WorldWideScience

Sample records for acid chelation phototherapeutic

  1. Copper, dioxouranium(VI) and lanthanide chelates of carboxymethylthiosuccinic acid

    Carboxymethylthiosuccinic acid (CMTSA) has three dissociable - COOH groups with pK values 2.91, 3.91, 5.03. Assignment of these values to the different carboxylic groups is given. Cu(II) and UO22+ chelates with CMSTA have been studied potentiometrically at 30degC and μ = 0.1M. The effects of dielectric constant of the solvent medium (dioxane-water) and the ionic strength, on these chelates have been examined. The lanthanides form 1:1 and 1:2 chelates with CMTSA. The plots of log K1 and (log K1 + log K2) versus e2/2r show a break at gadolinium. The thermodynamic parameters for these chelates have been determined. Smaller values of DELTAH show the predominance of the entropy effect in the formation of these chelates. (author)

  2. Mechanisms of oxide dissolution by acid chelating agents

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  3. Potentiometric studies on mixed-ligand chelates of uranyl ion with carboxylic acid phenolic acids

    Mixed ligand complexes of UO22+ with bidentate carboxylic and phenolic acids have been studied potentiometrically at 30 ± 0.1degC and μ=0.2M (NaClO4). 1:1 and 1:2 complexes of UO22+ with phthalic acid (PTHA), maleic acid (MAE), malonic acid (MAL), quinolinic acid (QA), 5-sulphosalicylic acid (5-SSA), salicylic acid (SA), and only 1:1 complexes in the case of mandelic acid (MAD) have been detected. The formation of 1:1:1 mixed ligand complexes has been inferred from simultaneous equilibria in the present study. The values of ΔlogK, Ksub(DAL), Ksub(2LA) or Ksub(2AL) for the ternary complexes have been calculated. The stabilities of mixed ligand complexes depend on the size of the chelate ring and the stabilities of the binary complexes. (author). 15 refs

  4. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  5. Diglycolamic acid functionalized PAMAM-SDB chelating resin for removal of Th(IV) from aqueous and nitric acid medium

    Removal of radionuclides based on solid phase extraction (SPE) also known as solid-liquid extraction is developed considerably in the last few decades due to their simplicity, rapidity, easy operation and cost effectiveness. Various types of sorbents such as organic, inorganic, bio-sorbent, composites and carbon based material have been developed for the recovery of radionuclides. Among the solid sorbents, chelating resins are being increasingly used due to their high adsorption capacity and selectivity. The chelating resins are prepared either by impregnating or grafting the chelating agents on solid substrate. Generally, the adsorption efficiency depends on the type of chelating agent and to some extent on the size and physiochemical properties of the resin. Recovery of actinides from aqueous waste using chelating agent containing >P=O, >C=O or other functional groups of desired basicity and stereochemistry have been extensively studied. Removal of thorium from aqueous solution using diglycolamic acid (DGA) functionalized poly(amido)amine (PAMAM) dendron-styrene divinyl benzene (SDB) chelating resin is presented in this paper

  6. Chelation in metal intoxication X: influence of different polyaminocarboxylic acids and thiol chelators in the excretion and tissue distribution of 54Mn in rat

    The influence of some selected polyaminocarboxylic acids and thiol metal binding agents on the urinary and faecal excretions of 54Mn and on the tissue distribution of 54Mn in 54MnC12 administered rats was studied to find a suitable chelating drug for Mn poisoning. HEDTA, CDTA, DTPA and TTHA were highly successful in enhancing the excretion of 54Mn and reducing the tissue levels of 54Mn in rats. The thiol chelators viz. D L-penicillamine, N-acetyl D L-penicillamine and DMS could neither influence the excretion nor the tissue distribution of 54Mn suggesting poor affinity of the metal towards sulfhydryl groups

  7. Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator

    Mona Mosayebnia

    2014-01-01

    Full Text Available Objective: To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Materials and Methods: Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2 cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO, a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide MTT assay as well. Results: There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. Conclusion: DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage.

  8. High-performance chelation chromatography of metal ions on sorbents with grafted iminodiacetic acid

    Chromatographic behavior of some alkaline earth, transition, heavy (including uranium) and rare earth metal ions on a group of complexing sorbents, containing surface functional groups of imidodiacetic acid, was studied. Conditions, under which metal retention is determined by complexing on the sorbent surface, were defined and main principles of a new variant of liquid chromatography, i.e. high-performance chelating chromatography of metal ions (HPCCI) were formulated. It is shown that under optimal conditions metal retention correlates linearly in bilogarithmic coordinates with stability constants of the relevant metal complexes. Potentialities of HPCCI analytic application to analysis of objects featuring complex composition were considered

  9. Meso-2,3-dimercaptosuccinic acid: from heavy metal chelation to CdS quantum dots

    Sevinç, Esra; Ertaş, F. Sinem ; Ulusoy, Gülen ; Acar, Havva Yağcı; Özen, Can

    2012-01-01

    DMSA (meso-2,3-dimercaptosuccinic acid) a prescription drug and a heavy-metal chelating agent, is shown to act both as a sulfur source and a capping agent in the aqueous synthesis of CdS quantum dots under mild conditions. Release of sulfur from DMSA depends on the solution pH and the reaction temperature. Combination of 70 C and pH 7.5 was determined as the best reaction conditions for a well-controlled reaction. Changing the SH/Cd ratio from 2.5 to 7 provides QDs emitting from ...

  10. Fast removal of heavy metal ions and phytic acids from water using new modified chelating fiber

    Li Xu; Jin Nan Wang; Ying Meng; Ai Min Li

    2012-01-01

    The graft copolymerization of acrylic acid (AA) onto polyethylene glycol terephthalate (PET) fiber initiated by benzoy peroxide (BPO) was carried out in heterogeneous media.Moreover,modification of the grafted PET fiber (PET-AA) was done by changing the carboxyl group into acylamino group through the reaction with dimethylamine.The modified chelating fiber (NDWJN 1) was characterized using elementary analysis,SEM and FT-IR spectroscopy.Adsorption kinetic curves indicated that NDWJN1 could fast remove heavy metal ions and phytic acids from water effectively.Furthermore,batch kinetic studies indicated that heavy metal ions adsorbed to NDWJN1 could be fitted well by both pseudo-first-order and pseudo-second-order adsorption equations,but the intra-particle diffusion plaved a dominant role in the adsorption of phvtic acids.

  11. New method for studying the efficiency of chelating agents of the polyamine acid series for internal decontamination

    We followed the biological fate of a complex formed on one side with either a rare earth (cerium-144) or a transuranium element (plutonium-239), and on the other side with a chelating agent of the polyamino acid series (EDTA, BAETA, DTPA, TTHA). This method allowed to study: 1 - the in vivo stability of the various complexes and to compare them; 2 - the stability of the complexes as a function of the isotope - chelating agent weight relationships; 3 - the metabolism of the chelating agents resulting in stable complexes, i. e. DTPA and TTHA mainly. This simple method brought out the higher efficiency, of DTPA in chelating rare earths and plutonium and for therapeutic purposes. (authors)

  12. Chelation Properties of Modified Humic Acids Toward Some Trivalent Lanthanide Ions

    Three kinds of humic acids, Fluka (I), Fluka (II), and Ega-chemie (III) were modified through condensation with formaldehyde to afford polymers I, II, and III, respectively. The chelation behavior of these modified humic acids polymers towards the trivalent lanthanide metal-ions, La3+, Ce3+, Nd3+, Sm3+, and Gd3+ was studied by a batch equilibration technique at 25 deg. C as a function of contact time, pH, counter ion and counter ion concentration. The highest metal-ion uptake of the three polymers was achieved at pH 7.0 and by using perchlorate as a counter ion. Results of the study have revealed that polymer II has the highest metal-ion uptake capacity, and that the metal-ion uptake falls in the order: Gd3+ > Sm3+ > Nd3+ > La3+ ≅ Ce3+

  13. Separation of radiostrontium from alkaline reprocessing waste solution using a fixed-bed column of chelating iminodiacetic acid resin

    A fixed-bed ion exchange column filled with a chelating resin containing iminodiacetic acid functional groups has been tested for removal of strontium from simulated alkaline reprocessing waste solution. The breakthrough curve has been established. Column loading performance is correlated with batch equilibration results. The loaded strontium is eluted in a small volume of 0.5 M HNO3. (author)

  14. Novel phototherapeutic agents: Investigation and progress of hypocrellin derivatives

    XU Shangjie; ZHANG Xiaoxing; CHEN Shen; ZHANG Manhua; SHEN Tao; WANG Zhengping

    2003-01-01

    Hypocrellins, as a kind of novel phototherapeutic agents, have severaladvantages over the clinically used hematoporphyrin derivatives, including high-excited triplet state yield, high phototoxicity, low dark toxicity, and rapid metabolism. However, they exhibit little absorption in the photodynamic window (600-900 nm) and are not water soluble, which limits their application in photodynamic therapy. Sulfonated and metal-ioned hypocrellins have been designed and synthesized to improve their water solubility. Unfortunately, the water-soluble derivatives obtained exhibit lower photodynamic activity than the parent hypocrellins. Thiolated and aminated hypocrellins have also been designed and synthesizedto enlarge their photoresponse. Among them, the aminated hypocrellins possess the highest photodynamic activity. We recently have further designed and synthesized some amphiphilic aminated hypocrellin derivatives. Thus, not only the photoresponse but also the water solubility is enhanced. The experiments in vitro and in vivo on the derivatives are under way at present.

  15. A new chelating ion-exchanger containing p-bromophenylhydroxamic acid as functional group

    A new chelating resin based on macroreticular acrylonitrile-divinylbenzene copolymer and containing hydroxamic acid functional groups has been synthesized. It is highly-stable in acidic and alkaline solutions. The sorption characteristics of Cu(II), Cd(II), Pb(II), Zn(II), U(VI), Cr(VI), V(V), Co(II), Ni(II), Ca(II) and Mg(II) have been investigated over the pH range 1.0-6.0. The effect of various electrolytes at different ionic strengths on the Ksub(d) values for Cu(II), Cd(II), Pb(II) and Zn(II) has been studied systematically. Chromatographic separations of copper(II) and nickel(II) from cobalt(II), and of uranium(VI) from chromium(VI) by selective sorption at controlled pH, have been developed. The ion-exchanger can be used for purification of inorganic salts, and analysis of brass and bauxite. (author)

  16. Effects of chelating agents on protein, oil, fatty acid amd seed mineral concentrations in soybean

    Soybean seed is a major source of protein and oil for human diet. Since not much information is available on the effects of chelating agents on soybean seed composition constituents, the current study aimed to investigate the effects of various chelating agents on soybean [(Glycine max (L.) Merr.)] ...

  17. Stereoselective analysis of D and L dansyl amino acids as the mixed chelate copper(II) complexes by HPLC.

    Lam, S

    1984-09-01

    This paper reviews the mixed chelation approach to resolution of the optical isomers of D and L dansyl amino acids by high performance liquid chromatography. The use of eluants containing Cu(II) complexes of L-proline, L-arginine, L-histidine, and L-histidine methyl ester effected the separation of many D and L amino acids, including those with aliphatic, polar, and aromatic substituents. The mechanism of separation, which is based on the preferential ternary complex formation of the analyte amino acid and the chiral chelate with Cu(II) in the mobile phase, is discussed. The stereoselectivity depends mainly on the different steric interactions between the alkyl side chains of the amino acid analytes and the chiral ligands coordinating around Cu(II), although such parameters as pH, temperature, organic modifier, and concentration of the chiral additive also affect the chromatographic separation. Among the chiral ligands studied, L-histidine methyl ester is unique in that it possesses both achiral selectivity for the dansyl amino acids and chiral selectivity for the respective D and L enantiomers. With a mobile phase gradient of acetonitrile in a buffer containing Cu(II) L-histidine methyl ester complex, a stereoselective procedure was devised for the analysis of D and L amino acid enantiomers, achieving the separation that the current amino acid analyzer could not perform. Finally, the use of the mixed chelation approach in two biomedical studies is described. In the first application, the histidine methyl ester gradient was adapted for analyzing amino acids in cerebrospinal fluid; in the second, an L-aspartame Cu(II) complex eluant was developed for measuring the urine concentration of D and L pipecolic acid (piperidine-2-carboxylic acid), a metabolite of lysine. PMID:6490790

  18. Correlation of acid-base properties of substituted polystyrene-azo-pyrocatechol and characteristics of their chelates with zirconium

    Acid-base and complexing properties of new synthesized polymeric chelate-forming sorbents (PCS) - substituents of polystyrene-azo-pyrocatechol - are investigated and quantitative correlations between pKOH of functional analytical group (FAG) of sorbent and Hammet constants for para-substituent and ΔpKOH-ΔpK50 correlations of zirconium chelate-forming and pKOH-lgKstb (Kstb - constant of stability of PCS complexes with zirconium) of polychelates to study regularities of effect of peculiarities of structure and acid-base properties of FAG on parameters of zirconium chemical sorption. Established correlations make it possible to predict quantitative physicochemical parameters of sorbents and zirconium chemisorption process with the aim of directed synthesis and application of PCS in concentrating processes

  19. Phototherapeutic treatment of lymphedema and other complications after mastectomy

    Zharov, Vladimir P.; Kalinin, Konstantin L.; Borisov, Andrei A.; Velsher, Leonid Z.; Stakhanov, Mikhail L.; Eskin, Vadim G.; Savin, Alexei A.; Shihkerimov, Raphiz K.

    2000-05-01

    One of the possible consequences of mastectomy is lymphedema of soft tissues of upper extremities on the side of ablated breast as result of cutting and trauma of multiple nerves, lymphatic and blood vessels. This phenomenon is often accompanied by deterioration of blood and lymphatic microcirculation, increasing of stagnation and aggregation ability of thrombocities, limitation of humeral and ulnar joint activity, severe pain and decreasing of myotonus. The developing of new phototherapeutic method based on using of light-emitting diodes (LED) arrays is attempted. This method is just directed on improvement of patient's condition in combination with other traditional methods such as drug therapy, pressure bandaging etc. The main parameters of LED arrays fixed inside cylindrical tube covering pathology region are: wavelength -- 660 nm, intensity range -- 0.5 mW/sm2. To control and study efficiency of phototreatment ultrasonic dopplerography, thermography, electromyography and viscosimetry have been used. During clinical trials in oncology department of Moscow State University of Medicine and Dentistry 128 patients have been treated with following results: patients felt complete disappearance of pain and weightiness sensation in arm, restoration of skin sensitivity and muscle strength. There were statistically proved amelioration of excitation spreading velocity on radial nerve, decreasing of blood viscosity, increasing of blood velocity in main arteries of shoulder and symmetry of temperature distribution.

  20. Macrocyclic bifunctional chelating agents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  1. Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement

    Hurt, Andrew; Coleman, Nichola J.; Tüzüner, Tamer; Bagis, Bora; Korkmaz, Fatih Mehmet; Nicholson, John W.

    2016-01-01

    Abstract Objective To determine whether the antimicrobial nature of a fatty acid chelate temporary dental cement can be enhanced by the addition of 5% cetyl pyridinium chloride (CPC). Materials and methods The temporary cement, Cavex Temporary was employed, and additions of CPC were made to either the base or the catalyst paste prior to mixing the cement. Release of CPC from set cement specimens was followed using reverse-phase HPLC for a period of up to 2 weeks following specimen preparation. Potential interactions between Cavex and CPC were examined by Fourier transform infrared spectroscopy (FTIR) and antimicrobial effects were determined using zone of inhibition measurements after 24 h with disc-shaped specimens in cultured Streptococcus mutans. Results FTIR showed no interaction between CPC and the components of the cement. CPC release was found to follow a diffusion mechanism for the first 6 h or so, and to equilibrate after approximately 2 weeks, with no significant differences between release profiles when the additive was incorporated into the base or the catalyst paste. Diffusion was rapid, and had a diffusion coefficient of approximately 1 × 10−9 m2 s−1 in both cases. Total release was in the range 10–12% of the CPC loading. Zones of inhibition around discs containing CPC were significantly larger than those around the control discs of CPC-free cement. Conclusions The antimicrobial character of this temporary cement can be enhanced by the addition of CPC. Such enhancement is of potential clinical value, though further in vivo work is needed to confirm this. PMID:27335898

  2. Nitrogen-doped carbon nanofoam derived from amino acid chelate complex for supercapacitor applications

    Ramakrishnan, Prakash; Shanmugam, Sangaraju

    2016-06-01

    We report a novel strategy to fabricate the nitrogen-doped mesoporous carbon nanofoam structures (N-MCNF), derived from magnesium amino acid chelate complex (Mg-acc-complex) for its application towards high performance supercapacitor (SCs) system. A series of N-MCNF with well-connected carbon nanofoam structure have been developed by varying the synthesis temperature. The fabricated N-MCNF material possesses a high surface area (1564 m2 g-1) and pore volume (1.767 cm3 g-1) with nitrogen content of 3.42 wt%. A prototypical coin cell type symmetric N-MCNF SC device has been assembled with 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIMBF4] ionic liquid electrolyte, and evaluated for SCs studies. The N-MCNF with high textural properties delivers unprecedented SC performance, such as high specific capacitance (204 Fg-1 at 0.25 Ag-1, 25 °C), high energy density (63.4 Wh kg-1), high power density (35.9 kW kg-1) and long-term cycle life (32,500 cycles). Significantly, N-MCNF materials exhibited high power rate performance, at 500 mV-1 (115 Fg-1) and 25 Ag-1 (166 Fg-1) owing to the uniform mesopore size distribution (∼4 nm). The N-MCNF SC device delivered maximum energy densities of 83.4 and 93.3 Wh kg-1 at 60 °C and 90 °C, respectively. Such outstanding N-MCNF SC device is successfully demonstrated in solar energy harvester applications.

  3. Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability.

    Kim, Jeong S; Jang, Sun W; Son, Miwon; Kim, Byoung M; Kang, Myung J

    2016-01-20

    The oral bioavailability (BA) of risedronate sodium (RS), an antiresorptive agent, is less than 1% due to its low membrane permeability as well as the formation of non-absorbable complexes with multivalent cations such as calcium ion (Ca(2+)) in the gastrointestinal tract. In the present study, to increase oral BA of the bisphosphonate, a novel enteric-coated tablet (ECT) dosage form of RS in combination with phytic acid (IP6), a natural chelating agent recognized as safe, was formulated. The chelating behavior of IP6 against Ca(2+), including a stability constant for complex formulation was characterized using the continuous variation method. Subsequently, in vitro dissolution profile and in vivo pharmacokinetic profile of the novel ECT were evaluated comparatively with that of the marketed product (Altevia, Sanofi, US), an ECT containing ethylenediaminetetraacetic acid (EDTA) as a chelating agent, in beagle dogs. The logarithm of stability constant for Ca(2+)-IP6 complex, an equilibrium constant approximating the strength of the interaction between two chemicals to form complex, was 19.05, which was 3.9-fold (p<0.05) and 1.7-fold (p<0.05) higher than those of Ca(2+)-RS and Ca(2+)-EDTA complexes. The release profile of RS from both enteric-coated dosage forms was equivalent, regardless of the type of chelating agent. An in vivo absorption study in beagle dogs revealed that the maximum plasma concentration and area under the curve of RS after oral administration of IP6-containing ECT were approximately 7.9- (p<0.05) and 5.0-fold (p<0.05) higher than those of the marketed product at the same dose (35mg as RS). Therefore, our study demonstrates the potential usefulness of the ECT system in combination with IP6 for an oral therapy with the bisphosphonate for improved BA. PMID:26594027

  4. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  5. Chelatization of Metals Ion (Cu2+, Cd2+ and Cr3+) with ProcessYield of Humic Acid from Peat Soil

    The chelation of metals ion (Cu2+, Cd2+ and Cr3+) with processyields of humic acid from peat soil has been done. The chelatizationcalculation was carried out using a mathematical model of the metals ionneutralization to the humic acid functional group. The model has superioritydue to the introduction of the humic acid concentration conditional and theloading capacity. Chelation is expected to obtain the constant experimentthat agrees with environmental conditional were the chelatization to takeplaces. By the tree neck flask of bath reactor, 250 ml volume at thetemperature of 25 oC chelation have been done and the AAS was used toanalyzes the yield. By mathematical calculate was obviously proved that thechelation constants was not influenced by pH, ionic strength and origin peatsoils. As log β, chelation constants of Cu2+, Cd2+ and Cr3+ were4.67 (± 0.02); 5.98 (± 0.02) and 6.09 (± 0.01) for humic acid fromSumatra I (Silaut III) and 4.68 (± 0.01); 5.97 (± 0.02) and 6.09 (±0.02) for Sumatra II (Silaut IV). While chelation constant Cu2+, Cd2+ andCr3+ from Kalimantan were 4.66 (± 0.03); 5.99 (± 0.01); 6.08 (±0.02). (author)

  6. Results of the Application of Phototherapeutic Keratectomy in the Elderly with Bullous Keratopathy

    Osbel Alfonso Sánchez

    2012-11-01

    Full Text Available Background: Many countries have conducted studies on the benefits of phototherapeutic keratectomy in corneal diseases; few references have been found in our country to address the results of the application of the excimer laser in the elderly suffering from bullous keratopathy. Objective: To assess the results of the application of phototherapeutic keratectomy in the eldrly with bullous keratopathy. Methods: A case series study was conducted in 2009, in the Cornea Department of the Dr. Gustavo Aldereguía Lima General University Hospital of Cienfuegos. It included 16 elderly with bullous keratopathy not leading to penetrating keratoplasty. After considering the ethical and biomedical assessment, phototherapeutic keratectomy was performed. Treatment was indicated and follow up was performed with an assessment of symptoms and signs until the third month. Results: In the postoperative stage symptoms decreased and the most frequent sign was the haze followed by slight increase in best corrected visual acuity. Conclusions: The application of phototherapeutic keratectomy in patients that did not apply for cornea transplant helps improving eye condition, reduces symptoms and improves visual acuity.

  7. IMPACT OF ACID WASHING AND CHELATION ON Mg(OH2-BASED HYDROGEN PEROXIDE BLEACHING OF MIXED HARDWOODS CMP AT A HIGH CONSISTENCY

    Somayeh Ghasemi

    2010-09-01

    Full Text Available The removal of transition metal ions is crucial for improving the efficiency of subsequent peroxide bleaching. Acid-washing and chelation have been proposed for such a purpose. However, their influences on the Mg(OH2-based peroxide bleaching of hardwood pulps at a high consistency have not been well documented in the literature. In this work, we studied the influence of acid-washing using sulfuric acid or chelation using diethylenetriaminepentaacetic (DTPA on the Mg(OH2- or NaOH-based hydrogen peroxide bleaching efficiency, effluent properties of bleaching filtrates, and paper properties. The results showed that for Mg(OH2-based peroxide bleaching, the pulp yield and water retention value of acid-washed pulp were higher than those of the chelated pulp; the chemical oxygen demand (COD and turbidity of the bleaching filtrates for the acid-washed pulp were lower than those of the chelated pulp. The bleached acid-washed pulp had lower strength properties than bleached chelated pulp did. Additionally, at a high pulp consistency (25%, the Mg(OH2-based process had a higher bleaching efficiency and superior bleaching effluent properties, but a lower strength properties, in comparison with the NaOH-based process.

  8. Chelating agents related to ethylenediamine bis(2-hydroxyphenyl)acetic acid (EDDHA): synthesis, characterization, and equilibrium studies of the free ligands and their Mg2+, Ca2+, Cu2+, and Fe3+ chelates.

    Yunta, Felipe; García-Marco, Sonia; Lucena, Juan J; Gómez-Gallego, Mar; Alcázar, Roberto; Sierra, Miguel A

    2003-08-25

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid (EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soils. EDDHA, EDDH4MA (ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenyl)acetic acid), and EDDCHA (ethylenediamine-N,N'-bis(2-hydroxy-5-carboxyphenyl)acetic acid) are allowed by the European directive, but also EDDHSA (ethylenediamine-N,N'-bis(2-hydroxy-5-sulfonylphenyl)acetic acid) and EDDH5MA (ethylenediamine-N,N'-bis(2-hydroxy-5-methylphenyl)acetic acid) are present in several commercial iron chelates. In this study, these chelating agents as well as p,p-EDDHA (ethylenediamine-N,N'-bis(4-hydroxyphenyl)acetic acid) and EDDMtxA (ethylenediamine-N,N'-bis(2-metoxyphenyl)acetic acid) have been obtained following a new synthetic pathway. Their chemical behavior has been studied to predict the effect of the substituents in the benzene ring on their efficacy as iron fertilizers for soils above pH 7. The purity of the chelating agents has been determined using a novel methodology through spectrophotometric titration at 480 nm with Fe(3+) as titrant to evaluate the inorganic impurities. The protonation constants were determined by both spectrophotometric and potentiometric methods, and Ca(2+) and Mg(2+) stability constants were determined from potentiometric titrations. To establish the Fe(3+) and Cu(2+) stability constants, a new spectrophotometric method has been developed, and the results were compared with those reported in the literature for EDDHA and EDDHMA and their meso- and rac-isomers. pM values have been also determined to provide a comparable basis to establish the relative chelating ability of these ligands. The purity obtained for the ligands is higher than 87% in all cases and is comparable with that obtained by (1)H NMR. No significant differences have been found among ligands when their protonation and stability constants were compared. As expected, no Fe(3

  9. A dual chelating sol–gel synthesis of BaTiO{sub 3} nanoparticles with effective photocatalytic activity for removing humic acid from water

    Wang, Peigong [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Ding, Guangyue; Yuan, Peihong [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2013-02-15

    Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► The tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.

  10. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    Jamileh Amin; Roshanak Rafiee-Moghaddam; Behnam Mahdavi; Mazyar Peyda; Anuar Kassim; Nor Azah Yusof; Md Jelas Haron; Hossein Jahangirian; Yadollah Abdollahi; Sidik Silong

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1%...

  11. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers

  12. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)

    Park, Sang Ho; Wang, Vivian S.; Radoicic, Jasmina; Angelis, Anna A. De; Berkamp, Sabrina; Opella, Stanley J., E-mail: sopella@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry (United States)

    2015-04-15

    The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.

  13. Chelation in metal intoxication XXX: α-mercapto-β-aryl acrylic acids as antidotes to cadmium toxicity

    α-Mercapto-β-(2-furyl) acrylic acid (MFA), α-mercapto-β-(2-hydroxyphenyl) acrylic acid (MHA), β-1,2-phenylene di-α-mercaptoacrylic acid (1,2-PDMA) and β-l,4-phenylene di-α-mercapto acrylic acid (1,4-PDMA) were compared to sodium N-benzyl-D-glucamine dithiocarbamate (NBG-DTC) an effective cadmium chelator, for their ability to mobilize Cd and influence the Cd induced tissue metallothionein (MT) in rats administered 109CdCl2, 72 hr earlier. MFA was almost as effective as NBG-DTC but more effective than MHA in enhancing urinary and faecal excretion of Cd, reducing tissue and blood levels of Cd and in lowering Cd induced increase in hepatic and renal MT contents. 1,2-PDMA and l,4-PDMA were effective only in reducing the hepatic burden of Cd. The results do not indicate any direct relationship between the efficacy of α-mercapto-β-aryl acrylic acids to decorporate body Cd and their lipophilic-hydrophilic character or number-arrangement of their sulfhydryl groups. (author)

  14. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  15. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  16. Chelation in metal intoxication

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang;

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the...... inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the...

  17. Chelation of some transitions, lanthanides and uranium elements with nitrilotriacetic acid and radiolysis of their aqueous solutions

    The present thesis contains chelation studies of some transition metal ions (iron fe (III), cobalt Co (II) and nickel Ni (II), trivalent lanthanide ions (praseodymium pr(III) neodymium nd (III), samarium sm(III), europium Eu(III), gadolinium Gd (III), dysprosium dy (III), erbium Er(III) and ytterbium Yb(III) and uranium (U(IV) and U (V I)) with nitrilotriacetic acid (NTA). spectrophotometric techniques are used to investigate the effectiveness of NTA as a decontaminating agent for radioactive nuclides and to evaluate the optimum conditions under which stable and soluble complexes can be formed. these studies include the effect of PH on the formed complexes and determination of stability constants of the formed species. potentiometric analysis are also performed to follow the formation of binary complexes of some sulpha drugs with investigated metal ions and mixed ligand complexes arising to determine their formation constants

  18. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    Weon Sup Shin; Jiyou Han; Rajesh Kumar; Gyung Gyu Lee; Sessler, Jonathan L.; Jong-Hoon Kim; Jong Seung Kim

    2016-01-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a ...

  19. Regeneration of Three-Way Automobile Catalysts using Biodegradable Metal Chelating Agent – S, S-Ethylenediamine Disuccinic Acid (S, S-EDDS)

    Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S. Ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various c...

  20. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis(carboxymethyl) glutamic acid and citric acid.

    Suanon, Fidèle; Sun, Qian; Dimon, Biaou; Mama, Daouda; Yu, Chang-Ping

    2016-01-15

    The applicability and performance of a new generation of biodegradable chelator, N, N-Bis(carboxymethyl) glutamic acid (GLDA), for extracting heavy metals from sewage sludge was carried out and compared with citric acid (CA). Targeted metals included Cd, Co, Cu, Zn, Ni and Cr, and their contents in the raw sludge were 63.1, 73.4, 1103.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis), respectively. Metals were divided into six fractions including water soluble, exchangeable, carbonates bound, Fe-Mn bound, organic matters bound and residual fraction via chemical fractionation. Washing results showed that in general GLDA exhibited better performance compared with CA, with removal efficiency of 83.9, 87.3, 81.2, 85.6, 89.3 and 90.2% for Cd, Co, Cu, Zn, Ni and Cr, respectively at equilibrium pH = 3.3. Residual metals were better stabilized in the GLAD-washed sludge than in the CA-washed sludge, and were mostly tightly bonded to the residual fraction. Furthermore, CA promoted phosphorus (P) release while GLDA had an opposite effect and tended to retain P within sludge, which could be beneficial for further application in agricultural use. Findings from this study suggested that GLDA could be a potential replacement for refractory and less environmentally-friendly chelators in the extraction of metals from sludge. PMID:26520041

  1. SYNTHESES AND ADSORPTION PROPERTIES OF PHENOL-FORMALDEHYDE TYPE CHELATING RESINS BEARING THE FUNCTIONAL GROUP OF TARTARIC ACID

    Rong-jun Qu; Chun-nuan Ji; Yan-zhi Sun; Zhong-fang Li; Guo-xiang Cheng; Ren-feng Song

    2004-01-01

    Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105℃;pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was -OCH2CH2NHC2H4NH2, -O(CH2CH2NH)2C2H4NH2 and -O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process.TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.

  2. Correlation of acid-base properties of polymeric chelate sorbents and pH50 of gallium and indium sorption

    Complexing properties of synthesized polymeric chelate-forming sorbents - substituents of polystyrene-azo-pyrocatechol - are investigated and quantitative correlations between pKOH of functional analytical group and pH50 of chelate formation are determined to investigate regularities of interactions in element - sorbent system. Correlations obtained make it possible to realize special forecast on choice and usage of chelate sorbents for separation and concentrating of gallium and indium microquantities from objects of different nature

  3. A chelating resin containing trihydroxybenzoic acid as the functional group. Synthesis and adsorption behavior for Th(IV) and U(VI) ions

    A novel glycidyl methacrylate chelating resin has been synthesized through copolymerization of glycidyl methacrylate (GMA) in the presence of divinylbenzene (DVB), the resulting resin was immobilized with 3,4,5-trihydroxybenzoic acid (THBA) to give GMA/DVB/THBA chelating resin. The adsorption of Th(IV) and U(VI) on GMA/DVB/THBA adsorbent was studied as a function of initial concentration, pH, shaking time and temperature. The novel chelating resin shows a high capacity for Th(IV) and U(VI), maximum adsorption of Th(IV) and U(VI) were 56 and 83.6 mg/g, respectively. Kinetic studies showed that the adsorption follows the pseudo second order model referring to the influence of the textural properties of the resin on the rate of adsorption. Thermodynamic parameters such as ΔH deg and ΔS deg were studied and indicated an endothermic process. (author)

  4. Studies on beryllium complexes. V. Chelation of Be2+ ions by anthranilic acid

    After having determined the formation constants of anthranilic acid, the anthranilic acid-Be2+ - H2O system (0.5 M NaClO3 and t=25 deg C) has been studied. The complex BeA+ and the hydroxylated species Be2(OH)A2+, Be3(OH)3A2+, Be3(OH)3A2+ have been identified

  5. Evaluation of 111In-labeled macrocyclic chelator-amino acid derivatives for cancer imaging

    Purpose: We evaluated new 111In-labeled amino acid derivatives, in which the amino acids are conjugated with1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) or 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A). Methods: DOTA-aminoalanine (DOTA-A), DOTA-aminohomoalanine (DOTA-H), DOTA-lysine (DOTA-L), DO2A-alanine (DO2A-A), DO3A-alanine (DO3A-A) and DO3A-homoalanine (DO3A-H) were labeled with 111In. In vitro cell uptake assays were performed usingHep3B (a human hepatoma cell line), CT26 (a mouse colon cancer cell line) and U87MG (a human glioma cell line). In vitro cell uptake inhibition assays were performed using U87MG and 111In-DO3A-H. U87MG bearing xenografted mice were subject to biodistribution, SPECT imaging, autoradiography, and immunohistochemistry studies. Results: Of the amino acid derivatives and cell lines examined, U87MG and 111In-DO3A-H showed highest uptake in vitro. This uptake was blocked by 2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid (BCH) and by tryptophan. 111In-DO3A-HSPECT imaging of U87MG bearing xenografted mice visualized tumors (mean tumor-to-muscle ratio 3.16±0.74). Autoradiography and immunohistochemistry revealed that 111In-DO3A-H uptake matched L-type amino acid transporter 1 expression. Conclusion: Tumor uptake was successfully imaged using 111In-DO3A-H in U87MG bearing xenografted mice. 111In-DO3A-H appears to be useful for imaging tumors expressing L-type amino acid transporter.

  6. Preliminary chelation and dissolution effects of oxalic acid and disodium oxalate on polymeric 123-superconductors

    The polymeric 123-superconductor material was selectively etched by exposure to aqueous solutions of oxalic acid and disodium oxalate. Superconductivity decreased with time. XPS, AES, FTIR and ATF show that the amount of copper at the surface is decreased, shows the presence of bound oxalate and shows a decrease in peaks associated with superconductivity for the sample treated with oxalate

  7. Synthesis, Characterization and Chelating Properties of Benzimidazole-Salicylic Acid Combined Molecule

    Kamlesh V. Patel; Singh, Arun

    2009-01-01

    Aminomethylation (i.e. Mannich reaction) of benzimidazole was carried out by treating benzimidalzole with formaldehyde and 4-aminosalicylic acid. The resultant compound was designated as 1-(4-carboxy-3-hydroxyphenyl aminomethyl) benzimidazole (BI-SA). The transition metal complexes of Cu2+, Co2+, Ni2+, Mn2+, Zn2+ and Fe3+ of BI-SA have been prepared and characterized by elemental analyses, spectral studies, magnetic moment determination, molar conductivity measurement and microbicidal activity.

  8. Selective separation of uranium(VI) on a chelating styrene-DVB based resin containing quinaldinic acid amide group

    A new chelating styrene-DVB based resin containing quinaldinic acid amide functional group, has been synthesised and characterised. The sorption patterns of Na(I), K(I), Be(II), Ca(II), Mg(II), Zn(II), Cd(II), Cu(II), Pb(II), Ni(II), Bi(III), Fe(III), Ti(IV) and U(VI) have been studied as a function of pH. The resin sorbs U(VI) over a wide range of pH (1.0 to 4.0) with a maximum sorption of 0.32 mmol/g at pH 3.5 to 4.0. Zn(II), Cd(II), Cu(II), Na(II), Pb(II), Fe(III) and Ti(IV) are also sorbed to different extents by the resin while Na(I), K(I), Be(II), Ca(II), Mg(II) and Bi(III) are not sorbed. Conditions for separation of U(VI) from these metal ions have been identified. The eluting agent used for U(VI) is 3 N HNO3 and the recovery recorded is about 99.9 per cent (author). 12 refs., 3 tabs

  9. Environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes

    The environmental chemistry of the three most common aminopolycarboxylic acid chelating agents, NTA (nitrilotriacetic acid), EDTA (ethylenediaminetetraacetic acid), and DTPA (diethylenetriaminepentaacetic acid) is reviewed. This review includes information on their persistence in the environment, as well as their tendency to form complexes with actinides. Data on the sorption of chelated actinides by geologic substrates and on the uptake of chelated actinides by plants are also presented. Three different technical options for disposing chelated low-level radioactive wastes are proposed: bind the solidified chelated waste in some kind of solid matrix that has a slow leach rate and bury the waste in a ''dry'' disposal site; substitute biodegradable chelating agents in the decontamination reagent for the chelating agents that are persistent in the environment; chemically or thermally degrade the chelating agents in the waste prior to disposal. The relative advantages and disadvantages of each of these options are discussed. 81 refs

  10. Recurrent rates and risk factors associated with recurrent painful bullous keratopathy after primary phototherapeutic keratectomy

    Kasetsuwan N

    2015-09-01

    Full Text Available Ngamjit Kasetsuwan, Kanokorn Sakpisuttivanit, Usanee Reinprayoon, Vilavun Puangsricharern Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand Objective: To assess the recurrent rate, mean survival time, and risk factors associated with recurrent painful bullous keratopathy (BK after primary treatment with phototherapeutic keratectomy.Methods: Medical records from 72 patients (72 eyes who had phototherapeutic keratectomy for painful BK were evaluated. Data for sex, age, duration of BK, associated ocular and systemic diseases (hypertension, diabetes mellitus, ischemic heart disease, asthma, dyslipidemia, and rheumatoid arthritis, frequency and degree of pain (grade 1–3, visual acuity, corneal thickness, intraocular pressure, and laser setting were extracted and analyzed.Results: The mean age of the patients was 64.2±11.4 years. The mean preoperative duration of BK was 15.0±11.0 months. Most patients had pseudophakic BK (69.40%. Majority of the cases had grade 3 degree of pain (48.60%. Glaucoma and hypertension were markedly found among these patients (51.40% and 19.40%, respectively. Preoperative mean intraocular pressure and corneal thickness were 13.70±4.95 mmHg and 734.1±83.80 µm, respectively. The mean laser diameter and depth were 8.36±1.22 mm and 38.89±8.81 µm, respectively. Systemic disease was significantly associated with the risk for developing recurrent painful BK (P=0.022, hazard ratio [HR] 1.673, 95% confidence interval [CI] 1.08–2.58. The overall recurrent rate was 51%. The average duration time of recurrent painful BK was 17.3±12.9 months (range 1–50 months. The median survival time before recurrence was 29.0±6.6 months.Conclusion: Systemic disease was found to be the only risk factor significantly associated with the development of recurrent painful BK. Low recurrent rate and long mean survival time showed that phototherapeutic

  11. Estimation of Stability Constants of Copper(II) Chelates with Amino Acids by Overlapping Spheres Method

    Raos, Nenad

    2005-01-01

    The method of overlapping spheres (OS) was applied to the estimation of stability constants of mono- (log β110) and bis-complexes (log β120) of α-amino acids and their N-alkyl and N,Ndialkyl derivatives with copper(II). The central sphere, with a 0.3 or 0.4 nm radius, was placed at the central (Cu), equatorial (N) or apical (X) position of the coordination polyhedron. The overlapping volume of the central sphere and the van der Waals spheres of neighbouring atoms was calculated and correlated...

  12. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  13. Grafting iminodiacetic acid on silica nanoparticles for facilitated refolding of like-charged protein and its metal-chelate affinity purification.

    Liu, Hu; Dong, Xiaoyan; Sun, Yan

    2016-01-15

    A series of highly charged nanoscale chelators were fabricated by grafting of poly(glycidyl methacrylate-iminodiacetic acid) (pGI) chains with iminodiacetic acid (IDA) chelating group on silica nanoparticles (SNPs) via atom transfer radical polymerization (ATRP). The nanoscale chelators, denoted as SNPs-pGI, possessed a nickel ion chelating capacity as high as 2800 μmol/g, 50 times higher than the IDA-modified Sepharose FF (IDA-Sepharose) resin reported in literature and offered a high affinity binding capacity for hexahistidine-tagged enhanced green fluorescence protein (6 × His-EGFP) after nickel ion loading. More importantly, the anionic SNPs-pGI of high charge densities displayed much better performance than IDA-Sepharose in facilitating the refolding of like-charged 6 × His-EGFP from inclusion bodies (IBs). For example, for 0.2mg/mL 6 × His-EGFP IB refolding, addition of 6.2 μL/mL SNPs-pGI with the highest charge density led to a refolding yield of 90%, over 43% higher than that obtained with 460 μL/mL IDA-Sepharose. It is notable that the much higher efficiency of the nanoscale chelator was obtained with a chelator consumption corresponding to only 1.4% of IDA-Sepharose. Moreover, the highly charged SNPs-pGI could efficiently facilitate the refolding of 6 × His-EGFP at higher IB concentrations (0.4 and 0.8 mg/mL). After refolding, nickel ions addition led to the recovery of the refolded 6 × His-EGFP with high yield (80%), purity (96%) and enrichment ratio (1.8). All the results suggest that the SNPs-pGI of high charge densities were promising for cost-effective recovery of His-tagged proteins expressed as IBs with the integrative like-charge facilitated refolding and metal-chelate affinity purification strategy. PMID:26755413

  14. Determination of free Gd3+ as a cyclohexanediaminetetraacetic acid complex by reversed-phase HPLC in ionic gadolinium(III) chelates

    A reversed-phase HPLC method to analyze free Gd3+ in ionic Gd chelates, Gd(EDTA)-, Gd(DPTA)2-, and Gd(DOTA)-, was developed. In the method, free Gd3+ was complexed with cyclohexanediaminetetraacetic acid (CDTA). Either the complexation was carried out before analysis or CDTA was added to the buffered mobile phase (pH 7.4, Tris-HCI) to complex the free metal in the chelate sample. The complex Gd(CDTA)- was separated from the ionic chelate by high-performance liquid chromatography on a C18 reversed-phase Nucleosil column. A fluorescence detection method with 280-and 310-nm excitation and emission wavelengths, respectively, was used for monitoring. The recoverability, the linearity, and the limit of detection (LOD) of the method were determined. The method was evaluated in terms of thermodynamic and kinetic properties of Gd(CDTA)-, Gd(EDTA)-, Gd(DTPA)2-, and Gd(DOTA)-. The LOD for Gd3+ in the ionic chelates was 39 ng. 27 refs., 4 figs., 3 tabs

  15. Transmetallation Versus β-Hydride Elimination : The Role of 1,4 Benzoquinone in Chelation-Controlled Arylation Reactions with Arylboronic Acids

    Sköld, Christian; Kleimark, Jonatan; Trejos, Alejandro; Odell, Luke R; Nilsson Lill, Sten O.; Norrby, Per-Ola; Larhed, Mats

    2012-01-01

    AbstractThe formation of an atypical, saturated, diarylated, Heck/Suzuki, domino product produced under oxidative Heck reaction conditions, employing arylboronic acids and a chelating vinyl ether, has been investigated by DFT calculations. The calculations highlight the crucial role of 1,4-benzoquinone (BQ) in the reaction. In addition to its role as an oxidant of palladium, which is necessary to complete the catalytic cycle, this electron-deficient alkene opens up a low-energy reaction pathw...

  16. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium.

    Perez, J.; Jeffries, T W

    1992-01-01

    We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, furthe...

  17. The Mechanism of Sol-Gel Synthesis of Normal Spinel LiMn2O4 with Chelation of Citric Acid

    WU Hui; LEI Jia-heng; CHEN Yong-xi; SUN Yu-bin; YUAN Qi-hua

    2002-01-01

    The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn2O4 and the reaction mechanism were investigated by means of XRD, IR, TG-DTA, and SEM. The results show that at the beginning lithium citrate and chelate compound of citric acid with manganese ions formed, and then with heating the esterification and condensation reactions occured between them and glycol. The products obtained are polymers in which metal cations are distributed homogeneously on atomic scale that ensure high reactivity to cations of Li + and Mn2 + . Firing the gel prepared by this process, the lattice diffusions of solid reactant ions caused by non-homogeneity of reactants are eliminated and avoided. At 400℃ phase-pure LiMn2 O4 with nanometer scale crystallization having precise stoichiometry and perfect crystallization can be obtained. The model of chelate coordinate of double-molecule between citric acid and Mn2 + in the gel network is proposed. It is important for explaining the dispersion state of Mn2 + and the formation process of gel by this model.

