WorldWideScience

Sample records for acid base regulation

  1. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  2. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.

    Wen, Zhenliang; Wang, Zihao; Chen, Jingdi; Zhong, Shengnan; Hu, Yimin; Wang, Jianhua; Zhang, Qiqing

    2016-06-01

    The application of hydroxyapatite (HAP) in different fields depends greatly on its morphology, composition and structure. Besides, the main inorganic building blocks of human bones and teeth are also HAP. Therefore, accurate shape and aggregation control and of hydroxyapatite particles will be of great interest. Herein, oriented bundles of flowerlike HAP nanorods were successfully prepared through hydrothermal treatment without acid-base regulation, with the mono-alkyl phosphate (MAP) and sodium citrate as surfactant and chelating agent, respectively. The prepared samples were characterized by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and zeta potential, the pH value and conductivity value of suspension were characterized by pH meter and conductivity measurement. The results showed that the MAP and citrate play an important role in assembly of HAP nanorods without acid-base regulation. Citrate calcium complex could decompose slowly and release citrate ions at hydrothermal conditions. Besides, the further decomposition of citrate ions could release aconitic acid as the reaction time prolongs. Moreover, the possible scheme for the formation process was discussed in detail. PMID:26930036

  3. Historical perspective on the role of the kidney in acid-base regulation.

    Smogorzewski, Miroslaw J

    2009-01-01

    Early observations on the acidity of normal urine by J. B. von Helmont (1527-1644) and on urine content of sulfate, phosphate and carbonate by J. J. Berzelius (1779-1848), followed by the studies of Bence Jones (1813-1878) on the connection between food, nutrition and urine acidity, pointed to the role of the kidney in regulation of acid-base status in humans and animals. The next important steps in this field of science were studies by F. Walter (1877) on decreased "alkali" in blood and increased ammonia in the urine of dogs after infusion into their blood of hydrochloric acid, and the observations of B. Naunyn (1939-1925) and O. Minkowski (1853-1931) on the presence of beta-hydroxybutyric acid in urine and on increased ammonia excretion in urine from patients with diabetic coma. Also it was found that patients with uremia had decreased titratable "alkali' in blood (R. von Jaksch 1855-1947) and reduced ability to excrete ammonia (W. W. Palmer and L. J. Henderson 1915). Finally, studies by R. F. Pitts (1908-1977) defined the role of the kidney in reabsorption of bicarbonate in the tubules and linked hydrogen secretion to sodium excretion in the urine. PMID:20013742

  4. Effectiveness of growth regulators, based on the heterylcarbon acid, on forcing of Tulips (Tulips HD

    Derevianko Natalia

    2016-03-01

    Full Text Available The main factor in growing flowers for forcing is their rate of growth, on account of the fact that in short period of time it is necessary to grow quickly a large number of flowers and to cut them simultaneously. The influence of growth regulators (GR based on heterylcarbon acid on the forcing of tulips in greenhouse conditions (winter period was studied. It was determined that the application of GR1 of the basic within tulip’s forcing period reduces in average to 5 days (from all period of forcing. In case of application GR2 the tulip’s forcing period also reduces to 3 days (from all period of forcing compared with a control group of tulips. The ability of the plant growth regulators under research to accelerate growing properties of flowers is associated with the presence of heterylcarbon acid and potassium ions in their structure of substances. These growth regulators relate to non-toxic compounds and possess antioxidant properties.

  5. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

    Hu, Marian Y.; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embry...

  6. Acid-base regulation in tadpoles of Rana catesbeiana exposed to environmental hypercapnia

    Busk, Morten; Larsen, Erik Hviid; Jensen, Frank B.

    1997-01-01

    Tadpoles of Rana catesbeiana were exposed to different levels of environmental hypercapnia. The acid-base regulatory response differed from that in adult amphibians in showing a high degree of pH compensation in the extracellular fluid (65-85%) and complete compensation in the intracellular fluid......). It is suggested that the large bicarbonate efflux from the animal is a consequence of the dissolution of CaCO3 stores and the delayed adjustment of bicarbonate-retaining mechanisms. Re-exposure of tadpoles to hypercapnia after 1-3 weeks of normocapnic recovery only affected transepithelial fluxes of acid-base...

  7. Osmoregulation and acid base regulation of the Asian Horseshoe crab Carcinoscorpius rotundicauda

    Wetter, M.; Cong, N.; Nielsen, Thomas;

    2008-01-01

    to hypercapnia (5% CO2) was partially restored by increased HC = 3-levels in the haemolymph. The degree of compensation did not differ between individuals that had been held at high or low salinity suggesting that the availability of acid-base relevant ions plays a minor role in this response....

  8. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  9. Acid-base regulation in intensively farmed air-breathing fish

    Bayley, Mark; Damsgaard, Christian; Thomsen, Mikkel;

    Hypercapnia in slow moving organically loaded tropical waters is a natural occurrence with several records of pCO2 at 60 mm Hg. Despite this, studies on South American air-breathing fish have revealed a low capacity for extracellular pH (pHe) regulation. The two underlying reasons proposed are; 1...

  10. Small-Nucleic-Acid-Based Therapeutic Strategy Targeting the Transcription Factors Regulating the Vascular Inflammation, Remodeling and Fibrosis in Atherosclerosis

    Sung Won Youn

    2015-05-01

    Full Text Available Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.

  11. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach.

    Jie Sun

    Full Text Available The zygomycete Blakeslea trispora is used commercially as natural source of â-carotene. Trisporic acid (TA is secreted from the mycelium of B. trispora during mating between heterothallic strains and is considered as a mediator of the regulation of mating processes and an enhancer of carotene biosynthesis. Gas chromatography-mass spectrometry and multivariate analysis were employed to investigate TA-associated intracellular biochemical changes in B. trispora. By principal component analysis, the differential metabolites discriminating the control groups from the TA-treated groups were found, which were also confirmed by the subsequent hierarchical cluster analysis. The results indicate that TA is a global regulator and its main effects at the metabolic level are reflected on the content changes in several fatty acids, carbohydrates, and amino acids. The carbon metabolism and fatty acids synthesis are sensitive to TA addition. Glycerol, glutamine, and ã-aminobutyrate might play important roles in the regulation of TA. Complemented by two-dimensional electrophoresis, the results indicate that the actions of TA at the metabolic level involve multiple metabolic processes, such as glycolysis and the bypass of the classical tricarboxylic acid cycle. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the mechanism of a microorganism's cellular response to signal inducers at the metabolic level.

  12. Investigation and application of polysiloxane-based gel electrolyte in valve-regulated lead-acid battery

    Tang, Zheng; Wang, Jianming; Mao, Xian-xian; Shao, Haibo; Chen, Quanqi; Xu, Zhihua; Zhang, Jianqing

    Polysiloxane-based gel electrolyte (PBGE) is prepared and investigated as a new gel electrolyte for valve-regulated lead-acid (VRLA) batteries. PBGE particles, characterized by means of Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and scanning electron microscopy (SEM), reveal good stability and their particle sizes are 30-50 nm. The initial cyclic properties of the absorptive glass mat (AGM)-PBGE and AGM-colloid silica gel electrolyte (CSGE) hybrid batteries are investigated by electrochemical techniques, scanning electron microscopy and X-ray diffraction (XRD). The addition of PBGE improves the utilization efficiency of positive active material (PAM) in AGM-PBGE hybrid batteries and thus enhances the batteries capacity compared with the AGM-CSGE reference batteries. Cyclic overdischarge tests show that the AGM-PBGE hybrid batteries have superior recharge and discharge during partial-state-of-charge (PSoC). It is also found that the greatly enhanced electrochemical performance of the AGM-PBGE batteries may be due to higher charge efficiency, good conductivity with lower internal resistance and the open three-dimensional network structure of the polyelectrolyte. The analysis results of SEM and XRD indicate that softening and shedding of positive active material are the main causes of failure for the two hybrid batteries.

  13. Investigation and application of polysiloxane-based gel electrolyte in valve-regulated lead-acid battery

    Tang, Zheng; Wang, Jianming; Shao, Haibo; Chen, Quanqi; Xu, Zhihua [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Mao, Xian-xian [Zhejiang Narada Power Source Co., Ltd., Hangzhou 310013 (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Chinese State Key Laboratory for Corrosion and Protection, Shenyang 110015 (China)

    2007-05-25

    Polysiloxane-based gel electrolyte (PBGE) is prepared and investigated as a new gel electrolyte for valve-regulated lead-acid (VRLA) batteries. PBGE particles, characterized by means of Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and scanning electron microscopy (SEM), reveal good stability and their particle sizes are 30-50 nm. The initial cyclic properties of the absorptive glass mat (AGM)-PBGE and AGM-colloid silica gel electrolyte (CSGE) hybrid batteries are investigated by electrochemical techniques, scanning electron microscopy and X-ray diffraction (XRD). The addition of PBGE improves the utilization efficiency of positive active material (PAM) in AGM-PBGE hybrid batteries and thus enhances the batteries capacity compared with the AGM-CSGE reference batteries. Cyclic overdischarge tests show that the AGM-PBGE hybrid batteries have superior recharge and discharge during partial-state-of-charge (PSoC). It is also found that the greatly enhanced electrochemical performance of the AGM-PBGE batteries may be due to higher charge efficiency, good conductivity with lower internal resistance and the open three-dimensional network structure of the polyelectrolyte. The analysis results of SEM and XRD indicate that softening and shedding of positive active material are the main causes of failure for the two hybrid batteries. (author)

  14. Bile acids in regulation of intestinal physiology.

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  15. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Je Min Lee; Hyungjae Lee; SeokBeom Kang; Woo Jung Park

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human phys...

  16. Impact of ocean acidification on thermal tolerance and acid-base regulation of Mytilus edulis (L.) from the North Sea

    Zittier, Zora; Bock, Christian; Lannig, Gisela; Pörtner, Hans-Otto

    2015-01-01

    Anthropogenic climate change confronts marine organisms with rapid trends of concomitant warming and CO2 induced ocean acidification. The survival and distribution of species partly depend on their ability to exploit their physiological plasticity during acclimatization. Therefore, in laboratory studies the effects of simulated future ocean acidification on thermal tolerance, energy metabolism and acid–base regulation capacity of the North Sea population of the blue mussel Mytilus edulis were...

  17. Bile acid biosynthesis and its regulation

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  18. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  19. Valve-regulated lead/acid batteries

    Rand, D. A. J.; Holden, L. S.; May, G. J.; Newnham, R. H.; Peters, K.

    Given the growing importance of valve-regulated lead/acid technology in many existing and emerging market areas, an expert panel was assembled at the Sixth Asian Battery Conference to answer questions from delegates on various technical and operational aspects of such batteries. Key issues included: advantantages; performance and reliability; thermal runaway; and failure modes. The interaction between the audience and the panel was both vigorous and informative. Overwhelmingly, it was agreed that valve-regulated technology has come of age and offers a dynamic solution to many of the world's energy-storage requirements and opportunities.

  20. Acids and bases solvent effects on acid-base strenght

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  1. The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

    Fehsenfeld, Sandra; Weihrauch, Dirk

    2016-03-15

    Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4 (+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2  and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4 (+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. PMID:26787479

  2. Valve-regulated lead-acid batteries

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  3. Effects of seawater alkalinity on calcium and acid-base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle.

    Middlemiss, Karen L; Urbina, Mauricio A; Wilson, Rod W

    2016-03-01

    Fluxes of NH4(+) (acid) and HCO3(-) (base), and whole body calcium content were measured in European lobster (Homarus gammarus) during intermoult (megalopae stage), and during the first 24h for postmoult juveniles under control (~2000 μeq/L) and low seawater alkalinity (~830 μeq/L). Immediately after moulting, animals lost 45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was retained in the uncalcified body. At 24h postmoult, exoskeleton calcium increased to ~46% of the intermoult stage. Ammonia excretion was not affected by seawater alkalinity. After moulting, bicarbonate excretion was immediately reversed from excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24h postmoult period, peaking at 3-6h. These data suggest that exoskeleton calcification is not completed by 24h postmoult. Low seawater alkalinity reduced postmoult bicarbonate uptake by 29% on average. Net acid-base flux (equivalent to net base uptake) followed the same pattern as HCO3(-) fluxes, and was 22% lower in low alkalinity seawater over the whole 24h postmoult period. The common occurrence of low alkalinity in intensive aquaculture systems may slow postmoult calcification in juvenile H. gammarus, increasing the risk of mortalities through cannibalism. PMID:26691956

  4. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production. PMID:26289745

  5. Molten fatty acid based microemulsions.

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  6. Regulation of uric acid metabolism and excretion.

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  7. Acidic/IQ Motif Regulator of Calmodulin*

    Putkey, John A.; Waxham, M. Neal; Gaertner, Tara R.; Brewer, Kari J.; Goldsmith, Michael; Kubota, Yoshihisa; Kleerekoper, Quinn K.

    2007-01-01

    The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca2+ binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca2+ binding to sites III and IV, and we present a model showing that this could increase Ca2+ binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ ...

  8. The social Bases of Regulation

    Bagnasco Arnaldo

    2010-01-01

    Deep changes occured in the social stratification of developed societies during the recent years of neo-liberal capitalism. The search of new institutional forms of social and economic regulation requires a prior understanding of some fundamental features of social change. Beginning by reconstructing the social bases of the old post-war social compromises, both in Europe and United States, the article investigates the stratification effects in processes such as "Flexible specialization", "New...

  9. Retinoic acid signalling in thymocytes regulates T cell development

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut;

    The Vitamin A derivative retinoic acid (RA) has emerged as an important regulator of peripheral T cell responses. However, whether there is endogenous retinoic acid receptor (RAR) signaling in developing thymocytes and the potential impact of such signals in thymocyte development remains unclear...

  10. Regulation of human class I alcohol dehydrogenases by bile acids

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  11. Regulation of Fatty Acid Metabolism by Cell Autonomous Circadian Clocks: Time to Fatten up on Information?*

    Bray, Molly S; Young, Martin E.

    2011-01-01

    Molecular, cellular, and animal-based studies have recently exposed circadian clocks as critical regulators of energy balance. Invariably, mouse models of genetically manipulated circadian clock components display features indicative of altered lipid/fatty acid metabolism, including differential adiposity and circulating lipids. The purpose of this minireview is to provide a comprehensive summary of current knowledge regarding the regulation of fatty acid metabolism by distinct cell autonomou...

  12. Fatty acids and the regulation of pyruvate dehydrogenase interconversion

    Stewart, Melanie Ann.

    1997-01-01

    This thesis presents evidence for a novel mechanism of regulation of pyruvate dehydrogenase (PDH) kinase by fatty acids and also results of a study of muscle triacylglycerol concentration. In animals regulation of PDH complex activity is central to the selection of respiratory fuels and to the conservation of glucose during carbohydrate deprivation. The principal means of regulation of PDH complex is interconversion of phosphorylated (inactive) and dephosphorylated (active) fo...

