neuronal structures. Conclusion: The present results suggest that the VGluT1-LI axon terminals, which mainly arise from the primary afferents of the trigeminal ganglion, along with the PAG-LI neuronal profiles, form the key synaptic connection involved in sensory signaling.

  14. Phenolic Acid-Mediated Regulation of the padC Gene, Encoding the Phenolic Acid Decarboxylase of Bacillus subtilis▿ †

    Tran, Ngoc Phuong; Gury, Jerôme; Dartois, Véronique; Nguyen, Thi Kim Chi; Seraut, Hélène; Barthelmebs, Lise; Gervais, Patrick; Cavin, Jean-François

    2008-01-01

    In Bacillus subtilis, several phenolic acids specifically induce expression of padC, encoding a phenolic acid decarboxylase that converts these antimicrobial compounds into vinyl derivatives. padC forms an operon with a putative coding sequence of unknown function, yveFG, and this coding sequence does not appear to be involved in the phenolic acid stress response (PASR). To identify putative regulators involved in the PASR, random transposon mutagenesis, combined with two different screens, w...

  15. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae.

    Vuralhan, Zeynep; Luttik, Marijke A H; Tai, Siew Leng; Boer, Viktor M; Morais, Marcos A; Schipper, Dick; Almering, Marinka J H; Kötter, Peter; Dickinson, J Richard; Daran, Jean-Marc; Pronk, Jack T

    2005-06-01

    Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK113-7D were grown with different nitrogen sources. Cultures grown with phenylalanine, leucine, or methionine as a nitrogen source contained high levels of the corresponding fusel alcohols and organic acids, indicating activity of the Ehrlich pathway. Also, fusel alcohols derived from the other two amino acids were detected in the supernatant, suggesting the involvement of a common enzyme activity. Transcript level analysis revealed that among the five thiamine-pyrophospate-dependent decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3), only ARO10 was transcriptionally up-regulated when phenylalanine, leucine, or methionine was used as a nitrogen source compared to growth on ammonia, proline, and asparagine. Moreover, 2-oxo acid decarboxylase activity measured in cell extract from CEN.PK113-7D grown with phenylalanine, methionine, or leucine displayed similar broad-substrate 2-oxo acid decarboxylase activity. Constitutive expression of ARO10 in ethanol-limited chemostat cultures in a strain lacking the five thiamine-pyrophosphate-dependent decarboxylases, grown with ammonia as a nitrogen source, led to a measurable decarboxylase activity with phenylalanine-, leucine-, and methionine-derived 2-oxo acids. Moreover, even with ammonia as the nitrogen source, these cultures produced significant amounts of the corresponding fusel alcohols. Nonetheless, the constitutive expression of ARO10 in an isogenic wild-type strain grown in a glucose-limited chemostat with ammonia did not lead to any 2-oxo acid decarboxylase activity. Furthermore, even when ARO10 was constitutively expressed, growth with phenylalanine as the nitrogen source led to increased decarboxylase activities in cell extracts. The results reported here indicate the involvement of posttranscriptional regulation and/or a second protein in the ARO10-dependent, broad-substrate-specificity decarboxylase activity. PMID:15933030

  16. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models.

    Lee, B; Lee, H; Nam, Y R; Oh, J H; Cho, Y H; Chang, J W

    2005-08-01

    In this study, we report the amelioration of parkinsonian symptoms in rat Parkinson's disease (PD) models, as a result of the expression of glutamate decarboxylase (GAD) 65 with a modified cytomegalovirus (CMV) promoter. The transfer of the gene for gamma-amino butryic acid (GAD), the rate-limiting enzyme in gama-amino butrylic acid (GABA) production, has been investigated as a means to increase inhibitory synaptic activity. Electrophysiological evidence suggests that the transfer of the GAD65 gene to the subthalamic nucleus (STN) can change the excitatory output of this nucleus to inhibitory output. Our in vitro results also demonstrated higher GAD65 expression in cells transfected with the JDK promoter, as compared to cells transfected with the CMV promoter. Also, a rat PD model in which recombinant adeno-associated virus-2 (rAAV2)-JDK-GAD65 was delivered into the STN exhibited significant behavioral improvements, as compared to the saline-injected group. Interestingly, we observed that these behavioral improvements were more obvious in rat PD models in which rAAV2-JDK-GAD65 was injected into the STN than in rat PD models in which rAAV2-CMV-GAD65 was injected into the STN. Moreover, according to electrophysiological data, the rAAV2-JDK-GAD65-injected group exhibited more constant improvements in firing rates than did the rAAV2-CMV-GAD65-injected group. These data indicate that the JDK promoter, when coupled with GAD65 expression, is more effective with regard to parkinsonian symptoms than is the CMV promoter. PMID:15829994

  17. Glutamic acid decarboxylase antibodies are indicators of the course, but not of the onset, of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities Study

    A. Vigo

    2007-07-01

    Full Text Available To efficiently examine the association of glutamic acid decarboxylase antibody (GADA positivity with the onset and progression of diabetes in middle-aged adults, we performed a case-cohort study representing the ~9-year experience of 10,275 Atherosclerosis Risk in Communities Study participants, initially aged 45-64 years. Antibodies to glutamic acid decarboxylase (GAD65 were measured by radioimmunoassay in 580 incident diabetes cases and 544 non-cases. The overall weighted prevalence of GADA positivity (³1 U/mL was 7.3%. Baseline risk factors, with the exception of smoking and interleukin-6 (P £ 0.02, were generally similar between GADA-positive and -negative individuals. GADA positivity did not predict incident diabetes in multiply adjusted (HR = 1.04; 95%CI = 0.55, 1.96 proportional hazard analyses. However, a small non-significant adjusted risk (HR = 1.29; 95%CI = 0.58, 2.88 was seen for those in the highest tertile (³2.38 U/mL of positivity. GADA-positive and GADA-negative non-diabetic individuals had similar risk profiles for diabetes, with central obesity and elevated inflammation markers, aside from glucose, being the main predictors. Among diabetes cases at study's end, progression to insulin treatment increased monotonically as a function of baseline GADA level. Overall, being GADA positive increased risk of progression to insulin use almost 10 times (HR = 9.9; 95%CI = 3.4, 28.5. In conclusion, in initially non-diabetic middle-aged adults, GADA positivity did not increase diabetes risk, and the overall baseline profile of risk factors was similar for positive and negative individuals. Among middle-aged adults, with the possible exception of those with the highest GADA levels, autoimmune pathophysiology reflected by GADA may become clinically relevant only after diabetes onset.

  18. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    The crystal structure of phenolic acid decarboxylase from B. pumilus strain UI-670 has been determined and refined at 1.69 Å resolution. The enzyme is a dimer, with each subunit adopting a β-barrel structure belonging to the lipocalin fold. The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site

  19. 2-ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization.

    Kumar, Chanchal; Yadav, Kavita; Archana, G; Naresh Kumar, G

    2013-09-01

    Enterobacter asburiae PSI3 is known to efficiently solubilize rock phosphate by secretion of approximately 50 mM gluconic acid in Tris-buffered medium in the presence of 75 mM glucose and in a mixture of seven aldosugars each at 15 mM concentration, mimicking alkaline vertisol soils. Efficacy of this bacterium in the rhizosphere requires P release in the presence of low amount of sugars. To achieve this, E. asburiae PSI3 has been manipulated to express gluconate dehydrogenase (gad) operon of Pseudomonas putida KT 2440 to produce 2-ketogluconic acid. E. asburiae PSI3 harboring gad operon had 438 U of GAD activity, secreted 11.63 mM 2-ketogluconic and 21.65 mM gluconic acids in Tris-rock phosphate-buffered medium containing 45 mM glucose. E. asburiae PSI3 gad transformant solubilized 0.84 mM P from rock phosphate in TRP-buffered liquid medium. In the presence of a mixture of seven sugars each at 12 mM, the transformant brought about a drop in pH to 4.1 and released 0.53 mM P. PMID:23666029

  20. Cellular target recognition of perfluoroalkyl acids: In vitro evaluation of inhibitory effects on lysine decarboxylase

    Wang, Sufang; Lv, Qiyan; Yang, Yu, E-mail: yuyang@rcees.ac.cn; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Wan, Bin; Zhao, Lixia

    2014-10-15

    Perfluoroalkyl acids (PFAAs) have been shown to bind with hepatic peroxisome proliferator receptor α, estrogen receptors and human serum albumin and subsequently cause some toxic effects. Lysine decarboxylase (LDC) plays an important role in cell growth and developmental processes. In this study, the inhibitory effect of 16 PFAAs, including 13 perfluorinated carboxylic acids (PFCAs) and 3 perfluorinated sulfonic acids (PFSAs), on lysine decarboxylase (LDC) activity was investigated. The inhibition constants obtained in fluorescence enzyme assays fall in the range of 2.960 μM to 290.8 μM for targeted PFCAs, and 41.22 μM to 67.44 μM for targeted PFSAs. The inhibitory effect of PFCAs increased significantly with carbon chain (7–18 carbons), whereas the short chain PFCAs (less than 7 carbons) did not show any effect. Circular dichroism results showed that PFAA binding induced significant protein secondary structural changes. Molecular docking revealed that the inhibitory effect could be rationalized well by the cleft binding mode as well as the size, substituent group and hydrophobic characteristics of the PFAAs. At non-cytotoxic concentrations, three selected PFAAs inhibited LDC activity in HepG2 cells, and subsequently resulted in the decreased cadaverine level in the exposed cells, suggesting that LDC may be a possible target of PFAAs for their in vivo toxic effects. - Highlights: • Inhibitory effects of PFAAs on lysine decarboxylase activity were evaluated. • Four different methods were employed to investigate the mechanisms. • The long chain PFAAs showed inhibitory effect compare with 4–6 carbon chain. • The long chain PFAAs bound with LDC differently from the short ones. • The results in cells correlate with those obtained from fluorescence assay.

  1. Cellular target recognition of perfluoroalkyl acids: In vitro evaluation of inhibitory effects on lysine decarboxylase

    Perfluoroalkyl acids (PFAAs) have been shown to bind with hepatic peroxisome proliferator receptor α, estrogen receptors and human serum albumin and subsequently cause some toxic effects. Lysine decarboxylase (LDC) plays an important role in cell growth and developmental processes. In this study, the inhibitory effect of 16 PFAAs, including 13 perfluorinated carboxylic acids (PFCAs) and 3 perfluorinated sulfonic acids (PFSAs), on lysine decarboxylase (LDC) activity was investigated. The inhibition constants obtained in fluorescence enzyme assays fall in the range of 2.960 μM to 290.8 μM for targeted PFCAs, and 41.22 μM to 67.44 μM for targeted PFSAs. The inhibitory effect of PFCAs increased significantly with carbon chain (7–18 carbons), whereas the short chain PFCAs (less than 7 carbons) did not show any effect. Circular dichroism results showed that PFAA binding induced significant protein secondary structural changes. Molecular docking revealed that the inhibitory effect could be rationalized well by the cleft binding mode as well as the size, substituent group and hydrophobic characteristics of the PFAAs. At non-cytotoxic concentrations, three selected PFAAs inhibited LDC activity in HepG2 cells, and subsequently resulted in the decreased cadaverine level in the exposed cells, suggesting that LDC may be a possible target of PFAAs for their in vivo toxic effects. - Highlights: • Inhibitory effects of PFAAs on lysine decarboxylase activity were evaluated. • Four different methods were employed to investigate the mechanisms. • The long chain PFAAs showed inhibitory effect compare with 4–6 carbon chain. • The long chain PFAAs bound with LDC differently from the short ones. • The results in cells correlate with those obtained from fluorescence assay

  2. Glutamic acid decarboxylase 65 and islet cell antigen 512/IA-2 autoantibodies in relation to human leukocyte antigen class II DR and DQ alleles and haplotypes in type 1 diabetes mellitus.

    Stayoussef, Mouna; Benmansour, Jihen; Al-Jenaidi, Fayza A; Said, Hichem B; Rayana, Chiheb B; Mahjoub, Touhami; Almawi, Wassim Y

    2011-06-01

    The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D. PMID:21490167

  3. Glutamic Acid Decarboxylase 65 and Islet Cell Antigen 512/IA-2 Autoantibodies in Relation to Human Leukocyte Antigen Class II DR and DQ Alleles and Haplotypes in Type 1 Diabetes Mellitus ▿

    Stayoussef, Mouna; Benmansour, Jihen; Al-Jenaidi, Fayza A.; Said, Hichem B.; Rayana, Chiheb B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2011-01-01

    The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D. PMID:21490167

  4. Aromatic L-Amino acid decarboxylase deficiency: A new case from Turkey with a novel mutation

    Kivilcim Gucuyener

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC, a vitamin B6-requiring enzyme that converts L-dopa to dopamine and 5-hydroxytryptophan to serotonin. Deficiency of this enzyme results in developmental delay, muscular hypotonia, dystonia, involuntary movements, autonomic dysfunction, and oculogyric crises. We now report a 2-year-old Turkish boy with AADC deficiency confirmed by greatly reduced AADC activity in the plasma and by genetic studies. Mutation analysis revealed a homozygous mutation c.208C > T (p. His70Tyr in exon 3 of the AADC gene which has not been described to date.

  5. Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

    Yasaman Tavakoli

    2015-09-01

    Full Text Available Gamma-amino butyric acid (GABA possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad gene of a local strains Lactobacillus casei was identified and cloned. In order to clone the gad gene from this strain, the PCR was carried out using primers designed based on conserved regions. The PCR product was purified and ligated into PGEM-T vector. Comparison of obtained sequences shows that this fragment codes the pyridoxal 5′-phosphate binding region. This strain could possibly be used for the industrial GABA production and also for development of functional fermented foods. Gad gene manipulation can also either decrease or increase the activity of enzyme in bacteria.

  6. Enhancing Muconic Acid Production from Glucose and Lignin-Derived Aromatic Compounds via Increased Protocatechuate Decarboxylase Activity

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-12-01

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCA decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. This study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.

  7. 谷氨酸脱羧酶抗体微量平板放射结合检测法的建立与初步应用%Micro-plate radiobinding assay of autoantibody to glutamic acid decarboxylase

    黄干; 金河来; 王霞; 李卉; 张松; 周智广

    2008-01-01

    Objective The purpose of this study was to develop a high-throughput micro-plate radiobinding assay (RBA) of glutamic acid decarboxylase antibody (GAD-Ab) and to evaluate its clinical application. Methods 35labeled GAD65 antigen was incubated with sera for 24 h on a 96-well plate, and then transferred to the Millipore plate coated with protein A, which was washed with 4℃ PBS buffer, and then counted by a liquid scintillation counter. The GAD-Ab results were expressed by WHO standard unit (U/ml). A total of 224 healthy controls, 162 patients with type 1 diabetes mellitus(T1DM) and 210 patients with newly diagnosed type 2 diabetes (T2DM) were recruited. A total of 119 TI DM and healthy cases with gradually changing GAD-Ab levels were selected to compare the consistency of micro-plate RBA with conventional radioligand assay (RLA). Blood samples were obtained from the peripheral vein and finger tip in 32 healthy controls, 35 T1DM and 24 T2DM patients, and tested with micro-plate RBA and then compared with the conventional RLA to investigate the reliability of finger tip sampling. Linear correlation,student's t-test, variance analysis and receiver operating characteristic (ROC) curve were performed using SPSS 11.5. Results (1) The optimized conditions of micro-plate RBA included 2 μl serum incubated with3 ×104 counts/min 35S-GAD for 24 h under slow vibration, antigen-antibody compounds washed 10 times by 4℃ PBS buffer, and radioactivity counted with Optiphase Supermix scintillation liquid. (2)The intra-batch CV of the micro-plate RBA was 3.8%- 10.2%, and the inter-batch CV was 5.6%- 11.9%. The linearity analysis showed a good correlation when the GAD-Ab in serum samples ranged from 40.3 to 664 U/ml and the detection limit of measurement was 3.6 U/ml. The results from Diabetes Autoantibody Standardization Program (DASP) 2005 showed that the sensitivity and specificity for GAD-Ab were 78% (39 positive among 50 new-onset T1DM) and 98% (2 positive among 100 healthy

  8. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente; Johansen, Flemming Fryd

    2006-01-01

    parallel, we investigated the colocalization of the cell death marker Fluorojade B (FJB) with somatostatin- or GAD67-immunoreactivity in hilus of control and ischemic rats. Although the majority of FJB positive cells also contained somatostatin, a small number of GAD67 immunoreactive neurons contained FJB...

  9. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    Gänzle Michael G; Schlicht Sabine; Su Marcia S

    2011-01-01

    Abstract Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results...

  10. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    Brandl, M. T.; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within py...

  11. Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury

    Ren, Liqun; Wienecke, Jacob; Hultborn, Hans;

    2016-01-01

    Aromatic L-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin from 5-hydroxytryptophan after spinal cord injury (SCI...... inhibitor (pargyline) co-application, systemic administration of L-dopa resulted in ~ 94% of AADC cells to become DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail....... These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace-amines, and likely contributes to the development of hyperexcitability. These results...

  12. Lack of support for the association between GAD2 polymorphisms and severe human obesity.

    Michael M Swarbrick

    2005-09-01

    Full Text Available The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (-243 A>G, +61450 C>A, and +83897 T>A single nucleotide polymorphisms (SNPs within glutamate decarboxylase 2 (GAD2 were found to be associated with class III obesity (body mass index > 40 kg/m2. The association was observed among 188 families (612 individuals segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (-243 A>G were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase-GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the -243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls, there was no significant relationship between the -243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83-1.18, p = 0.89 in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the -243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90-1.36, p = 0.28 in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the

  13. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Stanislav Kráčmar; Vladimír Dráb; Tereza Podešvová; Eva Pollaková; Leona Buňková; František Buňka

    2010-01-01

    Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w), and amount of lactose (0–1% w/w)) on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fer...

  14. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling. PMID:25956449

  15. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  16. Type 1 diabetes and GAD65 limbic encephalitis: a case report of a 10-year-old girl.

    Grilo, Ema; Pinto, Joana; Caetano, Joana Serra; Pereira, Helena; Cardoso, Patrícia; Cardoso, Rita; Dinis, Isabel; Pereira, Cristina; Fineza, Isabel; Mirante, Alice

    2016-08-01

    Limbic encephalitis is a rare neurological disorder that may be difficult to recognize. Clinical features include memory impairment, temporal lobe seizures and affective disturbance. We report the case of a 10-year-old girl with type 1 diabetes mellitus that presented with seizures, depressed mood and memory changes. The diagnosis of glutamic acid decarboxylase 65 (GAD65) mediated limbic encephalitis relied on cerebral magnetic resonance imaging lesions and high serological and cerebrospinal fluid GAD65-antibodies titers. High-dose steroidal therapy was started with clinical improvement. Relapse led to a second high-dose steroid treatment followed by rituximab with remission. A correlation between serum GAD65-antibodies levels and symptoms was found, demonstrating GAD65-antibodies titers may be useful for clinical follow-up and immunotherapy guidance. This report raises awareness of this serious neurological condition that may be associated with type 1 diabetes, underlining the importance of an early diagnosis and prompt treatment for a better prognosis. PMID:27115322

  17. Epigenetic Suppression of GADs Expression is Involved in Temporal Lobe Epilepsy and Pilocarpine-Induced Mice Epilepsy.

    Wang, Jin-Gang; Cai, Qing; Zheng, Jun; Dong, Yu-Shu; Li, Jin-Jiang; Li, Jing-Chen; Hao, Guang-Zhi; Wang, Chao; Wang, Ju-Lei

    2016-07-01

    Recent studies have shown that histone acetylation is involved with the regulation of enzyme glutamate decarboxylases (GADs), including GAD67 and GAD65. Here, we investigated the histone acetylation modifications of GADs in the pathogenesis of epilepsy and explored the therapeutic effect of a novel second-generation histone deacetylase inhibitor (HDACi) JNJ-26481585 in epilepsy animals. We revealed the suppression of GADs protein and mRNA level, and histone hypoacetylation in patients with temporal lobe epilepsy and pilocarpine-induced epilepsy mice model. Double-immunofluorescence also indicated that the hypoacetyl-H3 was located in hippocampal GAD67/GAD65 positive neurons in epilepsy mice. JNJ-26481585 significantly reversed the decrease of the GAD67/GAD65 both protein and mRNA levels, and the histone hypoacetylation of GABAergic neurons in epilepsy mice. Meanwhile, single-cell real-time PCR performed in GFP-GAD67/GAD65 transgenic mice demonstrated that JNJ-26481585 induced increase of GAD67/GAD65 mRNA level in GABAergic neurons. Furthermore, JNJ-26481585 significantly alleviated the epileptic seizures in mice model. Together, our findings demonstrate inhibition of GADs gene via histone acetylation plays an important role in the pathgenesis of epilepsy, and suggest JNJ-26481585 as a promising therapeutic strategy for epilepsy. PMID:27220336

  18. Glutamic acid decarboxylase 65 autoantibody levels discriminate two subtypes of latent autoimmune diabetes in adults

    李霞; 杨琳; 周智广; 黄干; 颜湘

    2003-01-01

    Objective To compare the clinical characteristics between type 2 diabetes mellitus (T2DM) and latent autoimmune diabetes in adults (LADA) with different titers of glutamic acid decarboxylase autoantibody (GADA) and to define the two distinct subtypes of LADA.Methods Sera of 750 patients with an initial diagnosis of T2DM from central south of China were screened for GADA using a radioligand assay. The distribution and frequency of GADA levels were described. Two hundred and ninety-five patients were divided into the T2DM group (n=233) and the LADA group (n=62) to compare the age of onset, body mass index, HbA1c, C-peptide, hypertension, dyslipidemia and chronic diabetic complications. Furthermore, LADA patients with different GADA titers were subdivided to analyze the same indexes as the above. Results The prevalence of LADA (defined as GADA≥0.05, namely GADA positive) was 9.7% in the 750 initially diagnosed type 2 diabetic patients. Compared with T2DM, LADA patients were younger at their ages of onset, had lower C-peptide and body mass index, and also had less cases with hypertension and with dyslipidemia. However, only patients with high titer of GADA had poorer beta cell functions and less diabetic complications compared to T2DM and low GADA titer of LADA patients. Patients with low GADA titer were similar to T2DM patients, except that they were prone to develop ketosis more frequently.Conclusions Two clinically distinct subtypes of LADA can be identified by GADA levels in patients initially-diagnosed as type 2 diabetes. Patients with high titer of GADA (GADA≥0.5) subsequently develop more insulin dependency, which are classified as LADA-type 1; while those with lower GADA titer (0.05≤GADA<0.5) and having clinical and metabolic phenotypes of type 2 diabetes are classified as LADA-type 2.

  19. Characterization of phenolic acid reductase and decarboxylase activities of lactic acid bateria

    Soares, Ana de Seabra Leão Ferreira

    2014-01-01

    Hydroxycinnamic acids are natural constituents of grape juice and wine, and are precursors of volatile phenols produced by yeasts and lactic acid bacteria (LAB). The organoleptic defects due to the presence of this volatile phenols are usually associated with “animal”, “horsey”, “leather”, “phenolic” or “spicy” aromatic notes. The most common pathway for the degradation of hydroxycinnamic acids involves two enzymes. In first place, it occurs a decarboxylation by the phenolic acid decarboxylas...

  20. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase from Enterobacter sp. Px6-4.

    Wen Gu

    Full Text Available Microbial ferulic acid decarboxylase (FADase catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  1. IGF2BP2 Alternative Variants Associated with Glutamic Acid Decarboxylase Antibodies Negative Diabetes in Malaysian Subjects

    Salem, Sameer D.; Saif-Ali, Riyadh; Ismail, Ikram S.; Al-Hamodi, Zaid; Poh, Rozaida; Muniandy, Sekaran

    2012-01-01

    Background The association of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) common variants (rs4402960 and rs1470579) with type 2 diabetes (T2D) has been performed in different populations. The aim of this study was to evaluate the association of alternative variants of IGF2BP2; rs6777038, rs16860234 and rs7651090 with glutamic acid decarboxylase antibodies (GADA) negative diabetes in Malaysian Subjects. Methods/Principal Findings IGF2BP2; rs6777038, rs16860234 and rs7651090 s...

  2. Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa

    The crystal structure of recombinant UbiX has been determined to 1.5 Å resolution. The ubiX gene (PA4019) of Pseudomonas aeruginosa has been annotated as encoding a putative 3-octaprenyl-4-hydroxybenzoate decarboxylase from the ubiquinone-biosynthesis pathway. Based on a transposon mutagenesis screen, this gene was also implicated as being essential for the survival of this organism. The crystal structure of recombinant UbiX determined to 1.5 Å resolution showed that the protein belongs to the superfamily of homo-oligomeric flavine-containing cysteine decarboxylases. The enzyme assembles into a dodecamer with 23 point symmetry. The subunit displays a typical Rossmann fold and contains one FMN molecule bound at the interface between two subunits

  3. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Stanislav Kráčmar

    2010-05-01

    Full Text Available Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w, and amount of lactose (0–1% w/w on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fermented dairy products technology (especially cheese-making. Tyramine was determined by the ion-exchange chromatography with post-column ninhydrine derivatization and spectrophotometric detection. Tyrosine decarboxylation occurred during the active growth phase. Under the model conditions used, oxygen availability had influence on tyramine production, anaerobiosis seemed to favour the enzyme activity because all L. lactis strains produced higher tyramine amount. doi:10.5219/43

  4. Spinal cord hemisection facilitates aromatic L-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase

    Azam, Bushra; Wienecke, Jacob; Jensen, Dennis Bo;

    2015-01-01

    Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce...

  5. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.

    ter Schure, E G; Flikweert, M T; van Dijken, J P; Pronk, J T; Verrips, C T

    1998-04-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  6. Association between a polymorphism of the 65K-glutamate decarboxylase gene and insulin-dependent diabetes mellitus

    Kure, S.; Aoki, Y.; Narisawa, K. [Tohoku Univ. School of Medicine, Sendai (Japan)] [and others

    1994-09-01

    Autoimmunity against 65K-glutamate decarboxylase (GAD65), one of two forms of the {gamma}-aminobutyric acid-synthesizing enzyme, is commonly associated with insulin-dependent diabetes mellitus (IDDM). To study the predisposing effect of the GAD65 genotype on IDDM, we performed a case-control study screening an association between a newly-identified GAD65 polymorphism and IDDM in the Japanese population. The identified polymorphism was a microsatellite that was located in an intron near the 3{prime} end of the GAD65 gene consisting of variable numbers of a (CA)-dinucleotide repeat. We amplified the polymorphic region by polymerase chain reaction, and, for each individual in the control group (n=254) and the IDDM group (n=108), determined a pair of (CA)-repeat numbers, each number derived from one or the other of their alleles. In both groups we found 13 allelic variants with different repeat numbers, ranging from 19 to 31 repeats of the (CA) dinucleotide. The most frequent allelic variant in the IDDM group was 20 repeats; (CA){sub 20}. A higher frequency of a genotype containing two (CA){sub 20} alleles (p=0.005) was observed in the IDDM group (41.7%) compared with the control group (26.8%). Odds ratio (a 95% confidence interval) for a heterozygote or a homozygote of (CA){sub 20} versus a subject without (CA){sub 20} was 1.2 (0.66-2.25) and 2.23 (1.18-4.21), respectively. No significant association was observed between the (CA)-repeat genotype and the appearance of anti-GAD antibodies in the patients whose duration of the diabetes was less than 4 years (n=35). Therefore, genetic variations in GAD65 appears to be associated with IDDM susceptibility.

  7. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  8. Screening for Generalized Anxiety Disorder (GAD)

    ... Conference & Education Membership Journal & Multimedia Resources Awards Consumers Screening for Generalized Anxiety Disorder (GAD) Main navigation FAQs Screen Yourself Screening for Depression Screening for Generalized Anxiety Disorder (GAD) ...

  9. IGF2BP2 alternative variants associated with glutamic acid decarboxylase antibodies negative diabetes in Malaysian subjects.

    Sameer D Salem

    Full Text Available BACKGROUND: The association of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2 common variants (rs4402960 and rs1470579 with type 2 diabetes (T2D has been performed in different populations. The aim of this study was to evaluate the association of alternative variants of IGF2BP2; rs6777038, rs16860234 and rs7651090 with glutamic acid decarboxylase antibodies (GADA negative diabetes in Malaysian Subjects. METHODS/PRINCIPAL FINDINGS: IGF2BP2; rs6777038, rs16860234 and rs7651090 single nucleotide polymorphisms (SNPs were genotyped in 1107 GADA negative diabetic patients and 620 control subjects of Asian from Malaysia. The additive genetic model adjusted for age, race, gender and BMI showed that alternative variants; rs6777038, rs16860234 and rs7651090 of IGF2BP2 associated with GADA negative diabetes (OR = 1.21; 1.36; 1.35, P = 0.03; 0.0004; 0.0002, respectively. In addition, the CCG haplotype and diplotype CCG-TCG increased the risk of diabetes (OR = 1.51, P = 0.01; OR = 2.36, P = 0.009, respectively. CONCLUSIONS/SIGNIFICANCE: IGF2BP2 alternative variants were associated with GADA negative diabetes. The IGF2BP2 haplotypes and diplotypes increased the risk of diabetes in Malaysian subject.

  10. Correlations of Clusters of Non-Convulsive Seizure and Magnetic Resonance Imaging in a Case With GAD65-Positive Autoimmune Limbic Encephalitis.

    Gardner, Rachael; Rangaswamy, Rajesh; Peng, Yen-Yi

    2016-08-01

    With the increased availability of laboratory tests, glutamic acid decarboxylase (GAD) antibody-positive limbic encephalitis has become an emerging diagnosis. The myriad symptoms of limbic encephalitis make the diagnosis challenging. Symptoms range from seizures, memory loss, dementia, confusion, to psychosis. We present a case of a 21-year-old female with GAD65 antibody-positive limbic encephalitis. The case is unique because the clinical course suggests that non-convulsive seizures are the major cause of this patient's clinical manifestations. The following is the thesis: systemic autoimmune disease, associated with the GAD65 antibody, gives rise to seizures, in particular, non-convulsive seizures. Temporal lobes happen to be the most susceptible sites to develop seizures. The greater part of these seizures can be non-convulsive and hard to recognize without electroencephalogram (EEG) monitoring. The variable symptoms mirror the severity and locations of these seizures. The magnetic resonance imaging (MRI) signal abnormities in the bilateral hippocampus, fornix, and mammillary body correlate with the density of these seizures in the similar manner, which suggests it is secondary to post-ictal edema. PMID:27429684

  11. Escherichia coli K-12 survives anaerobic exposure at pH 2 without RpoS, Gad, or hydrogenases, but shows sensitivity to autoclaved broth products.

    Daniel P Riggins

    Full Text Available Escherichia coli and other enteric bacteria survive exposure to extreme acid (pH 2 or lower in gastric fluid. Aerated cultures survive via regulons expressing glutamate decarboxylase (Gad, activated by RpoS, cyclopropane fatty acid synthase (Cfa and others. But extreme-acid survival is rarely tested under low oxygen, a condition found in the stomach and the intestinal tract. We observed survival of E. coli K-12 W3110 at pH 1.2-pH 2.0, conducting all manipulations (overnight culture at pH 5.5, extreme-acid exposure, dilution and plating in a glove box excluding oxygen (10% H2, 5% CO2, balance N2. With dissolved O2 concentrations maintained below 6 µM, survival at pH 2 required Cfa but did not require GadC, RpoS, or hydrogenases. Extreme-acid survival in broth (containing tryptone and yeast extract was diminished in media that had been autoclaved compared to media that had been filtered. The effect of autoclaved media on extreme-acid survival was most pronounced when oxygen was excluded. Exposure to H2O2 during extreme-acid treatment increased the death rate slightly for W3110 and to a greater extent for the rpoS deletion strain. Survival at pH 2 was increased in strains lacking the anaerobic regulator fnr. During anaerobic growth at pH 5.5, strains deleted for fnr showed enhanced transcription of acid-survival genes gadB, cfa, and hdeA, as well as catalase (katE. We show that E. coli cultured under oxygen exclusion (<6 µM O2 requires mechanisms different from those of aerated cultures. Extreme acid survival is more sensitive to autoclave products under oxygen exclusion.

  12. Early development of GABAergic cells of the retina in sharks: an immunohistochemical study with GABA and GAD antibodies.

    Ferreiro-Galve, Susana; Candal, Eva; Carrera, Iván; Anadón, Ramón; Rodríguez-Moldes, Isabel

    2008-09-01

    We studied the ontogeny and organization of GABAergic cells in the retina of two elasmobranches, the lesser-spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus) by using immunohistochemistry for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). Both antibodies revealed the same pattern of immunoreactivity and both species showed similar organization of GABAergic cells. GABAergic cells were first detected in neural retina of embryos at stage 26, which showed a neuroepithelial appearance without any layering. In stages 27-29 the retina showed similar organization but the number of neuroblastic GABAergic cells increased. When layering became apparent in the central retina (stage-30 embryos), GABAergic cells mainly appeared organized in the outer and inner retina, and GABAergic processes and fibres were seen in the primordial inner plexiform layer (IPL), optic fibre layer and optic nerve stalk. In stage-32 embryos, layering was completed in the central retina, where immunoreactivity appeared in perikarya of the horizontal cell layer, inner nuclear layer and ganglion cell layer, and in numerous processes coursing in the IPL, optic fibre layer and optic nerve. From stage 32 to hatching (stage 34), the layered retina extends from centre-to-periphery, recapitulating that observed in the central retina at earlier stages. In adults, GABA/GAD immunoreactivity disappears from the horizontal cell layer except in the marginal retina. Our results indicate that the source of GABA in the shark retina can be explained by its synthesis by GAD. Such synthesis precedes layering and synaptogenesis, thus supporting a developmental role for GABA in addition to act as neurotransmitter and neuromodulator. PMID:18524536

  13. Differential Regulation of Glutamic Acid Decarboxylase Gene Expression after Extinction of a Recent Memory vs. Intermediate Memory

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian

    2012-01-01

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…

  14. The use of L-lysine decarboxylase as a means to separate amino acids by electrodialysis

    Teng, Y.; Scott, E.L.; Zeeland, van A.N.T.; Sanders, J.P.M.

    2011-01-01

    Amino acids (AA's) are interesting materials as feedstocks for the chemical industry as they contain chemical functionalities similar to conventional petrochemicals. This offers the possibility to circumvent process steps, energy and reagents. AA's can be obtained by the hydrolysis of potentially in

  15. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  16. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  17. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) i...

  18. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD. PMID:27082660

  19. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    Christgau, S; Schierbeck, H; Aanstoot, H J;

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... compartment and hydrophobicity. A major portion of GAD64 is hydrophobic and firmly membrane-anchored and can only be released from membrane fractions by detergent. A second portion is hydrophobic but soluble or of a low membrane avidity, and a third minor portion is soluble and hydrophilic. All the GAD64...

  20. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis

    Hare Emily E

    2004-08-01

    Full Text Available Abstract Background Aromatic L-amino acid decarboxylase (AADC enzymes catalyze the synthesis of biogenic amines, including the neurotransmitters serotonin and dopamine, throughout the animal kingdom. These neurotransmitters typically perform important functions in both the nervous system and other tissues, as illustrated by the debilitating conditions that arise from their deficiency. Studying the regulation and evolution of AADC genes is therefore desirable to further our understanding of how nervous systems function and evolve. Results In the nematode C. elegans, the bas-1 gene is required for both serotonin and dopamine synthesis, and maps genetically near two AADC-homologous sequences. We show by transformation rescue and sequencing of mutant alleles that bas-1 encodes an AADC enzyme. Expression of a reporter construct in transgenics suggests that the bas-1 gene is expressed, as expected, in identified serotonergic and dopaminergic neurons. The bas-1 gene is one of six AADC-like sequences in the C. elegans genome, including a duplicate that is immediately downstream of the bas-1 gene. Some of the six AADC genes are quite similar to known serotonin- and dopamine-synthetic AADC's from other organisms whereas others are divergent, suggesting previously unidentified functions. In comparing the AADC genes of C. elegans with those of the congeneric C. briggsae, we find only four orthologous AADC genes in C. briggsae. Two C. elegans AADC genes – those most similar to bas-1 – are missing from C. briggsae. Phylogenetic analysis indicates that one or both of these bas-1-like genes were present in the common ancestor of C. elegans and C. briggsae, and were retained in the C. elegans line, but lost in the C. briggsae line. Further analysis of the two bas-1-like genes in C. elegans suggests that they are unlikely to encode functional enzymes, and may be expressed pseudogenes. Conclusions The bas-1 gene of C. elegans encodes a serotonin- and dopamine

  1. Anti-Yo and anti-glutamic acid decarboxylase antibodies presenting in carcinoma of the uterus with paraneoplastic cerebellar degeneration: a case report

    Panegyres Peter K

    2012-06-01

    Full Text Available Abstract Introduction Paraneoplastic cerebellar degeneration is a rare non-metastatic manifestation of malignancy. In this report, to the best of our knowledge we describe for the first time a diagnosis of paraneoplastic cerebellar degeneration several months prior to the diagnosis of clear carcinoma of the uterus. Case presentation A 75-year-old Caucasian woman manifested a rapidly progressive cerebellar syndrome with nystagmus, past-pointing, dysdiadochokinesis, dysarthria, truncal ataxia and titubation. The paraneoplastic cerebellar degeneration was associated with anti-Yo and anti-glutamic acid decarboxylase antibodies. 14-3-3 protein was detected in the cerebrospinal fluid. She was treated with intravenous immunoglobulin prior to laparotomy, hysterectomy and bilateral salpingoophorectomy. Our patient has survived for three years following diagnosis and treatment. Conclusions To the best of our knowledge this is the first report of an association of clear cell carcinoma of the uterus and paraneoplastic cerebellar degeneration with both anti-Yo and anti-glutamic acid decarboxylase antibodies. The findings imply that both antibodies contributed to the fulminating paraneoplastic cerebellar degeneration observed in our patient, and this was of such severity it resulted in the release of 14-3-3 protein in the cerebrospinal fluid, a marker of neuronal death.

  2. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    Pörksen, Sven; Laborie, Lene; Nielsen, Lotte;

    2010-01-01

    BACKGROUND:To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (IA......-2A)]. Furthermore the study aimed at determining whether mutations in KCNJ11, ABCC8, HNF1A, HNF4A or INS are common in AAB negative diabetes.MATERIALS AND METHODS:In 261 newly diagnosed children with type 1 diabetes, we measured residual î-cell function, ICA, GADA, and IA-2A at 1, 6 and 12 months...... treatment after four weeks on 1.0-1.2 mg/kg/24 h glibenclamide.CONCLUSION:GAD, IA-2A, and ICA negative children with new onset type 1 diabetes have slower disease progression as assessed by residual beta-cell function and improved glycemic control 12 months after diagnosis. One out of 24 had a mutation...

  3. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity.

    Osamu Kakinohana

    Full Text Available BACKGROUND: Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABA(B receptor agonist, while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. METHODS/PRINCIPAL FINDINGS: Adult Sprague-Dawley (SD rats were exposed to transient spinal ischemia (10 min to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs targeting ventral α-motoneuronal pools. At 2-3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. CONCLUSIONS/SIGNIFICANCE: These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can

  4. Rapid Normalization of High Glutamic Acid Decarboxylase Autoantibody Titers and Preserved Endogenous Insulin Secretion in a Patient with Diabetes Mellitus: A Case Report and Literature Review.

    Ohara, Nobumasa; Kaneko, Masanori; Furukawa, Tatsuo; Koike, Tadashi; Sone, Hirohito; Tanaka, Shoichiro; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-01-01

    A 59-year-old Japanese woman developed diabetes mellitus without ketoacidosis in the presence of glutamic acid decarboxylase autoantibody (GADA) (24.7 U/mL). After the amelioration of her hyperglycemia, the patient had a relatively preserved serum C-peptide level. Her endogenous insulin secretion capacity remained almost unchanged during 5 years of insulin therapy. The patient's GADA titers normalized within 15 months. The islet-related autoantibodies, including GADA, are believed to be produced following the autoimmune destruction of pancreatic beta cells and are predictive markers of type 1 diabetes mellitus. Therefore, the transient appearance of GADA in our patient may have reflected pancreatic autoimmune processes that terminated without progression to insulin deficiency. PMID:26935368

  5. Generalized Anxiety Disorder (GAD): When Worry Gets Out of Control

    ... to have GAD? For More Information Share Generalized Anxiety Disorder (GAD): When Worry Gets Out of Control ... go badly? If so, you may have an anxiety disorder called generalized anxiety disorder (GAD). What is ...