  18. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  19. Selective removal of Ag+ ions from nitric acid medium by alginate microcapsules, Lewatite TP 214 chelating resin, and 200 CT strongly acidic ion exchanger

    Alginate microcapsules containing bis (2, 4, 4-trimethylpenthyl) monothiophosphinic acid (Cyanex 302) were prepared for the selective removal of Ag+ ions from the reprocessing effluents of FBR-MOX fuel. The Ag+ ions are added for the adjustment of oxidation state of Plutonium. We compared uptake properties of aforementioned microcapsules with those of 200 CT a strongly acidic resin, and Lewatite TP 214, a very selective chelating resin for the Ag+ ions. Most of the uptake properties of the microcapsules were amid the 200 CT and Lewatite, and rather similar to the later. The order of uptake kinetic and breakthrough capacity were the same as: 200 CT > Microcapsules > Lewatite; and for selectivity: Lewatite > Microcapsules > 200 CT. However, high selectivity of Lewatite is rather disadvantageous because it makes the elution operation complicated. Advantages of microcapsules include simple preparation procedure, relatively high selectivity and ease of elution even with 3M nitric acid. However, their total capacity is low. For enhancing the total capacity only increasing the active component is not enough since it deteriorates the kinetics, and the new preparation techniques are necessary which are under study. (author)

  20. New method for studying the efficiency of chelating agents of the polyamine acid series for internal decontamination; Methode nouvelle d'etude de l'efficacite des chelateurs de la serie des acides polyamines pour la decontamination interne

    Lafuma, J.; Nenot, J.C.; Morin, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    We followed the biological fate of a complex formed on one side with either a rare earth (cerium-144) or a transuranium element (plutonium-239), and on the other side with a chelating agent of the polyamino acid series (EDTA, BAETA, DTPA, TTHA). This method allowed to study: 1 - the in vivo stability of the various complexes and to compare them; 2 - the stability of the complexes as a function of the isotope - chelating agent weight relationships; 3 - the metabolism of the chelating agents resulting in stable complexes, i. e. DTPA and TTHA mainly. This simple method brought out the higher efficiency, of DTPA in chelating rare earths and plutonium and for therapeutic purposes. (authors) [French] La methode consiste a suivre le devenir biologique d'un complexe forme d'une part avec une terre rare (cerium 144) ou un transuranien (plutonium 239) et d'autre part avec un chelateur de la serie des acides polyamines (EDTA, BAETA, DTPA, TTHA). Elle permet d'etudier: 1 - la stabilite in vivo des differents complexes, de les comparer; 2 - la stabilite des complexes en fonction des rapports ponderaux isotope - chelateurs; 3 - le metabolisme des chelateurs formant des complexes stables, essentiellement DTPA et TTHA. Cette methode simple degage la suprematie du DTPA en ce qui concerne la chelation des terres rares et du plutonium, et son utilisation a des fins therapeutiques. (auteurs)

  1. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease

    Disrupted iron metabolism and excess iron accumulation has been reported in the brains of Parkinson's disease (PD) patients. Because excessive iron can induce oxidative stress subsequently causing degradation of nigral dopaminergic neurons in PD, we determined the protective effect of a naturally occurring iron chelator, phytic acid (IP6), on 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in immortalized rat mesencephalic/dopaminergic cells. Cell death was induced with MPP+ in normal and iron-excess conditions and cytotoxicity was measured by thiazolyl blue tetrazolium bromide (MTT assay) and trypan blue staining. Apoptotic cell death was also measured with caspase-3 activity, DNA fragmentation, and Hoechst nuclear staining. Compared to MPP+ treatment, IP6 (30 μmol/L) increased cell viability by 19% (P + treatment was decreased by 55% (P < 0.01) and 52% (P < 0.05), respectively with IP6. Cell survival was increased by 18% (P < 0.05) and 42% (P < 0.001) with 30 and 100 μmol/L of IP6, respectively in iron-excess conditions. A 40% and 52% (P < 0.001) protection was observed in caspase-3 activity with 30 and 100 μmol/L IP6, respectively in iron-excess condition. Similarly, a 45% reduction (P < 0.001) in DNA fragmentation was found with 100 μmol/L IP6. In addition, Hoechst nuclear staining results confirmed the protective effect of IP6 against apoptosis. Similar protection was also observed with the differentiated cells. Collectively, our results demonstrate a significant neuroprotective effect of phytate in a cell culture model of PD

  2. The Scientific Basis for Chelation: Animal Studies and Lead Chelation

    Smith, Donald; Strupp, Barbara J.

    2013-01-01

    This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poi...

  3. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III Extraction

    Jamileh Amin

    2012-02-01

    Full Text Available Liquid-liquid iron(III extraction was investigated using benzyl fatty hydroxamic acids (BFHAs and methyl fatty hydroxamic acids (MFHAs as chelating agents through the formation of iron(III methyl fatty hydroxamate (Fe-MFHs or iron(III benzyl fatty hydroxamate (Fe-BFHs in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively. The presence of a large amount of Mg(II, Ni(II, Al(III, Mn(II and Co(II ions did affect the iron(III extraction. Finally stripping studies for recovering iron(III from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III was 5 M HCl and quantitative recovery of iron(III was achieved from Fe(III-MFHs and Fe(III-BFHs solutions in hexane containing 5 mg/L of Fe(III.

  4. Binary and ternary chelates of Sc(III), Y(III) and La(III) with ethylenediamine tetraacetic acid as primary ligand and substituted salicylic acids as secondary ligands

    Study of ternary complex formation of several tripositive metal ions viz. Sc(III), Y(III) and La(III) with ethylenediamine tetraacetic acid (EDTA) as a primary ligand and 5-chlorosalicylic acid (CSA) or 3,5-dibromosalicylic acid (DBSA) as secondary ligands by pH-metric titration technique is reported. The stability order of metal chelates with respect to ligands is observed to be DBSA>CSA and with respect to metal ions Sc(III)>Y(III)>La(III). (B.G.W.)

  5. Extremely enhanced photovoltaic properties of dye-sensitized solar cells by sintering mesoporous TiO2 photoanodes with crystalline titania chelated by acetic acid

    Liu, Bo-Tau; Chou, Ya-Hui; Liu, Jin-Yan

    2016-04-01

    The study presents a significant improvement on the performance of dye-sensitized solar cells (DSSCs) through incorporating the crystalline titania chelated by acetic acid (TAc) into the mesoporous TiO2 photoanodes. The effects of TAc on the blocking layer, mesoporous TiO2 layer, and post-treatment have been investigated. The TAc blocking layer displays compact construction, revealing superior response time and resistance to suppress dark current compared to the blocking layer made from titanium(IV) isopropoxide (TTIP). The power conversion efficiency of DSSCs with the TAc treatment can reach as high as 10.49%, which is much higher than that of pristine DSSCs (5.67%) and that of DSSCs treated by TTIP (7.86%). We find that the TAc incorporation can lead to the decrease of charge transfer resistance and the increase of dye adsorption. The result may be attributed to the fact that the TAc possesses high crystallinity, exposed (101) planes, and acid groups chelated on surface, which are favorable for dye attachment and strong bonding at the FTO/TiO2 and the TiO2/TiO2 interfaces, These improvements result in the remarkable increase of photocurrent and thereby that of power conversion efficiency.

  6. Determination of uranium in environmental matrices by chelation ion chromatography using a high performance substrate dynamically modified with 2,6-pyridinedicarboxylic acid

    Chelation ion chromatography, involving a high efficiency neutral polystyrene-divinylbenzene resin dynamically coated with 2,6-pyridinedicarboxylic acid, has been developed as a novel technique for the quantitative determination of uranium in complex matrices. An isocratic separation method, using an eluent consisting of 1M KNO3, 0.5 M HNO3 and 0.1 mM 2,6-pyridinedicarboxylic acid, allowed the uranyl ion to elute away from matrix interferences in under ten minutes. Detection was achieved using an Arsenazo III post column reaction system. Good recoveries were obtained from spiked mineral water and sea water and the standard addition curves produced good linearity (r2 > 0.997) with a detection limit, calculated as twice baseline noise, of 20 μg L-1. The procedure was applied to the determination of trace uranium in standard reference water and sediment samples. The results obtained compared well with the certified values for uranium. (orig.)

  7. Chelated minerals for poultry

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  8. Influence of Chelating Agents on Chromium Fate in Sediment

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  9. Tetra-n-propylporphycene as a tumour localizer: pharmacokinetic and phototherapeutic studies in mice.

    Guardiano, M; Biolo, R; Jori, G; Schaffner, K

    1989-01-01

    The porphin isomer tetra-n-propyl-porphycene (TPP) was incorporated into unilamellar liposomes of dipalmitoylphosphatidylcholine and intravenously injected at a dose of 2 mg/kg to BALB/c mice bearing a MS-2 fibrosarcoma. Pharmacokinetic studies show that TPP is selectively transported by serum lipoproteins and delivered to the tumour tissue with good efficiency (approx. 1 microgram of the TPP per g of tissue at 24 h after injection) and selectivity (ratio of TPP concentration in the tumour to the peritumoural tissue 16.7 at 24 h). Large doses of TPP are also accumulated by the liver, in agreement with the elimination of the drug via the biliary route, while no TPP is recovered from the brain. Red light-irradiation (300 J/cm2) of the tumour area caused extensive necrosis, while only little cutaneous photosensitivity was observed. Since TPP has a large absorbance in the 630-640 nm region, can be synthesized with a high degree of purity and is an efficient generator of singlet oxygen, this drug represents a potential candidate as a phototherapeutic agent for tumours. PMID:2917338

  10. Excimer laser phototherapeutic keratectomy : Indications, results and its role in the Indian scenario

    Rao Srinivas

    1999-01-01

    Full Text Available PURPOSE: To report indications, technique, and results of excimer phototherapeutic keratectomy (PTK, and describe possible reasons for the small numbers of such procedures performed in a referral institute in India. METHODS: Retrospective review of case records of 10 patients (11 eyes who underwent excimer PTK at our institute between February 1994 and September 1997. RESULTS: Corneal scars were the most common indication for treatment. Best-corrected visual acuity (BCVA improved in 6 eyes (mean: 2 lines of Snellen acuity. All eyes had BCVA > or = 6/12 after treatment. None of the patients experienced loss of BCVA after treatment. Unaided visual acuity improved in 3 eyes and decreased in 2 eyes. Change in spherical equivalent refraction > or = 1 diopter occurred in 77.8% of eyes after treatment. Treating central corneal scars resulted in a significant hyperopic shift in refraction. CONCLUSIONS: Excimer PTK is a safe and effective procedure for the treatment of superficial corneal opacities. Post-treatment ametropia may require further correction with optical aids. Inappropriate referrals, deep corneal scars, and cost of the procedure could have contributed to the small numbers of PTK performed at our institute. Improved understanding of procedural strengths and limitations could lead to increased use of this procedure, with satisfying results in selected patients.

  11. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    Liang-Mao Li

    2014-01-01

    Full Text Available This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%. The mean ablation depth was 114.39±45.51 μm and diameter of ablation was 4.06±1.07 mm. The mean time for healing of the epithelial defect was 8.8±5.6 days. Thirty-four eyes (82.9% showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8% still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  12. Phototherapeutic treatment of patients with peripheral nervous system diseases by means of LED arrays

    Zharov, Vladimir P.; Kalinin, Konstantin L.; Menyaev, Yulian A.; Zmievskoy, Gregory N.; Savin, Alexei A.; Stulin, Igor D.; Shihkerimov, Raphiz K.; Shapkina, Alla V.; Velsher, Leonid Z.; Stakhanov, Mikhail L.

    2001-05-01

    The further development of new method of phototherapy based on use of light-emitting diodes (LED) arrays has been presented. LEDs array distribution is side of cylindrical surface, covering pathology region, was used for treatment group of patients with an affected peripheral nervous system. The main group consisted of patients with humeral plexopathy - one of possible neurological manifestation of postmastectomic syndrome as result of breast cancer radical treatment. This disease was accompanied also by some other peripheral nervous system diseases: diabetic polyneuropathy, compression ischemic mononeuropathy, festering wounds and others. The phototherapeutic method is just directed on improvement of patient's conditions in combination with other traditional methods of treatment. The main parameters of photomatrix therapeutic system: wavelength - 660 nm, line width - no more than 20 nm, intensity of radiation on the surface of edema - 0.5-3 mW/cm2 (in dependence of apparatuses type). To control and study efficiency of phototreatment ultrasonic dopplerography, thermography, electromyography and viscosimetry have been used.

  13. Effect of low-molecular-weight carboxylic acids and selected synthetic chelates on zinc uptake and translocation in two wheat genotypes with different zinc-efficiency

    Sh. Haftbaradaran

    2013-10-01

    Full Text Available Zinc (Zn deficiency in human, which results from diets low in bioavailable zinc, could be eliminated by increasing readily plant-available Zn in soil. Root exudates and organic acids released during decomposition of soil organic matter can affect the availability of Zn. Thus, this hydroponic experiment was conducted to investigate the effect of some chelates on Zn uptake and translocation in two wheat genotypes with different zinc-efficiency. Two wheat genotypes (Triticum aestivum L. Back Cross Rowshan as zinc-efficient and Kavir as zinc-inefficient were exposed to two levels of zinc (10 and 100 µM and six different carboxylic acids (citric, tartaric, oxalic, salicylic, ethylenediamin tetraacetic acid and L-methionine. Results showed that uptake capability of free and complexed species of Zn were completely different. Zn2+ activity in nutrient solution had negative correlation with shoot dry weight and positive correlation with shoot zinc concentration in Kavir genotype, while complexed species had opposite results. Back Cross Rowshan genotype showed opposite results in comparison with Kavir genotype. The response of wheat genotypes to different organic acids varied. EDTA treatment caused the lowest shoot zinc concentration in Kavir genotype (18.8 mg/kg, while the Back Cross Rowshan genotype had highest concentration (99.5 mg/kg. Tartaric acid and citric acid caused the lowest root Zn concentration in the Kavir genotype (26.7 and 58.6 mg/kg, respectively, while the highest content was observed in the Back Cross Rowshan genotype (83.2 and 98.1 mg/kg, respectively. Catalase activity had inverse relationship with root Zn concentration in both genotypes. According to the results of this research, different responses of the wheat genotypes to organic acids are related to different mechanisms of zinc-efficiency in genotypes.

  14. Chelation in Metal Intoxication

    Flora, Swaran J.S.; Vidhu Pachauri

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3...

  15. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  16. Evaluation of copper speciation in model solutions of humic acid by mini-columns packed with Chelex-100 and new chelating agents: Application to speciation of selected heavy metals in environmental water samples

    A solid-phase extraction procedure using mini-columns packed with Chelex-100 and two new chelating agents based on poly(vinyl chloride) functionalized with 3-ferrocenyl-3-hydroxydithioacrylic acid and N,N'-[1,1'-dithiobis(ethylene)]-bis(salicylideneimine) (H2sales) loaded on microcrystalline naphthalene, is reported. The columns were used to separate labile copper fractions in model solutions and in real samples with subsequent determination using electrothermal atomic absorption spectrometry (ETAAS). Various model solutions containing 20 μg L-1 of Cu2+ and 0.0, 0.2, 2.0 and 20.0 mg L-1 of humic acid, respectively, and buffered to pH 6.0, 7.0 and 8.0 were considered. Results showed a decrease in labile copper fraction with increase in humic acid concentration. Application of the procedure to speciation of Cu, Ni, Zn and Pb in various environmental water samples yielded labile fractions in the range of 1.67-55.75% against a total dissolved fraction of 44.08-69.77%. Comparison of the three chelating agents showed that H2sales had a weaker metal chelating strength than Chelex-100, but PVC-FSSH had comparable chelating strength to Chelex-100.

  17. Use of Fricke solution modified with dyes for dosimetry in phototherapeutic treatments

    Dyes and pigments (photosensitizers) are characterized by their ability to absorb visible light, and to participate in photochemical reactions. These colors are used in medicine in the dose recommended for use in photodynamic therapy (PDT). There are lasers that can meet most of the phototherapeutic agents and are capable of providing light of considerable power with precision on the injured tissue. The use of light emitting diodes (LEDs) have become feasible, thus reducing the cost of the procedures. The Dosimetry Laboratory Chemistry of the CRCN-NE/Brazilian CNEN has worked with some likely dye use in phototherapy treatments, including: methylene blue, malachite green and toluidine blue. A volume of 2.6 ml of the dosimeters was transferred to test tubes and these were irradiated with LED 24, 48, 72 and 96 acrylic simulator 110 mm x 110 mm x 80 mm at a distance of 6.5 cm from reading light source of the irradiated samples was performed on a spectrophotometer. Having obtaining excellent correlations (above 0.97) to the dosimeter calibration curves. Suggests that the dosimeter can be applied to perform a quality control in photodynamic therapy. However, further experiments should be performed before a wide application of this technique. A volume of 2.6 ml of the dosimeters was transferred to test tubes and these were irradiated with LED 24, 48, 72 and 96 acrylic simulator 110 mm x 110 mm x 80 mm at a distance of 6.5 cm from reading light source of the irradiated samples was performed on a spectrophotometer. Having obtaining excellent correlations (above 0.97) to the dosimeter calibration curves. Suggests that the dosimeter can be applied to perform a quality control in photodynamic therapy. However, further experiments should be performed before a wide application of this technique

  18. Potentiometric studies on stepwise mixed ligand chelate formation of La(III), Pr(III) or Nd(III)-N-hydroxy ethylenediamine-N,N',N'-triacetic acid-mercapto acids

    Solution equilibrium studies on the interaction between 1 : 1, Ln(III)-HEDTA binary chelate (where Ln(III) =La(III), Pr(III) or Nd(III); HEDTA = N-hydroxyl-ethyl-ethylenediamine-N,N',N'-triacetic acid) with certain mercapto acids such as thioglycollic(TGA) and thiomalic (TMEA) have been carried out potentiometrically. Formation constants of the resulting mixed ligand chelates, MAL (where M =La(III), Pr(III) or Nd(III); A = HEDTA and L = TGA or TMEA) have been determined at 30 +- 10 and μ=0.1(KNO3). The values of the formation constant Ksub(MAL) have been interpreted in terms of electrostatic repulsion indicating that the contribution due to π-interaction in M-S bond is not significant. The order of stability in terms of metals ions has been found to be La(III)< Pr(III)< Nd(III) and in terms of secondary ligand as TGA< TMEA. (auth.)

  19. Two percent ethylenediaminetetraacetic acid chelation treatment for band-shaped keratopathy, without blunt scratching after removal of the corneal epithelium

    Kobayashi W; Yokokura S; Hariya T; Nakazawa T

    2015-01-01

    Wataru Kobayashi,1 Shunji Yokokura,1 Takehiro Hariya,1 Toru Nakazawa1–3 1Department of Ophthalmology, 2Department of Retinal Disease Control, Ophthalmology, 3Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Background: The purpose of this study was to assess the effectiveness of 2% ethylenediaminetetraacetic acid (EDTA) for the treatment of band-shaped keratopathy.Methods: We studied 24 eyes of 16 patients with band-shaped kerato...

  20. Regeneration of three-way automobile catalysts using biodegradable metal chelating agent-S, S-ethylenediamine disuccinic acid (S, S-EDDS)

    Regeneration of the activity of three-way catalytic converters (TWCs) was tested for the first time using a biodegradable metal chelating agent (S, S-ethylenediamine disuccinic acid (S, S-EDDS). The efficiency of this novel environmentally friendly solvent in removing various contaminants such as P, Zn, Pb, Cu and S from commercial aged three-way catalysts, and improving their catalytic performance towards CO and NO pollutants removal has been investigated. Four samples of catalysts from the front and rear inlets of two different TWCs with different mileages and aged under completely different driving conditions were investigated. The catalysts were characterized using various techniques, such as X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements (N2 adsorption at 77 K). Quantitative ICP-MS analyses and SEM-EDS studies show the removal of Zn, P and Pb. SEM-EDS images obtained at low magnification (50 μm) showed considerable differences in the surface morphology and composition after washing with S, S-EDDS. However, XRD studies indicated neither little to no removal of major contaminant compound phases nor major structural changes due to washing. Correspondingly, little or no enhancement in BET surface area was observed between the used and washed samples. Light-off curves show that the regeneration procedure employed can effectively improve the catalytic performance towards NO pollutant.

  1. Application of aminO acid chelates in infant milk formulation%氨基酸螯合物在婴幼儿配方奶粉中的应用性能研究

    张晓鸣; 张凤; 贾承胜; 夏书芹; 乐琳

    2009-01-01

    Amino acid chelates were used as mineral additives for fortification of infant milk formulation. The retention of VA, VC, VE as well as POV change during storage were evaluated when adding inorganic salts, organic salts and chelates, respectively. The results indicated that the retention of VA,VC,VE was highest in chelate group, followed by mixed organic group, and inorganic group was the lowest. Higher temperature could accelerate the degradation of vitamins mentioned above. The POV of three group of infant milk formulations all increased after storage, but it was lowest in the chelate group, which suggested that amino acid chelate was better than inorganic and other organic salts when adding into infant milk formulation.%研究氨基酸螯合物在婴幼儿配方奶粉中的应用性能.将不同微量元素添加到婴幼儿配方奶粉中研究其对体系过氧化值及VA、VC、VE稳定性的影响,发现无机组维生素降解非常迅速,螯合组最慢,混合组稍次于螯合组;温度升高会加速维生素的降解;婴幼儿配方奶粉储藏一定时间后POV均略有升高,升高幅度为无机组>混合组>螯合组,表明氨基酸螯合物在婴幼儿配方奶粉中的应用性能优于无机盐和有机盐.

  2. Scientific Opinion on the safety and efficacy of copper compounds (E4) as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2013-01-01

    Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for ...

  3. Scientific opinion on the safety and efficacy of iron compounds (E1 as feed additives for all species: iron chelate of amino acids, hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-07-01

    Full Text Available The use of iron chelate of amino acids, hydrate, as source of iron is considered safe for all animal species/categories when used up to the currently authorised maximum content of total iron in complete feed, with the exception of bovines and poultry for which the maximum tolerated level is 450 mg/kg complete feed, and pets, for which the maximum tolerated level is 600 mg/kg complete feed. The FEEDAP Panel is not in the position to derive a maximum safe iron concentration in feed for horses or fish. Consumption surveys include iron-containing foodstuffs of animal origin. Since the supplementation of animal feed with iron-containing compounds has not essentially changed during the last decades, it is reasonable to assume that the iron levels in food of animal origin used in exposure scenarios originated from animals fed iron-supplemented diets. Since iron chelate of amino acids, hydrate, will be used as a substitute for other iron compounds, its use in animal nutrition would not modify consumer exposure to iron. The additive should be considered as a skin, eye and respiratory irritant and, owing to its residual peptide component, as a skin/respiratory sensitiser. Considering the high background concentration of iron in soil and water, the supplementation of feed with iron chelate of amino acids, hydrate, is not expected to pose an environmental risk. Iron chelate of amino acids, hydrate, is an effective source of iron for all animal species and categories. The FEEDAP Panel recommends that the maximum iron contents in complete feed be reduced as follows: bovines and poultry, 450 mg Fe/kg; and pets, 600 mg Fe/kg.

  4. 微量元素氨基酸螯合物及其在动物生产中的应用%Amino Acid Trace Mineral Chelates in Pigs, Chicken Production

    苏从成

    2011-01-01

    Amino acid trace mineral chelates is a new organic mineral additives, known as the third generation of trace element additives. Amino acid trace mineral chelates were applied widely in animal nutrition in the recent years because of its good stability, easy digestion, high utilization, anti-bacterium and so on. This paper summarized the concept, nutritional characteristics and biological functions of amino acid trace mineral chelates and its applications in animal production.%微量元素氨基酸螯合物是一种新型有机矿物元素添加剂,被称为第三代微量元素添加剂。由于其稳定性好、生物效价高、易消化吸收、抗干扰性强等特点,迅速成为动物营养研究的热点,在各种动物生产中广泛应用。本文就微量元素氨基酸螯合物的概念、营养特性、作用机制及在动物生产中的应用进行综述。

  5. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  6. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy

    Monika E. Miller

    2015-12-01

    Full Text Available Nutritionally important minerals are more readily absorbed by living systems when complexed with organic acids, resulting in higher consumer demand and premium prices for these products. These chelated metals are produced by reaction of metal oxides and acids in aqueous solution. However, unreacted dry blends are sometimes misrepresented as metal chelates, when in reality they are only simple mixtures of the reactants typically used to synthesize them. This practice has increased interest in developing analytical methods that are capable of measuring the extent of metal chelation for quality control and regulatory compliance. We describe a novel method to rapidly measure the percent chelation of citric and malic acids with calcium, magnesium, and zinc. Utilization of attenuated total reflectance (FTIR-ATR provides for the direct, rapid measurement of solid samples. The inclusion of an internal standard allows independent determination of either free or chelated acids from integrated areas in a single spectrum.

  7. Novel double prodrugs of the iron chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED): Synthesis, characterization, and investigation of activation by chemical hydrolysis and oxidation.

    Thiele, Nikki A; Abboud, Khalil A; Sloan, Kenneth B

    2016-08-01

    The development of iron chelators suitable for the chronic treatment of diseases where iron accumulation and subsequent oxidative stress are implicated in disease pathogenesis is an active area of research. The clinical use of the strong chelator N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) and its alkyl ester prodrugs has been hindered by poor oral bioavailability and lack of conversion to the parent chelator, respectively. Here, we present novel double prodrugs of HBED that have the carboxylate and phenolate donors of HBED masked with carboxylate esters and boronic acids/esters, respectively. These double prodrugs were successfully synthesized as free bases (7a-f) or as dimesylate salts (8a-c,e), and were characterized by (1)H, (13)C, and (11)B NMR; MP; MS; and elemental analysis. The crystal structure of 8a was solved. Three of the double prodrugs (8a-c) were selected for further investigation into their abilities to convert to HBED by stepwise hydrolysis and H2O2 oxidation. The serial hydrolysis of the pinacol and methyl esters of N,N'-bis(2-boronic acid pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl ester dimesylate (8a) was verified by LC-MS. The macro half-lives for the hydrolyses of 8a-c, measured by UV, ranged from 3.8 to 26.3 h at 37 °C in pH 7.5 phosphate buffer containing 50% MeOH. 9, the product of hydrolysis of 8a-c and the intermediate in the conversion pathway, showed little-to-no affinity for iron or copper in UV competition experiments. 9 underwent a serial oxidative deboronation by H2O2 in N-methylmorpholine buffer to generate HBED (k = 10.3 M(-1) min(-1)). The requirement of this second step, oxidation, before conversion to the active chelator is complete may confer site specificity when only localized iron chelation is needed. Overall, these results provide proof of principle for the activation of the double prodrugs by chemical hydrolysis and H2O2 oxidation, and merit further investigation into the

  8. Computer simulation of metal ion equilibria in biofluids. IV. Plutonium speciation in human blood plasma and chelation therapy using polyaminopolycarboxylic acids

    Duffield, J.R.; May, P.M.; Williams, D.R.

    1984-03-01

    An investigation by computer simulation into the nature of Pu(IV) binding to low-molecular ligands in human blood plasma is described. Particular consideration is given to the interactions of various chelating agents which have been or might be used for treating plutonium intoxication. Formation constants of EDTA and DTPA with Cu(II), Mg(II), Mn(II), Zn(II), and Cd(II) have been measured under biologic conditions of temperature and background electrolyte. The relative ability of these and other chelating agents to cause excretion of plutonium and the concomitant loss of certain essential trace metals has thus been assessed.

  9. Ferrocene base metal chelates

    Review of the works, devoted to different types of ferrocene metal chelates and to a possibility of ferrocene-containing ligand modification by means of complexing, is presented. Structure, properties and spectral characteristics of transitional metal, rare earth element, Cd2+, UO22+, Th4+ etc. complexes with ferrocene diketones, ferrocene acyl derivatives based on thiosemicarbazones and hydrazones and other heterometal ferrocene-containing metal chelates, are considered. 134 refs., 1 tab

  10. Chelating polymeric membranes

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  11. Excimer laser phototherapeutic keratectomy in eyes with anterior corneal dystrophies: preoperative and postoperative ultrasound biomicroscopic examination and short-term clinical outcomes with and without an antihyperopia treatment.

    Rapuano, Christopher J.

    2003-01-01

    PURPOSE: To evaluate the use of high-frequency ultrasound biomicroscopy (UBM) in determining the depth of corneal pathology in eyes undergoing excimer laser phototherapeutic keratectomy (PTK) for primary or recurrent anterior stromal corneal dystrophies. Corneal clarity, visual acuity and refractive changes in eyes with and without an antihyperopia treatment were also analyzed. METHODS: Twenty eyes of 14 patients with anterior stromal corneal dystrophies were treated with PTK. Eyes were evalu...

  12. Monohydroxamic acids and bridging dihydroxamic acids as chelators to ruthenium(III) and as nitric oxide donors: syntheses, speciation studies and nitric oxide releasing investigations.

    Griffith, Darren; Krot, Krystyna; Comiskey, Jedd; Nolan, Kevin B; Marmion, Celine J

    2008-01-01

    The synthesis and spectroscopic characterisation of novel mononuclear Ru(III)(edta)(hydroxamato) complexes of general formula [Ru(H2edta)(monoha)] (where monoha = 3- or 4-NH2, 2-, 3- or 4-C1 and 3-Me-phenylhydroxamato), as well as the first example of a Ru(III)-N-aryl aromatic hydroxamate, [Ru(H2edta)(N-Me-bha)].H2O (N-Me-bha = N-methylbenzohydroxamato) are reported. Three dinuclear Ru(III) complexes with bridging dihydroxamato ligands of general formula [{Ru(H2edta)}2(mu-diha)] where diha = 2,6-pyridinedihydroxamato and 1,3- or 1,4-benzodihydroxamato, the first of their kind with Ru(III), are also described. The speciation of all of these systems (with the exception of the Ru-1,4-benzodihydroxamic acid and Ru-N-methylbenzohydroxamic systems) in aqueous solution was investigated. We previously proposed that nitrosyl abstraction from hydroxamic acids by Ru(III) involves initial formation of Ru(III)-hydroxamates. Yet, until now, no data on the rate of nitric oxide (NO) release from hydroxamic acids has been published. We now describe a UV-VIS spectroscopic study, where we monitored the decrease in the ligand-to-metal charge-transfer band of a series of Ru(III)-monohydroxamates with time, with a view to gaining an insight into the NO-releasing properties of hydroxamic acids. PMID:18399240

  13. Scientific Opinion on the safety and efficacy of copper compounds (E4 as feed additives for all species: cupric chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-02-01

    Full Text Available Cupric chelate of amino acids hydrate is safe for all animal species/categories up to the authorised maximum of total copper content in complete feed. Consumption surveys include copper from foodstuffs of animal origin. Since the supplementation of animal feed with copper-containing compounds has not essentially changed over the last decade, no change in the contribution of foodstuffs originating from supplemented animals to the overall copper intake of consumers is expected. No concerns for consumer safety are expected from the use of cupric chelate of amino acids hydrate in animal nutrition, which would substitute for other copper sources. The additive should be considered as a skin and eye irritant and, owing to its amino acid/peptide component, as a skin/respiratory sensitiser. Potential risks to soil organisms have been identified as a result of the application of piglet manure. Levels of copper in other types of manure are too low to create a potential risk within the timescale considered. There might also be a potential environmental concern related to the contamination of sediment resulting from drainage and the run-off of copper to surface water. In order to draw a final conclusion, further model validation is needed and some further refinement to the assessment of copper-based feed additives in livestock needs to be considered, for which additional data would be required. The use of copper-containing additives in aquaculture up to the authorised maximum of total copper content in complete feeds is not expected to pose an appreciable risk to the environment. The extent to which copper-resistant bacteria contribute to the overall antibiotic resistance situation cannot be quantified at present. Cupric chelate of amino acids hydrate is recognised as an efficacious source of copper to meet animal requirements.

  14. Scientific opinion on the safety and efficacy of iron compounds (E1) as feed additives for all species: iron chelate of amino acids, hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc.

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    The use of iron chelate of amino acids, hydrate, as source of iron is considered safe for all animal species/categories when used up to the currently authorised maximum content of total iron in complete feed, with the exception of bovines and poultry for which the maximum tolerated level is 450 mg/kg complete feed, and pets, for which the maximum tolerated level is 600 mg/kg complete feed. The FEEDAP Panel is not in the position to derive a maximum safe iron concentration in feed for horses o...

  15. Comments on chelation therapy

    The primary purpose of actinide chelation is to decrease the risk from radiation-induced cancer. While occupational exposures in the past have mainly involved low specific activity 239Pu, future exposures will increasingly involve high specific activity plutonium, americium, and curium - all of which clear more rapidly from the lung. This will tend to shift the cancer risk from lung to bone and liver. Although therapy with Ca- or Zn-DTPA rapidly removes 241Am from the canine, the sub-human primate, and the human liver, improved methods for removal from bone and lung are needed. DTPA can remove 241Am more easily from the growing skeleton of a child than from the mature skeleton of an adult. Investigators at Karlsruhe are developing chelation agents for oral administration and are investigating the reduction in local dose to bone resulting from chelation therapy

  16. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  17. The experimental study on protective effects and mechanisms of chelating agents of catechols amino carboxylic acid for radiation injury induced by actimides(Th-234)

    The decorporative efficacy and antioxidative action of prompt and delayed consecutive administration of catecholicpolyaminopolycarboxylate ligands, 7601 and 9501 for radiothorium in mice were investigated. DTPA and Vitamin E were used as positive controls. The competitive abilities of 7601 and 9501 to mobilize the thorium with BSA were studied. Their inhibition effects on superoxide anionas radicals were measured with electron spin resonance. The results showed that 7601 and 9501 are able to effectively prevent the internal radiation injury induced radiothorium, attributing to their double functions of pronounced removal effectiveness and antioxidative action. Their protective effects were better than DTPA and Vitamin E. The mechanisms of protective effects of 7601 and 9501 for internal radiation injury was close related to competitive ability of chelating agent to chelate the thorium with BSA and oxygen free radical scavenging activities

  18. Clinical results of a new high-phototherapeutic-efficiency blue-green lamp for the management of hyperbilirubinemia

    Donzelli, Gian Paolo; Pratesi, Simone; Agati, Giovanni; Fusi, Franco; Pratesi, Riccardo

    1996-01-01

    We report a preliminary study on the introduction of a new, blue-green fluorescent lamp with high phototherapeutic efficiency in the treatment of neonatal hyperbilirubinemia. The lamp (New Lamp) has an emission spectrum, peaked at 490 nm and about 40 nm wide, that was not previously investigated in clinical trials. Our study demonstrates the significantly greater efficacy of the New Lamp in decreasing the bilirubin serum level, in comparison with the most commonly used blue fluorescent lamp. The rate of decline of bilirubin concentration with the New Lamp was twice that with Philips/BB light. The success of the blue-green PT is mainly due to the combined effects of the (1) increase from blue to green of the quantum yield for lumirubin, that is the bilirubin photoproduct rapidly excreted from the organism; (2) corresponding decrease of the configurational photoisomer, formed with high concentration but not excreted from the organism; (3) filtering effect of the skin, which attenuates more blue than green light. Our results represent the first significant improvement of phototherapy efficiency following the development and introduction of the special-blue lamp by Sisson in 1970. The phototherapy exposure time has now been reduced to less than 1-day in preterm infants, ensuring less stress to the infant and less interference with nursing care.

  19. Optimisation and status of chelation therapy

    The calcium trisodium salt of diethylenetriaminepentaacetic acid (Ca-DTPA) remains the chelating agent of choice for treatment of incorporated actinides. The zinc trisodium salt (Zn-DTPA) represents a less toxic alternative, when Ca-DTPA is contra-indicated as well as for prolonged chelation therapy; in acute incorporation cases it would be less effective than Ca-DTPA. Specific ion binding chelators such as desferrioxamine (DFOA) and linear tetracatechoylamides, e.g., LICAM(C) proved more effective in animals injected with Pu, Th and Np (not with Am!) but only concerning the radioactivity in the bone; that in the kidneys was substantially increased. The combinations of DFOA or LICAM(C) with Ca-DTPA exerted the best overall effects. After incorporation of soluble uranium-compounds, an infusion of sodium bicarbonate seems at present the most reasonable for enhancing the uranium-excretion and prevention of kidney damage. (author)

  20. Lanthanon chelates of monoprotic tridentate schiff base

    3-(N-thiophene-2-aldimino)propanoic acid (HTP), and its lanthanon chelates were synthesised and studied by physico-chemical techniques. Irving-Rossotti method was followed to determine the dissociation constants of the ligand and formation constants of its lanthanon chelates in aqueous medium (ionic strength μ = 0.01, 0.05 and 0.1 M NaClO4) at 25 0C, 35 0C and 45 0C. Solid lanthanon chelates were characterised by molecular mass, elemental analyses, conductance, magnetic, thermal and spectral analyses and were assigned 1 : 3 (metal-ligand) stoichiometry in which the lanthanon shows nine coordination numbers. Covalent nature of metal-ligand bond was found to increase with increase in atomic number of central lanthanide ion. (author)

  1. Mixed-chelate therapy of intratracheally deposited cadmium oxide

    Mixed-chelate treatment with EDTA and salicylic acid was no more effective in accelerating the removal of intratracheally instilled 109CdO, or in protecting against CdO-induced mortality, than was EDTA given alone

  2. Chelation Therapy for Mercury Poisoning

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  3. Adsorptive separation of rare earths by using chelating chitosan

    Two kinds of chelating chitosan were prepared by chemically modifying chitosan with functional groups of EDTA or DTPA, abbreviated as EDTA- and DTPA-chitosan hereafter, respectively, to investigate the adsorption behaviour for rare earths the mutual separation of which is the most difficult among metal ions on these chelating chitosan from dilute hydrochloric or sulfuric acid solution. The plots of the distribution ratio of a series of rare earths against equilibrium pH lay on different straight lines with slope of 3 corresponding to each earth for both of two chelating chitosan, suggesting that 3 hydrogen ions are released for the adsorption of unit ion of each rare earth by chelate formation with the functional group of EDTA or DTPA and that mutual adsorptive separation between adjacent rare earth is possible with these chelating chitosan. Apparent equilibrium constants of the adsorption were evaluated from the intercepts of these straight lines with the ordinate for each rare earth and for both chelating chitosan. It was found that the equilibrium constants of adsorption on EDTA- or DTPA-chitosan are quite analogous to those of chelate formation with EDTA or DTPA themselves, suggesting that chelating characteristics of these complexones is still maintained after their immobilization on polymer matrices of chitosan. (author)

  4. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  5. EDTA: the chelating agent under environmental scrutiny

    Claudia Oviedo; Jaime Rodríguez

    2003-01-01

    The chelating agent EDTA (ethylenediaminetetraacetic acid) is a compound of massive use world wide with household and industrial applications, being one of the anthropogenic compounds with highest concentrations in inland European waters. In this review, the applications of EDTA and its behavior once it has been released into the environment are described. At a laboratory scale, degradation of EDTA has been achieved; however, in natural environments studies detect poor biodegradability. It is...

  6. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    T. K. Udeigwe; M. B. Eichmann; Menkiti, M. C.

    2015-01-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system with...

  7. Extraction of metals using supercritical fluid and chelate forming ligand

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated β-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated β-diketone and a trialkyl phosphate, or a fluorinated β-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated β-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  8. Chelation therapy for metal intoxication: comments from a thermodynamic viewpoint.

    Nurchi, Valeria Marina; Alonso, Miriam Crespo; Toso, Leonardo; Lachowicz, Joanna Izabela; Crisponi, Guido

    2013-10-01

    Chelation therapy plays a prominent role in the clinical treatment of metal intoxication. In this paper the principal causes of metal toxicity are exposed, and the chemical and biomedical requisites of a chelating agent are sketched. The chelating agents currently in use for scavenging toxic metal ions from humans belong to few categories: those characterized by coordinating mercapto groups, by oxygen groups, poliaminocarboxylic acids, and dithiocarbamates. Considering that the complex formation equilibria have been studied for less than 50% of chelators in use, some reflections on the utility of stability constants are presented, together with an evaluation of ligands under the stability profile. The competition between endogenous and toxic target metal ions for the same chelating agent is furthermore examined. A thorough examination of stability constant databases has allowed to select, for each toxic metal, the ligands distinguished by the best pMe values. Even though this selection does not consider the biomedical requisites of a chelating agent, it gives a clear picture both of the pMe values that can be attained, and of the most appropriate chelators for each metal ion. PMID:23895193

  9. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. PMID:26593563

  10. Contribution to the study of beryllium complexes. IX. Chelation of Be2+ ions by 3-hydroxy butanoic and 2-hydroxy 2-methyl propanoic acids, potentiometric study

    In the field of work on complexation of beryllium, complex equilibria in aqueous solution between beryllium (II) and 3-hydroxybutanoic acid (HA) and 2-hydroxy-2-methyl propanoic acid (HA) were studied by potentiometric (alkalimetric) titration (at ionic strength = 0.5 M by NaClO4 and a temperature T = 25.0 +- 0.10C to show the influence of hydroxyl group in carboxylic ligands. For the system 3-hydroxy butanoic acid, the results show the presence of two mononuclear species: BeA+ and BeA2 and one hydrolized complex: Be3(OH)3A2, but for 2-hydroxy-2-methylpropanoic acid an additional species is identified, in what the alcoolic function is dissociated: Be(H-1A). The formation constants are reported

  11. Inositol hexa-phosphate: a potential chelating agent for uranium

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A. [Radiobiology Laboratory, Radiation Dosimetry Unit, Department of Environment, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

    2007-07-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  12. Inositol hexa-phosphate: a potential chelating agent for uranium

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  13. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Workington, GB); Phelps, Cindy (Moscow, ID)

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  14. Some aspects of chelation chemistry

    The notions used in chelation chemistry are defined and the possibilities of the experimental recognition of complex formation are described. A review of the quantitative aspects of chelation is given, especially under biological conditions. Some rules concerning the general behaviour of the various metal ions and the organic ligands in chelation phenomena are presented and the specificity problem is discussed. The present status of the decontamination of the main fission products, e.g. rare-earth metals and strontium, with the aid of complexing agents is analysed from a chemical point of view. (author)

  15. SORPTION OF Cu(II) BY POLY(HYDROXAMIC ACID) CHELATING EXCHANGER PREPARED FROM POL(YMETHYL ACRYLATE) GRAFTED OIL PALM EMPTY FRUIT BUNCH (OPEFB)

    Md Jelas Haron; Mariati Tiansih; Nor Azowa Ibrahim; Anuar Kassim; W. M. Z. Wan Yunus

    2009-01-01

    This paper describes the preparation of chemically modified oil palm empty fruit bunch (OPEFB) with hydroxamic acid functional group and its use for the sorption of Cu(II) from aqueous solution. OPEFB was grafted with poly(methylacrylate) (PMA), using H2O2/Fe2+ as initiator. The PMA grafted OPEFB (PMA-OPEFB) was treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid grafted fiber (PHA-OPEFB). The FTIR spectrum of OPEFB grafted with PMA showed an intense absorpt...

  16. The Increased Promotion in Cobalt-Molybdenum Hydrodesulfurization Catalysts Supported on Alumina, Activated Carbon and Zirkonia by the Chelating Agent Nitrilotriacetic Acid

    Kaluža, Luděk

    2013-01-01

    The most active CoMo/Al2O3, C and ZrO2 catalysts in benzothiophene HDS were prepared by the impregnation of the support from the solution made by dissolution of MoO3, CoCO3 and nitrilotriacetic acid in water followed by sulfidation without previous calcination.

  17. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  18. Chelation therapy in intoxications with mercury, lead and copper

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole;

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid or...