  13. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets

    Wijendran, Vasuki; Downs, Ian; Tyburczy, Cynthia; Kothapalli, Kumar S. D.; Park, Woo Jung; Blank, Bryant S.; Zimmer, J. Paul; Butt, C. M.; Salem, Norman; Brenna, J. Thomas

    2013-01-01

    Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic (ARA) and docosahexaenoic acid (DHA) during early postnatal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human b...

  14. Acid-base transport in pancreas-new challenges

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    to consider in pancreas are the proton pumps (H-K-ATPases), as well as the calcium-activated K and Cl channels, such as K3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport...

  15. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  16. GROWTH-REGULATING ACTIVITY OF SOME SALTS OF 1-NAPHTHALENACETIC ACID AND 2-NAPHTHOXYACETIC ACID

    Maria Laichici

    2001-01-01

    Full Text Available The salts of 1-naphthalene acetic acid and 2-naphthoxyacetic acid with ethanolamine have been synthetized. The two salts have been assessed using Tsibulskaya-Vassiliev biological test using agar-agar as the medium. Statistical processing of the data has been carried out. The good results of the bioassay indicate an auxinic growth-regulating activity of the two salts.

  17. Regulation and limitations to fatty acid oxidation during exercise

    Jeppesen, Jacob; Kiens, Bente

    2012-01-01

    turn is trapped by carnitine. This will lead to less availability of free carnitine for fatty acid transport into mitochondria. This review summarizes our present view on how FA metabolism is regulated during exercise with a special focus on the limitations in FA oxidation in the transition from...

  18. Acid-base homeostasis in the human system

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  19. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part I. Results based on kernel density estimation

    Schaeck, S.; Karspeck, T.; Ott, C.; Weckler, M.; Stoermer, A. O.

    2011-03-01

    In March 2007 the BMW Group has launched the micro-hybrid functions brake energy regeneration (BER) and automatic start and stop function (ASSF). Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology are applied in vehicles with micro-hybrid power system (MHPS). In both part I and part II of this publication vehicles with MHPS and AGM batteries are subject to a field operational test (FOT). Test vehicles with conventional power system (CPS) and flooded batteries were used as a reference. In the FOT sample batteries were mounted several times and electrically tested in the laboratory intermediately. Vehicle- and battery-related diagnosis data were read out for each test run and were matched with laboratory data in a data base. The FOT data were analyzed by the use of two-dimensional, nonparametric kernel estimation for clear data presentation. The data show that capacity loss in the MHPS is comparable to the CPS. However, the influence of mileage performance, which cannot be separated, suggests that battery stress is enhanced in the MHPS although a battery refresh function is applied. Anyway, the FOT demonstrates the unsuitability of flooded batteries for the MHPS because of high early capacity loss due to acid stratification and because of vanishing cranking performance due to increasing internal resistance. Furthermore, the lack of dynamic charge acceptance for high energy regeneration efficiency is illustrated. Under the presented FOT conditions charge acceptance of lead-acid (LA) batteries decreases to less than one third for about half of the sample batteries compared to new battery condition. In part II of this publication FOT data are presented by multiple regression analysis (Schaeck et al., submitted for publication [1]).

  20. Boronic acid-based autoligation of nucleic acids

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.;

    2013-01-01

    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible...

  1. Regulation of hepatic bile acid transporters Ntcp and Bsep expression

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D.

    2007-01-01

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression ...

  2. Potency of Individual Bile Acids to Regulate Bile Acid Synthesis and Transport Genes in Primary Human Hepatocyte Cultures

    Liu, Jie; LU, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C.; Klaassen, Curtis D.

    2014-01-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. ...

  3. Regulation of Inflammation by Short Chain Fatty Acids

    Renato T. Nachbar

    2011-10-01

    Full Text Available The short chain fatty acids (SCFAs acetate (C2, propionate (C3 and butyrate (C4 are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43 and inhibiton of histone deacetylase (HDAC. SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10, eicosanoids and chemokines (e.g., MCP-1 and CINC-2. The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.

  4. Acid rain compliance: Coordination of state and federal regulation

    The Clean Air Act (CAA) Amendments of 1990 impose new controls on emissions by electric utilities of the two major precursors of acid rain: sulfur dioxide (SO2) and oxides of nitrogen (NOx). Utilities, and the utility holding company systems and power pools of which they are members, will be subject to extensive and costly compliance obligations under the new statute. Most of these utilities, utility systems, and power pools are regulated by more than one utility regulatory authority. Some utilities are regulated by several states, some by a single state and by the Federal Energy Regulatory Commission (FERC), and some by multiple states, by the FERC, and by the Securities and Exchange Commission (SEC). Utility regulators will need to coordinate their policies for ratemaking and for reviewing acid rain compliance strategies if least cost solutions are to be implemented without imposing on ratepayers and utility shareholders the costs and risks of inconsistent regulatory determinations. This article outlines the scope of the coordination problem and addresses possible approaches that utility regulators may take to deal with this problem

  5. A buffer-regulated HF acid for sandstone acidizing to 550/sup 0/F

    Scheuerman, R.F.

    1988-02-01

    Two earlier papers discussed the suitability of bugger-regulated HF acid (BRHFA) for high-temperature sandstone matrix stimulation treatments. Acetic-acid/acetate buffering (pH = 4.5 to 5.0) limited corrosion to acceptable levels at temperatures up to about 350/sup 0/F (177/sup 0/C). Subsequent development of reservoirs with temperatures approaching 450/sup 0/F (232/sup 0/C) demonstrated a need for even higher-temperature acidizing systems. This paper discusses a new, less corrosive BRHFA formulation that has clay-dissolving capacity comparable to 7 1/2% HCl/1 1/2% HF acid. The corrosion rate of carbon steel at 550/sup 0/F (288/sup 0/C) is only 330 mils/yr (8.4 mm/a). The BRHFA systems are also compatible with a variety of corrosion-resistant alloys. This paper presents clay slurry, core flow, and corrosion data and discusses use guidelines.

  6. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.

    Kobayashi, T; Beuchat, M H; Lindsay, M; Frias, S; Palmiter, R D; Sakuraba, H; Parton, R G; Gruenberg, J

    1999-06-01

    The fate of free cholesterol released after endocytosis of low-density lipoproteins remains obscure. Here we report that late endosomes have a pivotal role in intracellular cholesterol transport. We find that in the genetic disease Niemann-Pick type C (NPC), and in drug-treated cells that mimic NPC, cholesterol accumulates in late endosomes and sorting of the lysosomal enzyme receptor is impaired. Our results show that the characteristic network of lysobisphosphatidic acid-rich membranes contained within multivesicular late endosomes regulates cholesterol transport, presumably by acting as a collection and distribution device. The results also suggest that similar endosomal defects accompany the anti-phospholipid syndrome and NPC. PMID:10559883

  7. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. PMID:27264339

  8. Opposite Regulation of CD36 Ubiquitination by Fatty Acids and Insulin: EFFECTS ON FATTY ACID UPTAKE*

    Smith, Jill; Su, Xiong; El-Maghrabi, Raafat; Stahl, Philip D.; Abumrad, Nada A.

    2008-01-01

    FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO c...

  9. Base-acid hybrid water electrolysis.

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  10. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets.

    Wijendran, Vasuki; Downs, Ian; Srigley, Cynthia Tyburczy; Kothapalli, Kumar S D; Park, Woo Jung; Blank, Bryant S; Zimmer, J Paul; Butt, C M; Salem, Norman; Brenna, J Thomas

    2013-10-01

    Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic acid (ARA) and docosahexaenoic acid (DHA) during early post-natal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human breast milk, in suckling piglets. Piglets were fed one of six milk replacer formula diets (formula-reared groups, FR) with varying ARA and DHA content from days 3-28 of age. The ARA/DHA levels of the six formula diets were as follows (% total fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. The control maternal-reared (MR) group remained with the dam. Fads1 expression was not significantly different between FR and MR groups. Fads2 expression was down-regulated significantly in diets with 1:1 ratio of ARA:DHA, compared to MR. Fads2 AT1 expression was highly correlated to Fads2 expression. Fads3 AT7 was the only Fads3 transcript sensitive to dietary LC-PUFA intake and was up-regulated in the formula diets with lowest ARA and DHA contents compared to MR. Thus, the present study provides evidence that the proportion of dietary ARA:DHA is a significant determinant of Fads2 expression and LC-PUFA metabolism during the early postnatal period. Further, the data suggest that Fads3 AT7 may have functional significance when dietary supply of ARA and DHA are low during early development. PMID:24075244

  11. Metabolic regulation of amino acid uptake in marine waters

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  12. Acid-base transport in pancreas – new challenges

    Ivana eNovak

    2013-12-01

    Full Text Available Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+ and base (HCO3- transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO3- and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases, as well as the calcium-activated K+ and Cl- channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signalling, fine-tune and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis and cancer.

  13. Peptide nucleic acid (PNA) binding-mediated gene regulation

    2004-01-01

    Peptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a singlestranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The Dloops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.

  14. Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals.

    Saber, Rana; Zadeh, Mojgan; Pakanati, Krishna C; Bere, Praveen; Klaenhammer, Todd; Mohamadzadeh, Mansour

    2011-03-01

    The trillions of microbes residing within the intestine induce critical signals that either regulate or stimulate host immunity via their bacterial products. To better understand the immune regulation elicited by lipoteichoic acid (LTA)-deficient Lactobacillus acidophilus NCFM in steady state and induced inflammation, we deleted phosphoglycerol transferase gene, which synthesizes LTA in L. acidophilus NCFM. In vitro and in vivo experiments were conducted in order to compare the immune regulatory properties of the L. acidophilus strain deficient in LTA (NCK2025) with its wild-type parent (NCK56) in C57BL/6, C57BL/6 recombination-activation gene 1-deficient (Rag1 (-/-)) and C57BL/6 Rag1(-/-)IL-10(-/-) mice. We demonstrate that NCK2025 significantly activates the phosphorylation of Erk1/2 but downregulates the phosphorylation of Akt1, cytosolic group IV PLA2 and p38 in mouse dendritic cells. Similarly, mice treated orally with NCK2025 exhibit decreased phosphorylation of inflammatory signals (Akt1, cytosolic group IV PLA2 or P38) but upregulate Erk1/2-phosphorylation in colonic epithelial cells in comparison with mice treated with NCK56. In addition, regulation of pathogenic CD4+ T cell induced colitis by NCK2025 was observed in Rag1 (-/-) but not Rag1(-/-)IL-10 (-/-) mice suggests a critical role of IL-10 that may be tightly regulated by Erk1/2 signaling. These data highlight the immunosuppressive properties of NCK2025 to deliver regulatory signals in innate cells, which results in the mitigation of T-cell-induced colitis in vivo. PMID:21395377

  15. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  16. Identification of genes regulated by UV/salicylic acid.

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  17. Hypokalemic paralysis and acid-base balance

    Ivo Casagranda

    2006-10-01

    Full Text Available Three cases of hypokalemic paralysis are reported, presenting to the Emergency Department. The first is a patient with a hypokalemic periodic paralysis with a normal acid-base status, the second is a case of hypokalemic flaccid paralysis of all extremities with a normal anion gap metabolic acidosis, the last is a patient with a hypokalemic distal paralysis of right upper arm with metabolic alkalosis. Afterwards some pathophysiologic principles and the clinical aspects of hypokalemia are discussed and an appropriate approach to do in Emergency Department, to identify the hypokalemic paralysis etiologies in the Emergency Department, is presented, beginning from the evaluation of acid-base status.

  18. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  19. Fermented probiotic beverages based on acid whey

    Katarzyna Skryplonek

    2015-12-01

    Full Text Available Background. Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bac- teria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Material and methods. Samples were inoculated with two strains of commercial probiotic cultures: Lac- tobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Results. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all sam- ples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Conclusions. Obtained products made of acid whey combined with milk and fortified with buttermilk pow- der or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  20. Jigsaw Cooperative Learning: Acid-Base Theories

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  1. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    Brodersen, Klaus Peter; Petersen, Morten; Nielsen, Henrik Bjørn;

    2006-01-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  2. Oxide for valve-regulated lead-acid batteries

    Lam, L. T.; Lim, O. V.; Haigh, N. P.; Rand, D. A. J.; Manders, J. E.; Rice, D. M.

    In order to meet the increasing demand for valve-regulated lead-acid (VRLA) batteries, a new soft lead has been produced by Pasminco Metals. In this material, bismuth is increased to a level that produces a significant improvement in battery cycle life. By contrast, other common impurities, such as arsenic, cobalt, chromium, nickel, antimony and tellurium, that are known to be harmful to VRLA batteries are controlled to very low levels. A bismuth (Bi)-bearing oxide has been manufactured (Barton-pot method) from this soft lead and is characterized in terms of phase composition, particle size distribution, BET surface area, and reactivity. An investigation is also made of the rates of oxygen and hydrogen evolution on pasted electrodes prepared from the Bi-bearing oxide. For comparison, the characteristics and performance of a Bi-free (Barton-pot) oxide, which is manufactured in the USA, are also examined. Increasing the level of bismuth and lowering those of the other impurities in soft lead produces no unusual changes in either the physical or the chemical properties of the resulting Bi-bearing oxide compared with Bi-free oxide. This is very important because there is no need for battery manufacturers to change their paste formulae and paste-mixing procedures on switching to the new Bi-bearing oxide. There is little difference in the rates of oxygen and hydrogen evolution on pasted electrodes prepared from Bi-bearing or Bi-free oxides. On the other hand, these rates increase on the former electrodes when the levels of all the other impurities are made to exceed (by deliberately adding the impurities as oxide powders) the corresponding, specified values for the Bi-bearing oxide. The latter behaviour is particularly noticeable for hydrogen evolution, which is enhanced even further when a negative electrode prepared from Bi-bearing oxide is contaminated through the deposition of impurities added to the sulfuric acid solution. The effects of impurities in the positive

  3. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis.

    Duester, G; Shean, M L; McBride, M S; Stewart, M J

    1991-01-01

    Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between...

  4. Phenolic Acid-Mediated Regulation of the padC Gene, Encoding the Phenolic Acid Decarboxylase of Bacillus subtilis▿ †

    Tran, Ngoc Phuong; Gury, Jerôme; Dartois, Véronique; Nguyen, Thi Kim Chi; Seraut, Hélène; Barthelmebs, Lise; Gervais, Patrick; Cavin, Jean-François

    2008-01-01

    In Bacillus subtilis, several phenolic acids specifically induce expression of padC, encoding a phenolic acid decarboxylase that converts these antimicrobial compounds into vinyl derivatives. padC forms an operon with a putative coding sequence of unknown function, yveFG, and this coding sequence does not appear to be involved in the phenolic acid stress response (PASR). To identify putative regulators involved in the PASR, random transposon mutagenesis, combined with two different screens, w...