  6. Immunohistochemical evidence for colocalization of gamma-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord.

    Millhorn, D E; Hökfelt, T; Seroogy, K; Oertel, W; Verhofstad, A A; Wu, J Y

    1987-04-28

    Fluorescence immunohistochemistry was used to analyze the medulla oblongata of colchicine-treated rats that had been incubated with guinea pig antibodies to serotonin (5-HT) and either rabbit or sheep antibodies to glutamic acid decarboxylase (GAD). Numerous cells in the rostral ventrolateral medulla in the region of nucleus raphe magnus were immunostained for either 5-HT or GAD. A substantial number of neurons showed positive immunoreactivity for both substances, and were most frequently observed in the lateral aspect of nucleus raphe magnus. In addition, a number of the 5-HT/GAD-containing neurons were retrogradely labelled with Fast blue dye that had been injected into the thoracic spinal cord. This work provides evidence for colocalization of the classical neurotransmitters 5-HT and GABA in single cells of the ventral medulla oblongata, some of which project to the spinal cord. PMID:3555707

  7. Repression of btuB gene transcription in Escherichia coli by the GadX protein

    Hu Wensi S

    2011-02-01

    Full Text Available Abstract Background BtuB (B twelve uptake is an outer membrane protein of Escherichia coli, it serves as a receptor for cobalamines uptake or bactericidal toxin entry. A decrease in the production of the BtuB protein would cause E. coli to become resistant to colicins. The production of BtuB has been shown to be regulated at the post-transcriptional level. The secondary structure switch of 5' untranslated region of butB and the intracellular concentration of adenosylcobalamin (Ado-Cbl would affect the translation efficiency and RNA stability of btuB. The transcriptional regulation of btuB expression is still unclear. Results To determine whether the btuB gene is also transcriptionally controlled by trans-acting factors, a genomic library was screened for clones that enable E. coli to grow in the presence of colicin E7, and a plasmid carrying gadX and gadY genes was isolated. The lacZ reporter gene assay revealed that these two genes decreased the btuB promoter activity by approximately 50%, and the production of the BtuB protein was reduced by approximately 90% in the presence of a plasmid carrying both gadX and gadY genes in E. coli as determined by Western blotting. Results of electrophoretic mobility assay and DNase I footprinting indicated that the GadX protein binds to the 5' untranslated region of the btuB gene. Since gadX and gadY genes are more highly expressed under acidic conditions, the transcriptional level of btuB in cells cultured in pH 7.4 or pH 5.5 medium was examined by quantitative real-time PCR to investigate the effect of GadX. The results showed the transcription of gadX with 1.4-fold increase but the level of btuB was reduced to 57%. Conclusions Through biological and biochemical analysis, we have demonstrated the GadX can directly interact with btuB promoter and affect the expression of btuB. In conclusion, this study provides the first evidence that the expression of btuB gene is transcriptionally repressed by the acid

  8. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships.

    Ferguson, Kyle L; Arunrattanamook, Nattapol; Marsh, E Neil G

    2016-05-24

    Ferulic acid decarboxylase from Saccharomyces cerevisiae catalyzes the decarboxylation of phenylacrylic acid to form styrene using a newly described prenylated flavin mononucleotide cofactor. A mechanism has been proposed, involving an unprecedented 1,3-dipolar cyclo-addition of the prenylated flavin with the α═β bond of the substrate that serves to activate the substrate toward decarboxylation. We measured a combination of secondary deuterium kinetic isotope effects (KIEs) at the α- and β-positions of phenylacrylic acid together with solvent deuterium KIEs. The solvent KIE is 3.3 on Vmax/KM but is close to unity on Vmax, indicating that proton transfer to the product occurs before the rate-determining step. The secondary KIEs are normal at both the α- and β-positions but vary in magnitude depending on whether the reaction is performed in H2O or D2O. In D2O, the enzyme catalyzed the exchange of deuterium into styrene; this reaction was dependent on the presence of bicarbonate. This observation implies that CO2 release must occur after protonation of the product. Further information was obtained from a linear free-energy analysis of the reaction through the use of a range of para- and meta-substituted phenylacrylic acids. Log(kcat/KM) for the reaction correlated well with the Hammett σ(-) parameter with ρ = -0.39 ± 0.03; r(2) = 0.93. The negative ρ value and secondary isotope effects are consistent with the rate-determining step being the formation of styrene from the prenylated flavin-product adduct through a cyclo-elimination reaction. PMID:27119435

  9. Positron emission tomographic studies on aromatic L-amino acid decarboxylase activity in vivo for L-dopa and 5-hydroxy-L-tryptophan in the monkey brain

    The regional brain kinetics following 5-hydroxy-L-(β-11 C)tryptophan and L-(β-11 C)DOPA intravenous injection was measured in twelve Rhesus monkeys using positron emission tomography (PET). The radiolabelled compounds were also injected together with various doses of unlabelled 5-hydroxy-L-tryptophan or L-DOPA. The radioactivity accumulated in the striatal region and the rate of increased utilization with time was calculated using a graphical method with back of the brain as a reference region. The rate constants for decarboxylation were 0.0070 ± 0.0007 (S. D) and 0.0121 ± 0.0010 min-1 for 5-hydroxy-L-(β-11 C)tryptophan and L-(β-11 C)DOPA, respectively. After concomitant injection with unlabelled 5-hydroxy-L-tryptophan, the rate constant of 5-hydroxy-L-(β-11 C)tryptophan decreased dose-dependently and a 50 percent reduction was seen with a dose of about 4 mg/kg of unlabelled compound. A decreased utilization rate of L-(β-11 C)DOPA was seen only after simultaneous injection of 30 mg/kg of either L-DOPA or 5-hydroxy-L-tryptophan. This capacity limitation was most likely interpreted as different affinity of the striatal aromatic amino acid decarboxylase for L-DOPA and 5-hydroxy-L-tryptophan, respectively

  10. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells. PMID:25765579

  11. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine

    Walls, Anne Byriel; Eyjolfsson, Elvar M.; Smeland, Olav B.;

    2011-01-01

    65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-(13)C]glucose and the astrocyte-specific substrate [1,2-(13)C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses...... cortex and hippocampus. The GABA content in both brain regions was reduced by ∼20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis...... of GABA from glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice....

  12. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth.

    Toy, Nurten; Özogul, Fatih; Özogul, Yesim

    2015-04-15

    The function of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on tyramine and other biogenic amine production by different food borne-pathogens (FBPs) was investigated in tyrosine decarboxylase broth (TDB) using HPLC. Cell free solutions were prepared from four LAB strains. Two different concentrations which were 50% (5 ml CFS+5 ml medium/1:1) and 25% (2.5 ml CFS+7.5 ml medium/1:3) CFS and the control without CFS were prepared. Both concentration of CFS of Streptococcus thermophilus and 50% CFS of Pediococcus acidophilus inhibited tyramine production up to 98% by Salmonella paratyphi A. Tyramine production by Escherichia coli was also inhibited by 50% CFS of Lactococcus lactis subsp. lactis and 25% CFS of Leuconostoc lactis. subsp. cremoris. The inhibitor effect of 50% CFS of P. acidophilus was the highest on tyramine production (55%) by Listeria monocytogenes, following Lc. lactis subsp. lactis and Leuconostoc mesenteroides subsp. cremoris (20%) whilst 25% CFS of Leu. mes. subsp. cremoris and Lc. lactis subsp. lactis showed stimulator effects (160%). The stimulation effects of 50% CFS of S. thermophilus and Lc. lactis subsp. lactis were more than 70% by Staphylococcus aureus comparing to the control. CFS of LAB strains showed statistically inhibitor effect since lactic acid inhibited microbial growth, decreased pH quickly and reduced the formation of AMN and BAs. Consequently, in order to avoid the formation of high concentrations of biogenic amines in fermented food by bacteria, it is advisable to use CFS for food and food products. PMID:25465993

  13. RAPID DETERMINA TION OF L—GLUTAMIC ACID WITH AN ENZYME REACTOR OFL—GLUTAMIC DECARBOXYLASE IMMOBILIZED ON ION EXCHANGE RESIN

    WUGuoqi; LINGDaren; 等

    2001-01-01

    The preparation and characterization of an immobilized L-glutamic decarboxylase(GDC) were studied.This work is to develop a sensitive method for the determination of L-glutamate using a new biosensor,which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin(carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO2 electrode.The conditions for the enzyme immobilization were optimized by the parameters:buffer composition and concentration,adsorption equilibration time,amount of enzyme,temperature,ionic strength and pH.The properties of the immobilized enzyme on CM-CADB were studied by investigating the initial ate of the enzyme reaction,the effect of various parameters on the immobilized GDC activity and its stability.An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO2 electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamate acid.The limit of detection is 1.0×10-5M.The linearity response is in the range of 5×10-2-5×10-5M.The equation of linear regression of the calibration curve is y=43.3x+181.6(y is the milli-volt of electrical potential response,x is the logarithm of the concentration of the substrate of L-glutamate acid).The correlation coefficient equals 0.99.The coefficient of varioation equals 2.7%.

  14. A unique insertion of low complexity amino acid sequence underlies protein-protein interaction in human malaria parasite orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase

    Waranya Imprasittichai; Sittiruk Roytrakul; Sudaratana R Krungkrai; Jerapan Krungkrai

    2014-01-01

    Objective:To investigate the multienzyme complex formation of human malaria parasite Plasmodium falciparum(P. falciparum) orotate phosphoribosyltransferase(OPRT) and orotidine 5'-monophosphate decarboxylase(OMPDC), the fifth and sixth enzyme of the de novo pyrimidine biosynthetic pathway.Previously, we have clearly established that the two enzymes in the malaria parasite exist physically as a heterotetrameric(OPRT)2(OMPDC)2 complex containing two subunits each ofOPRT andOMPDC, and that the complex have catalytic kinetic advantages over the monofunctional enzyme.Methods:Both enzymes were cloned and expressed as recombinant proteins.The protein-protein interaction in the enzyme complex was identified using bifunctional chemical cross-linker, liquid chromatography-mass spectrometric analysis and homology modeling.Results:The unique insertions of low complexity region at the α2 and α5 helices of the parasiteOMPDC, characterized by single amino acid repeat sequence which was not found in homologous proteins from other organisms, was located on theOPRT-OMPDC interface.The structural models for the protein-protein interaction of the heterotetrameric(OPRT)2(OMPDC)2 multienzyme complex were proposed.Conclusions:Based on the proteomic data and structural modeling, it is surmised that the human malaria parasite low complexity region is responsible for theOPRT-OMPDC interaction.The structural complex of the parasite enzymes, thus, represents an efficient functional kinetic advantage, which in line with co-localization principles of evolutional origin, and allosteric control in protein-protein-interactions.

  15. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency.

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita

    2016-06-01

    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed. PMID:26994895

  16. The preparation and characterization of an immobilized l-glutamic decarboxylase and its application for determination of l-glutamic acid.

    Ling; Wu; Wang; Wang; Song

    2000-10-01

    This paper is to study the preparation and characterization of an immobilized L-glutamic decarboxylase (GDC) and develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO(2) electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The dynamic response of Na(2)HPO(4)-citric acid buffer system selected is much better than that of the others, 0.10 M HAc-0.10 M NaAc and 0.10 M sodium citrate-0.10 M citric acid. The initial rate of the enzyme reaction v(0) in this buffer system is 1.76 mol. l(-1) min(-1), moreover, the rate of the enzyme reaction appears linear in the first 4 min. The optimum adsorption equilibrium time is around 6 h. The amount of enzyme adsorbed on CM-CADB resin affects the response to substrate L-glutamic acid, the widest range of linearity is obtained with over 30 mg (GDC)/g(resin). The GDC activity immobilized on CM-CADB reaches a maximum when the immobilization temperature was kept around 40 degrees C. pH was kept at 4.4 when measuring the activity of the immobilized GDC. No variation of the activity of immobilized GDC is observed when the capacity is over 2.5 meq/g.(CM-CADB resin). The properties of the immobilized enzyme on CM-CADB were characterized. No significant improvement can be achieved when the substrate concentration exceeds 12.00 mmol/l, where the activity of immobilized GDC is equal to 1.58 mmol/l.min.g. The optimum pH is found to be 5.2, which changes 0.2 unit, comparing with that of the free GDC (5.0). The optimum temperature is found to be around 48 degrees C, which is lower than that of free GDC (55 degrees C). The critical temperature of the

  17. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Woods C Geoffrey

    2004-11-01

    Full Text Available Abstract Background Cerebral palsy (CP is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67, involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA. Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS, epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts. Table 4 GAD1 single nucleotide substitutions detected on mutation analysis and occurring in sequences submitted to NCBI SNP database and in the literature. This is not a definitive list, but includes those described at the time of the mutational analysis. *Nucleotide positions were not provided by Maestrini et al. [47]. Source SNP position in mRNA, from the translational start site (bp Gene position of SNP(bp Amino acid change (ALappalainen et al. (2002 A(-478Del Exon

  18. Change of glutamic acid decarboxylase antibody and protein tyrosine phosphatase antibody in Chinese patients with acute-onset type 1 diabetes mellitus

    CHAO Chen; HUANG Gan; LI Xia; YANG Lin; LIN Jian; JIN Ping; LUO Shuo-ming

    2013-01-01

    Background Glutamic acid decarboxylase antibody (GADA) and protein tyrosine phosphatase antibody (IA-2A) are two major autoantibodies,which exert important roles in the process of type 1 diabetes mellitus (T1D).Our study aimed to investigate the changes in positivity and titers of GADA and IA-2A during the course of Chinese acute-onset T1D patients and their relationships with clinical features.Methods Two hundreds and forty-seven Chinese newly diagnosed acute-onset T1D patients were consecutively recruited.GADA and IA-2A were detected at the time of diagnosis,one year later,3-5 years later after diagnosis during the follow-up; all the clinical data were recorded and analyzed as well.Results During the course of acute-onset T1D,the majority of patients remained stable for GADA or IA-2A,however,a few patients changed from positivity to negativity and fewer patients converted from negativity to positivity.The prevalence of GADA was 56.3% at diagnosis,decreasing to 50.5% one year later,and 43.3% 3-5 years later while the corresponding prevalence of IA-2A were 32.8%,31.0% and 23.3%,respectively.The median GADA titers were 0.0825 at diagnosis,declining to 0.0585 one year later and 0.0383 3-5 years later (P <0.001),while the corresponding median titers were 0.0016,0.0010,0.0014 for IA-2A,respectively.Fasting C-peptide (FCP) and postprandial C-peptide 2 hours (PCP2h)levels of GADA or IA-2A negativity persistence patients were higher than those of positivity persistence and negativity conversion patients (P <0.05) which indicated GADA or IA-2A negativity persistence T1D patients had a less loss of β cell function.Conclusion Our data suggest that repeated detection of GADA and IA-2A are necessary for differential diagnosis of autoimmune diabetes and the indirect prediction of the β cell function in Chinese patients.

  19. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.

    Vuralhan, Zeynep; Morais, Marcos A; Tai, Siew-Leng; Piper, Matthew D W; Pronk, Jack T

    2003-08-01

    Catabolism of amino acids via the Ehrlich pathway involves transamination to the corresponding alpha-keto acids, followed by decarboxylation to an aldehyde and then reduction to an alcohol. Alternatively, the aldehyde may be oxidized to an acid. This pathway is functional in Saccharomyces cerevisiae, since during growth in glucose-limited chemostat cultures with phenylalanine as the sole nitrogen source, phenylethanol and phenylacetate were produced in quantities that accounted for all of the phenylalanine consumed. Our objective was to identify the structural gene(s) required for the decarboxylation of phenylpyruvate to phenylacetaldehyde, the first specific step in the Ehrlich pathway. S. cerevisiae possesses five candidate genes with sequence similarity to genes encoding thiamine diphosphate-dependent decarboxylases that could encode this activity: YDR380w/ARO10, YDL080C/THI3, PDC1, PDC5, and PDC6. Phenylpyruvate decarboxylase activity was present in cultures grown with phenylalanine as the sole nitrogen source but was absent from ammonia-grown cultures. Furthermore, the transcript level of one candidate gene (ARO10) increased 30-fold when phenylalanine replaced ammonia as the sole nitrogen source. Analyses of phenylalanine catabolite production and phenylpyruvate decarboxylase enzyme assays indicated that ARO10 was sufficient to encode phenylpyruvate decarboxylase activity in the absence of the four other candidate genes. There was also an alternative activity with a higher capacity but lower affinity for phenylpyruvate. The candidate gene THI3 did not itself encode an active phenylpyruvate decarboxylase but was required along with one or more pyruvate decarboxylase genes (PDC1, PDC5, and PDC6) for the alternative activity. The K(m) and V(max) values of the two activities differed, showing that Aro10p is the physiologically relevant phenylpyruvate decarboxylase in wild-type cells. Modifications to this gene could therefore be important for metabolic engineering

  20. Histidine Decarboxylase in Enterobacteriaceae Revisited

    Wauters, Georges; Avesani, Véronique; Charlier, Jacqueline; Janssens, Michèle; Delmée, Michel

    2004-01-01

    With a modification of Taylor's decarboxylation broth, histidine decarboxylase was detected in Enterobacter aerogenes, Morganella morganii, Raoultella ornithinolytica, and some strains of Citrobacter youngae and Raoultella planticola. This method provides a useful confirmatory test for identification of E. aerogenes strains.

  1. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    Hideki Katow

    2013-12-01

    The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD-expressing cells (GADCs in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.

  2. A fluorescence-coupled assay for gamma aminobutyric acid (GABA reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    Joseph E Ippolito

    Full Text Available Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA have been implicated in the pathogenesis of high grade neuroendocrine (NE neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1, was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  3. Effect of Lathyrus sativus and vitamin C on the status of aromatic L-amino acid decarboxylase and dipeptidyl-aminopeptidase-IV in the central and peripheral tissues and serum of guinea pigs

    Studies on the effect of Lathyrus Sativus seeds (LLS) on aromatic L-amino acid decarboxylase (AADC) and on dipeptidyl-aminopeptidase-IV (DAP-IV) were carried out in the central and peripheral tissues and serum of LSS-treated and LSS plus vitamin C-treated guinea pigs. The feeding of LSS for 35 days decreased the AADC activity significantly in the brain and peripheral tissues, but the activity was recovered to normal level in the most tissues when vitamin C was added with the LSS. DAP-IV activity decreased in the peripheral tissues when treated with LSS, but the vitamin C administration with LSS did not recover the enzyme activity. The DAP-IV activity did not decrease significantly in any of the brain tissues of the LSS-treated group. (author). 18 refs, 2 tabs

  4. GAD65 antibodies among Greenland Inuit and its relation to glucose intolerance

    Pedersen, Michael Lynge; Bjerregaard, Peter; Jørgensen, Marit Eika

    2014-01-01

    fasting glycemia, (3) with impaired glucose tolerance and (4) with previously unknown diabetes based on oral glucose tolerance test and were enrolled in the study. Presence of circulating Glutamin-Acid-decarboxylase 65 antibodies were measured in all participants. A total of 484 persons were enrolled in...

  5. Substrate Binding Induces Domain Movements in Orotidine 5'-Monophosphate Decarboxylase

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank; Larsen, Sine

    2002-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) catalyses the decarboxylation of orotidine 5'-monophosphate to uridine 5'-monophosphate (UMP). We have earlier determined the structure of ODCase from Escherichia coli complexed with the inhibitor 1-(5'-phospho-ß- -ribofuranosyl)barbituric acid (BMP...

  6. Testing the GAD throughout the Precambrian

    Veikkolainen, T.; Pesonen, L. J.; Korhonen, K.

    2013-05-01

    A long tradition has emerged in using the inclination frequency analysis to study the functionality of the Geocentric Axial Dipole (GAD) hypothesis in paleomagnetism. Here a test is presented, based on 3016 records of the Earth's Precambrian geomagnetic field as acquired from a novel catalogue maintained by University of Helsinki, and Yale University. The technique is based on fitting zonal (axial) dipolar (GAD), quadrupolar (G2) and octupolar (G3) harmonics to find the best-fitting inclination distribution. The influence of various factors, such as the geologic age, rock type, magnetic polarity, quality of data and its spatial distribution has been tested. Finally, the most plausible estimates for the zonal non-dipolar contributions of the field have been determined as 0 % for G2 and 6 % for G3. Another way to analyze the zonal harmonics of the geomagnetic field and the validity of GAD is based on the asymmetry between the normal and reversed polarities. To get an insight to the morphology of the field in the late Paleoproterozoic, we have also run a reversal simulation using data mainly from the 1.88 Ga Stark Formation, Canada, revealing the both stable polarity directions (N, R) and also transitional directions between them. In the global Precambrian perspective, an overall moderate dependence of the inclination asymmetry on paleolatitude is visible with a distinct mid-latitude peak. However, the required values to account for the observed deviation from GAD are less than 5 % for G2 and less than 10 % for G3. Alternatively, paleosecular variation (PSV) can be used to shed light to processes in the geodynamo and to model the growth of the inner core. We have applied the CALS3K model of the field as a basis of a time simulation of declination-inclination pairs around a grid on the Earth and by this way in estimating PSV. Our approach is based on calculating S vs latitude curves at different time instances in the validity period of the model, and comparing them

  7. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism. PMID:20407462

  8. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

    Shikanai, Hiroki; Yoshida, Takayuki; Konno, Kohtarou; Yamasaki, Miwako; Izumi, Takeshi; Ohmura, Yu; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2012-10-10

    The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor. PMID:23055511

  9. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  10. vglut2 and gad Expression Reveal Distinct Patterns of Dual GABAergic Versus Glutamatergic Cotransmitter Phenotypes of Dopaminergic and Noradrenergic Neurons in the Zebrafish Brain

    Filippi, Alida; Mueller, Thomas; Driever, Wolfgang

    2014-01-01

    Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafi...

  11. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  12. Comparison of Measurements of Autoantibodies to Glutamic Acid Decarboxylase and Islet Antigen-2 in Whole Blood Eluates from Dried Blood Spots Using the RSR-Enzyme Linked Immunosorbent Assay Kits and In-House Radioimmunoassays

    Anders Persson

    2010-01-01

    Full Text Available To evaluate the performance of dried blood spots (DBSs with subsequent analyses of glutamic acid decarboxylase (GADA and islet antigen-2 (IA-2A with the RSR-ELISAs, we selected 80 children newly diagnosed with type 1 diabetes and 120 healthy women. DBSs from patients and controls were used for RSR-ELISAs while patients samples were analysed also with in-house RIAs. The RSR-ELISA-GADA performed well with a specificity of 100%, albeit sensitivity (46% was lower compared to in RIA (56%; P=.008. No prozone effect was observed after dilution of discrepant samples. RSR-ELISA-IA-2A achieved specificity of 69% and sensitivity was lower (59% compared with RIA (66%; P<.001. Negative or low positive patients and control samples in the RSR-ELISA-IA-2A increased after dilution. Eluates from DBS can readily be used to analyse GADA with the RSR-ELISA, even if low levels of autoantibodies were not detected. Some factor could disturb RSR-ELISA-IA-2A analyses.

  13. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  14. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation.

    Yang, S-Y; Lü, F-X; Lu, Z-X; Bie, X-M; Jiao, Y; Sun, L-J; Yu, B

    2008-04-01

    Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the central nervous system, has several well-known physiological functions and has been applied to the production of many drugs and functional foods. The technology of GABA production via submerged fermentation by Streptococcus salivarius subsp. thermophilus Y2 was investigated in this paper. It indicated that the GABA production was related to the biochemical characteristics of glutamate decarboxylase (GAD) of S. salivarius subsp. thermophilus Y2. After 24 h of fermentation at 37 degrees C, which is the suitable culture conditions for GAD-production, then the culture condition were adjusted to the optimal temperature (40 degrees C) and pH (4.5) for the GAD reaction activity in biotransformation of cells and pyridoxal 5'-phosphate (0.02 mmol/l) were added to the broth at the 48 h, the GABA production was increased up to 1.76-fold, reaching 7984.75 +/- 293.33 mg/l. The strain shows great potential use as a starter for GABA-containing yoghurt, cheese and other functional fermented food productions. PMID:17514494

  15. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  16. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures. PMID:24929734

  17. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  18. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity

    Walls, Anne B; Nilsen, Linn Hege; Eyjolfsson, Elvar M; Vestergaard, Henrik T; Hansen, Suzanne L; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2010-01-01

    . In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA...... synthesized by GAD65 was further investigated in vivo. Tonic inhibition and the demand for biosynthesis of GABA were augmented by injection of kainate into GAD65-/- and GAD65+/+ mice. Moreover, [1-(13) C]glucose and [1,2-(13) C]acetate were administered to study neuronal and astrocytic metabolism...

  19. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  20. Generalized Anxiety Disorder (GAD): When Worry Gets Out of Control

    ... Researchers are also looking for ways in which stress and environmental factors may play a role. How is GAD treated? First, talk to your doctor about your symptoms. Your doctor should do an exam to make sure that another physical problem isn’ ...

  1. A radiometric microassay for ornithine decarboxylase

    A simple method for purifying [3H]L-ornithine and incubation conditions suitable for estimating L-ornithine decarboxylase activity are described. Routine and recycle cation exchange procedures for separating putrescine from ornithine are outlined. Blanks using the routine cation exchange method average approx. 0.04% of the radioactivity contained in the substrate; product recovery is approx. 94%. The L-ornithine decarboxylase assay is proportional to time for at least 8 h. The relationship between substrate purity and the sensitivity of the cation exchange procedures is assessed. Radiochemical purity is the critical determinant of sensitivity for recycled assays. The cation exchange method is compared with the commonly used CO2-trapping method. The cation exchange method is more specific and approximately three orders of magnitude more sensitive than the CO2-trapping method. L-ornithine decarboxylase activity can be measured reliably in samples of embryonic neural tissues having wet-weights of approx. 1 μg. L-ornithine decarboxylase activity in the lumbar spinal cord of the chick embryo decreases 25-30 fold from day 5 to day 18 of embryonic development. A cation exchange procedure for estimating L-lysine decarboxylase activity is also described. Failure to detect L-lysine decarboxylase activity in the chick embryo lumbar spinal cord is contrasted with the previous report of high cadaverine levels in chick embryos. (author)

  2. Glutaminsyre-decarboxylase-antistoffer og diabetes

    Mandrup-Poulsen, Thomas

    2007-01-01

    The 1999 WHO classification delineates immune mediated type 1 diabetes from other types of diabetes by the presence of auto-antibodies against beta-cell constituents. The GAD65 auto-antibody test is the method of first choice because it has the highest sensitivity, specificity and positive...... predictive value and is the most standardized and well-characterized type 1 diabetes related auto-antibody analysis. It is recommended that demonstration of GAD auto-antibodies leads to diagnosis, classification or re-classification of diabetes patients as immune mediated type 1 diabetes. Udgivelsesdato...

  3. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  4. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia.

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2016-06-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P < 0.01), whereas those in the prelimbic cortex correlated negatively with wheel running specifically during the hours of food availability of the FR days (R = -0.84, P < 0.05). These negative correlations support the idea that increases in the glutamic acid decarboxylase (GAD) terminal contact lengths onto L5P contribute toward ABA resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. PMID:25979087

  5. Purification, crystallization and preliminary X-ray analysis of human histidine decarboxylase

    Human histidine decarboxylase was crystallized by the sitting-drop vapour-diffusion method. Diffraction data were collected to 1.8 Å resolution. The core domain of a human histidine decarboxylase mutant was purified and cocrystallized with the inhibitor l-histidine methyl ester. Using synchrotron radiation, a data set was collected from a single crystal at 100 K to 1.8 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 215.16, b = 112.72, c = 171.39 Å, β = 110.3°. Molecular replacement was carried out using the structure of aromatic l-amino-acid decarboxylase as a search model. The crystal contained three dimers per asymmetric unit, with a Matthews coefficient (VM) of 3.01 Å3 Da−1 and an estimated solvent content of 59.1%

  6. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products. PMID:25622870

  7. Disease progression and search for monogenic diabetes among children with new onset type 1 diabetes negative for ICA, GAD- and IA-2 Antibodies

    Pörksen, Sven; Laborie, Lene; Nielsen, Lotte;

    2010-01-01

    BACKGROUND:To investigate disease progression the first 12 months after diagnosis in children with type 1 diabetes negative (AAB negative) for pancreatic autoantibodies [islet cell autoantibodies(ICA), glutamic acid decarboxylase antibodies (GADA) and insulinoma-associated antigen-2 antibodies (I...

  8. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  9. Characterization and crystallization of human uroporphyrinogen decarboxylase.

    Phillips, J. D.; Whitby, F. G.; Kushner, J. P.; Hill, C. P.

    1997-01-01

    The cytosolic enzyme uroporphyrinogen decarboxylase (URO-D) catalyzes the fifth step in the heme biosynthetic pathway, converting uroporphyrinogen to coproporphyrinogen by decarboxylating the four acetate side chains of the substrate. Recombinant human URO-D has been expressed in Escherichia coli with a histidine tag and has been purified to homogeneity. Purified protein was determined to be a monodisperse dimer by dynamic light scattering. Equilibrium sedimentation analysis confirmed that th...

  10. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as...

  11. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  12. Molecular gene cloning and sequencing of glutamate decarboxylase gene from Lactobacillus delbrueckii and Lactobacillus reuteri

    Mahsa Taherzadeh; Abolghasem Esmaeili; Mohammad Rabbani

    2015-01-01

    Glutamate decarboxylase enzyme produces γ-aminobutyric acid (GABA) in a non-reversible decarboxylation reaction of glutamate. GABA is a major inhibitory neurotransmitter of the brain and it is also present at high concentration in other organs such as pancreatic islets. GABA has effects on blood pressure, diabetes, inflammation, sleeplessness and depression. Some bacteria such as Lactobacillus strains are capable of GABA production. Identification of these bacteria is important both for resea...

  13. Cloning, Sequencing, and Disruption of the Bacillus subtilis psd Gene Coding for Phosphatidylserine Decarboxylase

    Matsumoto, Kouji; Okada, Masahiro; Horikoshi, Yuko; Matsuzaki, Hiroshi; Kishi, Tsutomu; Itaya, Mitsuhiro; Shibuya, Isao

    1998-01-01

    The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid contain...

  14. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus

    Carolina eCabezas

    2013-04-01

    Full Text Available Dentate gyrus granule cells (GCs have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2-4 weeks postmitotic GCs. These rather immature cells are able to fire action potentials and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus granule cells is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage.

  15. Sleep-Waking Discharge of Ventral Tuberomammillary Neurons in Wild-Type and Histidine Decarboxylase Knock-Out Mice

    Sakai, Kazuya; Takahashi, Kazumi; Anaclet, Christelle; Lin, Jian-Sheng

    2010-01-01

    Using extracellular single-unit recordings, we have determined the characteristics of neurons in the ventral tuberomammillary nucleus (VTM) of wild-type (WT) and histidine decarboxylase knock-out (HDC-KO) mice during the sleep-waking cycle. The VTM neurons of HDC-KO mice showed no histamine immunoreactivity, but were immunoreactive for the histaminergic (HA) neuron markers adenosine deaminase and glutamic acid decarboxylase 67. In the VTM of WT mice, we found waking (W)-specific, non-W-specif...

  16. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  17. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1.

    Fedorov, D N; Doronina, N V; Trotsenko, Yu A

    2010-12-01

    For the first time for methylotrophic bacteria an enzyme of phytohormone indole-3-acetic acid (IAA) biosynthesis, indole-3-pyruvate decarboxylase (EC 4.1.1.74), has been found. An open reading frame (ORF) was identified in the genome of facultative methylotroph Methylobacterium extorquens AM1 using BLAST. This ORF encodes thiamine diphosphate-dependent 2-keto acid decarboxylase and has similarity with indole-3-pyruvate decarboxylases, which are key enzymes of IAA biosynthesis. The ORF of the gene, named ipdC, was cloned into overexpression vector pET-22b(+). Recombinant enzyme IpdC was purified from Escherichia coli BL21(DE3) and characterized. The enzyme showed the highest k(cat) value for benzoylformate, albeit the indolepyruvate was decarboxylated with the highest catalytic efficiency (k(cat)/K(m)). The molecular mass of the holoenzyme determined using gel-permeation chromatography corresponds to a 245-kDa homotetramer. An ipdC-knockout mutant of M. extorquens grown in the presence of tryptophan had decreased IAA level (46% of wild type strain). Complementation of the mutation resulted in 6.3-fold increase of IAA concentration in the culture medium compared to that of the mutant strain. Thus involvement of IpdC in IAA biosynthesis in M. extorquens was shown. PMID:21314613

  18. Cloning and Sequence Analysis of the meso-Diaminopimelate Decarboxylase Gene from Bacillus methanolicus MGA3 and Comparison to Other Decarboxylase Genes

    Mills, D. A.; Flickinger, M. C.

    1993-01-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) ...

  19. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  20. vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain.

    Filippi, Alida; Mueller, Thomas; Driever, Wolfgang

    2014-06-15

    Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafish brains to determine which dopaminergic and noradrenergic groups may use GABA or glutamate as a second transmitter. Our results show that most dopaminergic neurons also express GABAergic markers, including the dopaminergic groups of the olfactory bulb (homologous to mammalian A16) and the subpallium, the hypothalamic groups (A12, A14), the prethalamic zona incerta group (A13), the preoptic groups (A15), and the pretectal group. Thus, the majority of catecholaminergic neurons are gad1b/2-positive and coexpress GABA. A very few gad1/2-negative dopaminergic groups, however, express vglut2 instead and use glutamate as a second transmitter. These glutamatergic dual transmitter phenotypes are the Orthopedia transcription factor-dependent, A11-type dopaminergic neurons of the posterior tuberculum. All together, our results demonstrate that all catecholaminergic groups in zebrafish are either GABAergic or glutamatergic. Thus, cotransmission of dopamine and noradrenaline with either GABA or glutamate appears to be a regular feature of zebrafish catecholaminergic systems. We compare our results with those that have been described for mammalian systems, discuss the phenomenon of transmitter dualism in the context of developmental specification of GABAergic and glutamatergic regions in the brain, and put this phenomenon in an evolutionary perspective. PMID:24374659

  1. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J. [IUPUI; (Purdue)

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  2. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    McElvain, Jessica; O' Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  3. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D.; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA re-uptake and by GABA receptor agonists. Germ-line knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns. PMID:17582330

  4. Prevalence and Regional Distribution of Autoantibodies Against GAD65Ab in a European Population Without Diabetes

    Rolandsson, Olov; Hampe, Christiane S; Wennberg, Patrik; Radtke, Jared; Langenberg, Claudia; Wareham, Nicholas

    2015-01-01

    Geographical differences in type 1 diabetes (T1D) prevalence in Europe have been well documented, but little is known about the geographical distribution of autoantibodies specific to GAD65 (GAD65Ab) in the general population without diabetes, which is reported to range between 0.4 and 3%. However......, these studies used different methods to define GAD65Ab positivity with cutoff values based on the 97–99th centile or at +3 SD above the mean among healthy individuals without T1D or type 2 diabetes (T2D). In doing so, the prevalence of GAD65Ab among the study cohorts was, by definition, 1–3%. The...... European countries and 2) compare characteristics of age, sex, and BMI in relation to GAD65Ab positivity. A center-stratified random subcohort of 16,835 (4.9%) individuals was selected from the original European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study (1). After exclusion...

  5. [Neurochemical study of effects of the new anxiolytic drugs afobazol and ladasten on the synthesis and metabolism of monoamines and their metabolites in the brain structures of Wistar rat on the model of monoamine synthesis blockade induced by aromatic amino acid decarboxylase inhibitor NSD-1015].

    Davydova, A I; Klodt, P M; Kudrin, V S; Kuznetsova, E A; Narkevich, V B

    2010-03-01

    Results of a neurochemical study of the effects of the new anxiolytic drugs afobazole and ladasten on the synthesis and metabolism of monoamines and their metabolites determined by HPLC on the model of monoamine synthesis blockade induced by NSD-1015 (aromatic L-amino acid decarboxylase) in the brain structures of Wistar rats are reported. A decrease in the levels of DOPAC in hypothalamus and HVA in striatum after afobazole injection may be evidence of an inhibitory action of this drug on the activity of monoamine oxidase (MAO-A), which is the main enzyme involved in dopamine biodegradation. Afobazole was also found to increase the content of serotonin (5-HT) as well as its precursor (5-OTP) and its main metabolite (5-HIAA) in hypothalamus by up to 50, 60 and 50%, respectively, which confirms a hypothesis that this anxiolytic drug can modulate the activity of tryptophan hydroxylase (5-OTP synthesis enzyme). In contrast to afobazole, ladasten demonstrated the ability to increase the level of L-DOPA (a dopamine precursor) in virtually all functional structures of the brain (except for hippocamp), which may support the hypothesis suggestion concerning a predominant action of this drug on the activity of tyrosine hydroxylase. Ladasten exhibited selectivity with respect to the dopaminergic system and affected only parameters of the dopamine metabolism, in particular, by increasing the HVA content in nucleus accumbens and decreasing it in the hypothalamus. The drug also affected the dopamine turnover parameters, producing an increase in both HVA/dopamine ratio in nucleus accumbens and DOPAC/dopamine ratio in hippocamp. PMID:20408420

  6. Studies of the mechanism of benzoylformate decarboxylase

    pH profiles and 13C and D2O solvent isotope effects have been used to study the mechanism of benzoylformate decarboxylase (BFD), which catalyzes the thiamine-PP (TPP) dependent decarboxylation of benzoylformate (BF) to benzaldehyde and CO2. V/K profiles for BF are bell-shaped with pK's of 5.2 and 8.5 in H2O and 6.2 and 9.1 in D2O, with a D2O solvent isotope effect of 6. The pK/sub i/ profile for the competitive inhibitor R-mandelate is also bell-shaped with pK's of 5.3 and 8.2. BF thus appears not to be sticky and to bind only to enzyme in the correct protonation state for reaction (pK's in the V profile are displaced outwards by at least a pH unit and the D2O solvent isotope effect is 2.5). 13C isotope effects were 1.0080 in H2O and 1.0054 in D2O and pH(D) independent. These data suggest that at low BF, formation of the initial tetrahedral intermediate between TPP and BF, and decarboxylation are both partly rate limiting, while at saturating BF, protonation of the enolamine formed after decarboxylation is rate limiting

  7. Oxalate-Degrading Activity in Bifidobacterium animalis subsp. lactis: Impact of Acidic Conditions on the Transcriptional Levels of the Oxalyl Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes ▿

    Turroni, Silvia; Bendazzoli, Claudia; Dipalo, Samuele C. F.; Candela, Marco; Vitali, Beatrice; Gotti, Roberto; Brigidi, Patrizia

    2010-01-01

    Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyperabsorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and can be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis and reducing the risk of kidney stone development. In this study, the oxalate-degrading activities of 14 bifidobacterial strai...

  8. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by β-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-[1-14C]cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, β-sulfopyruvate, was studied, and it was found that L-[1-14C]cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-[1-14C]cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours

  9. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  10. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment.

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased (P consumption (DFC), the concentrations of Gln, glutamate (Glu), and GABA, and the activities of glutaminase and glutamic acid decarboxylase (GAD) in breast muscle at 28, 35, and 42 days, while it increased (P < 0.05) the activities of glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved (P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased (P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased (P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased (P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased (P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions (P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA

  11. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics. PMID:25164030

  12. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  13. Diasporicità sull’esempio di Erich Auerbach in Gad Lerner e Miro Silvera

    Jansen, M.M.; Arts, Clemens

    2011-01-01

    A partire dall’esilio di Erich Auerbach a Istanbul dal 1936 al 1947, il contributo propone una riflessione sui concetti di diaspora e di esilio da adattare a due scrittori italo‐ebrei provenienti dalla diaspora orientale: Miro Silvera con Il passeggero occidentale (2009) e Gad Lerner con Scintille (

  14. Role of ornithine decarboxylase in breast cancer

    Wensheng Deng; Xian Jiang; Yu Mei; Jingzhong Sun; Rong Ma; Xianxi Liu; Hui Sun; Hui Tian; Xueying Sun

    2008-01-01

    Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration.ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial celis,and there was a positive correlation between the level of ODC mRNA and the staging of tumors.The expression of ODC correlated with cyclin D1,a cell cycle protein,in synchronized breast cancer MDA-MB-231 cells.Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression Of ODC and cyclin D1,resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase,and the inhibifion of colony formation,an anchorage-independent growth pattern,and the migratory ability of MDA-MB-231 cells.rAd-ODC/Ex3as also markedly reduced the concentration of putrescine,but not spermidine or spermine,in MDA-MB-231 cells.The results suggested that the ODC gene might act as aprognostic factor for breast cancer and it could be a promising therapeutic target.

  15. Three ways to test the validity of the Geocentric Axial Dipole (GAD) hypothesis in the Precambrian

    Veikkolainen, T.; Pesonen, L. J.; Korhonen, K.