  19. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids

    Abdel-Rahman, Laila H.; Abu-Dief, Ahmed M.; Ismael, Mohammed; Mohamed, Mounir A. A.; Hashem, Nahla Ali

    2016-01-01

    Three tridentate Schiff bases amino acids were prepared by direct condensation of 3-methoxysalicylaldehyde (MS) or 4-diethylaminosalicylaldehyde (DS) with α-amino acid ligands [L-phenylalanine (P), L-histidine (H) and DL-tryptophan (T)]. The prepared Schiff bases amino acids were investigated by melting points, elemental analysis, 1HNMR and 13CNMR, IR, UV-Vis spectra, conductivity and magnetic measurements analyses. Subsequently, copper was introduced and Cu(II) complexes formed. These complexes were analyzed by thermal and elemental analyses and further investigated by FT-IR and UV/Vis spectroscopies. The experimental results indicating that all Cu(II) complexes contain hydrated water molecules (except DSPCu complex) and don't contain coordinated water molecules. The kinetic and thermal parameters were extracted from the thermal data using Coast and Redfern method. The molar conductance values of the Schiff base amino acid ligands and their Cu(II) complexes were relatively low, showing that these compounds have non-electrolytic nature. Magnetic susceptibility measurements showed the diamagnetic nature of the Schiff base amino acid ligands and paramagnetic nature of their complexes. Additionally, a spectrophotometric method was determined to extract their stability constants. It was found that the complexes possess 1:2 (M:L) stoichiometry. The results suggested that 3-methoxysalicylaldehyde and 4-diethylaminosalicylaldehyde amino acid Schiff bases behave as monobasic tridentate ONO ligands and coordinate Cu(II) ions in octahedral geometry according to the general formula [Cu(HL)2]·nH2O. To further understanding the structural and electronic properties of these complexes, Density Functional Theory (DFT) calculations were employed and provided a satisfactory description. The optimized structures of MST Schiff base ligand and its complex were calculated using DFT. The antimicrobial activity of the Schiff base ligands and their complexes were screened against some

  20. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  1. Overview of current chelation practices

    Aydinok, Y.

    2011-01-01

    Deferoxamine (DFO) is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP) has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU) granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO ...

  2. Bifunctional Chelates for Metal Nuclides

    Brechbiel, Martin W.

    2007-01-01

    The use of “non-standard” metallic radionuclides continues to be an expanding field of investigation. Radiolabeling small molecules, peptides, proteins, and up to nano-particles are all areas of active investigation for both diagnostic and therapeutic applications. All require a common variable – the need for appropriate chelation chemistry for adequate sequestration of the metallic radionuclide that is equal to the intended application. A brief overview of the array of the chelation chemistr...

  3. Alarming use of chelation therapy

    Crisponi, Guido; Nurchi, Valeria Marina; Lachowicz, Joanna I.; Crespo-Alonso, Miriam; Zoroddu, Maria Antonietta; Peana, Massimiliano Francesco

    2014-01-01

    Chelation therapy is a consolidated medical procedure used primarily to hinder the effects of toxic metal ions on human tissues. Its application spans a broad spectrum of disorders, ranging from acute metal intoxication to genetic metal-overload. The use of chelating agents is compromised by a number of serious side effects, mainly attributable to perturbed equilibrium of essential metal ion homeostasis and dislocation of complexed metal ions to dangerous body sites. For this reason, chelatio...

  4. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis.

    Magon, Nicholas J; Turner, Rufus; Gearry, Richard B; Hampton, Mark B; Sly, Peter D; Kettle, Anthony J

    2015-09-01

    Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways. PMID:26006104

  5. SORPTION OF Cu(II BY POLY(HYDROXAMIC ACID CHELATING EXCHANGER PREPARED FROM POL(YMETHYL ACRYLATE GRAFTED OIL PALM EMPTY FRUIT BUNCH (OPEFB

    Md Jelas Haron

    2009-11-01

    Full Text Available This paper describes the preparation of chemically modified oil palm empty fruit bunch (OPEFB with hydroxamic acid functional group and its use for the sorption of Cu(II from aqueous solution. OPEFB was grafted with poly(methylacrylate (PMA, using H2O2/Fe2+ as initiator. The PMA grafted OPEFB (PMA-OPEFB was treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid grafted fiber (PHA-OPEFB. The FTIR spectrum of OPEFB grafted with PMA showed an intense absorption band at 1734 cm-1 which is attributed to C=O vibration in the grafted ester. After hydroxylamine treatment, the intensity of absorption band at 1734 cm-1 decreased and new bands appeared at the 1640 cm-1 related to C=O vibration in hydroxamic acid and at the 1568 cm-1 related to the N-H amide. Sorption of Cu(II by PHA-OPEFB was effective over a pH range of 4 to 6. The sorption followed the Langmuir model with maximum capacities of 74.1 mg g-1 at 25 °C. The sorption process was exothermic, as shown by the negative value of enthalpy change, H. The free energy change (G for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Cu(II sorption followed a second order kinetic model.

  6. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish. PMID:25857893

  7. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  8. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  9. Preparation and characterization of chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) chelating resin for removal of Cu(II), Co(II) and Ni(II) metal ions from aqueous solutions.

    Bekheit, M M; Nawar, N; Addison, A W; Abdel-Latif, D A; Monier, M

    2011-05-01

    The graft copolymerization of ethylacrylate (EA) onto chitosan initiated by potassium persulphate and Mohr's salt combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted chitosan was carried out by reaction of the ester group (-COOEt) with 2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid hydrazide which eventually produce chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) (chitosan-g-ATAH) chelating resin. The application of the modified resin for metal ion uptake was studied using Cu(2+), Co(2+) and Ni(2+) ions. The modified chelating resins were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:21277322

  10. New 111In labeling of IgG: 111In-oxine mediated chelation

    Current methods of 111In chelate conjugation labeling of antibodies expose the protein to pH 5-6 during 111In chelation. These conditions could be detrimental if the antibody is acid labile. We have successfully labeled human IgG via the cyclic anhydride of DPTA and 111In-oxyquinoline(oxine). Chelation was achieved at pH 6.9-8.4 and was complete within 1 min at room temperature. The chelation was sensitive to trace metal contamination on labware and in some reagents (including commercial 111In-oxine). (author)

  11. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  12. Targeted Cleavage of HIV RRE RNA by Rev-Coupled Transition Metal Chelates

    Joyner, Jeff C.; Cowan, J. A.

    2011-01-01

    A series of compounds that target reactive metal-chelates to the HIV-1 Rev Response Element (RRE) mRNA have been synthesized. Dissociation constants and chemical reactivity toward HIV RRE RNA have been determined and evaluated in terms of reduction potential, coordination unsaturation, and overall charge associated with the metal-chelate-rev complex. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and 1,4,7,10-tetraazacyclo-dodec...

  13. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates

  14. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  15. White light emission from Mn2+ doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  16. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  17. Sequestering agent for uranyl chelation: new bi-naphtyl ligands

    The synthesis of phosphonate, sulfocatecholamide (CAMS) and hydroxy-pyridinone (HOPO) bi-naphtyl ligands is presented. Their binding abilities for uranyl cation were determined by UV spectrophotometry in aqueous media versus pH. These titrations showed that the efficiency of these chelating agents depends on the nature of the chelating group. Each ligand shows a more or less pronounced affinity towards uranium. While the bis-phosphonate compound did not show any affinity towards the uranyl ion, the BINHOPO derivative exhibits significant affinity at acidic and neutral pH while the BINCAMS is more efficient at basic pH. (authors)

  18. Regularities in aluminium and indium chemisorption on chelating polymeric sorbents

    Complexation properties of synthesized polymer chelate sorbents: substituted of polystyrene-azo-pyrocatechol are investigated and correlations between pK'OH of functional groups of sorbents as well as pH50 values of chelation and constants of stability (lgKstab) are established for studying regularities of effect of structure and acid-base properties of functional groups of sorbents on the parameters of Al3+ and In3+ chemical sorption. Established correlations make it possible to predict the physicochemical parameters of sorbents and sorption of metal ions with the aim of separation and concentration of aluminium and indium micro account from the objects of different origin

  19. Chelating regularities in the series of chelating polymer sorbents and their complexes with vanadium, manganese, and chromium

    Physicochemical properties of new synthesized polymer chelation sorbents - substituted polystyrene-azo-salicylic acid are investigated. Correlations between pKCOOH of functional groups of sorbents with chelation pH50 and vanadium, manganese and chromium lgstab are established with the aim of studying interactions in the ion of element - sorbent system. Established correlations suggest physicochemical properties of the sorbents and sorption parameters of cations of metals with the aim of concentration and separation of V(5), Mn(2) and Cr(3) microamounts from natural and technical objects including environmental ones

  20. Overview of current chelation practices

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  1. BENCH-SCALE RECOVERY OF LEAD USING AN ELECTROMEMBRANE/CHELATION PROCESS

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  2. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  3. Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands

    We describe a simple in vitro characterization of chelation that is useful when choosing an appropriate ligand-metal combination for clinical applications. These properties include the effect of concentration on chelation efficiency, time to maximum chelation, and stability in acidic and serum environments. The macrocyclic ligands nitro-DOTA and nitro-PADOTA, the acyclic ligands nitro-CHX-A-DTPA, nitro-MX-DTPA, DTPA, and a novel terpyridine ligand, TMT-amine, were evaluated as chelate complexes of both intermediate energy β-emitting lanthanides lutetium-177 and samarium-153. The data were compared to results obtained in a previously published study with yttrium-90. Acid lability, time to achieve maximum chelation, and stability in human serum are properties unique to each ligand-metal combination and should be evaluated prior to choosing an appropriate combination for therapeutic applications. Concentration dependence and duration of chelation are general properties of lanthanide and yttrium chelation that can be applied to an appropriate ligand-metal combination to achieve optimum chelation efficiencies

  4. Effectiveness of chelation therapy with time after acute uranium intoxication

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy

  5. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tet...

  6. Iron chelation and multiple sclerosis

    Kelsey J. Weigel

    2014-01-01

    Full Text Available Histochemical and MRI studies have demonstrated that MS (multiple sclerosis patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.

  7. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  8. Binary and ternary chelates of scandium (III), Yttrium (III) and lanthanum (III) with ethyleneglycol-bis(β-aminoethylether)-tetraacetic acid as primary and substituted salicylic acids as secondary ligands

    Formation constants of binary and ternary complexes of the systems of the type: M-L and M-egta-L (M = scandium(III), yttrium(III) and lanthanum(III), egta = ethylene glycol-bis(β-aminoethylether)-tetra acetic acid, L = o-cresotic acid (o-ca), m-cresotic acid (m-ca), 5-chlorosalicyclic acid(csa), and 3,5-dibromosalicylic acid (dbsa)) have been determined pH-metrically at 25deg and μ = 0.1M (KNO3) in 50% (v/v) aqueous-ethanol medium. The order of stabilities of ternary complexes has been compared with those of corresponding binary complexes, and results discussed on the basis of coulombic interactions. (auth.)

  9. Extraction of Heavy Metals from Sludge Using Biodegradable Chelating Agent N,N-bis(carboxymethyl) Glutamic Acid Tetrasodium%生物可降解螯合剂谷氨酸 N,N -二乙酸四钠对污泥中重金属萃取效率的研究

    吴青; 崔延瑞; 汤晓晓; 杨慧娟; 孙剑辉

    2015-01-01

    N, N-bis ( carboxymethyl) glutamic acid tetrasodium ( GLDA), a novel biodegradable and green chelating agent, has excellent metal chelating ability. Batch experiment was conducted to study the extraction process of Cd, Ni, Cu and Zn in industrial sludge using GLDA. The effects of contact time, pH of the system, content of chelating agent were investigated, and the forms of heavy metals in sludge pre- and post-extraction using the modified BCR sequential extraction procedure were studied. The results showed that GLDA was effective for cadmium extraction in sludge. Several heavy metals could be effectively extracted under the condition of pH 4 and molar ratio of chelating agent to total heavy metal 3: 1. Residual fraction took the largest fraction in Zn, which caused the low extraction efficiency of this metal. Chelating properties were related not only to contact time, pH, chelating agent’s concentration, and stability constant but also to species distribution of metals.%谷氨酸 N,N -二乙酸四钠(GLDA)具有较强金属螯合能力,是新一代生物可降解绿色螯合剂。通过分批提取实验对GLDA 去除工业污泥中 Cd、 Ni、 Cu、 Zn 的萃取过程进行研究,考察了萃取时间、萃取体系 pH 值、螯合剂用量等因素对重金属萃取效果的影响,并采用修正的 BCR 连续提取法分析萃取前后污泥中重金属的形态。结果表明, GLDA 对污泥中 Cd 具有良好的去除效果;体系在 pH =4,螯合剂与重金属总量摩尔比为3:1的条件下,多种重金属取得最佳萃取效果; Zn 主要以残渣态存在,导致该金属萃取率低;螯合能力不仅与萃取时间,萃取体系 pH 值,螯合剂用量,螯合常数等因素有关,而且还与金属的形态分布有关。

  10. Improved paramagnetic chelate for molecular imaging with MRI

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  11. Improved paramagnetic chelate for molecular imaging with MRI

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent

  12. Development of new metal chelates for animal nutrition and of analytical methods for their quantitative determination and quality control

    Beltrami, Diego

    2009-01-01

    The growing interest for mineral integration to increase mineral bioavalability brought researchers to re-examine accurately the impact that complexes and chelates can have for food industry. In fact, the so-called organic or chelate mineral forms, in particular those associated with amino acids, peptides or other organic molecules, afforded encouraging results in different in vivo tests on animals of economic interest fed with fodder containing minerals in the form of chelates. Moreover, it ...

  13. The Influence of the Chelating Agent Nitrilotriacetic Acid on Promotion of Hydrodesulfurization Activity by Co in CoMo Catalysts Prepared on Al2O3, C, and ZrO2 Supports

    Kaluža, L. (Luděk); Zdražil, M. (Miroslav); Gulková, D. (Daniela); Vít, Z. (Zdeněk)

    2013-01-01

    The chelating agent NTA systematically increased the promotion effect of Co in the sulfided catalysts in comparison to samples prepared without NTA from ammonium heptamolybdate and cobalt nitrate. The promotion effect was increased by the factor 1.13-1.58.

  14. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  15. Luminescent lanthanide chelates and methods of use

    Selvin, Paul R. (Berkeley, CA); Hearst, John (Berkeley, CA)

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  16. f-Element Ion Chelation in Highly Basic Media

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelators for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  17. Iron chelation and multiple sclerosis

    Kelsey J. Weigel; Sharon G. Lynch; Steven M. LeVine

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular prote...

  18. Some Linguistic Detail on Chelation

    Haworth, Daniel T.

    1998-01-01

    The term chelate was first applied by Morgan and Drew in 1920 to describe the heterocyclic rings formed from bidentate ligands bonding to a central atom. The history of the word ch_l_ is traced from its original Greek meaning through the Latin language to its anglicized form, chela. This word has a very rich history and has been cited by both Greek (Aristotle) and Latin (Cicero, Vergil) philosophers and poets.

  19. Chelator induced phytoextraction and in situ soil washing of Cu

    In a soil column experiment, we investigated the effect of 5 mmol kg-1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg-1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg-1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg-1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  20. Chelator induced phytoextraction and in situ soil washing of Cu

    Kos, Bostjan; Lestan, Domen

    2004-11-01

    In a soil column experiment, we investigated the effect of 5 mmol kg{sup -1} soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg{sup -1} Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8{+-}1.3 mg kg{sup -1} Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg{sup -1} exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53{+-}0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.

  1. Use of Fricke solution modified with dyes for dosimetry in phototherapeutic treatments; Uso da solucao Fricke modificada com corantes para futura dosimetria em tratamentos fototerapeuticos

    Almeida, Mayara Gabriella Oliveira de; Nascimento, Rizia Keila; Vieira, Rafaela Etelvina de Amorim; Souza, Vivianne Lucia Bormann, E-mail: mayaradqf@hotmail.com, E-mail: riziakeila@hotmail.com, E-mail: rafaelarodriguesss@hotmail.com, E-mail: vlsouza@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife (Brazil)

    2014-07-01

    Dyes and pigments (photosensitizers) are characterized by their ability to absorb visible light, and to participate in photochemical reactions. These colors are used in medicine in the dose recommended for use in photodynamic therapy (PDT). There are lasers that can meet most of the phototherapeutic agents and are capable of providing light of considerable power with precision on the injured tissue. The use of light emitting diodes (LEDs) have become feasible, thus reducing the cost of the procedures. The Dosimetry Laboratory Chemistry of the CRCN-NE/Brazilian CNEN has worked with some likely dye use in phototherapy treatments, including: methylene blue, malachite green and toluidine blue. A volume of 2.6 ml of the dosimeters was transferred to test tubes and these were irradiated with LED 24, 48, 72 and 96 acrylic simulator 110 mm x 110 mm x 80 mm at a distance of 6.5 cm from reading light source of the irradiated samples was performed on a spectrophotometer. Having obtaining excellent correlations (above 0.97) to the dosimeter calibration curves. Suggests that the dosimeter can be applied to perform a quality control in photodynamic therapy. However, further experiments should be performed before a wide application of this technique. A volume of 2.6 ml of the dosimeters was transferred to test tubes and these were irradiated with LED 24, 48, 72 and 96 acrylic simulator 110 mm x 110 mm x 80 mm at a distance of 6.5 cm from reading light source of the irradiated samples was performed on a spectrophotometer. Having obtaining excellent correlations (above 0.97) to the dosimeter calibration curves. Suggests that the dosimeter can be applied to perform a quality control in photodynamic therapy. However, further experiments should be performed before a wide application of this technique.

  2. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...

  3. Studies on the chelation of aluminium for biological application

    Potentiometric determinations of the strength of chelation of aluminium(III) by citrate and 3-carboxy-1,5-pentanedioic acid have been made at 37,0 plus minus 0,1 degree Celsius and I = 150 mmol dm-3 NaCl. From these results, the citrate complex is inferred to be tridentate with coordination through the two terminal carboxyl groups and the central hydroxyl group. This structure is confirmed by 13C nuclear magnetic resonance

  4. Effect of chelating agents on the distribution of monoclonal antibodies in mice

    The potential for altering the biodistribution of radiolabel from gallium- and indium-labeled mouse monoclonal antibodies was investigated in mice using metal chelating agents. The chelating agents used were desferrioxamine (DFO), diethylenetriaminepentaacetic acid (DTPA), ethylenediamine-di (O-hydroxyphenylacetic acid) (EDHPA), and 2,2' dipyridyl (DIPY). The mouse monoclonal antibody LICR-LON-M8 was labeled with 111In after conjugation to DTPA, and with 67Ga after conjugation to DFO. All the chelating agents except DIPY altered the biodistribution of [67Ga]citrate and [111In]citrate but did not affect the 48-hr tissue uptake of label from [111In]DTPA-M8 or [67Ga]DFO-M8, confirming the in vivo stability of the antibody conjugates. Label fixed in the tissues was inaccessible to the chelating agents, indicating that they will not be suitable for reducing the high background liver radioactivity in patients undergoing scanning with indium-labeled antibodies

  5. Status of chelation research: a review

    The current status of research on the removal of actinide elements from the body is reviewed. Items occurring prior to 1980 include evidence for fetal toxicity from Ca-DTPA, the FDA approval of Zn-DTPA for human therapy, the mixed ligand fiasco, and the abrupt wipeout of chelation funding. New concepts that should be explored include improvements in removing radioactivity from lung and bone, the effectiveness of DTPA inside cells, simultaneous therapy with mobilizing agents and chelating agents, prolonging the retention of chelating agents within the body, the oral administration of chelating agents, the effectiveness of LICAM and other new chelating agents, the safety of decorporation procedures, and the effectiveness of chelation therapy on reducing the risk from radionuclide-induced cancer. Some physicians give DTPA by intravenous injection, a safe procedure that should be officially sanctioned

  6. In vitro test system for evaluating the effectiveness of chelators

    A procedure has been devised to test in vitro the relative effectiveness of chelating agents for the elimination of radiotoxins from specified, in vivo labeled endogenous ligands. The report describes the elimination of 239Pu from liver homogenates by various chelating agents. The effectivity of a homologous series of polyaminocarboxylic acids (PACA's) was compared to that of certain derivatives containing a straight alkyl group. The effectiveness of these lipophilic PACA's appears to depend on the chain length of the substituent. Lipophilic chelons were more effective in chelating 239Pu than unsubstituted PACA's. Combination of EDTA or DTPA with a number of oligodentate complexing agents were also tested. With EDTA, the removal of Pu was enhanced by p-aminosalicylic acid (PAS), Desferioxamine B (DFOA) and strongly enhanced by 4,5-Dihydroxy-m-benzenedisulfonic acid (Tiron). Only DFOA showed enhanced removal with DTPA. The different behavior of the mixed ligand treatments can be explained by either formation of binary complexes or action on different biological Pu-pools

  7. Iron Chelation Therapy in Myelodysplastic Syndromes

    Giuseppe Saglio; Daniela Cilloni; Emanuela Messa

    2010-01-01

    Myelodysplastic syndromes (MDS) are a heterogeneous disorder of the hematopoietic stem cells, frequently characterized by anemia and transfusion dependency. In low-risk patients, transfusion dependency can be long lasting, leading to iron overload. Iron chelation therapy may be a therapeutic option for these patients, especially since the approval of oral iron chelators, which are easier to use and better accepted by the patients. The usefulness of iron chelation in MDS patients is still unde...

  8. Beliefs about chelation among thalassemia patients

    Trachtenberg Felicia L; Mednick Lauren; Kwiatkowski Janet L; Neufeld Ellis J; Haines Dru; Pakbaz Zahra; Thompson Alexis A; Quinn Charles T; Grady Robert; Sobota Amy; Olivieri Nancy; Horne Robert; Yamashita Robert

    2012-01-01

    Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ) was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC) of the Thalassemia Clinical Research Network (TCRN). Chelation adherence was based on patie...

  9. Role of chelates in treatment of cancer

    Tripathi Laxmi

    2007-01-01

    Full Text Available Chelates are used in cancer as cytotoxic agent, as radioactive agent in imaging studies and in radioimmunotherapy. Various chelates based on ruthenium, copper, zinc, organocobalt, gold, platinum, palladium, cobalt, nickel and iron are reported as cytotoxic agent. Monoclonal antibodies labeled with radioactive metals such as yttrium-90, indium-111 and iodine-131 are used in radioimmunotherapy. This review is an attempt to compile the use of chelates as cytotoxic drugs and in radioimmunotherapy.

  10. Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury exposure?

    Frumkin, H; Manning, C C; Williams, P. L.; Sanders, A; Taylor, B.B.; Pierce, M; Elon, L; Hertzberg, V S

    2001-01-01

    Chelation challenge testing has been used to assess the body burden of various metals. The best-known example is EDTA challenge in lead-exposed individuals. This study assessed diagnostic chelation challenge with dimercaptosuccinic acid (DMSA) as a measure of mercury body burden among mercury-exposed workers. Former employees at a chloralkali plant, for whom detailed exposure histories were available (n = 119), and unexposed controls (n = 101) completed 24-hr urine collections before and afte...

  11. Optimization of chelators to enhance uranium uptake from tailings for phytoremediation.

    Jagetiya, Bhagawatilal; Sharma, Anubha

    2013-04-01

    A greenhouse experiment was set up to investigate the ability of citric acid (CA), oxalic acid (OA), nitrilotriacetic acid (NTA) and EDTA for phytoremediation of uranium tailings by Indian mustard [Brassica juncea (L.) Czern. et Coss]. Uranium tailings were collected from Umra mining region and mixed with 75% of garden soil which yielded a 25:75 mixture. Prepared pots were divided into four sets and treated with following different concentrations - 0.1, 0.5, 2.5 and 12.5 mmol kg(-1) soil additions for each of the four chelators. Control pots which were not treated with chelators. Experiments were conducted in completely randomized block design with triplicates. The optimum concentrations of these chelators were found on the basis of biomass production, tolerance and accumulation potential. The data collected were expressed statistically. EDTA produced maximum growth depression whereas, minimum occurred in the case of NTA. Maximum U uptake (3.5-fold) in the roots occurred at 2.5 mmol of CA, while NTA proved to be the weakest for the same purpose. Severe toxicity in the form of reduced growth and plant death was recorded at 12.5 mmol of each chelator. Minimum growth inhibition produced by chelators occurred in NTA which was followed by OA, moderate in CA and maximum was traced in EDTA applications. Chelator strengthened U uptake in the present study follows the order: CA>EDTA>OA>NTA. PMID:23267730

  12. Generation, Fractionation, and Characterization of Iron-Chelating Protein Hydrolysate from Palm Kernel Cake Proteins.

    Zarei, Mohammad; Ghanbari, Rahele; Tajabadi, Naser; Abdul-Hamid, Azizah; Bakar, Fatimah Abu; Saari, Nazamid

    2016-02-01

    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively. PMID:26720491

  13. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  14. Conformational study of aromatic ketones: chemical shift reagents: uranium chelates

    A series of benzophenones, 2-benzoyl thiophenes and 2-benzoyl pyridines, all substituted at the benzene ring by an amino acid chain, have been synthesised with the object of examining to what extent the site of the aminoacid chain and the site and nature of the other substituents modify the electronic structure of the molecule and the orientation of each ring with respect to the plane of the carbonyl group. In the second part a study of paramagnetic cations, in particular of uranium, which is able to form stable chelates with beta-diketones was carried out to study their complexing power. The chelates studied are the (hexafluoropentanedionate)4U, the (heptafluorodimethyloctanedionate)4U and the (trifluorophenylbutanedionate)4U

  15. Chelation studies involving decontamination of light lanthanides by polyaminopolycarboxylic

    The present thesis constitutes chelation studies involving decontamination of light lanthanides, cobalt , and uranium with 2,2-bis-acryloyliminomethylene- acid (BAETA) using the spectrophotometric method. the work carried out aimed to clear up the effectiveness of BAETA as a decontaminating agent for radioactive nuclides from human body . the thesis includes a general introduction , outlines the aim of work and contains three main chapters . the results of the work are discussed at the end of the thesis. the first chapter deals with a comprehensive survey of the relevant literature. this includes the metabolism and toxicity of cerium, uranium, cobalt and Ln+3 elements, general methodologies of internal decontamination, choice and effectiveness of chelating agents

  16. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  17. Treatment of some radioactive wastes by using new chelating membranes

    The preparation of chelating membranes containing nitrile and carboxylic acid as functional groups was investigated. The modification of such membranes by chemical treatments to produce significant changes in their properties was studied. This modification results in a higher rate of exchange and higher capacity. The applicability of such modified membranes in the removal of Co-60 and Cs-137 from their wastes were tested. The dependence of these radioactive nuclides uptake on the time and degree of grafting for H CI-, NH2OH-and KOH-treated membranes was investigated. It was found that the adsorption rate and capacity were higher for KOH-treated membrane than those for the NH2OH and H CI treated ones. The prepared grafted membranes have a good affinity towards the adsorption or chelation with Co-60 and Cs-137. This result may make such prepared materials acceptable for practicable use in some radioactive waste treatments and recovery

  18. Multidentate Terephthalamidate And Hydroxypyridonate Ligands: Towards New Orally Active Chelators

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using 59Fe, 238Pu, and 241Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents (deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides) and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  19. Metal ions, Alzheimer's disease and chelation therapy.

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases. PMID:21406339

  20. Importance of iron chelation therapy

    A. Varoğlu

    2011-01-01

    It is necessary to remember that today patients have different options of chelation treatment, as desferrioxamine, deferiprone and deferasirox are available. However, a patient has to be compliant with treatments. They have always to remember that too much iron causes different complications and could be a barrier for a definitive cure from thalassemia. 由于出现了去铁胺、去铁酮和去铁斯若等药物,病人现在可以选择不同的螯合治疗方式。 然而,病人必须适应这几种治疗方式。 他们必须时刻记住太多的铁元素会引发多种并发症,并对地中海贫血的彻底治疗造成阻碍。...

  1. High-performance liquid chromatography method for ferric iron chelators using a post-column reaction with Calcein Blue.

    Ariga, Tomoko; Ito, Kyoko; Imura, Yuki; Yoshimura, Etsuro

    2015-03-15

    Iron (Fe) is an essential element for higher plants, which take it up from the soil at the root surface and transport it to shoots through the xylem. Fe(III) chelators, such as organic acids and phytosiderophores, play important roles in the acquisition and transportation of Fe(III). Therefore, a selective and sensitive method for analyzing Fe(III) chelators is required to study the many Fe-related physiological mechanisms in plants. A novel analytical approach employing a high-performance liquid chromatography post-column method with fluorescence detection was developed to separate and detect Fe(III) chelators. This method takes advantage of the quenching of the fluorescence of Calcein Blue (CB) that occurs with the formation of an Fe(III)-CB complex and the dequenching that occurs with the release of CB as a result of competition for Fe(III) between CB and an Fe(III) chelator. This simple experimental method does not require complicated pretreatments and can selectively detect Fe(III) chelators according to their Fe(III)-chelating ability. The detection limit for citric acid using this method was 72pmol. Furthermore, this method can also detect unknown Fe(III) chelators that exhibit a high affinity for Fe(III). The method was evaluated with xylem sap of barley, which was shown to contain several Fe(III) chelators. PMID:25658515

  2. The fabrication and study of metal chelating stationary phases for the high performance separation of metal ions

    The preparation and characterisation of chelating sorbents suitable for the high efficiency separation of trace metals in complex samples, using a single column and isocratic elution, is described. Hydrophobic, neutral polystyrene divinylbenzene resins were either impregnated with chelating dyes or dynamically modified with heterocyclic organic acids, using physical adsorption and chemisorption processes respectively. A hydrophilic silica substrate was covalently bonded with a chelating aminomethylphosphonic acid group, to assess the chelating potential of this molecule. These substrates were characterised in terms of metal retention capability (selectivity coefficients and capacity factors), separation performance, column efficiency and suitability for analytical applications. Chelating molecules with different ligand groups were found to have unique selectivity patterns dependant upon the conditional stability constants of the chelate. Other factors, including mobile phase constituents - complexing agents, ionic strength and pH, column length and column capacity were additionally investigated to examine their effect upon the separation profiles achieved. The promising metal separation abilities illustrated by a number of these chelating columns were exploited for the determination of trace toxic metals in complex sample matrices using High Performance Chelation Ion Chromatography (HPCIC). This included the determination of beryllium in a certified stream sediment, uranium in seawater and a certified stream sediment, and cadmium, lead and copper in a certified rice flour. The results for each analysis fell within the certified limits, and reproducibility was good. The optimisation of post column detection systems using chromogenic ligands additionally gave good detection limits for the metals in each separation system. (author)

  3. 氨基酸螯合锌在奶山羊肠道消化吸收规律的研究%Digestion and Absorption of Zinc Amino Acid Chelate in the Intestinal Tract of Dairy Goats

    杨改青; 朱河水; 王林枫; 贺翠婷; 张振; 高建伟; 邵其斌; 冯亚强; 孙波

    2011-01-01

    本试验旨在研究氨基酸螯合锌(Zn-AA)在奶山羊体内的消化吸收规律及其在饲粮中的适宜添加水平.试验选取2.5~3.0岁,体重40~45 kg的关中奶山羊母羊6只,安装永久性瘤胃、十二指肠及回肠瘘管,首先从瘤胃灌注40 mg/kg的Zn-AA溶液,分别在灌注后的24、48、72、96、120、144和168 h采集十二指肠食糜、回肠食糜、粪样和血样,测定样品中锌含量,计算锌在小肠和全肠道消化率,检测血清锌水平,确定最佳采样时间.在此基础上,分别灌注0、20、60、80、100和200 mg/kg的Zn-AA溶液,测定不同水平的Zn-AA在小肠和全肠道的消化率及血清锌水平.结果表明,Zn-AA全肠道消化率在48和96 h分别出现吸收高峰,120 h后Zn-AA在小肠、全肠道的消化率和血清锌水平基本平衡并保持稳定;不同时间和水平的Zn-AA在全肠道的消化率均高于小肠,小肠是Zn-AA吸收的主要部位,大肠对Zn-AA也有不同程度地吸收;60 mg/kg时Zn-AA在全肠道消化率和血清中水平均达到最大值.研究得出,成年奶山羊饲粮中Zn-AA的最适宜添加水平为60 mg/kg,小肠是Zn-AA消化的主要部位,大肠对Zn-AA也表现出较强的消化吸收能力.%This trial was conducted to study the digestion and absorption of zinc amino acid chelate (Zn-AA) in intestinal tract of dairy goats and to determine the optimal supplemental level of Zn-AA in the diet. Six Guanzhong daffy goats aged 2. 5 to 3.0 years old with the body weight of 40 to 45 kg were selected and fixed with permanent fistulas in rumen, duodenum and ileum. At the beginning of the trial, 40 mg/kg Zn-AA solution was infused into the rumen, and samples were collected at 24, 48, 96, 120, 144 and 168 h after infusion. Digesta samples from the duodenum and ileum, and feces samples were collected to detect the zinc levels and calculate the digestibility in the small intestine, entire intestine and large intestine. At the same time, blood samples were

  4. Mixed Intramolecular Hydrogen Bonding in Dihydroxythiophene-based Units and Boron and Technetium Chelation

    Three novel potential metal ion chelating units have been synthesized and characterized: 5-hexylcarbamoyl- 3,4-dihydroxythiophene-2-carboxylic acid methyl ester (5), 3-benzyloxy-4-hydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (6), and 3,4-dihydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (7). The crystal structure of 6 was obtained and suggests the presence of three distinct intramolecular hydrogen bonds, namely [Namide-H···O] [O-H···Oamide] and [Namide-H···S]. Boron chelation with 5, 6 and 7 through the use of BF3, B(OH)3 or B(OMe)3 was probed by 1H, 11B, and 13C NMR spectroscopy. Technetium (I) chelation with 5, 6 and 7 was also studied via HPLC elutions using [99mTc(CO)3(OH2)3]+

  5. Targeted cleavage of HIV RRE RNA by Rev-coupled transition metal chelates.

    Joyner, Jeff C; Cowan, J A

    2011-06-29

    A series of compounds that target reactive metal chelates to the HIV-1 Rev response element (RRE) mRNA have been synthesized. Dissociation constants and chemical reactivity toward HIV RRE RNA have been determined and evaluated in terms of reduction potential, coordination unsaturation, and overall charge associated with the metal-chelate-Rev complex. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were linked to a lysine side chain of a Rev-derived peptide by either EDC/NHS or isothiocyanate coupling. The resulting chelate-Rev (EDTA-Rev, DTPA-Rev, NTA-Rev, and DOTA-Rev) conjugates were used to form coordination complexes with Fe(2+), Co(2+), Ni(2+), and Cu(2+) such that the arginine-rich Rev peptide could mediate localization of the metal chelates to the Rev peptide's high-affinity mRNA binding partner, RRE stem loop IIB. Metal complexes of the extended peptides GGH-Rev and KGHK-Rev, which also contain N-terminal peptidic chelators (ATCUN motifs), were studied for comparison. A fluorescence titration assay revealed high-affinity RRE RNA binding by all 22 metal-chelate-Rev species, with K(D) values ranging from ~0.2 to 16 nM, indicating little to no loss of RNA affinity due to the coupling of the metal chelates to the Rev peptide. Dissociation constants for binding at a previously unobserved low-affinity site are also reported. Rates of RNA modification by each metal-chelate-Rev species were determined and varied from ~0.28 to 4.9 nM/min but were optimal for Cu(2+)-NTA-Rev. Metal-chelate reduction potentials were determined and varied from -228 to +1111 mV vs NHE under similar solution conditions, allowing direct comparison of reactivity with redox thermodynamics. Optimal activity was observed when the reduction potential for the metal center was poised between those of the two principal co-reagents for metal-promoted formation of

  6. Chelating agents in pharmacology, toxicology and therapeutics

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63Ni, 109Cd, 203Hg, 144Ce, 95Nb and the excretion of 210Po, 63Ni, 48V, 239Pu, 241Am, 54Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  7. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with 99mTc and evaluate tumor targeting in tumor bearing nude mice model

  8. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil

  9. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  10. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  11. Chelating Tendencies of Bioactive Aminophosphonates

    Kiss, Tamas; Lázár, István; Kafarski, Pawel

    1994-01-01

    The metal-binding abilities of a wide variety of bioactive aminophosphonates, from the simple aminoethanephosphonic acids to the rather large macrocyclic polyaza derivatives, are discussed with special emphasis on a comparison of the analogous carboxylic acid and phosphonic acid systems. Examples are given of the biological importance of metal ion – aminophosphonate interactions in living systems, and also of their actual and potential applicability in medicine.

  12. Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial

    Maria D. Avila; Escolar, Esteban; Lamas, Gervasio A.

    2014-01-01

    Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P = 0.035) 18% re...

  13. New Regeneration process of heavy metals loaded chelating resin

    Menoud, P.; Cavin, L.; Renken, A.

    2000-01-01

    An alternative to the classical acid-base regeneration of chelating resins loaded with heavy metals is investigated. The new process consists in recovering the heavy metals with recyclable soluble complexing agents. The semiclosed reactor includes a fixed bed and a stirred tank. A three-parameter model, which implies a double equilibrium in series, is introduced. When less than 10 % of the metal is still fixed on the resin at the end of the desorption, a simplified form of the model with two ...

  14. Fluorescence enhancement by chelation of Eu3+ and Tb3+ ions in sol-gels

    Chelation of rare-earth (RE) ions is investigated as a means of enhancing the optical properties of RE-doped silica sol-gels. Two chelating agents--2,6-pyridine-dicarboxylic acid (PDC) and 3-pyridinepropionic acid (PPA) and two different synthesis techniques are studied. Eu(PDC) gels exhibit intense 5D0→7F2 fluorescence in the red under UV excitation and long fluorescence lifetimes compared to Eu(PPA) gels and to gels without a chelating agent. This behavior indicates that the PDC molecule remains associated with the Eu after incorporation into the gel. Similar behavior is seen for 5D4→7F5 green fluorescence in Tb(PDC)

  15. Current Use of Chelation in American Health Care

    Wax, Paul M.

    2013-01-01

    The National Center for Health Statistics estimates that more than 100,000 Americans receive chelation each year, although far fewer than 1 % of these cases are managed by medical toxicologists. Unfortunately, fatalities have been reported after inappropriate chelation use. There are currently 11 FDA-approved chelators available by prescription although chelation products may also be obtained through compounding pharmacies and directly over the internet. Promotion of chelation training is pro...

  16. A study of intracellular iron metabolism using pyridoxal isonicotinoyl hydrazone and other synthetic chelating agents

    Rabbit reticulocytes with a high level of non-heme radioiron induced by preincubation with isonicotinic acid hydrazide and transferrin-bound 59Fe, were reincubated with various synthetic chelating agents and the amount of radioiron released from the cells was determined. Some substances, especially derivatives of pyridoxal or 2-hydroxybenzaldehyde and isonicotinic acid hydrazide or benzhydrazide, were found to mobilize significantly iron from 59Fe-labelled reticulocytes. Iron mobilizaiton from reticulocytes by pyridoxal isonicotinoyl hydrazone requires ATP to be produced by cells and is completely blocked by low temperatute (40C). Although the effect of desferrioxamine is also prevented by low temperature, modest iron mobilization due to this chelator seems to occur independently of ATP production in reticulocytes. Pyridoxal isonicotinoyl hydrazone mobilized iron mainly from mitochondria and in part also from ferritin. Although 2,2'-bipyridine seems to enter reticulocyte mitochondria and bind iron there, this chelator is not able to relaease iron either from mitochondria or from the cells. Reticulocytes with a high level of non-heme radioiron are envisaged as a useful system for testing biological effectiveness of various iron chelators. Pyridoxal isonicotinoyl hydrazone was shown to be an effective in vivo chelator since its adminstration to mice decreased 59Fe radioactivity in liver, spleen and kidney. (Auth.)

  17. Improvement of Oxidative and Metabolic Parameters by Cellfood Administration in Patients Affected by Neurodegenerative Diseases on Chelation Treatment

    Alessandro Fulgenzi; Rachele De Giuseppe; Fabrizia Bamonti; Maria Elena Ferrero

    2014-01-01

    Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls)....

  18. Assessing the Impact of EDTA Chelating Effect on some Macro- and Microminerals in Prussian Carp (Carassius Gibelio) Tissues

    Marioara Nicula; Iosif Gergen; Monica Harmanescu; Ionut Banatean-Dunea; Adela Marcu; Eliza Simiz; Tiberiu Polen; Mihai Lunca

    2011-01-01

    Chelators are used in chemical analysis, in medical aplications, as water softeners, as decontamination agents on radioactive surfaces and they are ingredients in many commercial products such as shampoos and food preservatives. Such a synthetic chelator is EDTA (ethylenediaminetetraacetic acid). It is considered one of the tools that promises to control the heavy metal pollution in aquaculture. EDTA attaches itself to heavy metals and carries the metals from the fish body. EDTA can also slow...

  19. Predictors of DMSA chelatable lead, tibial lead, and blood lead in 802 Korean lead workers

    Todd, A; Lee, B; Lee, G.; Ahn, K; Moshier, E; Schwartz, B.

    2001-01-01

    OBJECTIVES—To examine the interrelations among chelatable lead (by dimercaptosuccinic acid, DMSA), tibial lead, and blood lead concentrations in 802 Korean workers with occupational exposure to lead and 135 employed controls with only environmental exposure to lead.
METHODS—This was a cross sectional study wherein tibial lead, DMSA chelatable lead, and blood lead were measured. Linear regression was used to identify predictors of the three lead biomarkers, evaluating the influence of age, job...

  20. Copper Chelation in Alzheimer's Disease Protein

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- β protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- β-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  1. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  2. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001. PMID:26185165

  3. Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents.

    Bala, Rajni; Thukral, Ashwani K

    2011-01-01

    Phytoremediation of Cr(VI) by Spirodela polyrrhiza in binary combinations with low molecular weight organic compounds (LMWOCs) with a reducing or chelating potential, viz., ascorbic acid, citric acid, tartaric acid, oxalic acid, lactic acid, and glycerol was studied in Cr(VI) containing hydroponic media. Significant increase in the relative dry weight of plants with respect to Cr(VI) treated controls was observed with ascorbic acid and glycerol. The uptake of chromium by S. polyrrhiza followed Michaelis-Menten kinetics of active ion uptake. Interaction between Cr and ascorbic acid, oxalic acid, and lactic acid decreased Cr uptake, whereas citric acid, glycerol, and tartaric acid increased it. Supplementation of LMWOCs to Cr(VI) containing media decreased the MDA content of the plants. Multiple regression models revealed that LMWOCs decrease lipid peroxidation independently, as well as that induced by Cr(VI). It was found that superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) activities were increased significantly in plants growing in media containing Cr(VI). The study established that lactic acid, citric acid, ascorbic acid, and glycerol were most effective in increasing the Cr(VI) phytoremediating potential of S. polyrrhiza and LMWOCs with reducing or chelating properties decrease Cr(VI) stress in S. polyrrhiza. PMID:21598777

  4. Trypanotoxic activity of thiosemicarbazone iron chelators.

    Ellis, Samuel; Sexton, Darren W; Steverding, Dietmar

    2015-03-01

    Only a few drugs are available for treating sleeping sickness and nagana disease; parasitic infections caused by protozoans of the genus Trypanosoma in sub-Saharan Africa. There is an urgent need for the development of new medicines for chemotherapy of these devastating diseases. In this study, three newly designed thiosemicarbazone iron chelators, TSC24, Dp44mT and 3-AP, were tested for in vitro activity against bloodstream forms of Trypanosoma brucei and human leukaemia HL-60 cells. In addition to their iron chelating properties, TSC24 and Dp44mT inhibit topoisomerase IIα while 3-AP inactivates ribonucleotide reductase. All three compounds exhibited anti-trypanosomal activity, with minimum inhibitory concentration (MIC) values ranging between 1 and 100 µM and 50% growth inhibition (GI50) values of around 250 nM. Although the compounds did not kill HL-60 cells (MIC values >100 µM), TSC24 and Dp44mT displayed considerable cytotoxicity based on their GI50 values. Iron supplementation partly reversed the trypanotoxic and cytotoxic activity of TSC24 and Dp44mT but not of 3-AP. This finding suggests possible synergy between the iron chelating and topoisomerase IIα inhibiting activity of the compounds. However, further investigation using separate agents, the iron chelator deferoxamine and the topoisomerase II inhibitor epirubicin, did not support any synergy for the interaction of iron chelation and topoisomerase II inhibition. Furthermore, TSC24 was shown to induce DNA degradation in bloodstream forms of T. brucei indicating that the mechanism of trypanotoxic activity of the compound is topoisomerase II independent. In conclusion, the data support further investigation of thiosemicarbazone iron chelators with dual activity as lead compounds for anti-trypanosomal drug development. PMID:25595343

  5. Chelating Properties of Peptides from Red Seaweed Pyropia columbina and Its Effect on Iron Bio-Accessibility.

    Cian, Raúl E; Garzón, Antonela G; Ancona, David Betancur; Guerrero, Luis Chel; Drago, Silvina R

    2016-03-01

    The aim of this work was to evaluate copper-chelating, iron-chelating and anticariogenic activity of peptides obtained by enzymatic hydrolysis of P. columbina protein concentrate and to study the effects of chelating peptides on iron bio-accessibility. Two hydrolyzates were obtained from P. columbina protein concentrate (PC) using two hydrolysis systems: alkaline protease (A) and alkaline protease + Flavourzyme (AF). FPLC gel filtration profile of PC shows a peak having molecular weight (MW) higher than 7000 Da (proteins). A and AF hydrolyzates had peptides with medium and low MW (1013 and 270 Da), respectively. Additionally, AF presented free amino acids with MW around 82 Da and higher content of His and Ser. Peptides from AF showed the highest chelating properties measured as copper-chelating activity (the lowest β-carotene oxidation rate: R o ; 0.7 min(-1)), iron-chelating activity (33 %), and phosphorous and Ca(2+) release inhibition (87 and 81 %, respectively). These properties could indicate antioxidant properties, promotion of iron absorption and anticariogenic activity, respectively. In fact, hydrolyzates promoted iron dialyzability (≈16 %), values being higher than that found for P. columbina seaweed. Chelating peptides from both hydrolyzates can maintain the iron in a soluble and bio-accessible form after gastrointestinal digestion. PMID:26860526

  6. Synthesis, characterization and in vitro anticancer evaluations of two novel derivatives of deferasirox iron chelator.