  5. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  6. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    Sipla Aggarwal; Vishnu Shukla; Kaushal Kumar Bhati; Mandeep Kaur; Shivani Sharma; Anuradha Singh; Shrikant Mantri; Ajay Kumar Pandey

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements...

  7. Nucleic acid-based approaches to STAT inhibition.

    Sen, Malabika; Grandis, Jennifer R

    2012-10-01

    Silencing of abnormally activated genes can be accomplished in a highly specific manner using nucleic acid based approaches. The focus of this review includes the different nucleic acid based inhibition strategies such as antisense oligodeoxynucleotides, small interfering RNA (siRNA), dominant-negative constructs, G-quartet oligonucleotides and decoy oligonucleotides, their mechanism of action and the effectiveness of these approaches to targeting the STAT (signal transducer and activator of transcription) proteins in cancer. Among the STAT proteins, especially STAT3, followed by STAT5, are the most frequently activated oncogenic STATs, which have emerged as plausible therapeutic cancer targets. Both STAT3 and STAT5 have been shown to regulate numerous oncogenic signaling pathways including proliferation, survival, angiogenesis and migration/invasion. PMID:24058785

  8. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

    Madsen, Lise; Pedersen, Lone Møller; Liaset, Bjørn;

    2008-01-01

    The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti...... pivotal in regulating the adipogenic effect of n-6 PUFAs and that diet-induced differences in cAMP levels may explain the ability of n-6 PUFAs to either enhance or counteract adipogenesis and obesity....

  9. Risk-based and deterministic regulation

    Both risk-based and deterministic methods are used for regulating the nuclear industry to protect the public safety and health from undue risk. The deterministic method is one where performance standards are specified for each kind of nuclear system or facility. The deterministic performance standards address normal operations and design basis events which include transient and accident conditions. The risk-based method uses probabilistic risk assessment methods to supplement the deterministic one by (1) addressing all possible events (including those beyond the design basis events), (2) using a systematic, logical process for identifying and evaluating accidents, and (3) considering alternative means to reduce accident frequency and/or consequences. Although both deterministic and risk-based methods have been successfully applied, there is need for a better understanding of their applications and supportive roles. This paper describes the relationship between the two methods and how they are used to develop and assess regulations in the nuclear industry. Preliminary guidance is suggested for determining the need for using risk based methods to supplement deterministic ones. However, it is recommended that more detailed guidance and criteria be developed for this purpose

  10. Forms and paradoxes of principles-based regulation

    Black, Julia

    2008-01-01

    Principles-based regulation is high on the regulatory agenda in a number of regulatory domains, most particularly financial regulation. Its supporters argue that it provides a flexible regulatory regime which can facilitate innovation; its detractors argue that it is simply lax regulation. This article explores the political rhetoric surrounding principles-based regulation. It identifies four forms of principles-based regulation: formal, substantive, full and polycentric principles-based regu...

  11. Hypokalemic paralysis and acid-base balance

    Ivo Casagranda; Riccardo Boverio; Andrea Defrancisci; Sara Ferrillo; Francesca Gargiulo

    2006-01-01

    Three cases of hypokalemic paralysis are reported, presenting to the Emergency Department. The first is a patient with a hypokalemic periodic paralysis with a normal acid-base status, the second is a case of hypokalemic flaccid paralysis of all extremities with a normal anion gap metabolic acidosis, the last is a patient with a hypokalemic distal paralysis of right upper arm with metabolic alkalosis. Afterwards some pathophysiologic principles and the clinical aspects of hypokalemia are discu...

  12. Essential amino acids: master regulators of nutrition and environmental footprint?

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients’ environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  13. Essential amino acids: master regulators of nutrition and environmental footprint?

    Tessari, Paolo; Lante, Anna; Mosca, Giuliano

    2016-01-01

    The environmental footprint of animal food production is considered several-fold greater than that of crops cultivation. Therefore, the choice between animal and vegetarian diets may have a relevant environmental impact. In such comparisons however, an often neglected issue is the nutritional value of foods. Previous estimates of nutrients' environmental footprint had predominantly been based on either food raw weight or caloric content, not in respect to human requirements. Essential amino acids (EAAs) are key parameters in food quality assessment. We re-evaluated here the environmental footprint (expressed both as land use for production and as Green House Gas Emission (GHGE), of some animal and vegetal foods, titrated to provide EAAs amounts in respect to human requirements. Production of high-quality animal proteins, in amounts sufficient to match the Recommended Daily Allowances of all the EAAs, would require a land use and a GHGE approximately equal, greater o smaller (by only ±1-fold), than that necessary to produce vegetal proteins, except for soybeans, that exhibited the smallest footprint. This new analysis downsizes the common concept of a large advantage, in respect to environmental footprint, of crops vs. animal foods production, when human requirements of EAAs are used for reference. PMID:27221394

  14. A field operational test on valve-regulated lead-acid absorbent-glass-mat batteries in micro-hybrid electric vehicles. Part II. Results based on multiple regression analysis and tear-down analysis

    Schaeck, S.; Karspeck, T.; Ott, C.; Weirather-Koestner, D.; Stoermer, A. O.

    2011-03-01

    In the first part of this work [1] a field operational test (FOT) on micro-HEVs (hybrid electric vehicles) and conventional vehicles was introduced. Valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology and flooded batteries were applied. The FOT data were analyzed by kernel density estimation. In this publication multiple regression analysis is applied to the same data. Square regression models without interdependencies are used. Hereby, capacity loss serves as dependent parameter and several battery-related and vehicle-related parameters as independent variables. Battery temperature is found to be the most critical parameter. It is proven that flooded batteries operated in the conventional power system (CPS) degrade faster than VRLA-AGM batteries in the micro-hybrid power system (MHPS). A smaller number of FOT batteries were applied in a vehicle-assigned test design where the test battery is repeatedly mounted in a unique test vehicle. Thus, vehicle category and specific driving profiles can be taken into account in multiple regression. Both parameters have only secondary influence on battery degradation, instead, extended vehicle rest time linked to low mileage performance is more serious. A tear-down analysis was accomplished for selected VRLA-AGM batteries operated in the MHPS. Clear indications are found that pSoC-operation with periodically fully charging the battery (refresh charging) does not result in sulphation of the negative electrode. Instead, the batteries show corrosion of the positive grids and weak adhesion of the positive active mass.

  15. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  16. Genetic Algorithm Based Self Tuning Regulator

    S.KANTHALAKSHMI

    2010-12-01

    Full Text Available In this paper, Genetic Algorithm is used for two basic tasks of a Self Tuned Regulator (STR - system identification and PID tuning, providing the controller the ability to automatically tune its parameters while the physical plant dynamic characteristics changes, in an optimal way. The performance of the ball and hoop system, which is difficult to control optimally using a PID controller because of the constantly changing system parameters, is presented. Then, the proposed GA based optimal adaptive controller is designed for the same. Perturbations are applied to the system to check the robustness of the proposed system. The results reflect that proposed scheme improves the performance of the process in terms of time domain specifications, robustness to parametric changes and optimum stability. Also, a comparison with the conventional Ziegler-Nichols method proves the superiority of GA based system.

  17. Biodegradable polyesters based on succinic acid

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  18. Manufacture and application of valve-regulated lead/acid batteries in China

    Wang, Z.

    This paper introduces the manufacture and application of valve-regulated lead/acid batteries in China. The contents cover the following topics: (i) background development; (ii) materials; (iii) manufacturing technology and equipment; (iv) application and market prospects.

  19. Regulation of bile acid synthesis in rat hepatocyte monolayer cultures

    Primary hepatocyte monolayer cultures (PHC) were prepared and incubated in serum free media. Cells from a cholestyramine fed rat converted exogenous [14C]-cholesterol into [14C]-bile acids at a 3-fold greater rate than rats fed a normal diet. PHC synthesize bile acids (BA) at a rate of approximately 0.06 μg/mg protein/h. The major bile acid composition, as determined by GLC, was β-muricholic acid (BMC) and cholic acid (CA) in a 3:1 ratio, respectively. PHC rapidly converted free BA and BA intermediates into taurine conjugated trihydroxy-BA up to 87h after plating. 3-Hydroxy-3-methylglutaryl-coenzyme A-reductase activity assayed in microsomes prepared from PHC, decreased during the initial 48h, then remained constant. Cholesterol 7α-hydroxylase activity decreased during the initial 48h, then increased during the next 48h. This occurred while whole cells produced BA at a linear rate. The effect of individual BA on bile acid synthesis (BAS) was also studied. Relative rates of BAS were measured as the conversion of [14C]-cholesterol into [14C]-BA. BA combinations were tested in order to simulate the composition of the enterohepatic circulation. The addition of TCA (525 μM) plus TCDCA (80μM), in concentrations which greatly exceed the concentration of BA (60μM) in rate portal blood, failed to inhibit BAS. BA plus phospholipid and/or cholesterol also did not inhibit BAS. Surprisingly, crude rat bile with a final concentration comparable to those in the synthetic mix inhibited [14C]-cholesterol conversion into [14C]-BA

  20. Biogas Production on Demand Regulated by Butyric Acid Addition

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  1. Retinoic acid signalling in thymocytes regulates T cell development

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut;

    The Vitamin A derivative retinoic acid (RA) works as a ligand for a family of nuclearRA receptors (RARα, RARβ and RARγ) which form heterodimers with retinoid Xreceptors (RXR). These complexes function as ligand-activated transcription factors,recognizing specific RA responsive elements in the...

  2. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid

    Pleskot, Roman; Li, J.J.; Žárský, Viktor; Potocký, Martin; Staiger, C.J.

    2013-01-01

    Roč. 18, č. 9 (2013), s. 496-504. ISSN 1360-1385 R&D Projects: GA ČR GA13-19073S Institutional research plan: CEZ:AV0Z50380511 Keywords : cytoskeleton * microtubules * phosphatidic acid Subject RIV: ED - Physiology Impact factor: 13.479, year: 2013

  3. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry;

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from dietinduced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by ex...

  4. Potency of Individual Bile Acids to Regulate Bile Acid Synthesis and Transport Genes in Primary Human Hepatocyte Cultures

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C.; Klaassen, Curtis D.

    2014-01-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70–95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na+-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10–100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective. PMID:25055961

  5. ACID-EXTRUDING TRANSPORTERS IN MAMMARY AND PANCREATIC ADENOCARCINOMA: REGULATION AND ROLES IN CELL MOTILITY

    Pedersen, S.

    2013-01-01

    A fundamental property of solid tumors is an altered pH-profile compared to normal tissues. This at least in part reflects increased glycolytic metabolism, necessitating increased acid extrusion to maintain survival, and in turn stimulating cancer cell motility [1, 2]. Acid extruding transporters are therefore interesting potential targets in cancer. The overall aim of these studies was to explore the regulation and roles of acid extruding transporters in human mammary and pancreatic adenocar...

  6. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    Wai-Leng Lee; Jing-Ying Huang; Lie-Fen Shyur

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights th...

  7. Regulatory impact analysis of the proposed acid-rain implementation regulations

    This regulatory impact analysis (RIA) was developed in response to Executive Order (EO) 12291, which requires Federal Agencies to assess the costs, benefits, and impacts of all 'major' regulations. In compliance with EO 12291, this RIA assesses costs, benefits and impacts for the important provisions of Title IV. EPA divided its analysis of the Acid Rain Program into two parts. First, EPA analyzed the effects of the statute in the absence of any implementation regulations. In the second part of the analysis, EPA examined a 'regulatory' case that included both the SO2 reductions and the implementation regulations. By comparing costs under the regulatory case to those under the absent regulations case, EPA was able to isolate the incremental savings provided by the regulations. At the same time, by combining the two parts of the analysis, EPA was able to show the total costs imposed by the Acid Rain Program (the statute and the regulations) as a whole

  8. Fatty acids from diet and microbiota regulate energy metabolism

    Joe Alcock; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly ...

  9. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  10. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review.

    Wang, Bo; Yang, Qiyuan; Harris, Corrine L; Nelson, Mark L; Busboom, Jan R; Zhu, Mei-Jun; Du, Min

    2016-10-01

    To improve the efficiency of animal production, livestock have been extensively selected or managed to reduce fat accumulation and increase lean growth, which reduces intramuscular or marbling fat content. To enhance marbling, a better understanding of the mechanisms regulating adipogenesis is needed. Vitamin A has recently been shown to have a profound impact on all stages of adipogenesis. Retinoic acid, an active metabolite of vitamin A, activates both retinoic acid receptors (RAR) and retinoid X receptors (RXR), inducing epigenetic changes in key regulatory genes governing adipogenesis. Additionally, Vitamin D and folates interact with the retinoic acid receptors to regulate adipogenesis. In this review, we discuss nutritional regulation of adipogenesis, focusing on retinoic acid and its impact on epigenetic modifications of key adipogenic genes. PMID:27086067

  11. Physiological roles of acid-base sensors.

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase. PMID:25340964

  12. Hyaluronic acid regulates normal intestinal and colonic growth in mice

    Riehl, Terrence E.; Ee, Xueping; Stenson, William F

    2012-01-01

    Hyaluronic acid (HA), a component of the extracellular matrix, affects gastrointestinal epithelial proliferation in injury models, but its role in normal growth is unknown. We sought to determine the effects of exogenous HA on intestinal and colonic growth by intraperitoneal injection of HA twice a week into C57BL/6 mice from 3 to 8 wk of age. Similarly, to determine the effects of endogenous HA on intestinal and colonic growth, we administered PEP-1, a peptide that blocks the binding of HA t...

  13. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati.

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  14. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  15. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction.

    Fujino, Masayuki; Nishio, Yoshiaki; Ito, Hidenori; Tanaka, Tohru; Li, Xiao-Kang

    2016-08-01

    5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid and precursor of heme and protoporphyrin IX (PpIX). Exogenously administrated 5-ALA increases the accumulation of PpIX in tumor cells specifically due to the compromised metabolism of 5-ALA to heme in mitochondria. PpIX emits red fluorescence by the irradiation of blue light and the formation of reactive oxygen species and singlet oxygen. Thus, performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy. In addition to the field of tumor therapy, 5-ALA has been implicated in the treatment of inflammatory disease, autoimmune disease and transplantation due to the anti-inflammation and immunoregulation properties that are elicited with the expression of heme oxygenase (HO)-1, an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide (CO), in combination with sodium ferrous citrate (SFC), because an inhibitor of HO-1 abolishes the effects of 5-ALA. Furthermore, NF-E2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and heme are involved in the HO-1 expression. Biliverdin and CO are also known to have anti-apoptotic, anti-inflammatory and immunoregulatory functions. We herein review the current use of 5-ALA in inflammatory diseases, transplantation medicine, and tumor therapy. PMID:26643355

  16. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture.