    2012-12-01

    One of the most fundamental aspects of paleomagnetism is the assumption that the temporal mean of the geomagnetic field is indistinguishable from a field generated by a geocentric axial dipole (GAD hypothesis). When the theory became mainstream, various ways to test its functionality were presented, based on e.g. deep-sea sediment cores, paleoclimatic indicators and paleointensity. Most suspicion of the dipolar nature of the geomagnetic field has dealt with the Precambrian. To analyze this bias, we have used the data from the novel paleomagnetic database, collected by University of Helsinki, and Yale University for over a decade's time. Altogether 3016 observations from all major Precambrian continents were gathered, and a thorough compilation of reversals of the Archean and Proterozoic geomagnetic field was done. Observations were filtered using different criteria, e.g. geologic age, rock type (igneous vs. metamorphic vs. sedimentary) and reliability according to the modified Voo-grading. Testing the GAD has rested on a) inclination frequency analysis, b) asymmetries in reversal data, and c) paleosecular variation (PSV) using CALS7K, CALS3K, GUFM and IGRF models as references. The results suggest that the geomagnetic field of the Precambrian is not far from the field predicted by the GAD model. The inclination frequency analysis supports the existence of a small octupolar (ca. 6 % of GAD) component and a quadrupole of 0-8 % of GAD as evaluated using chi-square testing. Conclusions drawn from the asymmetry analysis and PSV are statistically indifferent from this. The deviation from the GAD is smallest for the highest-quality observations, especially so called key poles. They have well-defined isotopic ages, small error parameters in their Fisher data and their primary remanent magnetization has been properly isolated. This also means that the observed functionality of GAD cannot be a misconception caused by secondary magnetizations acquired in the Phanerozoic

  16. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens; Piskur, Jure; Olsson, Lisbeth

    2004-01-01

    Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae...... with respect to ethanol formation under aerobic conditions could be caused by differences in the regulation of this enzyme activity. We have identified and cloned three genes encoding functional pyruvate decarboxylase enzymes ( PDC genes) from the type strain of S. kluyveri (Sk-PDC11, Sk-PDC12 and Sk...... activity was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two...

  17. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  18. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga;

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  19. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45°C, respectively. Immobilized P. dacunhael-aspartate β-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM α-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate β-decarboxylase activity was observed over a 31-day period. PMID:16346636

  20. Defense of GAD during the 1950s and early 1960s

    Frankel, H. R.

    2012-12-01

    Paleomagnetists favoring continental offered empirical and theoretical support for the GAD hypothesis. Initial support came from the discovery that the mean directions of rock units, regardless of polarity, laid down back through the Upper Tertiary centered on the rotational pole. Armed with Fisher's statistics, Hospers (1951, 1953) found that the mean direction of the NRM of Icelandic lava flows back through the Miocene better agreed with the GAD field than with the present field. Similarly, Campbell and Runcorn (1956), Creer (1956), and Irving and Green (1957) respectively found that the natural remanent magnetization of Late Tertiary Columbia River basalts, Quaternary basalts of Argentina, and Late Cenozoic New Volcanics of Victoria supported the hypothesis. If significant continental drift or "true" polar wander has occurred, paleomagnetic data alone cannot determine if the axial element of the GAD hypothesis holds earlier than Late Tertiary. Extending the GAD hypothesis back in time requires an approach involving a means independent of paleomagnetism for determining past latitudes. Irving was the first to realize that the paleoclimatology would work. If the GAD hypothesis holds, then paleolatitudes based on paleomagnetism and paleoclimatology should agree. Irving (1956) found that, except for the Squantum Tillite, the paleomagnetically and paleoclimatically determined paleolatitudes for Europe, North America, India, and Tasmania were in agreement. He concluded that the magnetic and rotational axes have coincided since the Paleozoic. Blackett (1961) also compared paleoclimatic and paleomagnetic data-sets. Irving and Briden (1962, 1964) further appealed to paleoclimatology to defend the hypothesis. Determining the paleolatitude spectra for several paleoclimatic indicators, they found the present latitude of fossil instances inconsistent with the latitude of modern instances while their paleomagnetically determined paleolatitudes, which assumed the GAD hypothesis

  1. GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology

    Iris eMüller

    2014-08-01

    Full Text Available GABAergic mechanisms are critically involved in the control of fear and anxiety, but their role in the development of stress-induced psychopathologies, including post-traumatic stress disorder (PTSD and mood disorders is not sufficiently understood. We studied these functions in two established mouse models of risk factors for stress-induced psychopathologies employing variable juvenile stress and/or social isolation. A battery of emotional tests in adulthood revealed the induction of contextually generalized fear, anxiety, hyperarousal and depression-like symptoms in these paradigms. These reflect the multitude and complexity of stress effects in human PTSD patients. With factor analysis we were able to identify parameters that reflect these different behavioral domains in stressed animals and thus provide a basis for an integrated scoring of affectedness more closely resembling the clinical situation than isolated parameters. To test the applicability of these models to genetic approaches we further tested the role of GABA using heterozygous mice with targeted mutation of the GABA synthesizing enzyme GAD65 (GAD65+/- mice, which show a delayed postnatal increase in tissue GABA content in limbic and cortical brain areas. Unexpectedly, GAD65(+/- mice did not show changes in exploratory activity regardless of the stressor type and were after the variable juvenile stress procedure protected from the development of contextual generalization in an auditory fear conditioning experiment. Our data demonstrate the complex nature of behavioral alterations in rodent models of stress-related psychopathologies and suggest that GAD65 haplodeficiency, likely through its effect on the postnatal maturation of GABAergic transmission, conveys resilience to some of these stress-induced effects.

  2. GAD67-mediated GABA Synthesis and Signaling Regulate Inhibitory Synaptic Innervation in the Visual Cortex

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z. Josh

    2007-01-01

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramida...

  3. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  4. Sbi00515, a Protein of Unknown Function from Streptomyces bingchenggensis, Highlights the Functional Versatility of the Acetoacetate Decarboxylase Scaffold.

    Mueller, Lisa S; Hoppe, Robert W; Ochsenwald, Jenna M; Berndt, Robert T; Severin, Geoffrey B; Schwabacher, Alan W; Silvaggi, Nicholas R

    2015-06-30

    The acetoacetate decarboxylase-like superfamily (ADCSF) is a group of ~4000 enzymes that, until recently, was thought to be homogeneous in terms of the reaction catalyzed. Bioinformatic analysis shows that the ADCSF consists of up to seven families that differ primarily in their active site architectures. The soil-dwelling bacterium Streptomyces bingchenggensis BCW-1 produces an ADCSF enzyme of unknown function that shares a low level of sequence identity (~20%) with known acetoacetate decarboxylases (ADCs). This enzyme, Sbi00515, belongs to the MppR-like family of the ADCSF because of its similarity to the mannopeptimycin biosynthetic protein MppR from Streptomyces hygroscopicus. Herein, we present steady state kinetic data that show Sbi00515 does not catalyze the decarboxylation of any α- or β-keto acid tested. Rather, we show that Sbi00515 catalyzes the condensation of pyruvate with a number of aldehydes, followed by dehydration of the presumed aldol intermediate. Thus, Sbi00515 is a pyruvate aldolase-dehydratase and not an acetoacetate decarboxylase. We have also determined the X-ray crystal structures of Sbi00515 in complexes with formate and pyruvate. The structures show that the overall fold of Sbi00515 is nearly identical to those of both ADC and MppR. The pyruvate complex is trapped as the Schiff base, providing evidence that the Schiff base chemistry that drives the acetoacetate decarboxylases has been co-opted to perform a new function, and that this core chemistry may be conserved across the superfamily. The structures also suggest possible catalytic roles for several active site residues. PMID:26039798

  5. COOH-Terminal Clustering of Autoantibody and T-Cell Determinants on the Structure of GAD65 Provide Insights Into the Molecular Basis of Autoreactivity

    Fenalti, Gustavo; Hampe, Christiane S.; Arafat, Yasir; Law, Ruby H.P.; Banga, J. Paul; Mackay, Ian R.; Whisstock, James C.; Buckle, Ashley M.; Rowley, Merrill J. (UWASH); (King’s College); (Monash)

    2008-11-19

    To gain structural insights into the autoantigenic properties of GAD65 in type 1 diabetes, we analyzed experimental epitope mapping data in the context of the recently determined crystal structures of GAD65 and GAD67, to allow 'molecular positioning' of epitope sites for B- and T-cell reactivity. Data were assembled from analysis of reported effects of mutagenesis of GAD65 on its reactivity with a panel of 11 human monoclonal antibodies (mAbs), supplemented by use of recombinant Fab to cross-inhibit reactivity with GAD65 by radioimmunoprecipitation of the same mAbs. COOH-terminal region on GAD65 was the major autoantigenic site. B-cell epitopes were distributed within two separate clusters around different faces of the COOH-terminal domain. Inclusion of epitope sites in the pyridoxal phosphate- and NH{sub 2}-terminal domains was attributed to the juxtaposition of all three domains in the crystal structure. Epitope preferences of different mAbs to GAD65 aligned with different clinical expressions of type 1 diabetes. Epitopes for four of five known reactive T-cell sequences restricted by HLA DRB1*0401 were aligned to solvent-exposed regions of the GAD65 structure and colocalized within the two B-cell epitope clusters. The continuous COOH-terminal epitope region of GAD65 was structurally highly flexible and therefore differed markedly from the equivalent region of GAD67. Structural features could explain the differing antigenicity, and perhaps immunogenicity, of GAD65 versus GAD67. The proximity of B- and T-cell epitopes within the GAD65 structure suggests that antigen-antibody complexes may influence antigen processing by accessory cells and thereby T-cell reactivity.

  6. Chloroform induction of ornithine decarboxylase activity in rats.

    Savage, R E; Westrich, C; Guion, C; M. A. PEREIRA

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-depend...

  7. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.;

    2015-01-01

    carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. Results: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial......Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h-1, respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic...

  8. Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Byeong-ha Lee; Hyoungseok Lee; Joung Han Yim; Jian-Kang Zhu; Si-in Yu; Yerim Kwon

    2012-01-01

    Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to l-serine. While serine decarboxylase was biochemically characterized, its functions and importance ...

  9. Clinical significance of GAD-Ab in patets with type Ⅱ diabetes%Ⅱ型糖尿病患者血清中GAD-Ab测定的临床意义

    叶秀兰; 于瑞萍; 周荣霞; 莫晓虹; 王亚林; 邓小林; 黄山

    2000-01-01

    目的通过谷氨酸脱羧酶抗体(GAD-Ab)测定,了解成人迟发性自身免疫性糖尿病(LA-DA)在Ⅱ型糖尿病中的发病率,以及LADA的一些临床特点.方法对91例诊断为Ⅱ型糖尿病患者及28例正常对照组用ELISA法检测血清中GAD-Ab.结果GAD-Ab阳性率17.58%,高于对照组的0%;且GAD-Ab阳性患者具有低体重指数(BMI)≤21kg/m2,低C肽分泌,酮症史,胰岛素用量偏大的临床特点;而起病年龄、病程及男女比例与阴性无显著差异.结论LADA在Ⅱ型糖尿病中比例较高;Ⅱ型糖尿病中低BMI,低C肽分泌,酮症史,胰岛素用量偏大是LADA诊断的重要线索;GAD-Ab检测对早期诊断LADA有实验价值.

  10. Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Byeong-ha Lee

    2012-03-01

    Full Text Available Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE and phosphatidylcholine (PC in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to L-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1. The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue.

  11. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes

    Brown, Jacquelyn A.; Ramikie, Teniel S.; Schmidt, Martin J.; Báldi, Rita; Garbett, Krassimira; Everheart, Monika G.; Warren, Lambert E.; Gellért, Levente; Horváth, Szatmár; Patel, Sachin; Mirnics, Károly

    2015-01-01

    Reduced expression of the GAD1 gene-encoded 67-kD protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the schizophrenia. GAD67 downregulation occurs in multiple interneuronal subpopulations, including the parvalbumin positive (PVALB+) cells. To investigate the role of the PV-positive GABA-ergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Pvalb bacteria...

  12. Gads-deficient thymocytes are blocked at the transitional single positive CD4+ stage

    Dalheimer, Stacy L.; Zeng, Ling; Draves, Kevin E.; Hassaballa, Ashraf; Jiwa, Nasheena N.; Parrish, Torrey D.; Edward A Clark; Yankee, Thomas M.

    2009-01-01

    Positive selection of T cell precursors is the process by which a diverse T cell repertoire is established. Positive selection begins at the CD4+CD8+ double positive (DP) stage of development and involves at least two steps. First, DP thymocytes downregulate CD8 to become transitional single positive (TSP) CD4+ thymocytes. Then, cells are selected to become either mature SP CD4+ or mature SP CD8+ thymocytes. We sought to define the function of Gads during the two steps of positive selection b...

  13. The philosophy of language in Gadādhara's Śaktivāda

    GANERI, Jonardon

    1993-01-01

    This thesis is a study of the theory of meaning developed by the seventeenth century Indian Naiyāyika philosopher Gadādhara Bhaṭṭācārya. It has four chapters and an appendix. In chapter 1, I highlight some of the problems about meaning and reference thematised by the Indian philosophical tradition during its 'classical' period (third century B.C.E. to seventh century C.E). The work of the earliest grammarians proved very influential We tend to associate the name of the grammar...

  14. Cognitive Control and Anxiety Disorders: Metacognitive Beliefs and Strategies of Control Thought in GAD and OCD

    Miguel Ángel Pérez Nieto; Marta Mª Redondo Delgado; Leticia León Mateos; Nereida Bueno

    2010-01-01

    En el presente trabajo se asume la relevancia que los procesos de control cognitivo pueden tener en trastornos de ansiedad como el GAD o el TOC. Se pretende identificar las creencias metacognitivas derivadas del modelo S-REF (Wells y Mathews, 1996, Wells, 2000) que se vincularán en mayor medida al espectro del trastorno de ansiedad generalizada y del trastorno obsesivo-compulsivo y el efecto que dichas creencias pueden tener en el uso de estrategias de control cognitivo. Para ello, una muestr...

  15. Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia

    Gillis, LC; Berry, DM; Minden, MD; McGlade, CJ; Barber, DL

    2016-01-01

    Philadelphia chromosome-positive leukemias, including chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (B-ALL), are driven by the oncogenic BCR-ABL fusion protein. Animal modeling experiments utilizing retroviral transduction and subsequent bone marrow transplantation have demonstrated that BCR-ABL generates both myeloid and lymphoid disease in mice receiving whole bone marrow transduced with BCR-ABL. Y177 of BCR-ABL is critical to the development of myeloid disease, and phosphorylation of Y177 has been shown to induce GRB2 binding to BCR-ABL, followed by activation of the Ras and phosphoinositide 3 kinase signaling pathways. We show that the GRB2-related adapter protein, GADS, also associates with BCR-ABL, specifically through Y177 and demonstrate that BCR-ABL-driven lymphoid disease requires Gads. BCR-ABL transduction of Gads(−/−) bone marrow results in short latency myeloid disease within 3–4 weeks of transplant, while wild-type mice succumb to both a longer latency lymphoid and myeloid diseases. We report that GADS mediates a unique BCR-ABL complex with SLP-76 in BCR-ABL-positive cell lines and B-ALL patient samples. These data suggest that GADS mediates lymphoid disease downstream of BCR-ABL through the recruitment of specific signaling intermediates. PMID:23399893

  16. Pantothenic acid biosynthesis in zymomonas

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  17. Correlation between arginine decarboxylase expression during abiotic stress and polyamine content in Withania somnifera

    Neha G. Wasnik

    2011-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} (Abstract selected from presentation in National Conference on Biodiversity of Medicinal and Aromatic Plants: Collection, Characterization and Utilization, held at Anand, India during November 24-25, 2010   In plants, polyamines are generally synthesized by the ornithine decarboxylase and arginine decarboxylase (ADC through polyamine pathway. In the current study, attempt was made to clone and characterize a gene encoding arginine decarboxylase from Withania somnifera. A full-length ADC cDNA (WsADC with the longest open reading frame of 828 nucleotides, encoding a 275 amino acids polypeptide was developed by primer walking. WsADC mRNA was expressed in organs such as flower when tested for different plant organs like leaf, root, callus, stem and whole plantlet. Expression level of WsADC in different tissues of ashwagandha was spatially regulated. Transcripts of WsADC in ashwgandha shoots were induced either transiently in response to various abiotc stresses. Treatment of ashwgandha shoots on chilling and wounding remarkably induced accumulation of WsADC mRNA whereas UV light down- regulated the mRNA expression levels. This is the first direct evidence of a function of polyamines in the chilling, wounding

  18. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  19. Cognitive Control and Anxiety Disorders: Metacognitive Beliefs and Strategies of Control Thought in GAD and OCD

    Miguel Ángel Pérez Nieto

    2010-01-01

    Full Text Available En el presente trabajo se asume la relevancia que los procesos de control cognitivo pueden tener en trastornos de ansiedad como el GAD o el TOC. Se pretende identificar las creencias metacognitivas derivadas del modelo S-REF (Wells y Mathews, 1996, Wells, 2000 que se vincularán en mayor medida al espectro del trastorno de ansiedad generalizada y del trastorno obsesivo-compulsivo y el efecto que dichas creencias pueden tener en el uso de estrategias de control cognitivo. Para ello, una muestra de 75 participantes, 24 con diagnósticod de GAD o de TOC, y 51 sin diagnóstico mentales, fueron evaluados mediante el MCQ-30 y el TCQ. El ANOVA entre los grupos permitió encontrar significativas las mayores puntuaciones en creencias sobre la peligrosidad de no controlar las preocupaciones por parte de los participantes con trastorno de ansiedad. Los análisis de regresión permitieron comprobar que ese tipo de creencias favorecían, además, el uso de estrategias de control cognitivo poco adaptativas, como el castigo.

  20. Cultural adaptation into Spanish of the generalized anxiety disorder-7 (GAD-7 scale as a screening tool

    Pérez-Páramo María

    2010-01-01

    Full Text Available Abstract Background Generalized anxiety disorder (GAD is a prevalent mental health condition which is underestimated worldwide. This study carried out the cultural adaptation into Spanish of the 7-item self-administered GAD-7 scale, which is used to identify probable patients with GAD. Methods The adaptation was performed by an expert panel using a conceptual equivalence process, including forward and backward translations in duplicate. Content validity was assessed by interrater agreement. Criteria validity was explored using ROC curve analysis, and sensitivity, specificity, predictive positive value and negative value for different cut-off values were determined. Concurrent validity was also explored using the HAM-A, HADS, and WHO-DAS-II scales. Results The study sample consisted of 212 subjects (106 patients with GAD with a mean age of 50.38 years (SD = 16.76. Average completion time was 2'30''. No items of the scale were left blank. Floor and ceiling effects were negligible. No patients with GAD had to be assisted to fill in the questionnaire. The scale was shown to be one-dimensional through factor analysis (explained variance = 72%. A cut-off point of 10 showed adequate values of sensitivity (86.8% and specificity (93.4%, with AUC being statistically significant [AUC = 0.957-0.985; p 0.001. Limitations Elderly people, particularly those very old, may need some help to complete the scale. Conclusion After the cultural adaptation process, a Spanish version of the GAD-7 scale was obtained. The validity of its content and the relevance and adequacy of items in the Spanish cultural context were confirmed.

  1. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves

    Gemperlová, Lenka; Nováková, Marie; Vaňková, Radomíra; Eder, Josef; Cvikrová, Milena

    2006-01-01

    Roč. 57, č. 6 (2006), s. 1413-1421. ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arginine decarboxylase * diamine oxidase * ornithine decarboxylase Subject RIV: ED - Physiology Impact factor: 3.630, year: 2006

  2. Gestos autolíticos deliberados (GAD) en adolescentes en el Oeste de Londres: Factores socio-culturales

    Dinesh Bhugra; Neil Thompson; Jayshree Singh; Elizabeth Fellow-Smith

    2004-01-01

    Los estudios previos han sugerido que las tasas de gestos autolíticos deliberados (GAD) en adolescentes asiáticos y pertenecientes a otros grupos étnicos minoritarios no son diferentes de aquéllas del grupo mayoritario. En este estudio documentamos los factores socio-culturales implicados en los gestos autolíticos llevados a cabo por los adolescentes del oeste de Londres durante un período de un año. Método. Se contactó con todos los casos de GAD en adolescentes para que participasen en el es...

  3. Mouse ornithine decarboxylase gene: cloning, structure, and expression.

    Brabant, M; McConlogue, L; van Daalen Wetters, T; Coffino, P

    1988-01-01

    We used molecular cloning to isolate a functional gene for mouse ornithine decarboxylase (OrnDCase; L-ornithine carboxy-lyase, EC 4.1.1.17) from a cell line in which that gene had been selectively amplified. The position of the 5' terminus of the mRNA was identified, and the coding sequence was shown to be preceded by a 312- or 313-nucleotide (nt) untranslated leader. The latter is highly G + C rich, particularly in its 5'-most portion. The leader can be anticipated to have extensive and stab...

  4. Antibody-bound amyloid precursor protein upregulates ornithine decarboxylase expression

    Nilsson, Tatjana; Malkiewicz, Katarzyna; Gabrielsson, Maria;

    2006-01-01

    Alzheimer's disease is a neurodegenerative disorder characterised by extracellular accumulation of the Abeta peptide, derived from the amyloid precursor protein (APP). The function of APP as a cell surface receptor was examined by ligand-mimicking using an antibody against the APP extracellular...... signalling events. This study shows that antibody-bound APP leads to altered gene expression that may be relevant to AD....... domain. Alterations in gene expression evoked by antibody-bound APP were analysed using human pathway-finder gene arrays and the largest change in expression levels was found for ornithine decarboxylase (ODC). These results were confirmed by Western blotting which showed even higher upregulation on the...

  5. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F; (TGRI); (Toronto); (Kyoto)

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  6. Molecular and biochemical characterisation of ornithine decarboxylases in the sheep abomasal nematode parasites Teladorsagia circumcincta and Haemonchus contortus.

    Umair, Saleh; Knight, Jacqueline S; Simpson, Heather V

    2013-06-01

    Full length cDNA encoding ornithine decarboxylases (ODC; EC 4.1.1.17) were cloned from the sheep abomasal nematode parasites Teladorsagia circumcincta (TcODC) and Haemonchus contortus (HcODC). The TcODC (1272 bp) and HcODC cDNA (1266 bp) encoded 424 and 422 amino acid proteins respectively. The predicted TcODC amino acid sequence showed 87% identity with HcODC and 65% and 64% with Caenorhabditis elegans and Caenorhabditis briggsae ODC respectively. All binding sites and active regions were completely conserved in both proteins. Soluble N-terminal His-tagged ODC proteins were expressed in Escherichia coli strain BL21, purified and characterised. The recombinant TcODC and HcODC had very similar kinetic properties: K(m) ornithine was 0.2-0.25 mM, optimum [PLP] was 0.3 mM and the pH optima were pH 8. No enzyme activity was detected when arginine was used as substrate. One millimolar difluoromethylornithine (DFMO) completely inhibited TcODC and HcODC activity, whereas 2 mM agmatine did not inhibit activity. The present study showed that ODC is a separate enzyme from arginine decarboxylase and strictly uses ornithine as substrate. PMID:23499950

  7. Lack of Support for the Association Between GAD2 Polymorphisms andSevere Human Obesity

    Swarbrick, Michael M.; Waldenmaier, Bjorn; Pennacchio, Len A.; Lind,Denise L.; Cavazos, Martha M.; Geller, Frank; Merriman, Raphael; Ustaszewska, Anna; Malloy, Mary; Scherag, Andre; Hsueh, Wen-Chi; Rief,Winfried; Mauvais-Jarvis, Franck; Pullinger, Clive R.; Kane, John P.; Dent, Robert; McPherson, Ruth; Kwok, Pui-Yan; Hinney, Anke; Hebebrand,Johannes; Vaisse, Christian

    2004-11-17

    Demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention and treatment of these conditions. Unequivocal proof of such an association, however, requires adherence to established methodological guidelines, which include independent replication of initial positive findings. Recently, single nucleotide polymorphisms (SNPs) within GAD2 were found to be associated with class III obesity (BMI > 40 kg/m2) in 188 families (612 individuals) segregating the condition and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (-243A>G) were also presented. In the present study, we attempted to replicate this association in larger groups of subjects, and to extend the functional studies of the -243A>G SNP. In 2,327 subjects comprising 692 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the -243A>G SNP and obesity (odds ratio (OR) = 0.99, 95% CI 0.83 - 1.18,in the pooled sample). These negative findings were reinforced by a meta-analysis for the association between the 243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90 - 1.36) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Finally,we were unable to confirm or extend the functional data pertaining to the -243A>G variant. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, over-interpretation of marginal data, population stratification and biological plausibility) are also discussed in the context of GAD2 and

  8. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  9. Adenovirus-mediated Expression of both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Inhibits Lung Cancer Cell Growth

    Hui TIAN; Xianxi LIU; Bing ZHANG; Qifeng SUN; Dongfeng SUN

    2007-01-01

    Polyamine biosynthesis is controlled primarily by ornithine decarboxylase (ODC) and Sadenosylmethionine decarboxylase (AdoMetDC). Antisense sequences of ODC and AdoMetDC genes were cloned into an adenoviral vector (named Ad-ODC-AdoMetDCas). To evaluate the effects of recombinant adenovirus Ad-ODC-AdoMetDCas that can simultaneously express both antisense ODC and AdoMetDC,the human lung cancer cell line A-549 was infected with Ad-ODC-AdoMetDCas or the control vector.Viable cell counting, determination of polyamine concentrations, cell cycle analysis, and Matrigel invasion assays were carried out to assess the properties of tumor growth and invasiveness. Our study showed that adenovirus-mediated antisense ODC and AdoMetDC expression inhibits tumor cell growth through blocking the polyamine synthesis pathway. Tumor cells were arrested at the G1 phase after gene transfer and the invasiveness was reduced. It suggested that the recombinant adenovirus Ad-ODC-AdoMetDCas might be a new anticancer reagent in the treatment of lung cancers.

  10. Auxins Induce Tryptophan Decarboxylase Activity in Radicles of Catharanthus Seedlings 1

    Aerts, Rob J.; Alarco, Anne-Marie; De Luca, Vincenzo

    1992-01-01

    Germinating seedlings of Catharanthus roseus produce monoterpenoid indole alkaloids as a result of a transient increase of tryptophan decarboxylase (TDC) activity. The influence of auxins on this transient rise of TDC activity was studied. External application of indolebutyric acid or 2,4-dichlorophenoxyacetic acid at a concentration of 20 to 40 μm enhanced and prolonged the rise in TDC activity in developing seedlings. Auxin treatment also influenced the morphology of the seedlings; it induced a shortening and thickening of the hypocotyl and the radicle and promoted the initiation of lateral roots in the radicle. During development, the radicles of auxin-treated seedlings displayed a gradual increase in TDC activity that was absent in the radicles of untreated controls. Examination of immunoblots revealed anti-TDC reactive proteins in extracts from radicles of auxin-treated seedlings, but none in extracts from radicles of control seedlings. In contrast, TDC activity and immunoreactive protein levels in the aerial parts of controls and auxin-treated seedlings were comparable. Our results indicate that externally applied auxins induce both abnormal development and TDC activity in the radicles of Catharanthus seedlings. Although auxins slightly delayed the light-mediated induction of the cotyledon-specific last step in vindoline biosynthesis (i.e. acetylcoenzyme A: deacetylvindolin-O-acetyltransferase activity), seedlings still synthesized vindoline, one of the major alkaloid end products. Images Figure 2 PMID:16653009

  11. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism

  12. A role for Lon protease in the control of the acid resistance genes of Escherichia coli.

    Heuveling, Johanna; Possling, Alexandra; Hengge, Regine

    2008-07-01

    Lon protease is a major protease in cellular protein quality control, but also plays an important regulatory role by degrading various naturally unstable regulators. Here, we traced additional such regulators by identifying regulons with co-ordinately altered expression in a lon mutant by genome-wide transcriptional profiling. Besides many members of the RcsA regulon (which validates our approach as RcsA is a known Lon substrate), many genes of the sigmaS-dependent general stress response were upregulated in the lon mutant. However, the lon mutation did not affect sigmaS levels nor sigmaS activity in general, suggesting specific effects of Lon on secondary regulators involved in the control of subsets of sigmaS-controlled genes. Lon-affected genes also included the major acid resistance genes (gadA, gadBC, gadE, hdeAB and hdeD), which led to the discovery that the essential acid resistance regulator GadE (whose expression is sigmaS-controlled) is degraded in vivo in a Lon-dependent manner. GadE proteolysis is constitutive as it was observed even under conditions that induce the system (i.e. at low pH or during entry into stationary phase). GadE degradation was found to rapidly terminate the acid resistance response upon shift back to neutral pH and to avoid overexpression of acid resistance genes in stationary phase. PMID:18630346

  13. Enzymatic and immunological studies of uroporphyrinogen decarboxylase in familial porphyria cutanea tarda and hepatoerythropoietic porphyria.

    De Verneuil, H.; Beaumont, C; Deybach, J C; Nordmann, Y; Sfar, Z; Kastally, R

    1984-01-01

    Uroporphyrinogen decarboxylase activity was measured in hemoglobin-free lysates from two patients with hepatoerythropoietic porphyria (HEP) and from 12 unrelated patients with familial porphyria cutanea tarda (PCT). In HEP patients, enzyme activities were 5% of normal, and familial studies clearly confirmed that patients with HEP are cases of homozygous PCT. Immunoreactive uroporphyrinogen decarboxylase was measured by developing a direct and noncompetitive enzyme immunoassay (EIA). For the 1...

  14. Characterization and Heterologous Expression of the Oxalyl Coenzyme A Decarboxylase Gene from Bifidobacterium lactis

    Federici, Federica; Vitali, Beatrice; Gotti, Roberto; Pasca, Maria Rosalia; Gobbi, Silvia; Peck, Ammon B; Brigidi, Patrizia

    2004-01-01

    Oxalyl coenzyme A (CoA) decarboxylase (Oxc) is a key enzyme in the catabolism of the highly toxic compound oxalate, catalyzing the decarboxylation of oxalyl-CoA to formyl-CoA. The gene encoding a novel oxalyl-CoA decarboxylase from Bifidobacterium lactis DSM 10140 (oxc) was identified and characterized. This strain, isolated from yogurt, showed the highest oxalate-degrading activity in a preliminary screening with 12 strains belonging to Bifidobacterium, an anaerobic intestinal bacterial grou...

  15. Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.

    Selvaraj, Brinda; Buckel, Wolfgang; Golding, Bernard T; Ullmann, G Matthias; Martins, Berta M

    2016-01-01

    4-Hydroxyphenylacetate decarboxylase (4Hpad) is the prototype of a new class of Fe-S cluster-dependent glycyl radical enzymes (Fe-S GREs) acting on aromatic compounds. The two-enzyme component system comprises a decarboxylase responsible for substrate conversion and a dedicated activating enzyme (4Hpad-AE). The decarboxylase uses a glycyl/thiyl radical dyad to convert 4-hydroxyphenylacetate into p-cresol (4-methylphenol) by a biologically unprecedented Kolbe-type decarboxylation. In addition to the radical dyad prosthetic group, the decarboxylase unit contains two [4Fe-4S] clusters coordinated by an extra small subunit of unknown function. 4Hpad-AE reductively cleaves S-adenosylmethionine (SAM or AdoMet) at a site-differentiated [4Fe-4S]2+/+ cluster (RS cluster) generating a transient 5'-deoxyadenosyl radical that produces a stable glycyl radical in the decarboxylase by the abstraction of a hydrogen atom. 4Hpad-AE binds up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert that is C-terminal to the RS cluster-binding motif. The ferredoxin-like domain with its two auxiliary clusters is not vital for SAM-dependent glycyl radical formation in the decarboxylase, but facilitates a longer lifetime for the radical. This review describes the 4Hpad and cognate AE families and focuses on the recent advances and open questions concerning the structure, function and mechanism of this novel Fe-S-dependent class of GREs. PMID:26959876

  16. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    The authors have measured the 13C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D2O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D2O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  17. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  18. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    Rosenberg, R.M.; O' Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  19. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster

    Andrey Tatarenkov; Francisco J. Ayala

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald–Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the -test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  20. The Impact of Pretrauma Analogue GAD and Posttraumatic Emotional Reactivity Following Exposure to the September 11 Terrorist Attacks: A Longitudinal Study

    Farach, Frank J.; Mennin, Douglas S.; Smith, Rita L.; Mandelbaum, Matthew

    2008-01-01

    The relation between analogue generalized anxiety disorder (GAD) assessed the day before the events of September 11, 2001 (9/11), and long-term outcome was examined in 44 young adults who were directly exposed the following day to the terrorist attacks in New York City. After controlling for high exposure to the attacks, preattack analogue GAD was associated with greater social and work disability, loss of psychosocial resources, anxiety and mood symptoms, and worry, but not symptoms of po...

  1. On-line near-infrared spectroscopy optimizing and monitoring biotransformation process of γ-aminobutyric acid

    Guoyu Ding

    2016-06-01

    Full Text Available Near-infrared spectroscopy (NIRS with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS regression can be used as a rapid analytical method to simultaneously quantify l-glutamic acid (l-Glu and γ-aminobutyric acid (GABA in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2, root mean square error of prediction (RMSEP and residual predictive deviation (RPD of the external validation for the l-Glu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box-Behnken experimental design. Under the optimal conditions without pH adjustment, 200 g/L l-Glu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from l-Glu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.

  2. On-line near-infrared spectroscopy optimizing and monitoring biotransformation process ofγ-aminobutyric acid$

    Guoyu Ding; Yuanyuan Hou; Jiamin Peng; Yunbing Shen; Min Jiang; Gang Bai

    2016-01-01

    Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) regression can be used as a rapid analytical method to simultaneously quantify L-glutamic acid (L-Glu) andγ-aminobutyric acid (GABA) in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC) reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the external validation for the L-Glu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, re-spectively. This NIRS model was then used to optimize the biotransformation process through a Box-Behnken experimental design. Under the optimal conditions without pH adjustment, 200 g/L L-Glu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD) to GABA, reaching 99%conversion at the fifth hour. NIRS analysis provided timely information on the conversion from L-Glu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.

  3. Superior perception of phasic physiological arousal and the detrimental consequences of the conviction to be aroused on worrying and metacognitions in GAD.

    Andor, Tanja; Gerlach, Alexander L; Rist, Fred

    2008-02-01

    Although people suffering from generalized anxiety disorder (GAD) often report arousal symptoms, psychophysiological studies show no evidence of autonomic hyperarousal. Hypersensitivity toward and catastrophic interpretation of phasic arousal cues may explain this discrepancy. The authors tested (a) whether GAD sufferers perceive nonspecific skin conductance fluctuations (NSCFs), an indicator of phasic autonomic arousal, better than controls do and (b) whether the conviction to be aroused contributes to the maintenance of worrying and metacognitive beliefs about worrying. Thirty-three GAD sufferers and 34 healthy controls participated in 2 experiments. In Experiment 1, participants were asked to detect their own NSCFs during a signal detection task. GAD sufferers accurately detected more of their NSCFs than did controls, who tended to miss NSCFs. In Experiment 2, participants were instructed to relax following worry induction. While relaxing, they received nonveridical feedback indicating either arousal or relaxation. Arousal feedback conserved negative metacognitive beliefs regarding worrying and also maintained negative mood and worry exclusively in GAD participants. These findings suggest that superior perception of phasic arousal cues and their catastrophic misinterpretation increases worrying, negative metacognitive beliefs about worrying, and anxious mood in GAD. PMID:18266497

  4. Ornithine decarboxylase gene is overexpressed in colorectal carcinoma

    Hai-Yan Hu; Bing Zhang; Xian-Xi Liu; Chun-Ying Jiang; Yi Lu; Shi-Lian Liu; Ji-Feng Bian; Xiao-Ming Wang; Zhao Geng; Yan Zhang

    2005-01-01

    AIM: To investigate the ornithine decarboxylase (ODC)gene expression in colorectal carcinoma, ODC mRNA was assayed by RT-PCR and ODC protein was detected by a monoclonal antibody against fusion of human colon ODC prepared by hybridoma technology.METHODS: Total RNA was extracted from human colorectal cancer tissues and their normal counterpart tissues. ODC mRNA levels were examined by RT-PCR.ODC genes amplified from RT-PCR were cloned into a prokaryotic vector pQE-30. The expressed proteins were purified by chromatography. Anti-ODC mAb was prepared with classical hybridoma techniques and used to determine the ODC expression in colon cancer tissues by immunohistochemical and Western blotting assay.RESULTS: A cell line, which could steadily secrete antiODC mAb, was selected through subcloning four times.Western blotting reconfirmed the mAb and ELISA showed that its subtype was IgG2a. RT-PCR showed that the ODC mRNA level increased greatly in colon cancer tissues (P<0.01). Immunohistochemical staining showed that colorectal carcinoma cells expressed a significantly higher level of ODC than normal colorectal mucosa (98.6±1.03%vs 5.26±5%, P<0.01).CONCLUSION: ODC gene overexpression is significantly related to human colorectal carcinoma. ODC gene expression may be a marker for the gene diagnosis and therapy of colorectal carcinoma.

  5. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    Kanerva, Kristiina; Maekitie, Laura T. [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Baeck, Nils [Department of Anatomy, Institute of Biomedicine, University of Helsinki, Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); HUSLAB, Helsinki (Finland); Department of Oncology and Pathology, Karolinska Institutet, Stockholm (Sweden)

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  6. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na+-H+ exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of [3H]thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na+-H+ antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity

  7. Localization of histidine decarboxylase mRNA in rat brain.

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  8. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (−1415 T>C) gene polymorphisms with calcium oxalate stone disease

    ÇOKER-GÜRKAN, AJDA; Arisan, Serdar; ARISAN, ELIF DAMLA; ÜNSAL, NARÇIN PALAVAN

    2013-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the ...

  9. Ornithine decarboxylase as an early indicator of in vitro hepatocyte DNA synthesis

    The enzyme ornithine decarboxylase, one of the key enzymes involved in polyamine biosynthesis, catalyzes the decarboxylation of ornithine to give putrescine. The activity of this enzyme in an in vitro hepatocyte culture assay system was measured because it is known that ornithine decarboxylase levels increase in instances where active protein synthesis, DNA synthesis, and cell growth is initiated. A good correlation was found between ornithine decarboxylase activity and the rate of tritiated thymidine incorporation into hepatocyte DNA. The increase in enzyme activity precedes the incorporation of tritiated thymidine into DNA (enzyme activity increases 2-3 hr following stimulation of cell growth; whereas the tritiated thymidine uptake increases at about 14-18 hr). Experimental results obtained with this assay system, suggest that hepatocytes from the regenerating liver remnant, grown in vitro, secrete a factor(s) into the culture medium which stimulates DNA synthesis of normal hepatocytes. Use of the increase in ornithine decarboxylase activity in this hepatocyte monolayer culture system confirmed the observation made by several investigators: that the serum of rats which underwent partial hepatectomy contains a factor(s) which stimulates hepatocyte DNA synthesis in vitro. In conclusion, these results suggest that ornithine decarboxylase activity can be used as a sensitive, early indicator of the degree of stimulation of hepatocyte DNA synthesis and thus be of use in determining the effect of various trophic factors on hepatocyte DNA synthesis in vitro

  10. Stiff-Person Syndrome: Case Series

    Yu Jin Jung

    2014-04-01

    Full Text Available Stiff-person syndrome (SPS is a rare disorder, characterized by progressive fluctuating muscular rigidity and spasms. Glutamic acid decarboxylase (GAD antibody is primarily involved in the pathogenesis of SPS and SPS is strongly associated with other autoimmune disease. Here we report three cases of patients with classical SPS finally confirmed by high serum level of GAD antibodies. All of our patients respond favorably to gamma amino butyric acid-enhancing drugs and immunotherapies.

  11. Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce.

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yoshikawa-Takahashi, Miwako; Yano, Yutaka

    2008-08-15

    In order to analyze the genes related to the histamine production, a strain of histamine producing halophilic bacteria, referred to as strain H, was isolated using enrichment culture and dilution-to-extinction methods with histidine broth inoculated from the fish sauce mashes. The two Japanese fish sauce mashes used, accumulate over 1000 mg/l of histamine. Phenotypic and 16 S rRNA gene sequence analyses identified strain H as Tetragenococcus halophilus, the predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR and Southern blot) of the histamine producing strain confirmed that the strain harbored a 30 kbp plasmid (pHDC) encoding a single copy of the pyruvoyl dependent histidine decarboxylase gene (hdc). A comparison of hdcA that is a structural gene of histidine decarboxylase among strain H, Lactobacillus hilgardii 0006, L. sakei LTH2076, Oenococcus oeni 9204, T. halophilus and T. muriaticus JCM10006 (T) indicated >99% sequence similarity. The hdc gene cluster consisted of 4 ORFs, hdcP, hdcA, hdcB, and hdcRS, and were almost identical to that of L. hilgardii 0006 with 99% sequence similarity including the structural hdc spacer region. However, the approximately 500 bp regions upstream and downstream of the hdc gene were different between that of strain H and L. hilgardii 0006. The complete sequence of pHDC revealed 29,924 nucleotides including 28 ORFs, two pairs of IR (inverted repeat), similar sequence of plasmid conjugative elements, and a theta-type replicon. These results suggested that hdc could be encoded on transformable elements among lactic acid bacteria. PMID:18573560

  12. Endogenous synthesis of taurine and GABA in rat ocular tissues

    The endogenous production of taurine and γ-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine on the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye. (author)

  13. Chilling Tolerance of Cucumber During Germination is Related to Expression of Lysine Decarboxylase Gene

    LU Ming-hui; LI Xiao-ming; CHEN Jin-feng; CHEN Long-zheng; QIAN Chun-tao

    2005-01-01

    Using cDNA-AFLP technique, a specific fragment was isolated from cucumber cultivar Changchun mici possessing chilling tolerance induced at low temperature (15℃). This fragment, named cctr 132, could not be induced in the chilling sensitive cucumber cultivar Beijing jietou. After recovering the fragment, sequencing and translating, the results of blastx and blastp in GenBank of NCBI indicated that CCTR132 had 88.37% identities and 100% positives with Oryza sativa putative lysine decarboxylase-like protein respectively, and PGGXGTXXE, the putative conserved domain of lysine decarboxylase family, was detected from CCTR132, suggesting the cucumber chilling tolerance during germination is related to the expression of the lysine decarboxylase gene.