    Salehi, Samie; Saljooghi, Amir Sh; Shiri, Ali

    2016-06-15

    Iron (Fe) chelation therapy was initially designed to alleviate the toxic effects of excess Fe evident in Fe-overload diseases. However, the novel toxicological properties of some Fe chelator-metal complexes have shifted significant attention to their application in cancer chemotherapy. The present study investigates the new role of deferasirox as an anticancer agent due to its ability to chelate with iron. Because of aminoacids antioxidant effect, deferasirox and its two novel amino acid derivatives have been synthesized through the treatment of deferasirox with DCC as well as glycine or phenylalanine methyl ester. All new compounds have been characterized by elemental analysis, FT-IR NMR and mass spectrometry. Therefore, the cytotoxicity of these compounds was screened for antitumor activity against some cell lines using cisplatin as a comparative standard by MTT assay and Flow cytometry. The impact of iron in the intracellular generation of reactive oxygen species was assessed on HT29 and MDA-MB-231 cells. The potential of the synthesized iron chelators for their efficacy to protect cells against model oxidative injury induced was compared. The reactive oxygen species intracellular fluorescence intensity were measured and the result showed that the reactive oxygen species intensity after iron incubation increased while after chelators incubation the reactive oxygen species intensity were decreased significantly. Besides, the effect of the synthesized compounds on mouse fibroblast cell line (L929) was simultaneously evaluated as control. The pharmacological results showed that deferasirox and its two novel aminoacid derivatives were potent anticancer agents. PMID:27090924

  7. Synthesis characterization and structural investigations on lanthanon(III) chelates of tridentate Schiff bases

    The dissociation constants of O-(N-pyrrole-2-methyl imino) propanoic acid [H2PP] and O-(N-furan-2-chloroimino)ethane thiol [HFT], stability constants and thermodynamic parameters of their chelates with La(II), Ce(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III) and Er(III) have been determined by Calvin-Bjerrum pH-titration techniques as modified by Irving and Rossotti in 30% (v/v) alcohol-water medium (μ=0.01 M, 0.05 M and 0.1 M NaClO4) at 25, 35 and 45degC. Solid Ln(III) chelates were characterized by molecular mass, elemental analysis, magnetic moment, conductance, 1H NMR, electronic and IR spectra. HFT-Ln(III)-chelates show 1:3 metal-ligand stoichiometry whereas H2PP-Ln(III)-chelates show 1:2 stoichiometry. Physico-chemical studies such as magnetic, IR, NMR etc. also support these geometries. HFT and H2PP are respectively monoprotic and biprotic tridentates. In view of the above facts a trigonal tricapped pyramidal and octahedral geometries can be assigned to the HFT-Ln(III) and H2PP-Ln(III) chelates respectively. (author). 15 refs., 4 tabs., 1 fig

  8. Heavy metal induced oxidative stress & its possible reversal by chelation therapy.

    Flora, S J S; Mittal, Megha; Mehta, Ashish

    2008-10-01

    Exposure to heavy metals is a common phenomenon due to their environmental pervasiveness. Metal intoxication particularly neurotoxicity, genotoxicity, or carcinogenicity is widely known. This review summarizes our current understanding about the mechanism by which metalloids or heavy metals (particularly arsenic, lead, cadmium and mercury) induce their toxic effects. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. The toxic manifestations of these metals are caused primarily due to imbalance between pro-oxidant and antioxidant homeostasis which is termed as oxidative stress. Besides these metals have high affinity for thiol groups containing enzymes and proteins, which are responsible for normal cellular defense mechanism. Long term exposure to these metals could lead to apoptosis. Signaling components affected by metals include growth factor receptors, G-proteins, MAP kinases and transcription factors. Chelation therapy with chelating agents like calcium disodium ethylenediamine tetra acetic acid (CaNa(2)EDTA), British Anti Lewisite (BAL), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), meso 2,3-dimercaptosuccinic acid (DMSA) etc., is considered to be the best known treatment against metal poisoning. Despite many years of research we are still far away from effective treatment against toxicity caused due to exposure to heavy metals/metalloids. The treatment with these chelating agents is compromised with number of serious side-effects. Studies show that supplementation of antioxidants along-with a chelating agent prove to be a better treatment regimen than monotherapy with chelating agents. This review attempts a comprehensive account of recent developments in the research on heavy metal poisoning particularly the role of oxidative stress/free radicals in the toxic manifestation, an update about the recent strategies for the treatment with chelating agents and a

  9. Recent developments centered on orally active iron chelators

    Robert Hider

    2014-09-01

    Full Text Available Over the past twenty years there has been a growing interest in the orally active iron chelators, deferiprone and deferasirox, both have been extensively studied. The ability of these compounds to mobilize iron from the heart and endocrine tissue has presented the clinician with some advantages over desferrioxamine, the first therapeutic iron chelator. Other orally active iron chelators are currently under development. The critical features necessary for the design of therapeutically useful orally active iron chelators are presented in this review, together with recent studies devoted to the design of such chelators. This newly emerging range of iron chelators will enable clinicians to apply iron chelation methodology to other disease states and to begin to design personalized chelation regimes.

  10. Development of an upconverting chelate assay

    Xiao, Xudong; Haushalter, Jeanne P.; Kotz, Kenneth T.; Faris, Gregory W.

    2005-04-01

    We report progress on performing a cell-based assay for the detection of EGFR on cell surfaces by using upconverting chelates. An upconversion microscope has been developed for performing assays and testing optical response. A431 cells are labeled with europium DOTA and imaged using this upconverting microscope.

  11. Questions and Answers on Unapproved Chelation Products

    ... it Email Print The U.S. Food and Drug Administration (FDA) advises consumers to be wary of so-called “chelation” products that are marketed over-the-counter (OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to ...

  12. Analysis and identification of chelators and degradation products in radioactive mixed hazardous wastes by derivatization GC/MS

    The characterization of radioactive mixed hazardous waste tanks has received increased interest because of the need to understand the chemistry of the waste prior to disposal or remediation. Organic chelators such as ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and their degradation products are present in many of the waste tanks at Hanford. In the case of Hanford waste tank 101-SY, the thermal and radiolytical degradation of chelators have been linked to the production of hydrogen gas. Analysis of chelators is not amenable to gas chromatography (GC) without prior derivatization. Previously, the authors have reported on derivatization of chelator standards using BF3/methanol, diazomethane, silylation, and butyl esterification. The BF3/methanol derivatization method showed the most promise to be applied to radioactive mixed waste. In this study, the authors applied the BF3/methanol derivatization GC/MS method to an actual waste sample from waste tank 101-SY. Electron impact and chemical ionization were utilized to identify the components in this methyl ester chelator fraction. In addition, high resolution mass spectrometry was used to obtain accurate mass measurements of identical components found in a synthetic chelator sample (non-radioactive) made to simulate tank 101-SY

  13. Ethylenediaminetetraacetic acid in endodontics

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for...

  14. Overview of chelation recommendations for thalassaemia and sickle cell disease

    Banu Kaya

    2014-01-01

    The long term consequences of iron toxicity are mostly reversible with effective iron chelation therapy. Recommendations for use of chelation therapy in transfusion dependent thalassaemia (TDT), sickle cell disease (SCD) and non transfusion dependent thalassaemia (NTDT) continue to evolve as our knowledge and clinical experience increases. Improved chelation options including drug combinations and a better understanding of condition specific factors may help to improve efficiency of chelation...

  15. Overview of chelation recommendations for thalassaemia and sickle cell disease

    Banu Kaya

    2014-12-01

    Full Text Available The long term consequences of iron toxicity are mostly reversible with effective iron chelation therapy. Recommendations for use of chelation therapy in transfusion dependent thalassaemia (TDT, sickle cell disease (SCD and non transfusion dependent thalassaemia (NTDT continue to evolve as our knowledge and clinical experience increases. Improved chelation options including drug combinations and a better understanding of condition specific factors may help to improve efficiency of chelation regimens and meet the needs of patients more effectively.

  16. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations. PMID:25985711

  17. COMPARATIVE STUDY OF CHELATION VALUE OF SEVENTEEN PERCENT SELF DEVELOPED AND COMMERCIALLY AVAILABLE ROOT CANAL LUBRICANTS

    Ingale Satish Dinkarrao; Kankariya Rajendra

    2013-01-01

    The main objective of this study is to compare chelation values of 17% self developed & commercially available root canal Lubricants or dental chelating gels as well as to see whether their performance depends on the chelation value or not. The Chelating agent bounds Ca2+ ions of the smear layer & the extent of chelate formation between chelating agent and metal ion is nothing but Chelation Value. Sodium carbonate indicator method is used for determinations of chelation value. Commercially av...

  18. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states. PMID:23798147

  19. Economically dissolving barium sulfate scale with a chelating agent

    Richardson, E.A.; Scheuerman, R.E.

    1977-06-21

    A composition is described for dissolving a barium sulfate scale from a subterranean or other relatively remote location into which fluid can be flowed. Fluid is flow-flowed into the remote location so that a stream of fluid contacts and flows along the surface of the scale. The composition and flow rate of the fluid are adjusted so that (1) the scale is contacted by a stream of aqueous solution in which each portion contains enough dissolved aminopolyacetic acid salt chelating agent to dissolve barium sulfate, and (2) substantially all upstream portions of the scale are contacted by a succession of portions of the aqueous liquid which are substantially unsaturated with respect to dissolved barium-chelant complex. (5 claims)

  20. f-Element Ion Chelation in Highly Basic Media - Final Report

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  1. f-Element Ion Chelation in Highly Basic Media - Final Report

    Paine, R.T.

    2000-12-12

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  2. Pentaarylcyclopentadiene und chirale Ruthenium-Chelat-Komplexe

    Kanthak, Matthias

    2010-01-01

    Die Synthese von mono-ortho-funktionalisierten Pentaphenylcyclopentadienen gelang durch eine Abwandlung der klassischen Tetracyclon-Route. Durch die Umsetzung der funktionalisierten Cyclopentadiene mit Ru3(CO)12 als Metallquelle konnten entsprechende Ruthenium-Komplexe erhalten werden. Die geeignete Wahl der Substituenten an der Phenylgruppe erlaubte die Bildung von Chelat-Komplexen mit chirotopem Metallzentrum. Enantiomerenreine Oxazolin-Seitenarme führten zu diastereomerenreinen...

  3. Federal Regulation of Unapproved Chelation Products

    Lee, Charles E.

    2013-01-01

    Chelation products can be helpful in the treatment of metal poisoning. However, many unapproved products with unproven effectiveness and safety are marketed to consumers, frequently via the internet. This paper describes the primary responsibility of the Health Fraud and Consumer Outreach Branch of the United States Food and Drug Administration to identify and address health fraud products. Efforts to prevent direct and indirect hazards to the population’s health through regulatory actions ar...

  4. Removal of iron by chelation with molecularly imprinted supermacroporous cryogel.

    Çimen, Duygu; Göktürk, Ilgım; Yılmaz, Fatma

    2016-06-01

    Iron chelation therapy can be used for the selective removal of Fe(3+) ions from spiked human plasma by ion imprinting. N-Methacryloyl-(L)-glutamic acid (MAGA) was chosen as the chelating monomer. In the first step, MAGA was complexed with the Fe(3+) ions to prepare the precomplex, and then the ion-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid) [PHEMAGA-Fe(3+)] cryogel column was prepared by cryo-polymerization under a semi-frozen temperature of - 12°C for 24 h. Subsequently, the template, of Fe(3+) ions was removed from the matrix by using 0.1 M EDTA solution. The values for the specific surface area of the imprinted PHEMAGA-Fe(3+) and non-imprinted PHEMAGA cryogel were 45.74 and 7.52 m(2)/g respectively, with a pore size in the range of 50-200 μm in diameter. The maximum Fe(3+) adsorption capacity was 19.8 μmol Fe(3+)/g cryogel from aqueous solutions and 12.28 μmol Fe(3+)/g cryogel from spiked human plasma. The relative selectivity coefficients of ion-imprinted cryogel for Fe(3+)/Ni(2+) and Fe(3+)/Cd(2+) were 1.6 and 4.2-fold greater than the non-imprinted matrix, respectively. It means that the PHEMAGA-Fe(3+) cryogel possesses high selectivity to Fe(3+) ions, and could be used many times without significantly decreasing the adsorption capacity. PMID:25727711

  5. Conjugates of monoclonal antibodies and chelating polymers

    The primary purpose of protein modification with chelating polymers is to prepare monoclonal antibodies labeled with heavy metal isotopes (alpha-, beta-, and gamma-emitting metal and paramagnetic ions for NMR tomography). Conventional binding of metals to proteins via chelating agents directly coupled to proteins does not permit binding of a large number of metal atoms per protein molecule without causing alterations in the specific properties of the protein molecules. On the other hand, metal ion binding to proteins via intermediate chelating polymers should permit binding of several dozens of the metal atoms per protein molecule without affect the specific properties adversely. Moreover, the biodistribution and clearance rates can be regulated by varying the polymer properties. Modified antibodies may be used successfully in nuclear and NMR diagnostic applications and in radiotherapy. Possible applications of this approach shall be demonstrated with monoclonal antibody R11D10 for visualization of acute myocardial infarction. Use of this modification with other monoclonal antibodies is also discussed. The chemistry of protein modification with these polymers is presented

  6. Decorporation of metal ions by chelating agents

    Simple model designs to simulate the effect of therapeutical chelating agents on the behaviour of metals in mammal organisms with and without excretion have been derived and analytical solutions given for the corresponding differential equations. The possibilities of these models in the short-term description of plasma kinetics of various metals, the competition of the therapeutical ligands with proteins for the metal and of the metabolism of chelating agents were tested and the properties applying extreme conceivable parameters were analyzed. The simple models were successsively expanded in logical sequence, so that it was possible to qualitatively well describe over a long period of time, the metallic kinetics in plasma, organs and urine, the retention of the ligands and their effect on the metal excretion. Two suggestions were given to describe the so-called after-effect, an increased excretion of the metal at times when the ligand is almost completely excreted and their different behaviour after injecting the metal chelate is given. Calculations on the therapy with several ligand data as well as on dose fractionation are described resting on the ratios in the plutonium-239 chosen model parameters and the determining mechanisms analyzed. (orig./MG)

  7. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  8. Comparative Assessment of Complex Stabilities of Radiocopper Chelating Agents by a Combination of Complex Challenge and in vivo Experiments.

    Litau, Shanna; Seibold, Uwe; Vall-Sagarra, Alicia; Fricker, Gert; Wängler, Björn; Wängler, Carmen

    2015-07-01

    For (64) Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators--NODA-GA ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid), CB-TE2A (2,2'-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl)diacetic acid), or CB-TE1A-GA (1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl-8-acetic acid-1-glutaric acid)--forms the most stable complexes resulting in PET images of highest quality. We determined the (64) Cu complex stabilities for these three chelators by a combination of complex challenge and an in vivo approach. For this purpose, bioconjugates of the chelating agents with the gastrin-releasing peptide receptor (GRPR)-affine peptide PESIN and an integrin αv β3 -affine c(RGDfC) tetramer were synthesized and radiolabeled with (64) Cu in excellent yields and specific activities. The (64) Cu-labeled biomolecules were evaluated for their complex stabilities in vitro by conducting a challenge experiment with the respective other chelators as challengers. The in vivo stabilities of the complexes were also determined, showing the highest stability for the (64) Cu-CB-TE1A-GA complex in both experimental setups. Therefore, CB-TE1A-GA is the most appropriate chelating agent for *Cu-labeled radiotracers and in vivo imaging applications. PMID:26011290

  9. The Mechanism of Cumene Peroxidation Catalyzed by Cobalt(Ⅱ)-Chelated Copolymer

    Cheng-Chien Wang; Hui-Chun Chen; Chuh-Yean Chen; Chuh-Yung Chen

    2005-01-01

    @@ 1Introduction The functionalised polymers, especially for chelating polymer, have been employed to considerable effects in organic synthesis for several decades. The use of polymer groups as ligands permits the ligand surroundings to be varied and regulation of the catalytic properties of the complexes because of the flexibility of the polymer chains, their ability to adopt various conformations, and the possibility of creating various spatial distributions of metal centers immobilized on the polymer chains[1,2]. In our recently studies[3-5], the chelating copolymer with imino-diacetic acid chelating group in the polymer side chain was manufactured, and which can increase effectively amount of the chelating group within the polymer. Meanwhile, the high catalysis performance in organic synthesis had also been proved via benzaldehyde and cumene peroxidation. For cumene peroxidation,it is hardly to find such a simple catalyst with high conversion and selectivity due to hydroperoxide decomposition by a radical mechanism. The cumene peroxidation by catalyst system and its reaction mechanism as well as the kinetic study are popularly investigated object for many researchers[6-9]. However, the reaction mechanism still does not clear owing to the by-products will be produced following the different catalysts used.

  10. Isolation and Utilization of Corn Cobs Hemisellulose as Chelating Agent for Lead Ions

    Corn cobs is an agricultural byproduct containing polysaccharide composed of cellulose, hemicelluloses and lignin. Hemicelluloses has a hydroxyl and carbonyl functional groups which can be used as chelating agent for metal ions. The purpose of this study was to isolate and evaluate corncobs hemicelluloses as a chelating agent toward lead ion. Graphite furnace spectrophotometry at 283.3 nm was used to determine the residual lead ion in solution. The research's result showed that the highest yield of hemicelluloses (12.04 %) was obtained from delignication with 0,03 M NaOH in 60 % ethanol and 3 % H2O2, hemicelluloses isolation with 500 ml of 0.2 M NaOH, and precipitation with 1:4 ratio of 10 % acetic acid in 95 % ethanol. The 300 mg corn cobs hemicelluloses has chelating effect for 40 mg lead solution at (39.52±0.1350) mg or 98.80 %, that the corn cobs hemicelluloses can be used as a chelating agent for lead. (author)

  11. CoMo/ZrO2 Hydrodesulfurization Catalysts Prepared by Chelating Agent Assisted Spreading

    Kaluža, L. (Luděk); Gulková, D. (Daniela); Vít, Z. (Zdeněk); Zdražil, M. (Miroslav)

    2012-01-01

    The novel Mo/ZrO2 and CoMo/ZrO2 catalysts were prepared by impregnation of the monoclinic ZrO2 by the chelating agent nitrilotriacetic acid (NTA) assisted spreading of MoO3 with CoCO3 xH2O and compared with samples prepared conventionally. The application of NTA during the catalysts preparation systematically increased the activity in benzothiophene HDS by the factor 1.2–1.7.

  12. High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties

    The mechanisms and effects of three typical chelating agents, namely glucose, citric acid and sucrose on the sol-gel synthesis process, electrochemical degradation and structural evolution of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 (LLMO) materials are systematically compared for the first time. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis indicate that the sample synthesized from sucrose owns well structure, homogenous distribution, low Ni3+ concentration and good surface structural stability during cycling, respectively. Electrochemical tests further prove that the LLMO material obtained from sucrose maintains 258.4 mAh g−1 with 94.8% capacity retention after 100 cycles at 0.2 C. The superior electrochemical performance can be ascribed to the exceptional complexing mechanism of sucrose, compared to those of the glucose and citric acid. Namely, one mole sucrose can be hydrolyzed into two different monosaccharides and further chelates three M (Li, Ni, Co and Mn) ions to form a more uniform ion-chelated matrix during sol-gel process. This discovery is an important step towards understanding the selection criterion of chelating agents for sol-gel method, that chelating agent with excellent complexing capability is beneficial to the distribution, structural stability and electrochemical properties of advanced lithium-rich layered materials

  13. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    Taki, Tomohiro [Japan Nuclear Cycle Development Inst., Kamisaibara, Okayama (Japan). Ningyo Toge Environmental Engineering Center

    2000-12-01

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  14. Separation and recovery of uranium ore by chlorinating, chelate resin and molten salt treatment

    Three fundamental researches of separation and recovery of uranium from uranium ore are reported in this paper. Three methods used the chloride pyrometallurgy, sodium containing molten salts and chelate resin. When uranium ore is mixed with activated carbon and reacted for one hour under the mixed gas of chlorine and oxygen at 950 C, more than 90% uranium volatilized and vaporization of aluminum, silicone and phosphorus were controlled. The best activated carbon was brown coal because it was able to control the large range of oxygen concentration. By blowing oxygen into the molten sodium hydroxide, the elution rate of uranium attained to about 95% and a few percent of uranium was remained in the residue. On the uranium ore of unconformity-related uranium deposits, a separation method of uranium, molybdenum, nickel and phosphorus from the sulfuric acid elusion solution with U, Ni, As, Mo, Fe and Al was developed. Methylene phosphonic acid type chelate resin (RCSP) adsorbed Mo and U, and then 100 % Mo was eluted by sodium acetate solution and about 100% U by sodium carbonate solution. Ni and As in the passing solution were recovered by imino-diacetic acid type chelate resin and iron hydroxide, respectively. (S.Y.)

  15. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  16. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus.

    Wee, Josephine; Day, Devin M; Linz, John E

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N',N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  17. REGIONAL SIDEROSIS: A NEW CHALLENGE FOR IRON CHELATION THERAPY

    ZviIoavCabantchik; ArnoldMunnich; MoussaB.Youdim; DavidDevos

    2013-01-01

    The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g. sideroblastic anemias, neuro- and cardio-siderosi...

  18. Modern problems of chelate water conditions for TPPs and NPPs

    Review of investigations devoted to the application of chelate water conditions for TPPs and NPPs is given. Chelates (mainly EDTA and its salts) are used for increasing corrosion resistance of steels, operation and pre-start-up chemical purifications, correction of water conditions and coolant circuit purification under operation (without shutdown). It is stressed that under certain conditions the optimal continuous chelate water conditions are possible under water conditions are possible under which deposits are not produced

  19. Trypanotoxic activity of thiosemicarbazone iron chelators

    Ellis, Samuel; Sexton, Darren; Steverding, Dietmar

    2015-01-01

    Only a few drugs are available for treating sleeping sickness and nagana disease; parasitic infections caused by protozoans of the genus Trypanosoma in sub-Saharan Africa. There is an urgent need for the development of new medicines for chemotherapy of these devastating diseases. In this study, three newly designed thiosemicarbazone iron chelators, TSC24, Dp44mT and 3-AP, were tested for in vitro activity against bloodstream forms of T. brucei and human leukaemia HL-60 cells. In addition to t...

  20. Novel Terbium Chelate Doped Fluorescent Silica Nanoparticles

    Ning Qiaoyu; Meng Jianxin; Wang Haiming; Liu Yingliang; Man Shiqing

    2006-01-01

    Novel terbium chelate doped silica fluorescent nanoparticles were prepared and characterized.The preparation was carried out in water-in-oil (W/O) microemulsion containing monomer precursor (pAB-DTPAA-APTEOS), Triton X-100, n-hexanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate and 3-aminopropyl-triethyloxysilane.The nanoparticles are spherical and uniform in size, about 30 nm in diameter, strongly fluorescent, and highly stable.The amino groups directly introduced to the surface of the nanoparticles using APTEOS during preparation made the surface modification and bioconjugation of the nanoparticles easier.The nanoparticles are expected as an efficient time-resolved luminescence biological label.

  1. Towards the Rational Design of MRI Contrast Agents: δ-Substitution of Lanthanide(III) NB-DOTA-Tetraamide Chelates Influences but Does Not Control Coordination Geometry**

    Carney, Christiane E.; Tran, Anh D.; Jing WANG; Schabel, Matthias C.; Sherry, A. Dean; Woods, Mark

    2011-01-01

    LnDOTA-tetraamide chelates (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) have received considerable recent attention as a result of their potential to act as PARACEST contrast agents for magnetic resonance imaging (MRI). Although PARACEST agents afford several advantages over conventional contrast agents they suffer from substantially higher detection limits; thus, improving the effectiveness of LnDOTA-tetraamide chelates is an important goal. In this study we investigate th...

  2. Composition and stability of Nb(V), Zr(IV), Y(III) and La(III) chelates with 7-nitroso-8-quinolinone-5-sulphonate

    New Nb(V), Zr(IV), Y(III) and La(III) chelates obtained from disodium salt of 7-nitroso-8-quinolinole-5-sulphonic acid were studied using spectrophotometric, conductimetric and potentiometric methods. The solid chelates were synthesized and their ir spectra and elemental analysis were discussed. The ligand is bonded to the metal ion through the oxygens of nitroso and hydroxy groups. The apparent stability constants of the complexes formed in solution were also determined spectrophotometrically and potentiometrically

  3. Plutonium-237: comparative uptake in chelated and non-chelated form by channel catfish (Ictalurus punctatus)

    Chelation can either enhance or reduce the uptake of ingested plutonium relative to PuOH (monomer) in channel catfish. Reduced uptake of 237Pu-fulvate is due either to the molecular weight of the complex or its stability in metabolic systems. Increased uptake of 237Pu-citrate is attributable to instability of the complex in metabolic systems. (author)

  4. Metal regeneration of iron chelates in nitric oxide scrubbing

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  5. Mild formation of cyclic carbonates using Zn(II) complexes based on N2S2-chelating ligands

    D. Anselmo; V. Bocokic; A. Decortes; E.C. Escudero-Adan; J. Benet-Buchholz; J.N.H. Reek; A.W. Kleij

    2012-01-01

    We have prepared a series of Zn(II) complexes (1-3) based on a versatile N2S2-chelating ligand abbreviated as btsc [btsc = bis-(thiosemicarbazonato)] derived from simple and accessible building blocks. These complexes comprise a Lewis acidic Zn(II) center useful for substrate activation, and we have

  6. COMPARATIVE STUDY OF CHELATION VALUE OF SEVENTEEN PERCENT SELF DEVELOPED AND COMMERCIALLY AVAILABLE ROOT CANAL LUBRICANTS

    Ingale Satish Dinkarrao

    2013-06-01

    Full Text Available The main objective of this study is to compare chelation values of 17% self developed & commercially available root canal Lubricants or dental chelating gels as well as to see whether their performance depends on the chelation value or not. The Chelating agent bounds Ca2+ ions of the smear layer & the extent of chelate formation between chelating agent and metal ion is nothing but Chelation Value. Sodium carbonate indicator method is used for determinations of chelation value. Commercially available gel incorporated in this study was File Rite which has little bit higher chelation value. Self developed chelating gel or root canal lubricants have comparatively lower chelation value. Root canal lubricants having higher chelation value should perform better in shaping & cleaning of root canal better. However because of slight difference in chelation value of self developed & commercially available gel, no significant difference was found out as root canal lubricants, when applied in root canal for 5 minutes.

  7. Decorporation of inhaled actinides by chelation therapy

    This article describes recent work in NRPB laboratories that has identified some of the factors influencing the behaviour of plutonium, americium and curium compounds in the body after inhalation, together with a number of experimental approaches that are being developed to optimise their treatment with DTPA. It is concluded that the most effective treatment has yet to be developed, but progress must depend on a better understanding of the factors governing the transport of actinides in the body. It cannot be assumed that because the inhaled material is readily translocated to blood, that treatment regimens with Ca-DTPA based solely on previous understanding of the metabolic fate of soluble actinide complexes will be successful. In fact, depending on the nature of the material involved in the accident, inhalation alone or combined with prolonged infusion of DTPA may be more effective than the periodic intravenous injections of the chelating agent alone. For poorly transportable materials such as insoluble plutonium-239 dioxide, chelation treatment remains essentially ineffective. (U.K.)

  8. Chemical treatment of chelated metal finishing wastes.

    McFarland, Michael J; Glarborg, Christen; Ross, Mark A

    2012-12-01

    This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

  9. Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.

    Gloria Miller

    2008-12-01

    Full Text Available Lead (Pb, depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA, ethylene glycol tetraacetic acid (EGTA, or acetic acid (HAc can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed (Sesbania exaltata Raf.. Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio

  10. Molecular Docking Assessment of Efficacy of Different Clinically Used Arsenic Chelator Drugs

    Durjoy Majumder

    2013-01-01

    Full Text Available Arsenic contamination of ground water has become a global problem affecting specially, south-east Asian countries like Bangladesh and eastern parts of India. It also affects South America and some parts of the US. Different organs of the physiological system are affected due to contamination of inorganic arsenic in water. Animal studies with different chelators are not very conclusive as far as the multi/differential organ effect(s of arsenic is concerned. Our docking study establishes the molecular rationale of blood test for early detection of arsenic toxicity; as arsenic has a high affinity to albumin, a plasma protein and actin, a structural protein of all cells including Red Blood Cells. This study also shows that there is a little possibility of male reproductive organs toxicity by different forms of inorganic arsenic; however, female reproductive system is very much susceptible to sodium-arsenite. Through comparative analysis regarding the chelating effectiveness among the available arsenic chelator drugs, meso-2,3 dimercaptosuccinic acid (DMSA and in some cases lipoic acid is the most preferred choice of drug for removing of arsenic deposits. This computational method actually reinforces the clinical finding regarding DMSA as the most preferred drug in removal of arsenic deposits from majority of the human tissues.

  11. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies

    In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized α-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the 67Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.

  12. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies

    Fontes, Andre [Centro de Quimica, Campus de Gualtar, Universidade do Minho, 4710-057, Braga (Portugal); Prata, M. Isabel M. [IBILI, Faculdade de Medicina, Universidade de Coimbra, 3548, Coimbra (Portugal); Geraldes, Carlos F.G.C. [Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3001-401, Coimbra (Portugal); Centro de Neurociencias e Biologia Celular, Universidade de Coimbra, 3001-401, Coimbra (Portugal); Andre, Joao P., E-mail: jandre@quimica.uminho.p [Centro de Quimica, Campus de Gualtar, Universidade do Minho, 4710-057, Braga (Portugal)

    2011-04-15

    In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized {alpha}-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the {sup 67}Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.

  13. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  14. Macrocyclic Chelator Assembled RGD Multimers for Tumor Targeting

    Zhang, Xiaofen; Liu, Hongguang; Miao, Zheng; Kimura, Richard; Fan, Feiyue; Cheng, Zhen

    2011-01-01

    Macrocyclic chelators have been extensively used for complexation of metal ions. A widely used chelator, DOTA, has been explored as a molecular platform to assemble multiple bioactive peptides in this paper. The multivalent DOTA-peptide bioconjugates demonstrate promising tumor targeting ability.

  15. Inapplicability of high pressure spray injection for chelate administration

    A high-pressure spray injector was tested for use in injecting chelating agents around radionuclides in wounds. It was difficult to employ because of the force required for proper injection, and it did not improve the effectiveness of the injected chelate in removing intramuscularly injected 238Pu. (U.S.)

  16. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysi

  17. Monitoring the effects of chelating agents and electrical fields on active forms of Pb and Zn in contaminated soil.

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2013-11-01

    The application of electrical fields and chelating agents is an innovative hybrid technology used for the decontamination of soil polluted by heavy metals. The effects of four center-oriented electrical fields and chelating agents on active fractions of lead and zinc were investigated in this pot experiment. Ethylenediaminetetraacetic acid (EDTA) as a synthetic chelator and cow manure extract (CME) and poultry manure extract (PME) as natural chelators were applied to the pots (2 g kg(-1)) 30 days after the first irrigation. Two weeks later, four center-oriented electrical fields were applied in each pot (in three levels of 0, 10, and 30 V) for 1 h each day for 14 days. The soil near the cathode and anodes was collected and analyzed as cathodic and anodic soil, respectively. Results indicated that the soluble-exchangeable fraction of lead and zinc were decreased in the cathodic soil, while the carbonate-bound fractions were increased. In the anodic soil, however, the opposite result was observed. EDTA enhanced the soluble-exchangeable form of the metals in both anodic and cathodic soils. Furthermore, the amounts of carbonate-bound heavy metals were increased by the application of CME in both soils. The organic-bound fraction of the metals was increased by the application of natural chelators, while electrical fields had no significant impacts on this fraction. PMID:23685981

  18. Antioxidant and Chelating Activity of Nontoxic Jatropha curcas L. Protein Hydrolysates Produced by In Vitro Digestion Using Pepsin and Pancreatin

    Santiago Gallegos Tintoré

    2015-01-01

    Full Text Available The antioxidant and metal chelating activities in J. curcas protein hydrolysates have been determined. The hydrolysates were produced by treatment of a nontoxic genotype with the digestive enzymes pepsin and pancreatin and then were characterized by fast protein liquid chromatography and reverse phase chromatography. Peptidic fractions with higher radical scavenging activity were analysed by matrix-assisted laser desorption/ionization mass spectrometry. The antioxidant activity was determined by measuring inhibition of the oxidative degradation of β-carotene and by measuring the reactive oxygen species (ROS in Caco-2 cell cultures. Cu2+ and Fe2+ chelating activities were also determined. The hydrolysates inhibited the degradation of β-carotene and the formation of ROS in Caco-2 cells. The lower molecular weight peptidic fractions from FPLC had stronger antioxidant activity in cell cultures compared with the hydrolysates, which correlated with a higher content in antioxidant and chelating amino acids. These fractions were characterized by a large presence of peptides with different molecular masses. The hydrolysates exhibited both Cu2+ and Fe2+ chelating activity. It was concluded that J. curcas is a good source of antioxidant and metal chelating peptides, which may have a positive impact on the economic value of this crop, as a potential source of food functional components.

  19. Carboxyethylester-polyrotaxanes as a new calcium chelating polymer: synthesis, calcium binding and mechanism of trypsin inhibition.

    Ooya, Tooru; Eguchi, Masaru; Ozaki, Atsushi; Yui, Nobuhiko

    2002-08-21

    A carboxyethylester-polyrotaxane was synthesized as a novel calcium chelating polymer in the field of oral drug delivery and characterized in terms of mechanism of trypsin inhibition. Here, carboxyethylester (CEE) groups are introduced to all the primary hydroxyl groups in alpha-cyclodextrins (alpha-CDs), which are threaded onto a poly(ethylene glycol) chain capped with bulky end-groups (polyrotaxane). The solubility of the CEE-polyrotaxane in physiological conditions increased with pH, indicating ionization-related solubility similar to conventional polyacrylates. The ability of calcium (Ca2+) chelation was found to increase in the order of poly(acrylic acid) (PAA)>CEE-polyrotaxanez.Gt;CEE-alpha-CD, suggesting that the increased density of carboxyl groups enhances the Ca2+ chelating ability. The activity of trypsin was inhibited by these compounds in the same order of the calcium chelation. However, the inhibitory effect of CEE-polyrotaxane was reduced by adding excess Ca2+ without precipitation that was observed in the presence of PAA. Such the reduced inhibition and precipitation by CEE-alpha-CD was not observed. Therefore, the inhibitory effect of CEE-polyrotaxane is due to Ca2+ chelation from trypsin without non-specific interaction. PMID:12176224

  20. The Metal Chelators, Trientine and Citrate, Inhibit the Development of Cardiac Pathology in the Zucker Diabetic Rat

    John W. Baynes

    2009-01-01

    Full Text Available Purpose. The objective of this study was to determine the efficacy of dietary supplementation with the metal chelators, trientine or citric acid, in preventing the development of cardiomyopathy in the Zucker diabetic rat. Hypothesis. We hypothesized that dietary chelators would attenuate metal-catalyzed oxidative stress and damage in tissues and protect against pathological changes in ventricular structure and function in type II diabetes. Methods. Animals (10 weeks old included lean control (LC, fa/+, untreated Zucker diabetic fatty (ZDF, fa/fa, and ZDF rats treated with either trientine (triethylenetetramine or citrate at 20 mg/d in drinking water, starting when rats were frankly diabetic. Cardiac functional assessment was determined using a Millar pressure/volume catheter placed in the left ventricle at 32 weeks of age. Results. End diastolic volume for the ZDF animals increased by 36% indicating LV dilatation (P<.05 and was accompanied by a 30% increase in the end diastolic pressure (P≤.05. Both trientine and citric acid prevented the increases in EDV and EDP (P<.05. Ejection fraction and myocardial relaxation were also significantly improved with chelator treatment. Conclusion. Dietary supplementation with trientine and citric acid significantly prevented structural and functional changes in the diabetic heart, supporting the merits of mild chelators for prevention of cardiovascular disease in diabetes.

  1. The Ca(2+)-EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC).

    Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel

    2016-07-01

    A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. PMID:27154686

  2. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    R. L. T. Andrade; P.S.A. Moreira; R. Arruda; F. J. Lourenço; C. Palhari, F. F. Faria, V. B. Arevalo; Faria, F. F.; V. B. Arevalo

    2015-01-01

    The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65%) with hydrogen peroxide (35%) and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immedi...

  3. Phytoextraction of Cu, Zn, and Pb Enhanced by Chelators with Vetiver (Vetiveria zizanioides): Hydroponic and Pot Experiments

    Chen, K. F.; Yeh, T.Y; Lin, C. F.

    2012-01-01

    Phytoextraction is a green remediation technology for clean-up contaminated soils. The effect of chelator application including EDTA, EDDS, and citric acid on phytoextraction of Cu, Zn, and Pb into high biomass vetiver (Vetiveria zizaniodides) was investigated in the hydroponic experiment and the pot experiment. In the hydroponic test, EDTA induced the most significant toxic symptom on vetiver compared to EDDS and citric acid. Obvious biofilm was attached in the rhizosphere of vetiver with th...

  4. New chelation strategies for the uranyl ion

    Traditional approaches to the design of metal-ion-specific complexing agents have relied to a great extent on the creation of a ligand cavity of the appropriate size and coordination number to accommodate the targeted metal ion. Oxo-metal ions, such as uranyl, cannot be dealt with as spherically symmetric charged atoms and thus present both a special challenge and offer a unique advantage for specific chelation in solution. To maximize recognition of the anisotropic UO22+ ion, new tripodal hexadentate ligands have been prepared providing three carboxyl moieties each to act as a bidentate donor group. The novel ligand design concept, ligand syntheses, and thermodynamic results related to the uranyl complex characterization are presented

  5. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents.

    Lou, L Q; Ye, Z H; Wong, M H

    2007-01-01

    Greenhouse experiments were conducted to study the effects of chelating agents on the growth and metal accumulation of Chinese brake fern (Pteris vittata L.), vetiver (Vetiveria zizanioides L.), and rostrate sesbania (Sesbania rostrata L.) in soil contaminated with arsenic (As), Cu, Pb, and Zn. Among the five chelating agents used [ethylenediaminetriacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), oxalic acid (OA), and phytic acid (PA)], OA was the best to mobilize As, EDTA to mobilize Cu and Pb, and HEDTA to mobilize Zn from soil, respectively. The biomass of vetiver was the highest, followed by rostrate sesbania. All chelating agents inhibited the growth of Chinese brake fern and rostrate sesbania, but HEDTA significantly increased the aboveground biomass of vetiver. Dry weights of both Chinese brake fern and rostrate sesbania decreased with increasing EDTA concentrations amended in the soil, especially in treatments with high EDTA concentrations. EDTA and HEDTA enhanced Cu, Zn, and Pb, but lowered As accumulation in all three plant species, except for As in vetiver, while OA significantly enhanced As accumulation in the aboveground part of vetiver. Concentrations of Cu, Zn, and Pb in the aboveground parts of plants increased significantly with the increase of EDTA concentrations and treatment time. In addition to As, Chinese brake fern also accumulated the highest Cu, Pb, and Zn in its aboveground parts among the three plant species grown in metal-contaminated soil with EDTA/HEDTA treatments. This species, therefore, can be used to simultaneously clean up As, Cu, Pb, and Zn from contaminated soils with the aid of EDTA or HEDTA. PMID:18246709

  6. Nature of impurities in fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+) chelates.

    Alvarez-Fernández, Ana; Cremonini, Mauro A; Sierra, Miguel A; Placucci, Giuseppe; Lucena, Juan J

    2002-01-16

    Iron chelates derived from ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA), ethylenediaminedi(o-hydroxy-p-methylphenylacetic) acid (EDDHMA), ethylenediaminedi(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA), and ethylenediaminedi(5-carboxy-2-hydroxyphenylacetic) acid (EDDCHA) are remarkably efficient in correcting iron chlorosis in plants growing in alkaline soils. This work reports the determination of impurities in commercial samples of fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+). The active components (EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+)) were separated easily from other compounds present in the fertilizers by HPLC. Comparison of the retention times and the UV-visible spectra of the peaks obtained from commercial EDDHSA/Fe(3+) and EDDCHA/Fe(3+) samples with those of standard solutions showed that unreacted starting materials (p-hydroxybenzenesulfonic acid and p-hydroxybenzoic acid, respectively) were always present in the commercial products. 1D and 2D NMR experiments showed that commercial fertilizers based on EDDHMA/Fe(3+) contained impurities having structures tentatively assigned to iron chelates of two isomers of EDDHMA. These findings suggest that current production processes of iron chelates used in agriculture need to be improved. PMID:11782196

  7. Removal of Some Chelators from Aqueous Solutions Using Polymeric Ingredients

    This work tries to throw a light on the removal of thenoyl trifluoroacetone (TTA) and ethylene diamine tetraacetic acid (EDTA), extractants extensively used in many nuclear facilities, from aqueous solutions under different experimental conditions using Amberlite XAD resins. The applied resins exhibit high retention ability for the studied chelators with a maximum sorption capacity has the values of 23.9 and 38.0 mgg-1 for sorption of TTA and EDTA on Amberlite XAD4 and 18.6 and 21.2 mgg-1 for their sorption of on Amberlite XAD7. Factors affecting the resin retention ability such as ph value of aqueous solution and presence of co solvent have been studied. The kinetics of sorption behavior, in the applied system, indicate the process to be controlled by more than one diffusion mechanism. Therefore, two diffusion models were utilized to understand and verify the mechanism of sorption processes; they are the film mass transfer model and the interparticle diffusion model. The first model, based on film resistance, gave a successful depiction for sorption of TTA onto Amberlite XAD4 and XAD7 and the second one displayed an acceptable prediction for sorption of EDTA onto Amberlite XAD4

  8. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.