    Hernandez, Ludwi Rodríguez; Mendiola, Martha A Rodríguez; Castro, Carlos Arias; Gutiérrez-Miceli, Federico A

    2015-01-01

    The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids. PMID:25757437

  17. Lesion-dependent regulation of transgene expression in the rat brain using a human glial fibrillary acidic protein-lentiviral vector.

    Jakobsson, Johan; Georgievska, Biljana; Ericson, Cecilia; Lundberg, Cecilia

    2004-01-01

    The ability to regulate transgene expression will be crucial for development of gene therapy to the brain. The most commonly used systems are based on a transactivator in combination with a drug, e.g. the tetracycline-regulated system. Here we describe a different method of transgene regulation by the use of the human glial fibrillary acidic protein (GFAP) promoter. We constructed a lentiviral vector that directs transgene expression to astrocytes. Using toxin-induced lesions we investigated ...

  18. Performance characteristics of a gelled-electrolyte valve-regulated lead-acid battery

    S K Martha; B Hariprakash; S A Gaffoor; A K Shukla

    2003-08-01

    12 V/25 AH gelled-electrolyte valve-regulated lead-acid batteries have been assembled in-house and their performance studied in relation to the absorptive glass-microfibre valve-regulated and flooded-electrolyte counterparts at various discharge rates and temperatures between –40°C and 40°C. Although the performance of the gelled-electrolyte valve-regulated battery is similar to both the absorptive glass-microfibre valve-regulated and flooded-electrolyte lead-acid batteries at temperatures above 0°C, it is superior to both the flooded-electrolyte and absorptive glass-microfibre valve-regulated lead-acid batteries at temperatures between 0°C and -40°C. The latter characteristic is attractive for expanding the application regime of valve-regulated lead-acid batteries. The corrosion rate for the positive grids in the gelled-electrolyte is also lower than both the flooded-electrolyte and absorptive glass-microfibre configurations.

  19. The regulation of renal acid secretion: new observations from studies of distal nephron segments.

    Levine, D Z; Jacobson, H R

    1986-06-01

    In this review we have attempted to present for the general reader the new information on renal acidification that has emerged from the study of discrete segments of the distal nephron. We have structured our presentation in the context of the cation exchange hypothesis which has strongly influenced modern thinking of acid-base regulation. We have shown that distal nephron acidification is active and can proceed even in the absence of sodium. We have also shown beyond doubt, that pH or the determinants of pH can influence the rate of proton secretion in probably all of the distal nephron segments. We have drawn attention to an exciting new means by which chloride (or its substitution) could alter the rate of net bicarbonate transport. A possible role for bicarbonate secretory activity in the mammalian distal nephron has been discussed as has the influence of mineralocorticoids on acid secretion. There is no question that all of this new information has created the need for a reassessment of the validity of the cation exchange hypothesis. After all, this is a view which specifically denies that renal acid excretion is modulated by pH of the blood, and affirms that it is intrarenal sodium handling that is the "driving force", so to speak, behind acidification responses. However, it seems inappropriate at this time to insist that current data do not allow for a component of sodium transport by the distal nephron to modulate the rate of acid secretion. It is also possible, as we have suggested, that an important effect of chloride gradients, independent of blood pH, could alter bicarbonate retrieval. Most importantly, we wish to stress that much of the in vitro perfusion data does not derive from animals subjected to the chronic acid-base derangements which were precisely those situations to which the cation exchange hypothesis was directed. Simply put, the whole animal studies of Schwartz and his colleagues provided no experimental observations on intrarenal sodium

  20. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation of arachidonic acid relea...se and cytosolic phospholipase A2activation. Authors Gij

  1. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  2. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  3. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzyma...

  4. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  5. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  6. Conjugated Linoleic Acid in Humans: Regulation of Adiposity and Insulin Sensitivity1,2

    Brown, J. Mark; McIntosh, Michael K.

    2003-01-01

    Conjugated linoleic acid (CLA) isomers, a group of positional and geometric isomers of linoleic acid [18:2(n-6)], have been studied extensively due to their ability to modulate cancer, atherosclerosis, obesity, immune function and diabetes in a variety of experimental models. The purpose of this review was to examine CLA’s isomer-specific regulation of adiposity and insulin sensitivity in humans and in cultures of human adipocytes. It has been clearly demonstrated that specific CLA isomers or...

  7. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  8. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass

    Stefan M. Pasiakos

    2012-07-01

    Full Text Available A series of complex intracellular networks influence the regulation of skeletal muscle protein turnover. In recent years, studies have examined how cellular regulators of muscle protein turnover modulate metabolic mechanisms contributing to the loss, gain, or conservation of skeletal muscle mass. Exercise and amino acids both stimulate anabolic signaling potentially through several intracellular pathways including the mammalian target of rapamycin complex 1 and the mitogen activated protein kinase cell signaling cascades. As novel molecular regulators of muscle integrity continue to be explored, a contemporary analysis of the literature is required to understand the metabolic mechanisms by which contractile forces and amino acids affect cellular process that contribute to long-term adaptations and preservation of muscle mass. This article reviews the literature related to how exercise and amino acid availability affect cellular regulators of skeletal muscle mass, especially highlighting recent investigations that have identified mechanisms by which contractile forces and amino acids modulate muscle health. Furthermore, this review will explore integrated exercise and nutrition strategies that promote the maintenance of muscle health by optimizing exercise, and amino acid-induced cell signaling in aging adults susceptible to muscle loss.

  9. Enhanced Acid/Base Catalysis in High Temperature Liquid Water

    Xiu Yang LU; Qi JING; Zhun LI; Lei YUAN; Fei GAO; Xin LIU

    2006-01-01

    Two novel and environmentally benign solvent systems, organic acids-enriched high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.

  10. Advances in nucleic acid-based detection methods.

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in cl...

  11. Effect of acute acid loading on acid-base and calcium metabolism

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  12. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  13. The Function of Retinol Dehydrogenase 1 in Retinoic Acid Synthesis and Metabolic Regulation

    Krois, Charles Robert

    2011-01-01

    Retinol dehydrogenases (RDH) convert retinol into retinal, the intermediate in the biosynthesis of retinoic acid. All-trans-retinoic acid (atRA) regulates gene transcription and/or translation through retinoic acid receptors (RARs) and PPARδ (1). To test function of Rdh1, an efficient (Vmax/Km) and widely distributed RDH (2), our lab created Rdh1 knockout (KO) mice (3). Initial study of Rdh1-KO mice determined that when fed a low or vitamin A-deficient (VAD) diet, Rdh1-KO mice gain 33% ...

  14. Chip-based sequencing nucleic acids

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  15. Science Based Governance? EU Food Regulation Submitted to Risk Analysis

    Szajkowska, A.; Meulen, van der B.M.J.

    2014-01-01

    Anna Szajkowska and Bernd van der Meulen analyse in their contribution, Science Based Governance? EU Food Regulation Submitted to Risk Analysis, the scope of application of risk analysis and the precautionary principle in EU food safety regulation. To what extent does this technocratic, science-base

  16. Ionisation constants of inorganic acids and bases in aqueous solution

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  17. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  18. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  19. FOOD SAFETY REGULATIONS BASED ON REAL SCIENCE

    Huub LELIEVELD

    2015-10-01

    Full Text Available Differences in regulations result in needless destruction of safe food and hamper food trade. The differences are not just the result of the history of food safety regulations, often developed in times before global cooperation, but are also built in new regulations. It may be responses to media hypes or for other reasons, but in most cases the differences cannot be justified scientifically. A major difficulty is that, due to the developments in analytical techniques the number of chemicals that are found in food is increasing rapidly and chemicals are always suspected to be a safety risk. By far most chemicals are of natural origin but could not be detected in the past because the methods available in the past were not sensitive enough. Demanding the absence of chemicals because the risk they present is unknown, however, would eventually make all food unacceptable. The general public should be shown that everything they eat is chemical, and all food components will be toxic if the amount is too high. It should also be shown that many of these chemicals will also cause illness and death if there is not enough of it as is the case with vitamins and minerals.

  20. History and current status of valve-regulated lead/acid batteries in Japan

    Nakashima, Hiroto; Fuchida, Kyo

    The valve-regulated design of the sealed lead/acid battery (VRB), developed in the first half of the 1960s in Japan for use in portable television sets, has achieved successful market growth. This paper reviews the history of development of VRBs during the past thirty years, present production models, production quality, major applications, and technical problems.

  1. REGULATION OF ACIDITY AND REDUCTION OF TURBIDITY IN THE CLARIFIED POMEGRANATE JUICE PRODUCTION

    ESHMATOV FOZIL KHIDIROVICH; MAKSUMOVA DILRABO KUCHKAROVNA; DODAEVA LAYLO KUCHKAROVNA

    2016-01-01

    Regulation of acidity and reduction of turbidity in the clarified pomegranate juice production. From sour varieties of pomegranates may obtain normal natural pomegranate juice by anion-exchange resin. There are determined problems quantity of precipitate and unstable color in the pomegranate juice and concentrate by experimentally.

  2. Acid rain compliance and coordination of state and federal utility regulation

    Nordhaus, R.R. [Van Ness, Feldman, and Curtis, P.C., Washington, DC (United States)

    1993-07-01

    The Clean Air Act Amendments of 1990 (CAAA) impose new controls on emissions by electric utilities of the two major precursors of acid rain: sulfur dioxide and oxides of nitrogen. Utilities, and the utility holding company systems and power pools of which they are members, will be subject to extensive and costly compliance obligations under the new stature. Most of these utilities, utility systems, and power pools are regulated by more than one utility regulatory authority. Utility regulators will need to coordinate their policies for ratemaking and for review of acid rain compliance strategies if least-cost solutions are to be implemented without imposing on rate payers and utility shareholders the costs and risks of inconsistent regulatory determinations. This article outlines the scope of the coordination problem and spells out possible approaches that utility regulators may take in dealing with it. Topics covered include the following: the 1990 Clean Air Act Amendments; acid rain (SO2); acid rain (NOx); costs of compliance; implications for utility regulation - federal and state utility regulatory framework; potential jurisdictional conflicts under existing state/federal utility regulatory scheme - single utility, holding companies, power pools; Utility regulatory issues under the 1990 amendments - planning conflicts, operational conflicts; methods for dealing with potential jurisdictional conflicts; coordination mechanisms - informal consultation, rulemaking,coordination of adjudicatory proceedings, FERC rate filings.

  3. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  4. Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation

    Barbara Renga; Andrea Mencarelli; Marco Migliorati; Eleonora Distrutti; Stefano Fiorucci

    2009-01-01

    AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfide (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5'-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension.

  5. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    Adrian J Tett

    Full Text Available Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants.

  6. Cloning and Analyzing of Xenopus Mespo Promoter in Retinoic Acid Regulated Mespo Expression

    Jin-Hu WANG; Xiao-Yan DING

    2006-01-01

    Juring vertebrate embryogenesis, presomitic mesoderm cells enter a segmental program to generate somite, a process termed somitogenesis. Mespo, a member of the bHLH transcription factor family,plays important roles in this process. However, how Mespo expression is regulated remains unclear. To address this question, we isolated a genomic DNA sequence containing 4317 bp of Mespo 5' flanking region in Xenopus. Luciferase assays show that this upstream sequence has transcription activity. Transgenic assay shows that this genomic contig is sufficient to recapitulate the dynamic stage- and tissue-specific expression pattern of endogenous Mespo from the gastrula to the tailbud stage. We further mapped a 326 bp DNA sequence responding to retinoic acid signaling. These results shed light on how Mespo expression is regulated,and suggest that retinoic acid signaling pathways play roles in somitogenesis through regulating Mespo.

  7. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  8. Analysis of amino acids network based on distance matrix

    Ali, Tazid; Akhtar, Adil; Gohain, Nisha

    2016-06-01

    In this paper we have constructed a distance matrix of the amino acids. The distance is defined based on the relative evolutionary importance of the base position of the corresponding codons. From this distance matrix a network of the amino acids is obtained. We have argued that this network depicts the evolutionary pattern of the amino acids. To examine the relative importance of the amino acids with respect to this network we have discussed different measures of centrality. We have also investigated the correlation coefficients between different measures of centrality. Further we have explored clustering coefficient as well as degree of distribution.

  9. Regulation of acid adaptation in Lactic acid bacteria%乳酸菌的适酸性调节

    乔磊; 崔艳华; 曲晓军

    2011-01-01

    The understanding of acid adaptation mechanisms of LAB will benefit screening the acid-tolerance bacteria, the optimization of procedures in the ferment progress and optimization of culture. This will greatly improve the quality of fermented foods. The acid adaptation mechanisms were discussed, including proton pump, the production of alkali, the changes of membrane, protection or repair of macro-molecules and the regulation of acid tolerance.%探讨了乳酸菌适酸机制有助于抗酸菌株的筛选、发酵过程中工序的优化以及培养基的优化等,进而大大提升发酵产品品质.对质子泵、产碱、细胞膜变化、大分子保护修复以及耐酸调节在内的适酸性调节机制进行了一一阐述.

  10. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  11. The effects of trans-fatty acids on TAG regulation in mice depend on dietary unsaturated fatty acids.

    Saín, Juliana; González, Marcela Aída; Lavandera, Jimena Verónica; Scalerandi, María Victoria; Bernal, Claudio Adrián

    2016-08-01

    The aim of this study was to investigate the effects of trans-fatty acids (TFA) on liver and serum TAG regulation in mice fed diets containing different proportions of n-3, n-6 and n-9 unsaturated fatty acids (UFA) from olive (O), maize (C) or rapeseed (R) oils partially substituted or not with TFA (Ot, Ct and Rt, respectively). Male CF1 mice were fed (30 d) one of these diets. The effects of the partial substitution (1 %, w/w) of different UFA with TFA on the activity and expression of hepatic enzymes involved in lipogenesis and fatty acids oxidation were evaluated, as well as their transcription factor expressions. Some of the mechanisms involved in the serum TAG regulation, hepatic VLDL rich in TAG (VLDL-TAG) secretion rate and lipoprotein lipase (LPL) activity were assessed. In liver, TFA induced an increase in TAG content in the Ot and Rt groups, and this effect was associated with an imbalance between lipogenesis and β-oxidation. In the Ot group, exacerbated lipogenesis may be one of the mechanisms responsible for the liver steatosis induced by TFA, whereas in Rt it has been related to a decreased β-oxidation, compared with their respective controls. The enhanced hepatic VLDL-TAG secretion in the Ot and Rt groups was compensated with a differential removal of TAG by LPL enzyme in extrahepatic tissues, leading to unchanged serum TAG levels. In brief, the effects of low levels of TFA on liver and serum TAG regulation in mice depend on the dietary proportions of n-3, n-6 and n-9 UFA. PMID:27464460

  12. A locked nucleic Acid-based nanocrawler

    Astakhova, I Kira; Pasternak, Karol; Campbell, Meghan A;

    2013-01-01

    Herein we introduce a novel fluorescent LNA/DNA machine, a nanocrawler, which reversibly moves along a directionally polar complementary road controlled by affinity-enhancing locked nucleic acid (LNA) monomers and additional regulatory strands. Polyaromatic hydrocarbon (PAH) dyes attached to 2'-a...