  14. The neural substrates of response inhibition to negative information across explicit and implicit tasks in GAD patients: Electrophysiological evidence from an ERP study

    Fengqiong eYu

    2015-03-01

    Full Text Available Background: It has been established that the inability to inhibit a response to negative stimuli is the genesis of anxiety. However, the neural substrates of response inhibition to sad faces across explicit and implicit tasks in general anxiety disorder (GAD patients remain unclear.Methods: Electrophysiological data were recorded when subjects performed two modified emotional go/no-go tasks in which neutral and sad faces were presented: one task was explicit (emotion categorization, and the other task was implicit (gender categorization.Results: In the explicit task, electrophysiological evidence showed decreased amplitudes of no-go/go difference waves at the N2 interval in the GAD group compared to the control group. However, in the implicit task, the amplitudes of no-go/go difference waves at the N2 interval showed a reversed trend. Source localization analysis on no-go/N2 components revealed a decreased current source density (CSD in the right dorsal lateral prefrontal cortex in GAD individuals relative to controls. In the implicit task, the left superior temporal gyrus and the left inferior parietal lobe showed enhanced activation in GAD individuals and may compensate for the dysfunction of the right dorsal lateral prefrontal cortex.Conclusions: These findings indicated that the processing of response inhibition to socially sad faces in GAD individuals was interrupted in the explicit task. However, this processing was preserved in the implicit task. The neural substrates of response inhibition to sad faces were dissociated between implicit and explicit tasks.

  15. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  16. Variation in oxalate and oxalate decarboxylase production by six species of brown and white rot fungi

    Hastrup, Anne Christine Steenkjær; Oliver, Jason; Howell, Caitlin;

    cell lumen where it quickly dissociates into hydrogen ions and oxalate, resulting in a pH decrease of the environment, and oxalate-cation complexes. Generally, brown rot fungi accumulate larger quantities of oxalic acid in the wood than white rot fungi. The amount of oxalic acid has been shown to vary...... significantly among strains of brown rot fungi and within strains in response to differing environmental conditions (Green and Clausen; Hastrup et al., 2006).  This variation is in part believed to be due to the level of oxalate decarboxylase (ODC). The enzyme breaks down oxalate into stoichiometric quantities...... of formic acid and CO2 (Makela et al., 2002). So far only a few species of brown rot fungi have been shown to accumulate this enzyme (Micales, 1995, Howell and Jellison, 2006).   The purpose of this study was to investigate the variation in the levels of soluble oxalate and total oxalate, in...

  17. Uroporphyrinogen decarboxylase gene mutations in Danish patients with porphyria cutanea tarda

    Christiansen, L; Bygum, A; Jensen, A; Brandrup, F; Thomsen, K; Hørder, Mogens; Petersen, N E

    2000-01-01

    Decreased uroporphyrinogen decarboxylase (UROD) activity is a characteristic feature of the most common of the porphyrias, porphyria cutanea tarda (PCT). A subgroup of the clinically overt PCT cases is associated with mutations in the gene encoding UROD and inherited as an autosomal-dominant trait...

  18. Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis

    Christiansen, L; Ged, C; Hombrados, I; Brons-Poulsen, J; Fontanellas, A; de Verneuil, H; Hørder, M; Petersen, N E

    1999-01-01

    The two porphyrias, familial porphyria cutanea tarda (fPCT) and hepatoerythropoietic porphyria (HEP), are associated with mutations in the gene encoding the enzyme uroporphyrinogen decarboxylase (UROD). Several mutations, most of which are private, have been identified in HEP and fPCT patients...

  19. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. PMID:26798990

  20. New enzymatic methods for selective assay of L-lysine using an L-lysine specific decarboxylase/oxidase from Burkholderia sp. AIU 395.

    Sugawara, Asami; Matsui, Daisuke; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2015-03-01

    We developed new enzymatic methods for the selective assay of L-lysine by utilizing an oxidase reaction and a decarboxylation reaction by the L-lysine-specific decarboxylase/oxidase (L-Lys-DC/OD) from Burkholderia sp. AIU 395. The method utilizing the oxidase reaction of this enzyme was useful for determination of high concentrations of L-lysine. The method utilizing the decarboxylase reaction, which proceeded via the combination of the L-Lys-DC/OD and putrescine oxidase (PUO) from Micrococcus rubens, was effective for determination of low concentrations of L-lysine. Both methods showed good linearity, and neither was affected by other amino acids or amines. In addition, the within-assay and between-assay precisions of both methods were within the allowable range. The coupling of L-Lys-DC/OD with PUO was also useful for the differential assay of L-lysine and cadaverine. These newly developed methods were applied to the assay of L-lysine in biological samples and found to be effective. PMID:25282636

  1. Autoimmune disease

    2005-01-01

    2005164 Optimal cut-point of glutamic acid decar-boxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (LADA). LI Xia(李霞), et al. Dept Endocrinol, 2nd Xiangya Hosp, Central South Univ, Changsha, 410011. Chin J Diabetes, 2005;13(1) :34-38. Objective: To investigate the optimal cut-point of glutamate decarboxylase antibody (GAD-Ab) for differentiating two subtypes of latent autoimmune diabetes in adults (I. ADA). Methods: The frequency

  2. Gestos autolíticos deliberados (GAD en adolescentes en el Oeste de Londres: Factores socio-culturales

    Dinesh Bhugra

    2004-06-01

    Full Text Available Los estudios previos han sugerido que las tasas de gestos autolíticos deliberados (GAD en adolescentes asiáticos y pertenecientes a otros grupos étnicos minoritarios no son diferentes de aquéllas del grupo mayoritario. En este estudio documentamos los factores socio-culturales implicados en los gestos autolíticos llevados a cabo por los adolescentes del oeste de Londres durante un período de un año. Método. Se contactó con todos los casos de GAD en adolescentes para que participasen en el estudio. Empleando aproximaciones estándares y cualitativas, se recogieron los datos sobre los motivos del intento, identidad cultural y acontecimientos vitales. Resultados. Se identificaron un total de 76 casos durante un año. En contra de lo esperado, las tasas de intento de suicidio fueron más bajas en los asiáticos que en los blancos. Los patrones de intento de suicidio mostraron que la sobredosis fue el sistema más comúnmente empleado y que el factor precipitante más común, sin tener en cuenta la etnia, fue el desacuerdo con los padres. Las sobredosis fueron, en ambos grupos, de tipo impulsivo. Los asiáticos documentaron con mayor frecuencia conflictos culturales, incluso aunque las tasas en los dos grupos no son diferentes. Conclusiones. Cualquier estrategia preventiva debería incluir educación y ayuda para controlar el comportamiento impulsivo.

  3. 唾液链球菌嗜热亚种Y-2产谷氨酸脱羧酶的影响因子确立%Ascertainment of Factors Affecting Glutamate Decarboxylase Production by Streptococcus Salivarius ssp.thermophilus Y-2

    杨胜远; 陆兆新; 余勃; 林谦; 焦阳; 别小妹; 吕凤霞

    2008-01-01

    从产酶和细胞生长较好的MRS培养基出发,对Streptococcus salivarius ssp.thermophilus Y-2产谷氨酸脱羧酶(glutamate decarboxylase,GAD)的影响因子进行探讨,结果当培养基组成和培养条件为蛋白胨15g/L、牛肉膏12.5g/L、蔗糖12.5g/L、柠檬酸二铵2.0g/L、乙酸钠5.0g/L、K2HPO4 2.0g/L、CaCl2 2.0 g/L、Tween 80 1.0ml、pH7.0、接种量2%(V/V)、发酵温度37℃、发酵时间12h时,较有利于菌株Y-2产GAD.Plackett-Burman设计法研究表明培养基初始pH值和K2HPO4为影响菌株Y-2产GAD的主要影响因素.经对菌株Y-2产GAD影响因素的筛选,新获得的培养基在组成上与MRS培养基相比已发生显著变化,GAD活力提高了1.3倍.

  4. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake

    GABAergic neurons have been identified in the piriform cortex of the opossum at light and electron microscopic levels by immunocytochemical localization of GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase and by autoradiographic visualization of high-affinity 3H-GABA uptake. Four major neuron populations have been distinguished on the basis of soma size, shape, and segregation at specific depths and locations: large horizontal cells in layer Ia of the anterior piriform cortex, small globular cells with thin dendrites concentrated in layers Ib and II of the posterior piriform cortex, and multipolar and fusiform cells concentrated in the deep part of layer III in anterior and posterior parts of the piriform cortex and the subjacent endopiriform nucleus. All four populations were well visualized with both antisera, but the large layer Ia horizontal cells displayed only very light 3H-GABA uptake, thus suggesting a lack of local axon collaterals or lack of high-affinity GABA uptake sites. The large, ultrastructurally distinctive somata of layer Ia horizontal cells receive a very small number of symmetrical synapses; the thin, axonlike dendrites of small globular cells are exclusively postsynaptic and receive large numbers of both symmetrical and asymmetrical synapses, in contrast to somata which receive a small number of both types; and the deep multipolar and fusiform cells receive a highly variable number of symmetrical and asymmetrical synapses on somata and proximal dendrites. Labeled puncta of axon terminal dimensions were found in large numbers in the neuropil surrounding pyramidal cell somata in layer II and in the endopiriform nucleus. Moderately large numbers of labeled puncta were found in layer I at the depth of pyramidal cell apical dendrites with greater numbers in layer Ia at the depth of distal apical segments than in layer Ib

  5. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake

    Haberly, L.B.; Hansen, D.J.; Feig, S.L.; Presto, S.

    1987-12-08

    GABAergic neurons have been identified in the piriform cortex of the opossum at light and electron microscopic levels by immunocytochemical localization of GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase and by autoradiographic visualization of high-affinity /sup 3/H-GABA uptake. Four major neuron populations have been distinguished on the basis of soma size, shape, and segregation at specific depths and locations: large horizontal cells in layer Ia of the anterior piriform cortex, small globular cells with thin dendrites concentrated in layers Ib and II of the posterior piriform cortex, and multipolar and fusiform cells concentrated in the deep part of layer III in anterior and posterior parts of the piriform cortex and the subjacent endopiriform nucleus. All four populations were well visualized with both antisera, but the large layer Ia horizontal cells displayed only very light /sup 3/H-GABA uptake, thus suggesting a lack of local axon collaterals or lack of high-affinity GABA uptake sites. The large, ultrastructurally distinctive somata of layer Ia horizontal cells receive a very small number of symmetrical synapses; the thin, axonlike dendrites of small globular cells are exclusively postsynaptic and receive large numbers of both symmetrical and asymmetrical synapses, in contrast to somata which receive a small number of both types; and the deep multipolar and fusiform cells receive a highly variable number of symmetrical and asymmetrical synapses on somata and proximal dendrites. Labeled puncta of axon terminal dimensions were found in large numbers in the neuropil surrounding pyramidal cell somata in layer II and in the endopiriform nucleus. Moderately large numbers of labeled puncta were found in layer I at the depth of pyramidal cell apical dendrites with greater numbers in layer Ia at the depth of distal apical segments than in layer Ib.

  6. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities.

    Volke, A; Wegener, G; Vasar, E; Volke, V

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may regulate NOS activity. We aimed to develop a HPLC-based method to measure simultaneously the products of these three enzymes. Traditionally, the separation of amino acids and related compounds with HPLC has been carried out with precolumn derivatization and reverse phase chromatography. We describe here a simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method, we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. PMID:16541190

  7. Accumulation of uroporphyrin does not provoke further inhibition of liver uroporphyrinogen decarboxylase activity in hexachlorobenzene-induced porphyria.

    Adjarov, D G; Elder, G H

    1986-01-01

    The inhibition of uroporphyrinogen decarboxylase (Uro-D) is the basic pathogenetic mechanism in porphyria caused by hexachlorobenzene (HCB). This study aimed to establish whether hepatic accumulation of uroporphyrin in this porphyria could provoke a further decrease of Uro-D activity. Male C57Bl/6 mice were treated for 8 weeks with a diet containing 0.02% HCB. In some of them the deposition of liver porphyrins was additionally increased by intraperitoneal application of delta-aminolaevulinic acid (ALA). Uro-D activity was determined by measuring unconverted substrate uroporphyrinogen after its oxidation to uroporphyrin by reversed-phase high performance liquid chromatography. The value of endogenously formed uroporphyrin was also obtained from the sample by subtraction, using a blank assay. HCB treatment resulted in reduced activity of hepatic Uro-D, but this activity was not significantly less in animals loaded with ALA than in non-loaded mice. Uroporphyrin deposition tended to decrease 6 weeks after withdrawal of HCB, but the activity of Uro-D was still markedly inhibited. There was no evidence that the accumulation of uroporphyrin promoted a supplementary decrease of Uro-D activity in HCB porphyria. PMID:3596742

  8. Real-Time kinetic studies of Bacillus subtilis oxalate decarboxylase and Ceriporiopsis subvermispora oxalate oxidase using a luminescent oxygen sensor

    Laura Molina

    2014-12-01

    Full Text Available Oxalate decarboxylase (OxDC, an enzyme of the bicupinsuperfamily, catalyzes the decomposition of oxalate into carbondioxide and formate at an optimal pH of 4.3 in the presence ofoxygen. However, about 0.2% of all reactions occur through anoxidase mechanism that consumes oxygen while producing twoequivalents of carbon dioxide and one equivalent of hydrogenperoxide. The kinetics of oxidase activity were studied bymeasuring the consumption of dissolved oxygen over time using a luminescent oxygen sensor. We describe the implementation of and improvements to the oxygen consumption assay. The oxidase activity of wild type OxDC was compared to that of the T165V OxDC mutant, which contains an impaired flexible loop covering the active site. The effects of various carboxylic acid-based buffers on the rate of oxidase activity were also studied. These results were compared to the oxidase activity of oxalate oxidase (OxOx, a similar bicupin enzyme that only carries out oxalate oxidation. Thetemperature dependence of oxidase activity was analyzed, andpreliminary results offer an estimate for the overall activationenergy of the oxidase reaction within OxDC. The data reported here thus provide insights into the mechanism of the oxidase activity of OxDC.

  9. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta6Br122+) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C2221; the Ta6Br122+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta6Br122+-derivatized structure to 5 Å resolution. Many of the Ta6Br122+-binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  10. Meat consumption, ornithine decarboxylase gene polymorphism, and outcomes after colorectal cancer diagnosis

    Zell, Jason A.; Lin, Bruce S.; Argyrios Ziogas; Hoda Anton-Culver

    2012-01-01

    Background: Dietary arginine and meat consumption are implicated in colorectal cancer (CRC) progression via polyamine-dependent processes. Polymorphism in the polyamine-regulatory gene, ornithine decarboxylase 1 (Odc1, rs2302615) is prognostic for CRC-specific mortality. Here, we examined joint effects of meat consumption and Odc1 polymorphism on CRC-specific mortality. Materials and Methods: The analytic cohort was comprised of 329 incident stage I-III CRC cases diagnosed 1994-1996 with foll...

  11. Ornithine decarboxylase activity is a marker of premalignancy in longstanding Helicobacter pylori infection.

    Patchett, S E; Katelaris, P H; Zhang, Z. W.; Alstead, E M; Domizio, P; Farthing, M J

    1996-01-01

    BACKGROUND: Longstanding Helicobacter pylori infection may increase the risk of developing gastric adenocarcinoma. The sequence of chronic active gastritis leading to gastritis with atrophy and subsequent intestinal metaplasia is thought to be a key step in gastric carcinogenesis. Ornithine decarboxylase (ODC) activity is increased in some pre-malignant gastrointestinal conditions and is essential for malignant transformation in vitro. AIMS: To measure ODC activity in the antrum of H pylori i...

  12. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells

    NAGASHIMA, YUSUKE; Kako, Koichiro; KIM, JUN-DAL; Fukamizu, Akiyoshi

    2012-01-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced prod...

  13. Genetic and Functional Analysis of the Soluble Oxaloacetate Decarboxylase from Corynebacterium glutamicum▿

    Klaffl, Simon; Eikmanns, Bernhard J.

    2010-01-01

    Soluble, divalent cation-dependent oxaloacetate decarboxylases (ODx) catalyze the irreversible decarboxylation of oxaloacetate to pyruvate and CO2. Although these enzymes have been characterized in different microorganisms, the genes that encode them have not been identified, and their functions have been only poorly analyzed so far. In this study, we purified a soluble ODx from wild-type C. glutamicum about 65-fold and used matrix-assisted laser desorption ionization-time of flight (MALDI-TO...

  14. Deletion of glycine decarboxylase in arabidopsis is lethal under nonphotorespiratory conditions

    Engel, N.; van den Daele, K.; Kolukisaoglu, U.; Morgenthal, K.; Weckwerth, W.; Parnik, T.; Keerberg, O.; Bauwe, H.

    2007-01-01

    The mitochondrial multienzyme glycine decarboxylase (GDC) catalyzes the tetrahydrofolate-dependent catabolism of glycine to 5,10-methylene-tetrahydrofolate and the side products NADH, CO 2, and NH3. This reaction forms part of the photorespiratory cycle and contributes to one-carbon metabolism. While the important role of GDC for these two metabolic pathways is well established, the existence of bypassing reactions has also been suggested. Therefore, it is not clear to what extent GDC is obli...

  15. Ornithine Decarboxylase-1 Polymorphism, Chemoprevention With Eflornithine and Sulindac, and Outcomes Among Colorectal Adenoma Patients

    Zell, Jason A.; McLaren, Christine E.; Chen, Wen-Pin; Thompson, Patricia A.; Gerner, Eugene W.; Meyskens, Frank L.

    2010-01-01

    The ornithine decarboxylase-1 (ODC1) polymorphism at position +316 affects binding by transcriptional activators and repressors and modulates the risk of metachronous colorectal adenomas, particularly in association with aspirin use. We investigated the effects of ODC1 after treatment with difluoromethylornithine (eflornithine)/sulindac or placebo. Two hundred twenty-eight colorectal adenoma patients in a randomized phase III trial were genotyped for ODC1. We used Wilcoxon rank sums tests on ...

  16. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh, E-mail: jvpratap@cdri.res.in

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  17. Racial and Ethnic Differences in Symptom Severity of PTSD, GAD, and Depression in Trauma-Exposed, Urban, Treatment-Seeking Adults

    Ghafoori, Bita; Barragan, Belen; Tohidian, Niloufar; Palinkas, Lawrence

    2012-01-01

    Urban, socially disadvantaged individuals are at high risk for traumatic event exposure and its subsequent psychiatric symptomatology. This study examined the association between race/ethnicity and symptom severity of posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), and depression in an urban clinical sample of 170 trauma-exposed adults. In addition, this study investigated the role of socioeconomic position (SEP) and coping style in the relationship between race/ethn...

  18. Identification of the Enterobacteriaceae in Montasio cheese and assessment of their amino acid decarboxylase activity.

    Maifreni, Michela; Frigo, Francesca; Bartolomeoli, Ingrid; Innocente, Nadia; Biasutti, Marialuisa; Marino, Marilena

    2013-02-01

    The aim of the study was to identify the species of Enterobacteriaceae present in Montasio cheese and to assess their potential to produce biogenic amines. Plate count methods and an Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) approach, combined with 16S rDNA sequencing, were used to investigate the Enterobacteriaceae community present during the cheesemaking and ripening of 6 batches of Montasio cheese. Additionally, the potential decarboxylation abilities of selected bacterial isolates were qualitatively and quantitatively assessed against tyrosine, histidine, ornithine and lysine. The most predominant species detected during cheese manufacturing and ripening were Enterobacter cloacae, Escherichia coli and Hafnia alvei. The non-limiting physico-chemical conditions (pH, NaCl% and a(w)) during ripening were probably the cause of the presence of detectable levels of Enterobacteriaceae up to 120 d of ripening. The HPLC test showed that cadaverine and putrescine were the amines produced in higher amounts by almost all isolates, indicating that the presence of these amines in cheese can be linked to the presence of high counts of Enterobacteriaceae. 44 isolates produced low amounts of histamine (agglomerans, Esch. fergusonii and R. ornithinolytica. PMID:23298547

  19. Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality

    Eunkyue Park; Seung Yong Park; Carl Dobkin; Georgia Schuller-Levis

    2014-01-01

    We engineered a CSAD KO mouse to investigate the physiological roles of taurine. The disruption of the CSAD gene was verified by Southern, Northern, and Western blotting. HPLC indicated an 83% decrease of taurine concentration in the plasma of CSAD-/-. Although CSAD-/- generation (G)1 and G2 survived, offspring from G2 CSAD-/- had low brain and liver taurine concentrations and most died within 24 hrs of birth. Taurine concentrations in G3 CSAD-/- born from G2 CSAD-/- treated with taurine in ...

  20. Structural insight into DFMO resistant ornithine decarboxylase from Entamoeba histolytica: an inkling to adaptive evolution.

    Preeti

    Full Text Available BACKGROUND: Polyamine biosynthetic pathway is a validated therapeutic target for large number of infectious diseases including cancer, giardiasis and African sleeping sickness, etc. α-Difluoromethylornithine (DFMO, a potent drug used for the treatment of African sleeping sickness is an irreversible inhibitor of ornithine decarboxylase (ODC, the first rate limiting enzyme of polyamine biosynthesis. The enzyme ODC of E. histolytica (EhODC has been reported to exhibit resistance towards DFMO. METHODOLOGY/PRINCIPAL FINDING: The basis for insensitivity towards DFMO was investigated by structural analysis of EhODC and conformational modifications at the active site. Here, we report cloning, purification and crystal structure determination of C-terminal truncated Entamoeba histolytica ornithine decarboxylase (EhODCΔ15. Structure was determined by molecular replacement method and refined to 2.8 Å resolution. The orthorhombic crystal exhibits P2(12(12(1 symmetry with unit cell parameters a = 76.66, b = 119.28, c = 179.28 Å. Functional as well as evolutionary relations of EhODC with other ODC homologs were predicted on the basis of sequence analysis, phylogeny and structure. CONCLUSIONS/SIGNIFICANCE: We determined the tetrameric crystal structure of EhODCΔ15, which exists as a dimer in solution. Insensitivity towards DFMO is due to substitution of key substrate binding residues in active site pocket. Additionally, a few more substitutions similar to antizyme inhibitor (AZI, a non-functional homologue of ODCs, were identified in the active site. Here, we establish the fact that EhODC sequence has conserved PLP binding residues; in contrast few substrate binding residues are mutated similar to AZI. Further sequence analysis and structural studies revealed that EhODC may represent as an evolutionary bridge between active decarboxylase and inactive AZI.

  1. Changes in activity of lysine decarboxylase in winter triticale in response to grain aphid feeding.

    Sempruch, C; Leszczyński, B; Wójcicka, Agnieszka; Makosz, M; Matok, H; Chrzanowski, G

    2010-12-01

    Changes in lysine decarboxylase (LDC) activity caused by Sitobion avenae (F.) feeding on two winter triticale cultivars (cvs) were studied. The aphid fecundity and values of intrinsic rate of natural increase showed that cv Witon was less susceptible to S. avenae than cv Tornado. The grain aphid feeding on more susceptible triticale caused a decrease in the LDC activity, with exceptions of root tissues after two weeks of the feeding. In case of less susceptible cv Witon reduction of the LDC activity was observed only during initial period of S. avenae feeding. Later the aphid infestation induced activity of the LDC within tissues of cv Witon. PMID:21112841

  2. Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain?

    Daniela Peters

    Full Text Available Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the "classical" pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine

  3. Inhibitory Activity of the Flower Buds of Lonicera japonica Thunb. against Histamine Production and L-Histidine Decarboxylase in Human Keratinocytes

    Yoshihiro Inami

    2014-06-01

    Full Text Available In previous studies we found that anionic surfactants such as sodium laurate (SL and/or sodium dodecylsulfate (SDS exert actions on epidermal keratinocytes rather than mast cells to give rise of histamine production and skin itching through increasing the expression of the 53-kDa active form of l-histidine decarboxylase (HDC. In addition, with treatment of SL in a three-dimensional human keratinocyte culture, increases in both the 53-kDa HDC and histamine production are detected and thus this culture assay is applied to screen anti-itching materials from natural resources. In this study, the inhibitory activity of “Kin-gin-ka” (flower buds of Lonicera japonica Thunb., FLJ against histamine production and expression of the active form of HDC were examined in this culture assay. FLJ is a well-known traditional Chinese medicine, being used to treat fevers, coughs and some infectious diseases. The result showed both FLJ and chlorogenic acid had inhibitory activities against the expression of 53-kDa HDC and histamine production. However, chlorogenic acid showed a weaker effect on histamine production than that of FLJ, suggesting that other chemical constituents besides chlorogenic acid could contribute to the inhibitory activities. Thus, a further chemical study of FLJ is now under investigation.

  4. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO2. The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH3O, p-CH3, p-Cl, and m-F) were studied using solvent deuterium and 13C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D2O-sensitive) and decarboxylation (13C-sensitive). D2O and 13C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D2O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  5. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[α-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 370C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken

  6. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  7. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.

    Abdellaoui, Sofiene; Hickey, David P; Stephens, Andrew R; Minteer, Shelley D

    2015-10-01

    The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule. PMID:26271633

  8. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    2010-04-01

    ... requirements for enzyme preparations in the Food Chemicals Codex, 4th ed., 1996, pp. 133-134, which is... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alpha-acetolactate decarboxylase (α-ALDC)...

  9. Color threshold and ratio of S100 beta, MAP5, NF68/200, GABA & GAD. I. Distribution in inner ear afferents

    Fermin, C. D.; Martin, D. S.; Hara, H.

    1997-01-01

    Afferents of chick embryos (Gallus domesticus) VIIIth nerve were examined at E3, E6, E9, E13, El7, and hatching (NH) for anti-S100 beta, anti-MAP5, anti-GABA, anti-GAD and anti-NF68/200 stain. Different ages were processed together to determine if the distribution of these antibodies changed during synaptogenesis and myelination. Color thresholding showed that saturation of pixels changed for S100 beta only 5%, for NF68/200 10%, and for MAP5, 10%, between E9-NH. Color ratio of NF68/200 over MAP5 was 1.00 at E13 and 0.25 at E16 and NH. S100 beta, GABA and GAD were co-expressed on nerve endings at the edge of the maculae and center of the cristae, whereas hair cells in the center of the maculae expressed either S100 beta or GABA, but not both. S100 beta/NF68/200 shared antigenic sites on the chalices, but NF68/200 expression was higher than S100 beta in the chalices at hatching. MAP5 was expressed in more neurons than NF68/200 at E11, whereas NF68/200 was more abundant than MAP5 at hatching. The results suggest that: 1) the immunoexpression of these neuronal proteins is modulated concomitantly with the establishment of afferent synapses and myelination; 2) S100 beta may serve a neurotrophic function in the chalices where it is co-expressed with the neurotransmitter GABA and its synthesizing enzyme GAD.

  10. Isolation and characterization of the orotidine 5'-monophosphate decarboxylase domain of the multifunctional protein uridine 5'-monophosphate synthase.

    Floyd, E E; Jones, M E

    1985-08-01

    The multifunctional protein uridine 5'-monophosphate (UMP) synthase catalyzes the final two reactions of the de novo biosynthesis of UMP in mammalian cells by the sequential action of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate (OMP) decarboxylase (EC 4.1.1.23). This protein is composed of one or two identical subunits; the monomer weighs of 51,500 daltons. UMP synthase from mouse Ehrlich ascites cells can exist as three distinct species as determined by sucrose density gradient centrifugation: a 3.6 S monomer, a 5.1 S dimer, and a 5.6 S conformationally altered dimer. Limited digestion of each of these three species with trypsin produced a 28,500-dalton peptide that was relatively resistant to further proteolysis. The peptide appears to be one of the two enzyme domains of UMP synthase for it retained only OMP decarboxylase activity. Similar results were obtained when UMP synthase was digested with elastase. OMP decarboxylase activity was less stable for the domain than for UMP synthase; the domain can rapidly lose activity upon storage or upon dilution. The size of the mammalian OMP decarboxylase domain is similar to that of yeast OMP decarboxylase. If the polypeptides which are cleaved from UMP synthase by trypsin are derived exclusively from either the amino or the carboxyl end of UMP synthase, then the size of a fragment possessing the orotate phosphoribosyltransferase domain could be as large as 23,000 daltons which is similar in size to the orotate phosphoribosyltransferase of yeast and of Escherichia coli. PMID:3839509

  11. Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase.

    Ishihara, Atsushi; Nakao, Takahito; Mashimo, Yuko; Murai, Masatoshi; Ichimaru, Naoya; Tanaka, Chihiro; Nakajima, Hiromitsu; Wakasa, Kyo; Miyagawa, Hisashi

    2011-01-01

    Tryptophan-derived secondary metabolites, including serotonin and its hydroxycinnamic acid amides, markedly accumulate in rice leaves in response to pathogen attack. These compounds have been implicated in the physical defense system against pathogen invasion by being deposited in cell walls. Serotonin is biosynthesized from tryptophan via tryptamine, and tryptophan decarboxylase (TDC) catalyzes the first committed reaction. In this study, (S)-α-(fluoromethyl)tryptophan (S-αFMT) was utilized to investigate the effects of the inhibition of TDC on the defense responses of rice leaves. S-αFMT, enantiospecifically synthesized from L-tryptophan, effectively inhibited TDC activity extracted from rice leaves infected by Bipolaris oryzae. The inhibition rate increased dependently on the incubation time, indicating that S-αFMT served as a suicide substrate. Treatment of rice seedlings with S-αFMT suppressed accumulation of serotonin, tryptamine, and hydroxycinnamic acid amides of serotonin in a dose-dependent manner in B. oryzae-inoculated leaves. The lesions formed on seedlings treated with S-αFMT lacked deposition of brown materials, and those leaves were severely damaged in comparison with leaves without S-αFMT treatment. Administrating tryptamine to S-αFMT-treated leaves restored accumulation of tryptophan-derived secondary metabolites as well as deposition of brown material. In addition, tryptamine administration reduced damage caused by fungal infection. Accordingly, the accumulation of tryptophan-derived secondary metabolites was suggested to be part of the effective defense mechanism of rice. PMID:21112065

  12. OMP decarboxylase: phosphodianion binding energy is used to stabilize a vinyl carbanion intermediate.

    Goryanova, Bogdana; Amyes, Tina L; Gerlt, John A; Richard, John P

    2011-05-01

    Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions. PMID:21486036

  13. Pristane-induced effects on cytochrome P-4501A, ornithine decarboxylase and putrescine in rats.

    Harper, C M; Soni, M G; Mehendale, H M; Cuchens, M A

    1995-08-16

    The effects of pristane (2,6,10,14-tetramethylpentadecane) on cytochrome P-4501A (cP4501A) activity in microsomes, as well as on ornithine decarboxylase (ODC) activity and concomitant putrescine levels were examined in Copenhagen rats. In general, pristane treatment led to increased cP4501A levels when compared to basal levels, while co-treatment with 3-methylcholanthrene (3-MC) and pristane elicited augmented cP4501A responses when compared to responses induced by 3-MC alone. Increases in both ODC activity and putrescine levels were also observed in pristane treated rats. Collectively, these results indicate that pristane influences cP4501A activity and elicits promoter-like responses as reflected in elevated ODC activity and increased amount of putrescine. PMID:7656217

  14. Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase.

    Nitta, Yoko; Kikuzaki, Hiroe; Azuma, Toshiaki; Ye, Yuan; Sakaue, Motoyoshi; Higuchi, Yoshiki; Komori, Hirohumi; Ueno, Hiroshi

    2013-06-01

    Histidine decarboxylase (HDC) catalyses the formation of histamine, a bioactive amine. Agents that control HDC activity are beneficial for treating histamine-mediated symptoms, such as allergies and stomach ulceration. We searched for inhibitors of HDC from the ethyl acetate extract of the petal of Filipendula ulmaria, also called meadowsweet. Rugosin D, rugosin A, rugosin A methyl ester (a novel compound), and tellimagrandin II were the main components; these 4 ellagitannins exhibited a non-competitive type of inhibition, with K(i) values of approximately 0.35-1 μM. These K(i) values are nearly equal to that of histidine methyl ester (K(i)=0.46 μM), an existing substrate analogue inhibitor. Our results show that food products contain potent HDC inhibitors and that these active food constituents might be useful for designing clinically available HDC inhibitors. PMID:23411280

  15. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    Takahiro Nemoto; Shunichiro Kubota; Hideyuki Ishida; Nobuo Murata; Daijo Hashimoto

    2005-01-01

    AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.

  16. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  17. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli

    Soutourina Olga

    2010-10-01

    Full Text Available Abstract Background H-NS regulates the acid stress resistance. The present study aimed to characterize the H-NS-dependent cascade governing the acid stress resistance pathways and to define the interplay between the different regulators. Results We combined mutational, phenotypic and gene expression analyses, to unravel the regulatory hierarchy in acid resistance involving H-NS, RcsB-P/GadE complex, HdfR, CadC, AdiY regulators, and DNA-binding assays to separate direct effects from indirect ones. RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways plays a central role in the regulatory cascade. However, H-NS also directly controls specific regulators of these pathways (e.g. cadC and genes involved in general stress resistance (hdeAB, hdeD, dps, adiY. Finally, we found that in addition to H-NS and RcsB, a third regulator, HdfR, inversely controls glutamate-dependent acid resistance pathway and motility. Conclusions H-NS lies near the top of the hierarchy orchestrating acid response centred on RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways.

  18. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  19. Ornithine decarboxylase antizyme finder (OAF: Fast and reliable detection of antizymes with frameshifts in mRNAs

    Atkins John F

    2008-04-01

    Full Text Available Abstract Background Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs. A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. Results We have developed a computer tool, OAF (ODC antizyme finder for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant. Conclusion OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE

  20. 大鼠杏仁体基底外侧核中含D2受体的γ-氨基丁酸神经元受多巴胺能末梢支配%γ-AMINOBUTYRIC ACID NEURONS BEARING D2 RECEPTORS ARE INNERVATED BY DOPAMINERGIC TERMINALS IN THE BASOLATERAL NUCLEUS OF RAT AMYGDALA

    李瑞锡; 彭裕文; 沈馨亚; 大谷修; 西条 寿夫; 小野 武年

    2005-01-01

    Although both dopamine (DA) and γ-aminobutyric acid (GABA) systems in the amygdala (AM) are involved in schizophrenia which is generally treated by administration of D2 receptor antagonists, it is not clear what is the collocation relationship between GABA and D2 receptors and what are the synaptic relationships between the dopaminergic terminals and GABAergic neurons in AM. Present study examined the coexistence of GABA and D2 receptors and synapses formed between dopaminergic terminals and GABAergic neurons in a key nucleus, the basolateral nucleus (BL), of rat AM by means of double labeling immunofluorescent confocal laser scanning microscopy (CLSM) and immunoelectron microscopy (IEM). CLSM revealed that the glutamic acid decarboxylase (GAD) immunolabeled GABAergic neurons were exclusively immunoreactive (IR) to D2 receptors. This indicates that all of the GABAergic interneurons bear D2receptors. IEM revealed that 45% of the DA synapses ( n = 980) were formed between the DA-IR terminals and GAD-IR neurons, and 55% of that formed between DA-IR terminals and unlabeled neuronal elements. In the DA-GABA synapses, the DA-IR terminals targeted either directly (36%) or indirectly (by serial synapse, 9% ) on GAD-IR dendritic structures. Furthermore, the direct DA-GABA synapses could be classified into single ( 16% ) , convergent ( 14% ) and axoaxonic (6%) types according to the number of synapses and the synaptic compositions. In the indirect case, the connection was a synaptic complex, in which a DA-IR terminal formed a synapse on another terminal that form the synapse on the GAD-IR dendrite. In the synapses of DA-unlabeled neuronal elements, the DA-IR terminals targeted on unlabeled perikarya (4%), dendrites (42%), and axons or terminals (9%). Interestingly, all of the DA synapses were exclusively symmetric. The present results suggest that D2 receptor antagonists might act on GABAergic neurons to weaken the DA neurotransmission in AM for clinical effects in

  1. Orotidine-5'-monophosphate decarboxylase catalysis: Kinetic isotope effects and the state of hybridization of a bound transition-state analogue

    Acheson, S.A.; Bell, J.B.; Jones, M.E.; Wolfenden, R. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-04-03

    The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.

  2. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene

    Martínez, María Elena; O'Brien, Thomas G.; Fultz, Kimberly E.; Babbar, Naveen; Yerushalmi, Hagit; Qu, Ning; Guo, Yongjun; Boorman, David; Einspahr, Janine; Alberts, David S.; Gerner, Eugene W.

    2003-01-01

    Most sporadic colon adenomas acquire mutations in the adenomatous polyposis coli gene (APC) and show defects in APC-dependent signaling. APC influences the expression of several genes, including the c-myc oncogene and its antagonist Mad1. Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is a transcriptional target of c-myc and a modifier of APC-dependent tumorigenesis. A single-nucleotide polymorphism exists in intron 1 of the human ODC gene, which lies between t...

  3. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds.

    Sonoki, Tomonori; Morooka, Miyuki; Sakamoto, Kimitoshi; Otsuka, Yuichiro; Nakamura, Masaya; Jellison, Jody; Goodell, Barry

    2014-12-20

    The decarboxylation reaction of protocatechuate has been described as a bottleneck and a rate-limiting step in cis,cis-muconate (ccMA) bioproduction from renewable feedstocks such as sugar. Because sugars are already in high demand in the development of many bio-based products, our work focuses on improving protocatechuate decarboxylase (Pdc) activity and ccMA production in particular, from lignin-related aromatic compounds. We previously had transformed an Escherichia coli strain using aroY, which had been used as a protocatechuate decarboxylase encoding gene from Klebsiella pneumoniae subsp. pneumoniae A170-40, and inserted other required genes from Pseudomonas putida KT2440, to allow the production of ccMA from vanillin. This recombinant strain produced ccMA from vanillin, however the Pdc reaction step remained a bottleneck during incubation. In the current study, we identify a way to increase protocatechuate decarboxylase activity in E. coli through enzyme production involving both aroY and kpdB; the latter which encodes for the B subunit of 4-hydroxybenzoate decarboxylase. This permits expression of Pdc activity at a level approximately 14-fold greater than the strain with aroY only. The expression level of AroY increased, apparently as a function of the co-expression of AroY and KpdB. Our results also imply that ccMA may inhibit vanillate demethylation, a reaction step that is rate limiting for efficient ccMA production from lignin-related aromatic compounds, so even though ccMA production may be enhanced, other challenges to overcome vanilate demethylation inhibition still remain. PMID:25449108

  4. Secretion of Biologically Active Heterologous Oxalate Decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 Using Homologous Signal Peptides

    Ponnusamy Sasikumar; Sivasamy Gomathi; Kolandaswamy Anbazhagan; Govindan Sadasivam Selvam

    2013-01-01

    Current treatment options for patients with hyperoxaluria and calcium oxalate stone diseases are limited and do not always lead to sufficient reduction in urinary oxalate excretion. Oxalate degrading bacteria have been suggested for degrading intestinal oxalate for the prevention of calcium oxalate stone. Here, we reported a recombinant Lactobacillus plantarum WCFS1 (L. plantarum) secreting heterologous oxalate decarboxylase (OxdC) that may provide possible therapeutic approach by degrading i...

  5. Protein-DNA interactions in the cAMP responsive promoter region of the murine ornithine decarboxylase gene.

    Palvimo, J J; Eisenberg, L M; Jänne, O A

    1991-01-01

    To evaluate the function of the murine ornithine decarboxylase (ODC) gene promoter, expression of chimeric ODC-chloramphenicol acetyltransferase (CAT) plasmids (pODCcat) containing 1,658 nt of the ODC promoter sequence and its various 5'-deletions was analyzed. In transient expression assays with NIH/3T3 mouse cells, pODCcat constructs exhibited fairly strong promoter activity yielding CAT values up to 40% of those obtained with the viral promoter RSV. Interestingly, 5'-deletions of the pODCc...

  6. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    Zhu, Qingsong; Jin, Lihua; CASERO, ROBERT A.; Davidson, Nancy E.; Huang, Yi

    2012-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, a...

  7. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Delta sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.