    Tsang, Daniel C W; Hartley, Neil R

    2014-03-01

    Biodegradable chelating agents ([S,S]-ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) and natural humic substances (lignite-derived, standard, and commercially available humic acids) are potentially useful for enhancing soil remediation of timber treatment sites. This study integrated macroscopic and spectroscopic analyses to assess their influence on the distribution and chemical speciation of the remaining metals as well as their interaction with the soil surface after 48-h washing of a field-contaminated soil. The results demonstrated that EDDS and GLDA were an appealing alternative to non-biodegradable ethylenediamine-tetraacetic acid, but the three humic substances were less effective. As shown by sequential extractions, Cu was primarily extracted from the carbonate fraction while Cr and As extraction resulted from (co-)dissolution of the oxide fraction. As a result, the relative proportion of strongly bound organic matter and residual fractions increased by 7-16 %. However, it was noteworthy that the exchangeable fraction also increased by 5-11 %, signifying that a portion of the remaining metals was destabilized by chelating agents and transformed to be more labile in the treated soil. The X-ray photoelectron spectroscopy spectra confirmed the substantial removal of readily accessible Cu from the soil surface, but Cr maintained its original chemical forms of trivalent chromium oxides and iron-chromium coprecipitates, whereas As remained as arsenic trioxide/pentoxide and copper arsenate precipitates. On the other hand, the absence of characteristic peaks of adsorbed carboxylate groups in the Fourier-transform infrared (FTIR) spectra inferred that the extent of adsorption of chelating agents and humic substances on the bulk soil was insufficient to be characterized by FTIR analysis. These results suggested that attention should be paid to the exchangeable fraction of Cu and oxides/coprecipitates of As prior to possible on

  9. Adsorption characteristics of Ni(II) onto MA-DTPA/PVDF chelating membrane

    The melamine-diethylenetriaminepentaacetic acid/polyvinylidene fluoride (MA-DTPA/PVDF) chelating membrane bearing polyaminecarboxylate groups was prepared for the removal of Ni(II) from wastewater effluents. The membrane was characterized by SEM, 13C NMR and FTIR techniques. Quantitative adsorption experiments were performed in view of pH, contact time, temperature, the presence of Ca(II) and lactic acid as the controlling parameters. Adsorption kinetics and equilibrium were examined regarding the single Ni(II) system, binary Ni(II) and Ca(II) system and nickel-lactic acid complexes system. The desorption efficiency was also evaluated, and the adsorption mechanism was suggested based on experimental data. The results show that the sorption kinetics fit well to Lagergren second-order equation and the isotherms can be well described by Langmuir model. At 298 K, the second-order rate constant is calculated to be 4.171, 11.39, 6.203 cm2/(mg min) and the equilibrium uptake is 0.0264, 0.0211 and 0.0216 mg/cm2 in the aforementioned three systems. The distribution coefficient of Ni(II) slowly decreases from 4.27 to 2.72, and the separation factor (fNi(II)/Ca(II)) increases from 3.10 to 8.46 when the initial Ca(II) concentration varies from 20 to 200 mg/L. This reveals the chelating membrane shows more affinity for Ni(II) than Ca(II) ions. In the studied range of lactic acid concentration, Ni(II) uptake decreases with the maximum ratio of 10%. Chemical bonding (chelation) dominates in the adsorption process, and the negative ΔGo and ΔHo indicate the spontaneous and exothermic nature of adsorption.

  10. Influence of chelating ligands on arsenic uptake by hydroponically grown rice seedlings (Oryza sativa L.): a preliminary study

    Rahman, Mohammad A.; Hasegawa, Hiroshi; Ueda, Kazumasa; Maki, Teruya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa (Japan); Rahman, M.M. [Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2008-06-15

    Ferric (oxyhydro-)oxides (FeO{sub x}) precipitate in the rhizosphere at neutral or alkaline pH and are adsorbed on the plant root surfaces. Consequently, the higher binding affinity of arsenate to FeO{sub x} and the low iron phytoavailability of the precipitated FeO{sub x} make the phytoremediation of arsenic difficult. In the present study, the influence of chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. When chelating ligands were not treated to the growth medium, about 63 and 71% of the total arsenic and iron were distributed in the root extract (outer root surfaces) of rice, respectively. On the other hand, ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and hydroxyiminodisuccinic acid (HIDS) desorbed a significant amount of arsenic from FeO{sub x} of the outer root surfaces. Therefore, the uptake of arsenic and iron into the roots and their subsequent translocation to the shoots of the rice seedlings increased significantly. The order of increasing arsenic uptake by chelating ligands was HIDS > EDTA > EDDS. Methylglycinediacetic acid (MGDA) and iminodisuccinic acid (IDS) might not be effective in arsenic solubilization from FeO{sub x}. The results suggest that EDDS and HIDS would be a good and environmentally safe choice to accelerate arsenic phytoavailability in the phytoremediation process because of their biodegradability and would be a competent alternative to the widely used non-biodegradable and environmentally persistent EDTA. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  11. Selectivity in extraction of copper and indium with chelate extractants

    Simultaneous extraction of copper and indium with chelate extractants (LIX84 and D2E11PA) was described. Stechiometry of metal-organic complexes examined using the method of equimolar ratios resulted in CuR2 and InR3 forms of hydrophobic extracting species. A linear correlation was obtained between logarithm of distribution coefficients and chelate agents and pH, respectively. Selectivity is generally higher with higher concentrations of chelate agents in the organic phase, and is decreased with increase of concentration of hydrogen ions in feeding phase. (Original)

  12. Effect of endodontic chelating solutions on the bond strength of endodontic sealers

    Behram TUNCEL

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the effect of various chelating solutions on the radicular push-out bond strength of calcium silicate-based and resin-based root canal sealers. Root canals of freshly-extracted single-rooted teeth (n = 80 were instrumented by using rotary instruments. The specimens were randomly divided into 4 groups according to the chelating solutions being tested: (1 17% ethylenediaminetetraacetic acid (EDTA; (2 9% etidronic acid; (3 1% peracetic acid (PAA; and (4 distilled water (control. In each group, the roots were further assigned into 2 subgroups according to the sealer used: (1 an epoxy resin-based sealer (AH Plus and (2 a calcium silicate-based sealer (iRoot SP. Four 1 mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group. Push-out bond strength test was performed at a crosshead speed of 1 mm/min., and the bond strength data were analyzed statistically with two-way analysis of variance (ANOVA with Bonferroni’s post hoc test (p 0.05. iRoot SP showed higher resistance to dislocation than AH Plus. Final irrigation with 17% EDTA, 9% Etidronic acid, and 1% PAA did not improve the bond strength of AH Plus and iRoot SP to radicular dentin.

  13. Disaggregation ability of different chelating molecules on copper ion-triggered amyloid fibers.

    Zhu, Linyi; Han, Yuchun; He, Chengqian; Huang, Xu; Wang, Yilin

    2014-08-01

    Dysfunctional interaction of amyloid-β (Aβ) with excess metal ions is proved to be related to the etiology of Alzheimer's disease (AD). Using metal-binding compounds to reverse metal-triggered Aβ aggregation has become one of the potential therapies for AD. In this study, the ability of a carboxylic acid gemini surfactant (SDUC), a widely used metal chelator (EDTA), and an antifungal drug clioquinol (CQ) in reversing the Cu(2+)-triggered Aβ(1-40) fibers have been systematically studied by using turbidity essay, BCA essay, atomic force microscopy, transmission electron microscopy, and isothermal titration microcalorimetry. The results show that the binding affinity of Cu(2+) with CQ, SDUC, and EDTA is in the order of CQ > EDTA > SDUC, while the disaggregation ability to Cu(2+)-triggered Aβ(1-40) fibers is in the order of CQ > SDUC > EDTA. Therefore, the disaggregation ability of chelators to the Aβ(1-40) fibers does not only depend on the binding affinity of the chelators with Cu(2+). Strong self-assembly ability of SDUC and π-π interaction of the conjugate group of CQ also contributes toward the disaggregation of the Cu(2+)-triggered Aβ(1-40) fibers and result in the formation of mixed small aggregates. PMID:25051063

  14. The determination of the rate of conjugation immunoglobuline with bifunctional chelator

    Málek, Z.; Miler, V.; Budský, F.

    2006-01-01

    The work was performed under the GACR project: "Technology of preparation of radionuclides and their labelled compounds for nuclear medicine and pharmacy with the use of the reactor LVR-15" reg. no. 104/03/0499. Imaging of cell’s antigens with the use of labelled immunoglobulines allows imaging of specific receptors on cell membrane and specific tumours. It is necessary to carry out the labelling of the immunoglobulines with radionuclides of suitable physical properties, which form cations (e.g., 111In, 90Y, 177Lu) that form very strong chelates of sufficiently high stability constant preventing the dissociation of complexes or the radionuclide under “in-vivo” conditions. The immunoglobuline must be conjugated with the bifunctional chelator (BCH), which contains both chelating unit and reactive group for binding to the immunoglobuline. In our laboratory we have conjugated human IgG and monoclonal antibody CD20 with diethylenetriamine pentaacetic acid dianhydride (cDTPAA). Radionuclides 90Y and 177Lu prepared on the LVR-15 reactor in NRI Rez were used for labelling. After conjugation and labelling the yields in relation to the amount of isotopic carrier have been determined.

  15. Synthesis of chelating agents for actinium 225 complexation and its application in radioimmunotherapy

    Immunotherapy with radiolabeled antibodies should allow fairly specific targeting of certain cancers. However, iodine 131 may not be the best isotope for tumor therapy because of its limited specific activity, low beta-energy, relatively long half life and strong gamma emission. Another approach to improve therapeutic efficacy is the use of replacement isotopes with better physical properties. Chelator that can hold radio-metals with high stability under physiological conditions are essential to avoid excessive damage to non-target cells; Moreover, the development of new bifunctional chelating agents is essential for this purpose. Accordingly, our efforts have been directed, for several years, to the synthesis of original chelating agents likely to form stable complexes in vivo with the numerous potential candidates for such applications. Therefore, we have developed a new simple and efficient synthesis pathway of 2-(4-iso-thio-cyanate-benzyl)-1,4,7,10,13,16- hexa-aza-cyclo-hexadecane- 1,4,7,10,13,16-hexa-acetic acid, though functionalized on the cycle by a termination allowed coupling to an antibody or any other biological substance such as a hapten. (author)

  16. Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins

    In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO3, Acid, and 3 M NaNO3 + 0.05 M HNO3, Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect

  17. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO22+ and UO4 species of uranium VI is studied in aqueous solution (NaClO4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO22+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO22+ and its complexes on mercury drop are proposed. 143 refs

  18. Ethylenediaminetetraacetic acid in endodontics.

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented. PMID:24966721

  19. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    Lewis, Scott [Univ of KY, dept of chemical and materials engineering; lynch, Andrew [Univ of KY, dept of chemical and materials engineering; Bachas, Leonidas [Univ of KY, Dept of Chemistry; hampson, Steve [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Ormsbee, Lindelle [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Bhattacharyya, Dibakar [Univ of KY, dept of chemical and materials engineering

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  20. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals

    Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity. We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid = DOTA) to the bioactive peptide [Tyr3,Thr8]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N'-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar5) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In3+ and Y3+ salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE. Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [111/natIn-DOTA]-TATE except for [(111/natIn-DOTA)2-Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [(111/natIn-DOTA)-Lys(111/natIn-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [111/natIn-DOTA]-TATE. (orig.)

  1. Protection against SR 4233 (tirapazamine) aerobic cytotoxicity by the metal chelators desferrioxamine and tiron

    Metal chelating agents and antioxidants were evaluated as potential protectors against aerobic SR 4233 cytotoxicity in Chinese hamster V79 cells. The differential protection of aerobic and hypoxic cells by two metal chelators, desferrrioxamine and Tiron, is discussed in the context of their potential use in the on-going clinical trials with SR 4233. Cytotoxicity was evaluated using clonogenic assay. SR 4233 exposure was done in glass flasks as a function of time either alone or in the presence of the following agents: superoxide dismutase, catalase, 5,5-dimethyl-1-pyrroline, Trolox, ICRF-187, desferrioxamine, Tiron (1,2-dihydroxybenzene-3,5-disulfonate), and ascorbic acid. Experiments done under hypoxic conditions were carried out in specially designed glass flasks that were gassed with humidified nitrogen/carbon dioxide mixture and with a side-arm reservoir from which SR 4233 was added to cell media after hypoxia was obtained. Electron paramagnetic resonance studies were also performed. Electron paramagnetic resonance and spectrophotometry experiments suggest that under aerobic conditions SR 4233 undergoes futile redox cycling to produce superoxide. Treatment of cells during aerobic exposure to SR 4233 with the enzymes superoxide dismutase and catalase, the spin trapping agent DMPO, the water-soluble vitamin E analog Trolox, and the metal chelator ICRF-187 provided little or no protection against aerobic SR 4233 cytotoxicity. However, two other metal chelators, desferrioxamine and Tiron afforded significant protection against minimal protection to hypoxic cells treated with SR 4233. One potential mechanism of aerobic cytotoxicity is redox cycling of SR 4233 with molecular oxygen resulting in several potentially toxic oxidative species that overburden the intrinsic intracellular detoxification systems such as superoxide dismutase, catalase, and glutathione peroxidase. 23 refs., 4 figs., 1 tab

  2. Screening wheat genotypes in response to ordinary chelate and nano-iron chelate fertilizers in nutrient solution

    S. Omidi Nargesi; Zahedi, M; H.R. Eshghizadeh; A.H. Khoshgoftarmanesh

    2015-01-01

    Recently, attentions have been taken on the investigations regarding the use of nano-sized compounds in different fields including agricultural sector. Due to the importance of evaluating the fate and operation of nano-particles in plant systems, in this survey, responses of 13 wheat genotypes to the effect of nano-iron chelate fertilizer in the Hoagland solution under the conditions of ordinary iron chelate and nano-iron chelate, with concentration of 22.5 mg/L, was studied. This experiment ...

  3. Effects of macromolecular chelators on intestinal cadmium absorption in mice

    Andersen, O.; Nielsen, J.B.; Bulman, R.A.

    1989-01-01

    Suppression of absorption by macromolecular chelators have been sucessful with several metals. In this paper a series of immobilized chelators ranging from DTPA to S-containing soft bases have been synthetized and investigated for ability to suppress intestinal uptake of /sup 109/Cd/sup 2+/ in mice. Dextran-O-ethyl-mercaptan, xanthates derived from polysaccharides and polyvinyl alcohol, dithiocarbamates of polyethylene imine and aminoethyl cellulose, and DTPA immobilized on aminopropyl silica were all ineffective. DTPA immobilized on aminoethyl cellulose even enhanced the intestinal uptake. The macromolecular chelators were without extensive effect on organ distribution of absorbed cadmium, except for dithiocarbamate immobilized on polyethylene imine, which enhanced the deposition of cadmium in several organs including the brain. Although the results are discouragign, they indicate that desing and synthesis of immobilized vicinal dithio compounds may represent an avenue for development of non-absorbable chelators with high affinity for cadmium.

  4. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  5. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  6. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  7. Μethods of iron chelation therapy: a bibliographic review

    Maria Agapiou; Elpida Georgiadi

    2012-01-01

    "Iron Chelation Therapy" is a term used to describe the procedure of removing excess iron from the body, which is applied after a total of approximately 20 blood transfusions or when serum ferritin levels rise above 1000 ng/ml. Aim: The purpose of the present paper is a retrospective search in bibliography, concerning the methods of iron chelation treatment for patients with hemochromatosis owing to their undergoing multiple blood transfusions. Method: The methology followed, included the sea...

  8. EDTA chelation therapy for cardiovascular disease: a systematic review

    Wu Ping; Seely Dugald MR; Mills Edward J

    2005-01-01

    Abstract Background Numerous practitioners of both conventional and complementary and alternative medicine throughout North America and Europe claim that chelation therapy with EDTA is an effective means to both control and treat cardiovascular disease. These claims are controversial, and several randomized controlled trials have been completed dealing with this topic. To address this issue we conducted a systematic review to evaluate the best available evidence for the use of EDTA chelation ...

  9. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Sears, Margaret E.

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the...

  10. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies...

  11. Antioxidant, Free Radical Scavenging and Metal Chelating Characteristics of Propolis

    Hikmet Geckil; Burhan Ates; Gokhan Durmaz; Selim Erdogan; Ismet Yilmaz

    2005-01-01

    This study was undertaken to determine the reducing characteristics, metal chelating capability, anti-lipid peroxidative and antiradical properties of propolis compared to two widely used artificial antioxidants, Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT). The water and ethanol extracts of propolis showed significantly a different degree of metal chelating, radical scavenging activity and reducing power. In general, ethanol extracts of propolis showed higher activity re...

  12. Hydrogen peroxide- metals- chelating agents; interactions and analytical techniques

    Rämö, J.

    2003-01-01

    Abstract Information about interactions among metals, hydrogen peroxide and chelating agents is needed to develop environmental technology and the operating efficiency of modern elemental chlorine free and total chlorine free bleaching processes. The work presented here focused on the properties of metal chelates and corrosion of titanium in an alkaline hydrogen peroxide solution. A comparative study between three rapid analysis methods, ICP-AES, XRF and ISE, was performed in pulp matrix a...

  13. Protective effects of ion-imprinted chitooligosaccharides as uranium-specific chelating agents against the cytotoxicity of depleted uranium in human kidney cells

    Occupational internal contamination with depleted uranium (DU) compounds can induce radiological and chemical toxicity, and an effective and specific uranium-chelating agent for clinical use is urgently needed. The purpose of this study was to investigate whether a series of synthesized water-soluble metal-ion-imprinted chitooligosaccharides can be used as uranium-specific chelating agents, because the chitooligosaccharides have excellent heavy metal ion chelation property and the ion-imprinting technology can improve the selective recognition of template ions. DU-poisoned human renal proximal tubule epithelium cells (human kidney 2 cells, HK-2) were used to assess the detoxification of these chitooligosaccharides. The DU-chelating capacity and selectivity of the chitooligosaccharides were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Cell viability, cellular accumulation of DU, membrane damage, DNA damage, and morphological changes in the cellular ultrastructure were examined to assess the detoxification of these chitooligosaccharides. The results showed that the Cu2+-imprinted chitooligosaccharides, especially the Cu2+-imprinted glutaraldehyde-crosslinked carboxymethyl chitooligosaccharide (Cu-Glu-CMC), chelated DU effectively and specifically, and significantly reduced the loss of cell viability induced by DU and reduced cellular accumulation of DU in a dose-dependent manner, owing to their chelation of DU outside cells and their prevention of DU internalization. The ultrastructure observation clearly showed that Cu-Glu-CMC-chelated-DU precipitates, mostly outside cells, were grouped in significantly larger clusters, and they barely entered the cells by endocytosis or in any other way. Treatment with Cu-Glu-CMC also increased the activity of antioxidant enzymes, and reduced membrane damage and DNA damage induced by DU oxidant injury. Cu-Glu-CMC was more effective than the positive control drug, diethylenetriaminepentaacetic acid (DTPA), in

  14. Effectiveness of mixed ligand chelation for the removal of plutonium and americium in the hamster

    DTPA and the combination of DTPA plus salicylic acid or other benzene derivatives which are ortho-di-substituted with functional groups containing one or more oxygen and/or nitrogen atoms as electron donors, were tested for their ability to remove 239Pu and/or 241Am from hamsters. Mixed ligand chelation of these actinides by combination of DTPA and any one of these compounds did not result in an increased efficacy for the removal of actinides, as has been reported elsewhere

  15. PEGylated DOTA-AHA-based Gd(III) chelates – A relaxometric study

    Fontes, André; Karimib, Shima; Helm, Lothar; Ferreira, Paula M.T.; André, João P.

    2015-01-01

    Three PEGylated derivatives of 1,4,7,10-tetraazacyclododecane-1-((6-amino)hexanoic)-4,7,10-triacetic acid) (DOTA-AHA) with different molecular weights were prepared and characterized. Their Gd(III) chelates were studied in aqueous solution using variable-temperature 1H nuclear magnetic relaxation dispersion (NMRD) and 17ONMR spectroscopy in view of the determination of their relaxivity and the parameters that govern it. The relaxivity varied from 5.1 to 6.5 mM-1.s-1 (37 ºC and 60 MHz) with t...

  16. Synthesis and application of lactosylated, 99mTc chelating albumin for measurement of liver function.

    Chaumet-Riffaud, Philippe; Martinez-Duncker, Ivan; Marty, Anne-Laure; Richard, Cyrille; Prigent, Alain; Moati, Frederic; Sarda-Mantel, Laure; Scherman, Daniel; Bessodes, Michel; Mignet, Nathalie

    2010-04-21

    Neogalactosylated and neolactosylated albumins are currently used as radiopharmaceutical agents for imaging the liver asialoglycoprotein receptors, which allows the quantification of hepatic liver function in various diseases and also in healthy liver transplant donors. We developed an original process for synthesizing a chelating neolactosylated human albumin using maleimidopropyl-lactose and maleimidopropyl-diethylene triamine pentaacetic acid (DTPA) derivatives. The lactosylated protein (LACTAL) conjugate showed excellent liver uptake compared to nonlactosylated protein and a very high signal-to-noise ratio, based on functional assessment of biodistribution in mice using (99m)Tc-scintigraphy. PMID:20201600

  17. Adsorption of hazardous ions from radioactive waste on chelating cloth filter

    Othman, Sameh H. [Second Research Reactor, Nuclear Research Center, Atomic Energy Authority, Cairo P.O. 13759 (Egypt)]. E-mail: othman_sameh@yahoo.com; Sohsah, Mustfa A. [Second Research Reactor, Nuclear Research Center, Atomic Energy Authority, Cairo P.O. 13759 (Egypt); Ghoneim, Mohammad M. [Second Research Reactor, Nuclear Research Center, Atomic Energy Authority, Cairo P.O. 13759 (Egypt); Sokkar, Hesham H. [National Center for Radiation Research and Technology, Atomic Energy Authority (Egypt); Badawy, Sayed M. [Chemistry Department, Faculty of Science, Cairo University (Egypt); El-Anadouli, Bahgat E. [Chemistry Department, Faculty of Science, Cairo University (Egypt)

    2006-02-15

    A cloth filter was synthesized by grafting of acrylonitrile/methacylic acid (AN/MAA {approx}80%/20% molar ratio) onto cotton cloth using a radiation-induced technique followed by amidoximation reaction. The fate of adsorption of radionuclide (e.g. U(VI)) on chelating cloth filter (CCF) from radioactive waste was investigated. The adsorption ability of the CCF increases as pH increases from 6 to 10. The predominant composition of the resulting complex was determined. A chemical adsorption mechanism was confirmed by examining the relationships between the adsorbed amount of radionuclide and the contact time.

  18. Adsorption of hazardous ions from radioactive waste on chelating cloth filter

    A cloth filter was synthesized by grafting of acrylonitrile/methacylic acid (AN/MAA ∼80%/20% molar ratio) onto cotton cloth using a radiation-induced technique followed by amidoximation reaction. The fate of adsorption of radionuclide (e.g. U(VI)) on chelating cloth filter (CCF) from radioactive waste was investigated. The adsorption ability of the CCF increases as pH increases from 6 to 10. The predominant composition of the resulting complex was determined. A chemical adsorption mechanism was confirmed by examining the relationships between the adsorbed amount of radionuclide and the contact time

  19. Comparisons of antidotal efficacy of chelating drugs upon acute toxicity of Ni(II) in rats

    Horak, E.; Sunderman, F.W. Jr.; Sarkar, B.

    1976-05-01

    Six chelating drugs were administered to rats by im injection at equimolar dosages in order to compare their relative effectiveness in prevention of death after a single parenteral injection of NiCl/sub 2/. Triethylenetetramine and d-penicillamine were the most effective antidotes for acute Ni(II)-toxicity. In order of decreasing antidotal effectiveness, diglycyl-L-histidine-N-methylamide, sodium diethyldithiocarbamate and calcium disodium versenate significantly reduced the acute mortality of rats following ip injection of Ni(II). ..cap alpha..-Lipoic acid was not effective as an antidote for acute Ni(II)-toxicity.

  20. Highly nucleophilic dipropanolamine chelated boron reagents for aryl-transmetallation to iron complexes.

    Dunsford, Jay J; Clark, Ewan R; Ingleson, Michael J

    2015-12-21

    New aryl- and heteroarylboronate esters chelated by dipropanolamine are synthesised directly from boronic acids. The corresponding anionic borates are readily accessible by deprotonation and demonstrate an increase in hydrocarbyl nucleophilicity in comparison to other common borates. The new borates proved competent for magnesium or zinc additive-free, direct boron-to-iron hydrocarbyl transmetallations with well-defined iron(II) (pre)catalysts. The application of the new borate reagents in representative Csp(2)-Csp(3) cross-coupling led to almost exclusive homocoupling unless coupling is performed in the presence of a zinc additive. PMID:26554484

  1. Impacto da farinha de mandioca fortificada com ferro aminoácido quelato no nível de hemoglobina de pré-escolares Impact of cassava flour fortified with iron amino acid chelate on the hemoglobin level in pre-schools

    Rahilda Brito Tuma

    2003-01-01

    Full Text Available OBJETIVO: Avaliou-se o impacto da farinha de mandioca fortificada com ferro aminoácido quelato em 80 pré-escolares de uma Unidade Filantrópica de Manaus, AM, distribuídos aleatoriamente em quatro grupos de 20 crianças cada, por um período de 120 dias. MÉTODOS: Foram utilizadas farinha de mandioca sem fortificação (Grupo zero e fortificada com 1, 2 e 3mg de Fe/dia, correspondendo a quantias diárias de 5, 10 e 15g de farinha, respectivamente, as quais foram distribuídas no horário do almoço, sendo ainda entregue às famílias a quantidade destinada ao consumo do final de semana. O estado nutricional das crianças foi avaliado no início e ao final do experimento, adotando-se como limite discriminatório entre eutrofia/desnutrição o ponto de corte OBJECTIVE: The impact of the cassava flour fortified with iron amino acid chelate was evaluated in 80 pre-scholars of a Philanthropic Unit of Manaus, state of Amazonas, randomly distributed in four groups of 20 children each, for a period of 120 days. METHODS: Cassava flour was used without fortification (group zero or fortified with 1, 2 and 3mg of Fe/day, corresponding respectively to 5, 10 and 15g of flour/day, which were given to the children at lunch time on weekdays. The equivalent amount was previously distributed to their families for flour intake also during the weekends. In the beginning and at the end of the experiment the children's nutritional status was evaluated, being adopted the cutoff point <-2 Z-scores as a discriminating limit between eutrophy/malnutrition, in agreement with the World Health Organization criteria, as well as being established as a cutoff point for the occurrence of iron deficiency anemia a hemoglobin rate of less than 11g/dL. RESULTS: At the end of this study, children recovered from chronic malnutrition, and a significant increase (p <5% of the hemoglobin rates, independently of iron concentration, from 11.4±0.9g/dL to 12.2±0.8g/dL, was observed in

  2. The Structural Basis of Action of Vanadyl (VO(2+)) Chelates in Cells.

    Makinen, Marvin W; Salehitazangi, Marzieh

    2014-11-01

    the extravascular space. Serum albumin, as the most abundant transport protein in the blood stream, serves commonly as the carrier protein for small molecules, and transcytosis of albumin through capillary endothelium is regulated by a Src protein tyrosine kinase system. In this respect it is of interest to note that inorganic VO(2+) has the capacity to enhance insulin receptor kinase activity of intact 3T3-L1 adipocytes in the presence of albumin, albeit weak; however, in the presence of transferrin no activation is observed. In addition to facilitating glucose uptake, the capacity of VO(2+)- chelates for insulin-like, antilipolytic action in primary adipocytes has also been reviewed. We conclude that measurement of inhibition of release of only free fatty acids from adipocytes stimulated by epinephrine is not a sufficient basis to ascribe the observations to purely insulin-mimetic, antilipolytic action. Adipocytes are known to contain both phosphodiesterase-3 and phosphodiesterase-4 (PDE3 and PDE4) isozymes, of which insulin antagonizes lipolysis only through PDE3B. It is not known whether the other isozyme in adipocytes is influenced directly by VO(2+)- chelates. In efforts to promote improved development of VO(2+)- chelates for therapeutic purposes, we propose synergism of a reagent with insulin as a criterion for evaluating physiological and biochemical specificity of action. We highlight two organic compounds that exhibit synergism with insulin in cellular assays. Interestingly, the only VO(2+)- chelate for which this property has been demonstrated, thus far, is VO(acac)2. PMID:25237207

  3. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils

    Giannis, Apostolos, E-mail: apostolos.giannis@enveng.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Nikolaou, Aris [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Pentari, Despina [Laboratory of Inorganic and Organic Geochemistry and Organic Petrography, Department of Mineral Resources Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece); Gidarakos, Evangelos, E-mail: gidarako@mred.tuc.g [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University of Crete, Politechnioupolis, Chania 73100 (Greece)

    2009-12-15

    An integrated experimental program was conducted to remove Cd, Pb and Cu from contaminated soil. The chelate agents nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA) and ethyleneglycol tetraacetic acid (EGTA) were used as washing solutions under different pH conditions and concentrations. Results showed that the extraction efficiency for Cd in decreasing order was NTA > EGTA > DTPA, while for Pb and Cu it was DTPA > NTA > EGTA. The use of higher chelate concentrations did not necessarily result in greater extraction efficiency. Electrokinetic remediation was applied by conditioning anolyte-catholyte pH to neutral values in order to avoid any potential alterations to the physicochemical soil properties. The removal efficiency for Cd was 65-95%, for Cu 15-60%, but for Pb was less than 20%. The phytotoxicity of the treated soil showed that the soil samples from the anode section were less phytotoxic than the untreated soil, but the phytotoxicity was increased in the samples from the cathode section. - Cadmium, lead and copper were extracted from contaminated soil by integrated electrokinetic and soil washing studies.

  4. THE STUDIES ON CHELATING FIBER V.ADSORPTION BEHAVIOR OF Au3+ ONTO CHELATING FIBER CONTAINING AMIDOXIME GROUPS

    LINWeiping; LUYun; 等

    1992-01-01

    The adsorption behavior of ionic gold onto chelating fiber containing amidoxime groups was investigated. The chelating fiber presents high adsorption capacity for ionic gold Au3+(up to 626mg/g,when the content of amidoxime group reaches 7.59mmol/g),and possesses the ability to reduce the Au3+ into metallic gold,In the redox process,the amidoxime group is oxidized into carboxyl group.

  5. Molecular mechanisms of in vivo metal chelation: implications for clinical treatment of metal intoxications.

    Andersen, Ole; Aaseth, Jan

    2002-01-01

    Successful in vivo chelation treatment of metal intoxication requires that a significant fraction of the administered chelator in fact chelate the toxic metal. This depends on metal, chelator, and organism-related factors (e.g., ionic diameter, ring size and deformability, hardness/softness of electron donors and acceptors, route of administration, bioavailability, metabolism, organ and intra/extracellular compartmentalization, and excretion). In vivo chelation is not necessarily an equilibri...

  6. Quantitative determination of chelators and their degradation products in mixed hazardous wastes from tank 241-SY-101 using derivatization GC/MS

    Considerable attention has been focused on chelators such as ethylenediaminetetraacetic acid (EDTA) and N-(hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), which form water-soluble complexes with most heavy metals. Most radionuclides are included in this class of constituents. As a result, chelator complexes have become very important environmentally because of their tendency to enhance the mobility of heavy metals through the soil and potentially contaminate groundwater. In addition, there is correlation between chelator concentration and crust formation/gas release. The chelators are a class of compounds whose low volatility and high polarity preclude analysis by gas chromatography/mass spectrometry (GC/MS) without prior derivatization. Waste sample from a double-shell storage tank at Hanford were derivatized with BF3/methanol and analyzed using GC/MS. Results indicate the presence of EDTA, HEDTA, nitrilotriacetic (NTA), and citric acid. Nitrosoiminodiacetic acid was identified and determined to be an artifact of the derivatization procedure; it is assumed to arise from nitrosation of iminodiacetic acid in the waste sample. (author)

  7. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  8. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  9. Chelating agents improve enzymatic solubilization of pectinaceous co-processing streams

    Ravn, Helle Christine; Meyer, Anne S.

    2014-01-01

    of different levels of ethylene-diaminetetraacetic acid (EDTA), citric acid, oxalic acid, and phosphate was assessed in relation to enzymatic solubilization of isopropanol precipitatable oligo- and polysaccharides from sugar beet pulp, citrus peel, and two types of potato pulp. The two types of...... potato pulp were FiberBind 400, a dried commercial potato pulp product, and PUF, a dried calcium reduced product, respectively. The enzymatic treatment consisted of 1% (w/w) of substrate treated with pectin lyase from Aspergillus nidulans and polygalacturonase from A. aculeatus [each dosed at 1.0% (w....../w) enzyme/substrate] at 60 °C, pH 6.0 for 1 min. Characterization of the released fractions demonstrated a significantly improved effect of chelating agents for polysaccharide solubilization from FiberBind 400, PUF, and citrus peel, whereas only low amounts of polysaccharides were solubilized from the sugar...

  10. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA

    Highlights: • A novel readily biodegradable chelating ligand was employed to remove heavy metals. • The effects of different conditions on the extraction with GLDA were probed. • Species distribution of metals before and after extraction with GLDA was analyzed. • GLDA was effective for Cd extraction from sludge samples under various conditions. • GLDA offers special insights in the effective removal of heavy metals. - Abstract: Tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA), a novel readily biodegradable chelating ligand, was employed for the first time to remove heavy metals from industrial sludge generated from a local battery company. The extraction of cadmium, nickel, copper, and zinc from battery sludge with the presence of GLDA was studied under different experimental conditions such as contact times, pH values, as well as GLDA concentrations. Species distribution of metals in the sludge sample before and after extraction with GLDA was also analyzed. Current investigation showed that (i) GLDA was effective for Cd extraction from sludge samples under various conditions. (ii) About 89% cadmium, 82% nickel and 84% copper content could be effectively extracted at the molar ratio of GLDA:M(II) = 3:1 and at pH = 4, whereas the removal efficiency of zinc was quite low throughout the experiment. (iii) A variety of parameters, such as contact time, pH values, the concentration of chelating agent, stability constant, as well as species distribution of metals could affect the chelating properties of GLDA

  11. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  12. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  13. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  14. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments

    Highlights: ► The aim was to optimize radium solubilization for the purposes of remediation. ► The most important factor in radium solubilization was found to be the pH. ► Radium release increases with the reagent concentration. ► The largest release of radium is obtained with 50 mmol kg−1 of citrate, at pH acid, and 4 days after incubation. ► The best conditions for the release of radium are the same as for uranium. -- Abstract: The effect of three chelating agents (citrate, EDTA, and EDDS) on the solubilization of radium from a granitic soil was studied systematically, considering different soil pH values, chelating agent concentrations, and leaching times. For all the chelating agents tested, the amount of radium leached proved to be strongly dependent on the pH of the substrate: only for acidic conditions did the amount of radium released increase significantly relative to the controls. Under the best conditions, the radium released from the amended soil was greater by factors of 20 in the case of citrate, 18 for EDTA, and 14 for EDDS. The greatest improvement in the release of radium was obtained for the citrate amendment at the highest concentration tested (50 mmol kg−1). A slightly lower amount of radium was leached with EDTA at 5 mmol kg−1 soil, but the solubilization over time was very different from that observed with citrate or EDDS. With EDTA, a maximum in radium leaching was reached on the first day after amendment, while with citrate, the maximum was attained on the fourth day. With EDDS, radium leaching increased slightly but steadily with time (until the sixth day), but the net effect for the period tested was the lowest of the three reagents

  15. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency. PMID:26423283

  16. D-Penicillamine tripodal derivatives as efficient copper(I) chelators.

    Jullien, Anne-Solène; Gateau, Christelle; Lebrun, Colette; Kieffer, Isabelle; Testemale, Denis; Delangle, Pascale

    2014-05-19

    New tripodal metal-chelating agents derived from nitrilotriacetic acid (NTA) and extended by three unnatural amino acids D-penicillamine (D-Pen) are presented. D-Pen is actually the drug most extensively used to treat copper (Cu) overload in Wilson's disease and as such is a very attractive building block for the design of chelating agents. D-Pen is also a bulkier analogue of cysteine, with the β-methylene hydrogen atoms replaced by larger methyl groups. The hindrance of the gem-dimethyl group close to the thiol functions is demonstrated to influence the speciation and stability of the metal complexes. The ligands L(4) (ester) and L(5) (amide) were obtained from NTA and commercial D-Pen synthons in four and five steps with overall yields of 14 and 24%, respectively. Their ability to bind Cu(I), thanks to their three thiolate functions, has been investigated using both spectroscopic and analytical methods. UV, CD, and NMR spectroscopy and mass spectrometry evidence the formation of two Cu(I) complexes with L(5): the mononuclear complex CuL(5) and one cluster (Cu2L(5))2. In contrast, the bulkier ethyl ester derivative L(4) cannot accommodate the mononuclear complex in solution and thus forms exclusively the cluster (Cu2L(4))2. Cu K-edge X-ray absorption spectroscopy (XAS and EXAFS) confirms that Cu(I) is bound in trigonal-planar sulfur-only environments in all of these complexes with Cu- - -S distances ranging from 2.22 to 2.23 Å. Such C3-symmetric CuS3 cores are coordination modes frequently adopted in Cu(I) proteins such as metallothioneins. These two ligands bind Cu(I) tightly and selectively, which makes them promising chelators for intracellular copper detoxification in vivo. PMID:24766067

  17. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments

    Prieto, C.; Lozano, J.C. [Departamento de Física Fundamental, Universidad de Salamanca, 37008 Salamanca (Spain); Rodríguez, P. Blanco [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain); Tomé, F. Vera, E-mail: fvt@unex.es [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain)

    2013-04-15

    Highlights: ► The aim was to optimize radium solubilization for the purposes of remediation. ► The most important factor in radium solubilization was found to be the pH. ► Radium release increases with the reagent concentration. ► The largest release of radium is obtained with 50 mmol kg{sup −1} of citrate, at pH acid, and 4 days after incubation. ► The best conditions for the release of radium are the same as for uranium. -- Abstract: The effect of three chelating agents (citrate, EDTA, and EDDS) on the solubilization of radium from a granitic soil was studied systematically, considering different soil pH values, chelating agent concentrations, and leaching times. For all the chelating agents tested, the amount of radium leached proved to be strongly dependent on the pH of the substrate: only for acidic conditions did the amount of radium released increase significantly relative to the controls. Under the best conditions, the radium released from the amended soil was greater by factors of 20 in the case of citrate, 18 for EDTA, and 14 for EDDS. The greatest improvement in the release of radium was obtained for the citrate amendment at the highest concentration tested (50 mmol kg{sup −1}). A slightly lower amount of radium was leached with EDTA at 5 mmol kg{sup −1} soil, but the solubilization over time was very different from that observed with citrate or EDDS. With EDTA, a maximum in radium leaching was reached on the first day after amendment, while with citrate, the maximum was attained on the fourth day. With EDDS, radium leaching increased slightly but steadily with time (until the sixth day), but the net effect for the period tested was the lowest of the three reagents.

  18. Phototherapeutic, photobiologic, and photosensitizing properties of khellin

    Morliere, P.; Hoenigsmann, H.A.; Averbeck, D.; Dardalhon, M.; Hueppe, G.O.; Ortel, B.; Santus, R.; Dubertret, L.

    1988-05-01

    Khellin, whose chemical structure closely resembles that of psoralen, is reported to be an efficient drug for treating vitiligo when combined with ultraviolet A irradiation. Photobiological activity on yeast is found to be much lower than that of bifunctional psoralens such as 5-methoxypsoralen. In vitro experiments reveal that khellin is a poor photosensitizer. It behaves as a monofunctional agent with respect to DNA photoaddition. It does not photoinduce cross-links in DNA in vitro or in Chinese hamster cells in vivo. This behavior may explain the low photogenotoxicity in yeast and the lack of phototoxic erythemal response when treating vitiligo with khellin.

  19. Preparation of carboxy-group-contained polyvinyl alcohol amidoxime chelate fiber by preirradiation grafting and its adsorbability for Au(III) ions

    Carboxy-group-contained polyvinyl alcohol amidoxime chelate fiber (PVAAO-AAc) was synthesized by preirradiation graft copolymerization and amidoximation. The radiation dose and ratio of monomers, acrylonitrile and acrylic acid, influence the value of grafting rate, amidoxime group component and adsorption capacity. The properties of adsorbing Au(III) ions was systematic studied in the paper. (author)

  20. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  1. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  2. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2±1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  3. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 370C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  4. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    Albumin microspheres have been synthesized eith EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +/- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +/- 16)% of the activity localizes in the lungs at 5 min, with (60 +/- 7)% remaining after 2 hr. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  5. Antioxidant, Free Radical Scavenging and Metal Chelating Characteristics of Propolis

    Hikmet Geckil

    2005-01-01

    Full Text Available This study was undertaken to determine the reducing characteristics, metal chelating capability, anti-lipid peroxidative and antiradical properties of propolis compared to two widely used artificial antioxidants, Butylated Hydroxyanisole (BHA and Butylated Hydroxytoluene (BHT. The water and ethanol extracts of propolis showed significantly a different degree of metal chelating, radical scavenging activity and reducing power. In general, ethanol extracts of propolis showed higher activity regarding these parameters. Synthetic antioxidants showed better activities than both propolis extracts for antioxidant properties, utilizing a -carotene bleaching method. At higher concentrations, the reducing power of ethanol extract of propolis was similar to that of artificial antioxidants. The metal chelating activity of both water and ethanol extracts of propolis was comparable to that of EDTA and significantly higher than both BHA and BHT.

  6. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    Hervella, Pablo; Parra, Elisa; Needham, David

    2016-01-01

    Trioleate (Triolein) with copper using the hydrophobic chelator Octaethyl porphyrin (OEP). RESEARCH PLAN AND METHODS: The research plan for this study was to (1) Formulate nanoparticles and control nanoparticle size using a modification of the solvent injection technique, named fast ethanol injection; (2......) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  7. Timing of early chelating therapy for acute uranium intoxication

    Rats were treated with DTPA and H-73-10 intraperitoneal injections 15 minutes to 4 days after acute uranium intoxication. The mortality and changes in body weight, kidney weight, renal histology and histochemistry were investigated. The results show that the renal damage could be diminished significantly by chelating therapy started 15 minutes and 6 hours after urnium poisoning. Single large dose injection (1 g/kg weight) of H-73-10 yielded the best result, and daily 0.5 g/kg of H-73-10 injection for 5 days is the next, both are better than single injection of DTPA (1 g/kg body weight). One day after intoxication there was still some protective effect. On the contrary, if the chelating therapy started 2-4 days after urnium poisoning it would increase the renal damage and the mortality. This is of great value to the correct selection of timing of chelating therapy for uranium intoxication

  8. Extraction rate of metal ion by chelating agent

    In order to clarify the extraction mechanism of metal ion by a chelating agent, it is problematic to infer the mechanism on the basis of the dependence of the extraction rate upon the concentration of the agent. For this purpose, the information as follows is essential: (1) computation of physical chemistry constants of the chelating agent, (2) the reaction rate for chelate formation with the metal ion in the water phase and the mechanism, and (3) the measurement of the extraction rate by use of the apparatus for which the oil/water interface area and the interface-material transfer coefficient are known. It is then necessary to establish the design guidance of reaction field and separation field via the accumulation of the experimental results. (Mori, K.)

  9. Clinical monitoring and management of complications related to chelation therapy in patients with β-thalassemia.

    Saliba, Antoine N; El Rassi, Fuad; Taher, Ali T

    2016-01-01

    Iron chelating agents - deferoxamine (DFO), deferiprone (DFP), and deferasirox (DFX) - are used to treat chronic iron overload in patients with β-thalassemia in an attempt to reduce morbidity and mortality related to siderosis. Each of the approved iron chelating agents has its own advantages over the others and also has its own risks, whether related to over-chelation or not. In this review, we briefly discuss the methods to monitor the efficacy of iron chelation therapy (ICT) and the evidence behind the use of each iron chelating agent. We also portray the risks and complications associated with each iron chelating agent and recommend strategies to manage adverse events. PMID:26613264

  10. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  11. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  12. Physiological response of Moringa oleifera to stigmasterol and chelated zinc

    KARIMA GAMAL EL-DIN; IMAN MAHMOUD TALAAT; MOHAMED ABDEL-GHANY BEKHETA; ABDALLA EL-MOURSI

    2012-01-01

    El-Moursi A, Talaat IM, Bekheta MA, Gamal El-Din K. 2012. Physiological response of Moringa oleifera to stigmasterol and chelated zinc. Nusantara Bioscience 4: 118-123. Two pot experiments were carried out in the screen of the National Research Centre, Dokki, Giza, Egypt, during two successive seasons (2009/2010 and 2010/2011), respectively to study the effect of foliar spray with chelated zinc (100, 200 and 300 mg/L) and stigmasterol (50, 100 and 150 mg/L) on growth and chemical constituents...

  13. Kinetically and thermodynamically stable isomers of thorium chelates of polyaza polycarboxylic macrocycles

    Jacques, Vincent; Desreux, Jean F.