  13. Determination of low citric acid concentrations in a mixture of weak acid/bases

    Lahav, O.; Shlafman, E.; Cochva, M.

    2005-01-01

    A titration approach was developed to measure low concentrations of citric acid (C6H8O7) in a mixture of other weak acid/ bases. Two methods were tested. The first and more practical method (a 4-point titration procedure) is applicable in conditions where volatile fatty acids (VFAs) are not normally present. The second method (a 5-point titration procedure) was developed for anaerobic environments where VFAs may be encountered. Generally, fairly accurate and repetitive results (precision > 95...

  14. Carbon-based strong solid acid for cornstarch hydrolysis

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  15. Reactive Distillation for Esterification of Bio-based Organic Acids

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  16. A homogeneous nucleic acid hybridization assay based on strand displacement.

    Vary, C P

    1987-01-01

    A homogeneous nucleic acid hybridization assay which is conducted in solution and requires no separation steps is described. The assay is based on the concept of strand displacement. In the strand displacement assay, an RNA "signal strand" is hybridized within a larger DNA strand termed the "probe strand", which is, in turn, complementary to the target nucleic acid of interest. Hybridization of the target nucleic acid with the probe strand ultimately results in displacement of the RNA signal ...

  17. Effect of benzoic acid supplementation on acid-base status and mineralmetabolism in catheterized growing pigs

    Nørgaard, Jan Værum; Fernández, José Adalberto; Sørensen, Kristina Ulrich;

    2010-01-01

    Benzoic acid (BA) in diets for growing pigs results in urinary acidification and reduced ammonia emission. The objective was to study the impact of BA supplementation on the acid-base status and mineral metabolism in pigs. Eight female 50-kg pigs, fitted with a catheter in the abdominal aorta, were...

  18. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  19. Polymerization of amino acids containing nucleotide bases

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  20. Co-expression Analysis Identifies CRC and AP1 the Regulator of Arabidopsis Fatty Acid Biosynthesis

    Xinxin Han; Linlin Yin; Hongwei Xue

    2012-01-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development,however,the regulation of FA metabolism is still poorly understood.To study the relevant regulatory network,fifty-eight FA biosynthesis genes including de novo synthases,desaturases and elongases were selected as "guide genes" to construct the co-expression network.Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT)identifies 797 candidate FA-correlated genes.Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism,and function in many processes.Interestingly,63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched.Two TF genes,CRC and AP1,both correlating with 8 FA guide genes,were further characterized.Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds.The contents of palmitoleic acid,stearic acid,arachidic acid and eicosadienoic acid are decreased,whereas that of oleic acid is increased in ap1 and crc seeds,which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes.In addition,yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15,indicating that CRC may directly regulate FA biosynthesis.

  1. Carbon-based strong solid acid for cornstarch hydrolysis

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  2. Gibberellic acid and cGMP-dependent transcriptional regulation in arabidopsis thaliana

    Bastian, René

    2010-03-01

    An ever increasing amount of transcriptomic data and analysis tools provide novel insight into complex responses of biological systems. Given these resources we have undertaken to review aspects of transcriptional regulation in response to the plant hormone gibberellic acid (GA) and its second messenger guanosine 3\\',5\\'-cyclic monophosphate (cGMP) in Arabidopsis thaliana, both wild type and selected mutants. Evidence suggests enrichment of GA-responsive (GARE) elements in promoters of genes that are transcriptionally upregulated in response to cGMP but downregulated in a GA insensitive mutant (ga1-3). In contrast, in the genes upregulated in the mutant, no enrichment in the GARE is observed suggesting that GARE motifs are diagnostic for GA-induced and cGMP-dependent transcriptional upregulation. Further, we review how expression studies of GA-dependent transcription factors and transcriptional networks based on common promoter signatures derived from ab initio analyses can contribute to our understanding of plant responses at the systems level. © 2010 Landes Bioscience.

  3. New developments on valve-regulated lead-acid batteries for advanced automotive electrical systems

    Soria, M. L.; Hernández, J. C.; Valenciano, J.; Sánchez, A.; Trinidad, F.

    The development of novel electrical systems for low emission vehicles demands batteries with specific cycling performance, especially under partial state of charge (PSOC) conditions. Moreover, according to the powertrain design, battery high power capability is demanded or this function can be assumed by a supercapacitor or a flywheel. This paper deals with the development of AGM and gel valve-regulated lead-acid batteries for advanced automotive applications. AGM VRLA battery development was based on previous work for short autonomy high power UPS applications and on active material formulations with specific additives to improve battery life under high rate partial state of charge cycling conditions. The 18 Ah batteries showed excellent high rate capability (9 kW 10 s discharge peaks and 4 kW 5 s regenerative charge acceptance at 60% state of charge) and 110,000 power assist microcycles at 60% SOC and 2.5% DOD were fulfilled. Moreover, as preliminary work in the development of a cost-effective and reliable gel battery to be used in combination of a supercapacitor in a 42 V mild-hybrid powertrain, VRLA batteries with conventional gel formulations have been tested according to novel automotive cycling profiles, mainly moderate cycling under partial state of charge conditions and simulating load management in a stop and start working profile.

  4. Determination of Fatty Acid Composition and Total Trans Fatty Acids in Cereal-Based Turkish Foods

    DAĞLIOĞLU, Orhan; Taşan, Murat

    2002-01-01

    The fatty acid composition and trans fatty acids of 13 cereal-based foods produced by Turkish companies were analysed by capillary gas-liquid chromatography. The total fat contents of the samples ranged from 1.8 to 37.9%. Traditional Turkish white bread and bulgur had the lowest fat content (1.8% and 2.3% respectively) and wafer the highest (37.9%). The major fatty acids in the samples were C16:0, C18:0, trans C18:1, C18:1 and C18:2. Total unsaturated fatty acid contents varied bet...

  5. Risk based regulation: a convenient concept for legislation and regulation in the field of technical risks?

    Legislation and regulation concerning risk activities are traditionally based on deterministic safety measures. This may lead to inefficient results: sometimes the law requires safety measures which are - from an economic viewpoint - not justified because of their poor cost-effectiveness; sometimes it does not require safety measures although they would be very efficient. The risk based regulation approach wants to make the law more efficient and to get more safety at less costs. Legislation and regulation should be based on terms of risk rather than on deterministic rules. Risk should be expressed in quantitative terms and risk regulation should be based on the cost-effectiveness of safety measures. Thus a most efficient (in the sense of the economic analysis of the law) strategy for safety and environmental law could be established. The approach is economically reasonable and theoretically convincing. Its practical implementation however raises a lot of technical and legal questions. The project 'Risk Based Regulation' (1996-1999), sponsored by the Swiss National Fund for Scientific Research, intends to evaluate the practical feasibility of the approach from a technical and a legal view. It contains a general part which describes the risk based regulation approach and its legal and technical questions, case studies which try to practically implement the risk based regulation approach; the case studies are: storage and management of explosives in the army, storage and management of explosives for non-military purposes, safety at work, accident prevention in the non-professional field (mainly road accidents), fire protection, transportation of dangerous goods, waste disposal: traditional waste, waste disposal: radioactive waste, nuclear energy (reactor safety), a synthesis with recommendations for the future legislation and regulation in the field of technical risks. The paper presents the project and its preliminary results. (author)

  6. Nucleic Acid-Based Nanodevices in Biological Imaging.

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  7. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    Fredens, Julius; Færgeman, Nils J.

    2012-01-01

    Stable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology to quantitatively examine metabolic and signaling pathways in yeast, fruit flies, plants, cell cultures and mice. However, only metabolic labeling using (15)N has been applied to examine such events...... loss or RNAi mediated knock down of the transcription factor NHR-49, and found numerous proteins involved in lipid metabolism to be downregulated, which is consistent with its previously proposed function as a transcriptional regulator of fatty acid metabolism. The combined use of quantitative...

  8. Nucleic acid based fluorescent sensor for mercury detection

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  9. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Łaszkiewicz, Agnieszka; Śnieżewski, Łukasz; Brown, Geoffrey; Marcinkowska, Ewa

    2016-05-01

    Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D. PMID:26969398

  10. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling. PMID:24068326

  11. Cytochrome P450s in the Regulation of Cellular Retinoic Acid Metabolism

    Ross, A. Catharine; Zolfaghari, Reza

    2011-01-01

    The active metabolite of vitamin A, retinoic acid (RA), is a powerful regulator of gene transcription. RA is also a therapeutic drug. The oxidative metabolism of RA by certain members of the cytochrome P450 (CYP) superfamily helps to maintain tissue RA concentrations within appropriate bounds. The CYP26 family—CYP26A1, CYP26B1, and CYP26C1—is distinguished by being both regulated by and active toward all-trans-RA (at-RA) while being expressed in different tissue-specific patterns. The CYP26A1...

  12. Syntheses and characterizations of three acid-base supramolecular complexes

    Three acid-base compounds with supramolecular architectures, namely, (1,2-H2bdc)(dmt) (1), (trans-1,4-H2ccdc)0.5(phdat) (2) and (1,3-H2bdc)(phdat) (3) (1,2-H2bdc = 1,2-benzenedicarboxylic acid, trans-1, 4-H2ccdc = trans-1, 4-cyclohexanedicarboxylic acid, 1,3-H2bdc = 1,3-benzenedicarboxylic acid, dmt = 2,4-diamino-6-methyl-s-triazine, phdat = 2,4-diamino-6-phenyl-s-triazine) have been synthesized and characterized by IR spectra, elemental analyses, single-crystal X-ray diffractions and TGA. (author)

  13. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  14. Web-Based Expert System for Civil Service Regulations: RCSES

    Mofreh Hogo

    2009-12-01

    Full Text Available Internet and expert systems have offered new ways of sharing and distributing knowledge, but there is a lack of researches in the area of web-based expert systems. This paper introduces a development of a web-based expert system for the regulations of civil service in the Kingdom of Saudi Arabia named as RCSES. It is the first time to develop such system (application of civil service regulations as well the development of it using web-based approach. The proposed system considers 17 regulations of the civil service system. The different phases of developing the RCSES system are presented, as knowledge acquiring and selection, ontology and knowledge representations using XML format. XML-Rule-based knowledge sources and the inference mechanisms were implemented using ASP.net technique. An interactive tool for entering the ontology and knowledge base, and the inferencing was built. It gives the ability to use, modify, update, and extend the existing knowledge base in an easy way. The knowledge was validated by experts in the domain of civil service regulations, and the proposed RCSES was tested, verified, and validated by different technical users and the developers’ staff. The RCSES system is compared with other related web based expert systems, that comparison proved the goodness, usability, and high performance of RCSES.Keywords- Knowledge base; Ontology; RCSES; and Civil regulation;

  15. Towards lactic acid bacteria-based biorefineries.

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. PMID:25087936

  16. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  17. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue

    Salameh, Ahmad; Daquinag, Alexes C.; Staquicini, Daniela I.; An, Zhiqiang; Hajjar, Katherine A.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2016-01-01

    We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.

  18. Teaching acid/base physiology in the laboratory

    Friis, Ulla G; Plovsing, Ronni; Hansen, Klaus;

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory...... exercise in acid/base physiology that would provide students with unambiguous and reproducible data that clearly would illustrate the theory in practice. The laboratory exercise was developed to include both metabolic acidosis and respiratory alkalosis. Data were collected from 56 groups of medical...... students that had participated in this laboratory exercise. The acquired data showed very consistent and solid findings after the development of both metabolic acidosis and respiratory alkalosis. All results were consistent with the appropriate diagnosis of the acid/base disorder. Not one single group...

  19. Acid-base strengths in m-cresol

    Bos, M.; Dahmen, E.A.M.F.

    1971-01-01

    For various acids and bases dissociation constants were determined conductimetrically in m-cresol. A glass electrode was calibrated by means of some compounds with dissociation constants known from conductivity measurements. Potentiometric titrations with this calibrated glass electrode gave dissoci

  20. Energy Metabolism Regulates Retinoic Acid Synthesis and Homeostasis in Physiological Contexts

    Obrochta, Kristin Marie

    2014-01-01

    Mounting evidence supports a regulated and reciprocal relationship between retinoid homeostasis and energy metabolism, with a physiologically relevant consequence of disrupted energy balance. This research was motivated by an observation that all-trans-retinoic acid (atRA), and biosynthetic precursors, were responsive to acute shifts in energy status, in wild type animals with normal body weight and glucose tolerance, i.e. not consequent to metabolic syndrome. My dissertation was designed to ...

  1. Alpha-lipoic acid reduces body weight and regulates triglycerides in obese patients with diabetes mellitus

    Azra Okanović; Besim Prnjavorac; Edin Jusufović; Rifat Sejdinović

    2015-01-01

    Aim To determine an influence of alpha-lipoic acid to reduction of body weight and regulation of total cholesterol concentration, triglycerides and glucose serum levels in obese patients with diabetes mellitus type 2. Methods A prospective study includes two groups of obese patients with diabetes mellitus and signs of peripheral polyneuropathia: examined group (30 patients; 15 females and 15 males), and control group (30 patients; 12 females and 18 males). All were treated with metformin ...

  2. Regulation of aromatic amino acid biosynthesis in the ribulose monophosphate cycle methylotroph Nocardia sp. 239

    de Boer, L; Vrijbloed, J W; Grobben, G.; Dijkhuizen, L.

    1989-01-01

    The regulation of aromatic amino acid biosynthesis in Nocardia sp. 239 was studied. In cell-free extracts 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase activity was inhibited in a cumulative manner by tryptophan, phenylalanine and tyrosine. Chorismate mutase was inhibited by both phenylalanine and tyrosine, whereas prephenate dehydratase was very sensitive to inhibition by phenylalanine. Tyrosine was a strong activator of the latter enzyme, whereas anthranilate synthase was inhib...

  3. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses

    Moreau, Magali; Tian, Miaoying; Klessig, Daniel F.

    2012-01-01

    Salicylic acid (SA) is widely recognized as a key player in plant immunity. While several proteins have been previously identified as the direct targets of SA, SA-mediated plant defense signaling mechanisms remain unclear. The Nature paper from Xinnian Dong's group demonstrates that the NPR1 paralogues NPR3 and NPR4 directly bind SA, and this binding modulates their interaction with NPR1 and thereby degradation of this key positive regulator of SA-mediated defense, shedding important new insi...