  8. Krievijas nacionālo interešu raksturojums Ukrainas konflikta gadījumā no 2013. gada līdz 2014. gadam

    Čapligina, Angelina

    2016-01-01

    Esošā darba tēma ir „Krievijas nacionālo interešu raksturojums Ukrainas konflikta gadījumā no 2013. gada līdz 2014. gadam” Teorētiskajā daļā tiek paveikts pieejamās literatūras teorētiskais apskats par politisko reālismu, nacionālām interesēm un spēka līdzsvaru. Informatīvajā daļā tiek dota svarīga informācija par Ukrainas krīzi. Darbā tiek paveikta V. Putina un S. Lavrova retorikas analīze Ukrainas konflikta laikā (2013.-2014.). Rezultātā darbā tika secināts, ka Krievijai ir trīs intereses U...

  9. How and why does tomato accumulate a large amount of GABA in the fruit?

    Mariko eTakayama; Hiroshi eEzura

    2015-01-01

    γ-Aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalysed by three enzymes: glutamate decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehy...

  10. Influence of 17β-estradiol and progesterone on GABAergic gene expression in the arcuate nucleus, amygdala and hippocampus of the rhesus macaque

    Noriega, Nigel C.; Eghlidi, Dominique H.; Garyfallou, Vasilios T.; Kohama, Steven G.; Kryger, Sharon G.; Urbanski, Henryk F.

    2009-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, and the responsiveness of neurons to GABA can be modulated by sex steroids. To better understand how ovarian steroids influence GABAergic system in the primate brain, we evaluated the expression of genes encoding GABA receptor subunits, glutamic acid decarboxylase (GAD) and a GABA transporter in the brains of female rhesus macaques. Ovariectomized adults were subjected to a hormone replacement paradigm invol...

  11. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO. PMID:18922879

  12. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum.

    Shen, Xiaoning; Liu, Dong; Liu, Jun; Wang, Yanyan; Xu, Jiahui; Yang, Zhengjiao; Guo, Ting; Niu, Huanqing; Ying, Hanjie

    2016-09-01

    Butanol is an important industrial chemical and an attractive transportation fuel. However, the deficiency of reducing equivalents NAD(P)H in butanol fermentation results in a large quantity of oxidation products, which is a major problem limiting the atom economy and economic viability of bio-butanol processes. Here, we integrated the butanol fermentation process with a NADH-generating, acetoin biosynthesis process to improve the butanol production. By overexpressing the α-acetolactate decarboxylase gene alsD from Bacillus subtilis in Clostridium acetobutylicum, acetoin yield was significantly increased at the cost of acetone. After optimization of fermentation conditions, butanol (12.9g/L), acetoin (6.5g/L), and ethanol (1.9g/L) were generated by the recombinant strain, with acetone no more than 1.8g/L. Thus, both mass yield and product value were greatly improved. This study demonstrates that reducing power compensation is effective to improve the atom economy of butanol fermentation, and provides a novel approach to improve the economic viability of bio-butanol production. PMID:27285575

  13. Induction of histidine decarboxylase in mouse tissues by mitogens in vivo.

    Endo, Y

    1983-12-15

    Various types of mitogenic substances, such as a Escherichia coli lipopolysaccharide (LPS), concanavalin A (Con A), pokeweed mitogen, polyI:polyC (a synthetic double-stranded RNA) and 12-O-tetradecanoylphorbol-13-acetate (a component of croton oil), induced histidine decarboxylase (HDC) in the liver, spleen and lung of mice at 4.5 hr after injection. Other inflammatory agents without mitogenic activity, such as zymosan, carrageenan, glycogen, D-galactosamine and N-acetyl-muramyl-L-alanyl-D-isoglutamine, did not induce the enzyme. Both LPS (a B-cell mitogen) and Con A (a T-cell mitogen) induced HDC also in nude mice that lack T-cells, indicating that T-cells are not required for HDC induction by mitogens. C3H/HeJ mice, which are LPS-low responder mice in various immunological tests, were quite a bit less responsive to LPS also in the HDC induction. These results show that mitogens with different properties can induce HDC as a common characteristic. On the basis of these results, the possible participation of macrophages in the process of HDC induction by mitogens was discussed. PMID:6661256

  14. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k12/k13 = 1.0334 +/- 0.0005 and a nitrogen isotope effect k14/k15 = 0.9799 +/- 0.0006 at pH 4.8, 370C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D2O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine

  15. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production. PMID:22940786

  16. Stable siRNA-mediated silencing of antizyme inhibitor: regulation of ornithine decarboxylase activity

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme involved in the biosynthesis of polyamines essential for cell growth and differentiation. Aberrant upregulation of ODC, however, is widely believed to be a contributing factor in tumorigenesis. Antizyme is a major regulator of ODC, inhibiting ODC activity through the formation of complexes and facilitating degradation of ODC by the 26S proteasome. Moreover, the antizyme inhibitor (AZI) serves as another factor in regulating ODC, by binding to antizyme and releasing ODC from ODC-antizyme complexes. In our previous report, we observed elevated AZI expression in tumor specimens. Therefore, to evaluate the role of AZI in regulating ODC activity in tumors, we successfully down-regulated AZI expression using RNA interference technology in A549 lung cancer cells expressing high levels of AZI. Two AZI siRNAs, which were capable to generate a hairpin dsRNA loop targeting AZI, could successively decrease the expression of AZI. Using biological assays, antizyme activity increased in AZI-siRNA-transfected cells, and ODC levels and activity were reduced as well. Moreover, silencing AZI expression decreased intracellular polyamine levels, reduced cell proliferation, and prolonged population doubling time. Our results directly demonstrate that downregulation of AZI regulates ODC activity, intracellular polyamine levels, and cell growth through regulating antizyme activity. This study also suggests that highly expressed AZI may be partly responsible for increased ODC activity and cellular transformation

  17. Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo.

    Eisenberg, Daniel P; Kohn, Philip D; Hegarty, Catherine E; Ianni, Angela M; Kolachana, Bhaskar; Gregory, Michael D; Masdeu, Joseph C; Berman, Karen F

    2016-08-01

    The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment. PMID:26924680

  18. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.; (Moffitt); (Cornell)

    2009-08-13

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  19. New insights into structure-function relationships of oxalyl CoA decarboxylase from Escherichia coli.

    Werther, Tobias; Zimmer, Agnes; Wille, Georg; Golbik, Ralph; Weiss, Manfred S; König, Stephan

    2010-06-01

    The gene yfdU from Escherichia coli encodes a putative oxalyl coenzyme A decarboxylase, a thiamine diphosphate-dependent enzyme that is potentially involved in the degradation of oxalate. The enzyme has been purified to homogeneity. The kinetic constants for conversion of the substrate oxalyl coenzyme A by the enzyme in the absence and presence of the inhibitor coenzyme A, as well as in the absence and presence of the activator adenosine 5'-diphosphate, were determined using a novel continuous optical assay. The effects of these ligands on the solution and crystal structure of the enzyme were studied using small-angle X-ray scattering and X-ray crystal diffraction. Analyses of the obtained crystal structures of the enzyme in complex with the cofactor thiamine diphosphate, the activator adenosine 5'-diphosphate and the inhibitor acetyl coenzyme A, as well as the corresponding solution scattering patterns, allow comparison of the oligomer structures of the enzyme complexes under various experimental conditions, and provide insights into the architecture of substrate and effector binding sites. PMID:20553497

  20. Antitumor Effect of Antisense Ornithine Decarboxylase Adenovirus on Human Lung Cancer Cells

    Hui TIAN; Lin LI; Xian-Xi LIU; Yan ZHANG

    2006-01-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-me thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.

  1. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  2. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  3. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  4. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  5. Postnatal expression of H1-receptor mRNA in the rat brain: correlation to L-histidine decarboxylase expression and local upregulation in limbic seizures.

    Lintunen, M; Sallmen, T; Karlstedt, K; Fukui, H; Eriksson, K S; Panula, P

    1998-07-01

    Histamine is implicated in the regulation of brain functions through three distinct receptors. Endogenous histamine in the brain is derived from mast cells and neurons, but the importance of these two pools during early postnatal development is still unknown. The expression of histamine H1-receptor in the rat brain was examined using in situ hybridization during postnatal development and in adults. For comparison, the expression of L-histidine decarboxylase (HDC) in the two pools was revealed. H1-receptor was evenly expressed throughout the brain on the first postnatal days, but resembled the adult, uneven pattern already on postnatal day 5 (P5). HDC was expressed in both mast cells and tuberomammillary neurons from birth until P5, after which the mast cell expression was no more detectable. In adult rat brain, high or moderate levels of H1-receptor expression were found in the hippocampus, zona incerta, medial amygdaloid nucleus and reticular thalamic nucleus. In most areas of the adult brain the expression of H1-receptor mRNA correlates well with binding data and histaminergic innervation. A notable exception is the hypothalamus, with high fibre density but moderate or low H1-receptor expression. Systemic kainic acid administration induced increased expression of H1-receptor mRNA in the caudate-putamen and dentate gyrus, whereas no change was seen in the hippocampal subfields CA1-CA3 or in the entorhinal cortex 6 h after kainic acid injections. This significant increase supports the concept that histaminergic transmission, through H1-receptor, is involved in the regulation of seizure activity in the brain. PMID:9749757

  6. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    Baljinder Kaur

    2013-01-01

    Full Text Available Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB, and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.

  7. The effect of delta-aminolevulinic acid on the synthesis and metabolism of GABA in rabbit brain homogenates

    The porphyrin precursor delta-aminolevulinic acid (delta-ALA) is a structural analogue of the putative amino acid neurotransmitter, γ-aminobutyric acid (GABA). This study has demonstrated that delta-ALA has no effect on glutamate decarboxylase activity and only a small inhibitory effect on GABA aminotransferase activity. This would suggest that if accumulation of delta-ALA is related to development of the acute attack of porphyria, it is not via an effect on GABA synthesis and metabolism

  8. Meat consumption, ornithine decarboxylase gene polymorphism, and outcomes after colorectal cancer diagnosis

    Jason A Zell

    2012-01-01

    Full Text Available Background: Dietary arginine and meat consumption are implicated in colorectal cancer (CRC progression via polyamine-dependent processes. Polymorphism in the polyamine-regulatory gene, ornithine decarboxylase 1 (Odc1, rs2302615 is prognostic for CRC-specific mortality. Here, we examined joint effects of meat consumption and Odc1 polymorphism on CRC-specific mortality. Materials and Methods: The analytic cohort was comprised of 329 incident stage I-III CRC cases diagnosed 1994-1996 with follow- up through March 2008. Odc1 genotyping was conducted using primers that amplify a 172-bp fragment containing the polymorphic base at +316. Dietary questionnaires were administered at cohort entry. Multivariate Cox proportional hazards regression analysis for CRC-specific mortality was stratified by tumor, node, metastasis (TNM stage, and adjusted for clinically relevant variables, plus meat consumption (as a continuous variable, i.e., the number of medium-sized servings/week, Odc1 genotype, and a term representing the meat consumption and Odc1 genotype interaction. The primary outcome was the interaction of Odc1 and meat intake on CRC-specific mortality, as assessed by departures from multiplicative joint effects. Results: Odc1 genotype distribution was 51% GG, 49% GA/AA. In the multivariate model, there was a significant interaction between meat consumption and Odc1 genotype, P-int = 0.01. Among Odc1 GA/AA CRC cases in meat consumption Quartiles 1-3, increased mortality risk was observed when compared to GG cases (adjusted hazards ratio (HR = 7.06 [95% CI 2.34-21.28] - a difference not found among cases in the highest dietary meat consumption Quartile 4. Conclusions: Effects of meat consumption on CRC-specific mortality risk differ based on genetic polymorphism at Odc1. These results provide further evidence that polyamine metabolism and its modulation by dietary factors such as meat may have relevance to CRC outcomes.

  9. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  10. Uroporphyrinogen decarboxylase: Complete human gene sequence and molecular study of three families with hepatoerythropoietic porphyria

    Moran-Jimenez, M.J.; Ged, C.; Verneuil, H. de [Universite de Bordeaux (France)] [and others

    1996-04-01

    A deficiency in uroporphyrinogen decarboxylase (UROD) enzyme activity, the fifth enzyme of the heme biosynthetic pathway, is found in patients with sporadic porphyria cutanea tarda (s-PCT), familial porphyria cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP). Subnormal UROD activity is due to mutations of the UROD gene in both f-PCT and HEP, but no mutations have been found in s-PCT. Genetic analysis has determined that f-PCT is transmitted as an autosomal dominant trait. In contrast, HEP, a severe form of cutaneous porphyria, is transmitted as an autosomal recessive trait. HEP is characterized by a profound deficiency of UROD activity, and the disease is usually manifest in childhood. In this study, a strategy was designed to identify alleles responsible for the HEP phenotype in three unrelated families. Mutations of UROD were identified by direct sequencing of four amplified fragments that contained the entire coding sequence of the UROD gene. Two new missense mutations were observed at the homoallelic state: P62L (proline-to-leucine substitution at codon 62) in a Portuguese family and Y311C (tyrosine-to-cysteine substitution at codon 311) in an Italian family. A third mutation, G281E, was observed in a Spanish family. This mutation has been previously described in three families from Spain and one from Tunisia. In the Spanish family described in this report, a paternal uncle of the proband developed clinically overt PCT as an adult and proved to be heterozygous for the G281E mutation. Mutant cDNAs corresponding to the P62L and Y311C changes detected in these families were created by site-directed mutagenesis. Recombinant proteins proved to have subnormal enzyme activity, and the Y311C mutant was thermolabile. 24 refs., 7 figs., 4 tabs.

  11. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  12. Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop.

    Fortes, Ana M; Costa, Joana; Santos, Filipa; Seguí-Simarro, José M; Palme, Klaus; Altabella, Teresa; Tiburcio, Antonio F; Pais, Maria S

    2011-02-01

    Hop (Humulus lupulus L.) is an economically important plant species used in beer production and as a health-promoting medicine. Hop internodes develop upon stress treatments organogenic nodules which can be used for genetic transformation and micropropagation. Polyamines are involved in plant development and stress responses. Arginine decarboxylase (ADC; EC 4·1.1·19) is a key enzyme involved in the biosynthesis of putrescine in plants. Here we show that ADC protein was increasingly expressed at early stages of hop internode culture (12h). Protein continued accumulating until organogenic nodule formation after 28 days, decreasing thereafter. The same profile was observed for ADC transcript suggesting transcriptional regulation of ADC gene expression during morphogenesis. The highest transcript and protein levels observed after 28 days of culture were accompanied by a peak in putrescine levels. Reactive oxygen species accumulate in nodular tissues probably due to stress inherent to in vitro conditions and enhanced polyamine catabolism. Conjugated polyamines increased during plantlet regeneration from nodules suggesting their involvement in plantlet formation and/or in the control of free polyamine levels. Immunogold labeling revealed that ADC is located in plastids, nucleus and cytoplasm of nodular cells. In vacuolated cells, ADC immunolabelling in plastids doubled the signal of proplastids in meristematic cells. Location of ADC in different subcellular compartments may indicate its role in metabolic pathways taking place in these compartments. Altogether these data suggest that polyamines play an important role in organogenic nodule formation and represent a progress towards understanding the role played by these growth regulators in plant morphogenesis. PMID:21415599

  13. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  14. Combined treatment with sitagliptin and vitamin D in a patient with latent autoimmune diabetes in adults

    Rapti, E; Karras, S; Grammatiki, M; Mousiolis, A; Tsekmekidou, X; Potolidis, E; Zebekakis, P; Daniilidis, M

    2016-01-01

    Summary Latent autoimmune diabetes in adults (LADA) is a relatively new type of diabetes with a clinical phenotype of type 2 diabetes (T2D) and an immunological milieu characterized by high titers of islet autoantibodies, resembling the immunological profile of type 1 diabetes (T1D). Herein, we report a case of a young male, diagnosed with LADA based on both clinical presentation and positive anti-glutamic acid decarboxylase antibodies (GAD-abs), which were normalized after combined treatment with a dipeptidyl peptidase-4 inhibitor (DPP-4) (sitagliptin) and cholecalciferol. Learning points Anti-glutamic acid decarboxylase antibodies (GAD-abs) titers in young patients being previously diagnosed as type 2 diabetes (T2D) may help establish the diagnosis of latent autoimmune diabetes in adults (LADA). Sitagliptin administration in patients with LADA might prolong the insulin-free period. Vitamin D administration in patients with LADA might have a protective effect on the progression of the disease.

  15. Progress in Functional Researches on Ornithine Decarboxylase Antizyme Gene%鸟氨酸脱羧酶抗酶基因功能的研究进展

    刘津津; 柯赛赛; 何珲; 姜冬梅; 胡熙璕; 康波

    2013-01-01

    Ornithine decarboxylase antizyme plays important roles in regulating the processes of poly-amine metabolism,apoptosis,and cell proliferation. Recent studies have shown that ornithine decarboxylase antizyme may regulate the reproduction function in mammal and poultry. Therefore, the progress in researches on ornithine decarboxylase antizyme gene functions was reviewed in this paper.%鸟氨酸脱羧酶抗酶(OAZ)具有调控细胞多胺代谢、诱导细胞凋亡、抑制肿瘤细胞增殖的功能.近年来研究发现,鸟氨酸脱羧酶抗酶在动物繁殖过程中也具有重要调控作用.就鸟氨酸脱羧酶抗酶基因功能的研究现状做一综述,为进一步深入研究OAZ功能提供帮助.

  16. Biochemical and Computational Approaches to Improve the Clinical Treatment of Dopa Decarboxylase-Related Diseases: An Overview

    Cellini, Barbara; Montioli, Riccardo; Oppici, Elisa; Voltattorni, Carla Borri

    2012-01-01

    Dopa decarboxylase (DDC) is a pyridoxal 5’-phosphate (PLP)-dependent enzyme that by catalyzing the decarboxylation of L-Dopa and L-5-hydroxytryptophan produces the neurotransmitters dopamine and serotonin. The functional properties of pig kidney and human DDC enzymes have been extensively characterized, and the crystal structure of the enzyme in the holo- and apo-forms has been elucidated. DDC is a clinically relevant enzyme since it is involved in Parkinson’s disease (PD) and in aromatic ami...

  17. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    Qian Lin

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase a...

  18. Study of orotidine 5'-monophosphate decarboxylase in complex with the top three OMP, BMP, and PMP ligands by molecular dynamics simulation.

    Jamshidi, Shirin; Jalili, Seifollah; Rafii-Tabar, Hashem

    2015-01-01

    Catalytic mechanism of orotidine 5'-monophosphate decarboxylase (OMPDC), one of the nature most proficient enzymes which provides large rate enhancement, has not been fully understood yet. A series of 30 ns molecular dynamics (MD) simulations were run on X-ray structure of the OMPDC from Saccharomyces cerevisiae in its free form as well as in complex with different ligands, namely 1-(5'-phospho-D-ribofuranosyl) barbituric acid (BMP), orotidine 5'-monophosphate (OMP), and 6-phosphonouridine 5'-monophosphate (PMP). The importance of this biological system is justified both by its high rate enhancement and its potential use as a target in chemotherapy. This work focuses on comparing two physicochemical states of the enzyme (protonated and deprotonated Asp91) and three ligands (substrate OMP, inhibitor, and transition state analog BMP and substrate analog PMP). Detailed analysis of the active site geometry and its interactions is properly put in context by extensive comparison with relevant experimental works. Our overall results show that in terms of hydrogen bond occupancy, electrostatic interactions, dihedral angles, active site configuration, and movement of loops, notable differences among different complexes are observed. Comparison of the results obtained from these simulations provides some detailed structural data for the complexes, the enzyme, and the ligands, as well as useful insights into the inhibition mechanism of the OMPDC enzyme. Furthermore, these simulations are applied to clarify the ambiguous mechanism of the OMPDC enzyme, and imply that the substrate destabilization and transition state stabilization contribute to the mechanism of action of the most proficient enzyme, OMPDC. PMID:24559040

  19. L-methionine decarboxylase from Dryopteris filix-mas: Purification, characterization, substrate specificity, abortive transamination of the coenzyme, and stereochemical courses of substrate decarboxylation and coenzyme transamination

    L-Methionine decarboxylase from the male fern Dryopteris filix-mas has been purified 256-fold from acetone powder extracts to very near homogeneity. The enzyme is membrane-associated and requires detergent for solubilization during the initial extraction. The enzyme is a homodimer of subunit Mr 57,000 and shows a pH optimum at ∼ 5.0 with 20 mM (2S)-methionine as substrate. A wide range of straight- and branched-chain (2S)-alkylamino acids are substrates for the enzyme. The values for the rate of decarboxylation, Vmax, and for the apparent Michaelis constant, Km, however, vary with structure and with the chirality at C-3. The pH dependence of V and V/K has been examined for three substrates: (2S)-methionine, valine, and leucine. The occurrence of the abortive reaction was confirmed by showing that [35S]methionine is converted to labeled 3-(methylthio)propionaldehyde while [4'-3H]PLP is converted to labeled pyridoxamine 5'-phosphate (PMP). The decarboxylation of (2S)-methionine gave 3(methylthio)-1-aminopropane. Preparation of the N-camphanamide derivative of the amine allowed the C-1 methylene protons to be distinguished by 1H NMR spectroscopy. Synthetic samples of the camphanamide were prepared in which each of the C-1 methylene protons was replaced by deuterium. When tritiated pyridoxal phosphate was incubated with the enzyme, tritiated pyridoxamine phosphate was formed. These results are used to construct possible mechanistic schemes for both reactions, decarboxylation and transamination. The position and possible identities of active-site proton donors are discussed

  20. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Krieger Annette; Thalhammer Andrea; Doepner Richard FG; Geigerseder Christof; Mayerhofer Artur

    2004-01-01

    Abstract The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpoi...

  1. Neuro-endocrine basis for altered plasma glucose homeostasis in the Fragile X mouse

    El Idrissi Abdeslem; Yan Xin; Sidime Francoise; L’Amoreaux William

    2010-01-01

    Abstract Background The fragile X mouse model shows an increase in seizure susceptibility, indicating an involvement of the GABAergic system via an alteration in cellular excitability. In the brain, we have previously described a reduction in GABAA receptor expression as a likely basis for this susceptibility. In the brains of fragile X mice, this reduction in receptor expression culminates with a concomitant increase in the expression of glutamic acid decarboxylase (GAD), the enzyme responsi...

  2. Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse

    Quentin ePerrenoud; Hélène eGeoffroy; Benjamin eGautier; Armelle eRancillac; Fabienne eAlfonsi; Nicoletta eKessaris; Jean eRossier; Tania eVitalis; Thierry eGallopin

    2012-01-01

    In the neocortex, neuronal nitric oxide (NO) synthase (nNOS) is essentially expressed in two classes of GABAergic neurons: type I neurons displaying high levels of expression and type II neurons displaying weaker expression. Using immunocytochemistry in mice expressing GFP under the control of the glutamic acid decarboxylase 67k (GAD67) promoter, we studied the distribution of type I and type II neurons in the barrel cortex and their expression of parvalbumin (PV), somatostatin (SOM), and vas...

  3. Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology

    Lin, Xiaoxi B.; Gänzle, Michael G.

    2014-01-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increas...

  4. Windows 10 reklāmas kampaņas lokalizācijas analīze Latvijā 2015. gadā

    Strogonova, Sanita

    2016-01-01

    Bakalaura darbā “Windows 10 reklāmas kampaņas lokalizācijas analīze Latvijā 2015. gadā” tiek pētīta Microsoft korporācijas veiktās globālās un lokalizētās integrētā mārketinga komunikācijas zīmola Windows 10 virzīšanai Latvijas tirgū. Darbs sastāv no 3 daļām: teorētiskās daļas, metodoloģijas daļas un empīriskās daļas. Teorijas daļā ir veikts literatūras apskats par komunikācijas modeļu veidiem, integrētā mārketinga teorijām, apskatīta reklāmas kampaņas veidošanas un efektivitātes mērīšanas te...

  5. Gadè deceptions and lies told by the ill: The Caribbean sociocultural construction of truth in patient-healer encounters.

    Massé, Raymond

    2002-08-01

    A constructivist approach in medical anthropology suggests that the boundary between lies and truth in sickness narratives is thin. Based on fieldwork in the French (Martinique) and English (Saint-Lucia) Carribbean with gadé and quimboiseurs (local folk healers), this paper addresses the gap between naïve romanticism and radical cynicism in the anthropological analysis of patient-healer encounters. Is the sick person lying when she accuses evil spirits for her behaviour or sickness? Is the quimboiseur who is building a meaningful explanation or diagnosis simply a liar taking advantage of his client's credulity? The challenge for anthropology is not to determine whether or not a person is lying when attributing their ill fortune to witchcraft. Instead, in this paper, the author approaches lying as a language-game played by both patients and folk healers. Concepts of lying as games, tactical lies, pragmatic creativity, and constructive lies are introduced here as a perspective for a reconsideration of lying as a pertinent research object. PMID:26868988

  6. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (VM = 2.3 Å3 Da−1)

  7. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors)

  8. Expression, purification, crystallization and preliminary crystallographic analysis of Cg1458: a novel oxaloacetate decarboxylase from Corynebacterium glutamicum

    To elucidate the mechanism of oxaloacetate decarboxylation by Cg1458, recombinant Cg1458 has been purified and crystallized. Oxaloacetate decarboxylase catalyses the decarboxylation of oxaloacetate to pyruvate and CO2. Recently, the Corynebacterium glutamicum gene product Cg1458 was determined to be a soluble oxaloacetate decarboxylase. To elucidate the mechanism of oxaloacetate decarboxylation by Cg1458, recombinant Cg1458 was purified and crystallized. The best crystal was grown from 0.2 M MgCl2, 0.1 M Bis-Tris pH 6.0, 25%(w/v) polyethylene glycol 3350 using the hanging-drop method. The crystals belonged to space group P43212, with unit-cell parameters a = b = 124.1, c = 73.6 Å. The crystals are most likely to contain a dimer in the asymmetric unit, with a VM value of 2.27 Å3 Da−1. A full data set was collected at 1.9 Å resolution using synchrotron radiation on beamline BL17U of SSRF, Shanghai, China. Structure-solution attempts by molecular replacement were successful with PDB entries 3qdf or 2dfu as the template

  9. Lielās un smalkās motorikas nozīme skaņu izrunas traucējumu mazināšanā 5 – 6 gadīgiem bērniem

    Tazāne, Guna

    2016-01-01

    Diplomdarba nosaukums: “Lielās un smalkās motorikas nozīme skaņu izrunas traucējumu mazināšanā 5 – 6 gadīgiem bērniem” Darba autore: Guna Tazāne Darba zinātniskā vadītāja: Mg. paed. Egija Laganovska Darba saturs: 52 lappuses, 11 attēli, 4 tabulas, 11 pielikumi Pētījuma mērķis: teorētiski izpētīt, pamatot un praktiski pārbaudīt lielās un smalkās motorikas nozīmi skaņu izrunas traucējumu mazināšanā 5 – 6 gadīgiem bērniem. Pētījuma hipotēze: 5 – 6 gadīgu bērnu skaņu izrunas traucējumi mazināsie...

  10. Adaptation and initial validation of the Patient Health Questionnaire - 9 (PHQ-9) and the Generalized Anxiety Disorder - 7 Questionnaire (GAD-7) in an Arabic speaking Lebanese psychiatric outpatient sample.

    Sawaya, Helen; Atoui, Mia; Hamadeh, Aya; Zeinoun, Pia; Nahas, Ziad

    2016-05-30

    The Patient Health Questionnaire - 9 (PHQ-9) and Generalized Anxiety Disorder - 7 (GAD-7) are short screening measures used in medical and community settings to assess depression and anxiety severity. The aim of this study is to translate the screening tools into Arabic and evaluate their psychometric properties in an Arabic-speaking Lebanese psychiatric outpatient sample. The patients completed the questionnaires, among others, prior to being evaluated by a clinical psychiatrist or psychologist. The scales' internal consistency and factor structure were measured and convergent and discriminant validity were established by comparing the scores with clinical diagnoses and the Psychiatric Diagnostic Screening Questionnaire - MDD subset (PDSQ - MDD). Results showed that the PHQ-9 and GAD-7 are reliable screening tools for depression and anxiety and their factor structures replicated those reported in the literature. Sensitivity and specificity analyses showed that the PHQ-9 is sensitive but not specific at capturing depressive symptoms when compared to clinician diagnoses whereas the GAD-7 was neither sensitive nor specific at capturing anxiety symptoms. The implications of these findings are discussed in reference to the scales themselves and the cultural specificity of the Lebanese population. PMID:27031595

  11. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes.

    Brown, J A; Ramikie, T S; Schmidt, M J; Báldi, R; Garbett, K; Everheart, M G; Warren, L E; Gellért, L; Horváth, S; Patel, S; Mirnics, Károly

    2015-12-01

    Reduced expression of the Gad1 gene-encoded 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of schizophrenia. GAD67 downregulation occurs in multiple interneuronal sub-populations, including the parvalbumin-positive (PVALB+) cells. To investigate the role of the PV-positive GABAergic interneurons in behavioral and molecular processes, we knocked down the Gad1 transcript using a microRNA engineered to target specifically Gad1 mRNA under the control of Pvalb bacterial artificial chromosome. Verification of construct expression was performed by immunohistochemistry. Follow-up electrophysiological studies revealed a significant reduction in γ-aminobutyric acid (GABA) release probability without alterations in postsynaptic membrane properties or changes in glutamatergic release probability in the prefrontal cortex pyramidal neurons. Behavioral characterization of our transgenic (Tg) mice uncovered that the Pvalb/Gad1 Tg mice have pronounced sensorimotor gating deficits, increased novelty-seeking and reduced fear extinction. Furthermore, NMDA (N-methyl-d-aspartate) receptor antagonism by ketamine had an opposing dose-dependent effect, suggesting that the differential dosage of ketamine might have divergent effects on behavioral processes. All behavioral studies were validated using a second cohort of animals. Our results suggest that reduction of GABAergic transmission from PVALB+ interneurons primarily impacts behavioral domains related to fear and novelty seeking and that these alterations might be related to the behavioral phenotype observed in schizophrenia. PMID:25623945

  12. Sequence and Activity Analysis of Os GAD3 Promoter from Giant Embryo Rice%巨胚稻OsGAD3基因启动子的序列及活性分析

    许明; 赵帅; 林志明; 尹恒杰; 张玉文; 廖素凤; 郑金贵

    2015-01-01

    Using the PCR mothed, a 959 bp upstream pomotor sequence of OsGA D3 gene was isolated from the genomic DNA of giant embryo rice variety‘TgeB’, which was rich inγ-amino butyric acid (GABA). Sequence analysis indicated that the fragment contained meristem-specific expression cis-acting elements CAT-box and CCGTCC-box, and various stress-resistance cis-acting elements. The cloned promoter has been used in construction of binary vectors with GUS reporter gene, and then several transformed rice were obtained through A grobacterium-mediated transformation. The results of histochemical GUS analysis showed that there were higher GUS activities in roots and stem of transgenic rice, especially strong in root tip and primary phloem of stem and GUS expression was also detected in leaf cut side and embryo. Meanwhile, GUS expression was increased significantly after soaked in water and increased gradually during soaking. These results provide further insight into understanding the regulation of Os G A D3 expression in giant embryo rice.%本研究以富含酌-氨基丁酸的巨胚稻“TgeB”基因组DNA为模板,利用PCR技术扩增得到GABA合成关键酶基因OsGA D3的上游959 bp启动子序列。序列分析表明:OsGA D3启动子不仅含有转录必备的TATA box、CAAT box元件,还含有分生组织特异性表达调控元件CAT-box、CCGTCC-box以及一些非生物胁迫和激素响应元件等。将该启动子序列与GUS基因融合构建表达载体,转化水稻后进行GUS组织化学染色分析,结果显示,OsGA D3启动子驱动的GUS基因在转基因植株的根、茎中具有较高的表达活性,且在根尖和茎初生韧皮部区域的表达更为明显,在种胚及叶片切口处也能检测到GUS表达。浸水后种胚中的GUS活性显著提高,且随着浸水时间的延长呈逐渐增加趋势。研究结果为了解巨胚稻Os G A D3的表达调控机制提供了依据。

  13. Study on the relationship between changes of serum true insulin (Tl) C-peptide, GAD-Ab, INS-Ab contents and age, course of disease, degree of obesity in patients with DM2

    Objective: To study the changes of serum TI, C-peptide, GAD-Ab and INS-Ab in different groups of patients with DM2 (age,course of disease and degree of obesity). Methods: Serum C-peptide(with CLIA), INS-Ab(with RIA) and TI, GAD-Ab(with ELISA) contents were measured in altogether 428 patients with DM2. Relationship between changes of the above parameters and different groups of patients was studide in accordance with age, course of disease and degree of obesity respectively. Results: 1)Relationship among different age groups:(below 50, n=86, 51-70, n=216, over 71 n=126). The serum levels of the 4 parameters were significantly higher in all age group than those in the controls(n=40). Among the various age groups, the levels of all parameters were significantly lower in age group below 50 than the levels,in the other 2 groups with the only exception of INS-Ab, which was not significantly different from that in age group 51-70.The levels were significantly different between age-group 51-70 and age groups over 70, with the only exception of GAD-Ab, which was about the same in the two age-groups. 2)Relationship between changes of serum levels and course of disease(below 5yrs n=157, 6-10yrs n=168,over 1yrs,n=103). The serum levels in patients with disease less than 5years were significantly lower than those in other groups with the exception of GAD-Ab, which was not significantly different from that in patients with disease 6-10 years. 3) Relationship among different degree of obesity(non-obese, BMIBMI≥25, n=202, super-obese BMI≥32 n=50): The serum levels of all the parameters were significantly lower in the non-obese subjects than those in the other two groups.The levels in the super-obese group were also significantly higher than those in the obese group (P<0.01, P<0.05). Conclusion: Serum levels of the 4 parameters (TI, C-peptide, GAD-Ab, INS-Ab)were significantly increased in patients with DM2, especially in the older patients with prolonged course of disease as

  14. The Roles of Organic Acids in C4 Photosynthesis

    Ludwig, Martha

    2016-01-01

    Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2

  15. Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae.

    Yin, Sheng; Lang, Tiandan; Xiao, Xiao; Liu, Li; Sun, Baoguo; Wang, Chengtao

    2015-03-01

    Methionol is an important volatile sulfur flavor compound, which can be produced via the Ehrlich pathway in Saccharomyces cerevisiae. Aminotransferase and decarboxylase are essential enzymes catalyzing methionol biosynthesis. In this work, two aminotransferase genes ARO8 and ARO9 and one decarboxylase gene ARO10 were introduced into S. cerevisiae S288c, respectively, via an expression vector. Over-expression of ARO8 resulted in higher aminotransferase activity than that of ARO9. And the cellular decarboxylase activity was remarkably increased by over-expression of ARO10. A co-expression vector carrying both ARO8 and ARO10 was further constructed to generate the recombinant strain S810. Shaking flask experiments showed that the methionol yield from S810 reached 1.27 g L(-1), which was increased by 51.8 and 68.8% compared to that from the wild-type strain and the control strain harboring the empty vector. The fed-batch fermentation by strain S810 produced 3.24 g L(-1) of methionol after 72 h of cultivation in a bioreactor. These results demonstrated that co-expression of ARO8 and ARO10 significantly boosted the methionol production. It is the first time that more than 3.0 g L(-1) of methionol produced by genetically engineered yeast strain was reported by co-expression of the aminotransferase and decarboxylase via the Ehrlich pathway. PMID:25743068

  16. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  17. Current Perspective on the Location and Function of Gamma- Aminobutyric Acid (GABA) and its Metabolic Partners in the Kidney.

    Dunn, Kadeshia; Peppiatt-Wildman, Claire M.; Kelley, Stephen P; Wildman, Scott S.P.

    2014-01-01

    Abstract: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter located in the mammalian central nervous system, which binds to GABAA and GABAB receptors to mediate its neurological effects. In addition to its role in the CNS, an increasing number of publications have suggested that GABA might also play a role in the regulation of renal function. All three enzymes associated with GABA metabolism; glutamic acid decarboxylase, GABA α-oxoglutarate transaminase (GABA-T) and succinic se...

  18. Gene expression of ornithine decarboxylase, cyclooxygenase-2, and gastrin in atrophic gastric mucosa infected with Helicobacter pylori before and after eradication therapy.

    Konturek, Peter C; Rembiasz, Kazimierz; Konturek, Stanislaw J; Stachura, Jerzy; Bielanski, Wladyslaw; Galuschka, K; Karcz, Danuta; Hahn, Eckhart G

    2003-01-01

    H. pylori (Hp) -induced atrophic gastritis is a well-known risk factor for the development of gastric cancer. Whether Hp eradication can prevent or retard the progress of atrophy and metaplasia has been the topic of numerous studies but the subject remains controversial. Recently, the increased expression of ornithine decarboxylase (ODC), gastrin and cyclooxygenase (COX)-2 has been shown to be increased in premalignant lesions in gastric mucosa and to play an essential role in the malignant transformation. The aim of the study is to assess the effect of eradication therapy on atrophic gastritis and analyze the gene expression for ODC, COX-2 and gastrin in gastric mucosa after succesful eradication in patients with atrophic gastritis. Twenty patients with chronic atrophic gastritis including both corpus and antrum of the stomach were included in this study. Four antral mucosal biopsy specimens were obtained from antrum and four from corpus. The histopathologic evaluation of gastritis was based on Sydney classification of gastritis. All patients were Hp positive based on the [13C] urea breath test (UBT) and the presence of anti-Hp IgG and anti-CagA-antibodies detected by ELISA. The patients were then eradicated with triple therapy consiting of omeprazol (2 x 20 mg), amoxycillin (2 x 1 g) and clarithromycin (2 x 500 mg) for seven days and vitamin C 1 g/day for three months. In gastric mucosal samples obtained from the antrum and corpus before and after eradication, the mRNA expression for ODC, COX-2, and gastrin was assessed by reverse-transcription polymerase chain reaction (RT-PCR). In all patients the gastric secretory analysis was performed by measuring gastric acid output and serum gastrin levels. After triple therapy the successful eradication assessed by UBT was observed in 95% of patients. In 45% of patients the infection with CagA-positive Hp strain was observed. Three months after eradication a significant reduction in the gastric activity (neutrophilic

  19. High-performance liquid chromatography method with radiochemical detection for measurement of nitric oxide synthase, arginase, and arginine decarboxylase activities

    Volke, A; Wegener, Gregers; Vasar, E;

    2006-01-01

    Nitric oxide has been shown to be involved in numerous biological processes, and many studies have aimed to measure nitric oxide synthase (NOS) activity. Recently, it has been demonstrated that arginase and arginine decarboxylase (ADC), two enzymes that also employ arginine as a substrate, may...... simple and fast HPLC method with radiochemical detection to separate radiolabeled L-arginine, L-citrulline, L-ornithine, and agmatine. 3H-labeled L-arginine, L-citrulline, agmatine, and 14C-labeled L-citrulline were used as standards. These compounds were separated in the normal phase column (Allure...... Acidix 250 x 4.6 mm i.d.) under isocratic conditions in less than 20 min with good sensitivity. Using the current method, we have shown the formation of L-citrulline and L-ornithine in vitro using brain tissue homogenate of rats and that of agmatine by Escherichia coli ADC. Udgivelsesdato: null-null...

  20. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. PMID:26766784

  1. Antibacterial activity of oregano and sage plant extracts against decarboxylase-positive enterococci isolated from rabbit meat

    Ľubica Chrastinová

    2013-02-01

    Full Text Available The effect of plant extracts (sage, oregano against decarboxylase-positive enterococci from rabbit back limb meat  was reported in this study. Oregano plant extract inhibited the growth of all 34 tested enterococci (the inhibitory zones: 12 to 45 mm. The growth of the majority of strains  (n=23 was inhibited by oregano plant extract (the high size inhibitory zones (higher than 25 mm. The growth of 11 strains  was inhibited by oregano extract reaching medium size inhibitory zones (10 to 25mm. The most sensitive strain to oregano extract was E. faecium M7bA (45 mm. Sage extract was less active against tested enterococci (n=16  reaching lower inhibitory zones (up to 10 mm. doi:10.5219/239 Normal 0 21 false false false SK X-NONE X-NONE

  2. GABA-ERGIC NEURONS IN THE RAT STRIATUM UNDER NORMAL AND ISCHEMIC INJURY

    E.S. Petrova

    2013-09-01

    Full Text Available Gamma-aminobutyric acid (GABA is a major inhibitory neurotransmitter in the central nervous system. Enzyme glutamate decarboxylase (GAD-67 is a marker of GABA-ergic neurons. The purpose of this study is to examine the distribution of GAD-67-immunopositive neurons in the striatum of rats under experimental conditions, reproducing brief focal cerebral ischemia. Endovascular occlusion of the left middle cerebral artery in rats was performed. Duration of circulatory disorders was 30 min, the time of reperfusion was 48 hours. With counting GAD-67-immunopositive neurons in the striatum was found that the number of GABA-ergic neurons in the striatum ipsilateral hemisphere is reduced by 40%. In the contralateral hemisphere, the distribution and structure of the neurons is not different from controls. It is shown that GABA-ergic neurons are less susceptible to damage, as compared to other neurons phenotypes.