    1994-10-01

    The solution conformation of the thorium(IV) complexes of two polyaza polycarboxylic macrocycles, DOTA and HEHA (1,4,7,10-tetraazacyclododecane-N, N', N(double prime), N(triple prime)-tetraacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N, N', N(double prime), N(triple prime), N(double prime)(double prime), N(double prime)(triple prime)-hexaacetic acid), was investigated by one- and two-dimensional nuclear magnetic resonance spectroscopy. ThHEHA(2+) forms a kinetically stable topomer of C2 symmetry and a thermodynamically stable topomer of S6 symmetry. Both complexes are assigned an icosahedral geometry. The activation energy for the intermolecular exchange is very high (214 kJ/mol). The behavior of ThHEHA(2+) contrasts with the properties of the other Th(IV) chelates that are known to be fluxional.

  14. Bioavailability assessment of metals chelated as proteinates using the Ussing Chamber Model

    G. Piva

    2011-03-01

    Full Text Available Preparation of proteinates by hydrolysis of organic matter produces a blend of different proteins, and may likely result in the chelation of trace elements. Often this process results in an increased bioavailability of minerals, leading to a higher absorption rate than inorganic salts (Cao et al., 2000; Uchida et al., 2001; Bailey et al., 2001; Guo et al., 2001. Usually trace elements uptake takes place along the small intestine, mainly jejunum (Tapia et al., 1996; Arredondo et al., 2000, even if the precise mechanisms underlying transport are not well understood. If these complexes are formed among metals and amino acids, they could be easily transported across the intestinal membrane by amino acids carriers..............

  15. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  16. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments

    Highlights: ► The aim was to optimize uranium solubilization for the purposes of remediation. ► The most important factor in uranium solubilization was found to be the pH. ► Citrate treatment was the most efficient, with 63% of uranium solubilization. ► The uranium extraction yield with EDDS amendment was greater than with EDTA. - Abstract: A systematic study was made of the effects of three soil amendments on the solubilization of uranium from a granitic soil. The aim was to optimize solubilization so as to enhance bioavailability for the purposes of remediation. The three amendments tested were with citrate, EDTA, and EDDS as chelating agents. The effects of pH, chelator concentration, and leaching time were studied. The most important factor in uranium solubilization was found to be the pH. In the absence of chelating agents, the greatest solubilization was obtained for alkaline conditions, with values representing about 15% of the total uranium activity in the bulk soil. There were major differences in uranium solubilization between the different amendments. The citrate treatment was the most efficient at acidic pH, particularly with the greatest concentration of citrate tested (50 mmol kg−1) after 6 days of treatment. Under these conditions, the uranium concentration in solution was greater by a factor of 356 than in the control suspension, and represented some 63% of the uranium concentration in the bulk soil. Under alkaline conditions, the EDTA and EDDS treatments gave the greatest uranium activity concentrations in solution, but these concentrations were much lower than those with the citrate amendment, and were not very different from the control results. The uranium extraction yield with EDDS amendment was greater than with EDTA.

  17. Evaluation of complexing properties of chelating agents for the bismuth-213

    The bismuth-213 is an alpha- and beta-emitting radioelement of very short physical half-life (45 min) obtained by means of a (225Ac-213Bi) generator. Given its radiotoxicity, this element presents an interest in radioimmunotherapy (RIT). At present, the DTPA derivatives alone are used in radiolabelling of antibodies for RIT. This study presents the complexing properties of other chelates potentially usable to this goal. Four original chelating agents were synthesized in order to choose the families giving the best results in complexing the 213Bi: the tri-ethylene-tetra-amino-hexa-carboxylic acid (HETA), the 1, 4, 7, 10-tetra-aza-cyclo-dodecane-1, 4, 7, 10-tetraacetic- 1- Gly-L-p-nitro Phe-amide (DOTA-pept), the 1, 4, 8, 11-tetrakis [(S)-2 hydroxy-propyl]-1, 4, 8, 11-tetra-aza-cyclo-tetra-decane (THEOH), and the ethylenediamine di-acetate di-acetamide-bis-thiophenol (EDTA-TH). Given the physical characteristics of 213Bi and the goal of our research, the studies of complexation were conducted by C.C.M. on silica, in highly diluted solution, with fixed chelates-213Bi incubation time (15 min), and variable temperature and concentrations. Analysis of the results have been done by means of a phosphor-imager by measuring the number of pixels associated to every chromatographic spot. The obtained results show that the poly-aza poly-carboxylic derivatives and poly-aza di-thio dicarboxylic derivatives are the only able ones to complex rapidly and quantitatively the 213Bi

  18. Degradation of toluene, ethylbenzene, and xylene using heat and chelated-ferrous iron activated persulfate oxidation

    Mondal, P.; Sleep, B.

    2014-12-01

    Toluene, ethylbenze, and xylene (TEX) are common contaminants in the subsurface. Activated persulfate has shown promise for degrading a wide variety of organic compounds. However, studies of persulfate application for in situ degradation of TEX and effects on the subsequent bioremediation are limited. In this work, degradation studies of TEX in aqueous media and soil are being conducted using heat activated and chelated-ferrous iron activated persulfate oxidation in batch and flow-through column experiments. In the batch experiments, sodium persulfate is being used at different concentrations to provide an initial persulfate to TEX molar ratios between 10:1 and 100:1. Sodium persulfate solutions are being activated at 20, 37, 60, and 80 oC temperatures for the heat activated oxidation. For the chelated-ferrous iron activated oxidation, ferrous iron and citric acid, both are being used at concentration of 5 mM. In the experiments with soil slurry, a soil to water ratio of 1 to 5 is being used. Flow through water saturated column experiments are being conducted with glass columns (45 cm in length and 4 cm in diameter) uniformly packed with soils, and equilibrated with water containing TEX at the target concentrations. Both the heat activation and chelated-ferrous iron activation of persulfate are being employed in the column experiments. Future experiments are planned to determine the suitability of persulfate oxidation of TEX on the subsequent biodegradation using batch microcosms containing TEX degrading microbial cultures. In these experiments, the microbial biomass will be monitored using total phospholipids, and the microbial community will be determined using quantitative real-time polymerase chain reaction (qPCR) on the extracted DNA. This study is expected to provide suitable operating conditions for in situ chemical oxidation of TEX with activated persulfate followed by bioremediation.

  19. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. PMID:23411339

  20. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments

    Lozano, J.C. [Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca (Spain); Blanco Rodriguez, P. [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain); Vera Tome, F., E-mail: fvt@unex.es [Natural Radioactivity Group, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain); Calvo, C. Prieto [Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca (Spain)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The aim was to optimize uranium solubilization for the purposes of remediation. Black-Right-Pointing-Pointer The most important factor in uranium solubilization was found to be the pH. Black-Right-Pointing-Pointer Citrate treatment was the most efficient, with 63% of uranium solubilization. Black-Right-Pointing-Pointer The uranium extraction yield with EDDS amendment was greater than with EDTA. - Abstract: A systematic study was made of the effects of three soil amendments on the solubilization of uranium from a granitic soil. The aim was to optimize solubilization so as to enhance bioavailability for the purposes of remediation. The three amendments tested were with citrate, EDTA, and EDDS as chelating agents. The effects of pH, chelator concentration, and leaching time were studied. The most important factor in uranium solubilization was found to be the pH. In the absence of chelating agents, the greatest solubilization was obtained for alkaline conditions, with values representing about 15% of the total uranium activity in the bulk soil. There were major differences in uranium solubilization between the different amendments. The citrate treatment was the most efficient at acidic pH, particularly with the greatest concentration of citrate tested (50 mmol kg{sup -1}) after 6 days of treatment. Under these conditions, the uranium concentration in solution was greater by a factor of 356 than in the control suspension, and represented some 63% of the uranium concentration in the bulk soil. Under alkaline conditions, the EDTA and EDDS treatments gave the greatest uranium activity concentrations in solution, but these concentrations were much lower than those with the citrate amendment, and were not very different from the control results. The uranium extraction yield with EDDS amendment was greater than with EDTA.

  1. Preparation and properties of a new chelating resin containing 1-nitroso-2-naphthol as the functional group.

    Ghosh, J P; Das, H R

    1981-04-01

    A macroreticular polystyrene-based chelating ion-exchanger containing 1-nitroso-2-naphthol as the functional group has been synthesized. The exchange-capacity of the resin for a number of metal ions such as copper(II), iron(III), cobalt(II), nickel(II), palladium(II) and uranium(VI) as a function of pH has been determined. The sorption and elution characteristics for palladium(II) and uranium(VI) have been thoroughly examined with a view to utilizing the resin for separation and concentration of uranium and palladium. Uranium(VI) has been separated from a mixture of ten other metal ions by sorption on the chelating resin and selective elution with 0.5M sodium carbonate. Palladium(II) has been separated from various metal ions by selective sorption on the resin in 1M hydrochloric acid medium. PMID:18962916

  2. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the 64Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with 64Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH2-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH2-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with 64Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p 64Cu]ch14.18-p-NH2-Bn-NOTA was 4.74 ± 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [64Cu]ch14.18-SarAr was 8.06 ± 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this study indicate that differences in the thermodynamic stability of these chelator-Cu(II) complexes were not associated with significant differences in uptake of the tracer by the tumor

  3. Metal chelate conjugated monoclonal antibodies, wherein the metal is an α emitter

    Methods of manufacturing and purifying metal chelate conjugated monoclonal antibodies are described, wherein the chelated metal emits alpha radiation. The conjugates are suited for therapeutic uses being substantially free of nonchelated radiometal. (author)

  4. Questions and Answers: The NIH Trial of EDTA Chelation Therapy for Coronary Heart Disease

    ... NIH Trial of EDTA Chelation Therapy for Coronary Heart Disease Preliminary results from the Trial to Assess Chelation ... and complete it. Study Background What is coronary heart disease? Coronary heart disease (CHD) is the most common ...

  5. Archetypes for actinide-specific chelating agents

    The complexes of uranium and thorium with monomeric hydroxamic acids can serve as archetypes for an optimized macrochelate designed for tetravalent actinides. The eight-coordinate complexes, Th(i-PrN(O)C(O)R)4, where R = tert-butyl or R = neopentyl, have been synthesized and their structures have been determined by x-ray diffraction. The bulky alkyl substituents impart remarkable volatility and hydrocarbon solubility to these complexes, and the steric interactions of these substituents largely determine the structures. When R = tert-butyl, the substituents occupy the corners of a tetrahedron and force the complex into a distorted cubic geometry with crystallographic S4 symmetry. Insertion of a methylene group between the carbonyl carbon and the tert-butyl group relaxes the steric requirements, and the coordination polyhedron of the neopentyl derivative is close to the mmmm isomer of the trigonal-faced dodecahedron. Uranium tetrachloride was quantitatively oxidized via an oxygen transfer reaction with two equivalents of N-phenylbenzohydroxamic acid anion (PBHA) in tetrahydrofuran (THF) to form UO2 Cl(PBHA)(THF)2 and benzanilide. The structure of the uranyl complex has been determined from x-ray diffraction data; the linear uranyl ion is surrounded by a planar pentagonal array composed of two hydroxamate oxygen atoms, a chloride ion and two THF oxygens, such that the chloride ion is opposite the hydroxamate group. That the THF and phenyl rings are twisted from this equatorial plane limits the molecular geometry to that of the C1 point group. Some aspects of the chemistry of hydroxamic acids and of their incorporation into molecules that may serve as precursors of tetravalent actinide specific sequestering agents have also been investigated

  6. MDs remain sceptical as chelation therapy goes mainstream in Saskatchewan

    Oliver, M.

    1997-01-01

    The College of Physicians and Surgeons of Saskatchewan recently agreed to allow physicians to administer chelation therapy. Supporters, relying on anecdotal evidence, say it works wonders in overcoming heart disease, but many physicians remain profoundly sceptical. In Saskatchewan, the college decision has proved popular with patients but has drawn an angry reaction from doctors.

  7. Role of Chelation During Pregnancy in the Lead Poisoned Patient

    Brown, Mary Jean

    2013-01-01

    Cultural and environmental factors can cause lead poisoning in the pregnant patient. The data regarding the reproductive risks associated with chelation during human pregnancy are sparse. Assessment of the exposure setting, including anticipatory counseling for each pregnant woman, would help assure the ideal outcome of no added lead intake.

  8. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  9. Chelation And Extraction Of Metals For GC-MS Analysis

    Sinha, Mahadeva P.

    1995-01-01

    Chelation followed by supercritical-fluid extraction enables mass-spectrometric analysis. When fully developed, method implemented in field-portable apparatus for detection and quantification of metals in various matrices without need for elaborate preparation of samples. Used to analyze soil samples for toxic metals.

  10. Sequestration of zinc oxide by fimbrial designer chelators

    Kjærgaard, Kristian; Sørensen, Jack K; Schembri, Mark; Klemm, Per

    2000-01-01

    Type 1 fimbriae are surface organelles of Escherichia coli. By engineering a structural component of the fimbriae, FimH, to display a random peptide library, we were able to isolate metal-chelating bacteria. A library consisting of 4 x 10(7) independent clones was screened for binding to Zn...

  11. Reversal of haemochromatotic cardiomyopathy in beta thalassaemia by chelation therapy.

    Politi, A; M. Sticca; Galli, M

    1995-01-01

    Haemochromatotic cardiomyopathy is the main cause of morbidity and mortality in patients with beta thalassaemia major. Once congestive heart failure develops most patients die in a few months. Congestive heart failure was reversed and echocardiographic findings were restored to normal in a 24 year old woman with beta thalassaemia who resumed treatment with chelation therapy (desferrioxamine).

  12. Commentary on the Abuse of Metal Chelation Therapy in Patients with Autism Spectrum Disorders

    Brent, Jeffrey

    2013-01-01

    Approximately half a million patients with autism spectrum disorders are subjected to chelation therapy in the US annually. The overwhelming majority of such cases are chelated for non-accepted medical indications. These patients may seek evaluation when a urine sample is assayed after the administration of a chelating agent and the values obtained have been improperly compared to references ranges for non-chelated urines, causing falsely elevated results. Legitimate practitioners confronted ...

  13. Metal chelation, radical scavenging and inhibition of Aβ₄₂ fibrillation by food constituents in relation to Alzheimer's disease.

    Chan, Stephen; Kantham, Srinivas; Rao, Venkatesan M; Palanivelu, Manoj Kumar; Pham, Hoang L; Shaw, P Nicholas; McGeary, Ross P; Ross, Benjamin P

    2016-05-15

    Various food constituents have been proposed as disease-modifying agents for Alzheimer's disease (AD), due to epidemiological evidence of their beneficial effects, and for their ability to ameliorate factors linked to AD pathogenesis, namely by: chelating iron, copper and zinc; scavenging reactive oxygen species; and suppressing the fibrillation of amyloid-beta peptide (Aβ). In this study, nine different food constituents (l-ascorbic acid, caffeic acid, caffeine, curcumin, (-)-epigallocatechin gallate (EGCG), gallic acid, propyl gallate, resveratrol, and α-tocopherol) were investigated for their effects on the above factors, using metal chelation assays, antioxidant assays, and assays of Aβ42 fibrillation. An assay method was developed using 5-Br-PAPS to examine the complexation of Zn(II) and Cu(II). EGCG, gallic acid, and curcumin were identified as a multifunctional compounds, however their poor brain uptake might limit their therapeutic effects. The antioxidants l-ascorbic acid and α-tocopherol, with better brain uptake, deserve further investigation for specifically addressing oxidative stress within the AD brain. PMID:26775960

  14. NHS-MAS3: a bifunctional chelator alternative to NHS-MAG3

    This laboratory uses an N-hydroxysuccinimide derivative of S-acetylmercaptoacetyltriglycine (NHS-MAG3) to conjugate amines for subsequent labeling with 99mTc. However, the synthesis from triglycerine is general and not restricted to this tripeptide. We had earlier selected a small number of alternative tripeptides and synthesized the corresponding NHS derivatives. Each was then evaluated in a search for bifunctional chelators with properties superior to NHS-MAG3, such as lower serum protein binding or improved stability to cysteine challenge. Based on these preliminary results, NHS-S-acetylmercaptoacetyltriserine (NHS-MAS3) was selected for further investigation. We have now conjugated this bifunctional chelator to biocytin and to an amine-derivatized peptide nucleic acid (PNA). Both carriers were also conjugated with NHS-MAG3 under identical conditions and all were labeled with 99mTc at neutral pH and at boiling temperature while the conjugated PNAs were radiolabelled at neutral pH and at room temperature. Regardless of the chelator, reverse phase HPLC radiochromatograms of the labeled biotins and PNAs after purification showed a single peak. However, by size exclusion HPLC, the radiochromatograms always showed several peaks even after purification, but the MAS3 radiochromatograms were less complicated. For biotin and PNA both, radiolabeling via MAS3 showed improved 99mTc stability in 37 deg. C serum and in cysteine solution. The four preparations were administered to mice implanted in one thigh with avidin beads (biotins) or complementary PNA beads (PNAs). At 5 h post-administration, no significant differences were observed in the targeting of PNA beads between the two chelators, however the target thigh/normal thigh ratio was significantly higher for MAS3-biotin compared to MAG3-biotin. We conclude that labeling biocytin and amine-derivatized PNA with NHS-MAS3 compared to NHS-MAG3 provides simpler radiochromatographic profiles, improved stability of the label in

  15. New thermo-sensitive chelating surfactants for selective solvent-free extraction of uranyl nitrate

    Functional surfactants were synthesised by grafting a chelating group (amino-acid residue) to the tip of a poly-ethoxylated nonionic surfactant chain (CiEj: CiH2i+1(OCH2CH2)jOH)) or in a branched position. CiEj nonionic surfactants are known to be thermo-reversible and to exhibit a clouding phenomenon associated to phase separation of micelles. The functional surfactants retain both surface-active properties, characteristic thermo-reversible behaviour and have efficient complexing properties toward uranyl. In the presence of uranyl nitrate, small micelles are formed at ambient temperature and the de-mixing leads to a separation of the target ion trapped by the functional surfactant (cloud point extraction). Those surfactants are more efficient than mixture of classical CiEj and complexing agent solubilized in the micelles. This reveals a synergistic effect of the covalent bond between the chelating group and the nonionic surfactant CiEj. This paper presents a systematic study of the extraction and aggregation properties and the influence of the nature of the ions. (authors)

  16. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  17. Neuroprotective Role of a Novel Copper Chelator against Aβ42 Induced Neurotoxicity

    Sandeep Kumar Singh

    2013-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease and associated with the extracellular deposits of amyloid-β peptide in hippocampus region. Metal ions like Cu, Fe and Zn are known to associate with the amyloid beta (Aβ at high concentration and interaction of these ions with soluble and aggregated forms of Aβ peptide help in development of AD. Here we showed Cu mediated neurotoxicity in the eye tissues of transgenic Drosophila expressing human amyloid β and its rescue through a novel Cu chelator. In this context, we have synthesised and characterized the compound L 2,6-Pyridinedicarboxylic acid, 2,6-bis[2-[(4-carboxyphenyl methylene] hydrazide] by Mass spectra (MS and Elemental analysis (EA. The Cu chelation potential of the compound L is tested in vivo in Drosophila. Oral administration of Copper to the transgenic larvae resulted in severe degeneration in eye tissues, which was rescued by the supplementation of compound L. The levels of anti-oxidant markers like SOD and MDA were measured in compound L treated flies and found a significant rescue (P<0.001. Further rescue of the eye degeneration phenotypes as revealed by SEM affirm the role of copper in Aβ toxicity. Hence, use of compound L, an amidoamine derivative, could be a possible therapeutic measure for Aβ induced neurotoxicity.

  18. Formation of aerobic granules in the presence of a synthetic chelating agent

    This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA + acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules. - Synthetic chelating agent enhances aerobic microbial granulation

  19. Formation of aerobic granules in the presence of a synthetic chelating agent

    Nancharaiah, Yarlagadda V. [Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, BARC Facilities, Kalpakkam 603 102 (India)], E-mail: yvn@igcar.ernet.in; Joshi, Hiren M.; Krishna Mohan, Tulsi V.; Venugopalan, Vayalam P.; Narasimhan, Sevilimedu V. [Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, BARC Facilities, Kalpakkam 603 102 (India)

    2008-05-15

    This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA + acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules. - Synthetic chelating agent enhances aerobic microbial granulation.

  20. Investigation of the chelation effect on the voltammetric behaviour of selected metals

    Iron, cadmium, aluminum and chromium could be easily determined by voltammetric methods. The chelation behaviour of chelating agents like hydroxyquinoline, NaDEDC, cupferron etc. have been investigated on the voltammetric behavior of these metals. The results were compared with the spectro fluorimetric investigation of these metal chelates and a relation between voltammetric and fluorimetric behaviour have been established. (author)

  1. EDTA Chelation Therapy, Without Added Vitamin C, Decreases Oxidative DNA Damage and Lipid Peroxidation

    Chelation therapy is thought to not only remove contaminating metals, but also to decrease free radical production. However, in standard EDTA chelation therapy high doses of vitamin C with potential prooxidant effects are often added to the chelation solution. We demonstrated previously that the in...

  2. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  3. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt); Nawar, N., E-mail: nnawar@mans.edu.eg [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt); Abdel-Latif, D.A. [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt)

    2010-12-15

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO{sub 4} and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid {alpha}-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid {alpha}-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+}. The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  4. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.

    Monier, M; Nawar, N; Abdel-Latif, D A

    2010-12-15

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO(4) and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid α-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid α-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg(2+), Cu(2+) and Co(2+). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:20810212

  5. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO4 and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid α-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid α-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg2+, Cu2+ and Co2+. The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  6. [Effects of mixed chelators on the leaching of cadmium in contaminated soils under intercropping system].

    Zhou, Jian-Li; Wu, Qi-Tang; Wei, Ze-Bin; Guo, Xiao-Fang; Qiu, Jin-Rong; Huang, Zhu-Jian

    2011-11-01

    In order to elucidate the influence of chelators on Cd leaching in contaminated soil, outdoor soil column (100 cm) leaching experiments were conducted using two paddy soils irrigated with Pb-Zn mining wastewater. Soil samples which under intercropping systems were collected from Qingyuan City (acid soil with pH 4.63) and Lechang city (neutral soil with pH 6.51), Guangdong Province of China. The mixture of chelators (MC) comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCl with molar ratio of 10 : 1 : 2 : 3 at the concentration of 5 mmol x kg(-1) soil. The intercropping system used in this study was a Zn- and Cd-hyperaccumulator (Sedum alfredii) and a low-accumulating crop (Zea mays). Results showed that at day 2 after the application of MC, the Cd concentrations in leachates from every layer of neutral and acid soils increased significantly in the treatment with intercropping and MC. At day 8 the concentrations of Cd in leachate from layers below 20 cm in the neutral soil and below 60 cm in the acid soil were still significantly higher than those of control. However, the mobility of Cd was decreased greatly compared with that at day 2. At day 2 and day 8 the Cd concentrations in leachates from every layer of neutral and acid soils in the Co-crop + MC treatments exceed the value of the Groundwater Quality Standards (GB/T 14848-93). Cd in all soil columns showed the trend to migrate downwards, especially in the acid soil. The total Cd in the soil layers of 20 cm and 40 cm was decreased by 40% -58% and 39%-49% respectively at the end of the experiments compared to the initial value. After leaching of 100 days,the total Cd in 0-40 cm soil layer of acid soil reached the limit of National Soil Environmental Quality Standards (GB 15618-1995). The results also implied that in Cd-contaminated soil MC addition might enhance the potential risks of Cd contamination in groundwater. PMID:22295648

  7. Determination of trace elements in natural water samples by sir-segmented flow-injection/ICP-MS after preconcentration with a chitosan-based chelating resin

    Ultratrace elements in natural water samples were determined simultaneously by air-segmented flow-injection/inductively coupled plasma-mass spectrometry (SFI/ICP-MS). A small volume of the sample solutions (80 μl) was introduced into a nebulizer by an air-segmented flow-injection (SFI) system, and a maximum of fifteen elements were measured during each run. A chitosan-based chelating resin containing functional groups of iminodiacetate was used to separate and enrich analyte metal ions. A 50-fold preconcentration using 50 ml of sample solutions was achieved by the proposed method, where 1 ml of 0.1 M nitric acid was added to residues after drying the chelating column effluent. At pH 6, several heavy metals (Fe, Ni, Co, Cu, Zn, Ag, Cd, Pb and U) and rare earth elements (REEs) were quantitatively retained on the chelating resin column, whereas alkali and alkaline earth metals were eluted from the column by rinsing with 5 ml of a 0.2 M ammonium acetate solution. Metals adsorbed on the chelating resin column were recovered by elution with 10 ml of 1 M nitric acid. The proposed method was applied to the determination of trace elements in several natural water samples, such as river water and mineral drinking water. (author)

  8. Determination of trace elements in natural water samples by sir-segmented flow-injection/ICP-MS after preconcentration with a chitosan-based chelating resin

    Lee, K.H.; Oshima, Mitsuko; Motomizu, Shoji [Department of Chemistry, Faculty of Science, Okayama University, Okayama (Japan)

    2000-07-01

    Ultratrace elements in natural water samples were determined simultaneously by air-segmented flow-injection/inductively coupled plasma-mass spectrometry (SFI/ICP-MS). A small volume of the sample solutions (80 {mu}l) was introduced into a nebulizer by an air-segmented flow-injection (SFI) system, and a maximum of fifteen elements were measured during each run. A chitosan-based chelating resin containing functional groups of iminodiacetate was used to separate and enrich analyte metal ions. A 50-fold preconcentration using 50 ml of sample solutions was achieved by the proposed method, where 1 ml of 0.1 M nitric acid was added to residues after drying the chelating column effluent. At pH 6, several heavy metals (Fe, Ni, Co, Cu, Zn, Ag, Cd, Pb and U) and rare earth elements (REEs) were quantitatively retained on the chelating resin column, whereas alkali and alkaline earth metals were eluted from the column by rinsing with 5 ml of a 0.2 M ammonium acetate solution. Metals adsorbed on the chelating resin column were recovered by elution with 10 ml of 1 M nitric acid. The proposed method was applied to the determination of trace elements in several natural water samples, such as river water and mineral drinking water. (author)

  9. Synthesis of New Bis(3-hydroxy-4-pyridinone) Ligands as Chelating Agents for Uranyl Complexation

    Bo Jin; Rongzong Zheng; Rufang Peng; Shijin Chu

    2016-01-01

    Five new bis(3-hydroxy-4-pyridinone) tetradentate chelators were synthesized in this study. The structures of these tetradentate chelators were characterized by 1H-NMR, 13C-NMR, FT-IR, UV-vis, and mass spectral analyses. The binding abilities of these tetradentate chelators for uranyl ion at pH 7.4 were also determined by UV spectrophotometry in aqueous media. Results showed that the efficiencies of these chelating agents are dependent on the linker length. Ligand 4b is the best chelator and ...

  10. Synthesis of New Bis(3-hydroxy-4-pyridinone) Ligands as Chelating Agents for Uranyl Complexation.

    Jin, Bo; Zheng, Rongzong; Peng, Rufang; Chu, Shijin

    2016-01-01

    Five new bis(3-hydroxy-4-pyridinone) tetradentate chelators were synthesized in this study. The structures of these tetradentate chelators were characterized by ¹H-NMR, (13)C-NMR, FT-IR, UV-vis, and mass spectral analyses. The binding abilities of these tetradentate chelators for uranyl ion at pH 7.4 were also determined by UV spectrophotometry in aqueous media. Results showed that the efficiencies of these chelating agents are dependent on the linker length. Ligand 4b is the best chelator and suitable for further studies. PMID:27005598

  11. Effect of Chelating Agents on the Stability of Nano-TiO2 Sol Particles for Sol-Gel Coating.

    Maeng, Wan Young; Yoo, Mi

    2015-11-01

    Agglomeration of sol particles in a titanium alkoxide (tetrabutyl orthotitanate (TBOT), > 97%) solution during the hydrolysis and condensation steps makes the sol solution difficult to use for synthesizing homogeneous sol-gel coating. Here, we have investigated the effect of stabilizing agents (acetic acid and ethyl acetoacetate (EAcAc)) on the agglomeration of Ti alkoxide particles during hydrolysis and condensation in order to determine the optimized conditions for controlling the precipitation of TiO2 particles. The study was conducted at R(AC) ([acetic acid]/[TBOT]) = 0.1-5 and R(EAcAc)([EAcAc]/[TBOT]) = 0.05-0.65. We also studied the effects of a basic catalyst ethanolamine (ETA), water, and HCl on sol stability. The chelating ligands in the precursor sol were analyzed with FT-IR. The coating properties were examined by focused ion beam. The stabilizing agents (acetic acid and EAcAc) significantly influenced the agglomeration and precipitation of TBOT precursor particles during hydrolysis. As R(AC) and R(EAcAc) increased, the agglomeration remarkably decreased. The stability of the sol with acetic acid and EAcAc arises from the coordination of the chelating ligand to TBOT that hinders hydrolysis and condensation. A uniform fine coating (thickness: 30 nm) on stainless steel was obtained by using an optimized sol with R(AC) = 0.5 and R(EAcAc) = 0.65. PMID:26726529

  12. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors. PMID:26336844

  13. A comparison study of radiostrontium chelation with chitin, chitosan, EDTA and DTPA

    Chitin and chitosan are nontoxic natural chelators that chelate radiostrontium effectively. The purpose of this study was to compare radiostrontium chelation of chitin and chitosan with that of well known chemical chelators, namely EDTA and DTPA. The chelaton rates of chitin, chitosan, EDTA and DTPA were compared using a column chromatography method (Sephadex G-25M, Sweden). Three kinds of chitins and four kinds of chitosans were used. All of them were water soluble. Phosphated chitosan showed the highest chelation yield of 97% at pH 7. All of chitins, chitosans, EDTA and DTPA showed chelation yield of more than 90% independent of varing pH level. Chitin and chitosan have similar chelation rate as compared with EDTA and DTPA

  14. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  15. Evaluation of extractants and chelating resins in polishing actinide-contaminated waste streams

    At the Los Alamos National Laboratory Plutonium Facility, anion exchange is used for recovering plutonium from nitric acid solutions. Although this approach recovers >99%, the trace amounts of plutonium and other actinides remaining in the effluent require additional processing. We are doing research to develop a secondary unit operation that can directly polish the effluent so that actinide levels are reduced to below the maximum allowed for facility discharge. We selected solvent extraction, the only unit operation that can meet the stringent process requirements imposed; several carbonyl and phosphoryl extractants were evaluated and their performance characterized. We also investigated various engineering approaches for solvent extraction; the most promising was a chelating resin loaded with extractant. Our research now focuses on the synthesis of malonamides, and our goal is to bond these extractants to a resin matrix. 7 refs., 12 figs., 1 tab

  16. Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins

    A Ravikumar Reddy; K Hussain Reddy

    2003-06-01

    Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH 10 for Pb(II) and Hg(II), whereas at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich’s equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water.

  17. CoMo/ZrO2 Hydrodesulfurization Catalysts Prepared by Chelating Agent Assisted Spreading

    Kaluža, L. (Luděk); Zdražil, M. (Miroslav); Vít, Z. (Zdeněk); Gulková, D. (Daniela)

    2012-01-01

    The Mo/ZrO2 and CoMo/ZrO2 catalysts were prepared by impregnation of the monoclinic ZrO2 by the chelating agent nitrilotriacetic acid (NTA) assisted spreading of MoO3 with CoCO3, or (NH4)6Mo7O24.4H2O with Co(NO3)2.6H2O. The catalysts were characterized by X-ray diffraction, N2 physisorption, O2 chemisorption and activity in reaction of 1-benzothiophene hydrodesulfurization. The properties of these unconventional catalysts were compared with behavior of conventional Mo/ZrO2 and CoMo/ZrO2 catal...

  18. Chemical, physical, and sensory characteristics of mozzarella cheese fortified using protein-chelated iron or ferric chloride.

    Rice, W H; McMahon, D J

    1998-02-01

    Mozzarella cheese containing 25 and 50 mg of iron/kg of cheese was manufactured from milk that had been fortified with casein-chelated iron, whey protein-chelated iron, or FeCl3. Chemical, physical, and sensory characteristics were compared with those of a control cheese. Physical properties were assessed by testing melting, apparent viscosity, and browning of heated cheese. Cheeses were evaluated by trained panelists for the presence of metallic flavors, oxidized flavors, and other undesirable flavors. Addition of 25 mg iron/kg of cheese had no effects on the physical properties of Mozzarella cheese. Apparent viscosity of cheese fortified with 50 mg of iron/kg of cheese tended to be slightly higher than the control cheese, although this difference was not statistically significant at all storage times. Cook color was not affected by iron fortification. No increase in chemical oxidation (measured using thiobarbituric acid assay) was observed between the control and iron-fortified cheeses. Slight but statistically significant increases in metallic flavors, oxidized flavors, and off-flavors in the iron-fortified cheese were observed by the trained sensory panel, but the flavor defects were of very low intensity. For metallic flavors, oxidized flavors, and off-flavors, the control cheese scored 1.5, 1.5, and 1.3, respectively; the iron-fortified cheese scored 2.1, 2.0, and 1.6 based on a nine-point scale (where 1 = not perceptible to 3 = slightly perceptible). Sensory scores for iron-fortified cheese made using casein-chelated iron or whey protein-chelated iron was not significantly different from those of cheese made using ferric chloride. When used on pizza, consumer panels rated the iron-fortified cheeses as comparable with the control cheese. PMID:9532487

  19. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. PMID:27157741

  20. Doping of graphene nanomeshes by ion-chelation

    Maarouf, Ahmed; Nistor, Razvan; Afzali, Ali; Kuroda, Marcelo; Newns, Dennis; Martyna, Glenn

    2013-03-01

    Graphene nanomeshes (GNM's) are formed by the creation of a superlattice of pores in graphene. Depending upon the pore shape, size, superlattice constant and symmetry, GNM's can be semimetallic, or semiconducting with a fractional eV band gap, allowing them to be fruitfully employed in applications that pristine graphene cannot. In this work, first principles calculations are used to study the doping of semiconducting GNM's using a chemically motivated approach. It is shown that ion-chelation leads to a stable doping of the GNM's, and that it occurs within a rigid band doping picture. Such chelated or ``crown'' GNM structures are thus stable, high mobility semiconducting materials which can serve as building blocks for novel graphene-based nanoelectronics applications.

  1. Lanthanides caged by the organic chelates; structural properties

    Smentek, Lidia

    2011-04-01

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  2. Pathophysiological and clinical aspects of iron chelation therapy in MDS.

    Gattermann, Norbert

    2012-01-01

    The majority of patients with myelodysplastic syndromes (MDS) become transfusion-dependent during the course of disease and may thus develop transfusional iron overload. As a further contributor to iron overload there is increased absorption of dietary iron from the gut, as a consequence of ineffective erythropoiesis. Compared with thalassemia, it is less clear how frequent patients with MDS develop clinical complications of iron overload, and whether the accumulation of iron shortens their survival. This review aims to summarize our current knowledge of the detrimental effects of transfusional iron overload in MDS, point out the risks associated with iron-induced oxidative stress, describe the tools available for diagnosing iron overload, indicate the treatment options with currently available iron chelators, and discuss the measurement of labile plasma iron (LPI) as a tool to monitor the efficacy of iron chelation therapy. PMID:22571702

  3. Toxicological studies of a new chelating agent 8102

    The results of toxicological studies of a new chelating agent 8102 in different kinds of animals (mice, rats, rabbits and dogs) were reported. The results show that for mice, LD50 is 782 +- 21 mg/kg (i.v) and 3.17 +- 0.06 g/kg (i.m), and for rats, LD50 is 478 +- 15 mg/kg (i.v) and 3.04 +- 0.08 g/kg (i.m). In subacute experiments for dogs, the agent 8102 in doses of 50, 100, 150 mg(kg.day) was injected i.m. and for control group 0.9% saline was injected i.m.. Treatment was continued for 30 days. In pathological and clinical chemical analysis no essential change was observed. The experimental results suggest that the toxicity of this new chelating agent 8102 is low

  4. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

    Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available β-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using 111In-labelled derivatives. Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using 111In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the natIn-metallated compounds were determined by receptor autoradiography using 125I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the 111In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. IC50 values of the natIn-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC50 between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All 111In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All 111In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to 111In-DTPA-minigastrin 0(0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator

  5. Assessment of 186Re chelate-conjugated bisphosphonate for the development of new radiopharmaceuticals for bones

    Introduction: The preferable pharmacokinetics of rhenium-186 (186Re)-monoaminemonoamidedithiol-conjugated or 186Re-mercaptoacetyltriglycine-conjugated bisphosphonates (BPs) suggested that the molecular design would be applicable to other radionuclides such as 68Ga, 99mTc, 153Sm and 177Lu. In this study, a key factor affecting the pharmacokinetics of a chelate-conjugated BP was investigated to estimate the validity and the applicability of molecular design. Methods: Chemically inert and well-characterized tricarbonyl[186Re][(cyclopentadienylcarbonyl amino)-acetic acid]rhenium ([186Re]CpTR-Gly) was conjugated with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate and purified by high-performance liquid chromatography (HPLC) to prepare [186Re](1-{3-[tricarbonyl(cyclopentadienylcarbonyl amino)-acetylamido]-1-hydroxy-1-phosphono-propyl}-phosphonic acid)rhenium ([186Re]CpTR-Gly-APD). Plasma stability, plasma protein binding, hydroxyapatite (HA) binding and the pharmacokinetics of [186Re]CpTR-Gly-APD were compared with those of 186Re 1-hydroxyethylidene-1,1-diphosphonate (HEDP). The effect of HEDP coadministration and preadministration on the pharmacokinetics of [186Re]CpTR-Gly-APD was also determined. Results: The HPLC-purified [186Re]CpTR-Gly-APD showed higher plasma stability, higher HA binding, higher bone accumulation and lower plasma protein binding than did 186Re-HEDP. However, HA binding of [186Re]CpTR-Gly-APD decreased to levels slightly higher than that of 186Re-HEDP at similar HEDP concentrations. Bone accumulation of [186Re]CpTR-Gly-APD also decreased to levels similar to that of 186Re-HEDP when [186Re]CpTR-Gly-APD was coinjected with HEDP equivalent to that in 186Re-HEDP. In contrast, HEDP pretreatment did not impair bone accumulation of the two 186Re-labeled compounds. However, a delay in blood clearance and an increase in renal radioactivity levels were observed particularly with 186Re-HEDP. Conclusions: Although 186Re-HEDP possessed HA binding and bone

  6. Meta-analysis of the safety of iron chelating agents

    Li, Niya; 李妮婭

    2014-01-01

    Background: Thalassaemia is a genetic disorder disease, one of the most clinically relevant haemoglobinopathies in paediatric population. It interferes with the synthesis of haemoglobin chain. For the sake of maintaining the serum haemoglobin at a normal level, regular blood cell transfusion is required to the patients with thalassaemia. In general, patients with thalassaemia are often diagnosed at an early age and need to take a life-long iron chelating therapy to prevent the multi-organ...

  7. CHELATION THERAPY FOR IRON OVERLOAD: NURSING PRACTICE IMPLICATIONS

    Eckes, Ellen J.

    2011-01-01

    Many diseases of the blood are treated with blood transfusion therapy. Chronic transfusions can cause iron overload, and, if untreated, can cause end-organ damage. Chelation therapy provides a way of treating iron overload and minimizing its adverse effects. Nurses need to understand that iron overload is a consequence of chronic blood transfusion, and they need to know what effects it has on end-organs and what treatment options are available.

  8. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  9. Self-assembled polymeric chelate nanoparticles as potential theranostic agents

    Škodová, Michaela; Černoch, Peter; Štěpánek, Petr; Chánová, Eliška; Kučka, Jan; Kálalová, Zuzana; Kaňková, Dana; Hrubý, Martin

    2012-01-01

    Roč. 13, č. 18 (2012), s. 4244-4250. ISSN 1439-4235 R&D Projects: GA ČR GPP207/10/P054; GA ČR GA202/09/2078; GA ČR GAP304/12/0950 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : chelates * nanoparticles * polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.349, year: 2012

  10. Decontamination of process equipment using recyclable chelating solvent

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  11. Evaluation of copper-labeled bifunctional chelate-albumin conjugates for blood pool imaging

    Anderson, C.J.; Rocque, P.A.; Welch, M.J. (Washington Univ., St. Louis, MO (United States). Edward Mallinckrodt Inst. of Radiology); Weinheimer, C.J. (Washington Univ., St. Louis, MO (United States). School of Medicine)

    1993-05-01

    [sup 62]Cu is a generator-produced positron-emitting radionuclide with a half-life amenable to blood-pool imaging with PET. Three bifunctional chelates [cyclic anhydride of diethylenetriamine-pentaacetic acid (cDTPAA), 6-bromoacetamidobenzyl-1,4,8,11-tetraazacyclotetradecane-N,N',N'', N''' tetraacetic acid (BAT), and p-carboxyethylphenylglyoxal-bis-([sup 4])N-methyl-thiosemicarbazone (CE-DTS)] were conjugated to HSA and labeled with [sup 67]Cu. Blood clearance and biodistribution of these three [sup 67]Cu-labeled conjugates were determined in rats. Of the three [sup 67]Cu-labeled bifunctional chelate-HSA conjugates, [sup 67]Cu-benzyl-TETA-HSA remained in the blood pool the longest, achieving stable blood levels at times longer than 24 h post-injection. The [sup 67]Cu radioactivity cleared the blood within 60 min post-injection of [sup 67]Cu-DTS-HSA, and within 10 min after administration of [sup 67]Cu-DTPA-HSA, indicating the dissociation of Cu[sup 2+] from these conjugates. Copper-labeled DTS-HSA achieved stable blood concentrations for at least 30 min post-injection and was therefore evaluated as a vascular imaging agent. DTS-HSA and benzy-TETA-HSA were labeled with [sup 62]Cu and administered to a dog for blood-pool imaging using PET. Because of the high labeling efficiency, DTS-HSA can be labeled with [sup 62]Cu without purification, making it more practical than [sup 62]Cu-benzyl-TETA-HSA as a blood-pool imaging agent. Generator-produced [sup 62]Cu-DTS-HSA should be a viable alternative blood pool agent to cyclotron-produced C[sup 15]O for PET facilities without cyclotrons. (author).

  12. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  13. High precision isotopic ratio analysis of volatile metal chelates

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50Cr, 60Ni, and 65Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60Ni (0.02-2.15 at. % excess) and 62Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26Mg and 44Ca, was analyzed by EI/MS. 1 figure, 5 tables

  14. Hydroxyurea could be a good clinically relevant iron chelator.

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  15. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  16. Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone

    Highlights: ► A mono-Eu-DTPA conjugated peptide ligand, Eu-DTPA-(A)-H2, has been developed. ► The choice of a site for incorporation of a chelator is critical. ► The labeled peptide retains full activity at the RXFP1 receptor. ► It is markedly cheaper to produce and easier to use than radioactive probes. -- Abstract: Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure–activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand–receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to choose an approriate site for incorporating chelators such as DTPA. Otherwise, the bulky size of

  17. Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone

    Shabanpoor, Fazel [Florey Neuroscience Institutes, The University of Melbourne, Parkville, VIC 3010 (Australia); School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Bathgate, Ross A.D.; Belgi, Alessia [Florey Neuroscience Institutes, The University of Melbourne, Parkville, VIC 3010 (Australia); Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC 3010 (Australia); Chan, Linda J.; Nair, Vinojini B.; Wade, John D. [Florey Neuroscience Institutes, The University of Melbourne, Parkville, VIC 3010 (Australia); School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Hossain, Mohammed Akhter, E-mail: akhter.hossain@florey.edu.au [Florey Neuroscience Institutes, The University of Melbourne, Parkville, VIC 3010 (Australia); School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer A mono-Eu-DTPA conjugated peptide ligand, Eu-DTPA-(A)-H2, has been developed. Black-Right-Pointing-Pointer The choice of a site for incorporation of a chelator is critical. Black-Right-Pointing-Pointer The labeled peptide retains full activity at the RXFP1 receptor. Black-Right-Pointing-Pointer It is markedly cheaper to produce and easier to use than radioactive probes. -- Abstract: Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to

  18. Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper

    Zhao, Junmei; Shirley, Robert B.; Dibner, Julia J.; Wedekind, Karen J.; Yan, Frances; Fisher, Paula; Hampton, Thomas R.; Evans, Joseph L.; Vazquez-Añon, Mercedes

    2016-01-01

    Background The goal of this study was to compare the antagonism of elevated dietary Cu (250 mg/kg) from CuSO4 on three different Zn sources (ZnSO4 · H2O; [Zn bis(−2-hydroxy-4-(methylthio)butanoic acid)], Zn(HMTBa)2, a chelated Zn methionine hydroxy analogue; and Zn-Methionine), as measured using multiple indices of animal performance in ROSS 308 broilers. Methods Three experiments were conducted in broiler chicks fed a semi-purified diet. All birds were fed a Zn-deficient diet (8.5 mg/kg diet...