  4. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; M. Blumenberg

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated t...

  5. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid

    Meredith, M. Elizabeth; May, James M.

    2013-01-01

    Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorb...

  6. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Suryawan, Agus; Davis, Teresa A.

    2014-01-01

    Background The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) e...

  7. Regulation of Polyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and Bacillus subtilis

    Kambourova, Margarita; Tangney, Martin; Priest, Fergus G.

    2001-01-01

    The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreo...

  8. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  9. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  10. Synthesis of polyacrylic-acid-based thermochromic polymers

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  11. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation.

    Anu S Maharjan

    Full Text Available BACKGROUND: Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6 Da. During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5 Da. METHODS AND FINDINGS: In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4, or interleukin-13 (IL-13 to promote fibrocyte differentiation. CONCLUSIONS: We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13.

  12. NIRS-based noninvasive cerebrovascular regulation assessment

    Miller, S.; Richmond, I.; Borgos, J.; Mitra, K.

    2016-03-01

    Alterations to cerebral blood flow (CBF) have been implicated in diverse neurological conditions, including mild traumatic brain injury, microgravity induced intracranial pressure (ICP) increases, mild cognitive impairment, and Alzheimer's disease. Near infrared spectroscopy (NIRS)-measured regional cerebral tissue oxygen saturation (rSO2) provides an estimate of oxygenation of the interrogated cerebral volume that is useful in identifying trends and changes in oxygen supply to cerebral tissue and has been used to monitor cerebrovascular function during surgery and ventilation. In this study, CO2-inhalation-based hypercapnic breathing challenges were used as a tool to simulate CBF dysregulation, and NIRS was used to monitor the CBF autoregulatory response. A breathing circuit for the selective administration of CO2-compressed air mixtures was designed and used to assess CBF regulatory responses to hypercapnia in 26 healthy young adults using non-invasive methods and real-time sensors. After a 5 or 10 minute baseline period, 1 to 3 hypercapnic challenges of 5 or 10 minutes duration were delivered to each subject while rSO2, partial pressure of end tidal CO2 (PETCO2), and vital signs were continuously monitored. Change in rSO2 measurements from pre- to intrachallenge (ΔrSO2) detected periods of hypercapnic challenges. Subjects were grouped into three exercise factor levels (hr/wk), 1: 0, 2:>0 and 10. Exercise factor level 3 subjects showed significantly greater ΔrSO2 responses to CO2 challenges than level 2 and 1 subjects. No significant difference in ΔPETCO2 existed between these factor levels. Establishing baseline values of rSO2 in clinical practice may be useful in early detection of CBF changes.

  13. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  14. Bile acids in regulation of inflammation and immunity: friend or foe?

    Zhu, Ci; Fuchs, Claudia D; Halilbasic, Emina; Trauner, Michael

    2016-01-01

    Apart from their pivotal role in dietary lipid absorption and cholesterol homeostasis, bile acids (BAs) are increasingly recognised as important signalling molecules in the regulation of systemic endocrine functions. As such BAs are natural ligands for several nuclear hormone receptors and G-protein-coupled receptors. Through activating various signalling pathways, BAs not only regulate their own synthesis, enterohepatic recirculation and metabolism, but also immune homeostasis. This makes BAs attractive therapeutic agents for managing metabolic and inflammatory liver disorders. Recent experimental and clinical evidence indicates that BAs exert beneficial effects in cholestatic and metabolically driven inflammatory diseases. This review elucidates how different BAs function as pathogenetic factors and potential therapeutic agents for inflammation-driven liver diseases, focusing on their role in regulation of inflammation and immunity. PMID:27586800

  15. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism.

    Giudetti, Anna M; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  16. Down-regulation of the Caffeic acid O-methyltransferase Gene in Switchgrass Reveals a Novel Monolignol Analog

    Tschaplinski, Timothy J [ORNL; Standaert, Robert F [ORNL; Engle, Nancy L [ORNL; Martin, Madhavi Z [ORNL; Sangha, Amandeep K [ORNL; Parks, Jerry M [ORNL; Smith, Jeremy C [ORNL; Samuel, Reichel [ORNL; Pu, Yunqiao [ORNL; Ragauskas, A J [Georgia Institute of Technology; Hamilton, Choo Yieng [ORNL; Fu, Chunxiang [Noble Foundation; Wang, Zeng-Yu [Noble Foundation; Davison, Brian H [ORNL; Dixon, Richard A [Noble Foundation; Mielenz, Jonathan R [ORNL

    2012-01-01

    Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors, confirming the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. Although there was no indication that iso-sinapyl alcohol was integrated into the cell wall, diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth.

  17. Pattern of acid base abnormalities in critically ill patinets

    To find out the pattern of acid base abnormalities in critically ill patients in a tertiary care health facility. Study Design: A descriptive study. Place and Duration of Study: The study was carried out in the department of pathology, Combined Military Hospital Kharian from January 2013 to June 2013. Patients and Methods: Two hundred and fifty patients suffering from various diseases and presenting with exacerbation of their clinical conditions were studied. These patients were hospitalized and managed in acute care units of the hospital. Arterial blood gases were analysed to detect acid base status and their correlation with their clinical condition. Concomitant analysis of electrolytes was carried out. Tests related to concurrent illnesses e.g. renal and liver function tests, cardiac enzymes and plasma glucose were assayed by routine end point and kinetic methods. Standard reference materials were used to ensure internal quantify control of analyses. Results: Two hundred and fifteen patients out of 250 studied suffered from acid base disorders. Gender distribution showed a higher percentage of male patients and the mean age was 70.5 ± 17.4 years. Double acid base disorders were the commonest disorders (34%) followed by metabolic acidosis (30%). Anion gap was calculated to further stratify metabolic acidosis and cases of diabetic ketoacidosis were the commonest in this category (47%). Other simple acid base disorders were relatively less frequent. Delta bicarbonate was calculated to unmask the superimposition of respiratory alkalosis or acidosis with metabolic acidosis and metabolic alkalosis. Though triple acid base disorders were noted in a small percentage of cases (05%), but were found to be the most complicated and challenging. Mixed acid base disorders were associated with high mortality. Conclusion: A large number of critically ill patients manifested acid base abnormalities over the full spectrum of these disorders. Mixed acid base disorders were

  18. Web-Based Expert System for Civil Service Regulations: RCSES

    Mofreh Hogo; Khaled Fouad; Fouad Mousa,

    2009-01-01

    Internet and expert systems have offered new ways of sharing and distributing knowledge, but there is a lack of researches in the area of web-based expert systems. This paper introduces a development of a web-based expert system for the regulations of civil service in the Kingdom of Saudi Arabia named as RCSES. It is the first time to develop such system (application of civil service regulations) as well the development of it using web-based approach. The proposed system considers 17 regulati...

  19. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation

    Chang, Jinsam; Thangamani, Shankar; Kim, Myung H.; Ulrich, Benjamin; Morris, Sidney M.; Chang H Kim

    2013-01-01

    Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in dendritic cells re...

  20. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2002-01-01

    The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid p...

  1. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.

    Araujo, César L; Quintero, Ileana B; Kipar, Anja; Herrala, Annakaisa M; Pulkka, Anitta E; Saarinen, Lilli; Hautaniemi, Sampsa; Vihko, Pirkko

    2014-06-01

    We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds. PMID:24717577

  2. Regulating acidity, porosity, and morphology of hierarchical SAPO-11 zeolite by aging treatment.

    Liu, Yuxiang; Xu, Lu; Lv, Yuchao; Liu, Xinmei

    2016-10-01

    A facile method to modify pore structure, acidic character, and morphology of SAPO-11 molecular sieve was proposed. Aging treatment (e.g., microwave irradiation or lyophilization) is introduced in the preparation of dry gel. It regulates the kinetics of zeolitic nucleation and growth. X-ray diffraction, scanning electron microscopy, N2-adsorption, temperature programmed desorption, laser particle analyzer, and (29)Si MAS NMR were employed to investigate the effects of aging treatments on SAPO-11 products. The experimental results indicate that depolymerization reaction of silicon species is enhanced aged by microwave irradiation with a higher temperature (90°C). Ratio of SM 3 to SM 2 substituting mode increases producing more strong Brønsted acid sites. Lyophilization technology, as another aging method, was employed to control the morphology of SAPO-11. Nano-sized hierarchical SAPO-11 molecular sieve (200nm in length) is obtained with an oriented growth. Activity of hydroisomerization catalysts is regulated by aging treatment. Cracking reaction attributes to a high conversion nearly 87wt% for M90. The hydroisomerization reaction is enhanced for M40 due to a large proportion of moderate acid sites. PMID:27362909

  3. Acid-base disturbance in patients with cirrhosis

    Henriksen, Jens H; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    PURPOSE: Acid-base disturbances were investigated in patients with cirrhosis in relation to hemodynamic derangement to analyze the hyperventilatory effects and the metabolic compensation. METHODS: A total of 66 patients with cirrhosis and 44 controls were investigated during a hemodynamic study......, and effects of unidentified ions (all Pacid-base disturbances could not be identified. CONCLUSION: Hypocapnic alkalosis is related to disease severity and hyperdynamic systemic circulation in patients with cirrhosis. The metabolic compensation includes...... alterations in serum albumin and water retention that may result in a delicate acid-base balance in these patients....

  4. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  5. The coulometric titration of acids and bases in dimethylsulfoxide media

    Bos, M.; IJpma, S.T.; Dahmen, E.A.M.F.

    1976-01-01

    The coulometric titration of 20–200 μeq of acids and bases in DMSO media is described. In the titration of bases, the electro-oxidation of hydrogen at a platinized platinum electrode is used as the source of protons. The conditions for 100 % current efficiency at this electrode are low current densi

  6. A European Acid Rain Program based on the US experience

    Brandt, U. Steiner; Svendsen, Gert Tinggaard

    2000-01-01

    The paper shows that cost-effective involvement of the source location involves utmost difficulty in practice. Based on the RAINS model, it is recommended that source location should be ignored in a European market for SO2, as is the case in the US Acid Rain Program. Based on the political target...

  7. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  8. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to calcium and potassium and maintenance of normal acid-base balance (ID 400, 407) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    Tetens, Inge

    claims in relation to calcium and potassium and maintenance of normal acid-base balance. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member States or directly from...... stakeholders. The food constituents that are the subject of the health claims are calcium and potassium. The Panel considers that calcium and potassium are sufficiently characterised. The claimed effects are “calcium contributes to acid/base balance within metabolism” and “mineral/potassium: key function......-base balance is a beneficial physiological effect. The Panel notes that no evidence has been provided showing that the dietary intake of calcium and potassium affects normal acid-base balance in the general healthy population. The Panel concludes that a cause and effect relationship has not been established...

  9. Safety goals in 'risk-informed, performance-based' regulation

    The recent overall improvement in key operational safety indices in the United States, combined with 'risk-informed, performance-based' regulation by the US Nuclear Regulatory Commission (NRC), has indicated that 'safety goals' are indispensable; thereby both licensee and regulator can share common objectives and common indicators of safety performance. Recognizing these, the author proposes a new concept of safety goals to facilitate engineering application, while removing some of the uncertainties often encountered in implementing the safety goals, by extending a framework of the International Nuclear Event Scales (INES) being widely used in the world. In this article, safety goals are characterized from a point of view of nuclear regulation by oversight, as established by the US NRC. This is a new tendency of nuclear regulation to motivate initiatives of licensees to improve safety and operational performance and to minimize potential nuclear risks, without the regulatory side specifying how the specific safety requirements should be met. Whereas in the 'compliance-based regulation,' which is a more widely used approach of nuclear regulation in many countries, detailed prescriptive safety requirements are specified to enforce the licensees to strictly follow them. The author observes, through the past experience of the US NRC, the latter approach has a basic limitation in improving total safety of nuclear facilities, and supports the new direction to be taken more widely in the nuclear community

  10. Alpha-lipoic acid reduces body weight and regulates triglycerides in obese patients with diabetes mellitus

    Azra Okanović

    2015-08-01

    Full Text Available Aim To determine an influence of alpha-lipoic acid to reduction of body weight and regulation of total cholesterol concentration, triglycerides and glucose serum levels in obese patients with diabetes mellitus type 2. Methods A prospective study includes two groups of obese patients with diabetes mellitus and signs of peripheral polyneuropathia: examined group (30 patients; 15 females and 15 males, and control group (30 patients; 12 females and 18 males. All were treated with metformin (850-1700 mg/day. Examined patients were additionally treated with alpha-lipoic acid 600 mg/day during 20 weeks. Body mass index and concentrations of total cholesterol, triglycerides and glucose in serum were compared before and after the treatment. Results The group treated with 600 mg alpha-lipoic acid lost significantly more weight, and had lower triglyceride level than the control group. There were no significant differences in total cholesterol and glucose serum levels between the groups. Conclusion Alpha-lipoic acid of 600 mg/day treatment have influenced weight and triglycerides loss in obese patients with diabetes mellitus type 2. It should be considered as an important additive therapy in obese patients with diabetes mellitus type 2.

  11. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  12. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under i...

  13. Valve-regulated lead/acid batteries for SLI use in Japan

    Isoi, T.; Furukawa, H.

    Valve-regulated lead/acid batteries for automotive applications have been on the market in Japan for more than ten years. Initially, the batteries were used only for a small-size motorcycle. Today, however, they are widely employed in all sizes of motorcycles. In the meantime, VRLA batteries have also been used for agricultural machines, and even for some types of passenger cars. This paper provides an overview of the progress in the development and application of VRLA batteries for SLI (starting, lighting and ignition) use in Japan and discusses future expected trends.

  14. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT...... key abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  15. Development of 36-V valve-regulated lead-acid battery

    Ohmae, T.; Hayashi, T.; Inoue, N.

    A 36-V valve-regulated lead-acid (VRLA) battery used in a 42-V power system has been developed for the Toyota Hybrid System-Mild (THS-M) vehicle to meet the large electrical power requirements of hybrid electric vehicles (HEVs) and the increasing power demands on modern automobile electrical systems. The battery has a longer cycle-life in HEV use through the application of ultra high-density active-material and an anti-corrosive grid alloy for the positive plates, special additives for the negative plates, and absorbent glass mat with less contraction for the separators.

  16. Reliability of valve-regulated lead-acid batteries for stationary applications.

    De Anda, Mindi Farber (Energetics Inc., Washington, DC); Butler, Paul Charles; Miller, Jennifer L (Energetics Inc., Washington, DC); Moseley, Patrick T. (International Lead Zinc Research Organization, Research Triangle Park, NC)

    2004-03-01

    A survey has been carried out to quantify the performance and life of over 700,000 valve-regulated lead-acid (VRLA) cells, which have been or are being used in stationary applications across the United States. The findings derived from this study have not identified any fundamental flaws of VRLA battery technology. There is evidence that some cell designs are more successful in float duty than others. A significant number of the VRLA cells covered by the survey were found to have provided satisfactory performance.