  3. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    Esmeray Küley; Fatih Özogul; Esra Balikçi; Mustafa Durmus; Deniz Ayas

    2013-01-01

    The influences of fish infusion decarboxylase broth (IDB) on biogenic amines (BA) formation by lactic acid bacteria (LAB) were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream) IDB. The result of the study showed that significant differences in ammonia (AMN) and BA production were observed among the LAB strains in fish IDB (p < 0.05). The highest AMN and TMA production by LAB strains were obser...

  4. Screening of biogenic amine production by lactic acid bacteria isolated from grape musts and wine

    Moreno-Arribas, M. Victoria; Polo, María Carmen; Jorganes, Felisa; Muñoz, Rosario

    2003-01-01

    The potential to produce the biogenic amines tyramine, histamine and putrescine, was investigated for lactic acid bacteria (LAB) of various origin, including commercial malolactic starter cultures, type strains and 78 strains isolated from Spanish grape must and wine. The presence of biogenic amines in a decarboxylase synthetic broth was determined by reverse-phase high performance liquid chromatography (RP-HPLC). Tyramine was the main amine formed by the LAB strains investigated. ...

  5. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    Kowalski, Antoni, E-mail: antoni.kowalski@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Zylinska, Ludmila, E-mail: ludmila.zylinska@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Boczek, Tomasz, E-mail: tomasz.boczek@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland); Rebas, Elzbieta, E-mail: elzbieta.rebas@umed.lodz.pl [Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz (Poland)

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  6. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    Highlights: → Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. → PMCA2 suppression lowers the activity of GABA-shunt enzymes. → PMCA3 suppression increases the expression of glutamate decarboxylase 65. → PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA (γ-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  7. Ghrelin and gastric acid secretion

    Koji Yakabi; Junichi Kawashima; Shingo Kato

    2008-01-01

    Ghrelin, a novel growth hormone-releasing peptide, was originally isolated from rat and human stomach. Ghrelin has been known to increase the secretion of growth hormone (GH), food intake, and body weight gain when administered peripherally or centrally. Ghrelin is also known to stimulate the gastric motility and the secretion of gastric acid. In the previous studies, the action of ghrelin on acid secretion was shown to be as strong as that of histamine and gastrin in-vivo experiment. In the studies, the mechanism for the action of ghrelin was also investigated. It was shown that vagotomy completely inhibited the action of ghrelin on the secretion of gastric acid suggesting that vagal nerve is involved in the mechanism for the action of ghrelin on acid secretion. As famotidine did not inhibit ghrelin-in-duced acid secretion in the study by Masuda et al, they concluded that histamine was not involved in the action of ghrelin on acid secretion. However, we have shown that famotidine completely inhibited ghrelin-induced acid secretion and histidine decarboxylase (HDC) mRNA was increased in gastric mucosa by ghrelin injection which is inhibited by vagotomy Our results indicate that histamine is involved in the action of ghrelin on acid secretion. Furthermore synergistic action of gastrin and ghrelin on gastric add secretion was shown. Although gastrin has important roles in postprandial secretion of gastric acid, ghrelin may be related to acid secretion during fasting period or at night. However, further studies are needed to elucidate the physiological role of ghrelin in acid secretion.

  8. Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine 5'-Monophosphate Decarboxylase

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank; Larsen, Sine

    2000-01-01

    rate by a factor of 1017. This proficiency has been enigmatic, since it is achieved without metal ions or cofactors. Here we present a 2.5 Å resolution structure of ODCase complexed with the inhibitor 1-(5‘-phospho-ß-d-ribofuranosyl)barbituric acid. It shows a closely packed dimer composed of two a...

  9. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II.

    Ohta, K.; Beall, D S; Mejia, J P; Shanmugam, K. T.; Ingram, L O

    1991-01-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selec...

  10. Cytoplasmic Accumulation of the RNA-binding Protein HuR Stabilizes the Ornithine Decarboxylase Transcript in a Murine Nonmelanoma Skin Cancer Model*

    Nowotarski, Shannon L.; Shantz, Lisa M.

    2010-01-01

    Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. Under normal physiological conditions, polyamine content and ODC enzyme activity are highly regulated. However, the induction of ODC activity is an early step in neoplastic transformation. The studies described here use normal mouse keratinocytes (C5N cells), and spindle carcinoma cells (A5 cells) to explore the regulation of ODC in nonmelanoma skin cancer development. Previous r...

  11. Avirulent Uracil Auxotrophs Based on Disruption of Orotidine-5′-Monophosphate Decarboxylase Elicit Protective Immunity to Toxoplasma gondii ▿ †

    Fox, Barbara A.; Bzik, David J.

    2010-01-01

    The orotidine-5′-monophosphate decarboxylase (OMPDC) gene, encoding the final enzyme of the de novo pyrimidine biosynthesis pathway, was deleted using Toxoplasma gondii KU80 knockouts to develop an avirulent nonreverting pyrimidine auxotroph strain. Additionally, to functionally address the role of the pyrimidine salvage pathway, the uridine phosphorylase (UP) salvage activity was knocked out and a double knockout of UP and OMPDC was also constructed. The nonreverting ΔOMPDC, ΔUP, and ΔOMPDC ...

  12. The influence of the effectors of yeast pyruvate decarboxylase (PDC) on the conformation of the dimers and tetramers and their pH-dependent equilibrium

    König, S.; Svergun, D.; Koch, M.; Hübner, G; Schellenberger, A.

    1994-01-01

    The influence of effectors of yeast pyruvate decarboxylase, phosphate, pyruvamide, thiamin diphosphate and Mg++, on the pH-dependent equilibrium between dimers and tetramers was studied by synchrotron radiation X-ray solution scattering. Thiamin diphosphate and phosphate shift the equilibrium to higher values without altering the structure of the oligomers. Pyruvamide, a substrate analogue activator, induces a significant change in the structure of the tetramer. By eliminating radiation damag...

  13. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.

    Hsu, T D; Lux, M F; Drake, H L

    1990-01-01

    The acetogen Clostridium thermoaceticum generates growth-essential CO2 equivalents from carboxylated aromatic compounds (e.g., 4-hydroxybenzoate), and these CO2 equivalents are likely integrated into the acetogenic pathway (T. Hsu, S. L. Daniel, M. F. Lux, and H. L. Drake, J. Bacteriol. 172:212-217, 1990). By using 4-hydroxybenzoate as a model substrate, an assay was developed to study the expression and activity of the decarboxylase involved in the activation of aromatic carboxyl groups. The...

  14. Modulation of ornithine decarboxylase activity in the normal and regenerating rat liver by various doses of the peptide morphogen of Hydra

    In this investigation, changes in ornithine decarboxylase (ODC) activity were studied in the normal and regenerating liver of rats receiving injections of various doses of Hydra peptide morphogen (HPM). Activity of ODC was determined by a radioisotope method based on liberation of 14CO2 from L-(1-14C)-ornithine. The results indicate in the author's opinion that HPM may have a role in the regulation of anabolic processes and, in particular, of regenerative processes in mammals

  15. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  16. Nucleic Acid Drugs for Prevention of Cardiac Rejection

    Jun-ichi Suzuki

    2009-01-01

    Full Text Available Heart transplantation has been broadly performed in humans. However, occurrence of acute and chronic rejection has not yet been resolved. Several inflammatory factors, such as cytokines and adhesion molecules, enhance the rejection. The graft arterial disease (GAD, which is a type of chronic rejection, is characterized by intimal thickening comprised of proliferative smooth muscle cells. Specific treatments that target the attenuation of acute rejection and GAD formation have not been well studied in cardiac transplantation. Recent progress in the nucleic acid drugs, such as antisense oligodeoxynucleotides (ODNs to regulate the transcription of disease-related genes, has important roles in therapeutic applications. Transfection of cis-element double-stranded DNA, named as “decoy,” has been also reported to be a useful nucleic acid drug. This decoy strategy has been not only a useful method for the experimental studies of gene regulation but also a novel clinical strategy. In this paper, we reviewed the experimental results of NF-κB, E2F, AP-1, and STAT-1 decoy and other ODNs using the experimental heart transplant models.

  17. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

  18. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  19. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene.

    Alcázar, Rubén; Planas, Joan; Saxena, Triambak; Zarza, Xavier; Bortolotti, Cristina; Cuevas, Juan; Bitrián, Marta; Tiburcio, Antonio F; Altabella, Teresa

    2010-07-01

    In Arabidopsis, a model genus missing a functional ornithine decarboxylase pathway, most of the key genes involved in polyamine biosynthesis are duplicated. This gene redundancy has been related to the involvement of certain gene isoforms in the response to specific environmental stimuli. We have previously shown that drought stress induces Arginine decarboxlase 2 expression, while transcript levels for Arginine decarboxlase 1 remain constant. Accumulation of putrescine and increased arginine decarboxlase activity (EC 4.1.1.19) levels in response to different abiotic stresses have been reported in many different plant systems, but the biological meaning of this increase remains unclear. To get a new insight into these questions, we have studied the response to drought of transgenic Arabidopsis thaliana lines constitutively expressing the homologous Arginine decarboxlase 2 gene. These lines contain high levels of putrescine with no changes in spermidine and spermine content even under drought stress. Drought tolerance experiments indicate that the different degree of resistance to dehydration correlates with Put content. Although no significant differences were observed in the number of stomata between wild-type and transgenic plants, a reduction in transpiration rate and stomata conductance was observed in the ADC2 over-expressor lines. These results indicate that one of the mechanisms involved in the drought tolerance of transgenic plants over-producing Put is related to a reduction of water loss by transpiration. PMID:20206537

  20. Secretion of Biologically Active Heterologous Oxalate Decarboxylase (OxdC in Lactobacillus plantarum WCFS1 Using Homologous Signal Peptides

    Ponnusamy Sasikumar

    2013-01-01

    Full Text Available Current treatment options for patients with hyperoxaluria and calcium oxalate stone diseases are limited and do not always lead to sufficient reduction in urinary oxalate excretion. Oxalate degrading bacteria have been suggested for degrading intestinal oxalate for the prevention of calcium oxalate stone. Here, we reported a recombinant Lactobacillus plantarum WCFS1 (L. plantarum secreting heterologous oxalate decarboxylase (OxdC that may provide possible therapeutic approach by degrading intestinal oxalate. The results showed secretion and functional expression of OxdC protein in L. plantarum driven by signal peptides Lp_0373 and Lp_3050. Supernatant of the recombinant strain containing pLp_0373sOxdC and pLp_3050sOxdC showed OxdC activity of 0.05 U/mg and 0.02 U/mg protein, while the purified OxdC from the supernatant showed specific activity of 18.3 U/mg and 17.5 U/mg protein, respectively. The concentration of OxdC protein in the supernatant was 8–12 μg/mL. The recombinant strain showed up to 50% oxalate reduction in medium containing 10 mM oxalate. In conclusion, the recombinant L. plantarum harboring pLp_0373sOxdC and pLp_3050sOxdC can express and secrete functional OxdC and degrade oxalate up to 50% and 30%, respectively.

  1. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  2. Selection and Test of L-histidine Decarboxylase Enzyme Activity of Six Isolates of Histamine Forming Bacteria

    Romauli Aya Sophia

    2007-11-01

    Full Text Available Six isolates of histamine forming bacteria were screened to see the degree of ability in producing histamine on modified Niven's medium. The result showed that the six bacteria were able to produce histamine by giving a pinkish color on the medium, which could be used as a preliminary identification of histamine-forming bacteria (HFB. The isolates were grown in liquid modified Niven medium to measure the production of histamine. The histamine produced were determined by Hardy and Smith method. The result showed that all of the isolates produced high level of histamine (92.35 - 305.49 mg/100 ml of the medium. From all of them, Enterobacter spp. produced the highest level of histamine (305.49 mg/100 ml. A synthetic medium was used to measure the growth pattern and optimum time required by Enterobacter spp and Morganella morganii (as control bacteria to produce the L-histidine decarboxylase enzyme (HDC which is responsible for histamine production. The result showed that for both bacteria, the optimum enzim production was 8 hours after incubation.

  3. Cyclobutane-type pyrimidine photodimer formation and induction of ornithine decarboxylase in human skin fibroblasts after UV irradiation

    Cyclobutane-type pyrimidine photodimers as well as the induction of ornithine decarboxylase (ODC) may serve as biochemical markers of the mutagenic and carcinogenic effects of ultraviolet light (UV). For this reason, it is important to compare the formation of pyrimidine dimers with the induction of ODC in human skin fibroblasts after irradiation with UVC (200-290 nm) and UVB (290-320 nm). In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer yields (T-T) by high-pressure liquid chromatography in cultures of neonatal normal human foreskin-derived fibroblasts after irradiation with UVC and UVB light. It was found that the yield of dimerization and the ratio of T-T/C-T decreased from the UVC to the UVB region. Time-course studies of ODC-induction in the same cells indicated that the maximal activity after UVB irradiation was retarded compared to UVC exposure. For the UV-induced ODC-levels, however, no significant difference in maximal induction could be measured after UVC and UVB irradiation at fluences where comparable yields of thymine dimerization are produced. Similar ODC-maxima were obtained with strains from children, while cells from adults showed significantly less pronounced ODC induction, indicating that ODC-response decreases with age and may therefore be used as a marker of aging

  4. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  5. Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyltransferase enzyme system in Arabidopsis

    In C3 plants large amounts of photorespiratory glycine (Gly) are converted to serine by the tetrahydrofolate (THF)-dependent activities of the Gly decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT). Using 13C nuclear magnetic resonance, we monitored the flux of carbon through the GDC/SHMT enzyme system in Arabidopsis thaliana (L.) Heynh. Columbia exposed to inhibitors of THF-synthesizing enzymes. Plants exposed for 96 h to sulfanilamide, a dihydropteroate synthase inhibitor, showed little reduction in flux through GDC/SHMT. Two other sulfonamide analogs were tested with similar results, although all three analogs competitively inhibited the partially purified enzyme. However, methotrexate or aminopterin, which are confirmed inhibitors of Arabidopsis dihydrofolate reductase, decreased the flux through the GDC/SHMT system by 60% after 48 h and by 100% in 96 h. The uptake of [alpha-13C]Gly was not inhibited by either drug class. The specificity of methotrexate action was shown by the ability of 5-formyl-THF to restore flux through the GDC/SHMT pathway in methotrexate-inhibited plants. The experiments with sulfonamides strongly suggest that the mitochondrial THF pool has a long half-life. The studies with methotrexate support the additional, critical role of dihydrofolate reductase in recycling THF oxidized in thymidylate synthesis

  6. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  7. Blue- and red-light regulation and circadian control of gene expression of S-adenosylmethionine decarboxylase in Pharbitis nil

    The abundance of mRNA for S-adenosylmethionine decarboxylase (SAMDC) (EC 4.1.1.50) in leaves of Pharbitis nil is regulated by light. The level of this mRNA fluctuated dramatically, peaking 45 min after light exposure and then decreasing rapidly to a very low level. The half-life of the SAMDC mRNA was estimated by using actinomycin D to be approximately 30 min, which partly accounts for the rapid decline in the mRNA level after the peak of light induction is reached. The mRNA level for the SAMDC gene increased after light exposure from red, green, blue or UV light, but not after far-red light exposure. The short irradiation of red light increased the expression of the SAMDC gene and this induction was reverted by subsequent far-red light irradiation. The immediate blue light illumination after the initial red light exposure resulted in a further increase in the SAMDC mRNA level. These results indicate that both the blue light photoreceptor- and phytochrome-mediated pathways are involved in the light regulation of the SAMDC gene. The transcription of the SAMDC gene was also shown to be under circadian control. (author)

  8. Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study.

    Yung-An Tsou

    Full Text Available Uroporphyrinogen decarboxylase (UROD has been suggested as a protectant against radiation for head and neck cancer (HNC. In this study, we employed traditional Chinese medicine (TCM compounds from TCM Database@Taiwan (http://tcm.cmu.edu.tw/ to screen for drug-like candidates with potential UROD inhibition characteristics using virtual screening techniques. Isopraeroside IV, scopolin, and nodakenin exhibited the highest Dock Scores, and were predicted to have good Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET properties. Two common moieties, 2H-chromen-2-one and glucoside, were observed among the top TCM candidates. Cross comparison of the docking poses indicated that candidates formed stable interactions with key binding and catalytic residues of UROD through these two moieties. The 2H-chromen-2-one moiety enabled pi-cation interactions with Arg37 and H-bonds with Tyr164. The glucoside moiety was involved in forming H-bonds with Arg37 and Asp86. From our computational results, we propose isopraeroside IV, scopolin, and nodakenin as ligands that might exhibit drug-like inhibitory effects on UROD. The glucoside and 2H-chromen-2-one moieties may potentially be used for designing inhibitors of UROD.

  9. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.

    Tateno, Toshihiro; Okada, Yusuke; Tsuchidate, Takeyuki; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-02-01

    Here, we demonstrated the one-step production of cadaverine from starch using a Corynebacterium glutamicum strain coexpressing Streptococcus bovis 148 alpha-amylase (AmyA) and Escherichia coli K-12 lysine decarboxylase (CadA). We constructed the E. coli-C. glutamicum shuttle vector, which produces CadA under the control of the high constitutive expression (HCE) promoter, and transformed this vector into C. glutamicum CSS secreting AmyA. The engineered C. glutamicum expressed both CadA and AmyA, which retained their activity. We performed cadaverine fermentation using 50 g/l soluble starch as the sole carbon source without pyridoxal-5'-phosphate, which is the coenzyme for CadA. C. glutamicum coexpressing AmyA and CadA successfully produced cadaverine from soluble starch and the yield of cadaverine was 23.4 mM after 21 h. CadA expression levels under the control of the HCE promoter were assumed to be sufficient to convert L-lysine to cadaverine, as there was no accumulation of L-lysine in the culture medium during fermentation. Thus, we demonstrated that C. glutamicum has great potential to produce cadaverine from biomass resources. PMID:18989633

  10. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don.

    Kumar, Santosh; Bhatia, Sabhyata

    2016-01-01

    Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids. PMID:27623355

  11. 血清谷氨酸脱羧酶抗体在孤立病灶的脱髓鞘及多发性硬化中的应用

    宋书桐; 杨金娥; 魏金栋

    2008-01-01

    目的 探讨血清谷氨酸脱羧酶抗体(glutamic acid decarboxylase antibody,GAD-ab)在中枢神经系统炎性脱髓鞘性疾病中的应用.方法 选择临床确诊的多发性硬化(clinically diagnosis multiple sclerosis,CDMS)患者26例(CDMS组)和临床孤立病灶综合征(clinically isolated syndromes,CIS)患者30例(CIS组),空腹采血测定血清中GAD-ab的阳性率与健康体检者30例进行比较.结果 CDMS组GAD-ab阳性12例占46%,CIS组GAD-ab阳性9例占30%,而体检组无1例阳性.结论 检测GAD-ab为多发性硬化(multpe sclerosis,MS)的诊断提供依据,有助于早期发现表现为CIS的MS患者.

  12. Zīmolu komunikācija sociālajos medijos: interneta veikalu “www.1a.lv” un “www.220.lv” gadījuma analīze

    Turka-Raģe, Ieva

    2016-01-01

    Bakalaura darba tēma ir “Zīmolu komunikācija sociālajos medijos: interneta veikalu “www.1a.lv” un “www.220.lv” gadījuma analīze”. Arvien vairāk cilvēki iepērkas internetā un mācās uzticēties interneta veikalu sniegtajiem pakalpojumiem. Komunikācija sociālajos tīklos ir viens no instrumentiem, kā veikali var piesaistīt potenciālo pircēju uzmanību un likt konkrēto pirkumu izdarīt noteiktā interneta veikalā. Bakalaura darba mērķis ir noskaidrot ar kādiem paņēmieniem zīmoli sociālajos medijos ce...

  13. Organizāciju "Rocket Bean Roastery", "Miit Coffee" un "Kaņepes Kultūras centrs" komunikācijas novērtējums sociālajos medijos 2015. gadā

    Meiere, Diāna

    2016-01-01

    Bakalaura darba “Organizāciju “Rocket Bean Roastery”, “Miit Coffee” un “Kaņepes Kultūras centrs” komunikācijas novērtējums sociālajos medijos 2015. gadā” mērķis ir izanalizēt un novērtēt organizāciju veidoto komunikācijas saturu sociālajos medijos “Facebook” un “Instagram” un izstrādāt komunikācijas priekšlikumus atgriezeniskās saites veidošanai. Bakalaura darba teorētiskajā daļā apskatīta efektīvu komunikācija, organizāciju mārketinga komunikācija, kā arī komunikācija sociālajos medijos. D...

  14. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V. (UMKC)

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  15. Avirulent uracil auxotrophs based on disruption of orotidine-5'-monophosphate decarboxylase elicit protective immunity to Toxoplasma gondii.

    Fox, Barbara A; Bzik, David J

    2010-09-01

    The orotidine-5'-monophosphate decarboxylase (OMPDC) gene, encoding the final enzyme of the de novo pyrimidine biosynthesis pathway, was deleted using Toxoplasma gondii KU80 knockouts to develop an avirulent nonreverting pyrimidine auxotroph strain. Additionally, to functionally address the role of the pyrimidine salvage pathway, the uridine phosphorylase (UP) salvage activity was knocked out and a double knockout of UP and OMPDC was also constructed. The nonreverting DeltaOMPDC, DeltaUP, and DeltaOMPDC DeltaUP knockout strains were evaluated for pyrimidine auxotrophy, for attenuation of virulence, and for their ability to elicit potent immunity to reinfection. The DeltaUP knockout strain was replication competent and virulent. In contrast, the DeltaOMPDC and DeltaOMPDC DeltaUP strains were uracil auxotrophs that rapidly lost their viability during pyrimidine starvation. Replication of the DeltaOMPDC strain but not the DeltaOMPDC DeltaUP strain was also partially rescued in vitro with uridine or cytidine supplementation. Compared to their hypervirulent parental type I strain, the DeltaOMPDC and DeltaOMPDC DeltaUP knockout strains exhibited extreme attenuation in murine virulence (approximately 8 logs). Genetic complementation of the DeltaOMPDC strain using a functional OMPDC allele restored normal replication and type I parental strain virulence phenotypes. A single immunization of mice with either the live critically attenuated DeltaOMPDC strain or the DeltaOMPDC DeltaUP knockout strain effectively induced potent protective immunity to lethal challenge infection. The avirulent nonreverting DeltaOMPDC and DeltaOMPDC DeltaUP strains provide new tools for the dissection of the host response to infection and are promising candidates for safe and effective Th1 vaccine platforms that can be easily genetically engineered. PMID:20605980

  16. Associations of polymorphisms in histidine decarboxylase, histamine N-methyltransferase and histamine receptor H3 genes with breast cancer.

    Gong-Hao He

    Full Text Available We previously found that genetic polymorphisms in gene coding for histamine H4 receptors were related to the risk and malignant degree of breast cancer. The roles of polymorphisms in other histamine-related genes, such as histidine decarboxylase (HDC, histamine N-methyltransferase (HNMT and histamine H3 receptor (HRH3, remain unexplored. The aim of this study is to analyze the clinical associations of polymorphisms in HDC, HNMT and HRH3 with breast cancer. Two hundred and one unrelated Chinese Han breast cancer patients and 205 ethnicity-matched health controls were recruited for case-control investigation. Genomic DNA from the participants was extracted and 5 single nucleotide polymorphisms (SNPs in HDC, HNMT and HRH3 were genotyped. We found that polymorphisms of HNMT and HRH3 were irrelevant with breast cancer in the present study. However, the T allele of rs7164386 in HDC significantly decreased the risk of breast cancer (adjusted odds ratios [ORs], 0.387; 95% confidence intervals [CIs], 0.208-0.720; P = 0.003. Furthermore, for HDC haplotypes, the CG haplotype of rs7164386-rs7182203 was more frequent among breast cancer patients (adjusted OR, 1.828; 95% CI, 1.218-2.744; P = 0.004 while the TG haplotype was more frequent among health controls (adjusted OR, 0.351; 95% CI, 0.182-0.678; P = 0.002. These findings indicated that polymorphisms of HDC gene were significantly associated with breast cancer in Chinese Han population and may be novel diagnostic or therapeutic targets for breast cancer. Further studies with larger participants worldwide are still needed for conclusion validation.

  17. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells.

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A; Davidson, Nancy E; Huang, Yi

    2012-11-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N (1)-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  18. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. PMID:21782040

  19. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA production

    Qian Lin

    2013-01-01

    Full Text Available γ-Aminobutyric acid (GABA is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of y-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 µM of pyridoxal phosphate (PLP, produced 187 mM of GABA.

  20. Inhibitory Activity of the Flower Buds of Lonicera japonica Thunb. against Histamine Production and L-Histidine Decarboxylase in Human Keratinocytes

    Yoshihiro Inami; Yuko Matsui; Tomoko Hoshino; Chiaki Murayama; Hisayoshi Norimoto

    2014-01-01

    In previous studies we found that anionic surfactants such as sodium laurate (SL) and/or sodium dodecylsulfate (SDS) exert actions on epidermal keratinocytes rather than mast cells to give rise of histamine production and skin itching through increasing the expression of the 53-kDa active form of l-histidine decarboxylase (HDC). In addition, with treatment of SL in a three-dimensional human keratinocyte culture, increases in both the 53-kDa HDC and histamine production are detected and thus t...

  1. Modulation of ornithine decarboxylase activity in the normal and regenerating rat liver by various doses of the peptide morphogen of Hydra

    Yarygin, K.N.; Kazimirskii, A.N.; Kositskii, G.I.; Rubina, A.Yu.; Vinogradov, V.A.; Pylaev, A.S.

    1986-11-01

    In this investigation, changes in ornithine decarboxylase (ODC) activity were studied in the normal and regenerating liver of rats receiving injections of various doses of Hydra peptide morphogen (HPM). Activity of ODC was determined by a radioisotope method based on liberation of /sup 14/CO/sub 2/ from L-(1-/sup 14/C)-ornithine. The results indicate in the author's opinion that HPM may have a role in the regulation of anabolic processes and, in particular, of regenerative processes in mammals.

  2. Leishmania donovani: impairment of the cellular immune response against recombinant ornithine decarboxylase protein as a possible evasion strategy of Leishmania in visceral leishmaniasis.

    Yadav, Anupam; Amit, Ajay; Chaudhary, Rajesh; Chandel, Arvind Singh; Mahantesh, Vijay; Suman, Shashi Shekhar; Singh, Subhankar Kumar; Dikhit, Manas Ranjan; Ali, Vahab; Rabidas, Vidyanand; Pandey, Krishna; Kumar, Anil; Das, Pradeep; Bimal, Sanjiva

    2015-01-01

    Ornithine decarboxylase, the rate limiting enzyme of the polyamine biosynthesis pathway, is significant in the synthesis of trypanothione, T(SH)2, the major reduced thiol which is responsible for the modulation of the immune response and pathogenesis in visceral leishmaniasis. Data on the relationship between ornithine decarboxylase and the cellular immune response in VL patients are limited. Therefore, we purified a recombinant ornithine decarboxylase from Leishmania donovani (r-LdODC) of approximately 77kDa and examined its effects on the immunological responses in peripheral blood mononuclear cells of human visceral leishmaniasis cases. For these studies, α-difluoromethylornithine was tested as an inhibitor and was used in parallel in all experiments. The r-LdODC was identified as having a direct correlation with parasite growth and significantly increased the number of promastigotes as well as axenic amastigotes after 96h of culture. The stimulation of peripheral blood mononuclear cells with r-LdODC up-regulated IL-10 production but not IFN-γ production from CD4(+) T cells in active as well as cured visceral leishmaniasis cases, indicating a pivotal role for r-LdODC in causing strong immune suppression in a susceptible host. In addition, severe hindrance of the immune response and anti-leishmanial macrophage function due to r-LdODC, as revealed by decreased IL-12 and nitric oxide production, and down-regulation in mean fluorescence intensities of reactive oxygen species, occurred in visceral leishmaniasis patients. There was little impact of r-LdODC in the killing of L. donovani amastigotes in macrophages of visceral leishmaniasis patients. In contrast, when cultures of promastigotes and amastigotes, and patients' blood samples, were directed against α-difluoromethylornithine, parasite numbers significantly reduced in culture, whereas the levels of IFN-γ and IL-12, and the production of reactive oxygen species and nitric oxide, were significantly elevated

  3. Lack of evidence for the association of ornithine decarboxylase (+316 G>A), spermidine/spermine acetyl transferase (-1415 T>C) gene polymorphisms with calcium oxalate stone disease.

    Coker-Gürkan, Ajda; Arisan, Serdar; Arisan, Elif Damla; Unsal, Narçin Palavan

    2014-01-01

    Urolithiasis is a complex and multifactorial disorder characterized by the presence of stones in the urinary tract. Urea cycle is an important process involved in disease progression. L-ornithine is a key amino acid in the urea cycle and is converted to putrescine by ornithine decarboxylase (ODC). Putrescine, spermidine and spermine are natural polyamines that are catabolized by a specific enzyme, spermidine/spermine acetyltransferase (SSAT). The single-nucleotide polymorphisms (SNPs) in the intron region of ODC (+316 G>A) and promoter region of SSAT (-1415 T>C) genes have been found to be associated with the polyamines expression levels. The aim of this study was to examine whether the ODC (+316 G>A) intron 1 region gene polymorphism and SAT-1 promoter region (-1415 T>C) gene polymorphisms are potential genetic markers for susceptibility to urolithiasis. A control group of 104 healthy subjects and a group of 65 patients with recurrent idiopathic calcium oxalate stone disease were enrolled into this study. Polymerase chain reaction (PCR)-based restriction analysis was performed for the ODC intron 1 (+316 G>A) region and SAT-1 (-1415 T>C) promoter gene polymorphisms by PstI and MspI restriction enzyme digestion, respectively. The genotype distribution of polymorphisms studied in the ODC intron 1 region (+316 G>A) and SAT-1 -1415 T>C promoter region did not reveal a significant difference between urolithiasis and the control groups (P=0.713 and 0.853), respectively. Furthermore, no significant difference was observed between the control and patient groups for ODC +316 G>A and SAT-1 -1415 T>C allele frequencies (P=0.877 and 0.644), respectively. In conclusion, results of the present study suggest that ODC + 316 G>A and SAT-1 -1415 T>C gene polymorphisms might not be a risk factor for urolithiasis. PMID:24649071

  4. Increase in histidine decarboxylase activity in skin of genetically mast-cell-deficient W/Wv mice after application of phorbol 12-myristate 13-acetate: evidence for the presence of histamine-producing cells without basophilic granules.

    TAGUCHI, Y.; Tsuyama, K.; Watanabe, T.; Wada, H; Kitamura, Y.

    1982-01-01

    Histidine decarboxylase (HisDCase, EC 4.1.1.22) activity in mouse skin increased by a factor of more than 10 after a single application of phorbol 12-myristate 13-acetate. The cell type that was responsible for the increase in HisDCase activity was examined by using (WB X C57BL/6)F1-W/Wv mice, which are genetically deficient in tissue mast cells. In contrast to a report that increase of ornithine decarboxylase (EC 4.1.1.17) activity occurs in the epidermis [O'Brien, T. G., Simisiman, R. C. & ...

  5. Involvement of sigmaS accumulation in repression of the flhDC operon in acidic phospholipid-deficient mutants of Escherichia coli.

    Uchiyama, Junji; Nobue, Yuka; Zhao, Hong; Matsuzaki, Hiroshi; Nagahama, Hideki; Matsuoka, Satoshi; Matsumoto, Kouji; Hara, Hiroshi

    2010-06-01

    Escherichia coli pgsA mutations, which cause acidic phospholipid deficiency, repress transcription of the flagellar master operon flhDC, and thus impair flagellar formation and motility. The molecular mechanism of the strong repression of flhDC transcription in the mutant cells, however, has not yet been clarified. In order to shed light on this mechanism we isolated genes which, when supplied in multicopy, suppress the repression of flhD, and found that three genes, gadW, metE and yeaB, were capable of suppression. Taking into account a previous report that gadW represses sigma(S) production, the level of sigma(S) in the pgsA3 mutant was examined. We found that pgsA3 cells had a high level of sigma(S) and that introduction of a gadW plasmid into pgsA3 cells did reduce the sigma(S) level. The pgsA3 cells exhibited a sharp increase in sigma(S) levels that can only be partially attributed to the slight increase in rpoS transcription; the largest part of the effect is due to a post-transcriptional accumulation of sigma(S). GadW in multicopy exerts its effect by post-transcriptionally downregulating sigma(S). YeaB and MetE in multicopy also exert their effect via sigma(S). Disruption of rpoS caused an increase of the flhD mRNA level, and induction from P(trc)-rpoS repressed the flhD mRNA level. The strong repression of flhD transcription in pgsA3 mutant cells is thus suggested to be caused by the accumulated sigma(S). PMID:20185506

  6. Postnatal pattern of ornithine decarboxylase activity reveals a disparity of rat brain regeneration capacity after prenatal X-ray or 5-azacytidine treatment

    Pregnant Wistar rats were treated on the 15th day of gestation either with 1.4 Gy X-radiation, or with 2 X 2.5 mg 5-azacytidine per kg body weight. X-irradiation caused negligible mortality among the offspring, despite of a 35% reduction of brain weights. The course of brain ornithine decarboxylase activity exhibited two breaches within 5 days after birth, each followed by recovery to control levels. After 5-azacytidine treatment brain weights were reduced by 16% only, but two thirds of the young died within a short time after birth. During three days following birth, the activity of ornithine decarboxylase in the brains of the young animals split into two ranges, a high one at control level and a low one at about one fifth of control level. As the ratio of brains with low to those with high enzyme activities correlated with the rate of postnatal mortality, the splitting of early postnatal enzyme activities was interpreted in terms of a nothing-or-all-law: beyond a certain amount of 5-azacytidine incorporated into brain DNA, gene expression was impaired to an extent not compatible with the survival of the animals

  7. Postnatal pattern of ornithine decarboxylase activity reveals a disparity of rat brain regeneration capacity after prenatal X-ray or 5-azacytidine treatment

    Weber, L.W.; Schmahl, W.G.

    1987-05-01

    Pregnant Wistar rats were treated on the 15th day of gestation either with 1.4 Gy X-radiation, or with 2 X 2.5 mg 5-azacytidine per kg body weight. X-irradiation caused negligible mortality among the offspring, despite of a 35% reduction of brain weights. The course of brain ornithine decarboxylase activity exhibited two breaches within 5 days after birth, each followed by recovery to control levels. After 5-azacytidine treatment brain weights were reduced by 16% only, but two thirds of the young died within a short time after birth. During three days following birth, the activity of ornithine decarboxylase in the brains of the young animals split into two ranges, a high one at control level and a low one at about one fifth of control level. As the ratio of brains with low to those with high enzyme activities correlated with the rate of postnatal mortality, the splitting of early postnatal enzyme activities was interpreted in terms of a nothing-or-all-law: beyond a certain amount of 5-azacytidine incorporated into brain DNA, gene expression was impaired to an extent not compatible with the survival of the animals.

  8. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    Oud Bart

    2012-09-01

    Full Text Available Abstract Background Pyruvate-decarboxylase negative (Pdc- strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v ethanol at a maximum specific growth rate (0.24 h-1 similar to that of the evolved Pdc- strain (0.23 h-1. Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1 than the evolved strain (0.20 h-1. The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and

  9. Evidence for a Dual Role of an Active Site Histidine in [alpha]-Amino-[beta]-carboxymuconate-[epsilon]-semialdehyde Decarboxylase

    Huo, Lu; Fielding, Andrew J.; Chen, Yan; Li, Tingfeng; Iwaki, Hiroaki; Hosler, Jonathan P.; Chen, Lirong; Hasegawa, Yoshie; Que, Jr., Lawrence; Liu, Aimin (GSU); (Kansai); (UMMC); (UMM)

    2012-10-09

    The previously reported crystal structures of {alpha}-amino-{beta}-carboxymuconate-{epsilon}-semialdehyde decarboxylase (ACMSD) show a five-coordinate Zn(II)(His){sub 3}(Asp)(OH{sub 2}) active site. The water ligand is H-bonded to a conserved His228 residue adjacent to the metal center in ACMSD from Pseudomonas fluorescens (PfACMSD). Site-directed mutagenesis of His228 to tyrosine and glycine in this study results in a complete or significant loss of activity. Metal analysis shows that H228Y and H228G contain iron rather than zinc, indicating that this residue plays a role in the metal selectivity of the protein. As-isolated H228Y displays a blue color, which is not seen in wild-type ACMSD. Quinone staining and resonance Raman analyses indicate that the blue color originates from Fe(III)-tyrosinate ligand-to-metal charge transfer. Co(II)-substituted H228Y ACMSD is brown in color and exhibits an electron paramagnetic resonance spectrum showing a high-spin Co(II) center with a well-resolved {sup 59}Co (I = 7/2) eight-line hyperfine splitting pattern. The X-ray crystal structures of as-isolated Fe-H228Y (2.8 {angstrom}) and Co-substituted (2.4 {angstrom}) and Zn-substituted H228Y (2.0 {angstrom} resolution) support the spectroscopic assignment of metal ligation of the Tyr228 residue. The crystal structure of Zn-H228G (2.6 {angstrom}) was also determined. These four structures show that the water ligand present in WT Zn-ACMSD is either missing (Fe-H228Y, Co-H228Y, and Zn-H228G) or disrupted (Zn-H228Y) in response to the His228 mutation. Together, these results highlight the importance of His228 for PfACMSD's metal specificity as well as maintaining a water molecule as a ligand of the metal center. His228 is thus proposed to play a role in activating the metal-bound water ligand for subsequent nucleophilic attack on the substrate.

  10. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  11. Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools

    Sonnewald, Ursula; Kortner, Trond M; Qu, Hong; Olstad, Elisabeth; Suñol, Cristina; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    was unchanged during the first 5 days and both decreased thereafter. The presence of aminooxyacetic acid (AOAA, 10 microM) which inhibits transaminases and other pyridoxal phosphate dependent enzymes including GABA-transaminase (GABA-T), in the culture medium caused an increase in the intracellular......, was shown by labeling from [U-(13)C]glutamine added on day 7. Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 microM AOAA, GABA synthesis from [U-(13)C]glutamine was not affected, indicating that transaminases are...

  12. Ārējās komunikācijas loma novada pašvaldībā. Ķekavas novada pašvaldības gadījuma analīze

    Bukonte, Anda

    2016-01-01

    Bakalaura darba „Ārējās komunikācijas loma novada pašvaldībā. Ķekavas novada pašvaldības gadījuma analīze” mērķis ir noskaidrot, kāda ir Ķekavas novada pašvaldības ārējās komunikācijas prakse, kādā ir komunikācijas kanālu loma pašvaldības skatījumā, īpaši izceļot sociālo mediju lomu, kā arī noskaidrot, ko par pašvaldības ārējo komunikāciju domā Ķekavas novada iedzīvotāji. Bakalaura darba teorētiskajā daļā autore apskata tādus jēdzienus kā komunikācija, pašvaldība, sabiedriskās attiecības, ārē...

  13. Sociālajos medijos Twitter un Facebook izplatīto baumu ietekme uz Latvijas interneta mediju saturu: patvēruma meklētāju uzņemšanas gadījums

    Pakalna, Aija

    2016-01-01

    Bakalaura darba tēma ir „Sociālajos medijos Twitter un Facebook izplatīto baumu ietekme uz Latvijas interneta mediju saturu: patvēruma meklētāju uzņemšanas gadījums”. Darba mērķis ir izpētīt sociālajos medijos izplatīto baumu nonākšanas Latvijas interneta mediju saturā iemeslus un faktorus, kas nosaka to dzīves ciklu. Darbs sastāv no teorētiskās daļas, metodoloģijas un pētījuma jeb empīriskās daļas. Teorētiskajā daļā aplūkota baumu definīcija un baumu dzīves cikls, tajā skaitā – arī sociālajo...

  14. Sinodālais pārvaldes princips Latvijas evaņģēliski luteriskajā baznīcā 1948.-1984.gadā

    Rozentāls, Linards

    2015-01-01

    Promocijas darba “Sinodālais pārvaldes princips Latvijas evaņģēliski luteriskajā Baznīcā 1948.-1984. gadā” mērķis ir izpētīt sinodālā baznīcas pārvaldes principa ierobežošanas vēsturi un tā paplašināšanas mēģinājumus baznīcas vadības un pārvaldes sistēmā no 1948. gada līdz 1984. gadam. Autoritārās valsts centieni reducēt sinodālo pārvaldes principu baznīcā 20. gadsimta 30. gados un tās vadības uzskats par sinodālā pārvaldes modeļa pakārtotību episkopāli autoritārajam bija pr...