  19. POLYKETONE FROM ETHYLENE WITH CARBON MONOXIDE CATALYZED BY NOVEL CATALYST SYSTEMS BASED ON COPPER WITH BIDENTATE PHOSPHORUS CHELATING LIGANDS

    Jun Huang; Feng-bo Li; Jin Zou; Guo-qing Yuan; Xiu-li Shi; Ding-sheng Yu

    2003-01-01

    Copolymerization of ethylene with carbon monoxide was performed with Cu catalyst systems. Novel catalyst systems based on Cu (Cu(CH3COO)2/ligand/acid) were firstly reported for the copolymerization of ethylene with carbon monoxide, in which the ligand was a bidentate phosphorus chelating ligand. The experimental results showed that this kind of Cu catalyst system exhibited high activity. When DPPP (1,3-bis(diphenylphosphine)propane) and CH3COOH were used catalyst system had the advantages of high stability and low cost.

  20. Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates

    Introduction: Bifunctional chelators have been shown to impact the biodistribution of monoclonal antibody (mAb)-based imaging agents. Recently, radiolabeled 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA)-peptide complexes have demonstrated improved in vivo stability and performance compared to their 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) counterparts. Here, we investigated if similar utility could be achieved with mAbs and compared 64Cu-labeled DOTA and NODAGA-immunoconjugates for the detection of epithelial cell adhesion molecule (EpCAM) in a prostate cancer model. Methods: DOTA and NODAGA-immunoconjugates of an EpCAM targeting mAb (mAb7) were synthesized and radiolabeled with 64Cu (DOTA: 40 °C for 1 hr; NODAGA: 25 °C for 1 hr). The average number of chelators per mAb was quantified by isotopic dilution, and the biological activity of the immunoconjugates was evaluated by flow cytometry and ELISA. Radioligand assays were performed to compare cellular uptake and determine the dissociation constant (Kd) and maximum number of binding sites (Bmax) for the immunoconjugates using DsRed-transfected PC3-cells. A PC3-DsRed xenograft tumor model was established in nude mice and used to perform biodistribution studies to compare organ uptake and pharmacokinetics. Results: 64Cu-DOTA-mAb7 and 64Cu-NODAGA-mAb7 were prepared with chelator/protein ratios of 2–3 and obtained in comparable radiochemical yields ranging from 59 to 71%. Similar immunoreactivity was observed with both agents, and mock labeling studies indicated that incubation at room temperature or 40 °C did not affect potency. 64Cu-NODAGA-mAb7 demonstrated higher in vitro cellular uptake while 64Cu-DOTA-mAb7 had higher Kd and Bmax values. From the biodistribution data, we found similar tumor uptake (13.44 ± 1.21%ID/g and 13.24 ± 4.86%ID/g for 64Cu-DOTA-mAb7 and 64Cu-NODAGA-mAb7, respectively) for both agents at 24 hr, although normal prostate tissue was significantly

  1. Preparation of thin α-particle sources using poly-pyrrole films functionalized by a chelating agent

    This work takes place in the scope of analysis of the α-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the α-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution DU and DAm could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  2. Synthesis and evaluation of two new bifunctional carboxymethylated tetraazamacrocyclic chelating agents for protein labeling with indium-111

    Ruser, G.; Ritter, W.; Maecke, H.R. (Univ. Hospital Basel (Switzerland))

    1990-09-01

    The synthesis of two new N- and C-functionalized tetraazamacrocyclic ligands intended to be covalently linked to biomolecules like monoclonal antibodies and to bind the gamma-emitting isotope indium-111 in a thermodynamically and/or kinetically inert way is described. 12-(p-Nitrobenzyl)-1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetraa cetic acid (L1) was synthesized by means of bimolecular cyclization with the appropriate malonic acid diethyl ester and triethylenetetraamine, followed by reduction with diborane and alkylation of the cyclic tetraamine with bromoacetic acid. The corresponding triscarboxymethylated ligand L2 was made by statistical alkylation of the tetraamine. Both ligands fulfill the criteria for antibody labeling using the bifunctional chelate approach, namely fast chelate formation, high radiochemical yield, and high stability under physiological conditions. Surprisingly the heptadentate ligand L2 confers higher stability to In3+ and exhibits faster complex formation than octadentate L1. 13C NMR spectra in solution indicate that the difference in stability is not due to incomplete coordination of all four carboxylate groups in In-L1.

  3. Improved crystallinity, spatial arrangement and monodispersity of submicron La0.7Ba0.3MnO3 powders: A citrate chelation approach

    The perovskite manganite systems have been the materials of tremendous interest due to their strong correlation between structure, transport and magnetism. These materials in their single-crystal form show colossal magneto-resistance (CMR), but the applied fields are very high (∼1–5 T). The polycrystalline samples do show high low-field magneto-resistance (LFMR), but good amount of control over particle sizes and grain-boundary distribution is required, which is well known but less realized in practical approaches. In this context, we report on synthesis and manipulation of polycrystalline La0.7Ba0.3MnO3 (LBMO) submicron powders using citric acid chelation. The Citrate-gel route is used to synthesize poly-dispersed LBMO powders which are subjected to citrate chelation for a duration of 0 (LB0) to 4 h(LB4) . The samples show improved ordering in X-ray diffraction patterns. Raman spectroscopy scans indicate changed mode signatures due to the probable chelating process, which alters the surface morphology. X-ray photoelectron microscopy shows an evidence of fine citrate layer on the grain boundaries. Low temperature B–H curves exhibit fine hysteresis loops for all samples, while room temperature B–H curves shows paramagnetic response. Scanning electron microscopy images showed the formation of well arranged, connected, mono-dispersed grains of LB4 sample, as against polydispered LB0. The magneto-resistance (at H=100 kOe) is seen to enhance for LB4 at its transition temperature (75%, as compared to LB0, where it is 60%), which can be attributed to the well-controlled inter-grain tunneling phenomenon and thin insulating regions in between, created due to citrate chelation, which probably enhances the scattering phenomenon and its susceptibility to applied fields. As citric acid is known to chelate Mn ions, it probably chelates the smaller LB particulate structure and leaves behind citrate-connected submicron grains of LBMO, which are seen to be well engineered

  4. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2+ ions.

    Ye, Zhiqiang; Wang, Guilan; Chen, Jinxue; Fu, Xiaoyan; Zhang, Wenzhu; Yuan, Jingli

    2010-11-15

    Time-resolved luminescence detection technique using lanthanide chelates as luminescent probes or sensors is a highly sensitive and widely used tool for the luminescence detections of various biological and bioactive molecules. The essential of this technique is the developments of various functional luminescent probes or sensors that can selectively recognize the biological targets. In this work, a dual-chelating ligand N,N,N(1),N(1)-{2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-[N,N-bis(2-picolyl)amino-methylenepyridine]} tetrakis(acetic acid) (BBATA) has been designed and synthesized. The luminescence of its Tb(3+) chelate is very weak, but can be selectively and strongly enhanced upon reaction with Zn(2+) ions. Thus a Tb(3+) chelate-based luminescent chemosensor, BBATA-Tb(3+), for highly selective and sensitive time-resolved luminescence detection of Zn(2+) ions was developed. To confirm the utility of new chemosensor for the detection of intracellular Zn(2+) ions, the performance of BBATA-Tb(3+) as a chemosensor for time-resolved luminescent imaging detection of Zn(2+) ions in living cells was investigated. The results demonstrated the efficacy and advantage of the new luminescent chemosensor for time-resolved luminescence detection of intracellular Zn(2+) ions. PMID:20846845

  5. Removal of PCR error products and unincorporated primers by metal-chelate affinity chromatography.

    Indhu Kanakaraj

    Full Text Available Immobilized Metal Affinity Chromatography (IMAC has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and "histidine tags" genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu(2+-iminodiacetic acid (IDA agarose spin column, 94-99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu(2+-IDA agarose can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs.

  6. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey, E-mail: vasiliev@etsu.edu

    2013-10-15

    Highlights: • Mesoporous organoclay for immobilization of heavy metal cations was obtained. • The material has a porous structure with high contents of surface adsorption sites. • Leaching of heavy metals from soil reduced in the presence of this adsorbent. • The adsorbent demonstrated high effectiveness in neutral and acidic media. -- Abstract: The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N{sub 2}, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites.

  7. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation

    Highlights: ► We report a novel flocculant with the properties of reduction and chelation for Cr. ► The removal of Cr(VI) by the flocculant depends highly on pH value. ► Some coexisting ions inhibit Cr (VI) removal, but promote total Cr removal. ► Cr and turbidity can be removed simultaneously in the treated wastewater. ► The interaction mechanism is investigated by FTIR and SEM. -- Abstract: A novel agent polyethyleneimine-sodium xanthogenate (PEX) with the multifunction of reduction, chelation, flocculation and precipitation was synthesized by using polyethyleneimine (PEI), carbon disulfide (CS2), and sodium hydroxide (NaOH). The effects of different important parameters, such as pH value, initial Cr(VI) concentration, coexisting ions and turbidity etc., on the removal of chromium from aqueous solution by PEX were investigated in flocculation experiments. The experiments results demonstrated that PEX could efficiently remove Cr(VI) and total Cr (Cr(VI) + Cr(III)) in strongly acidic media. It was proved that the presence of coexisting ions (Na+, Ca2+, F−, Cl−, and SO42−) in the solution had a little influence on the removal of chromium. Furthermore, it was conformed that Cr(VI) ions and turbidity could be simultaneously removed when water samples contained both Cr(VI) ions and turbidity. Finally, the mechanism of interaction between chromium and PEX was further confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results reveal that dithiocarboxylic acid groups on PEX macromolecule play a major role in Cr(VI) reduction and Cr(III) chelation, and the flocs formation is attributed to the interparticle bridging mechanism of PEX

  8. Significance of 111In-DTPA chelate in renal radioactivity levels of 111In-DTPA-conjugated peptides

    Metabolic studies of 111In-DTPA-labeled polypeptides and peptides showed that the radiolabeled (poly)peptides generated 111In-DTPA-adducts of amino acid that possess long residence times in the lysosomal compartment of the tissues where (poly)peptides accumulated. However, a recent study suggested that metal-chelate-methionine (Met) might possess in vivo behaviors different from metal-chelate adducts of other amino acids. In this study, to elucidate whether some biological characteristics of Met may accelerate the renal elimination rate of 111In-DTPA-adduct of Met into urine, 111In-DTPA-Met1-octreotide was synthesized and the renal handling of 111In-DTPA-Met was investigated using 111In-DTPA-L-Phe1-octreotide (Phe represents phenylalanine), which was reported previously, as a reference. Both 111In-DTPA-conjugated octreotide analogs were stable against 3-h incubation in murine serum at 37 deg. C. Both 111In-DTPA-octreotide analogs also showed rapid clearance of the radioactivity from the blood and similar accumulation of the radioactivity in the kidney. No significant differences were observed in the renal radioactivity levels from 10 min to 24 h postinjection between the two. Metabolic studies indicated that 111In-DTPA-Met1-octreotide and 111In-DTPA-L-Phe1-octreotide generated 111In-DTPA-adducts of Met and Phe, respectively, as the final radiometabolites at similar rates. These findings suggested that the long residence times of the radioactivity in tissues after administration of 111In-DTPA-labeled peptides and polypeptides would be attributed to inherent characteristics of 111In-DTPA chelate

  9. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation

    Wang, Gang, E-mail: gangw99@163.com [School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070 (China); Chang, Qing; Han, Xiaoting; Zhang, Mingyue [School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070 (China)

    2013-03-15

    Highlights: ► We report a novel flocculant with the properties of reduction and chelation for Cr. ► The removal of Cr(VI) by the flocculant depends highly on pH value. ► Some coexisting ions inhibit Cr (VI) removal, but promote total Cr removal. ► Cr and turbidity can be removed simultaneously in the treated wastewater. ► The interaction mechanism is investigated by FTIR and SEM. -- Abstract: A novel agent polyethyleneimine-sodium xanthogenate (PEX) with the multifunction of reduction, chelation, flocculation and precipitation was synthesized by using polyethyleneimine (PEI), carbon disulfide (CS{sub 2}), and sodium hydroxide (NaOH). The effects of different important parameters, such as pH value, initial Cr(VI) concentration, coexisting ions and turbidity etc., on the removal of chromium from aqueous solution by PEX were investigated in flocculation experiments. The experiments results demonstrated that PEX could efficiently remove Cr(VI) and total Cr (Cr(VI) + Cr(III)) in strongly acidic media. It was proved that the presence of coexisting ions (Na{sup +}, Ca{sup 2+}, F{sup −}, Cl{sup −}, and SO{sub 4}{sup 2−}) in the solution had a little influence on the removal of chromium. Furthermore, it was conformed that Cr(VI) ions and turbidity could be simultaneously removed when water samples contained both Cr(VI) ions and turbidity. Finally, the mechanism of interaction between chromium and PEX was further confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results reveal that dithiocarboxylic acid groups on PEX macromolecule play a major role in Cr(VI) reduction and Cr(III) chelation, and the flocs formation is attributed to the interparticle bridging mechanism of PEX.

  10. High temperature dissolution of ferrites, chromites and bonaccordite in chelating media

    Different methods have been employed world wide for the decontamination of reactor coolant system surfaces. The success of a decontamination process mainly depends on the oxide dissolution efficiency of the decontamination formulation. Among the oxides, Fe3O4 undergoes easy dissolution in organic acid media at normal temperatures. However, dissolution of chromites and mixed ferrites is not that easy in organic chelant media at normal temperatures even in the presence of redox reagents. Hence, a high temperature process was attempted for the dissolution of ferrites and chromites. A re-circulation system consisting of an autoclave, pump, heat exchanger etc. all lined with teflon was used for carrying out high temperature dissolution experiments. This study describes the high temperature dissolution kinetics of Fe3O4, NiFe2O4, and Cr2O3. Nitrilotriacetic acid (NTA), a well known solvent for metal oxides, was applied at temperatures ranging from 80 to 180oC. About six fold increase in dissolution rate was observed for Fe3O4 in this temperature range. Effect of N2H4 on oxide dissolution was studied. Lower dissolution rates were observed for Fe3O4 and NiFe2O4 in the presence of hydrazine. Oxide dissolution efficiency of other chelating agents like EDTA, PDCA etc. and the effect of reducing agents like oxalic acid and ascorbic acid on high temperature dissolution also has been studied. The effect of incorporation of boron and zinc in the iron and chromium oxides has also been studied. Bonaccordite (Ni2FeBO5) has been observed in the fuel deposits of pressurized Water Reactors especially in the AOA affected plants. Zinc ferrite/chromite are formed in reactors adopting zinc injection passivation technique to control radiation field. Bonaccordite and zinc ferrite/chromite formed over the reactor coolant system structural materials are also difficult to dissolve by the reagents used in chemical decontamination processes. Sample of bonaccordite was prepared by solid state

  11. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99mTc and 188Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  12. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  13. Ultra-Rapid Absorption of Recombinant Human Insulin Induced by Zinc Chelation and Surface Charge Masking

    Pohl, Roderike; Hauser, Robert; Li, Ming; De Souza, Errol; Feldstein, Robert; Seibert, Richard; Ozhan, Koray; Kashyap, Nandini; Steiner, Solomon

    2012-01-01

    Background In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)]. Method Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution. Results The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min). Conclusions The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation. PMID:22920799

  14. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    Monica Pinheiro de Almeida Verissimo; Sandra Regina Loggetto; Antonio Fabron Junior; Giorgio Roberto Baldanzi; Nelson Hamerschlak; Juliano de Lara Fernandes; Aderson da Silva Araujo; Clarisse Lopes de Castro Lobo; Kleber Yotsumoto Fertrin; Vasilios Antonios Berdoukas; Renzo Galanello

    2013-01-01

    In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox) providing good results in red...

  15. The Role of Chelation in the Treatment of Other Metal Poisonings

    Smith, Silas W.

    2013-01-01

    These proceedings will review the role of chelation in five metals—aluminum, cadmium, chromium, cobalt, and uranium—in order to illustrate various chelation concepts. The process of “chelation” can often be oversimplified, leading to incorrect assumptions and risking patient harm. For chelation to be effective, two critical assumptions must be fulfilled: the presumed “metal toxicity” must correlate with a given body or a particular compartment burden, and reducing this compartmental or the bo...

  16. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones

    Raffier, Ludovic; Gutierrez, Osvaldo; Stanton, Gretchen R.; Kozlowski, Marisa C.; Walsh, Patrick J.

    2014-01-01

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. 1H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C–C double bonds, broadening the 60 year old paradigm.

  17. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Leitch, Heather A.; Vickars, Linda M.; Chase, Jocelyn M.; Badawi, Maha A.

    2010-01-01

    Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC). A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the ...

  18. Korean Guideline for Iron Chelation Therapy in Transfusion-Induced Iron Overload

    Jang, Jun Ho; Lee, Je-Hwan; Yoon, Sung-Soo; Jo, Deog-Yeon; Kim, Hyeoung-Joon; Chung, Jooseop; Lee, Jong Wook

    2013-01-01

    Many Korean patients with transfusion-induced iron overload experience serious clinical sequelae, including organ damage, and require lifelong chelation therapy. However, due to a lack of compliance and/or unavailability of an appropriate chelator, most patients have not been treated effectively. Deferasirox (DFX), a once-daily oral iron chelator for both adult and pediatric patients with transfusion-induced iron overload, is now available in Korea. The effectiveness of deferasirox in reducin...

  19. Design, synthesis and characterization of new iron and aluminium chelating agents

    Toso, Leonardo

    2014-01-01

    Chelation therapy is widely used for metal-unbalance related diseases, namely those due to disorders on metal metabolism, such as beta-thalassemia, hemochromatosis (Fe), and neurodegenerative diseases (Cu, Fe, Zn and Al). The study of metal chelators for clinical applications, either as chelating therapeutics able to target specific metal ions in the body, or as metal-carriers for therapeutic or imaging purposes, is a topical research area which faces up to urgent medical problems. Meta...

  20. Chelation behaviour of lanthanons with o-arsonodibenzoylmethanephenlylhydrazone

    The chelate formation reaction of La(III), Pr(III), Nd(III), Gd(III), Ho(III), and Er(III) with o-arsonodibenzoylmethanephenylhydrazone has been investigated potentiometrically and conductometrically in 40 % (ν/ν) aqueous ethanol, ionic strength 0,1 M. The order of stability constants was found to be La Gd 3+: L). The complexes have been isolated in solid state and have been characterized on the basis of elemental analysis and IR data. Coordination occurs through - NH of the hydrazo and - OH of the arsonic groups. (Authors)

  1. Chelate-modified polymers for atmospheric gas chromatography

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  2. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2. 1998 annual progress report

    'This report summarizes work after 1 year and 8 months (9/15/96-5/14/98) of a 3 year project. Thus far, progress has been made in: (1) the measurement of the solubility of metal chelates in SC CO2 with and without added cosolvents, (2) the spectroscopic determination of preferential solvation of metal chelates by cosolvents in SC CO2 solutions, and (3) the development of a totally reliable computational technique for phase equilibrium computations. An important factor in the removal of metals from solid matrices with CO2/chelate mixtures is the equilibrium solubility of the metal chelate complex in the CO2.'

  3. Synthesis of amidoxime chelating fiber and its adsorption properties for Cu(II) ion

    In order to obtain the chelating fiber for adsorbing metal ions in apple juice, the effect of different conditions on adsorption properties of chelating fiber for Cu(II) ion were discussed, such as pH and the time of ad- sorption. The isotherm of adsorption has bee confirmed. The desorption and its regeneration were simply discussed, too. The results showed that the chelating fiber had good kinetic property and the adsorbed equilibrium completed almost within 20-30 min. The adsorption properties was affected by the temperature and pH. The adsorption process fits the isothermal equation of Freundlich. The chelating fiber could be used repeatedly. (authors)

  4. The application of chelating resin to the elimination of interferences in the analysis of trace hazardous elements

    In general, digestion with nitric and sulfuric acids are applied in the analysis of trace elements in solid materials like industrial products and soils. This causes the digested solution to contain high concentrations of sulfate ion. In addition, silicate, chloride and other interferences, which are contained in the material itself, can also be included. These interfering matrices are separated generally through solvent extraction. In stead of the solvent extraction method, we applied the solid phase extraction method using chelating resin, which has a functional group of iminodiacetic acid, for the analysis of trace hazardous metals such as Cd and Pb in industrial products, soils, and other materials containing high concentrations of matrix components. In the presence of high concentrations of interfering ions, over 80% of Cd and Pb and Pb were extracted, with one exception that the recovery of Cd from seawater decreased to 60-30% in the presence of 19g/L of chloride ion. On the other hand, Cr, As and Se were extracted at a low recovery rate with this type of chelating resin. (author)

  5. Complexation studies of actinides (U, Pu, Am) with linear polyamino-carboxylate ligands and sidero-chelates

    As part of our research endeavour aimed at developing and improving decontamination processes of wastewater containing alpha emitters, physico-chemical complexation studies of actinides (U, Pu, Am) with organic open-chain ligands such as poly-aminocarboxylic acids (H4EDTA) and sidero-chelates (di-hydroxamic acids and desferrioxamine B) have been carried out. Gaining a clear understanding of the coordination properties of the targeted actinides is an essential step towards the selection of the most appropriate chelating agents that will exhibit high uptake efficiencies. EXAFS (Extended X-ray Absorption Fine Structure) measurements at the ESRF synchrotron enabled to elucidate the coordination scheme of uranium and plutonium complexes. Solution thermodynamic investigations were intended to provide valuable information about the nature and the stability of the uranium(VI) and americium(III) complexes prevailing at a given pH in solution. The set of stability constants determined from potentiometric and UV-visible spectrophotometric titrations, allowed to predict the speciation of the selected actinides in presence of the aforementioned ligands and to determine the pH range required for achieving 'ultimate' decontamination. (author)

  6. Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium ((239)Pu): Chelate assisted uptake and translocation.

    Singh, Shraddha; Fulzele, D P; Kaushik, C P

    2016-10-01

    Plants have demonstrated a great potential to remove toxic elements from soils and solutions and been successfully used for phytoremediation of important radionuclides. Uptake potential of vetiver plants (V. zizanoides) for the remediation of (239)Pu in hydroponic and soil conditions was studied in the present work. High efficiency of V. zizanoides for the removal of (239)Pu was recorded with 66.2% being removed from the hydroponic solution after 30 days. However, remediation of (239)Pu from soil was limited. Remediation of (239)Pu from soil was increased with the addition of chelating agents citric acid (CA) and diethylenetriaminepentaacetic acid (DTPA). Accumulation of (239)Pu was recorded higher in roots than shoots, however its translocation from roots to shoots increased in the presence of chelators in hydroponic as well as soil conditions. DTPA was found more effective than CA showing higher translocation index (TI). Increase in TI was observed 8 and 6 times in the solution and soil respectively when plants were exposed to (239)Pu-DTPA in comparison to only (239)Pu. The present study demonstrates that V. zizanoides plant is a potential plant for phytoremediation of (239)Pu. PMID:27318195

  7. Kinetic method for simultaneous determination of cadmium(II) and manganese(II) by ligand substitution reaction between 1-(2-pyridylazo)-2-naphthol chelates and EDTA

    Simultaneous kinetic determination of cadmium and manganese, on the basis on the difference of the rate of ligand substitution reaction between 1-(2-pyridylazo) -2-naphthol (PAN) chelate and EDTA in ammonia buffer solution, has been studied. Although the difference of the rate of the ligand substitution reaction between cadmium chelate and manganese chelate is small in the absence of ammonia, it becomes sufficiently large enough for simultaneous determination by an addition of ammonia because of an acceleration of the reaction of cadmium chelate caused by a catalytic effect of the ammonia. PAN and its chelates were solubilized in water with nonionic surfactant, Triton X-100, and with a small amount of methanol to measure the rate of the reaction by a stopped-flow technique. The procedures are as follows; Take a sample solution containing less than 28 μg of cadmium and 14 μg of manganese into 50 cm3 volumetric flask, add 10 mg of ascorbic acid and 5 cm3 of 4.0 x 10-3 mol dm-3 PAN solution (10% Triton X-100, 10% methanol), and adjust the pH of the solution to 8.8 with 10 cm3 of 2.0 mol dm-3 ammonia buffer and then dilute to the make with water. The reaction of this solution with 2.0 x 10-3 mol dm-3 EDTA solution (pH 8.8 with ammonia buffer) was observed by a stopped-flow apparatus at 250C. Change in the absorbance at 554 nm as a function of the reaction time was recorded and the concentration of cadmium and manganese were determined by linear extrapolation method from the reaction curves. The present method is free of interferences with other metal ions and anions, and applicable for the determination of cadmium and manganese in mining waste and treated water. (author)

  8. Synthesis of LaNiO3 perovskite type by chelating precursor method using EDTA: optimization of chelating content

    The perovskites are strategic materials due their catalytic, electronic and magnetic properties. These properties are influenced by the calcination and synthesis conditions. In this work was carried out the synthesis of LaNiO3 perovskite type by chelating precursor method using EDTA and also was studied the optimization of the EDTA content in the synthesis. The synthesized materials were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TG) and Infrared Spectroscopy (FTIR). In the optimization of the EDTA content the lowest ratio of metal / EDTA used was 1.0 / 0.1, where it was possible to obtain monophasic perovskite. (author)

  9. Detoxication and removal of uranium by phenolic chelating agents

    The use of phenolic chelating agents for detoxication and removal of uranyl nitrate in mice and rats is reported. Antidotal test: 8102, 7601 and 811 were given 2 mM/kg subcutaneously to mice and 1 mM/kg intramuscularly to rats when the animals were injected i.p. with different doses (100-500 mg/kg) of uranyl nitrate. The results showed that the antidotal effects of 8102 and 7601 were better than 811 in augmenting survival, survival time (day) and renal factor (kidney weight/body weight x100). 8102 was superior to 7601 against higher dose of uranyl nitrate intoxication. Removal test: five phenolic chelating agents (8102, 7601, 811, 7603 and 8307) were studied in rats. The results obtained demonstrated that 8102 and 7601 were better than 811, 7603 and 8307 in increasing U excretion in the urine after acute uranyl nitrate intoxication. The effects of different doses (300-1000 μM/kg) of 8102 was superior to 7601 in increasing U excretion in the urine and decreasing U deposition in the tissues. The toxicity and dose of 8102 in treating uranium intoxication are discussed

  10. Capillary gas chromatography of metal chelates of diethyl dithiocarbamates

    Arain, M.A.; Bhanger, M.I. [Center of Excellence in Analytical Chemistry (Pakistan); Khuhawar, M.Y. [M.A. Kazi Inst. of Chemistry, Univ. of Sindh, Jamshoro (Pakistan)

    2002-03-01

    Capillary GC of metal chelates of diethyl dithiocarbamate (DDTC) was examined on a methylsilicone DB-1 column, (25 meter, 0.2 mm. i.d) with a film thickness of 0.25 {mu}m. Elution was carried out at the initial column temperature of 180 C and programmed at 5 C min{sup -1} to 260 C. Detection was by FID or ECD. Symmetrical peaks with bse line separation were obtained with the metal chelates of copper(II), nickel(II), cobalt(III), manganese(II) and chromium(III). The ECD gave better sensitivity than the FID with a linear calibration range of 5 - 50 {mu}g mL{sup -1} and detection limits 2.0 - 6.0 {mu}g mL{sup -1}, corresponding to 111 - 333 pg of metal ion reaching the detector. The method was applied to the determination of metal ions in water and pharmaceutical preparations with a coefficient of variation (CV) within 4.0%. When compared with a standard flame AAS method the results revealed no significant difference. (orig.)

  11. Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone.

    Shabanpoor, Fazel; Bathgate, Ross A D; Belgi, Alessia; Chan, Linda J; Nair, Vinojini B; Wade, John D; Hossain, Mohammed Akhter

    2012-04-01

    Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to choose an approriate site for incorporating chelators such as DTPA. Otherwise, the bulky size of the chelator, depending on the site of incorporation, can affect yield, solubility, structure and pharmacological profile of the peptide. PMID:22425984

  12. Chelating, antioxidant and hypoglycaemic potential of Muscari comosum (L.) Mill. bulb extracts.

    Loizzo, Monica R; Tundis, Rosa; Menichini, Federica; Pugliese, Alessandro; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco

    2010-12-01

    The metal chelating activity, antioxidant properties and the effect on carbohydrate-hydrolysing enzyme inhibition of Muscari comosum extracts have been investigated. M. comosum bulbs contain a total amount of the phenols with a value of 56.6 mg chlorogenic acid equivalent per gram of extract and a flavonoid content of 23.4 mg quercetin equivalent per gram of extract. In order to evaluate the non-polar constituents, n-hexane extract was obtained. Gas chromatography-mass spectrometry analysis revealed the presence of fatty acids and ethyl esters as major constituents, with different aldehydes and alkanes as minor components. Ethanolic extract had the highest ferric-reducing ability power (66.7 μM Fe(II)/g) and DPPH scavenging activity with a concentration giving 50% inhibition (IC₅₀) value of 40.9 μg/ml. Moreover, this extract exhibited a good hypoglycaemic activity with IC₅₀ values of 81.3 and 112.8 μg/ml for α-amylase and α-glucosidase, respectively. In conclusion, M. comosum bulbs show promising antioxidant and hypoglycaemic activity via the inhibition of carbohydrate digestive enzymes. These activities may be of interest from a functional point of view and for the revalorization of this ancient non-cultivated vegetable of Mediterranean traditional gastronomy. PMID:20465433

  13. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators.

    Chhajro, Muhammad Afzal; Rizwan, Muhammad Shahid; Guoyong, Huang; Jun, Zhu; Kubar, Kashif Ali; Hongqing, Hu

    2016-07-01

    Phytoextraction has been identified as one of the most propitious methods of phytoremediation. This pot experiment were treated with varying amounts of (ethylenediamine triacetic acid) EDTA 3-15, (Nitriloacetic acid) NTA 3-10, (Ammonium citrate) NH4 citrate 10 - 25 mmol and one mg kg(-1)Cd, filled with 5 kg soil. The addition of chelators significantly increased Cd concentration in soil and plant. The results showed that maximum Cd uptake was noted under root, shoot and leaf of castor plant tissue (2.26, 1.54, and 0.72 mg kg(-1)) under EDTA 15, NTA 10, and NH4 citrate 25 mmol treatments respectively, and in soil 1.08, 1.06 and 0.52 mg kg(-1) pot(-1) under NH4 citrate 25, NTA 10 and EDTA 15 mmol treatments respectively, as against to control (p EDTA 15 mmol as compared to other treatments, However, Bioconcentration factor (BCF), translocation factor (TF) and remediation factor (RF) were significantly increased under EDTA 15 and NH4 citrate 25 mmol as against control. Our results demonstrated that castor plant proved satisfactory for phytoextraction on contaminated soil, and EDTA 15 and NH4 citrate 25 mmol had the affirmative effect on the Cd uptake in the artificial Cd-contaminated soil. PMID:26588431

  14. Study on remediation for uranium contaminated soils enhanced by chelator using brassica mustard

    Screening of perfect hyperaccumulators is the key to the application of this technology. Through the previous stage study, mustard was found to be good at absorption and accumulation of uranium among 51 species, the plant grows fast with wide adaptability and large biomass. Researches will focus on the following two aspects: 1. Simulating U- contaminated soils was prepared by two different ways to add uranium. (1). UO2 (NO3)2 . 6H2O solution was sprayed into soil when the plant was grown in the soil; (2). Above U-contaminated soils after planting and placed for a year. Study on whether the way of adding uranium can effect mustard accumulate uranium. Results found: in the first Phytoremediation, U-contaminated concentration at 100 mg/kg, U concentration in shoots reaches 1103.42 mg/kg, roots reach 1909.49 mg/kg, annual removal rate is 7.81%; in the second Phytoremediation, U-contaminated concentration at 100 mg/kg, U concentration in shoots reach 295.83 mg/kg, roots reach 268.42 mg/kg, annual removal rate is 2.52%. Led to the difference between the twice remediation is the speciation of uranium m soils has changed, respectively, Tessier-five step continuous extraction method for determination of uranium speciation in soils and found available uranium (exchangeable uranium, uranium carbonate) in the soil of the first phytoremediation was 52% higher than the second phytoremediation. 2. Study on chelators (Citric acids, Malic acids) and soil amendments (Organic fertilizer, microbe fertilizer. Humic acid organic fertilizer, Urea) whether effect mustard accumulate uranium, found organic fertilizer can reduce shoots accumulate uranium, Citric acid and microbe fertilizer increase shoots enrichment of uranium. (authors)

  15. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-14

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co₃O₄ phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  16. USE OF TWO DIGESTION METHODS IN THE EVALUATION OF CHROMIUM CONTENT IN CATTLE'S MEAT SUPPLEMENTED WITH CHROMIUM CHELATES

    R. L. T. de Andrade

    2015-06-01

    Full Text Available The present study aimed to analyze the chromium content in beef using two digestion methods. There were used samples from 24 18-month-old male cattle, and twelve of them were supplemented and twelve were not supplemented with chromium chelate. These samples were evaluated by atomic absorption spectroscopy, previously submitted to digestion method using nitric acid (65% with hydrogen peroxide (35% and to digestion method, using solution of nitric perchloric acid in the proportion 3:1. Immediately after the slaughter, the carcasses were sent to sanitary maturation. After 24 hours, samples between 12th and 13th rib in the muscle Longissimus Thoracis were taken. For evaluation, it was used completely randomized design (Die and analysis of variance (ANOVA at 5% of significance level. The results didn't evidenced any significant difference (p>0,05 between the (cromo content, regardless the supplementation. The same happened with the digestion methods used.

  17. Synthesis and characterization of {sup 99m}Tc- and {sup 188}Re-complexes with a diamido-dihydroxymethylenephosphine-based bifunctional chelating agent (N{sub 2}P{sub 2}-BFCA)

    Kothari, K.K. E-mail: kanchan@apsara.barc.ernet.in; Gali, H.; Prabhu, K.R.; Pillarsetty, N.; Owen, N.K.; Katti, K.V.; Hoffman, T.J.; Volkert, W.A

    2002-01-01

    A diamido-dihydroxymethylenephosphine (N{sub 2}P{sub 2}) bifunction chelating agent (BFCA) was shown to form well-defined {sup 99m}Tc- and {sup 188}Re-chelate structures. The 4, 4-bis [bis-hydroxymethyl-phosphonyl-propylcarbonmoyl]-butyric acid bifunctional chelating agent (N{sub 2}P{sub 2}-BFCA) formed stable complexes with {sup 99m}Tc and {sup 188}Re in >95% yield with high radiochemical purity (RCP). The biodistribution of the {sup 99m}Tc- and {sup 188}Re-N{sub 2}P{sub 2}-BFCAs after intravenous injection studied in normal mice showed the activity was excreted primarily via renal-urinary pathway indicating their use for labeling peptides with {sup 99m}Tc and {sup 188}Re.

  18. Influence of chelation therapy (DTPA) on 141Ce retention in rats

    We investigated the influence of oral and parenteral administration of chelation therapy on the retention of 141Ce in young rats. Opposite to results obtained in adult rats present results show high efficacy of oral chelation therapy in reducing radiocerium retention in the whole body and organs of suckling rats. (author) 3 refs

  19. A novel BF2-chelated azadipyrromethene-fullerene dyad: synthesis, electrochemistry and photodynamics.

    Amin, Anu N; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2012-01-01

    The synthesis, structure, electrochemistry and photodynamics of a BF(2)-chelated azadipyrromethene-fullerene dyad are reported in comparison with BF(2)-chelated azadipyrromethene without fullerene. The attachment of fullerene resulted in efficient generation of the triplet excited state of the azadipyrromethene via photoinduced electron transfer. PMID:22083226

  20. Inhibitor Ranking Through QM based Chelation Calculations for Virtual Screening of HIV-1 RNase H inhibition

    Poongavanam, Vasanthanathan; Svendsen, Casper Steinmann; Kongsted, Jacob

    2014-01-01

    of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false...

  1. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    Mouret, Stéphane, E-mail: stephane.mouret@irba.fr [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Nguon, Nina; Cléry-Barraud, Cécile [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Dorandeu, Frédéric [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France); Ecole du Val-de-Grâce, 1 place Alphonse Laveran, Paris (France); Boudry, Isabelle [Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche (France)

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage.

  2. Novel B,O-chelated fluorescent probe for nitric oxide imaging in Raw 264.7 macrophages and onion tissues

    Chen, Jian-Bo; Zhang, Hui-Xian; Guo, Xiao-Feng; Wang, Hong, E-mail: hongwang@whu.edu.cn; Zhang, Hua-Shan

    2013-10-24

    Graphical abstract: -- Highlights: •We report a new fluorescent probe BOPB for NO with a novel B,O-chelated dipyrromethene. •The probe has emission at 643 nm, high quantum yield of 0.21 and good photostability. •BOPB has advantages of high sensitivity, low background and little photo damage. •Fluorescent probe can be easily applied to NO imaging in the living cells and tissues. -- Abstract: A novel fluorescent probe based on B,O-chelated dipyrromethene chromophore in far-visible and near-infrared spectral region (600–900 nm), boron chelated 8-(3,4-diaminophenyl)-3,5-bis(2-hydroxyphenyl)-4-bora-3a, 4a-diaza-s-indancene (BOPB), has been first developed for nitric oxide (NO) imaging. BOPB, a turn-on fluorescent probe, can react with NO rapidly under physiological condition. The reaction product of BOPB with NO, BOPB-T, emits bright red fluorescence at 643 nm when excited at 622 nm. Meanwhile, BOPB-T displays high fluorescent quantum yield of 0.21 and good photostability. The selectivity for NO over other reactive oxygen/nitrogen species and ascorbic acid has been investigated and BOPB has good specificity for the detection of NO. MTT assay shows that the toxicity of BOPB (below 10 μM) to living cells can be neglected. Based on these investigations, BOPB has been used for NO imaging in Raw 264.7 cells and onion tissues. Meanwhile, mechanical injury to onion tissues results in a brighter fluorescence around the wound, which indicates that more NO has been produced in plant tissues in response to external stimuli. Our studies illustrate that BOPB has advantages of high sensitivity, low background interference and little photo damage on fluorescence imaging of NO.

  3. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage

  4. Novel B,O-chelated fluorescent probe for nitric oxide imaging in Raw 264.7 macrophages and onion tissues

    Graphical abstract: -- Highlights: •We report a new fluorescent probe BOPB for NO with a novel B,O-chelated dipyrromethene. •The probe has emission at 643 nm, high quantum yield of 0.21 and good photostability. •BOPB has advantages of high sensitivity, low background and little photo damage. •Fluorescent probe can be easily applied to NO imaging in the living cells and tissues. -- Abstract: A novel fluorescent probe based on B,O-chelated dipyrromethene chromophore in far-visible and near-infrared spectral region (600–900 nm), boron chelated 8-(3,4-diaminophenyl)-3,5-bis(2-hydroxyphenyl)-4-bora-3a, 4a-diaza-s-indancene (BOPB), has been first developed for nitric oxide (NO) imaging. BOPB, a turn-on fluorescent probe, can react with NO rapidly under physiological condition. The reaction product of BOPB with NO, BOPB-T, emits bright red fluorescence at 643 nm when excited at 622 nm. Meanwhile, BOPB-T displays high fluorescent quantum yield of 0.21 and good photostability. The selectivity for NO over other reactive oxygen/nitrogen species and ascorbic acid has been investigated and BOPB has good specificity for the detection of NO. MTT assay shows that the toxicity of BOPB (below 10 μM) to living cells can be neglected. Based on these investigations, BOPB has been used for NO imaging in Raw 264.7 cells and onion tissues. Meanwhile, mechanical injury to onion tissues results in a brighter fluorescence around the wound, which indicates that more NO has been produced in plant tissues in response to external stimuli. Our studies illustrate that BOPB has advantages of high sensitivity, low background interference and little photo damage on fluorescence imaging of NO

  5. Schiff bases derived from L-Tyrosine L-Tryptophan and their Cu(II) chelates as effective means for preventive-treatment of radiation injuries

    Full text: Study on essential metallo element chelates as radioprotectors presents a promising direction in a search for and development of novel anti-radiation agents and offers a new approach to overcome the pathological effects of ionizing radiation. The key idea elucidating the radioprotective effects of metallo element-containing chelates of amino acid derivatives is their role in stimulation of de novo synthesis of metallo element-dependent enzymes required for recovery of hemopoietic activity and immuno competency lost as a consequence of radiation damage. Aimed to develop novel anti-radiation remedies of less toxicity and high efficacy, Schiff bases derived from L-Tyrosine and L-Tryptophan and their Cu(II) chelates were synthesized. In experiments in vitro and in vivo biological and pharmacological properties of the mentioned Schiff Bases and their copper complexes are under study. According to the results obtained, L-Tyrosinate and L-Tryptophanate Schiff bases are low toxic compounds with a weak antioxidant activity and exert radioprotective effects in case of animal X-ray irradiation at a dose level equal or less than LD50/30. Unlike Schiff Bases, their appropriate Cu(II) chelates possess high anti radical/antioxidant activity and manifest expressed radio-protective action at LD100/30 dose of ionizing radiation. Anti-radiation effects of amino acid Schiff bases and their metallo chelates are manifested in case of both subcutaneous and oral single administration to the animal organism at 10, 20, or 40 mg/kg 1, 3, 6, or 24 hours prior to radiation exposure. Conclusions are drawn basing on determinations of survival and average life-span indices of irradiated animals, as well as on studies for their hematological, biochemical, immunological, biophysical indices. It is revealed that on the background of preliminary administration of the compounds studied to the animal organism the characteristics of DNA are significantly improved, the immune status elevated

  6. Production and chelation properties of Lu-177, the isotope suitable for nuclear medicine applications

    Lutetium-177 is one of the most favoured radionuclides for radiotherapeutic applications due to its suitable nuclear characteristics. It has been mainly used in three areas: labelling of biomolecules (i.e., somatostatine analogues and monoclonal antibodies), palliative therapy of bone skeletal metastases, and radiation synovectomy. At present, Lu- labelled chelates with aminocarboxylates, like a DOTA or DTPA have been deeply investigated from the point of view of chelation properties. This research has been targeted on finding the optimal conditions of chelation to obtain high yields of chelates and on monitoring their kinetic stability, depending on particular factors (i.e., pH, molar ratios metal: ligand or duration of the reaction). The Lu-DTPA and Lu-DOTA chelates were prepared and detected radiochromatographically by TLC. For this purpose ITLC SG plates were used as a solid phase, and a mixture of hydroxylamine:methanol:water (0.2:2:4) was used as a liquid phase. (author)

  7. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  8. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion

    Monica Pinheiro de Almeida Verissimo

    2013-01-01

    Full Text Available In the absence of an iron chelating agent, patients with beta-thalassemia on regular transfusions present complications of transfusion-related iron overload. Without iron chelation therapy, heart disease is the major cause of death; however, hepatic and endocrine complications also occur. Currently there are three iron chelating agents available for continuous use in patients with thalassemia on regular transfusions (desferrioxamine, deferiprone, and deferasirox providing good results in reducing cardiac, hepatic and endocrine toxicity. These practice guidelines, prepared by the Scientific Committee of Associação Brasileira de Thalassemia (ABRASTA, presents a review of the literature regarding iron overload assessment (by imaging and laboratory exams and the role of T2* magnetic resonance imaging (MRI to control iron overload and iron chelation therapy, with evidence-based recommendations for each clinical situation. Based on this review, the authors propose an iron chelation protocol for patients with thalassemia under regular transfusions.

  9. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented

  10. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  11. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  12. Incorporation of 241Am: effectiveness of late DTPA chelation therapy

    In four persons who had incorporated 241Am probably by inhalation, a DTPA chelation therapy was initiated several months after incorporation. Excretion measurements and in vivo measurements were performed in order to quantify the enhancement of 241Am excretion and the activity distribution in the body. DTPA was administered 4-11 times as an infusion of 1 g DTPA. Daily excretion rates were raised essentially, up to factors of 65-140 (urine) and 30-50 (faeces) after the first administration. Dose calculations performed on the basis of a modified ICRP 30, Part 4 model yielded dose reductions (e.g. for subject A) of 90%, 28%, 28% and 26% for liver, bone surfaces, red bone marrow and lungs, respectively, corresponding to a reduction of the effective dose equivalent of approximately 40%. (author)

  13. Effects of some chelating agents on the uptake and distribution of 54Mn(II) in the brown trout (Salmo trutta)

    The effects of humic acids, which are natural metal-complexing compounds, and potassium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithicarbamate, which are sulphur-containing man-made chelating agents, on the uptake and tissue distribution of 54Mn(II) were studied in brown trout (Salmo trutta). Fish were exposed for 7 days to 0.1 μg Mn(II)x.-2 as NmCl2 (l μCia 54Mnxl-1) with or without chelat agents. Examination of the partition of Mn between octanol and a Tris-HCl buffer in the presence of these compounds was also performed. Humic acids had only small effects on Mn uptake and distribution in trout, probably because of the low stability of Mn-humate complexes. Partition of Mn in the presence of potassium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithiocarbamate, and sodium diethyldithiocarbamate between octanol and Tris-HCl buffer showed formation of lipophilic complex with the latter two compounds, but not with the former. However, these four chelating agents all decreased Mn uptake in the trout by 40-45%. These substances also changed the distribution of Mn within the fish, with a higher proportion of the metal being present in some visceral organs and a smaller proportion being localized in some non-parenchymateous tissues, such as skin, fins and bones. The mechanisms underlying these effects are not known. however, the interaction of chelating agents with the Mn, although weak, may have partially withdrawn the metal from the uptake process inthe gills. The redistribution of Mn in the fish may be due to the binding of the metal to complexing compounds which have reached the intestinal lumen. Previous studies with other metals have shown increased or unchanged metal levels in tissues of fish at exposure together with potasium ethylxanthate, sodium diethyldithiophosphate, sodium dimethyldithiocarbamate, and sodium diethyldithiocarbamate, but decreased metal levels have not been observed before. (au) (37 refs.)

  14. Increasing the clay dissolving capability of a buffer-regulated mud acid

    Lybarger, J.H.; Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-05-23

    The clay dissolving capability of an aqueous mud acid solution of weak acid, weak acid salt and fluoride salt (of the type described in the E. A. Richardson U.S. Pat. No. 3,889,753) can be increased by including in the solution a partial salt of an aminopolyacetic acid chelating or complex-forming agent.

  15. Acute toxicity test of a natural iron chelator and an antioxidant, extracted from Triticum aestivum Linn. (wheat grass).

    Das, Priyabrata; Mukhopadhyay, Soma; Mandal, Suvra; Chakraborty, Abhijit; Pal, Amartya; Sarkar, Nirmal Kumar; Mukhopadhyay, Ashis

    2014-01-01

    Triticum aestivum (wheat grass) is widely used in traditional medicine to treat various diseases. Previously the purified compounds and crude extract of T. aestivum were established to have iron chelation potency and antioxidant activity. So it is necessary to evaluate the toxic properties of any compound isolated from plant extract to prevent any untoward side effects. The aim of this study was to determine the acute oral toxicity level of our purified compounds, i.e. mugineic acids and methylpheophorbide a., and crude extract of T. aestivum, on Swiss albino mice at dosage of 2000 mg/kg for a period of 14 days using the organisation for economic co-operation and development guidelines 423. There was no mortality. No change in behavioural pattern, clinical signs, body weight and blood biochemistry profile were observed. Kidney and liver showed normal histo-pathological architecture. Hence, the oral administration of compounds and extract of T. aestivum did not produce any significant toxic effect on mice. Thus we may conclude that the extract can be utilised for pharmaceutical formulations as iron chelator and antioxidant agent for various diseases. PMID:24697628

  16. Controlled hydrothermal growth of ZnO nanostructures by sequestering the Zn metal ions with the chelating agent EDTA

    Ram, S. D. Gopal; Ravi, G.; Manikandan, MR.; Mahalingam, T.; Anbu Kulandainathan, M.

    2011-10-01

    In the present work, a controlled growth of ZnO nanostructures by manipulating Zn metal ion concentration by the chelating action of ethylene diaminetetra acetic acid in hydrothermal method is studied. EDTA produces metal-chelate complex by the formation of bidentate ligand with Zn 2+ in the solution and diminishes the reactivity of Zn metal cations. Concentration of EDTA in the mother solution was varied in different ranges like 3, 5 and 10 mM while retaining the zinc metal salt and the NaOH concentration the same. Three different morphologies of wurtzite structured ZnO nanostructures such as nanorods-bunch, separate/discrete uniformly sized hexagonal nanorods and tapered flower petals like shapes are achieved by 3, 5 and 10 mM strengths of EDTA, respectively. The medium concentration 5 mM of EDTA is found to have moderate control over producing ZnO nanostructures of uniform diameter and a high aspect (length to diameter) ratio. An array of vertically aligned free standing ZnO nanorods with uniform spacing is successfully achieved by the addition of 5 mM of EDTA in the mother solution and the same is studied for its fluorescence property at an excitation of 325 nm and it has exhibited a characteristic UV emission of ZnO around 383 nm.

  17. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS.

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-07-15

    In this study, we developed a simple and rapid solid phase extraction (SPE) method for the separation/preconcentration and determination of some trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly [2-(4-methoxyphenylamino)-2-oxoethyl methacrylate-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid] (MPAEMA-co-DVB-co-AMPS), was synthesized and characterized. This chelating resin was used as a new adsorbent material for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) ions. The parameters influential on the determination of this trace metals were examined. Under the optimum conditions, the detection limits (DL) of the method for trace metals were found to be (3s) in the range of 0.9-2.2 μg L(-1) (n=21), the preconcentration factor was calculated as 200 and the relative standard deviation was obtained achieved as ⩽2% for n=11. The method was performed for the determination of trace metals in some honey samples and standard reference materials. PMID:26948616

  18. Assessing the Impact of EDTA Chelating Effect on some Macro- and Microminerals in Prussian Carp (Carassius Gibelio Tissues

    Marioara Nicula

    2011-10-01

    Full Text Available Chelators are used in chemical analysis, in medical aplications, as water softeners, as decontamination agents on radioactive surfaces and they are ingredients in many commercial products such as shampoos and food preservatives. Such a synthetic chelator is EDTA (ethylenediaminetetraacetic acid. It is considered one of the tools that promises to control the heavy metal pollution in aquaculture. EDTA attaches itself to heavy metals and carries the metals from the fish body. EDTA can also slow free-radical activity produced by heavy metals in the body. Because its ability to sequester metal ions, we tried to estimate the potential risks of a chronic exposure to EDTA on tissue mobilization of some metals which have an essential role in realization of different cell functions in Prussian carp specimens. Ca, Mg, Fe, Zn. Mn and Cu, were the mineral elements we have targeted in this study. It was found that these minerals have a trend of their tissues distribution and concentration in the body of the control specimens (higher or lower related to other similar works and EDTA presence in water led to a significant decreasing of their level in all tissues analyzed in a dose-dependent manner.

  19. MR imaging of lung ventilation with aerosolized Gadolinium-chelates; MR-Bildgebung der Lungenventilation mittels aerosolierter Gadolinium-Chelate

    Haage, P.; Karaagac, S.; Spuentrup, E.; Guenther, R.W. [RWTH Aachen (Germany). Klinik fuer Radiologische Diagnostik; Adam, G. [Universitaetsklinikum Hamburg-Eppendorf (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie

    2003-02-01

    Purpose: To evaluate the feasibility of magnetic resonance assessment of human lung ventilation with aerosolized Gd-chelates in healthy volunteers. Materials and Methods: Five healthy adults (mean age 37 years) were studied with a 1.5 T unit. The volunteers were instructed to inhale the aerosol through an airtight facial mask for 10 minutes. The aerosol was generated with a jet-type small particle nebulizer with attached heater. Ventilation imaging was performed using a respiration-gated dynamic T{sub 1}-weighted turbo spin echo sequence (T{sub R}=199 ms, T{sub E}=8.5 ms, 12 signal averages, slice thickness 10 mm). Pulmonary signal intensity changes were calculated before and after nebulization. Results: The investigation was successfully carried out in all volunteers. An acute or delayed allergic reaction to the aerosolized contrast medium was not observed. In 4 of 5 experiments (80%), a homogeneous signal intensity increase was readily visualized with an average signal increase of 35% after 10 minutes; in one experiment, the aerosol distribution was slightly heterogeneous. (orig.) [German] Ziel: Bestimmung der Durchfuehrbarkeit einer kernspintomographischen Darstellung der Lungenventilation mittels aerosolierter Gd-Chelate bei gesunden Probanden. Methoden: 5 Probanden (Durchschnittsalter 37 Jahre) wurden in einem 1,5T System untersucht. Die Probanden atmeten spontan aerosoliertes Gd-DTPA ueber eine Atemmaske fuer eine Dauer von 10 Minuten. Das Kontrastmittel-Aerosol wurde ueber einen leistungsfaehigen druckluftbetriebenen Vernebler generiert. Die Illustration der Ventilation erfolgte mit einer atemgegateten dynamischen T{sub 1}-gewichteten Turbo-Spin-Echosequenz. Zur Quantitifizerung der Lungenventilation wurden die Signalintensitaeten im Lungengewebe vor und nach Verneblung berechnet. Ergebnisse: Alle Untersuchungen wurden komplikationslos durchgefuehrt und beendet. Eine akute oder verzoegerte Kontrastmittelreaktion wurde nicht beobachtet. In 4 von 5

  20. The effect of chelating/combustion agent on catalytic activity and magnetic properties of Dy doped Ni-Zn ferrite

    Samoila, P.; Slatineanu, T. [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Postolache, P. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Iordan, A.R. [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania); Palamaru, M.N., E-mail: palamaru@uaic.ro [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Boulevard 700506 (Romania)

    2012-09-14

    The spinel ferrite Ni{sub 0.8}Zn{sub 0.2}Fe{sub 1.98}Dy{sub 0.02}O{sub 4} was prepared by sol-gel low temperature autocombustion method using four different chelating/combustion agents: citric acid, tartaric acid, urea and cellulose. Infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area measurement, the catalytic H{sub 2}O{sub 2} decomposition and the magnetic behavior were employed to investigate the influence of the combustion agents on structural characteristics, catalytic activity and magnetic properties. Spinel-type phase in the nano-scale domain was accomplished during sol-gel synthesis and was confirmed by XRD and IR. The best catalytic activity is belonging to the sample obtained using urea, which shows the smallest grain size (SEM), the highest specific surface area (BET measurements) and DyFeO{sub 3} phase (XRD), while ferrimagnetic behavior prevails for all the samples independently of fuel agent. Highlights: Black-Right-Pointing-Pointer Ni-Zn ferrite doped with Dy as catalyst and magnetic material. Black-Right-Pointing-Pointer Four chelating/combustion agents were used in sol-gel method. Black-Right-Pointing-Pointer Citric acid and cellulose allowed spinel monophase formation confirmed by XRD. Black-Right-Pointing-Pointer Catalytic activity of ferrite samples is affected by synthesis conditions. Black-Right-Pointing-Pointer Magnetic behavior is not changed significantly as a function of fuel agent.

  1. Effects of calcium chelators on calcium distribution and protein solubility in rennet casein dispersions.

    McIntyre, Irene; O' Sullivan, Michael; O' Riordan, Dolores

    2016-04-15

    This study investigated the effects of calcium chelating salts on calcium-ion activity (ACa(++)), calcium distribution, and protein solubility in model CaCl2 solutions (50 mmol L(-1)) or rennet casein dispersions (15 g/100 g). Disodium phosphate and trisodium citrate at concentrations of 10 and 30 mmol L(-1) and at ratios of 1:0, 2:1, 1:1, 1:2 and 0:1 were added to both systems. The CaCl2 system, despite its simplicity, was a good indicator of chelating salt-calcium interactions in rennet casein dispersions. Adding trisodium citrate either alone or as part of a mixed chelating salt system resulted in high levels of dispersed "chelated" calcium; conversely, disodium phosphate addition resulted in lower levels, while the ACa(++) decreased with increasing concentration of both chelating salts. Neither chelating salt produced high levels of soluble protein. Thus calcium chelating salts may play a more subtle role in modulating hydration during manufacture of casein-based matrices than simply solubilising calcium or protein. PMID:26616945

  2. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ''hypertransfused'' (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ''hypertransfused'' and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient's transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab

  3. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time. PMID:12475278

  4. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation

    2008-01-01

    An ultrafiltered low-molecular-weight preparation of chelating compounds was isolated from a wood-containing culture of the white-rot basidiomycete Coriolus versicolor. This preparation could chelate Fe3+ and reduce Fe3+ to Fe2+, demonstrating that the substance may serve as a ferric chelator, oxygen-reducing agent, and redox-cycling molecule, which would include functioning as the electron transport carrier in Fenton reaction. Lignin was treated with the iron-binding chelator and the changes in structure were investigated by 1H-NMR, 13C-NMR, difference spectrum caused by ionization under alkaline conditions and nitrobenzene oxidation. The results indicated that the iron-binding chelator could destroy the β-O-4 bonds in etherified lignin units and insert phenolic hydroxyl groups. The low-molecular-weight chelator secreted by C. versicolor resulted in new phenolic substructures in the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase. Thus, the synergic action of the iron-binding chelator and the lignocellulolytic enzymes made the substrate more acces- sible to degradation.

  5. Preparation of chitosan-EDTA nanoparticles and the chelating effect of radioactive strontium in vivo

    Objective: To obtain the CTS-EDTA nanoparticles and investigate their effects of chelating 89Sr2+ in vivo. Method: The CTS-EDTA nanoparticles were prepared by cross-linking CTS-EDTA with polyanion sodium tripolyphosphate ( TPP). And the zwitterionic chelate of the CTS-EDTA nanoparticles was used for promoting the radionuclides excreted in vivo. Results: The CTS-EDTA nanoparticles showed that particle size was uniformity of the spherical nano-particles by TEM, and the average particle size of 10.18 nm by Laser Particle Sizer. we found that CEC-Nano and the CEC had a good chelating effect of radioactive strontium in vivo, after 30 min and 2 h in the medication and the chelating efficiency of radioactive strontium excretion in the femur was significantly higher than the EDTA-Na2. At multiple doses,the chelating efficiency of CEC-Nano and the CEC through the urinary excretion and feces were better than traditional medicines EDTA-Na2. Conclusion: By this experimental method, we can be prepare nanodrugs of chelating radionuclide, it provides a basis for studying the broad-spectrum of radionuclide contamination chelating agents. (authors)

  6. Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation

    We have synthesized a long-chain hydrocarbon covalently coupled to diethylene-triaminepenta-acetic acid (stearylamine-DTPA) and have incorporated this compound in liposomes during their preparation. The lipophilic hydrocarbon chain anchors the molecule in the lipid bilayer, exposing the DTPA groups on the surface for chelation. Ethanolic solutions of the lipids are evaporated to dryness under nitrogen in multidose vials; the lipids are suspended in the vial by adding a small volume of distilled water followed by sonication. The liposomes are then labeled by transcomplexation in the case of Ga-67 and by conventional stannous reduction in the case of Tc-99m, by adding the activities directly to the vial. These liposomes bind 95 +/- 5% of Ga-67 and Tc-99m activity, as determined by paper chromatograph assay, eliminating the need for a purification step. The labeled liposomes release about 5% of their Ga-67 activity, and about 30% of their Tc-99m activity after 2 hr of incubation in 50% human plasma at 37 degrees C. Activity released from liposomes labeled with Ga-67 or Tc-99m oxine is much greater under the same conditions. In normal mice the labeled liposomes show biodistributions that are comparable with that obtained with liposomes labeled by conventional techniques

  7. Discovery of Metal Ions Chelator Quercetin Derivatives with Potent Anti-HCV Activities

    Dongwei Zhong

    2015-04-01

    Full Text Available Analogues or isosteres of α,γ-diketoacid (DKA 1a show potent inhibition of hepatitis C virus (HCV NS5B polymerase through chelation of the two magnesium ions at the active site. The anti-HCV activity of the flavonoid quercetin (2 could partly be attributed to it being a structural mimic of DKAs. In order to delineate the structural features required for the inhibitory effect and improve the anti-HCV potency, two novel types of quercetin analogues, 7-O-arylmethylquercetins and quercetin-3-O-benzoic acid esters, were designed, synthesized and evaluated for their anti-HCV properties in cell-based assays. Among the 38 newly synthesized compounds, 7-O-substituted derivative 3i and 3-O-substituted derivative 4f were found to be the most active in the corresponding series (EC50 = 3.8 μM and 9.0 μΜ, respectively. Docking studies suggested that the quercetin analogues are capable of establishing key coordination with the two magnesium ions as well as interactions with residues at the active site of HCV NS5B.

  8. Synthesis and optical properties of macrocyclic lanthanide(III) chelates as new reagents for luminescent biolabeling.

    Deslandes, Sébastien; Galaup, Chantal; Poole, Robert; Mestre-Voegtlé, Béatrice; Soldevila, Stéphanie; Leygue, Nadine; Bazin, Hervé; Lamarque, Laurent; Picard, Claude

    2012-11-14

    The convenient and efficient synthesis of two macrocyclic ligands (15- and 18-membered) based on a dipyrido-6,7,8,9-tetrahydrophenazine (dpqc) or 2,2':6',2''-terpyridine (tpy) heterocycle and a DTTA (diethylenetriaminetriacetic acid) skeleton is described. In these ligands the DTTA skeleton contains an additional extracyclic functionality (NH(2) group) suitable for covalent attachment to bioactive molecules. These octa- and nonadentate ligands form very stable and luminescent neutral lanthanide complexes in aqueous solutions at physiological pH. The corresponding Eu(III) and Tb(III) complexes are characterized by a maximum absorption wavelength compatible with nitrogen laser excitation (337 nm) and attractive lifetimes and quantum yields. Further introduction of a maleimide bioconjugatable handle in the Eu(III) complexes was investigated and a valuable luminescence brightness above 1500 dm(3) mol(-1) cm(-1) at 337 nm was obtained with the corresponding Eu(III) tpy-derivative. Finally, these two luminescent chelates were grafted onto thiol residues of a model antibody (Mab GSS11) without loss of their luminescent properties. PMID:23011114

  9. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.

    Martin, David P; Blachly, Patrick G; Marts, Amy R; Woodruff, Tessa M; de Oliveira, César A F; McCammon, J Andrew; Tierney, David L; Cohen, Seth M

    2014-04-01

    The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins. PMID:24635441

  10. Chelate titrations of Ca(2+) and Mg(2+) using microfluidic paper-based analytical devices.

    Karita, Shingo; Kaneta, Takashi

    2016-06-14

    We developed microfluidic paper-based analytical devices (μPADs) for the chelate titrations of Ca(2+) and Mg(2+) in natural water. The μPAD consisted of ten reaction zones and ten detection zones connected through narrow channels to a sample zone located at the center. Buffer solutions with a pH of 10 or 13 were applied to all surfaces of the channels and zones. Different amounts of ethylenediaminetetraacetic acid (EDTA) were added to the reaction zones and a consistent amount of a metal indicator (Eriochrome Black T or Calcon) was added to the detection zones. The total concentrations of Ca(2+) and Mg(2+) (total hardness) in the water were measured using a μPAD containing a buffer solution with a pH of 10, whereas only Ca(2+) was titrated using a μPAD prepared with a potassium hydroxide solution with a pH of 13. The μPADs permitted the determination of Ca(2+) and Mg(2+) in mineral water, river water, and seawater samples within only a few minutes using only the naked eye-no need of instruments. PMID:27181645

  11. The Influence of the Combination of Carboxylate and Phosphinate Pendant Arms in 1,4,7-Triazacyclononane-Based Chelators on Their 68Ga Labelling Properties

    Gábor Máté

    2015-07-01

    Full Text Available In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic acid (NOPA and 1,4,7- triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethylphosphinic] acid (NO2AP were synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic acids as phosphorus components. Stepwise protonation constants logK1–3 12.06, 3.90 and 1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and compared with NOTA (tacn-N,N′,N″-triacetic acid and NOPO, a TRAP-type [tacn-N,N′,N″- tris(methylenephosphinic acid] chelator. At pH 3, NOPO and NOPA showed higher labelling efficiency (binding with lower ligand excess at both room temperature and 95 °C, compared to NO2AP and NOTA. Labelling efficiency at pH = 0–3 correlated with a number of phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more apparent at 95 °C than at room temperature. By contrast, NOTA was found to be labelled more efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly acidic pH.

  12. Different photoluminescent properties of binary and ternary europium chelates doped in PMMA

    Two kinds of europium-β-diketone chelates, binary Eu(DBM)3 and ternary Eu(DBM)3phen were doped in poly(methyl methacrylate) (PMMA). These chelates show very different photoluminescent (PL) behaviors: the hypersensitive 5D0→7F2 emission bands of Eu(DBM)3phen change slightly with the molar ratios, while those of Eu(DBM)3 change obviously and regularly with the molar ratios. The results of the luminescent lifetimes of 5D0 levels show that the binary chelate exists as two kinds of species in the doped systems, and the lifetimes and contents of each species change with the molar ratios, while the ternary chelate exists as one kind of species in the doped systems. X-ray diffraction (XRD) patterns of the binary chelate doped systems give some diffraction peaks that are different from those of pure chelate and change with the molar ratios, indicating new kinds of crystal structures formed, and consequently, the first coordination sphere of Eu3+ ion changes; while those of the ternary chelate doped systems just show amorphous diffraction halos of the host, indicating that the ternary chelate exist in an amorphous state and disperse well in the host. The FTIR spectra of PMMA also change gradually with increasing the molar ratios of the doped two kinds of chelates, and the XRD patterns show that the amorphous halos of PMMA in the doped systems are different from those of pure PMMA and change with the molar ratios, too, suggesting the interaction between the guest and the host

  13. Physicochemical properties of skim milk powders prepared with the addition of mineral chelators.

    Sikand, V; Tong, P S; Vink, Sean; Roy, Soma

    2016-06-01

    The objective of this study was to determine the effect of mineral chelator addition during skim milk powder (SMP) manufacture on the solubility, turbidity, soluble protein, and heat stability (HS). Three chelators (sodium citrate dihydrate, sodium polyphosphate, and disodium EDTA) at 3 different concentrations (5, 15, and 25mM) were added to skim milk concentrate (30% total solids), and the pH was adjusted to 6.65 before spray drying to produce SMP. Spray-dried SMP samples were tested for solubility index (SI). Additionally, samples were reconstituted to contain 9% total solids, adjusted to pH 7.0, and tested for turbidity, protein content from supernatants of ultracentrifuged samples, and HS. Lower SI values were observed for samples treated with 5mM disodium EDTA and sodium polyphosphate than control samples or samples with 5mM sodium citrate dihydrate. Furthermore, lower SI values were observed with an increased level of chelating agents regardless of chelator type. A decreased turbidity value was found with increasing levels of mineral chelating salt treatment. Low turbidity with increasing levels of added chelators may be associated with the dissociation of caseins from micelles. Furthermore, higher protein content was observed in supernatants of ultracentrifuged samples treated with increased level of chelators as compared with the control sample. Higher HS was observed in samples treated with 5mM compared with samples treated with 25mM mineral chelator. The results suggest improved solubility and HS upon addition of mineral chelators to SMP during its manufacture. PMID:27040785

  14. Highly Diastereoselective Chelation-controlled Additions to α-Silyloxy Ketones

    Stanton, Gretchen R.; KOZ, Gamze; Walsh, Patrick J.

    2011-01-01

    The polar Felkin-Anh, Cornforth, and Cram-chelation models predict that the addition of organometallic reagents to silyl–protected α–hydroxy ketones proceeds via a non-chelation pathway to give anti-diol addition products. This prediction has held true for the vast majority of additions reported in the literature and few methods for chelation-controlled additions of organometallic reagents to silyl–protected α–hydroxy ketones have been introduced. Herein, we present a general and highly diast...

  15. Thermodynamic study of chelation of rare earth(III) ions with 2,3-dihydroxynaphthalene (DON)

    The chelation of 2,3-dihydroxynaphthalene with trivalent La, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y has been studied pH-metrically at 30deg +- 0.5deg in aqueous ethanol (10% v/v) at different ionic concentrations (0.05, 01, 0.15 and 0.2M KNO3). Formation of 1:1 chelates are indicated. The order of stability is found to be Ho > Dy > Tb > Y> Gd > Sm > Nd > Pr > La. The thermodynamic stability constants and free energies of chelation have been reported. (author)

  16. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  17. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams

  18. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  19. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  20. Guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload.

    Gattermann, Norbert

    2007-12-01

    Experts believe that iron overload is an important problem which could be avoided with suitable treatment. Guidelines on treating myelodysplastic syndromes (MDS) include sections on using iron chelation therapy to prevent or ameliorate transfusional iron overload. The proportion of MDS patients who may benefit from iron chelation therapy is 35-55%, depending on the length of survival necessary for iron to accumulate to a detrimental level. Candidates for iron chelation are mainly patients with dyserythropoietic and cytopenic subtypes of disease, which fall into the International Prognostic Scoring System (IPSS) Low-risk or Intermediate-1-risk categories, with median survival of 3-6 years. PMID:18037413

  1. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  2. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    Vineeta Nikhil; Shikha Jaiswal; Parul Bansal; Rohit Arora; Shalya Raj; Pulkit Malhotra

    2016-01-01

    Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA), and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 - 1% phytic acid, G2 - 17% EDTA, and G3 - 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured befo...

  3. Radioactive europium-chelate-based silica nanoparticles as a probe for stability, incorporation efficiency and trace analysis

    Two luminescent terbium and europium lanthanide chelates were efficiently embedded into silica nanoparticles by using a reverse microemulsion process. The incorporation was achieved without covalent bonding between the lanthanide chelates and the silica matrix. To investigate the efficiency of the incorporation process and the stability of the silica encapsulated lanthanide complex, a method based on a radioactive probe was developed; γ-emitting europium (152) chelates were synthesized and incorporated into silica nano-particles. Measurements of the γ activity through the entire synthesis allowed the accurate characterization of the incorporation efficiency of the used chelates. A clear correlation was established between the physicochemical properties of the different chelates and the measured incorporation efficiencies. A very efficient noncovalent incorporation of lanthanide chelates in highly stable nanoparticles was achieved by tuning the chelate properties, thus rendering the development of lanthanide-based fluorescent nanoparticles easier. (authors)

  4. Separation and determination of trace metal ions using organic chelating reagents

    The four reagents tested were N,N-dihexylacetamide (DHA), 2,6-diacetylpyridine bis(furoylhydrazone) (H2dapf), 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one (DMAP) and N-methylfurohydroxamic acid (NMFHA). DHA and H2dapf were investigated for their complex formation with uranium, and DMAP and NMFHA were used as chelating agents in high performance liquid chromatography (HPLC). Uranium(VI) is preferentially extracted from nitric acid solutions using DHA in toluene. The extraction characteristics of the U-DHA complex are studied. A 119,000 μgL-1 U solution is analyzed for twenty-six elements. The U is extracted with DHA, and the trace metal ions are then determined by inductively coupled plasma-mass spectrometry. Uranium must be removed from the sample before analysis to prevent ionization suppression. H2dapf is synthesized and characterized. Studies of the complexation of metal ions with H2dapf is described. U(VI) forms a stable complex with H2dapf, and a procedure for selectively determining trace U by spectrophotometry is presented. DMAP complexes of Cu(II), Fe(III), Ga(III), Th(IV), U(VI), V(V), and Zr(IV) are separated using reversed phase HPLC. NMFHA complex of Al(III), Fe(III), Hf(IV), Nb(V), Sb(III), and Zr(IV) are separated using reversed phase HPLC. NMFHA is also used to separate uranium(VI) from trace lanthanide ions. 266 refs., 46 figs., 24 tabs

  5. Influence of ionic and nonionic surfactants on analytical parameters of ion-selective electrodes based on chelating active substances

    Wardak, Cecylia [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland)]. E-mail: cwardak@hermes.umcs.lublin.pl; Marczewska, Barbara [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland); Lenik, Joanna [Department of Analytical and Instrumental Analysis, Faculty of Chemistry, M. Curie Sklodowska University, 20031 Lublin (Poland)

    2006-02-15

    The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (TRITON X-100) surfactants on the potentiometric properties of zinc- and cadmium-selective electrodes (ISEs) were investigated. The studies were carried out with plasticized PVC membranes doped with several new acidic chelating ionophores. The electrode basic analytical parameters, such as measurement range, slope characteristics, detection limit, response time and selectivity coefficients in relation to some inorganic cations in the presence and absence of surfactants, were investigated. As follows from the studies, the presence of surfactants in the sample is responsible first of all for the increase in response time and in detection limit, and a decrease in the characteristic slope as well as reduction of electrode selectivity.

  6. The development of an 191Os → sup(191m)Ir generator using an osmium chelate parent complex

    A 191Os→sup(191m)Ir generator has been developed that has higher sup(191m)Ir yield and lower 191Os breakthrough than previous designs. These improvements have been realized through the use of the osmium chelate complex trans-dioxobismalonatoosmate(VI) as the parent species on the generator. The new generator provides an intitial sup(191m)Ir yield of 40%/mL and 191Os breakthrough of 2-3 x 10-3% when eluted with a solution of 0.05 M malonic acid/0.10 M sodium chloride at pH 4. Other advantages of the new design include faster clearance of the 191Os breakthrough products and simpler assembly. (author)

  7. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays

    Lue, Bena-Marie; Nielsen, Nina Skall; Jacobsen, Charlotte;

    2010-01-01

    moieties. Herein, two derivatives of rutin (possessing C12:0 or C16:0 acyl groups) were assessed for their antioxidant properties, and compared with their parent compound, rutin and with butylated hydroxytoluene (BHT). While all compounds exhibited relatively strong radical scavenging abilities, modified...... rutin compounds exhibited decreased reducing power and metal chelating abilities as compared to rutin. Conversely, investigations on the oxidation of human low density lipoprotein (LDL) revealed that rutin laurate was most effective in inhibiting oxidation by prolonging LDL lag time for an in vitro...... system. With regards to in vivo considerations, a pre-treatment step confirmed that the ester bond linking rutin and acyl moieties was most susceptible to hydrolysis by digestive enzymes, while rutin itself was not degraded. Thus, acylation of rutin with medium or long chain fatty acids may result in...

  8. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer

    Tan, Zhan'ao; Yang, Chunhe; Zhou, Erjun; Wang, Xiang; Li, Yongfang

    2007-07-01

    A solution processible titanium chelate, titanium (diisopropoxide) bis (2,4-pentanedionate) (TIPD), was used as the cathode buffer layer in the polymer solar cells (PSCs) based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] and [6,6]-phenyl-C61-butyric acid methyl ester. Introducing TIPD buffer layer reduced the interface resistance between the active layer and Al electrode, leading to a lower device resistance. The power conversion efficiency of the PSC with TIPD buffer layer reached 2.52% under the illumination of AM1.5, 100mW/cm2, which is increased by 51.8% in comparison with that (1.66%) of the device without TIPD buffer layer under the same experimental conditions.

  9. Synthesis of gold nanoparticles stabilised by metal-chelator and the controlled formation of close-packed aggregates by them

    Santanu Bhattacharya; Aasheesh Srivastava

    2003-10-01

    Nanoparticles have properties that can be fine-tuned by their size as well as shape. Hence, there is significant current interest in preparing nano-materials of small size dispersity and to arrange them in close-packed aggregates. This manuscript describes ways of synthesising gold nanoparticles using a metal-chelator derivative 1, as stabiliser. Controlled synthesis conditions lead to formation of nanoparticles thereby indicating the ability of 1 to act as efficient stabiliser. The nanoparticles formed were characterised by transmission electron microscopy and UV-Vis spectroscopy. TEM analysis showed the formation of dense aggregates of nanoparticles. This can be ascribed to the inter-particle hydrogen bonding possible by the carboxylic acid moiety of 1 that leads to aggregation. The aggregation can be controlled by the pH of the solution employed for dispersing the particles.

  10. Translation of ferritin light and heavy subunit mRNAs is regulated by intracellular chelatable iron levels in rat hepatoma cells

    Acute administration of iron to rats has been previously shown to induce liver ferritin synthesis by increasing the translation of inactive cytoplasmic ferritin mRNAs for both heavy (H) and light (L) subunits by mobilizing them onto polyribosomes. In this report rat hepatoma cells in culture are used to explore the relationship of this response to intracellular iron levels. After adding iron as ferric ammonium citrate to the medium, latent ferritin H- and L-mRNAs were extensively transferred to polyribosomes, accompanied by increased uptake of [35S]methionine into ferritin protein. Because total cellular levels of L- and H-mRNA were not significantly changed by exposure to iron, the increased ferritin mRNAs on polyribosomes most probably come from an inactive cytoplasmic pool, consistent with the inability of actinomycin-D and of cordycepin to inhibit iron-induced ferritin synthesis. When deferoxamine mesylate, an intracellular iron chelator, was added after the addition of iron to the medium, ferritin mRNA on the polyribosomes was reduced, while the free messenger pool increased, and ferritin synthesis diminished. In contrast, the extracellular iron chelator diethylenetriaminepentaacetic acid failed to inhibit the induction of ferritin protein synthesis. Addition of iron in the form of hemin also caused translocation of mRNA to polyribosomes, a response that could be similarly quenched by deferoxamine. Because hemin does not release chelatable iron extracellularly, they conclude that the level of chelatable iron within the cell has a regulatory role in ferritin synthesis through redistribution of the messenger RNAs between the free mRNA pool and the polyribosomes

  11. Chelating water-soluble polymers for waste minimization

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  12. Chelation therapy of thorium deposited in rat lung

    The effect of calcium diethylenetriaminepentaacetate (CaDTPA) and a siderophore analogue 3,4,3-LI(1,2-HOPO) on decorporation of small and large thorium masses (234Th 46 ng, 234Th 46 ng + 232Th 5 μg per rat) instilled into the lungs was studied. Along with repeated injections, chelating agents were administered continuously by mini-osmotic pumps over 14 d. Treatment with CaDTPA alone was partly successful in the decorporation of both thorium masses. Greater decorporation was achieved with 3,4,3-LI(1,2-HOPO) in pumps and CaDTPA in injections. In the whole body, lungs and skeleton, 23%, 24% and 24% of control radioactivity was found, respectively, for the small mass of thorium. When the large mass of thorium was instilled, only continuous infusion of 3,4,3-LI(1,2-HOPO) at low concentration efficiently prevented transfer of thorium to the skeleton (reduced to 9% of control). Both the whole body and lungs retained 50% of control radioactivity. (author)

  13. New method to estimate stability of chelate complexes

    Grigoriev, F V; Romanov, A N; Kondakova, O A; Sulimov, V B

    2009-01-01

    A new method allowing calculation of the stability of chelate complexes with Mg2+ ion in water have been developed. The method is based on two-stage scheme for the complex formation. The first stage is the ligand transfer from an arbitrary point of the solution to the second solvation shell of the Mg2+ ion. At this stage the ligand is considered as a charged or neutral rigid body. The second stage takes into account disruption of coordinate bonds between Mg2+ and water molecules from the first solvation shell and formation of the bonds between the ligand and the Mg2+ ion. This effect is considered using the quantum chemical modeling. It has been revealed that the main contribution to the free energy of the complex formation is caused by the disruption/formation of the coordinate bonds between Mg2+, water molecules and the ligand. Another important contribution to the complex formation energy is change of electrostatic interactions in water solvent upon the ligand binding with Mg2+ ion. For all complexes under...

  14. The phospholipid vesicles coating on metal chelated inorganic surfaces

    This work showed the formation of phospholipid vesicle coating on inorganic sericite surface with characterization by combining electron microscopy of FE-SEM, TEM, AFM, and qualitatively evaluated the coated phospholipid vesicle by XPS as a function of etching time. The possibility of phospholipid vesicle mobility on the surface was restrained by the chelation effect of magnesium cation. The stabilization properties of phospholipid vesicles on sericite surface were demonstrated by the various concentration of magnesium cation. The presence of magnesium was found to have a much more pronounced influence on the lipid deposition process. The Mg cation plays an important role for attaching the phospholipids with optimum concentration of 7 mM. Totally, the phospholipid vesicles coating on inorganic powder could be useful for bio-related fields such as cosmetics and drug delivery system as the key functional compounds. We hope this basic result lead to a general and simple approach to prepare a wide a range of controlled releasing materials including an encapsulation with cosmetics or drugs

  15. The iron chelator desferrioxamine attenuates postischemic ventricular dysfunction

    Recent evidence suggests that postischemic myocardial dysfunction (stunning) may be mediated by oxygen free radicals, but the mechanism by which they produce myocellular damage remains unknown. Since iron catalyzes formation of hydroxyl radicals (HO·) as well as HO·-initiated lipid peroxidation, the authors explored the potential role of this metal in the pathogenesis of myocardial stunning. Open-chest dogs undergoing a 15-min occlusion of the left anterior descending coronary artery (LAD) followed by 4 h of reperfusion (REP) received the iron chelator desferrioxamine intravenously or normal saline. Regional myocardial function was assessed by measuring systolic wall thickening with an epicardial Doppler probe. The two groups exhibited comparable systolic thickening under base-line conditions and similar degrees of dyskinesis during ischemia. After REP, however, recovery of contractile function as considerably greater in desferrioxamine-treated compared with control dogs. These differences could not be ascribed to hemodynamic factors. The results suggest that iron-catalyzed reactions (possibly HO· generation) play a significant role in myocardial stunning after a brief episode of reversible regional ischemia

  16. Lanthanide complexes of an oxazoline-phenoxide hybrid chelate

    The synthesis of 2-(2'-hydroxy-3'-allylphenyl)-4,4-dimethyl-2-oxazoline, H-Allox (3), and lanthanide tris chelate complexes, mer-Ln(Allox)3 (Ln = La (4), Ce (5), Sm (6), Er (7), and Y (8)), derived from it are reported. A six-coordinate mer geometry without alkene coordination was confirmed in the solid state by X-ray crystallography for 5 and 7. Variable-temperature NMR experiments suggested that this is the most stable isomer in solution as well, although the inequivalent ligand environments undergo rapid averaging at room temperature for all five complexes. A mechanistic investigation indicated that this fluxional process is an intramolecular six-coordinate rearrangement, but it was not possible to distinguish between a Bailar (trigonal) or Ray-Dutt (rhombic) twist. Kinetic parameters for the fluxional process were determined by line shape analysis for 8 yielding ΔH = 24 ± 2 kJ mol-1 and ΔS = -99 ± 10 J mol-1 K-1. The structural and dynamic features of 4-8 were compared with the related In, Ga, and Al tris(2-oxazolylphenoxides). (author)

  17. Multidentate dipyridyl derivatives as chelates for rhenium (V)

    Rhenium (V) complexes with the following multidentate dipyridyl ligands were prepared: 2,2'-dipyridylamine (DPA), 1,2-bis(2-pyridyl)ethylene (DPE) and di-(2-picolyl)amine (HDIPA). Reactions of a twofold molar excess of the potentially NN donor ligand DPA with trans-[ReO (OEt)Cl2(PPh3)2] in ethanol led to isolation of a monomer [ReOCl2(OEt)(DPA)] (1). Treatments of trans-[ReOCl3(PPh3)2] with a tenfold molar excess of DPA in ethanol at reflux yielded [ReO2(dpa)2]Cl (2), but with a twofold molar excess a dimer (μ-O)[{ReOCl2(dpa)}2] (3a) was isolated. The latter reaction with (n-Bu4N)[ReOCl4] as starting material in ethanol at room temperature led to a dark green product, also with the formulation (μ-O)[{ReOCl2(dpa)}2] (3b). Reacting equimolar quantities of (n-Bu4N)[ReOCl4] and HDIPA in acetone led to [ReOCl(OH2)(DIPA)Cl (4) in which HDIPA acted as a monoanionic terdentate chelate. The reaction of trans-[ReOCl3(PPh3)2] with DPE, in which DPE undergoes a metal-promoted nucleophilic attack by a water molecule, produces a complex with a general formula [ReO(DPE.OH)Cl2] (5). (author)

  18. MR imaging of lung ventilation with aerosolized Gadolinium-chelates

    Purpose: To evaluate the feasibility of magnetic resonance assessment of human lung ventilation with aerosolized Gd-chelates in healthy volunteers. Materials and Methods: Five healthy adults (mean age 37 years) were studied with a 1.5 T unit. The volunteers were instructed to inhale the aerosol through an airtight facial mask for 10 minutes. The aerosol was generated with a jet-type small particle nebulizer with attached heater. Ventilation imaging was performed using a respiration-gated dynamic T1-weighted turbo spin echo sequence (TR=199 ms, TE=8.5 ms, 12 signal averages, slice thickness 10 mm). Pulmonary signal intensity changes were calculated before and after nebulization. Results: The investigation was successfully carried out in all volunteers. An acute or delayed allergic reaction to the aerosolized contrast medium was not observed. In 4 of 5 experiments (80%), a homogeneous signal intensity increase was readily visualized with an average signal increase of 35% after 10 minutes; in one experiment, the aerosol distribution was slightly heterogeneous. (orig.)

  19. A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets.

    Wang, Xiao-Jing; Zhao, Ying; Li, Fa-Tang; Dou, Li-Jun; Li, Yu-Pei; Zhao, Jun; Hao, Ying-Juan

    2016-01-01

    Surface defect of nanomaterials is an important physical parameter which significantly influences their physical and chemical performances. In this work, high concentration of surface oxygen vancancies (SOVs) are successfully introduced on {001} facets exposed BiOBr nanosheets via a simple surface modification using polybasic carboxylic acids. The chelation interaction between carboxylic acid anions and Bi(3+) results in the weakness of Bi-O bond of BiOBr. Afterwards, under visible-light irradiation, the oxygen atoms would absorb the photo-energy and then be released from the surface of BiOBr, leaving SOVs. The electron spin resonance (ESR), high-resolution transmission electron microscopy (HRTEM), and UV-vis diffuse reflectance spectra (DRS) measurements confirm the existence of SOVs. The SOVs can enhance the absorption in visible light region and improve the separation efficiency of photo-generated charges. Hence, the transformation rate of adsorbed O2 on the as-prepared BiOBr with SOVs to superoxide anion radicals (•O2(-)) and the photocatalytic activity are greatly enhanced. Based on the modification by several carboxylic acids and the photocatalytic results, we propose that carboxylic acids with natural bond orbital (NBO) electrostatic charges absolute values greater than 0.830 are effective in modifying BiOBr. PMID:27114050

  20. A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets

    Wang, Xiao-Jing; Zhao, Ying; Li, Fa-Tang; Dou, Li-Jun; Li, Yu-Pei; Zhao, Jun; Hao, Ying-Juan

    2016-04-01

    Surface defect of nanomaterials is an important physical parameter which significantly influences their physical and chemical performances. In this work, high concentration of surface oxygen vancancies (SOVs) are successfully introduced on {001} facets exposed BiOBr nanosheets via a simple surface modification using polybasic carboxylic acids. The chelation interaction between carboxylic acid anions and Bi3+ results in the weakness of Bi-O bond of BiOBr. Afterwards, under visible-light irradiation, the oxygen atoms would absorb the photo-energy and then be released from the surface of BiOBr, leaving SOVs. The electron spin resonance (ESR), high-resolution transmission electron microscopy (HRTEM), and UV–vis diffuse reflectance spectra (DRS) measurements confirm the existence of SOVs. The SOVs can enhance the absorption in visible light region and improve the separation efficiency of photo-generated charges. Hence, the transformation rate of adsorbed O2 on the as-prepared BiOBr with SOVs to superoxide anion radicals (•O2‑) and the photocatalytic activity are greatly enhanced. Based on the modification by several carboxylic acids and the photocatalytic results, we propose that carboxylic acids with natural bond orbital (NBO) electrostatic charges absolute values greater than 0.830 are effective in modifying BiOBr.