  17. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass.

    Goodman, Craig A; Hornberger, Troy A

    2014-01-01

    Skeletal muscle is essential for normal bodily function and the loss of skeletal muscle (i.e. muscle atrophy/wasting) can have a major impact on mobility, whole-body metabolism, disease resistance, and quality of life. Thus, there is a clear need for the development of therapies that can prevent the loss, or increase, of skeletal muscle mass. However, in order to develop such therapies, we will first have to develop a thorough understanding of the molecular mechanisms that regulate muscle mass. Fortunately, our knowledge is rapidly advancing, and in this review, we will summarize recent studies that have expanded our understanding of the roles that Smad signaling and the synthesis of phosphatidic acid play in the regulation of skeletal muscle mass. PMID:24765525

  18. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  19. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

    Madsen, L.; Pedersen, L.M.; Liaset, B.; Ma, T.; Petersen, R.K.; Berg, S. van den; Pan, J.; Müller-Decker, K.M.; Dülsner, E.D.; Kleemann, R.; Kooistra, T.; Døskeland, S.O.; Kristiansen, K.

    2008-01-01

    The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti-ad

  20. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog

    Tschaplinski Timothy J

    2012-09-01

    Full Text Available Abstract Background Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. Results GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. Conclusions Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para

  1. Performance based regulation - a new way to regulate the distribution of electricity in Sweden

    In the absence of a competitive pricing mechanism for the electricity transportation business, the Regulator has to decide a price for transportation services that both gives a profit large enough to create incentives to re-investment, and invest in new lines, and avoid that market power is abused. The challenges when creating the sufficient regulation are to: Find a theoretical base for the price regulation that gives incentives for efficient network companies, high quality services and reasonable tariffs for the customers. Find a practical method to calculate the price or income level for each individual network company (there are more than 200 companies in Sweden). Convince the consumers, the network companies and the judicial system of the justification of the methods used. In Sweden, this has to be done with a staff of approximately 0,05 staff/network company. So far, Sweden has applied a price regulation that can be characterised as a cost based light handed regulation. The result of this method is questionable. The new approach will be more precise and normative in guiding the companies. The regulation will be pro-active rather than reactive. The theoretical base for the price regulation is to copy a competitive pricing regime as much as possible: The companies shall all be 'price takers', The only way the companies can influence the price level is through increased quality of the services provided. The price level reflects the cost of investing in and operating a new network, built with the present technology and cost level. The tools used to calculate the price level, or rather income level, for each network company is called the 'Network Performance Assessment Model', PAM. By using GIS technology and a computer model that simulates the distribution network these calculations can be made quite easily by the authority using a limited set of data from the utilities. Once the model is set up and calibrated, it becomes a very cost efficient and transparent

  2. Lactic acid bacteria fermentations in oat-based suspensions

    Mårtensson, Olof

    2002-01-01

    This thesis deals with the fermentation characteristics of lactic acid bacteria (LAB) in oat-based suspensions, with formulation work of fermented products based on oat and with nutritional studies of these products. Changes in structure in terms of viscosity and ropiness were studied when exopolysaccharide (EPS)-producing LAB strains, namely, Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772, Lactobacillus brevis G-77 and Pediococcus damnosus 2.6 were grown in these oat-based suspensions...

  3. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  4. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development.

    Yun, Eun Jun; Lorizio, Walter; Seedorf, Gregory; Abman, Steven H; Vu, Thiennu H

    2016-02-15

    Prevention or treatment of lung diseases caused by the failure to form, or destruction of, existing alveoli, as observed in infants with bronchopulmonary dysplasia and adults with emphysema, requires understanding of the molecular mechanisms of alveolar development. In addition to its critical role in gas exchange, the pulmonary circulation also contributes to alveolar morphogenesis and maintenance by the production of paracrine factors, termed "angiocrines," that impact the development of surrounding tissue. To identify lung angiocrines that contribute to alveolar formation, we disrupted pulmonary vascular development by conditional inactivation of the Vegf-A gene during alveologenesis. This resulted in decreased pulmonary capillary and alveolar development and altered lung elastin and retinoic acid (RA) expression. We determined that RA is produced by pulmonary endothelial cells and regulates pulmonary angiogenesis and elastin synthesis by induction of VEGF-A and fibroblast growth factor (FGF)-18, respectively. Inhibition of RA synthesis in newborn mice decreased FGF-18 and elastin expression and impaired alveolarization. Treatment with RA and vitamin A partially reversed the impaired vascular and alveolar development induced by VEGF inhibition. Thus we identified RA as a lung angiocrine that regulates alveolarization through autocrine regulation of endothelial development and paracrine regulation of elastin synthesis via induction of FGF-18 in mesenchymal cells. PMID:26566904

  5. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    Zimmermann, Christine; Santos, Aline; Gable, Kenneth; Epstein, Sharon; Gururaj, Charulatha; Chymkowitch, Pierre; Pultz, Dennis; Rødkær, Steven V; Clay, Lorena; Bjørås, Magnar; Barral, Yves; Chang, Amy; Færgeman, Nils J.; Dunn, Teresa M; Riezman, Howard; Enserink, Jorrit M

    2013-01-01

    Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal of ...

  6. How Should Risk-Based Regulation Reflect Current Public Opinion?

    Pollock, Christopher John

    2016-08-01

    Risk-based regulation of novel agricultural products with public choice manifest via traceability and labelling is a more effective approach than the use of regulatory processes to reflect public concerns, which may not always be supported by evidence. PMID:27266813

  7. The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development.

    Kraft, J C; Schuh, T.; Juchau, M; Kimelman, D

    1994-01-01

    Endogenous retinoids are potential regulators of vertebrate embryogenesis that have been implicated in early anterior-posterior patterning and limb-bud development. We have characterized the temporal and spatial distribution of 9-cis-retinoic acid in the Xenopus embryo and compared it to two other retinoids, all-trans-retinoic acid and all-trans-retinoyl-beta-glucuronide. 9-cis-Retinoic acid is first detected after the midblastula transition and by the end of gastrulation is localized primari...

  8. Possible roles for folic acid in the regulation of trophoblast invasion and placental development in normal early human pregnancy

    Williams, Paula J.; Bulmer, Judith N.; Innes, Barbara A.; Broughton Pipkin, Fiona

    2011-01-01

    In addition to its role in the prevention of neural tube defects, folic acid has many other physiological functions, including cell proliferation, DNA replication, and antioxidant protection. The aim of this study was to determine the role that folic acid has in regulating placental trophoblast development. Placental explants from placentae at gestational age 7 wk (n ¼ 3) were cultured in folic acid at concentrations of 106 M, 108 M, and 1010 M. Extravillous trophoblast (EVT) invasion was ass...

  9. Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    Barhoover, Melissa A.; Orban, Tivadar; Bukys, Michael A.; Kalafatis, Michael

    2008-01-01

    The prothrombinase complex catalyzes the activation of prothrombin to α-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant fa...

  10. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  11. Electricity Transmission Pricing and Performance-Based Regulation

    Vogelsang, Ingo

    2005-01-01

    Performance-based regulation (PBR) is influenced by the Bayesian and non-Bayesian incentive mechanisms. While Bayesian incentives are impractical, the insights from their properties can be combined with practical non-Bayesian mechanisms for application to transmission pricing. This combination suggests an approach based on the distinction between ultra-short, short and long periods. Ultra-short periods are marked by real-time pricing of point-to-point transmission services. Pricing in short p...

  12. TdaA Regulates Tropodithietic Acid Synthesis by Binding to the tdaC Promoter Region ▿ †

    Geng, Haifeng; Belas, Robert

    2011-01-01

    Silicibacter sp. TM1040, a member of the marine Roseobacter clade, produces the antibiotic and quorum signaling molecule tropodithietic acid (TDA), encoded by tdaABCDEF. Here, we showed that an LysR-type transcriptional regulator, TdaA, is a positive regulator of tdaCDE gene expression and binds to the tdaC promoter region.

  13. Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice.

    Stedman, Catherine; Robertson, Graham; Coulter, Sally; Liddle, Christopher

    2004-03-19

    Bile acids are potentially toxic end products of cholesterol metabolism and their concentrations must be tightly regulated. Homeostasis is maintained by both feed-forward regulation and feedback regulation. We used humanized transgenic mice incorporating 13 kb of the 5' regulatory flanking sequence of CYP3A4 linked to a lacZ reporter gene to explore the in vivo relationship between bile acids and physiological adaptive CYP3A gene regulation in acute cholestasis after bile duct ligation (BDL). Male transgenic mice were subjected to BDL or sham surgery prior to sacrifice on days 3, 6, and 10, and others were injected with intraperitoneal lithocholic acid (LCA) or vehicle alone. BDL resulted in marked hepatic activation of the CYP3A4/lacZ transgene in pericentral hepatocytes, with an 80-fold increase in transgene activation by day 10. Individual bile acids were quantified by liquid chromatography/mass spectrometry. Serum 6beta-hydroxylated bile acids were increased following BDL, confirming the physiological relevance of endogenous Cyp3a induction to bile acid detoxification. Although concentrations of conjugated primary bile acids increased after BDL, there was no increase in LCA, a putative PXR ligand, indicating that this cannot be the only endogenous bile acid mediating this protective response. Moreover, in LCA-treated animals, 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining showed hepatic activation of the CYP3A4 transgene only on the liver capsular surface, and minimal parenchymal induction, despite significant liver injury. This study demonstrates that CYP3A up-regulation is a significant in vivo adaptive response to cholestasis. However, this up-regulation is not dependent on increases in circulating LCA and the role of other bile acids as regulatory molecules requires further exploration. PMID:14681232

  14. Physiological and clinical significance of enterochromaffin-like cell activation in the regulation of gastric acid secretion

    Guanglin Cui; Helge L Waldum

    2007-01-01

    Gastric acid plays an important role in digesting food (especially protein), iron absorption, and destroying swallowed micro-organisms. H+ is secreted by the oxyntic parietal cells and its secretion is regulated by endocrine, neurocrine and paracrine mechanisms.Gastrin released from the antral G cell is the principal physiological stimulus of gastric acid secretion. Activation of the enterochromaffin-like (ECL) cell is accepted as the main source of histamine participating in the regulation of acid secretion and is functionally and trophically controlled by gastrin, which is mediated by gastrin/CCK-2 receptors expressed on the ECL cell. However, longterm hypergastrinemia will induce ECL cell hyperplasia and probably carcinoids. Clinically, potent inhibitors of acid secretion have been prescribed widely to patients with acid-related disorders. Long-term potent acid inhibition evokes a marked increase in plasma gastrin levels,leading to enlargement of oxyntic mucosa with ECL cell hyperplasia. Accordingly, the induction of ECL cell hyperplasia and carcinoids remains a topic of considerable concern, especially in long-term use. In addition, the activation of ECL cells also induces another clinical concern, i.e., rebound acid hypersecretion after acid inhibition. Recent experimental and clinical findings indicate that the activation of ECL cells plays a critical role both physiologically and clinically in the regulation of gastric acid secretion.

  15. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  16. CHARGE DEVELOPMENT AND ACID-BASE CHARACTERISTICS OF SOIL AND COMPOST HUMIC ACIDS

    P. A. CAMPITELLI

    2003-09-01

    Full Text Available In previous works, the acid-base properties, charging behavior and chemical heterogeneity of humic substances have been studied using different mathematical equations to fit the experimental data. The objective of this research is to study the charge behavior, acid-base properties and analyze the chemical heterogeneity of humic acids (HA extracted from soil and composted municipal solid waste by potentiometric titrations. The humic acids extracted from compost have some characteristics and behavior similar to those obtained from soil. The negative charge development of HA extracted from composted material are lower than those extracted from soil and increase as ionic strength increase. The amount of carboxylic groups is lower in compost HA than in soil HA The heterogeneity of HA extracted from compost is higher than those extracted from soil. As the time of composting period increase the humification processes that take place trends to produce compost HA that has similar characteristics to soil HA. We suggest that HA extracted from composted material are macromolecules "like soil humic acids", i.e. "humiclike fraction"

  17. Hyaluronic acid receptor Stabilin-2 regulates Erk phosphorylation and arterial--venous differentiation in zebrafish.

    Megan S Rost

    Full Text Available The hyaluronic acid receptor for endocytosis Stabilin-2/HARE mediates systemic clearance of multiple glycosaminoglycans from the vascular and lymphatic circulations. In addition, recent in vitro studies indicate that Stab2 can participate in signal transduction by interacting with hyaluronic acid (HA, which results in Erk phosphorylation. However, it is not known whether Stab2 function or HA-Stab2 signaling play any role in embryonic development. Here we show that Stab2 functions in a signal transduction pathway regulating arterial-venous differentiation during zebrafish embryogenesis. Stab2 morpholino knockdown embryos (morphants display an absence of intersegmental vessels and defects in the axial vessel formation. In addition, Stab2 morphants show defects in arterial-venous differentiation including the expansion of venous marker expression. Simultaneous knockdown of Stabilin-2 and Has2, an HA synthetase, results in a synergistic effect, arguing that HA and Stab2 interact during vasculature formation. Stab2 morphants display reduced Erk phosphorylation in the arterial progenitors, which is a known transducer of VEGF signaling, previously associated with arterial-venous differentiation. In addition, VEGF signaling acts as a negative feedback loop to repress stab2 expression. These results argue that Stab2 is involved in a novel signaling pathway that plays an important role in regulating Erk phosphorylation and establishing arterial-venous identity.

  18. Development of cylindrical valve-regulated lead-acid cells for high-power applications

    Hisai, M.; Nakamura, K.; Hayashi, T.; Takahashi, K.; Tsubota, M. [Japan Storage Battery Co. Ltd., Kyoto (Japan)

    2000-07-01

    Japan Storage Battery Co., Ltd. developed a cylindrical valve-regulated lead-acid cell named GS SPR10, for high power applications. It possesses much higher specific power (power density) than the conventional valve-regulated lead-acid (VRLA) battery, reaching 500 W per kg. When used on the operation under the partial state of charge (PSOC), similar to the hybrid electric vehicle (HEV), its life cycle is superior. These achievements are explained by two innovations. The first innovation was the application of high compression to an element which consisted of two plates and one absorptive glass mat (AGM) separator which were wound in a spiral. The second innovation involved the development of the special negative active material for hybrid electric vehicle application. An additional advantage of this battery is that it is a single cell, so when it is used in battery packs, it is easy to select voltage and cell arrangement. While considering applications other than HEV, scientists continue to work on improvements. refs., tabs., figs.

  19. Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis

    Braunstein Evan M

    2009-05-01

    Full Text Available Abstract Background In vertebrates, the inner ear is comprised of the cochlea and vestibular system, which develop from the otic vesicle. This process is regulated via inductive interactions from surrounding tissues. Tbx1, the gene responsible for velo-cardio-facial syndrome/DiGeorge syndrome in humans, is required for ear development in mice. Tbx1 is expressed in the otic epithelium and adjacent periotic mesenchyme (POM, and both of these domains are required for inner ear formation. To study the function of Tbx1 in the POM, we have conditionally inactivated Tbx1 in the mesoderm while keeping expression in the otic vesicle intact. Results Conditional mutants (TCre-KO displayed malformed inner ears, including a hypoplastic otic vesicle and a severely shortened cochlear duct, indicating that Tbx1 expression in the POM is necessary for proper inner ear formation. Expression of the mesenchyme marker Brn4 was also lost in the TCre-KO. Brn4-;Tbx1+/-embryos displayed defects in growth of the distal cochlea. To identify a potential signal from the POM to the otic epithelium, expression of retinoic acid (RA catabolizing genes was examined in both mutants. Cyp26a1 expression was altered in the TCre-KO, while Cyp26c1 showed reduced expression in both TCre-KO and Brn4-;Tbx1+/- embryos. Conclusion These results indicate that Tbx1 expression in the POM regulates cochlear outgrowth potentially via control of local retinoic acid activity.

  20. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle

    Holst, Dorte; Luquet, Serge; Nogueira, Véronique;

    2003-01-01

    starvation period, PPARdelta mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARdelta is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while...... refeeding promotes down-regulation of both genes. To directly access the role of PPARdelta in muscle cells, we forced its expression and that of a dominant-negative PPARdelta mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARdelta agonist by induction...

  1. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  2. [Possible ways of regulating detoxifying processes in the alcohol dehydrogenase reaction with pantothenic acid derivatives].

    Chernikevich, I P; Dorofeev, B F; Moĭseenok, A G

    1993-01-01

    Oxidation of derivatives and precursors of pantothenic acid was studied in alcohol dehydrogenase reactions. Despite the presence of free hydroxymethyl groups in a number of pantothenic acid derivatives only panthenol with Km = 8 x 10(-3) M was shown to serve as a substrate for alcohol dehydrogenase from horse liver tissue (EC 1.1.1.1) Pantethine, sodium phosphopantothenate, CoA and acetyl-CoA decreased the rate of ethanol oxidation, where pantethine and sodium phosphopantothenate were competitive inhibitors, while CoA and acetyl-CoA inhibited the enzyme noncompetitively Ki = 1.2 x 10(-2) M, 2.1 x 10(-2) M, 4.4 x 10(-4) M and 5.1 x 10(-4) M, respectively. Metabolic precursors, which were different from pantothenic acid in their structure, were not involved in the alcohol dehydrogenase reaction. Possible regulation of alcohol intoxication using derivatives and precursors of vitamin B3 is discussed. PMID:8511887

  3. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  4. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  5. Oxidation of coal-based raw materials by nitric acid

    Novák, J.; Novák, František; Madronová, L.; Machovič, V.; Kozler, J.

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 105-123 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications ) Institutional research plan: CEZ:AV0Z60660521 Keywords : oxidation * coal-based raw materials * nitric acid Subject RIV: CB - Analytical Chemistry , Separation

  6. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met)

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-01-01

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protona...

  7. Metabolic regulation of Escherichia coli and its phoB and phoR genes knockout mutants under phosphate and nitrogen limitations as well as at acidic condition

    Shimizu Kazuyuki

    2011-05-01

    B regulated genes were down-regulated, while phoR and phoU changed little. The phoR gene knockout caused phoB gene to be down-regulated as well as PhoB regulated genes, while phoU and phoM changed little. The effect of pH together with lower P concentration on the metabolic regulation was also investigated. In accordance with up-regulation of arcA gene expression, the expressions of the TCA cycle genes such as sdhC and mdh were down-regulated at acidic condition. The gene expression of rpoS was up-regulated, and the expression of gadA was up-regulated at pH 6.0. In accordance with this, PhoB regulated genes were up-regulated in the wild type under P-rich and P-limited conditions at pH 6.0 as compared to those at pH 7.0. Moreover, the effect of nitrogen limitation on the metabolic regulation was investigated, where the result indicates that phoB gene was up-regulated, and PhoB regulated genes were also up-regulated under N-limitation, as well as nitrogen-regulated genes. Conclusion The present result shows the complicated nature of the metabolic regulation for the fermentation characteristics upon phosphate limitation, acidic condition, and nitrogen limitation based on the transcript levels of selected genes. The result implies that the regulations under phosphate limitation, acidic condition, and nitrogen limitation, which occur typically at the late growth phase of the batch culture, are interconnected through RpoS and RpoD together with Pho genes.

  8. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.

    Lv, Jing; Qiao, Weihong; Li, Zongshi

    2016-10-01

    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level. PMID:27419647

  9. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  10. The Heparan and Heparin Metabolism Pathway is Involved in Regulation of Fatty Acid Composition

    Zhihua Jiang, Jennifer J. Michal, Xiao-Lin Wu, Zengxiang Pan, Michael D. MacNeil

    2011-01-01

    Full Text Available Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like, EXTL1 (exostoses (multiple-like 1, HS6ST1 (heparan sulfate 6-O-sulfotransferase 1, HS6ST3 (heparan sulfate 6-O-sulfotransferase 3, NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl 3, and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1, were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs/multiple nucleotide length polymorphisms (MNLPs were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F2 animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA, and the relative amount of saturated fatty acids (SFA and monounsaturated fatty acids (MUFA in skeletal muscle (P<0.05. In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  11. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  12. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid

    Upama Baruah; Neelam Gogoi; Achyut Konwar; Manash Jyoti Deka; Devasish Chowdhury; Gitanjali Majumdar

    2014-01-01

    We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs) were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascor...

  13. Acid-base cooperativity of heterogeneous catalyst containing acidic framework and sterically hindered base for aldol condensation

    Hua Li; Shu Tao Xu; Xiao Bing Lu; Wei Ping Zhang

    2009-01-01

    A bifunctional heterogeneous catalyst containing two mutually incompatible acidic and basic sites,which exhibits cooperative catalytic behavior in the aldol condensation of acetone and various aldehydes,was synthesized by postgrafting of 1,5,7-triazabicyclo[4.4.0]dec-5-ene(TBD,a sterically hindered organic base)onto Al-MCM-41 molecular sieve.

  14. Lubricity properties of additives based on higher fatty acids

    Lykov, O.P.; Sashevskii, V.V.; Vishnyakova, T.P.; Zaitseva, L.S.

    1983-03-01

    This article investigates possible lubricity additive applications for a number of products separated from a C/sub 17/-C/sub 20/ fraction and still-bottoms in synthetic fatty acids (SFA) production. Each additive (MKNK, DKK, NKK and FKKO) was dissolved in a hydrotreated T-7 fuel, and lubricity properties were evaluated by the KIIGA-2 method. Finds that the branched-chain monocarboxylic and unsaturated acids recovered from the C/sub 17/-C/sub 20/ SFA fraction, and also the fraction of acids from the SFA still-bottoms, form rather strong chemisorbed films on metal surfaces, and fuel formations based on these materials have a high level of lubricity.

  15. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  16. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  17. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides.

    Ment, Dana; Alkan, Noam; Luria, Neta; Bi, Fang-Cheng; Reuveni, Eli; Fluhr, Robert; Prusky, Dov

    2015-02-01

    Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity. PMID:25317668

  18. Feature-Based Classification of Amino Acid Substitutions outside Conserved Functional Protein Domains

    Branislava Gemovic

    2013-01-01

    Full Text Available There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM, a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.

  19. Fuzzy logic based automatic voltage regulator for damping power oscillations

    Prasertwong, K. [Srinakharinwirot Univ., Ongkharak, Nahhonnayok (Thailand). Dept. of Electrical Engineering; Mithulananthan, N. [Asian Inst. of Technology, Klong Luang, Pathumthani (Thailand). Energy Field of Study

    2008-07-01

    Low frequency oscillations in a power system can result in instability and widespread blackouts. A new fuzzy logic based automatic voltage regulator for damping power system oscillations was presented. The proposed controller has one voltage control loop which functions as an automatic voltage regulating unit in a synchronous machine. The input signals for voltage control include the terminal voltage error and its derivative. Comparison studies were also conducted to determine the performance of the proposed controller with the conventional automatic voltage regulator (AVR) compared with the conventional AVR combined with a power system stabilizer (PSS). This paper systematically explained the steps involved in fuzzy logic control design for oscillation damping in power systems. A comparison between fuzzy logic AVR and conventional AVR revealed that fuzzy logic AVR performed better. The proposed fuzzy logic AVR provided good damping and improved dynamics. Although fuzzy based controllers have a number of advantages, different operating points need to be considered in order to gain the robustness of the fuzzy based controllers. Fuzzy logic controllers are suitable for nonlinear, dynamic processes for which an exact mathematical model may not be available. 9 refs, 5 tabs., 14 figs.

  20. A Dashboard to Regulate Project-Based Learning

    Michel, Christine; Lavoué, Elise; Piétrac, Laurent

    2012-01-01

    International audience In this paper, we propose the dashboards of the Pco-Vision platform to support and enhance Project-Based Learning (PBL). Based on the assumption that Self-Regulated Learning (SRL) is a major component of PBL, we have focused our attention in the design of a dashboard to enhance SRL in PBL. We describe the characteristics of PBL and show why a dashboard can help involved SRL processes, more particularly self-monitoring and self-judgment. We provide a categorization of...

  1. A central role of abscisic acid in stress-regulated carbohydrate metabolism.

    Stefan Kempa

    Full Text Available BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.

  2. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue.

    Shen, Wan; McIntosh, Michael K

    2016-07-17

    Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties. PMID:27431366

  3. Idling-stop vehicle road tests of advanced valve-regulated lead-acid (VRLA) battery

    Sawai, Ken; Ohmae, Takao; Suwaki, Hironori; Shiomi, Masaaki; Osumi, Shigeharu

    The results of road tests on valve-regulated lead-acid (VRLA) batteries in an idling-stop (stop and go) vehicle are reported. Idling-stop systems are simple systems to improve fuel economy of automobiles. They are expected to spread widely from an environmental perspective. Performances of a conventional flooded battery, a conventional VRLA battery, and an improved VRLA battery were compared in road tests with an idling-stop vehicle. It was found that the improved VRLA battery was suited to idling-stop applications because it had a smaller capacity loss than the conventional flooded battery during partial-state-of-charge (PSoC) operation. The positive grid was corroded in layers, unlike the usual grain boundary corrosion of SLI battery grid. It is because the corrosion proceeded mainly under PSoC conditions. The corrosion rate could be controlled by potential control of positive plates.

  4. Idling-stop vehicle road tests of advanced valve-regulated lead-acid (VRLA) battery

    Sawai, Ken; Ohmae, Takao; Suwaki, Hironori; Shiomi, Masaaki; Osumi, Shigeharu [Technical Development Division, Automotive Battery Business Unit, GS Yuasa Power Supply Ltd., Nishinosho, Kisshoin, Minami-ku, Kyoto (Japan)

    2007-11-22

    The results of road tests on valve-regulated lead-acid (VRLA) batteries in an idling-stop (stop and go) vehicle are reported. Idling-stop systems are simple systems to improve fuel economy of automobiles. They are expected to spread widely from an environmental perspective. Performances of a conventional flooded battery, a conventional VRLA battery, and an improved VRLA battery were compared in road tests with an idling-stop vehicle. It was found that the improved VRLA battery was suited to idling-stop applications because it had a smaller capacity loss than the conventional flooded battery during partial-state-of-charge (PSoC) operation. The positive grid was corroded in layers, unlike the usual grain boundary corrosion of SLI battery grid. It is because the corrosion proceeded mainly under PSoC conditions. The corrosion rate could be controlled by potential control of positive plates. (author)

  5. Phosphatidic Acid Regulates BZR1 Activity andBrassinosteroid Signal of Arabidopsis

    2014-01-01

    Dear Editor, Brassinosteroid (BR) is an important hormone and playscrucial roles in plant growth and development (Kim andWang, 2010). Genetics studies identify many componentsinvolving in BR signaling, including transcript factor BZR1(BRASSINAZOLE RESISTANT 1). BZR1 is dephosphorylated (Heet al., 2005) to regulate expression of target genes. A sin-gle amino acid mutation in BZR1 PEST domain results inenhanced binding and dephosphorylation by PP2A (PROTEINPHOSPHATASE 2A; Tang et al., 2011), leading to constitutivelyactivated BZR1 and enhanced BR signal in gain-of-functionmutant bzr1-1D. Although BR signal is well characterized inArabidopsis, how the components of BR signaling transduc-tion pathway are reclulated needs further illustrations.

  6. Developing nucleic acid-based electrical detection systems

    Gabig-Ciminska Magdalena

    2006-03-01

    Full Text Available Abstract Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in

  7. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  8. Lysophosphatidic acid (LPA 18:1 transcriptional regulation of primary human gingival fibroblasts

    D. Roselyn Cerutis

    2014-12-01

    Full Text Available The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA, 1-acyl-sn-glycerol-3-phosphate] exerts critical regulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is elevated in pathology (1. In vivo, “LPA” exists as distinct molecular species, each having a single fatty acid of varying chain length and degree of unsaturation covalently attached to the glycerol backbone via an acyl, alkyl, or alkenyl link. These species differ in affinities for the individual LPA receptors [(LPARs, LPA1-6] and coupling to G proteins (2. However, LPA 18:1 has been and continues to be the most commonly utilized species in reported studies. The actions of “LPA” remain poorly defined in oral biology and pathophysiology. Our laboratory has addressed this knowledge gap by studying in vitro the actions of the major human salivary LPA species [18:1, 18:0, and 16:0 (3] in human oral cells (4–7. This includes gingival fibroblasts (GF, which our flow cytometry data from multiple donors found that they express LPA1-5 (6. We have also reported that these species are ten-fold elevated to pharmacologic levels in the saliva and gingival crevicular fluid obtained from patients with moderate–severe periodontitis (8. As the potential of LPA to regulate transcriptional activity had not been examined in the oral system, this study used whole human genome microarray analysis to test the hypothesis that LPA 18:1-treated human GF would show significant changes in gene transcripts relevant to their biology, wound-healing, and inflammatory responses. LPA 18:1 was found to significantly regulate a large, complex set of genes critical to GF biology in these categories and to periodontal disease. The raw data has been deposited at NCBI's GEO database as record GSE57496.

  9. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  10. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'. PMID:25576355