  15. A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco.

    Kim, Young Jin; Lee, Sun Hi; Park, Ky Young

    2004-12-17

    The expression of CSDC9 encoding S-adenosylmethionine decarboxylase (SAMDC) is developmentally and spatially regulated in carnation. To examine the regulation of the SAMDC gene, we analyzed the spatial expression of CSDC9 with a 5'-flanking beta-glucuronidase fusion in transgenic tobacco plants. GUS was strongly expressed in flower, pollen, stem and vein of cotyledons. Expression in both anther and stigma was under developmental control; analysis of a series of mutants with deletions of the 5'-flanking region demonstrated differential activation in petal, anther, stigma and pollen grains. All the major cis-regulatory elements required for pollen-specific transcription were located in the upstream region between -273 and -158. This region contains four putative elements related to gibberellin induction (pyrimidine boxes, TTTTTTCC and CCTTTT) and pollen-specific expression (GTGA and AGAAA). In addition, the first 5'-leader intron was necessary for tissue-specific expression. PMID:15589825

  16. Inhibition of ornithine decarboxylase induction by psoralen plus near ultraviolet light in human cells: the role of monoadducts vs DNA crosslinks

    Treatment of plateau-phase human breast carcinoma cells with 4,5',8-trimethyl psoralen (TMP)-plus-near UV light (PUVA) inhibited the transcriptionally-controlled induction of ornithine decarboxylase (ODC). The fluence response curve had a shoulder (Dsub(q) = 560 J m-2) followed by an exponential decline (D0 = 690 J m-2). The cells could not recover from a PUVA dose that inhibited ODC induction by 50% or more. This is consistent with the lack of removal of TMP monoadducts and DNA crosslinks following a similar dose. However, removal of labeled TMP and DNA crosslinks was observed after lower doses during a 24 h period. Using the two-dose approach it was shown that crosslinks are more efficient than TMP monoadducts in inhibiting ODC induction. The same phenomenon was also found with regard to inhibition of RNA synthesis. (author)

  17. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    Kristensen, B W; Noraberg, J; Jakobsen, B;

    1999-01-01

    rats and grown on semiporous membranes in serum-free medium for 3-4 weeks before exposure to KA or AMPA for 48 h. The uptake by injured cells of the fluorescent dye propidium iodide (PI) added to the culture medium was used as a quantifiable measure for neuronal degeneration and compared with efflux of...... the cytosolic enzyme lactate dehydrogenase (LDH) into the culture medium and loss of glutamic acid decarboxylase (GAD) activity in the tissue. Histological sections were also stained by the fluorescent dye Fluoro-Jade (FJ), for degenerating neurons and by immunocytochemical staining for gamma...

  18. Autoantibody Frequency in Celiac Disease

    Erkan Caglar; Serdal Ugurlu; Aliye Ozenoglu,; Gunay Can,; Pinar Kadioglu; Ahmet Dobrucali

    2009-01-01

    AIM: In our study, we investigated the levels of glutamic acid decarboxylase antibody (anti-GAD), islet cell antibody (ICA), thyroperoxidase antibody (anti-TPO), thyroglobulin antibody (anti-TG), antinuclear antibodies (FANA), antibodies to double-stranded DNA (anti-ds DNA), antibody to Sjögren syndrome A antigen (anti-SSA), antibody to Sjögren syndrome B antigen (anti-SSB), Smith antibody (anti-Sm), smooth muscle antibodies (ASMA), and antimitochondrial antibody liver-kidney microsome (AMA-L...

  19. Effects of Environmental Enrichment on Spatial Memory and Neurochemistry in Middle-Aged Mice

    Frick, Karyn M.; Stearns, Nancy A.; Pan, Jing-Yu; Berger-Sweeney, Joanne

    2003-01-01

    The present study compared the effects of environmental enrichment on spatial memory, glutamic acid decarboxylase (GAD) activity, and synaptophysin levels in middle-aged male and female mice. Prior to testing, a subset of 18-month-old male and female C57BL/6 mice was housed with two to three toys and a running wheel in the home cage for up to 29 d. Adult mice (7 mo) of both sexes and the remaining middle-aged mice were group (social) housed, but not exposed to enrichin...

  20. Contribution of Indole-3-Acetic Acid Production to the Epiphytic Fitness of Erwinia herbicola

    Brandl, M. T.; Lindow, S E

    1998-01-01

    Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented with l-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, wh...

  1. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  2. Screening and identification of lactic acid bacteria from raw seafoods and Thai fermented seafood products for their potential use as starter cultures

    Thitirut Jaichalad

    2012-07-01

    Full Text Available The number of lactic acid bacteria (LAB was analyzed from 52 samples of raw seafoods (shrimp and mussel, andThai fermented seafood products including fermented shrimp (kung-jom, mussel (hoi-dong, and fish (pla-jom. The viableLAB were 3.0103 to 3.4108 CFU/g. LAB were isolated and screened for their inhibitory activities against eight indicatorbacteria by agar spot test. Among all selected LAB isolates, 52 isolates showed strong inhibitory activity. They were furthercharacterized for their ability to resist hydrochloric acid, lactic acid, bile salts, and sodium chloride, and their ability toproduce bacteriocins and amino acid decarboxylase. The selected LAB isolates, 1IS11 and 4IS17, were bacteriocin-producingstrains, and showed no amino acid decarboxylase activity, which was suitable property for starter cultures. The isolate 1IS11could resist both hydrochloric and lactic acid at the lowest pH of 2.0, while the isolate 4IS17 was able to tolerate hydrochloricand lactic acid at the lowest pH of 1.5 and 2.0, respectively. Both isolates could grow in MRS broth containing a highconcentration of sodium chloride (10 % and bile salts (1.5%. They were identified by morphological characterization, biochemicaltest, and 16S rDNA sequence analysis. The isolate 1IS11 was found to be Enterococcus faecium, whereas the isolate4IS17 was Enterococcus faecalis.

  3. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.

    Rodriguez, Angelica; Kildegaard, Kanchana R; Li, Mingji; Borodina, Irina; Nielsen, Jens

    2015-09-01

    Aromatic amino acids are precursors of numerous plant secondary metabolites with diverse biological functions. Many of these secondary metabolites are already being used as active pharmaceutical or nutraceutical ingredients, and there are numerous exploratory studies of other compounds with promising applications. p-Coumaric acid is derived from aromatic amino acids and, besides being a valuable chemical building block, it serves as precursor for biosynthesis of many secondary metabolites, such as polyphenols, flavonoids, and some polyketides. Here we developed a p-coumaric acid-overproducing Saccharomyces cerevisiae platform strain. First, we reduced by-product formation by knocking out phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDC5. Second, different versions of feedback-resistant DAHP synthase and chorismate mutase were overexpressed. Finally, we identified shikimate kinase as another important flux-controlling step in the aromatic amino acid pathway by overexpressing enzymes from Escherichia coli, homologous to the pentafunctional enzyme Aro1p and to the bifunctional chorismate synthase-flavin reductase Aro2p. The highest titer of p-coumaric acid of 1.93 ± 0.26 g L(-1) was obtained, when overexpressing tyrosine ammonia-lyase TAL from Flavobacterium johnsoniaeu, DAHP synthase ARO4(K229L), chorismate mutase ARO7(G141S) and E. coli shikimate kinase II (aroL) in Δpdc5Δaro10 strain background. To our knowledge this is the highest reported titer of an aromatic compound produced by yeast. The developed S. cerevisiae strain represents an attractive platform host for production of p-coumaric-acid derived secondary metabolites, such as flavonoids, polyphenols, and polyketides. PMID:26292030

  4. Selenomethionine substitution of orotidine-5′-­monophosphate decarboxylase causes a change in crystal contacts and space group

    Poulsen, Jens-Christian Navarro; Harris, Pernille Hanne; Jensen, Kaj Frank; Larsen, Sine

    2001-01-01

    the inhibitor 1-(5'-phospho- -D-ribofuranosyl)barbituric acid crystallizes under similar conditions as the native enzyme. In contrast to the native enzyme, where the crystals belong to the orthorhombic space group P212121, the SeMet-substituted enzyme crystallizes in the monoclinic space group P21......-wavelength anomalous dispersion technique, both native and SeMet-substituted proteins have been produced and purified. During the production of SeMet ODCase, it was observed that SeMet was the only amino acid that it was necessary to add to the defined medium during expression. SeMet-substituted ODCase in complex with...

  5. Decarboxylative Conversion of Hydroxycinnamic Acids by Klebsiella oxytoca and Erwinia uredovora, Epiphytic Bacteria of Polymnia sonchifolia Leaf, Possibly Associated with Formation of Microflora on the Damaged Leaves.

    Hashidoko, Y; Urashima, M; Yoshida, T; Mizutani, J

    1993-01-01

    Two bacteria, Klebsiella oxytoca and Erwinia uredovora, which constituted epiphytic microftora on yacon (Polymnia sonchifolia) leaves, converted hydroxycinnamic acids into hydroxystyrenes decarboxylatively. Hydroxycinnamate decarboxylase was extracted as crude protein from the bacterial cells, and was substrate-inducible. This decarboxylation was for the bacteria a detoxification of hydroxycinnamic acids of plants, but the metabolites were toxic to other test bacteria and fungi, including some phytopathogens. The possible ecological role of these epiphytic bacteria on the host-plant was discussed. from the viewpoint of their chemical interaction via the styrene derivatives. PMID:27314772

  6. Diacetyl and α-Acetolactate Overproduction by Lactococcus lactis subsp. lactis Biovar Diacetylactis Mutants That Are Deficient in α-Acetolactate Decarboxylase and Have a Low Lactate Dehydrogenase Activity

    Monnet, Christophe; Aymes, Frédéric; Corrieu, Georges

    2000-01-01

    Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemente...

  7. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates. PMID:26043971

  8. AcEST: BP921766 [AcEST

    Full Text Available carboxylase OS=Petunia hybrida G... 80 3e-15 sp|Q42521|DCE1_ARATH Glutamate decarboxylase 1 OS=Arabidopsis t...h... 79 7e-15 sp|Q42472|DCE2_ARATH Glutamate decarboxylase 2 OS=Arabidopsis th......L 452 >sp|Q07346|DCE_PETHY Glutamate decarboxylase OS=Petunia hybrida GN=GAD PE=1 SV=1 Length = 500 Score = ...Query: 186 VAVAIAQ 206 +AVA Q Sbjct: 455 LAVAEEQ 461 >sp|Q42521|DCE1_ARATH Glutamate decarboxylase 1 OS=Arab...SE 463 >sp|Q42472|DCE2_ARATH Glutamate decarboxylase 2 OS=Arabidopsis thaliana GN

  9. Amino acids

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  10. Improvement of the Rett syndrome phenotype in a MeCP2 mouse model upon treatment with levodopa and a dopa-decarboxylase inhibitor.

    Szczesna, Karolina; de la Caridad, Olga; Petazzi, Paolo; Soler, Marta; Roa, Laura; Saez, Mauricio A; Fourcade, Stéphane; Pujol, Aurora; Artuch-Iriberri, Rafael; Molero-Luis, Marta; Vidal, August; Huertas, Dori; Esteller, Manel

    2014-11-01

    Rett Syndrome is a neurodevelopmental autism spectrum disorder caused by mutations in the gene coding for methyl CpG-binding protein (MeCP2). The disease is characterized by abnormal motor, respiratory, cognitive impairment, and autistic-like behaviors. No effective treatment of the disorder is available. Mecp2 knockout mice have a range of physiological and neurological abnormalities that resemble the human syndrome and can be used as a model to interrogate new therapies. Herein, we show that the combined administration of Levodopa and a Dopa-decarboxylase inhibitor in RTT mouse models is well tolerated, diminishes RTT-associated symptoms, and increases life span. The amelioration of RTT symptomatology is particularly significant in those features controlled by the dopaminergic pathway in the nigrostratium, such as mobility, tremor, and breathing. Most important, the improvement of the RTT phenotype upon use of the combined treatment is reflected at the cellular level by the development of neuronal dendritic growth. However, much work is required to extend the duration of the benefit of the described preclinical treatment. PMID:24917201

  11. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells.

    Smirnova, Olga A; Isaguliants, Maria G; Hyvonen, Mervi T; Keinanen, Tuomo A; Tunitskaya, Vera L; Vepsalainen, Jouko; Alhonen, Leena; Kochetkov, Sergey N; Ivanov, Alexander V

    2012-09-01

    Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress. PMID:22579641

  12. Study of the kinetic and physical properties of the orotidine-5'-monophosphate decarboxylase domain from mouse UMP synthase produced in Saccharomyces cerevisiae.

    Langdon, S D; Jones, M E

    1987-09-25

    In mammals, the bifunctional protein UMP synthase contains the final two enzymatic activities, orotate phosphoribosyltransferase and orotidine-5'-monophosphate decarboxylase (ODCase), for de novo biosynthesis of UMP. The plasmid pMEJ contains a cDNA for the ODCase domain of mouse Ehrlich ascites UMP synthase. The cDNA from pMEJ was joined to the Saccharomyces cerevisiae iso-1-cytochrome c (CYC1) promoter and the first four CYC1 coding nucleotides in the plasmid pODCcyc. ODCase-deficient yeast cells (HF200x1) transformed with pODCcyc expressed an active ODCase domain with a specific activity of 20 nmol/min/mg in cell extracts. The expressed ODCase domain has a lower affinity for the substrate orotidine 5'-monophosphate and the inhibitor 6-azauridine 5'-monophosphate than intact UMP synthase or an ODCase domain isolated after proteolysis of homogenous UMP synthase. Sucrose density gradient sedimentation experiments showed that the expressed ODCase domain forms a dimer in the presence of ligands which bind at the catalytic site. These studies support the existence of an ODCase structural domain which contains the ODCase catalytic site and a dimerization surface of UMP synthase, but the domain may not have the regulatory site required to form the altered dimer form. PMID:3308878

  13. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    MASATAKE KAI; CHIKARA KAITO; HIROSHI FUKAMACHI; TAKAYASU HIGO; EIJI TA-KAYAMA; HIROSHI HARA; YOSHIKAZU OHYA; KAZUEI IGARASHI; KOICHIRO SHIOKAWA

    2003-01-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  14. Screening for Generalized Anxiety Disorder (GAD)

    ... Find Help Find a Therapist Treatment Support Groups Coaching Mental Health Apps Helping Others Self-Help Publications & ... Yes No Your anxiety interfering with your daily life Having more than one illness at the same ...

  15. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats - An animal model of autism.

    Olexová, Lucia; Štefánik, Peter; Kršková, Lucia

    2016-08-26

    Anxiety is one of the associated symptoms of autism spectrum disorder. According to the literature, increases in anxiety are accompanied by GABAergic system deregulation. The aim of our study, performed using an animal model of autism in the form of rats prenatally treated with valproic acid (VPA rats), was to investigate changes in anxiety-like behaviour and the gene expression of molecules that control levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain. Anxiety-like behaviours were investigated using zone preferences in the open field test. The levels of the 65 and 67kDa enzymes of l-glutamic acid decarboxylase (GAD) mRNAs and type 1 GABA transporter (GAT1) were evaluated in the amygdala, as well as GABA producing enzymes in the cortex layer of the cerebellum. Our research showed that adult VPA rats spent less time in the inner zone of the testing chamber and more time in the outer zone of the testing chamber in the open field test. We also found that adult VPA rats had increased expression of GAT1 in the amygdala, as well as decreased levels of GAD65 and GAD67 mRNA in the cerebellum compared to control animals. These findings support the existence of a relationship between increased anxiety-like behaviour and changes in the regulation of the GABAergic system in VPA rats. PMID:27353514

  16. Effects of Tityus serrulatus crude venom on the GABAergic and dopaminergic systems of the rat brain.

    Dorce, V A; Sandoval, M R

    1994-12-01

    This study was designed to investigate the effect of T. serrulatus scorpion venom on dopamine (DA) and gamma amino butyric acid (GABA) concentrations in different regions of the brain. The ratio of homovanillic acid (HVA) to DA, and the glutamic acid decarboxylase (GAD) activity were determined following intravenous or intracerebral venom injections. The increase in the HVA/DA ratio in the striatum after i.v. or intrastriatal injection could indicate an increase in DA turnover. One hour after i.v. injection of the venom GAD activity was shown to be decreased in the striatum and hypothalamus. After 24 hr GAD activity increased in the striatum and decreased in the hypothalamus and brain stem. These results could indicate different effects of the venom on the GABA system in different areas of the brain. After intrastriatal injection of the scorpion venom, the animals showed stereotyped behavior and rotation activity. Following intrahippocampal injection, myoclonus and orofacial automatisms, which constitute pro-convulsive signals, were observed. These behavioral alterations could be, at least in part, related to the GABA and dopamine alterations caused by the venom, since stereotypy, circling behavior and convulsions are dependent on dopamine and/or GABA. PMID:7725331

  17. Inhibitive Effect of Hydrofluoric Acid Doped Poly Aniline (HFPANI on Corrosion of Iron in 1N Phosphoric Acid Solution

    G.Maheswari

    2015-03-01

    Full Text Available The inhibition effect of Hydrofluoric acid doped poly aniline HF-PANI on mild steel corrosion in 1N phosphoric acid has been studied by mass loss and polarization techniques and AC impedance measurements methods between 303 K and 333K.The inhibition efficiency increased with increase in concentration of HF PANI. The corrosion rate increased with increase in temperature and decreased with increase in concentration of inhibitor compared to blank. Potentiostatic polarization results revealed that HF-PANI act as mixed type inhibitor. The inhibitor of HF-PANI was chemically adsorbed and spontaneous adsorption on the mild steel surface .The values of activation energy (Ea, free energy of adsorption (ΔGads, heat of adsorption (Qads, enthalpy of adsorption (ΔH and entropy of adsorption (ΔS were calculated. The adsorption of inhibitor on mild steel surface has been found to obey Temkin’s adsorption isotherm. SEM analysis was agreed to establish the mechanism of corrosion inhibitor on mild steel corrosion in phosphoric acid medium.

  18. Protein (Viridiplantae): 145334845 [PGDBj - Ortholog DB

    Full Text Available LTSTSEVYGDPLIHPQPESYWGNVNPIGVRSCYDEGKRVAETLMFDYHRQHGIEIRIARIFNTYGPRMNIDDGRVVSNFIAQALRGEALTVQKPGTQTRSFCYVSDMVDGLIR...FIGSHLVDKLMENEKNEVVVADNYFTGSKENLKKWIGHPRFELIRHDVTEPLLIEVDRIYHLACPASPIFYKYNPVKTIKTNVIGTLNMLGLAKRVGARIL...-glucuronic acid decarboxylase 3 Arabidopsis thaliana MTFNAYSGLRSLSQAMAATSEKQNTTKPPPSPSPLRNSKFCQPNMRILISGGAG...LMEGNDTGPINIGNPGEFTMVELAETVKELINPSIEIKMVENTPDDPRQRKPDISKAKEVLGWEPKVKLREGLPLMEEDFRLRLNVPRN ...

  19. Protein (Viridiplantae): 15237853 [PGDBj - Ortholog DB

    Full Text Available HPQPESYWGNVNPIGVRSCYDEGKRVAETLMFDYHRQHGIEIRIARIFNTYGPRMNIDDGRVVSNFIAQALRGEALTVQKPGTQTRSFCYVSDMVDGLIR...ucuronic acid decarboxylase 3 Arabidopsis thaliana MAATSEKQNTTKPPPSPSPLRNSKFCQPNMRILISGGAGFIGSHLVDKLMENEKNEV...VVADNYFTGSKENLKKWIGHPRFELIRHDVTEPLLIEVDRIYHLACPASPIFYKYNPVKTIKTNVIGTLNMLGLAKRVGARILLTSTSEVYGDPLI...LMEGNDTGPINIGNPGEFTMVELAETVKELINPSIEIKMVENTPDDPRQRKPDISKAKEVLGWEPKVKLREGLPLMEEDFRLRLNVPRN ...

  20. Phytic acid adsorption on the copper surface: Observation of electrochemistry and Raman spectroscopy

    Shen, Shu; Guo, Xiao-yu; Song, Ping; Pan, Ying-Cheng; Wang, Hao-qiong; Wen, Ying; Yang, Hai-Feng

    2013-07-01

    The adsorption of phytic acid (PA) on copper was investigated using electrochemical impedance spectroscopy (EIS), electrochemical polarization measurement and surface-enhanced Raman scattering (SERS) spectroscopy. Electrochemical results indicated that inhibition efficiency of PA film for copper from corrosion in 3 wt% NaCl solution was beyond 80% at an optimum self-assembly concentration of 0.1 mM for 6 h. Electrochemical polarization indicated that PA functioned as a cathodic inhibitor. In addition, Raman studies showed that PA adsorbed on the copper surface formed via P-O groups. Finally, the value of ΔGads (-39.96 kJ mol-1) was close to -40 kJ mol-1, suggesting that the adsorption of PA on the copper surface was the chemical adsorption.

  1. Hemin inhibits cyclooxygenase-2 expression through nuclear factor-kappa B activation and ornithine decarboxylase expression in 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin

    Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H2O2 formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-κB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-κB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent

  2. Avirulent Uracil Auxotrophs Based on Disruption of Orotidine-5′-Monophosphate Decarboxylase Elicit Protective Immunity to Toxoplasma gondii ▿ †

    Fox, Barbara A.; Bzik, David J.

    2010-01-01

    The orotidine-5′-monophosphate decarboxylase (OMPDC) gene, encoding the final enzyme of the de novo pyrimidine biosynthesis pathway, was deleted using Toxoplasma gondii KU80 knockouts to develop an avirulent nonreverting pyrimidine auxotroph strain. Additionally, to functionally address the role of the pyrimidine salvage pathway, the uridine phosphorylase (UP) salvage activity was knocked out and a double knockout of UP and OMPDC was also constructed. The nonreverting ΔOMPDC, ΔUP, and ΔOMPDC ΔUP knockout strains were evaluated for pyrimidine auxotrophy, for attenuation of virulence, and for their ability to elicit potent immunity to reinfection. The ΔUP knockout strain was replication competent and virulent. In contrast, the ΔOMPDC and ΔOMPDC ΔUP strains were uracil auxotrophs that rapidly lost their viability during pyrimidine starvation. Replication of the ΔOMPDC strain but not the ΔOMPDC ΔUP strain was also partially rescued in vitro with uridine or cytidine supplementation. Compared to their hypervirulent parental type I strain, the ΔOMPDC and ΔOMPDC ΔUP knockout strains exhibited extreme attenuation in murine virulence (∼8 logs). Genetic complementation of the ΔOMPDC strain using a functional OMPDC allele restored normal replication and type I parental strain virulence phenotypes. A single immunization of mice with either the live critically attenuated ΔOMPDC strain or the ΔOMPDC ΔUP knockout strain effectively induced potent protective immunity to lethal challenge infection. The avirulent nonreverting ΔOMPDC and ΔOMPDC ΔUP strains provide new tools for the dissection of the host response to infection and are promising candidates for safe and effective Th1 vaccine platforms that can be easily genetically engineered. PMID:20605980

  3. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  4. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae

    Santamaria Anna

    2010-04-01

    Full Text Available Abstract Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT. At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  5. The decrease in uroporphyrinogen decarboxylase activity induced by ethanol predisposes rats to the development of porphyria and accelerates xenobiotic-triggered porphyria, regardless of hepatic damage

    Ríos de Molina M.C.

    2002-01-01

    Full Text Available We evaluated the porphyrinogenic ability of ethanol (20% in drinking water per se, its effect on the development of sporadic porphyria cutanea tarda induced by hexachlorobenzene in female Wistar rats (170-190 g, N = 8/group, and the relationship with hepatic damage. Twenty-five percent of the animals receiving ethanol increased up to 14-, 25-, and 4.5-fold the urinary excretion of delta-aminolevulinate, porphobilinogen, and porphyrins, respectively. Ethanol exacerbated the precursor excretions elicited by hexachlorobenzene. Hepatic porphyrin levels increased by hexachlorobenzene treatment, while this parameter only increased (up to 90-fold in some of the animals that received ethanol alone. Ethanol reduced the activities of uroporphyrinogen decarboxylase, delta-aminolevulinate dehydrase and ferrochelatase. In the ethanol group, many of the animals showed a 30% decrease in uroporphyrinogen activity; in the ethanol + hexachlorobenzene group, this decrease occurred before the one caused by hexachlorobenzene alone. Ethanol exacerbated the effects of hexachlorobenzene, among others, on the rate-limiting enzyme delta-aminolevulinate synthetase. The plasma activities of enzymes that are markers of hepatic damage were similar in all drug-treated groups. These results indicate that 1 ethanol exacerbates the biochemical manifestation of sporadic hexachlorobenzene-induced porphyria cutanea tarda; 2 ethanol per se affects several enzymatic and excretion parameters of the heme metabolic pathway; 3 since not all the animals were affected to the same extent, ethanol seems to be a porphyrinogenic agent only when there is a predisposition, and 4 hepatic damage showed no correlation with the development of porphyria cutanea tarda.

  6. Over-expression of Catharanthus roseus tryptophan decarboxylase and strictosidine synthase in rol gene integrated transgenic cell suspensions of Vinca minor.

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Shanker, Karuna; Mathur, Ajay K

    2015-01-01

    Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct () generated three stable TDC + STR over-expressing cell lines--PVG1, PVG2, and PVG3. The transgenes were confirmed by β-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1% dry wt.) and showed vincamine presence (0.003 ± 0.001% dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001% dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)]. PMID:25106473

  7. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method. DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases

  8. Succinic semialdehyde as a substrate for the formation of gamma-aminobutyric acid

    van Bemmelen, F.J.; Schouten, M.J.; Fekkes, D.; Bruinvels, J.

    1985-11-01

    The conversion of succinic semialdehyde into gamma-aminobutyric acid (GABA) by GABA-transaminase was measured in rat brain homogenate in the presence of different concentrations of the cosubstrate glutamate. The calculated kinetic parameters of succinic semialdehyde for GABA-transaminase were a limiting Km value of 168 microM and a limiting Vmax value of 38 mumol g-1 h-1. Combination with previously obtained data for the conversion of GABA into succinic semialdehyde revealed a kEq value of 0.04, indicating that equilibrium of GABA-transaminase is biased toward the formation of GABA. The increased formation of GABA in the presence of succinic semialdehyde was not due to an increased conversion of glutamate into GABA by glutamic acid decarboxylase. Therefore these results indicate that succinic semialdehyde can act as a precursor for GABA synthesis.

  9. Succinic semialdehyde as a substrate for the formation of gamma-aminobutyric acid.

    van Bemmelen, F J; Schouten, M J; Fekkes, D; Bruinvels, J

    1985-11-01

    The conversion of succinic semialdehyde into gamma-aminobutyric acid (GABA) by GABA-transaminase was measured in rat brain homogenate in the presence of different concentrations of the cosubstrate glutamate. The calculated kinetic parameters of succinic semialdehyde for GABA-transaminase were a limiting Km value of 168 microM and a limiting Vmax value of 38 mumol g-1 h-1. Combination with previously obtained data for the conversion of GABA into succinic semialdehyde revealed a kEq value of 0.04, indicating that equilibrium of GABA-transaminase is biased toward the formation of GABA. The increased formation of GABA in the presence of succinic semialdehyde was not due to an increased conversion of glutamate into GABA by glutamic acid decarboxylase. Therefore these results indicate that succinic semialdehyde can act as a precursor for GABA synthesis. PMID:2864395

  10. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  11. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. PMID:25015888

  12. Acid Rain.

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  13. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2016-06-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased ( P glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved ( P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased ( P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased ( P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased ( P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased ( P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions ( P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  14. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment

    Hu, Hong; Bai, Xi; Shah, Assar Ali; Dai, Sifa; Wang, Like; Hua, Jinling; Che, Chuanyan; He, Shaojun; Wen, Aiyou; Jiang, Jinpeng

    2015-10-01

    The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased (P glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved (P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased (P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased (P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased (P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased (P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions (P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.

  15. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli.

    Xolani Henry Makhoba

    Full Text Available S-adenosylmethionine decarboxylase (PfAdoMetDC from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70 has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant

  16. Development of the GABA-ergic signaling system and its role in larval swimming in sea urchin.

    Katow, Hideki; Abe, Kouki; Katow, Tomoko; Zamani, Alemeh; Abe, Hirokazu

    2013-05-01

    The present study aimed to elucidate the development and γ-amino butyric acid (GABA)-ergic regulation of larval swimming in the sea urchin Hemicentrotus pulcherrimus by cloning glutamate decarboxylase (Hp-gad), GABAA receptor (Hp-gabrA) and GABAA receptor-associated protein (Hp-gabarap), and by performing immunohistochemistry. The regulation of larval swimming was increasingly dependent on the GABAergic system, which was active from the 2 days post-fertilization (d.p.f.) pluteus stage onwards. GABA-immunoreactive cells were detected as a subpopulation of secondary mesenchyme cells during gastrulation and eventually constituted the ciliary band and a subpopulation of blastocoelar cells during the pluteus stage. Hp-gad transcription was detected by RT-PCR during the period when Hp-Gad-positive cells were seen as a subpopulation of blastocoelar cells and on the apical side of the ciliary band from the 2 d.p.f. pluteus stage. Consistent with these observations, inhibition of GAD with 3-mercaptopropioninc acid inhibited GABA immunoreactivity and larval swimming dose dependently. Hp-gabrA amplimers were detected weakly in unfertilized eggs and 4 d.p.f. plutei but strongly from fertilized eggs to 2 d.p.f. plutei, and Hp-GabrA, together with GABA, was localized at the ciliary band in association with dopamine receptor D1 from the two-arm pluteus stage. Hp-gabarap transcription and protein expression were detected from the swimming blastula stage. Inhibition of the GABAA receptor by bicuculline inhibited larval swimming dose dependently. Inhibition of larval swimming by either 3-mercaptopropionic acid or bicuculline was more severe in older larvae (17 and 34 d.p.f. plutei) than in younger ones (1 d.p.f. prism larvae). PMID:23307803

  17. Effect of 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution

    Highlights: → DEABT as corrosion inhibitor for maraging steel in phosphoric acid. → Inhibition efficiency increases with increase in inhibitor concentration. → Inhibition efficiency decreases with increase in temperature. → Adsorption obeys Langmuir adsorption isotherm. - Abstract: 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone (DEABT) was studied for its corrosion inhibition property on the corrosion of aged 18 Ni 250 grade maraging steel in 0.67 M phosphoric acid at 30-50 deg. C by potentiodynamic polarization, EIS and weight loss techniques. Inhibition efficiency of DEABT was found to increase with the increase in DEABT concentration and decrease with the increase in temperature. The activation energy Ea and other thermodynamic parameters (ΔGads0, ΔHads0, ΔSads0) have been evaluated and discussed. The adsorption of DEABT on aged maraging steel surface obeys the Langmuir adsorption isotherm model and the inhibitor showed mixed type inhibition behavior.

  18. Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21 and Nsg-2 (P19.

    Laura Digilio

    Full Text Available The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65 were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21 and Nsg-2 (P19 are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.

  19. Folic Acid

    ... found naturally in some foods, including leafy vegetables, citrus fruits, beans (legumes), and whole grains. Folic acid ... mcg of folic acid every day for good health. But older adults need to be sure they ...

  20. GABA-Synthesizing Enzymes in Calbindin and Calretinin Neurons in Monkey Prefrontal Cortex.

    Rocco, Brad R; Sweet, Robert A; Lewis, David A; Fish, Kenneth N

    2016-05-01

    Non-overlapping groups of cortical γ-aminobutyric acid-releasing (GABAergic) neurons are identifiable by the presence of calbindin (CB), calretinin (CR), or parvalbumin (PV). Boutons from PV neuron subtypes are also distinguishable by differences in protein levels of the GABA-synthesizing enzymes GAD65 and GAD67. Multilabel fluorescence microscopy was used to determine if this diversity extends to boutons of CB and CR neurons in monkey prefrontal cortex. CB and CR neurons gave rise to 3 subpopulations of GAD-containing boutons: GAD65+, GAD67+, and GAD65/GAD67+. Somatostatin and vasoactive intestinal peptide-expressing neurons, subtypes of CB and CR neurons, respectively, also gave rise to these distinct bouton subpopulations. At the transcript level, CB and CR neurons contained mRNA encoding GAD67-only or both GADs. Thus, the distinct subpopulations of CB/GAD+ and CR/GAD+ boutons arise from 2 unique subtypes of CB and CR neurons. The different CB and CR GAD-expressing neurons targeted the same projection neurons and neuronal structures immunoreactive for PV, CR, or CB. These findings suggest that GABA synthesis from CB/GAD67+ and CR/GAD67+ neurons would presumably be more vulnerable to disease-associated deficits in GAD67 expression, such as in schizophrenia, than neurons that also contain GAD65. PMID:25824535

  1. Regional metabolic alterations in the hypothalamus of restricted rats

    Alterations of intermediary and neurotransmitter metabolism in the hypothalamus of rats on restricted intakes have been documented. The rates of fatty acid oxidation (FAO) and glutamic acid decarboxylase (GAD) were measured in hypothalamic sites of restricted or ad libitum fed rats. Female Sprague-Dawley rats (230 g) receiving a semi-purified diet received either ad lib (AL), 3/7 of ad lib as a single meal at 1700 h (R), 3/7 of ad lib by intubation as three equally spaced meals (TF) or ad lib for 3 d followed by 4 d of starvation (S). Rats were sacrificed at 0800 h and the brains quickly removed. FAO: Two 1.0 mm slices were dissected from the hypothalamus and areas corresponding to the VMN, PVN, and DMN removed with a 20 gauge punch. An 18 gauge punch was used to remove MFB/LHA. Bilateral punches were incubated at 37 C for 2 h in Krebs-bicarb. media containing (1-14C) palmitate (0.1 μCi)/μmole). GAD: The VMN and MFB-LHA were dissected as above. GAD activity was measured in homogenates using L-(14C) glutamate (1 +Ci/μmole) as described by Tappaz et al. (1976). Restriction significantly reduced FAO rates in the MFB/LHA. FAO rate in the VMN was not altered when restriction occurred as a single meal per day (R) but was reduced with restriction as three small meals per day (TF) or a 4 d starvation (S). No differences were noted in PVN or DMN FAO rates. GAD activity did not differ with restriction except in response to starvation in the VMN

  2. Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain.

    Waye, Andrew; Annal, Malar; Tang, Andrew; Picard, Gabriel; Harnois, Frédéric; Guerrero-Analco, José A; Saleem, Ammar; Hewitt, L Mark; Milestone, Craig B; MacLatchy, Deborah L; Trudeau, Vance L; Arnason, John T

    2014-01-15

    Pulp and paper wood feedstocks have been previously implicated as a source of chemicals with the ability to interact with or disrupt key neuroendocrine endpoints important in the control of reproduction. We tested nine Canadian conifers commonly used in pulp and paper production as well as 16 phytochemicals that have been observed in various pulp and paper mill effluent streams for their ability to interact in vitro with the enzymes monoamine oxidase (MAO), glutamic acid decarboxylase (GAD), and GABA-transaminase (GABA-T), and bind to the benzodiazepine-binding site of the GABA(A) receptor (GABA(A)-BZD). These neuroendocrine endpoints are also important targets for treatment of neurological disorders such as anxiety, epilepsy, or depression. MAO and GAD were inhibited by various conifer extracts of different polarities, including major feedstocks such as balsam fir, black spruce, and white spruce. MAO was selectively stimulated or inhibited by many of the tested phytochemicals, with inhibition observed by a group of phenylpropenes (e.g. isoeugenol and vanillin). Selective GAD inhibition was also observed, with all of the resin acids tested being inhibitory. GABA(A)-BZD ligand displacement was also observed. We compiled a table identifying which of these phytochemicals have been described in each of the species tested here. Given the diversity of conifer species and plant chemicals with these specific neuroactivities, it is reasonable to propose that MAO and GAD inhibition reported in effluents is phytochemical in origin. We propose disruption of these neuroendocrine endpoints as a possible mechanism of reproductive inhibition, and also identify an avenue for potential research and sourcing of conifer-derived neuroactive natural products. PMID:24041600

  3. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Hiromu Suzuki

    2014-07-01

    Full Text Available The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1 infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8.

  4. Ibotenic acid and thioibotenic acid

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte;

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid with...... the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for...

  5. Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus

    Azcarate-Peril, M. Andrea; Bruno-Bárcena, Jose M.; Hassan, Hosni M.; Klaenhammer, Todd R.

    2006-01-01

    Oxalic acid is found in dietary sources (such as coffee, tea, and chocolate) or is produced by the intestinal microflora from metabolic precursors, like ascorbic acid. In the human intestine, oxalate may combine with calcium, sodium, magnesium, or potassium to form less soluble salts, which can cause pathological disorders such as hyperoxaluria, urolithiasis, and renal failure in humans. In this study, an operon containing genes homologous to a formyl coenzyme A transferase gene (frc) and an ...

  6. [Gastric Acid].

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  7. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.

    Engber, T M; Susel, Z; Kuo, S; Gerfen, C R; Chase, T N

    1991-06-21

    The effects of striatal dopamine denervation and levodopa replacement therapy on neuronal populations in the rat striatum were assessed by measurement of glutamic acid decarboxylase (GAD) and choline acetyltransferase (CAT) activities in the striatum, dynorphin and substance P concentrations in the substantia nigra, and enkephalin concentration in the globus pallidus. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway were treated for 21 days with levodopa (100 mg/kg/day, i.p., with 25 mg/kg benserazide) on either an intermittent (b.i.d.) or continuous (osmotic pump infusion) regimen and sacrificed following a three day drug washout. In saline-treated control rats, striatal GAD activity and globus pallidus enkephalin content were elevated and nigral substance P content was reduced ipsilateral to the 6-OHDA lesion. Intermittent levodopa treatment further increased GAD activity, decreased CAT activity, restored substance P to control levels, markedly increased dynorphin content, and had no effect on enkephalin. In contrast, continuous levodopa elevated globus pallidus enkephalin beyond the levels occurring with denervation, but had no effect on any of the other neurochemical measures. These results indicate that striatal neuronal populations are differentially affected by chronic levodopa therapy and by the continuous or intermittent nature of the treatment regimen. With the exception of substance P, levodopa did not reverse the effects of the 6-OHDA lesion but, rather, either exacerbated the lesion-induced changes (e.g. GAD and enkephalin) or altered neurochemical markers which had been unaffected by the lesion (e.g. CAT and dynorphin).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1717109

  8. The role of genetic sex in affect regulation and expression of GABA-related genes across species

    Marianne eSeney

    2013-09-01

    Full Text Available Although circulating hormones and inhibitory gamma-amino butyric acid (GABA-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls, we show that the previously-reported down-regulation in MDD of somatostatin (SST, a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; 2 frontal cortex regions and expression quantitative trait loci mapping (N = 170 subjects, we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67 and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model (Four Core Genotypes (FCG mice, in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group, we show that genetic sex (i.e. X/Y chromosome influences both gene expression (lower Sst, Gad67, Gad65 in XY mice and anxiety-like behaviors (higher in XY mice. This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females. Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role for XY genetic sex on GABA-related genes and anxiety

  9. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus

    Jeffrey Garrett Mellott

    2014-10-01

    Full Text Available Descending projections from the auditory cortex (AC terminate in subcortical auditory centers from the medial geniculate nucleus (MG to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.

  10. First Experience and the Effectiveness of Immunomodulating Treatment in Inflammatory Demyelinating CNS Diseases: Analysis of Nine Patients / Imūnmodulējošās Terapijas Efektivitāte Centrālās Nervu Sistēmas Iekaisīgu Saslimšanu Gadījumos: Deviņu Pacientu Analīze

    Vainšteine Lana

    2015-09-01

    Full Text Available Terapeitiska plazmas apmaiņa (TPA tiek lietota noteiktu neiroloģisku saslimšanu gadījumos ar mērķi no organisma izvadīt imūnglobulīnus un citas imunoloģiski aktīvas substances. Pētījumā tika ietverti un izvērtēti pacienti, kas ārstējās Rīgas Austrumu klīniskajā universitātes slimnīcā “Gaiļezers” Neiroloģijas un neiroķirurģijas klīnikā, multiplās sklerozes vienībā ar diagnozēm: multiplo sklerozi (MS, recivējoši remitējošu norisi (balstoties uz 2010. gadā izstrādātajiem McDonald kritērijiem (pieci pacienti, optiskā neiromielīta spektra saslimšanu (trīs pacienti un optisku neiromielītu (viens pacients. Visi slimības saasinājumi tika apstiprināti, balstoties uz atbilstošiem klīniskajiem kritērijiem. Pacientu redzes traucējumus izvērtēja oftalmologs, savukārt neiroloģisko stāvokli - neirologs. Visi pacienti terapijas ietvaros 5-7 dienas saņēma metilprednizonu 1000 mg intravenozi sistēmu veidā. Invaliditātes izvērtēšanas skalas (IIS punktu skaits MS grupā bija 4,0-9,0 un 3,5-6,5 pēc TPA. Pacientiem ar optiskā neiromielīta spektra slimību IIS punktu skaits bija 8,0-8,5 diapazonā stacionēšanas laikā un 6,5-8,0 diapazonā pēc TPA. Vienam pacientam ar NMO spektra slimību bija labs rezultāts pēc TPA, IIS punktu skaits bija 3,5, bet pārējiem diviem bija tikai minimāls uzlabojums līdz 7,5. Optiska neiromielīta pacientam pēc TPA, izvērtējot klīniskos simptomus saasinājuma sākumā un pēc 1 mēneša, uzlabojumu nenovēroja.

  11. Cloning and Expression of Benzoylformate Decarboxylase Gene and Study on Biotransformation of Ethyl Vanillin by Resting Cell%苯乙酮酸脱羧酶基因的克隆与表达及静息细胞生物转化乙基香兰素的研究

    潘晓霞; 李静静; 何文森; 李大力; 贾承胜; 张晓鸣; 冯骉

    2013-01-01

    对恶臭假单胞杆菌(Pseudomonas putida ATCC12633)中的苯乙酮酸脱羧酶基因mdlC进行克隆,导入质粒载体pET28a中,将构建得到的重组质粒pET28a-mdlC转化于宿主细胞E.coliBL21 (DE3),重组大肠杆菌E.coli BL21 (DE3) (pET28a-mdlC)经IPTG诱导,SDS-PAGE分析得到相对分子质量约为57 000的蛋白质条带.将E.coli BL21 (DE3)(pET28a-mdlC)和E.coli BL21(DE3) (pET30a-mdlB)两株重组菌以混合静息细胞的形式作为生物催化剂,利用各自胞内的重组酶对3-乙氧基-4-羟基苯乙醇酸(乙基扁桃酸)脱氢氧化、脱羧合成乙基香兰素.未经优化,催化24 h后反应液中乙基香兰素的质量浓度可达1.94 g/L,且没有副产物产生.同时研究表明,该混合静息细胞重复使用3次能保持90%以上的催化活力,还有效缩短了反应时间.%Benzoylformate decarboxylase gene (mdlC) from Pseudomonas putida ATCC12633 was inverted into Escherichia coli (E.coli) strain BL21 (DE3) and was efficiently expressed after induction with IPTG. The recombinant strain together with E.coli/pET30a -mdlB converted successfully (S)-4-hydroxy-3-ethoxymandelic acid (EMA) to ethyl vanillin in the forms of mixed resting cells. Without optimization,all the (S)-EMA was consumed to form ethyl vanillin (1.94 g/ L) and no by product was obtained with the initial substrate concentration 5 g/L by after 24 h. The cells could maintain their enzyme activity in repeated utilization at least three times and shortened bioconversion time efficiently.

  12. Folic acid

    ... include leafy vegetables (such as spinach, broccoli, and lettuce), okra, asparagus, fruits (such as bananas, melons, and ... Pyrimethamine (Daraprim)Pyrimethamine (Daraprim) is used to treat parasite infections. Folic acid might decrease the effectiveness of ...

  13. Folic Acid

    Full Text Available ... March of Dimes Premature Birth Report Card Grades Cities, Counties; Focuses on Racial and Ethnic Disparities March ... your baby. Learn how you can get the right amout of folic acid before and during pregnancy ...

  14. ACID RAIN

    Acid precipitation has become one of the major environmental problems of this decade. It is a challenge to scientists throughout the world. Researchers from such diverse disciplines as plant pathology, soil science, bacteriology, meteorology and engineering are investigating diff...

  15. Folic Acid

    Full Text Available ... Just a moment, please. You've saved this page It's been added to your dashboard . Folic acid ... Map Premature birth report card Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness ...

  16. Folic Acid

    Full Text Available ... Folic acid Description | Related videos | Most played video E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  17. Study on Enzymatic Characters of Immobilized Streptococcus salivarius%固定化唾液链球菌的酶学性质研究

    焦阳; 汪建敏; 吕凤霞; 别小妹; 陆兆新

    2012-01-01

    In this study, the cells of Streptococcus salivarius subsp. Tjermophilus Y - 2 were embedded in calcium alginate, and the immobilized cells were used to synthesize y - aminobutyric acid. The results showed that the optimum temperature for the reaction of glutamate decarboxylase ( CAD) in the immobilized cells was 40℃ , and it had good temperature stability. The optimum pH - value for CAD reaction was 3.8. In comparison with the free cells, the immobilized cells revealed obviously better pH stability and higher GAD activity recovery. The solution of 0.1% Triton X -100 had strong promotive effect on the activity of GAD. The reaction of GAD in the immobilized cells did not exist the substrate inhibition phenomenon. Under the above optimum conditions, the bacterial productivity test showed that the y - aminobutyric acid content in the transformation solution reached 2.97 g/L after transforming L - MSC by the immobilized cells for 11 hours.%以海藻酸钙为载体包埋唾液链球菌嗜热亚种Y-2的菌体细胞,对固定化细胞催化合成γ-氨基丁酸进行了较详细的研究.研究结果表明:固定化细胞谷氨酸脱羧酶(Glutamate decarboxylase,GAD)反应的最适温度为40℃,同时具有良好的温度稳定性.固定化细胞酶活最适反应pH为3.8.细胞经固定化后pH稳定性明显增加,GAD酶活回收率普遍高于游离细胞.0.1% Triton X -100具有较强的酶活促进作用.固定化细胞的GAD在酶促反应中并不存在底物抑制现象.在上述最优条件下进行菌体生产力测试,固定化细胞转化L-谷氨酸单钠盐11 h后,转化液γ-氨基丁酸的浓度达到了2.79g/L.

  18. Identification of the Fluvirucin B2 (Sch 38518) Biosynthetic Gene Cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate Specificity of the β-Amino Acid Selective Adenylating Enzyme FlvN.

    Miyanaga, Akimasa; Hayakawa, Yuki; Numakura, Mario; Hashimoto, Junko; Teruya, Kuniko; Hirano, Takashi; Shin-Ya, Kazuo; Kudo, Fumitaka; Eguchi, Tadashi

    2016-05-01

    Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2. PMID:26818633

  19. Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese.

    Ferrari, Iris da Silva; de Souza, Jane Viana; Ramos, Cintia Lacerda; da Costa, Mateus Matiuzzi; Schwan, Rosane Freitas; Dias, Francesca Silva

    2016-12-01

    This study aimed to select autochthonous lactic acid bacteria (LAB) with probiotic and functional properties from goat dairies and test their addition to artisanal cheese for the inhibition of Salmonella typhi. In vitro tests, including survival in the gastrointestinal tract (GIT), auto- and co-aggregation, the hemolytic test, DNase activity, antimicrobial susceptibility, antibacterial activity, tolerance to NaCl and exopolysaccharide (EPS), gas and diacetyl production were conducted for sixty isolates. Based on these tests, four LAB isolates (UNIVASF CAP 16, 45, 84 and 279) were selected and identified. Additional tests, such as production of lactic and citric acids by UNIVASF CAP isolates were performed in addition to assays of bile salt hydrolase (BSH), β-galactosidase and decarboxylase activity. The four selected LAB produced high lactic acid (>17 g/L) and low citric acid (0.2 g/L) concentrations. All selected strains showed BSH and β-galactosidase activity and none showed decarboxylase activity. Three goat cheeses (1, 2 and control) were produced and evaluated for the inhibitory action of selected LAB against Salmonella typhi. The cheese inoculated with LAB (cheese 2) decreased 0.38 log10 CFU/g of S. Typhy population while in the cheese without LAB inoculation (cheese 1) the pathogen population increased by 0.29 log units. Further, the pH value increased linearly over time, by 0.004 units per day in cheese 1. In the cheese 2, the pH value decreased linearly over time, by 0.066 units per day. The cocktail containing selected Lactobacillus strains with potential probiotic and technological properties showed antibacterial activity against S. typhi in vitro and in artisanal goat cheese. Thus, goat milk is important source of potential probiotic LAB which may be used to inhibit the growth of Salmonella population in cheese goat, contributing to safety and functional value of the product. PMID:27554143

  20. Extracts from hardwood trees used in commercial paper mills contain biologically active neurochemical disruptors.

    Basu, Niladri; Waye, Andrew; Trudeau, Vance L; Arnason, John T

    2012-01-01

    Following on our discovery that pulp and paper mill effluents can interact with, and disrupt, various neurotransmitter receptors and enzymes important to fish reproduction, we tested wood and bark extracts of 14 Eastern North American hardwood trees used in pulp and paper production. Radioligand binding to neurotransmitter receptors, including the dopamine-2 receptor (D2), the gamma aminobutyric acid receptor A (GABA(A)), N-methyl-D-aspartic acid (NMDA) receptor, and muscarinic cholinergic receptor (mACh-R), were significantly changed following in vitro incubations with many but not all extracts. Activities of neurotransmitter-related enzymes monoamine oxidase (MAO), GABA-transaminase (GABA-T), acetylcholinesterase (AChE) and glutamic acid decarboxylase (GAD) were also significantly altered. Butternut wood extracts and the isolated compound juglone significantly inhibited the enzymatic activities of MAO and GAD which we suggest may be part of a mechanism that may negatively affect fish reproduction. Besides giving credence to the hypothesis that neuroactive compounds in pulp and paper effluent may originate in the trees used by mills, the results reported here also indicate important neuropharmacological activities in hardwoods which may help identify new sources of biologically active natural products. PMID:22137476

  1. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  2. Okadaic acid

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    Okadaic acid (OA) is a polyether fatty acid produced by marine dinoflagellates and the causative agent of diarrhetic shellfish poisoning. The effect of OA on apical endocytosis in the small intestine was studied in organ cultured porcine mucosal explants. Within 0.5-1 h of culture, the toxin caused...... endosomes (TWEEs) occurred unimpeded in the presence of OA, FM condensed in larger subapical structures by 1 h, implying a perturbed endosomal trafficking/maturation. The fluorescent lysosomotropic agent Lysotracker revealed induction of large lysosomal structures by OA. Endocytosis from the brush border...

  3. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde.

    Korzhevskii, D E; Sukhorukova, E G; Kirik, O V; Grigorev, I P

    2015-01-01

    Tissue fixation is critical for immunohistochemistry. Recently, we developed a zinc-ethanol-formalin fixative (ZEF), and the present study was aimed to assess the applicability of the ZEF for the human brain histology and immunohistochemistry and to evaluate the detectability of different antigens in the human brain fixed with ZEF. In total, 11 antigens were tested, including NeuN, neuron-specific enolase, GFAP, Iba-1, calbindin, calretinin, choline acetyltransferase, glutamic acid decarboxylase (GAD65), tyrosine hydroxylase, synaptophysin, and α-tubulin. The obtained data show that: i) the ZEF has potential for use in general histological practice, where detailed characterization of human brain morphology is needed; ii) the antigens tested are well-preserved in the human brain specimens fixed in the ZEF. PMID:26428887

  4. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde

    D.E. Korzhevskii

    2015-08-01

    Full Text Available Tissue fixation is critical for immunohistochemistry. Recently, we developed a zinc-ethanol-formalin fixative (ZEF, and the present study was aimed to assess the applicability of the ZEF for the human brain histology and immunohistochemistry and to evaluate the detectability of different antigens in the human brain fixed with ZEF. In total, 11 antigens were tested, including NeuN, neuron-specific enolase, GFAP, Iba-1, calbindin, calretinin, choline acetyltransferase, glutamic acid decarboxylase (GAD65, tyrosine hydroxylase, synaptophysin, and α-tubulin. The obtained data show that: i the ZEF has potential for use in general histological practice, where detailed characterization of human brain morphology is needed; ii the antigens tested are well-preserved in the human brain specimens fixed in the ZEF.

  5. “Dancing Eye Syndrome” Secondary to Opsoclonus-Myoclonus Syndrome in Small-Cell Lung Cancer

    S. Laroumagne

    2014-01-01

    Full Text Available Among paraneoplastic neurologic disorders (PND, opsoclonus-myoclonus syndrome, so-called “dancing eye syndrome,” is a rare disorder combining multivectorial eye movements, involuntary multifocal myoclonus, and cerebellar ataxia. Although several paraneoplastic antibodies against postsynaptic or cell-surface antigens have been reported, usually most patients are serum antibody negative. We report a 65-year-old patient with opsoclonus-myoclonus syndrome revealing a small-cell lung carcinoma. If serologic antineuronal anti-body screening was negative, autoantibodies against glutamic acid decarboxylase (anti-GAD were positive. Despite the specific anticancer treatment and high dose corticosteroids, the patient developed a severe and progressive encephalopathy and died 10 days later.

  6. Perfluorooctanoic acid

    P. de Voogt

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  7. Ascorbic Acid

    Cevi-Bid® ... If you become pregnant while taking ascorbic acid, call your doctor. ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call ...

  8. Stearic Acid

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  9. Mefenamic Acid

    Mefenamic acid comes as a capsule to take by mouth. It is usually taken with food every 6 hours as needed for up to 1 week. Follow ... pain vomit that is bloody or looks like coffee grounds black, tarry, or bloody stools slowed breathing ...

  10. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats.

    Mizuguchi, Hiroyuki; Das, Asish K; Maeyama, Kazutaka; Dev, Shrabanti; Shahriar, Masum; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2016-04-01

    Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R) or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC) mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI)-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription. PMID:26980430

  11. Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.

    Yatscoff, Michael A; Jaswal, Jagdip S; Grant, Meghan R; Greenwood, Rachel; Lukat, Trish; Beker, Donna L; Rebeyka, Ivan M; Lopaschuk, Gary D

    2008-12-01

    After birth dramatic decreases in cardiac malonyl CoA levels result in the rapid maturation of fatty acid oxidation. We have previously demonstrated that the decrease in malonyl CoA is due to increased activity of malonyl CoA decarboxylase (MCD), and decreased activity of acetyl CoA carboxylase (ACC), enzymes which degrade and synthesize malonyl CoA, respectively. Decreased ACC activity corresponds to an increase in the activity of 5'-AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. These alterations are delayed by myocardial hypertrophy. As rates of fatty acid oxidation can influence the ability of the heart to withstand an ischemic insult, we examined the expression of MCD, ACC, and AMPK in the newborn human heart. Ventricular biopsies were obtained from infants undergoing cardiac surgery. Immunoblot analysis showed a positive correlation between MCD expression and age. In contrast, a negative correlation in both ACC and AMPK expression and age was observed. All ventricular samples displayed some degree of hypertrophy, however, no differences in enzyme expression were found between moderate and severe hypertrophy. This indicates that increased expression of MCD, and the decreased expression of ACC and AMPK are important regulators of the maturation of fatty acid oxidation in the newborn human heart. PMID:18614968

  12. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h). PMID:26596574

  13. Immunohistochemical localization of GABAergic key molecules in the main olfactory bulb of the Korean roe deer, Capreolus pygargus.

    Kim, Jeongtae; Takayama, Chitoshi; Park, Changnam; Ahn, Meejung; Moon, Changjong; Shin, Taekyun

    2015-09-01

    Gamma-amino butyric acid (GABA) negatively regulates the excitatory activity of neurons and is a predominant neurotransmitter in the nervous system. The olfactory bulb, the main center in the olfactory system, is modulated by inhibitory interneurons that use GABA as their main neurotransmitter. The present study aimed to evaluate GABAergic transmission in the main olfactory bulb (MOB) of the Korean roe deer (Capreolus pygargus) by examining the immunohistochemical localization of GABAergic key molecules, including glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT), GABA transporters (GATs; GAT-1 and GAT-3), and potassium sodium chloride co-transporter 2 (KCC2). GAD, VGAT, and KCC2 were expressed in the glomerular layer (GL), external plexiform layer (ePL), mitral cell layer (ML), and granule cell layer (GrL). Intense GAT-1 expression was observed in the GL; GAT-1 expression was discernible in the ePL, ML, and GrL. However, intense GAT-3 expression was extensively observed in all layers of the MOB. These results suggest that substantial GABAergic synapses are present in the GL, ePL, ML, and GrL. Furthermore, the released GABA may be removed by GAT-1 and GAT-3 in the GL, and the majority of GABA, which is present in the ePL to GrL, may undergo reuptake by GAT-3. This is the first morphological and descriptive study of GABAergic transmission in the MOB of Korean roe deer. PMID:26115600

  14. A case of stiff-person syndrome, type 1 diabetes, celiac disease and dermatitis herpetiformis.

    O'Sullivan, Eoin P

    2009-05-01

    Antibodies against glutamic acid decarboxylase (GAD) are involved in the pathophysiology of stiff-person syndrome (SPS) and type 1 diabetes. GAD catalyses the conversion of glutamate to gamma-aminobutyric acid (GABA). GABA acts as a neurotransmitter between neurones, while in pancreatic beta cells it plays an integral role in normal insulin secretion, hence the clinical presentation of muscular spasms in SPS and insulin deficiency in diabetes. Despite this apparent major overlap in pathophysiology, SPS only rarely occurs in individuals with type 1 diabetes. We report the case of a 41-year-old man presenting with a simultaneous diagnosis of both these conditions. His case is unusual in that it is the first reported case in the literature of these conditions occurring in someone with celiac disease (CD) and dermatitis herpetiformis. We discuss why SPS and type 1 diabetes co-exist in only a minority of cases and speculate on the underlying mechanism of the association with CD and dermatitis herpetiformis in our patient.

  15. Protein (Viridiplantae): 297796879 [PGDBj - Ortholog DB

    Full Text Available PVKTIKTNVIGTLNMLGLAKRVGARILLTSTSEVYGDPLIHPQPESYWGNVNPIGVRSCYDEGKRVAETLMFDYHRQHGIEIRIARIFNTYGPRMNIDDGRVVSNFIA...972:1201 UDP-glucuronic acid decarboxylase Arabidopsis lyrata subsp. lyrata MAATSEKQNSTKPPPSPSPLRNSKFCQSNMRILI...SGGAGFIGSHLVDKLMENEKNEVIVADNYFTGSKENLKKWIGHPRFELIRHDVTEPLLIEVDRIYHLACPASPIFYKYN...QALRGEALTVQKPGTQTRSFCYVSDMVDGLIRLMEGDDTGPINIGNPGEFTMVELAETVKELINPSIEIKMVENTPDDPRQRKPDISKAKEVLGWEPKVKLREGLPLMEEDFRLRLNVPKN ...

  16. Hydroxycarboxylic acids and salts

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  17. BMSCs transplantation improves cognitive impairment via up-regulation of hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion.

    Long, Q; Hei, Y; Luo, Q; Tian, Y; Yang, J; Li, J; Wei, L; Liu, W

    2015-12-17

    Bone marrow mesenchymal stem cells (BMSCs) transplantation can ameliorate cognitive impairment in chronic ischemic brain injury, but the underlying mechanism is poorly understood. It is considered that the hippocampus holds the capabilities of memory consolidation and spatial navigation, and the gamma amino butyric acid (GABA)ergic system plays an important role in the control of learning and memory processes. Herein, we investigated whether transplantation of BMSCs could improve cognitive impairment via regulating the hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Animals treated with permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) (a rat model of chronic cerebral hypoperfusion) received intravenous injections of BMSCs or saline as experimental group and control group I, the sham-operated rats received intravenous injections of BMSCs or saline as the sham group and control group II. Four weeks later, the Morris Water Maze was employed to evaluate the cognitive changes of each group, immunohistochemistry and western blotting was used to investigate the GABAergic system expression including GABA, glutamic acid decarboxylase 67 (GAD67) or GABA(B) receptor 1 (GABA(B)R1) in the hippocampus. Our results showed that the 2VO model presented decreased capacities of learning and memory and down-regulated the expression of GABA, GAD67 or GABA(B)R1 in the hippocampal CA1 subfield in comparison to the sham group (P<0.05), while administration of BMSCs (experimental group) manifested increased performances of learning sessions and probe tasks, as well as up-regulated expression of GABA, GAD67 or GABA(B)R1 compared with the control group I (P<0.05). Collectively, these findings suggest that transplantation of BMSCs is capable of improving cognitive impairment via up-regulating the hippocampal GABAergic system in a rat model of chronic cerebral hypoperfusion. Hence, BMSCs transplantation could serve as an

  18. Acid Corrosion Inhibition and Adsorption Behaviour of Ethyl Hydroxyethyl Cellulose on Mild Steel Corrosion

    I. O. Arukalam

    2014-01-01

    Full Text Available The corrosion inhibition of mild steel in 1.0 M H2SO4 solution by ethyl hydroxyethyl cellulose has been studied in relation to the concentration of the additive using weight loss measurement, EIS, polarization, and quantum chemical calculation techniques. The results indicate that EHEC inhibited corrosion reaction in the acid medium and inhibition efficiency increased with EHEC concentration. Further increase in inhibition efficiency is observed in the presence of iodide ions, due to synergistic effect. Impedance results reveal that EHEC is adsorbed on the corroding metal surface. Adsorption followed a modified Langmuir isotherm, with very high negative values of the free energy of adsorption (ΔGads. The polarization data indicate that the inhibitor was of mixed type, with predominant effect on the cathodic partial reaction. The frontier molecular orbitals, HOMO (the highest occupied molecular orbital and LUMO (the lowest unoccupied molecular orbital as well as local reactivity of the EHEC molecule, were analyzed theoretically using the density functional theory to explain the adsorption characteristics at a molecular level. The theoretical predictions showed good agreement with experimental results.

  19. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. PMID:26384570

  20. Mutual augmentation of the induction of the histamine-forming enzyme, histidine decarboxylase, between alendronate and immuno-stimulants (IL-1, TNF, and LPS), and its prevention by clodronate

    Nitrogen-containing bisphosphonates (N-BPs), powerful anti-bone-resorptive drugs, have inflammatory side effects, while histamine is not only an inflammatory mediator, but also an immuno-modifier. In murine models, a single intraperitoneal injection of an N-BP induces various inflammatory reactions, including the induction of the histamine-forming enzyme histidine decarboxylase (HDC) in tissues important in immune responses (such as liver, lungs, spleen, and bone marrow). Lipopolysaccharide (LPS) and the proinflammatory cytokines IL-1 and TNF are also capable of inducing HDC. We reported previously that in mice (i) the inflammatory actions of N-BPs depend on IL-1 (ii) N-BP pretreatment augments both LPS-stimulated IL-1 production and HDC induction, and (iii) the co-administration of clodronate (a non-N-BP) with an N-BP inhibits the latter's inflammatory actions (including HDC induction). Here, we add the new findings that (a) pretreatment with alendronate (a typical N-BP) augments both IL-1- and TNF-induced HDC elevations, (b) LPS pretreatment augments the alendronate-induced HDC elevation, (c) co-administration of clodronate with alendronate abolishes these augmentations, (d) alendronate does not induce HDC in IL-1-deficient mice even if they are pretreated with LPS, and (e) alendronate increases IL-1β in all tissues tested, but not in the serum. These results suggest that (1) there are mutual augmentations between alendronate and immuno-stimulants (IL-1, TNF, and LPS) in HDC induction, (2) tissue IL-1β is important in alendronate-stimulated HDC induction, and (3) combination use of clodronate may have the potential to reduce the inflammatory effects of alendronate (we previously found that clodronate, conveniently, does not inhibit the anti-bone-resorptive activity of alendronate)

  1. Understanding Acid Rain

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  2. Dehydroabietic acid

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  3. Functional recovery after rhesus monkey spinal cord injury by transplantation of bone marrow mesenchymal-stem cell-derived neurons

    DENG Yu-bin; YUAN Qing-tao; LIU Xiao-gang; LIU Xiao-lin; LIU Yu; LIU Zu-guo; ZHANG Cheng

    2005-01-01

    Background The treatment of spinal cord injury is still a challenge. This study aimed at evaluating the therapeutical effectiveness of neurons derived form mesenchymal stem cells (MSCs) for spinal cord injury.Methods In this study, rhesus MSCs were isolated and induced by cryptotanshinone in vitro and then a process of RT-PCR was used to detect the expression of glutamic acid decarboxylase (GAD) gene. The induced MSCs were tagged with Hoechst 33342 and injected into the injury site of rhesus spinal cord made by the modified Allen method. Following that, behavior analysis was made after 1 week, 1 month, 2 months and 3 months. After 3 months, true blue chloride retrograde tracing study was also used to evaluate the re-establishment of axons pathway and the hematoxylin-eosin (HE) staining and immunohistochemistry were performed after the animals had been killed.Results In this study, the expression of mRNA of GAD gene could be found in the induced MSCs but not in primitive MSCs and immunohistochemistry could also confirm that rhesus MSCs could be induced and differentiated into neurons. Behavior analysis showed that the experimental animals restored the function of spinal cord up to grade 2-3 of Tarlov classification. Retrograde tracing study showed that true blue chollide could be found in the rostral thoracic spinal cords, red nucleus and sensory-motor cortex.Conclusions These results suggest that the transplantation is safe and effective.

  4. WJD 5th Anniversary Special Issues(3): Type 1 diabetes Distinct clinical and laboratory characteristics of latent autoimmune diabetes in adults in relation to type 1 and type 2 diabetes mellitus

    Elena; Pipi; Marietta; Marketou; Alexandra; Tsirogianni

    2014-01-01

    Ever since its first appearance among the multiple forms of diabetes,latent autoimmune diabetes in adults(LADA),has been the focus of endless discussions concerning mainly its existence as a special type of diabetes.In this mini-review,through browsing important peer-reviewed publications,(original articles and reviews),we will attempt to refresh our knowledge regarding LADA hoping to enhance our understanding of this controversial diabetes entity.A unique combination of immunological,clinical and metabolic characteristics has been identified in this group of patients,namely persistent islet cell antibodies,high frequency of thyroid and gastric autoimmunity,DR3 and DR4 human leukocyte antigen haplotypes,progressive loss of beta cells,adult disease onset,normal weight,defective glycaemic control,and without tendency to ketoacidosis.Although anthropomorphic measurements are useful as a first line screening,the detection of C-peptide levels and the presence of glutamic acid decarboxylase(GAD)autoantibodies is undoubtedly the sine qua non condi-tion for a confirmatory LADA diagnosis.In point of fact,GAD autoantibodies are far from being solely a biomarker and the specific role of these autoantibodies in disease pathogenesis is still to be thoroughly studied.Nevertheless,the lack of diagnostic criteria and guidelines still puzzle the physicians,who struggle between early diagnosis and correct timing for insulin treatment.

  5. Association of type 1 diabetes mellitus and autoimmune disorders in Brazilian children and adolescents

    Alves, Crésio; Santos, Larissa Siqueira; Toralles, Maria Betânia P.

    2016-01-01

    Context: Type 1 diabetes mellitus (T1DM) is caused by an immune-mediated destruction of pancreatic beta cells. Other autoimmune diseases can be observed in association with T1DM. The screening for celiac disease (CD) and Hashimoto's thyroiditis is necessary due to the increased prevalence of these pathologies in T1DM patients. Aims: This study aimed to investigate the prevalence of autoimmune markers for pancreatitis, thyroiditis, and CD in racially admixtured children and adolescents with T1DM. Settings and Design: Cross-sectional clinic-based study. Methods: Seventy-one patients with T1DM (average: 11.6 ± 5.1 years). In all patients, the following antibodies were surveyed: Anti-glutamic acid decarboxylase (anti-GAD), immunoglobulin A (IgA) anti-transglutaminase (anti-tTG), Antithyroglobulin (AAT), anti-thyroid peroxidase (anti-TPO), and IgA. Statistical Analysis Used: The quantitative variables were expressed as a mean and standard deviation and the qualitative variables in contingency tables. Student's t-test and χ2 tests were used to assess the differences between the groups. The level of significance was established as P adolescents with T1DM have increased the prevalence of antithyroid and CD-related antibodies. The positivity for anti-GAD and antithyroid antibodies was less frequent than in other studies. The prevalence of anti-tTG antibodies was similar to the literature.

  6. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord

    Jeffrey B. Russ

    2013-09-01

    Full Text Available During perinatal development, corticospinal tract (CST projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65. In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of descending spinal pathways, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.

  7. Environmental enrichment as a therapeutic avenue for anxiety in aged Wistar rats: Effect on cat odor exposition and GABAergic interneurons.

    Sampedro-Piquero, P; Castilla-Ortega, E; Zancada-Menendez, C; Santín, L J; Begega, A

    2016-08-25

    The use of more ethological animal models to study the neurobiology of anxiety has increased in recent years. We assessed the effect of an environmental enrichment (EE) protocol (24h/day over a period of two months) on anxiety-related behaviors when aged Wistar rats (21months old) were confronted with cat odor stimuli. Owing to the relationship between GABAergic interneurons and the anxiety-related neuronal network, we examined changes in the expression of Parvalbumin (PV) and 67kDa form of glutamic acid decarboxylase (GAD-67) immunoreactive cells in different brain regions involved in stress response. Behavioral results revealed that enriched rats traveled further and made more grooming behaviors during the habituation session. In the cat odor session, they traveled longer distances and they showed more active interaction with the odor stimuli and less time in freezing behavior. Zone analysis revealed that the enriched group spent more time in the intermediate zone according to the proximity of the predator odor. Regarding the neurobiological data, the EE increased the expression of PV-positive cells in some medial prefrontal regions (cingulate (Cg) and prelimbic (PL) cortices), whereas the GAD-67 expression in the basolateral amygdala was reduced in the enriched group. Our results suggest that EE is able to reduce anxiety-like behaviors in aged animals even when ethologically relevant stimuli are used. Moreover, GABAergic interneurons could be involved in mediating this resilient behavior. PMID:27235742

  8. Self-glycolipids modulate dendritic cells changing the cytokine profiles of committed autoreactive T cells.

    Karsten Buschard

    Full Text Available The impact of glycolipids of non-mammalian origin on autoimmune inflammation has become widely recognized. Here we report that the naturally occurring mammalian glycolipids, sulfatide and β-GalCer, affect the differentiation and the quality of antigen presentation by monocyte-derived dendritic cells (DCs. In response to sulfatide and β-GalCer, monocytes develop into immature DCs with higher expression of HLA-DR and CD86 but lower expression of CD80, CD40 and CD1a and lower production of IL-12 compared to non-modulated DCs. Self-glycolipid-modulated DCs responded to lipopolysaccharide (LPS by changing phenotype but preserved low IL-12 production. Sulfatide, in particular, reduced the capacity of DCs to stimulate autoreactive Glutamic Acid Decarboxylase (GAD65 - specific T cell response and promoted IL-10 production by the GAD65-specific clone. Since sulfatide and β-GalCer induced toll-like receptor (TLR-mediated signaling, we hypothesize that self-glycolipids deliver a (tolerogenic polarizing signal to differentiating DCs, facilitating the maintenance of self-tolerance under proinflammatory conditions.

  9. Non-paraneoplastic limbic encephalitis and central nervous HHV-6B reactivation: Causality or coincidence?

    Niehusmann, Pitt; Widman, Guido; Eis-Hübinger, Anna M; Greschus, Susanne; Robens, Barbara K; Grote, Alexander; Becker, Albert J

    2016-08-01

    Autoantibody-related encephalopathies represent an important differential diagnosis in adult onset epilepsy. Here, we report the case of a 25-year-old patient with new-onset epilepsy and psychotic syndrome, who underwent biopsy resection for etiological classification. MRI analysis and neuropathological examination showed a T-lymphocytic dominated encephalitis with involvement of the limbic system. An indirect immunohistochemistry approach identified autoantibodies against glutamic acid decarboxylase (GAD) in cerebral spinal fluid and serum, which were confirmed by affinity purification / mass spectrometry analysis. Further examinations revealed evidence of chromosomally integrated human herpes virus type 6B (HHV-6B). However, astrocytic expression of HHV-6 lytic protein was detected by double immunofluorescence analysis. The cerebral expression of HHV-6 antigen, a clinical improvement under antiviral therapy as well as an initial finding of HHV-6 IgM antibodies strongly argue for an additional active HHV-6B infection. Review of the literature reveals singular reports of patients with GAD antibody-positive limbic encephalitis and central nervous system infections with HHV-6B. Since herpes simplex virus encephalitis has been recently reported as a trigger of N-methyl-D-aspartate receptor antibody encephalitis, it is tempting to speculate that HHV-6B infections may trigger a non-paraneoplastic form of limbic encephalitis in a parallel cascade. PMID:27431532

  10. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  11. The possible role of genomic imprinting at HLA-DQ/DR region in the pathogenesis of insulin-dependent diabetes mellitus

    Sasaki, T.; Nemoto, M.; Nishimura, R. [Univ. School of Medicine, Tokyo (Japan)] [and others

    1994-09-01

    Insulin-dependent diabetes mellitus (IDDM) is an autoimmune endocrinopathy that often develops with anti glutamic acid decarboxylase autoantibody (GAD-Ab). Accumulated data indicate that specific alleles with HLA-DQA1{sup *}0301 strongly associate with IDDM so that its susceptible gene is localized at HLA class II DQ/DR region. The mode of transmission, however, remains still unclear. To investigate the possibility of involvement of genomic imprinting at the susceptible gene in IDDM, we conducted pedigree analysis of 16 IDDM probands who are positive for GAD-Ab and their first-degree relatives consisting of 14 mothers, 11 fathers and 11 sibs. The GAD-Ab was measured with RIA (cut off = 5 U/ml), and genotypes of DQA1 and DRB1 loci were determined with PCR-RFLP method. Of the observed 16 families, one had an affected brother who developed IDDM and was positive for GAD-Ab (144 U/ml), but the remaining 15 were simplex families. Except for the affected brother, all relatives appeared to be negative for GAD-Ab. DQA1 genotyping showed that 11 probands were homozygotes of high-risk DQA1{sup *}0301, but the five probands were heterozygous with DQA1{sup *}0301/X who were informative for the parental origin of DQA1{sup *}0301 allele. Pedigree analyses revealed that all DQA1{sup *}0301 alleles of the five affected heterozygotes were transmitted from their mothers. We next analyzed segregation pattern of DQA1-DRB1 haplotypes and found that the affected brother shared the same maternally transmitted allele with the proband. Further haplotype analysis indicated that the informative six unaffected sibs did not share the maternally transmitted DQA1{sup *}0301 alleles with their probands. From the exclusive association with maternally transmitted DQA{sup *}0301 alleles, we propose the hypothesis that maternal transmission of {open_quotes}affected alleles{close_quotes} are required for the development of IDDM with the mechanism of genomic imprinting at the HLA-DQ/DR region.

  12. Landschaft und Gadächtnis. Erfahrung der tschechischen Grenzgebiete

    Spurný, Matěj

    München: Volk Verlag, 2013 - (Krauss, M.; Fassl, P.; Scholl- Schneider , S.), s. 45-58 ISBN 978-3-937200-99-6 Institutional support: RVO:68378114 Keywords : landscape * memory * borderlands Subject RIV: AB - History

  13. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs. PMID:25976628

  14. Autoantibody frequency in celiac disease

    Erkan Caglar

    2009-01-01

    Full Text Available AIM: In our study, we investigated the levels of glutamic acid decarboxylase antibody (anti-GAD, islet cell antibody (ICA, thyroperoxidase antibody (anti-TPO, thyroglobulin antibody (anti-TG, antinuclear antibodies (FANA, antibodies to double-stranded DNA (anti-ds DNA, antibody to Sjögren syndrome A antigen (anti-SSA, antibody to Sjögren syndrome B antigen (anti-SSB, Smith antibody (anti-Sm, smooth muscle antibodies (ASMA, and antimitochondrial antibody liver-kidney microsome (AMA-LKM in patients with celiac disease as compared to healthy controls and autoimmune hypothyroid patients. MATERIALS AND METHODS: A total of 31 patients with celiac disease, 34 patients with autoimmune hypothyroidism and 29 healthy subjects were included in this study. Anti-SSA, anti-SSB, anti-Sm, anti-ds DNA, anti-GAD, anti-TPO and anti-TG were studied by Enzyme-Linked Immunosorbent Assay (ELISA, and AMA-LKM, ASMA, ANA and ICA were studied by immunofluorescence. Clinical data and the results of free thyroxine-thyroid stimulating hormone (FT4-TSH were collected from the patients' files by retrospective analysis. SPSS ver 13.0 was used for data analysis, and the χ2 method was used for comparisons within groups. RESULTS: The frequency of anti-SSA, anti-SSB, anti-GAD, anti-Sm, anti-ds DNA, AMA-LKM, ASMA, ANA and ICA were not significantly different between the groups. Levels of anti-TPO and anti-TG antibodies were found to be significantly higher (<0.001 in autoimmune hypothyroid patients when compared with other groups. CONCLUSION: In previous studies, an increased frequency of autoimmune diseases of other systems has been reported in patients with celiac disease. We found that the frequency of autoimmune antibodies specific for other autoimmune diseases was not higher in celiac disease.

  15. Immunoadsorption therapy in autoimmune encephalitides

    Golombeck, Kristin S.; Bien, Corinna; Abu-Tair, Mariam; Brand, Marcus; Bulla-Hellwig, Michael; Lohmann, Hubertus; Münstermann, Dieter; Pavenstädt, Hermann; Thölking, Gerold; Valentin, Rainer; Wiendl, Heinz; Melzer, Nico; Bien, Christian G.

    2016-01-01

    Objective: It was hypothesized that in encephalitides with autoantibodies directed to CNS surface antigens an antibody-removing intervention might speed up recovery. Methods: The outcome of autoimmune encephalitis in 19 patients with antibodies against surface antigens (leucine-rich, glioma inactivated 1 [LGI1], n = 3; contactin-associated protein-2 [CASPR2], n = 4; NMDA receptor [NMDAR], n = 7) and intracellular antigens (glutamic acid decarboxylase [GAD], n = 5) after immunoadsorption in addition to corticosteroid therapy was evaluated retrospectively. Modified Rankin scale (mRS) scores and data on seizures, memory, and antibody titers directly after immunoadsorption (early follow-up) and after a median of 4 months (late follow-up) were compiled. Results: Immediately after immunoadsorption, 9 of 14 patients with antibodies against LGI1, CASPR2, or NMDAR (64%), but none with GAD antibodies, had improved by at least one mRS point. Five of the 7 patients with LGI1 or CASRP2 antibodies had become seizure-free, and 2 patients with NMDAR antibodies had a memory improvement of more than 1 SD of a normal control population. At late follow-up, 12 of 14 patients with surface antibodies had improved (86%), and none of the patients with GAD antibodies. Conclusions: It is suggested that addition of immunoadsorption to immunosuppression therapy in patients with surface antibodies may accelerate recovery. This supports the pathogenic role of surface antibodies. Classification of evidence: This study provides Class IV evidence that immunoadsorption combined with immunosuppression therapy is effective in patients with autoimmune encephalitis with surface antibodies. PMID:26977423

  16. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Geigerseder, Christof; Doepner, Richard FG; Thalhammer, Andrea; Krieger, Annette; Mayerhofer, Artur

    2004-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment. PMID:15040802

  17. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Krieger Annette

    2004-03-01

    Full Text Available Abstract The neurotransmitter gamma-aminobutyric acid (GABA and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD, as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.

  18. COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia.

    Shukla, Abhay A; Jha, Manish; Birchfield, Thomas; Mukherjee, Shibani; Gleason, Kelly; Abdisalaam, Salim; Asaithamby, Aroumougame; Adams-Huet, Beverley; Tamminga, Carol A; Ghose, Subroto

    2016-05-01

    The single nucleotide val158met polymorphism in catechol o-methyltransferase (COMT) influences prefrontal cortex function. Working memory, dependent on the dorsolateral prefrontal cortex (DLPFC), has been repeatedly shown to be influenced by this COMT polymorphism. The high activity COMT val isoform is associated with lower synaptic dopamine levels. Altered synaptic dopamine levels are expected to lead to molecular adaptations within the synapse and within DLPFC neural circuitry. In this human post mortem study using high quality DLPFC tissue, we first examined the influence of the COMT val158met polymorphism on markers of dopamine neurotransmission, N-methyl-d-aspartate (NMDA) receptor subunits and glutamatic acid decarboxylase 67 (GAD67), all known to be critical to DLPFC circuitry and function. Next, we compared target gene expression profiles in a cohort of control and schizophrenia cases, each characterized by COMT genotype. We find that the COMT val allele in control subjects is associated with significant upregulation of GluN2A and GAD67 mRNA levels compared to met carriers. Comparisons between control and schizophrenia groups reveal that GluN2A, GAD67 and DRD2 are differentially regulated between diagnostic groups in a genotype specific manner. Chronic antipsychotic treatment in rodents did not explain these differences. These data demonstrate an association between COMTval158met genotype and gene expression profile in the DLPFC of controls, possibly adaptations to maintain DLPFC function. In schizophrenia val homozygotes, these adaptations are not seen and could reflect pathophysiologic mechanisms related to the known poorer performance of these subjects on DLPFC-dependent tasks. PMID:27021555

  19. Retarded acid emulsion

    Fast, C.R.; Rixe, F.H.; Duffield, E.L. Jr.

    1972-08-01

    Compositions for use in acidizing hydrocarbon-bearing formations are described. Retarded acid emulsions of prolonged stability make it possible for the acid in this form to be displaced substantial distances out into the formation before becoming spent. The action of acid emulsions for use in acidizing hydrocarbon-bearing formations is prolonged by employing as the principal emulsifying agent an amine salt of dodecylbenzene sulfonic acid. Acid emulsions employing the amine salt of dodecylbenzene sulfonic acid exhibit greater stability than those employing the free acid. (8 claims)

  20. Disease: H01161 [KEGG MEDICUS

    Full Text Available decarboxylase (AADC) deficiency is an autosomal recessive disorders of monoamine neurotransmitter metabolism, clinical...arma R, De Vivo DC Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognos