WorldWideScience

Sample records for acetyltransferase mutants identifies

  1. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    Cook, Melloni N. [University of Memphis; Dunning, Jonathan P [University of Memphis; Wiley, Ronald G [Vanderbilt University and Veterans Administration, Nashville, TN; Chesler, Elissa J [ORNL; Johnson, Dabney K [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.

  2. Identifying root system genes using induced mutants in barley

    Root systems play an important role in plant growth and development. They absorb water and nutrients, anchor plant in the soil and affect plant tolerance to various abiotic stresses. Despite their importance, the progress in understanding the molecular processes underlying root development has been achieved only in Arabidopsis thaliana. It was accomplished through detailed analysis of root mutants with the use of advanced molecular, genomic and bioinformatic tools. Recently, similar studies performed with rice and maize root mutants have led to the identification of homologous and novel genes controlling root system formation in monocots. The collection of barley mutants with changes in root system development and morphology has been developed in our Department after mutagenic treatments of spring barley varieties with N-methyl N-nitosourea (MNU) and sodium azide. Among these mutants, the majority was characterized by seminal roots significantly shorter than roots of a parent variety throughout a whole vegetation period. Additionally, several mutants with root hairs impaired at different stages of development have been identified. These mutants have become the material of studies aimed at genetic and molecular dissection of seminal root and root hair formation in barley. The studies included the molecular mapping of genes responsible for mutant phenotype using DNA markers and root transcriptome analysis in the mutant/parent variety system. Using cDNA RDA approach, we have identified the HvEXPB1 gene encoding root specific beta expansin related to the root hair initiation in barley. We have also initiated the database search for barley sequences homologous to the known Arabodopsis, maize and rice genes. The identified homologous ESTs are now used for isolation of the complete coding sequences and gene function will be validated through identification of mutations related to the altered phenotype. This work was supported by the IAEA Research Contracts 12611 and 12849

  3. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production.

    Hirooka, Kiyoo; Yamamoto, Yoshihiro; Tsutsui, Nobuo; Tanaka, Toshio

    2005-02-01

    1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, strongly inhibited the growth of sake yeast at 120 microM in YPD medium, whereas at 30 microM it reduced cellular production of isoamyl acetate to 20% of the control level despite the absence of inhibitory effect on CO2 evolution. The FPy-resistant mutant A1 was characterized by the high production of flavor compounds represented by a nearly threefold increase in the level of isoamyl acetate in YPD medium in which the level of isoamyl alcohol as its precursor remained almost unchanged. The FPy resistance phenotype of strain A1 was not accompanied by cellular resistance to either the L-leucine analog or L-canavanine, which alters yeast amino acid metabolism in favor of isoamyl alcohol production. Alcohol acetyltransferase (AATase) activity was high in strain A1, which further increased in response to isoamyl alcohol accumulation in medium. Flavor compound production in sake brewing could be improved using strain A1, resulting in a 1.4-fold increase in isoamyl acetate production in spite of a limited production of isoamyl alcohol. PMID:16233768

  4. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    Tomoyuki Yamanaka

    Full Text Available In polyglutamine (polyQ diseases including Huntington's disease (HD, mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms.

  5. Cloning of Drosophila choline acetyltransferase cDNA.

    Itoh, N; Slemmon, J.R.; Hawke, D.H.; Williamson, R.; Morita, E.; Itakura, K; Roberts, E; Shively, J. E.; Crawford, G D; Salvaterra, P M

    1986-01-01

    Choline acetyltransferase (EC 2.3.1.6) is the biosynthetic enzyme for the neurotransmitter acetylcholine. To isolate choline acetyltransferase cDNA clones, a cDNA library was constructed from poly(A)+ RNA of Drosophila melanogaster heads, these being one of the richest known sources of the enzyme. By screening the cDNA library with a mixture of three different monoclonal antibodies to Drosophila choline acetyltransferase, we isolated 14 positive clones. Only 1 of these clones was identified t...

  6. Escherichia coli N-Acetylglucosamine-1-Phosphate-Uridyltransferase/Glucosamine-1-Phosphate-Acetyltransferase (GlmU) Inhibitory Activity of Terreic Acid Isolated from Aspergillus terreus.

    Sharma, Rashmi; Lambu, Mallikharjuna Rao; Jamwal, Urmila; Rani, Chitra; Chib, Reena; Wazir, Priya; Mukherjee, Debaraj; Chaubey, Asha; Khan, Inshad Ali

    2016-04-01

    Secondary metabolite of Aspergillus terreus, terreic acid, is a reported potent antibacterial that was identified more than 60 years ago, but its cellular target(s) are still unknown. Here we screen its activity against the acetyltransferase domain of a bifunctional enzyme, Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). An absorbance-based assay was used to screen terreic acid against the acetyltransferase activity of E. coli GlmU. Terreic acid was found to inhibit the acetyltransferase domain of E. coli GlmU with an IC50 of 44.24 ± 1.85 µM. Mode of inhibition studies revealed that terreic acid was competitive with AcCoA and uncompetitive with GlcN-1-P. It also exhibited concentration-dependent killing of E. coli ATCC 25922 up to 4× minimum inhibitory concentration and inhibited the growth of biofilms generated by E. coli. Characterization of resistant mutants established mutation in the acetyltransferase domain of GlmU. Terreic acid was also found to be metabolically stable in the in vitro incubations with rat liver microsome in the presence of a NADPH regenerating system. The studies reported here suggest that terreic acid is a potent antimicrobial agent and support that E. coli GlmU acetyltransferase is a molecular target of terreic acid, resulting in its antibacterial activity. PMID:26762501

  7. Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host.

    O'Meara, Teresa R; Hay, Christie; Price, Michael S; Giles, Steve; Alspaugh, J Andrew

    2010-08-01

    Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Previous studies have demonstrated major alterations in its transcriptional profile as this microorganism enters the hostile environment of the human host. To assess the role of chromatin remodeling in host-induced transcriptional responses, we identified the C. neoformans Gcn5 histone acetyltransferase and demonstrated its function by complementation studies of Saccharomyces cerevisiae. The C. neoformans gcn5Delta mutant strain has defects in high-temperature growth and capsule attachment to the cell surface, in addition to increased sensitivity to FK506 and oxidative stress. Treatment of wild-type cells with the histone acetyltransferase inhibitor garcinol mimics cellular effects of the gcn5Delta mutation. Gcn5 regulates the expression of many genes that are important in responding to the specific environmental conditions encountered by C. neoformans inside the host. Accordingly, the gcn5Delta mutant is avirulent in animal models of cryptococcosis. Our study demonstrates the importance of chromatin remodeling by the conserved histone acetyltransferase Gcn5 in regulating the expression of specific genes that allow C. neoformans to respond appropriately to the human host. PMID:20581290

  8. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism

    Takos, A.; Lai, D.; Mikkelsen, L.; Abou Hachem, Maher; Shelton, D.; Motawia, M.S.; Olsen, C.E.; Wang, T.L.; Martin, C.; Rook, F.

    2010-01-01

    . We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside...

  9. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-01

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC. PMID:27006499

  10. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  11. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53.

    Datta, Arindam; Dey, Sanjib; Das, Pijush; Alam, Sk Kayum; Roychoudhury, Susanta

    2016-06-01

    Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF) properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC) harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR) treated SW480 cells expressing mutant p53(R273H) (GEO#: GSE77533). We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53. PMID:27114909

  12. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  13. Human red cell acetyltransferase

    Acetyltransferase was isolated by histone-Sepharose affinity chromatography from human cord blood red cells. The enzyme was detected only in very young red cells. The semipurified enzyme and [14C]acetyl-CoA were used to acetylate isolated Hb F tetramer and α and γ subunits. The in vitro acetylated products were characterized by globin chain separation by CM-cellulose chromatography and tryptic peptide analysis by reverse-phase HPLC. Acetylation of both the γ-chains and the α-chains could occur within the Hb F tetramer. Acetylation also could take place on intact subunits. It appears that some Hb F/sub Ic/ could be formed in the cells by utilizing Hb F or free γ-chains as acetylation substrate

  14. Ospapst1, a useful mutant for identifying seed purity and authenticity in hybrid rice

    Lv, Qundan; Xu, Jiming; Wu, Ping

    2013-01-01

    The stability and completeness of male sterility is still a challenge in some male sterile rice lines, especially those of photoperiod/thermo-sensitive genic male sterility (P/TGMS). Leaf color marker is a widely practiced approach to reduce the impact of self-pollinated seeds of male sterile lines. The papst1 is a leaf color mutant. The newly emerged leaves of papst1 are chlorosis and have an impaired photosynthesis. But the other agronomic traits, such as germination rate, duration of matur...

  15. A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15

    1996-01-01

    A complete understanding of the molecular mechanisms of endocytosis requires the discovery and characterization of the protein machinery that mediates this aspect of membrane trafficking. A novel genetic screen was used to identify yeast mutants defective in internalization of bulk lipid. The fluorescent lipophilic styryl dye FM4-64 was used in conjunction with FACS to enrich for yeast mutants that exhibit internalization defects. Detailed characterization of two of these mutants, dim1-1 and ...

  16. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D.; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5’ ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis. PMID:26942929

  17. Structure and Biochemical Characterization of Protein Acetyltransferase from Sulfolobus solfataricus

    Brent, Michael M.; Iwata, Ayaka; Carten, Juliana; Zhao, Kehao; Marmorstein, Ronen; (UPENN)

    2009-09-02

    The Sulfolobus solfataricus protein acetyltransferase (PAT) acetylates ALBA, an abundant nonspecific DNA-binding protein, on Lys{sup 16} to reduce its DNA affinity, and the Sir2 deacetylase reverses the modification to cause transcriptional repression. This represents a 'primitive' model for chromatin regulation analogous to histone modification in eukaryotes. We report the 1.84-{angstrom} crystal structure of PAT in complex with coenzyme A. The structure reveals homology to both prokaryotic GNAT acetyltransferases and eukaryotic histone acetyltransferases (HATs), with an additional 'bent helix' proximal to the substrate binding site that might play an autoregulatory function. Investigation of active site mutants suggests that PAT does not use a single general base or acid residue for substrate deprotonation and product reprotonation, respectively, and that a diffusional step, such as substrate binding, may be rate-limiting. The catalytic efficiency of PAT toward ALBA is low relative to other acetyltransferases, suggesting that there may be better, unidentified substrates for PAT. The structural similarity of PAT to eukaryotic HATs combined with its conserved role in chromatin regulation suggests that PAT is evolutionarily related to the eukaryotic HATs.

  18. Requirement for TAFII250 Acetyltransferase Activity in Cell Cycle Progression

    Dunphy, Elizabeth L.; Johnson, Theron; Auerbach, Scott s.; Wang, Edith H.

    2000-01-01

    The TATA-binding protein (TBP)-associated factor TAFII250 is the largest component of the basal transcription factor IID (TFIID). A missense mutation that maps to the acetyltransferase domain of TAFII250 induces the temperature-sensitive (ts) mutant hamster cell lines ts13 and tsBN462 to arrest in late G1. At the nonpermissive temperature (39.5°C), transcription from only a subset of protein encoding genes, including the G1 cyclins, is dramatically reduced in the mutant cells. Here we demonst...

  19. Two different subcellular-localized Acetoacetyl-CoA acetyltransferases differentiate diverse functions in Magnaporthe oryzae.

    Zhong, Zhenhui; Norvienyeku, Justice; Yu, Jie; Chen, Meilian; Cai, Renli; Hong, Yonghe; Chen, Liqiong; Zhang, Dongmei; Wang, Baohua; Zhou, Jie; Lu, Guodong; Chen, Xiaofeng; Wang, Zonghua

    2015-10-01

    The mevalonate pathway is an efficient biosynthesis pathway that yields isoprenoids for promoting different crucial cellular functions, including ergosterol synthesis and growth regulation. Acetoacetyl-CoA acetyltransferase (EC2.3.1.9) is the first major catalytic enzyme constituting the mevalonate pathway and catalyzes the transformation of Acetoacetyl-CoA from two molecules of acetyl-CoA enroute ergosterol production in fungi. We identified two homologous genes encoding Acetoacetyl-CoA acetyltransferase (MoAcat1 and MoAcat2) in Magnaporthe oryzae, the rice blast fungus. Phylogenetic analysis indicates these two genes have different evolutionary history. We subsequently, conducted targeted gene deletion using homologous recombination technology to ascertain the unique roles of the two MoAcat homologues during the fungal morphogenesis and pathogenesis. The findings from our investigations showed that the activity of MoAcat1 promoted virulence in the rice blast fungus as such, the ΔMoacat1 mutants generated exhibited defect in virulence, whilst ΔMoacat1 mutants did not portray growth defects. ΔMoacat2 mutants on the other hand were characterized by reduction in growth and virulence. Furthermore, MoAcat1 and MoAcat2 showed different expression patterns and subcellular localizations in M. oryzae. From our investigations we came to the conclusion that, different subcellular localization contributes to the diverse functions of MoAcat1 and MoAcat2, which helps the successful establishment of blast disease by promoting efficient development of cell morphology and effective colonization of host tissue. PMID:26318870

  20. Structural model of carnitine palmitoyltransferase I based on the carnitine acetyltransferase crystal.

    Morillas, Montserrat; López-VViñas, Eduardo; Valencia, Alfonso; Serra, Dolors; Gómez-Puertas, Paulino; Hegardt, Fausto G; Asins, Guillermina

    2004-01-01

    CPT I (carnitine palmitoyltransferase I) catalyses the conversion of palmitoyl-CoA into palmitoylcarnitine in the presence of L-carnitine, facilitating the entry of fatty acids into mitochondria. We propose a 3-D (three-dimensional) structural model for L-CPT I (liver CPT I), based on the similarity of this enzyme to the recently crystallized mouse carnitine acetyltransferase. The model includes 607 of the 773 amino acids of L-CPT I, and the positions of carnitine, CoA and the palmitoyl group were assigned by superposition and docking analysis. Functional analysis of this 3-D model included the mutagenesis of several amino acids in order to identify putative catalytic residues. Mutants D477A, D567A and E590D showed reduced L-CPT I activity. In addition, individual mutation of amino acids forming the conserved Ser685-Thr686-Ser687 motif abolished enzyme activity in mutants T686A and S687A and altered K(m) and the catalytic efficiency for carnitine in mutant S685A. We conclude that the catalytic residues are His473 and Asp477, while Ser687 probably stabilizes the transition state. Several conserved lysines, i.e. Lys455, Lys505, Lys560 and Lys561, were also mutated. Only mutants K455A and K560A showed decreases in activity of 50%. The model rationalizes the finding of nine natural mutations in patients with hereditary L-CPT I deficiencies. PMID:14711372

  1. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae

    Dai Wei

    2009-11-01

    Full Text Available Abstract Background The understanding of the biological function, regulation, and cellular interactions of the yeast genome and proteome, along with the high conservation in gene function found between yeast genes and their human homologues, has allowed for Saccharomyces cerevisiae to be used as a model organism to deduce biological processes in human cells. Here, we have completed a systematic screen of the entire set of 4,733 haploid S. cerevisiae gene deletion strains (the entire set of nonessential genes for this organism to identify gene products that modulate cellular toxicity to nickel sulfate (NiSO4. Results We have identified 149 genes whose gene deletion causes sensitivity to NiSO4 and 119 genes whose gene deletion confers resistance. Pathways analysis with proteins whose absence renders cells sensitive and resistant to nickel identified a wide range of cellular processes engaged in the toxicity of S. cerevisiae to NiSO4. Functional categories overrepresented with proteins whose absence renders cells sensitive to NiSO4 include homeostasis of protons, cation transport, transport ATPases, endocytosis, siderophore-iron transport, homeostasis of metal ions, and the diphthamide biosynthesis pathway. Functional categories overrepresented with proteins whose absence renders cells resistant to nickel include functioning and transport of the vacuole and lysosome, protein targeting, sorting, and translocation, intra-Golgi transport, regulation of C-compound and carbohydrate metabolism, transcriptional repression, and chromosome segregation/division. Interactome analysis mapped seven nickel toxicity modulating and ten nickel-resistance networks. Additionally, we studied the degree of sensitivity or resistance of the 111 nickel-sensitive and 72 -resistant strains whose gene deletion product has a similar protein in human cells. Conclusion We have undertaken a whole genome approach in order to further understand the mechanism(s regulating the cell

  2. Catalytically impaired hMYH and NEIL1 mutant proteins identified in patients with primary sclerosing cholangitis and cholangiocarcinoma

    Forsbring, Monika; Vik, Erik S.; Dalhus, Bjørn; Karlsen, Tom H.; Bergquist, Annika; Schrumpf, Erik; Bjørås, Magnar; Boberg, Kirsten M.; Alseth, Ingrun

    2009-01-01

    The human hMYH and NEIL1 genes encode DNA glycosylases involved in repair of oxidative base damage and mutations in these genes are associated with certain cancers. Primary sclerosing cholangitis (PSC), a chronic cholestatic liver disease characterized by inflammatory destruction of the biliary tree, is often complicated by the development of cholangiocarcinoma (CCA). Here, we aimed to investigate the influence of genetic variations in the hMYH and NEIL1 genes on risk of CCA in PSC patients. The hMYH and NEIL1 gene loci in addition to the DNA repair genes hOGG1, NTHL1 and NUDT1 were analyzed in 66 PSC patients (37 with CCA and 29 without cancer) by complete genomic sequencing of exons and adjacent intronic regions. Several single-nucleotide polymorphisms and mutations were identified and severe impairment of protein function was observed for three non-synonymous variants. The NEIL1 G83D mutant was dysfunctional for the major oxidation products 7,8-dihydro-8-oxoguanine (8oxoG), thymine glycol and dihydrothymine in duplex DNA, and the ability to perform δ-elimination at abasic sites was significantly reduced. The hMYH R260Q mutant had severe defect in adenine DNA glycosylase activity, whereas hMYH H434D could excise adenines from A:8oxoG pairs but not from A:G mispairs. We found no overall associations between the 18 identified variants and susceptibility to CCA in PSC patients; however, the impaired variants may be of significance for carcinogenesis in general. Our findings demonstrate the importance of complete resequencing of selected candidate genes in order to identify rare genetic variants and their possible contribution to individual susceptibility to cancer development. PMID:19443904

  3. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides

    Garvey, Graeme S.; McCormick, Susan P.; Alexander, Nancy J.; Rayment, Ivan; (US-Agriculture); (UW)

    2009-08-14

    Fusarium head blight is a devastating disease of cereal crops whose worldwide incidence is increasing and at present there is no satisfactory way of combating this pathogen or its associated toxins. There is a wide variety of trichothecene mycotoxins and they all contain a 12,13-epoxytrichothecene skeleton but differ in their substitutions. Indeed, there is considerable variation in the toxin profile across the numerous Fusarium species that has been ascribed to differences in the presence or absence of biosynthetic enzymes and their relative activity. This article addresses the source of differences in acetylation at the C15 position of the trichothecene molecule. Here, we present the in vitro structural and biochemical characterization of TRI3, a 15-O-trichothecene acetyltransferase isolated from F. sporotrichioides and the 'in vivo' characterization of Deltatri3 mutants of deoxynivalenol (DON) producing F. graminearum strains. A kinetic analysis shows that TRI3 is an efficient enzyme with the native substrate, 15-decalonectrin, but is inactive with either DON or nivalenol. The structure of TRI3 complexed with 15-decalonectrin provides an explanation for this specificity and shows that Tri3 and Tri101 (3-O-trichothecene acetyltransferase) are evolutionarily related. The active site residues are conserved across all sequences for TRI3 orthologs, suggesting that differences in acetylation at C15 are not due to differences in Tri3. The tri3 deletion mutant shows that acetylation at C15 is required for DON biosynthesis even though DON lacks a C15 acetyl group. The enzyme(s) responsible for deacetylation at the 15 position of the trichothecene mycotoxins have not been identified.

  4. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  5. Evolution of arylalkylamine N-acetyltransferase: Emergence and divergence

    Coon, Steven L.; Klein, David C.

    2006-01-01

    The melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase (AANAT) is known to have recognizable ancient homologs in bacteria and fungi, but not in other eukaryotes. Analysis of new cDNA and genomic sequences has identified several additional homologs in other groupings. First, an AANAT homolog has been found in the genome of the cephalochordate amphioxus, representing the oldest homolog in chordates. Second, two AANAT homologs have been identified in unicellular green algae. ...

  6. Suppression of Exogenous Gene Expression by Spermidine/Spermine N1-Acetyltransferase 1 (SSAT1) Cotransfection*

    Lee, Seung Bum; Park, Jong Hwan; Woster, Patrick M.; CASERO, ROBERT A.; Park, Myung Hee

    2010-01-01

    Spermidine/spermine N1-acetyltransferase 1 (SSAT1), which catalyzes the N1-acetylation of spermidine and spermine to form acetyl derivatives, is a rate-limiting enzyme in polyamine catabolism. We now report a novel activity of transiently transfected SSAT1 in suppressing the exogenous expression of other proteins, i.e. green fluorescent protein (GFP) or GFP-eIF5A. Spermidine/spermine N1-acetyltransferase 2 (SSAT2) or inactive SSAT1 mutant enzymes (R101A or R101K) were without effect. The loss...

  7. Spermidine induces autophagy by inhibiting the acetyltransferase EP300.

    Pietrocola, F; Lachkar, S; Enot, D P; Niso-Santano, M; Bravo-San Pedro, J M; Sica, V; Izzo, V; Maiuri, M C; Madeo, F; Mariño, G; Kroemer, G

    2015-03-01

    Several natural compounds found in health-related food items can inhibit acetyltransferases as they induce autophagy. Here we show that this applies to anacardic acid, curcumin, garcinol and spermidine, all of which reduce the acetylation level of cultured human cells as they induce signs of increased autophagic flux (such as the formation of green fluorescent protein-microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta and the depletion of sequestosome-1, p62/SQSTM1) coupled to the inhibition of the mammalian target of rapamycin complex 1 (mTORC1). We performed a screen to identify the acetyltransferases whose depletion would activate autophagy and simultaneously inhibit mTORC1. The knockdown of only two acetyltransferases (among 43 candidates) had such effects: EP300 (E1A-binding protein p300), which is a lysine acetyltranferase, and NAA20 (N(α)-acetyltransferase 20, also known as NAT5), which catalyzes the N-terminal acetylation of methionine residues. Subsequent studies validated the capacity of a pharmacological EP300 inhibitor, C646, to induce autophagy in both normal and enucleated cells (cytoplasts), underscoring the capacity of EP300 to repress autophagy by cytoplasmic (non-nuclear) effects. Notably, anacardic acid, curcumin, garcinol and spermidine all inhibited the acetyltransferase activity of recombinant EP300 protein in vitro. Altogether, these results support the idea that EP300 acts as an endogenous repressor of autophagy and that potent autophagy inducers including spermidine de facto act as EP300 inhibitors. PMID:25526088

  8. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma

    van Beekum, Olivier; Brenkman, Arjan B; Grøntved, Lars;

    2008-01-01

    proteins with which this nuclear receptor interacts under specific conditions. Here we identify the HIV-1 Tat-interacting protein 60 (Tip60) as a novel positive regulator of PPARgamma transcriptional activity. Using tandem mass spectrometry, we found that PPARgamma and the acetyltransferase Tip60 interact......-mediated reduction of Tip60 protein impairs differentiation of 3T3-L1 preadipocytes. Taken together, these findings qualify the acetyltransferase Tip60 as a novel adipogenic factor....

  9. MYST Family Histone Acetyltransferases in the Protozoan Parasite Toxoplasma gondii

    Smith, Aaron T.; Tucker-Samaras, Samantha D.; Fairlamb, Alan H; Sullivan, William J.

    2005-01-01

    The restructuring of chromatin precedes tightly regulated events such as DNA transcription, replication, and repair. One type of chromatin remodeling involves the covalent modification of nucleosomes by histone acetyltransferase (HAT) complexes. The observation that apicidin exerts antiprotozoal activity by targeting a histone deacetyltransferase has prompted our search for more components of the histone modifying machinery in parasitic protozoa. We have previously identified GNAT family HATs...

  10. RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus

    1996-01-01

    Kinetic competition experiments have demonstrated that at least some factors required for the nuclear import of proteins and U snRNPs are distinct. Both import processes require energy, and in the case of protein import, the energy requirement is known to be at least partly met by GTP hydrolysis by the Ran GTPase. We have compared the effects of nonhydrolyzable GTP analogues and two mutant Ran proteins on the nuclear import of proteins and U snRNPs in vitro. The mutant Ran proteins have diffe...

  11. Virulence determinants of Salmonella Gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine.

    Geng, Shizhong; Jiao, Xinan; Barrow, Paul; Pan, Zhiming; Chen, Xiang

    2014-01-31

    Salmonella Gallinarum biovar Pullorum (S. Gallinarum biovar Pullorum) is the causative agent of pullorum disease (PD) in chickens which results in considerable economic losses to the poultry industries in developing countries. PCR-Signature Tagged Mutagenesis was used to identify virulence determinants of S. Gallinarum biovar Pullorum and novel attenuated live vaccine candidates for use against this disease. A library of 1800 signature-tagged S. Gallinarum biovar Pullorum mutants was constructed and screened for virulence-associated genes in chickens. The attenuation of 10 mutants was confirmed by in vivo and in vitro competitive index (CI) studies. The transposons were found to be located in SPI-1 (2/10 mutants), SPI-2 (3/10), the virulence plasmid (1/10) and non-SPI genes (4/10). One highly attenuated spiC mutant persisted in spleen and liver for less than 10 days and induced high levels of circulating antibody and protective immunity against oral challenge in young broiler chickens. The spiC mutant is a potential new vaccine candidate for use with chickens against this disease. PMID:24355532

  12. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system

    Michiel van der Vaart

    2013-05-01

    Toll-like receptors (TLRs are an important class of pattern recognition receptors (PRRs that recognize microbial and danger signals. Their downstream signaling upon ligand binding is vital for initiation of the innate immune response. In human and mammalian models, myeloid differentiation factor 88 (MYD88 is known for its central role as an adaptor molecule in interleukin 1 receptor (IL-1R and TLR signaling. The zebrafish is increasingly used as a complementary model system for disease research and drug screening. Here, we describe a zebrafish line with a truncated version of MyD88 as the first zebrafish mutant for a TLR signaling component. We show that this immune-compromised mutant has a lower survival rate under standard rearing conditions and is more susceptible to challenge with the acute bacterial pathogens Edwardsiella tarda and Salmonella typhimurium. Microarray and quantitative PCR analysis revealed that expression of genes for transcription factors central to innate immunity (including NF-ĸB and AP-1 and the pro-inflammatory cytokine Il1b, is dependent on MyD88 signaling during these bacterial infections. Nevertheless, expression of immune genes independent of MyD88 in the myd88 mutant line was sufficient to limit growth of an attenuated S. typhimurium strain. In the case of infection with the chronic bacterial pathogen Mycobacterium marinum, we show that MyD88 signaling has an important protective role during early pathogenesis. During mycobacterial infection, the myd88 mutant shows accelerated formation of granuloma-like aggregates and increased bacterial burden, with associated lower induction of genes central to innate immunity. This zebrafish myd88 mutant will be a valuable tool for further study of the role of IL1R and TLR signaling in the innate immunity processes underlying infectious diseases, inflammatory disorders and cancer.

  13. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.

    Blum, Ailisa; Benfield, Aurélie H; Stiller, Jiri; Kazan, Kemal; Batley, Jacqueline; Gardiner, Donald M

    2016-05-01

    Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes. PMID:26932301

  14. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    Crosby, Heidi A [University of Wisconsin, Madison; Pelletier, Dale A [ORNL; Hurst, Gregory {Greg} B [ORNL; Escalante-Semerena, Jorge C [University of Wisconsin, Madison

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  15. Mutations in KAT6B, Encoding a Histone Acetyltransferase, Cause Genitopatellar Syndrome

    Campeau, Philippe M.; Kim, Jaeseung C.; Lu, James T.; Schwartzentruber, Jeremy A.; Abdul-Rahman, Omar A.; Schlaubitz, Silke; Murdock, David M.; Jiang, Ming-Ming; Lammer, Edward J.; Enns, Gregory M.; Rhead, William J.; Rowland, Jon; Robertson, Stephen P.; Cormier-Daire, Valérie; Bainbridge, Matthew N.

    2012-01-01

    Genitopatellar syndrome (GPS) is a skeletal dysplasia with cerebral and genital anomalies for which the molecular basis has not yet been determined. By exome sequencing, we found de novo heterozygous truncating mutations in KAT6B (lysine acetyltransferase 6B, formerly known as MYST4 and MORF) in three subjects; then by Sanger sequencing of KAT6B, we found similar mutations in three additional subjects. The mutant transcripts do not undergo nonsense-mediated decay in cells from subjects with G...

  16. GCN5 Acetyltransferase Inhibits PGC1α-induced Hepatitis B Virus Biosynthesis

    Xiaohui Tian; Fei Zhao; Zhikui Cheng; Ming Zhou; Xiaoguang Zhi; Jiafu Li; Kanghong Hu

    2013-01-01

    Hepatitis B virus (HBV) biosynthesis is primarily restricted to hepatocytes due to the goveming of liver-enriched nuclear receptors (NRs) on viral RNA synthesis.The liver-enriched NR hepatocyte nuclear factor 4α (HNF4α),the key regulator of genes implicated in hepatic glucose metabolism,is also a primary determinant of HBV pregenomic RNA synthesis and HBV replication.Peroxisome proliferator-activated receptor-γ coactivator lα (PGC1α) coactivates and further enhances the effect of HNF4α on HBV biosynthesis.Here,we showed that the acetyltransferase General Control Non-repressed Protein 5 (GCN5) acetylated PGC1α,leading to alteration of PGC1α from a transcriptionally active state into an inactive state.As a result,the coactivation activity of PGClα on HBV transcription and replication was suppressed.Apparently,an acetylation site mutant of PGC 1α (PGC1αR13) still had coactivation activity as GCN5 could not suppress the coactivation activity of the mutant.Moreover,a catalytically inactive acetyltransferase mutant GCN5m,due to the loss of acetylation activity,failed to inhibit the coactivation function of PGC 1α in HBV biosynthesis.Our results demonstrate that GCN5,through its acetyltransferase activity,inhibits PGClα-induced enhancement of HBV transcription and replication both in vitro and in vivo.

  17. Acetyltransferase and human hemoglobin acetylation

    A minor component of human fetal hemoglobin (Hb F) is acetylated at the amino-terminus of the γ-globin chains. A similar minor component of Hb F is formed during translation of cord blood mRNA in the rabbit reticulocyte lysate system. The acetylation appeared to be enzymatic. This system contains an acetyltransferase capable of acetylating histones and hemoglobins. The enzyme, partially purified by histone-Sepharose affinity chromatography was capable of incorporating labeled acetyl- group from 1-[14C-acetyl]-CoA into both human Hb F0 and HB A0, but at a lower rate than for histones. Characterization of the labeled products indicated that the α-chains of both hemoglobins were being acetylated presumably at a lysyl-residue, but in the case of Hb F0 the amino-terminus of the γ-globin chains was acetylated as well. While histone-Sepharose bound more than 95% of the enzyme, Sepharose linked Hb F0, γ-globin chains, and Hb Bart's bound 14, 5, and 12% of the activity, respectively. Enzyme bound to these resins was not any more active on the hemoglobins than was the enzyme bound to the histone-Sepharose. The histone-Sepharose was also used to detect the enzyme in human cord blood red cells separated by dextran 40 density gradient centrifugation. Activity was found mostly in the young cells, and was directly related to the number of reticulocytes present in any one fraction

  18. Single site suppressors of a fission yeast temperature-sensitive mutant in cdc48 identified by whole genome sequencing.

    Irina N Marinova

    Full Text Available The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.

  19. Proteomic Analysis of Wild-type and Mutant Huntingtin-associated Proteins in Mouse Brains Identifies Unique Interactions and Involvement in Protein Synthesis*

    Culver, Brady P.; Savas, Jeffrey N.; Park, Sung K.; Choi, Jeong H.; Zheng, Shuqiu; Zeitlin, Scott O.; Yates, John R.; Tanese, Naoko

    2012-01-01

    Huntington disease is a neurodegenerative disorder caused by a CAG repeat amplification in the gene huntingtin (HTT) that is reflected by a polyglutamine expansion in the Htt protein. Nearly 20 years of research have uncovered roles for Htt in a wide range of cellular processes, and many of these discoveries stemmed from the identification of Htt-interacting proteins. However, no study has employed an impartial and comprehensive strategy to identify proteins that differentially associate with full-length wild-type and mutant Htt in brain tissue, the most relevant sample source to the disease condition. We analyzed Htt affinity-purified complexes from wild-type and HTT mutant juvenile mouse brain from two different biochemical fractions by tandem mass spectrometry. We compared variations in protein spectral counts relative to Htt to identify those proteins that are the most significantly contrasted between wild-type and mutant Htt purifications. Previously unreported Htt interactions with Myo5a, Prkra (PACT), Gnb2l1 (RACK1), Rps6, and Syt2 were confirmed by Western blot analysis. Gene Ontology analysis of these and other Htt-associated proteins revealed a statistically significant enrichment for proteins involved in translation among other categories. Furthermore, Htt co-sedimentation with polysomes in cytoplasmic mouse brain extracts is dependent upon the presence of intact ribosomes. Finally, wild-type or mutant Htt overexpression inhibits cap-dependent translation of a reporter mRNA in an in vitro system. Cumulatively, these data support a new role for Htt in translation and provide impetus for further study into the link between protein synthesis and Huntington disease pathogenesis. PMID:22556411

  20. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Stephens, David S. (Stone Mountain, GA); Gudlavalleti, Seshu K. (Kensington, MD); Tzeng, Yih-Ling (Atlanta, GA); Datta, Anup K. (San Diego, CA); Carlson, Russell W. (Athens, GA)

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  1. Storage protein mutations identified in common wheat and barley accessions and utilization of those mutants in studies of crop properties

    Three types of mutations in prolamines and glutelins encoding regions which lead to disappearance of whole block of components, the particular component of the block and changing in electrophoretic mobility have been identified as a result of screening of the number of common winter wheat varieties and lines as well as spring and winter barley varieties, which have been treated by both chemical and ionizing radiation mutagens. The importance of such type of plant material for fundamental and applied research is discussed. (author)

  2. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants.

    Leister, Dario; Kleine, Tatjana

    2016-07-01

    Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants. PMID:26876646

  3. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  4. N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium: proposal for a common catalytic mechanism of arylamine acetyltransferase enzymes.

    Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Igarashi, T; Kaminuma, T; Sofuni, T; Nohmi, T

    1994-01-01

    Acetyl-CoA:N-hydroxyarylamine O-acetyltransferase is an enzyme involved in the metabolic activation of N-hydroxyarylamines derived from mutagenic and carcinogenic aromatic amines and nitroarenes. The O-acetyltransferase gene of Salmonella typhimurium has been cloned, and new Ames tester substrains highly sensitive to mutagenic aromatic amines and nitroarenes have been established in our laboratory. The nucleotide sequence of the O-acetyltransferase gene was determined. There was an open readi...

  5. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies.

    Jed eRasmussen

    2015-05-01

    Full Text Available The lipopolysaccharide (LPS and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs and bone marrow derived macrophages (BMDMs. We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.

  6. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum.

    Dou, Wenfang; Xu, Meijuan; Cai, Dongmei; Zhang, Xiaomei; Rao, Zhiming; Xu, Zhenghong

    2011-10-01

    Ornithine acetyltransferase (EC 2.3.1.35; OATase) gene (argJ) from the L-arginine-producing mutant Corynebacterium crenatum SYPA5-5 was cloned, sequenced, and expressed in Escherichia coli BL21 (DE3). Analysis of the argJ sequence revealed that the argJ coded a polypeptide of 388 amino acids with a calculated molecular weight of 39.7 kDa. In this study, the function of the OATase (argJ) of C. crenatum SYPA5-5 has been identified as a conserved ATML sequence for the autolysis of the protein to α- and β-subunits. When the argJ regions corresponding to the α- and β-subunits were cloned and expressed separately in E. coli BL21, OATase activities were abolished. At the same time, a functional study revealed that OATase from C. crenatum SYPA5-5 was a bifunctional enzyme with the functions of acetylglutamate synthase (EC 2.3.1.1, NAGS) and acetylornithine deacetylase (EC 3.5.1.16, AOase) activities. In order to investigate the effects of the overexpression of the argJ gene on L: -arginine production, the argJ gene was inserted into pJCtac to yield the recombinant shuttle plasmid pJCtac-argJ and then transformed into C. crenatum SYPA5-5. The results showed that the engineered strains could not only express more OATase (90.9%) but also increase the production of L: -arginine significantly (16.8%). PMID:21785983

  7. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1

    Osada, Shigehiro; Sutton, Ann; Muster, Nemone; Brown, Christine E.; Yates, John R.; Sternglanz, Rolf; Workman, Jerry L.

    2001-01-01

    It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, promotes silencing at HML and telomeres. Here we identify a ∼450-kD SAS complex...

  8. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier; Sutton, Brian J; Brown, Paul R.

    2008-01-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes.

  9. Transcriptional Profiling of a Cross-Protective Salmonella enterica serovar Typhimurium UK-1 dam Mutant Identifies a Set of Genes More Transcriptionally Active Compared to Wild-Type, and Stably Transcribed across Biologically Relevant Microenvironments

    Claire B. Miller

    2014-05-01

    Full Text Available Vaccination with Salmonella enterica serovar Typhimurium lacking DNA adenine methyltransferase confers cross-protective immunity against multiple Salmonella serotypes. The mechanistic basis is thought to be associated with the de-repression of genes that are tightly regulated when transiting from one microenvironment to another. This de-repression provides a potential means for the production of a more highly expressed and stable antigenic repertoire capable of inducing cross-protective immune responses. To identify genes encoding proteins that may contribute to cross-protective immunity, we used a Salmonella Typhimurium DNA adenine methyltransferase mutant strain (UK-1 dam mutant derived from the parental UK-1 strain, and assessed the transcriptional profile of the UK-1 dam mutant and UK-1 strain grown under conditions that simulate the intestinal or endosomal microenvironments encountered during the infective process. As expected, the transcriptional profile of the UK-1 dam mutant identified a set of genes more transcriptionally active when compared directly to UK-1, and stably transcribed in biologically relevant culture conditions. Further, 22% of these genes were more highly transcribed in comparison to two other clinically-relevant Salmonella serovars. The strategy employed here helps to identify potentially conserved proteins produced by the UK-1 dam mutant that stimulate and/or modulate the development of cross-protective immune responses toward multiple Salmonella serotypes.

  10. New N-Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF

    Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.; Zhao, Huimin; Nair, Satish K. (UIUC)

    2015-10-15

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 {angstrom} resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-function studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098.

  11. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation.

    Campos, Juan F; Cara, Beatriz; Pérez-Martín, Fernando; Pineda, Benito; Egea, Isabel; Flores, Francisco B; Fernandez-Garcia, Nieves; Capel, Juan; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael; Bolarin, Maria C

    2016-06-01

    A screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype. ARS1 coded for an R1-MYB type transcription factor and its expression was induced by salinity in leaves. The mutant reduced fruit yield under salt acclimation while in the absence of stress the disruption of ARS1 did not affect this agronomic trait. The stomatal behaviour of ars1 mutant leaves induced higher Na(+) accumulation via the transpiration stream, as the decreases of stomatal conductance and transpiration rate induced by salt stress were markedly lower in the mutant plants. Moreover, the mutation affected stomatal closure in a response mediated by abscisic acid (ABA). The characterization of tomato transgenic lines silencing and overexpressing ARS1 corroborates the role of the gene in regulating the water loss via transpiration under salinity. Together, our results show that ARS1 tomato gene contributes to reduce transpirational water loss under salt stress. Finally, this gene could be interesting for tomato molecular breeding, because its manipulation could lead to improved stress tolerance without yield penalty under optimal culture conditions. PMID:26578112

  12. Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host ▿ † ‡

    O'Meara, Teresa R.; Hay, Christie; Price, Michael S.; Giles, Steve; Alspaugh, J. Andrew

    2010-01-01

    Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Previous studies have demonstrated major alterations in its transcriptional profile as this microorganism enters the hostile environment of the human host. To assess the role of chromatin remodeling in host-induced transcriptional responses, we identified the C. neoformans Gcn5 histone acetyltransferase and demonstrated its function by complementation studies of Saccharomyces cerevisiae. The C. neoformans ...

  13. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

    Lichius, Alexander; Bidard, Frederique; Buchholz, Franziska; Le Crom, Stphane; Martin, Joel X.; Schackwitz, Wendy; Austerlitz, Tina; Grigoriev, Igor V.; Baker, Scott E.; Margeot, Antoine; Seiboth, Bernhard; Kubicek, Christian P.

    2015-12-01

    Background: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. Results: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. Conclusion: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.

  14. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p

    Greenblatt Jack F

    2007-09-01

    Full Text Available Abstract Background Histone modifications have been implicated in the regulation of transcription and, more recently, in DNA replication and repair. In yeast, a major conserved histone acetyltransferase, Hat1p, preferentially acetylates lysine residues 5 and 12 on histone H4. Results Here, we report that a nuclear sub-complex consisting of Hat1p and its partner Hat2p interacts physically and functionally with the origin recognition complex (ORC. While mutational inactivation of the histone acetyltransferase (HAT gene HAT1 alone does not compromise origin firing or initiation of DNA replication, a deletion in HAT1 (or HAT2 exacerbates the growth defects of conditional orc-ts mutants. Thus, the ORC-associated Hat1p-dependent histone acetyltransferase activity suggests a novel linkage between histone modification and DNA replication. Additional genetic and biochemical evidence points to the existence of partly overlapping histone H3 acetyltransferase activities in addition to Hat1p/Hat2p for proper DNA replication efficiency. Furthermore, we demonstrated a dynamic association of Hat1p with chromatin during S-phase that suggests a role of this enzyme at the replication fork. Conclusion We have found an intriguing new association of the Hat1p-dependent histone acetyltransferase in addition to its previously known role in nuclear chromatin assembly (Hat1p/Hat2p-Hif1p. The participation of a distinct Hat1p/Hat2p sub-complex suggests a linkage of histone H4 modification with ORC-dependent DNA replication.

  15. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU).

    Sharma, Rashmi; Rani, Chitra; Mehra, Rukmankesh; Nargotra, Amit; Chib, Reena; Rajput, Vikrant S; Kumar, Sunil; Singh, Samsher; Sharma, Parduman R; Khan, Inshad A

    2016-04-01

    This study aims at identifying novel chemical scaffolds as inhibitors specific to the acetyltransferase domain of a bifunctional enzyme, Escherichia coli GlmU, involved in the cell wall biosynthesis of Gram-negative organisms. A two-pronged approach was used to screen a 50,000 small-molecule library. Using the first approach, the library was in silico screened by docking the library against acetyltransferase domain of E. coli GlmU studies. In the second approach, complete library was screened against Escherichia coli ATCC 25922 to identify the whole cell active compounds. Active compounds from both the screens were screened in a colorimetric absorbance-based assay to identify inhibitors of acetyltransferase domain of E. coli GlmU which resulted in the identification of 1 inhibitor out of 56 hits identified by in silico screening and 4 inhibitors out of 35 whole cell active compounds on Gram-negative bacteria with the most potent inhibitor showing IC50 of 1.40 ± 0.69 μM. Mode of inhibition studies revealed these inhibitors to be competitive with AcCoA and uncompetitive with GlcN-1-P. These selected inhibitors were also tested for their antibacterial and cytotoxic activities. Compounds 5175178 and 5215319 exhibited antibacterial activity that co-related with GlmU inhibition. These compounds, therefore, represent novel chemical scaffolds targeting acetyltransferase activity of E. coli GlmU. PMID:26563552

  16. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified...

  17. Pseudosecretion of Escherichia coli chloramphenicol acetyltransferase by Bacillus subtilis.

    Le Grice, S F; Gentz, R; Bannwarth, W; Kocher, H. P.

    1987-01-01

    Bacillus subtilis harboring the vector 25RBSII secrets an Escherichia coli-derived chloramphenicol acetyltransferase into culture supernatants. The secreted enzyme lacks 18 amino acids; these are removed externally rather than during secretion.

  18. Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome.

    Campeau, Philippe M; Kim, Jaeseung C; Lu, James T; Schwartzentruber, Jeremy A; Abdul-Rahman, Omar A; Schlaubitz, Silke; Murdock, David M; Jiang, Ming-Ming; Lammer, Edward J; Enns, Gregory M; Rhead, William J; Rowland, Jon; Robertson, Stephen P; Cormier-Daire, Valérie; Bainbridge, Matthew N; Yang, Xiang-Jiao; Gingras, Marie-Claude; Gibbs, Richard A; Rosenblatt, David S; Majewski, Jacek; Lee, Brendan H

    2012-02-10

    Genitopatellar syndrome (GPS) is a skeletal dysplasia with cerebral and genital anomalies for which the molecular basis has not yet been determined. By exome sequencing, we found de novo heterozygous truncating mutations in KAT6B (lysine acetyltransferase 6B, formerly known as MYST4 and MORF) in three subjects; then by Sanger sequencing of KAT6B, we found similar mutations in three additional subjects. The mutant transcripts do not undergo nonsense-mediated decay in cells from subjects with GPS. In addition, human pathological analyses and mouse expression studies point to systemic roles of KAT6B in controlling organismal growth and development. Myst4 (the mouse orthologous gene) is expressed in mouse tissues corresponding to those affected by GPS. Phenotypic differences and similarities between GPS, the Say-Barber-Biesecker variant of Ohdo syndrome (caused by different mutations of KAT6B), and Rubinstein-Taybi syndrome (caused by mutations in other histone acetyltransferases) are discussed. Together, the data support an epigenetic dysregulation of the limb, brain, and genital developmental programs. PMID:22265014

  19. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.;

    1989-01-01

    The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed by chemi...... cation binds to PRPP synthetase and serves as a bridge to the α-phosphate of ATP and AMP at the active site. The prsA1 mutation appears to alter this divalent cation site....

  20. Obesity and lipid stress inhibit carnitine acetyltransferase activity.

    Seiler, Sarah E; Martin, Ola J; Noland, Robert C; Slentz, Dorothy H; DeBalsi, Karen L; Ilkayeva, Olga R; An, Jie; Newgard, Christopher B; Koves, Timothy R; Muoio, Deborah M

    2014-04-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  1. Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling

    QiFan; LijiaAn; LiwangCui

    2005-01-01

    The yeast transcriptional coactivator GCN5 (yGCN5), a histone acetyltransferase (HAT), is part of large multimeric complexes that are required for chromatin remodeling and transcriptional activation. Like other eukaryotes, the malaria parasite DNA is organized into nucleosomes and the genome encodes components of chromatin-remodeling complexes. Here we show that GCN5 is conserved in Plasmodium species and that the most homologous regions are within the HAT domain and the bromodomain. The Plasmodiumfalclparum GCN5 homologue (PfGCN5) is spliced with three introns, encoding a protein of 1,464 residues. Mapping of the ends of the PfGCN5 transcript suggests that the mRNA is 5.2 to 5.4 kb, consistent with the result from Northern analysis. Using free core histones, we determined that recombinant PfGCN5 proteins have conserved HAT activity with a substrate preference for histone H3. Using substrate-specific antibodies, we determined that both Lys-8 and -14 of H3 were acetylated by the recombinant PfGCN5. In eukaryotes, GCN5 homologues interact with yeast ADA2 homologues and form large multiprotein HAT complexes. We have identified an ADA2 homologue in P. falciparum, PfADA2. Yeast two-hybrid and in vitro binding assays verified the interactions between PfGCN5 and PfADA2, suggesting that they may be associated with each other in vivo. The conserved function of the HAT domain in PfGCN5 was further illustrated with yeast complementation experiments, which showed that the PfGCN5 region corresponding to the full-length yGCN5 could partially complement the yGCN5 deletion mutation. Furthermore, a chimera comprising the PfGCN5 HAT domain fused to the remainder of yeast GCN5 (yGCN5) fully rescued the yGCN5 deletion mutant. These data demonstrate that PfGCN5 is an authentic GCN5 family member and may exist in chromatin-remodeling complexes to regulate gene expression in P. falciparum.

  2. The Yeast ATF1 Acetyltransferase Efficiently Acetylates Insect Pheromone Alcohols: Implications for the Biological Production of Moth Pheromones.

    Ding, Bao-Jian; Lager, Ida; Bansal, Sunil; Durrett, Timothy P; Stymne, Sten; Löfstedt, Christer

    2016-04-01

    Many moth pheromones are composed of mixtures of acetates of long-chain (≥10 carbon) fatty alcohols. Moth pheromone precursors such as fatty acids and fatty alcohols can be produced in yeast by the heterologous expression of genes involved in insect pheromone production. Acetyltransferases that subsequently catalyze the formation of acetates by transfer of the acetate unit from acetyl-CoA to a fatty alcohol have been postulated in pheromone biosynthesis. However, so far no fatty alcohol acetyltransferases responsible for the production of straight chain alkyl acetate pheromone components in insects have been identified. In search for a non-insect acetyltransferase alternative, we expressed a plant-derived diacylglycerol acetyltransferase (EaDAcT) (EC 2.3.1.20) cloned from the seed of the burning bush (Euonymus alatus) in a yeast system. EaDAcT transformed various fatty alcohol insect pheromone precursors into acetates but we also found high background acetylation activities. Only one enzyme in yeast was shown to be responsible for the majority of that background activity, the acetyltransferase ATF1 (EC 2.3.1.84). We further investigated the usefulness of ATF1 for the conversion of moth pheromone alcohols into acetates in comparison with Ea DAcT. Overexpression of ATF1 revealed that it was capable of acetylating these fatty alcohols with chain lengths from 10 to 18 carbons with up to 27- and 10-fold higher in vivo and in vitro efficiency, respectively, compared to Ea DAcT. The ATF1 enzyme thus has the potential to serve as the missing enzyme in the reconstruction of the biosynthetic pathway of insect acetate pheromones from precursor fatty acids in yeast. PMID:26801935

  3. Rapid quantitative assay for chloramphenicol acetyltransferase

    Measuring the expression of exogenous genetic material in mammalian cells is commonly done by fusing the DNA of interest to a gene encoding an easily-detected enzyme. Chloramphenicol acetyltransferase(CAT) is a convenient marker because it is not normally found in eukaryotes. CAT activity has usually been detected using a thin-layer chromatographic separation followed by autoradiography. An organic solvent extraction-based method for CAT detection has also been described, as well as a procedure utilizing HPLC analysis. Building on the extraction technique, they developed a rapid sensitive kinetic method for measuring CAT activity in cell homogenates. The method exploits the differential organic solubility of the substrate ([3H] or [14C]acetyl CoA) and the product (labeled acetylchloramphenicol). The assay is a simple one-vial, two-phase procedure and requires no tedious manipulations after the initial setup. Briefly, a 0.25 ml reaction with 100mM Tris-HCL, 1mM chloramphenicol, 0.1mM [14C]acetyl CoA and variable amounts of cell homogenate is pipetted into a miniscintillation vial, overlaid with 5 ml of a water-immiscible fluor, and incubated at 370C. At suitable intervals the vial is counted and the CAT level is quantitatively determined as the rate of increase in counts/min of the labeled product as it diffuses into the fluor phase, compared to a standard curve. When used to measure CAT in transfected Balb 3T3 cells the method correlated well with the other techniques

  4. Analysis of p53 mutants for transcriptional activity.

    Raycroft, L.; Schmidt, J. R.; Yoas, K; Hao, M M; Lozano, G.

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 protein...

  5. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. The β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA

  6. 40 CFR 174.522 - Phosphinothricin Acetyltransferase (PAT); exemption from the requirement of a tolerance.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosphinothricin Acetyltransferase...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.522 Phosphinothricin Acetyltransferase (PAT); exemption from the requirement of a tolerance. Residues of the Phosphinothricin Acetyltransferase...

  7. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  8. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  9. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice

    Fei Zheng; Lawryn H Kasper; Bedford, David C.; Stephanie Lerach; Teubner, Brett J.W.; Brindle, Paul K.

    2016-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB ...

  10. N-Acetyltransferase 1 (NAT1) Genotype: A Risk Factor for Urinary Bladder Cancer in a Lebanese Population

    Yassine, Ibrahim A.; Loulou Kobeissi; Jabbour, Michel E.; Dhaini, Hassan R

    2012-01-01

    In Lebanon, bladder cancer is the second most incident cancer among men. This study investigates a possible association between N-acetyltransferase 1 (NAT1) genotype, a drug-metabolizing enzyme coding gene, and bladder cancer in Lebanese men. A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002–2008. Controls were conveniently identified and selected from the s...

  11. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family

    Karagianni, Eleni P.; Evanthia Kontomina; Britton Davis; Barbara Kotseli; Theodora Tsirka; Vasiliki Garefalaki; Edith Sim; Glenn, Anthony E; Sotiria Boukouvala

    2015-01-01

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising...

  12. Isolation and characterization of Caulobacter mutants impaired in adaptation to stationary phase

    Italiani Valéria C. S.

    2003-01-01

    Full Text Available The entry into stationary phase causes a change in the pattern of gene expression of bacteria, when the cells must express a whole set of genes involved mainly with resistance to starvation and to environmental stresses. As an attempt to identify genes important for the survival of Caulobacter crescentus in stationary phase, we have screened a library of 5,000 clones generated by random transposon mutagenesis for mutants that showed reduced viability after prolonged growth. Four clones were selected, which displayed either lower viability or a longer time of recovery from stationary phase. The genes disrupted were identified, and the gene products were found to be mainly involved with amino acid metabolism (glutamate N-acetyltransferase, 4-hydroxyphenylpyruvate dioxygenase and L-aspartate oxidase or with recombination (exonuclease RecJ. Each mutant was tested for resistance to stresses, such as oxidative, saline, acidic, heat and UV exposure, showing different responses. Although the mutations obtained were not in genes involved specifically in stationary phase, our results suggest that amino acids metabolism may play an important role in keeping viability during this growth phase.

  13. Retinal rhythms in chicks: circadian variation in melantonin and serotonin N-acetyltransferase activity.

    Hamm, H E; Menaker, M

    1980-01-01

    There is a large-amplitude circadian rhythm of indoleamine metabolism in the retina-pigment epithelium of the chicken. N-Acetyltransferase activity (arylamine acetyltransferase; acetyl-CoA:arylamine N-acetyltransferase, EC 2.3.1.5) and melatonin content are 15-fold higher at night than during the day in a cycle of a 4-fold increase during the subjective night. Light at midnight inactivates N-acetyltransferase and lowers melatonin. N-Acetyltransferase activity is found predominantly in the ret...

  14. N-acetyltransferase in human skin and keratinocytes

    Vogel, Tanja; Bonifas, Jutta; Wiegman, Marjon; Pas, Hendrikus; Blömeke, Brunhilde; Coenraads, Pieter Jan; Schuttelaar, Marie-Louise

    2014-01-01

    Background: N-acetyltransferase 1 (NAT1) mediated Nacetylation in human skin and keratinocytes is an important detoxification pathway for aromatic amines including the strong sensitizer para-phenylenediamine (PPD), an important component of oxidative hair dyes. Objectives: Human skin and keratinocyt

  15. Erythromycin induces expression of the chloramphenicol acetyltransferase gene cat-86.

    Rogers, E J; Lovett, P S

    1990-01-01

    The plasmid gene cat-86 specifies chloramphenicol-inducible chloramphenicol acetyltransferase in Bacillus subtilis. This gene, like the erythromycin-inducible erm genes, is regulated by translational attenuation. Here we show that cat-86 is also inducibly regulated by erythromycin. cat-86 does not confer resistance to erythromycin.

  16. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol.

    Beckler, G S; Hook, L A; Reeve, J N

    1984-01-01

    Growth of the four methanogens investigated was inhibited by chloramphenicol-3-acetate; therefore, introduction of chloramphenicol acetyltransferase-encoding genes should not confer chloramphenicol resistance on these methanogens. Reduction of the aryl nitro group of chloramphenicol produced a compound which did not inhibit the growth of these methanogens.

  17. N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species

    Du, Xiaoyi [Fukui Prefectural Univ., Fukui (Japan). Dept. of Bioscience; Takagi, Hiroshi [Nara Inst. of Science and Technology, Ikoma, Nara (Japan). Graduate School of Biological Sciences

    2007-07-15

    N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H{sub 2}O{sub 2}, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H{sub 2}O{sub 2} or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H{sub 2}O{sub 2}. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains. (orig.)

  18. Suppression of exogenous gene expression by spermidine/spermine N1-acetyltransferase 1 (SSAT1) cotransfection.

    Lee, Seung Bum; Park, Jong Hwan; Woster, Patrick M; Casero, Robert A; Park, Myung Hee

    2010-05-14

    Spermidine/spermine N(1)-acetyltransferase 1 (SSAT1), which catalyzes the N(1)-acetylation of spermidine and spermine to form acetyl derivatives, is a rate-limiting enzyme in polyamine catabolism. We now report a novel activity of transiently transfected SSAT1 in suppressing the exogenous expression of other proteins, i.e. green fluorescent protein (GFP) or GFP-eIF5A. Spermidine/spermine N(1)-acetyltransferase 2 (SSAT2) or inactive SSAT1 mutant enzymes (R101A or R101K) were without effect. The loss of exogenous gene expression is not due to accelerated protein degradation, because various inhibitors of proteases, lysosome, or autophagy did not mitigate the effects. This SSAT1 effect cannot be attributed to the depletion of overall cellular polyamines or accumulation of N(1)-acetylspermidine (N(1)-AcSpd) because of the following: (i) addition of putrescine, spermidine, spermine, or N(1)-AcSpd did not restore the expression of GFP or GFP-eIF5A; (ii) depletion of cellular polyamines with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, did not inhibit exogenous gene expression; and (iii) N(1),N(11)-bis(ethyl)norspermine caused a drastic depletion of cellular polyamines through induction of endogenous SSAT1 but did not block exogenous gene expression. SSAT1 transient transfection did not affect stable expression of GFP, and stably expressed SSAT1 did not affect exogenous expression of GFP, suggesting that only transiently (episomally) expressed SSAT1 blocks exogenous (episomal) expression of other proteins. SSAT1 may regulate exogenous gene expression by blocking steps involved in transcription/translation from an episomal vector by targeting non-polyamine substrate(s) critical for this pathway. PMID:20212040

  19. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain

  20. Three-dimensional structure of a Streptomyces sviceus GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 O-GlcNAcase

    He, Yuan [Northwest University, Xi’an 710069 (China); The University of York, York YO10 5DD (United Kingdom); Roth, Christian; Turkenburg, Johan P.; Davies, Gideon J., E-mail: gideon.davies@york.ac.uk [The University of York, York YO10 5DD (United Kingdom); Northwest University, Xi’an 710069 (China)

    2014-01-01

    The crystal structure of a bacterial acetyltransferase with 27% sequence identity to the C-terminal domain of human O-GlcNAcase has been solved at 1.5 Å resolution. This S. sviceus protein is compared with known GCN5-related acetyltransferases, adding to the diversity observed in this superfamily. The mammalian O-GlcNAc hydrolysing enzyme O-GlcNAcase (OGA) is a multi-domain protein with glycoside hydrolase activity in the N-terminus and with a C-terminal domain that has low sequence similarity to known acetyltransferases, prompting speculation, albeit controversial, that the C-terminal domain may function as a histone acetyltransferase (HAT). There are currently scarce data available regarding the structure and function of this C-terminal region. Here, a bacterial homologue of the human OGA C-terminal domain, an acetyltransferase protein (accession No. ZP-05014886) from Streptomyces sviceus (SsAT), was cloned and its crystal structure was solved to high resolution. The structure reveals a conserved protein core that has considerable structural homology to the acetyl-CoA (AcCoA) binding site of GCN5-related acetyltransferases (GNATs). Calorimetric data further confirm that SsAT is indeed able to bind AcCoA in solution with micromolar affinity. Detailed structural analysis provided insight into the binding of AcCoA. An acceptor-binding cavity was identified, indicating that the physiological substrate of SsAT may be a small molecule. Consistent with recently published work, the SsAT structure further questions a HAT function for the human OGA domain.

  1. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase.

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R; Yang, Shaoqing; Jiang, Zhengqiang

    2015-01-01

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854

  2. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation

    Malatesta, Martina; Steinhauer, Cornelia; Mohammad, Faizaan;

    2013-01-01

    The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well...... of neural stem cells in vivo. In summary, our study identified the acetyltransferase PCAF as a positive cofactor of the Hh-Gli signaling pathway, leading us to propose PCAF as a candidate therapeutic target for the treatment of patients with medulloblastoma and glioblastoma.......The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well...... show that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased...

  3. Radioenzymatic assays for aminoglycosides with kanamycin 6'- acetyltransferase

    To facilitate the rapid and accurate quantitation of parenterally administered aminoglycosides, the optimum conditions (pH, duration of incubation, and cofactor concentrations) were defined to permit radioenzymatic assays with kanamycin acetyltransferase. The accuracy in quantitating tobramycin, netilmicin, kanamycin, and amikacin at concentrations in the therapeutic range was greater than 90%, with a mean recovery of 102.8%. The mean of the interassay coefficient of variation was 7.8%. Typical standard curves at six different concentrations resulted in a correlation coefficient (r value) of greater than 0.99 for each aminoglycoside. The radioenzymatic assay correlates well with the bioassay (tobramycin and netilmicin) and radioimmunoassay (amikacin and kanamycin); the correlation coefficient is greater than 0.90 for all. The authors conclude that the radioenzymatic assay utilizing kanamycin 6'-acetyltransferase is feasible for all commercially available parenterally administered aminoglycosides

  4. Radioenzymatic assays for aminoglycosides with kanamycin 6'-acetyltransferase.

    Weber, A; Smith, A L; Opheim, K E

    1985-01-01

    To facilitate the rapid and accurate quantitation of parenterally administered aminoglycosides, we defined the optimum conditions (pH, duration of incubation, and cofactor concentrations) to permit radioenzymatic assays with kanamycin acetyltransferase. The accuracy in quantitating tobramycin, netilmicin, kanamycin, and amikacin at concentrations in the therapeutic range was greater than 90%, with a mean recovery of 102.8%. The mean of the interassay coefficient of variation was 7.8%. Typical...

  5. Structure of Patt1 human proapoptotic histone acetyltransferase

    Jędrzejewski, Roch Paweł; Kaźmierkiewicz, Rajmund

    2013-01-01

    The results of modeling of a novel human histone acetyltransferase Patt1 are presented here. This protein belongs to the GNAT GCN5 family and shows proapoptotic activity in human hepatocellular carcinoma cells. Patt1 is an attractive therapeutic target. The sequence analysis, fold recognition predictions and homology modeling of Patt1 protein structure were performed. N- and C- termini of Patt1 were unstructured. Central part revealed classical GNAT fold–central 7-stranded beta sheet core sur...

  6. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Yonggang Wang; Xiao Miao; Yucheng Liu; Fengsheng Li; Quan Liu; Jian Sun; Lu Cai

    2014-01-01

    Cardiovascular disease (CVD) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs) and deacetylases (HDACs) are reg...

  7. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatC (Y38F mutant) are reported. The crystals belong to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source

  8. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30II, a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30II, a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30II-dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30II-mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30II-mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30II-mediated LTR repression. Collectively, our data indicate that HTLV-1 p30II modulates viral gene expression in a cooperative manner with p300-mediated acetylation

  9. Crystal Structures of Murine Carnitine Acetyltransferase in Ternary Complexes with Its Substrates

    Hsiao,Y.; Jogl, G.; Tong, L.

    2006-01-01

    Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.

  10. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: Dihydrolipoamide acetyltransferase

    Primary biliary cirrhosis is a chronic, destructive autoimmune liver disease of humans. Patient sera are characterized by a high frequency of autoantibodies to a Mr 70,000 mitochondrial antigen a component of the M2 antigen complex. The authors have identified a human cDNA clone encoding the complete amino acid sequence of this autoantigen. The predicted structure has significant similarity with the dihydrolipoamide acetyltransferase of the Escherichia coli pyruvate dehydrogenase multienzyme complex. The human sequence preserves the Glu-Thr-Asp-Lys-Ala motif of the lipoyl-binding site and has two potential binding sites. Expressed fragments of the cDNA react strongly with sera from patients with primary biliary cirrhosis but not with sera from patients with autoimmune chronic active hepatitis or sera from healthy subjects

  11. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase.

    Tao, Weixin; Lee, Myung Hwan; Yoon, Mi-Young; Kim, Jin-Cheol; Malhotra, Shweta; Wu, Jing; Hwang, Eul Chul; Lee, Seon-Woo

    2011-12-01

    Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria. PMID:22210605

  12. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.

    Poulios, Stylianos; Vlachonasios, Konstantinos E

    2016-02-01

    GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling. PMID:26596766

  13. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.

    Marc, F; Weigel, P; Legrain, C; Almeras, Y; Santrot, M; Glansdorff, N; Sakanyan, V

    2000-08-01

    The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences. PMID:10931207

  14. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis

    Zhou Dao-Xiu

    2008-11-01

    Full Text Available Abstract Background Histone acetyltransferases (HATs play critical roles in the regulation of chromatin structure and gene expression. Arabidopsis genome contains 12 HAT genes, but the biological functions of many of them are still unknown. In this work, we studied the evolutionary relationship and cellular functions of the two Arabidopsis HAT genes homologous to the MYST family members. Results An extensive phylogenetic analysis of 105 MYST proteins revealed that they can be divided into 5 classes, each of which contains a specific combination of protein modules. The two Arabidopsis MYST proteins, HAM1 and HAM2, belong to a "green clade", clearly separated from other families of HATs. Using a reverse genetic approach, we show that HAM1 and HAM2 are a functionally redundant pair of genes, as single Arabidopsis ham1 and ham2 mutants displayed a wild-type phenotype, while no double mutant seedling could be recovered. Genetic analysis and cytological study revealed that ham1ham2 double mutation induced severe defects in the formation of male and female gametophyte, resulting in an arrest of mitotic cell cycle at early stages of gametogenesis. RT-PCR experiments and the analysis of transgenic plants expressing the GUS reporter gene under the HAM1 or the HAM2 promoter showed that both genes displayed an overlapping expression pattern, mainly in growing organs such as shoots and flower buds. Conclusion The work presented here reveals novel properties for MYST HATs in Arabidopsis. In addition to providing an evolutionary relationship of this large protein family, we show the evidence of a link between MYST and gamete formation as previously suggested in mammalian cells. A possible function of the Arabidopsis MYST protein-mediated histone acetylation during cell division is suggested.

  15. Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus

    Cocaign, Angélique; Kubiak, Xavier Jean Philippe; Xu, Ximing;

    2014-01-01

    functional characterization of an arylamine N-acetyltransferase (NAT) from M. abscessus [(MYCAB)NAT1] are reported. This novel prokaryotic NAT displays significant N-acetyltransferase activity towards aromatic substrates, including antibiotics such as isoniazid and p-aminosalicylate. The enzyme is...

  16. Rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase

    We present a rapid, sensitive enzymatic assay for chloramphenicol acetyltransferase (CAT) that does not require chromatography, HPLC, or autoradiography. The assay is based on the use of an inexpensive substrate, tritiated acetate, instead of [14C]chloramphenicol. The method is adapted from one originally used by de Crombrugghe et al. and by Shaw, but with simplifications appropriate for routine use. In our hands, the method is as sensitive as the customary thin-layer chromatography assay and is far more efficient for the performance of many assays, both in terms of labor and expense

  17. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis

    Lopes da Rosa, Jessica; Boyartchuk, Victor L.; Zhu, Lihua Julie; Kaufman, Paul D.

    2010-01-01

    Candida albicans is a ubiquitous opportunistic pathogen that is the most prevalent cause of hospital-acquired fungal infections. In mammalian hosts, C. albicans is engulfed by phagocytes that attack the pathogen with DNA-damaging reactive oxygen species (ROS). Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 is important for yeast model organisms to survive DNA damage and maintain genome integrity. To assess the importance of Rtt109 for C. al...

  18. Connexin mutants and cataracts

    EricCBeyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  19. Effect of co-substrate on production of poly-β- hydroxybutyrate (PHB and copolymer PHBV from newly identified mutant Rhodobacter sphaeroides U7 cultivated under aerobic-dark condition

    Kemarajt Kemavongse

    2007-07-01

    Full Text Available Photosynthetic bacterial mutant strain U7 was identified using both classical and molecular (16S rDNA techniques to be Rhodobacter sphaeroides. The glutamate-acetate (GA medium containing sodium acetate and sodium glutamate as carbon and nitrogen sources was used for production of poly-β-hydroxybutyrate (PHB from R. sphaeroides U7 cultivated under aerobic-dark condition (200 rpm at 37oC. Effect of auxiliary carbon sources (propionate and valerate and concentrations (molar ratio of 40/0, 40/20, 40/40 and 40/80 on copolymer production were studied. Both combinations of acetate with valerate and acetate with propionate were found to induce the accumulation of poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV within the cell. Acetate with propionate in the molar ratio of 40/40 gave the highest poly-β-hydroxyalkanoates (PHA content (77.68%, followed by acetate with valerate at the same molar ratio (77.42%. Although their polymer contents were similar, the presence of 40 mM valerate gave more than 4 times higher hydroxyvalerate (HV fraction (84.77% than in the presence of 40 mM propionate (19.12% HV fraction.

  20. An extra early mutant of pigeonpea

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M2 to M4 generation. In the M4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  1. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine.

    de la Fuente, A; Martín, J F; Rodríguez-García, A; Liras, P

    2004-10-01

    The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and slightly reduced the formation of clavulanic acid under standard culture conditions. However, the oat2 mutant produced more clavulanic acid than the parental strain in cultures supplemented with high levels (above 1 mM) of arginine. The purified S. clavuligerus ArgR protein bound the arginine box in the oat2 promoter, and the expression of oat2 was higher in mutants with a disruption in argR (arginine-deregulated), confirming that the Arg boxes of oat2 are functional in vivo. Our results suggest that the Oat2 protein or one of its reaction products has a regulatory role that modulates clavulanic acid biosynthesis in response to high arginine concentrations. PMID:15375131

  2. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation.

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M

    2003-01-15

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. PMID:12358600

  3. Enzyme kinetics and inhibition of histone acetyltransferase KAT8.

    Wapenaar, Hannah; van der Wouden, Petra E; Groves, Matthew R; Rotili, Dante; Mai, Antonello; Dekker, Frank J

    2015-11-13

    Lysine acetyltransferase 8 (KAT8) is a histone acetyltransferase (HAT) responsible for acetylating lysine 16 on histone H4 (H4K16) and plays a role in cell cycle progression as well as acetylation of the tumor suppressor protein p53. Further studies on its biological function and drug discovery initiatives will benefit from the development of small molecule inhibitors for this enzyme. As a first step towards this aim we investigated the enzyme kinetics of this bi-substrate enzyme. The kinetic experiments indicate a ping-pong mechanism in which the enzyme binds Ac-CoA first, followed by binding of the histone substrate. This mechanism is supported by affinity measurements of both substrates using isothermal titration calorimetry (ITC). Using this information, the KAT8 inhibition of a focused compound collection around the non-selective HAT inhibitor anacardic acid has been investigated. Kinetic studies with anacardic acid were performed, based on which a model for the catalytic activity of KAT8 and the inhibitory action of anacardic acid (AA) was proposed. This enabled the calculation of the inhibition constant Ki of anacardic acid derivatives using an adaptation of the Cheng-Prusoff equation. The results described in this study give insight into the catalytic mechanism of KAT8 and present the first well-characterized small-molecule inhibitors for this HAT. PMID:26505788

  4. Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes

    Baoqing Dun; Xujing Wang; Wei Lu; Ming Chen; Wei Zhang; Shuzhen Ping; Zhixing Wang; Baoming Zhang; Min Lin

    2014-01-01

    The widely used herbicide glyphosate targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Glyphosate acetyltransferase (GAT) effectively detoxifies glyphosate by N-acetylation. With the aim of identifying a new strategy for development of glyphosate-tolerant crops, the plant expression vector pG2-GAT harboring gat and G2-aroA (encoding EPSPS) has been transformed into tobacco (Nicotiana tabacum) to develop novel plants with higher tolerance to glyphosate. Results from Southern and Wes...

  5. Downregulation of the Polyamine Regulator Spermidine/Spermine N1-Acetyltransferase by Epstein-Barr Virus in a Burkitt's Lymphoma Cell Line

    Shi, Mingxia; Gan, Yan-Jun; Davis, Timothy O.; Scott, Rona S.

    2013-01-01

    Transition of Akata Burkitt's lymphoma (BL) from a malignant to nonmalignant phenotype upon loss of Epstein-Barr virus (EBV) is evidence for a viral contribution to tumorigenesis despite the tight restriction of EBV gene expression in BL. Examination of global cellular gene expression in Akata subclones that retained or lost EBV identified spermidine/spermine N1-acetyltransferase (SAT1), an inducible enzyme whose catabolism of polyamines affects both apoptosis and cell growth, as one of a lim...

  6. Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila

    Kubiak, Xavier Jean Philippe; Dervins-Ravault, Delphine; Pluvinage, Benjamin;

    2012-01-01

    molecular and functional levels. In the present paper we report the identification and biochemical and functional characterization of a unique acetyltransferase that metabolizes aromatic amine chemicals in three characterized clinical strains of L. pneumophila (Paris, Lens and Philadelphia). Strain......-specific sequence variations in this enzyme, an atypical member of the arylamine N-acetyltransferase family (EC 2.3.1.5), produce enzymatic variants with different structural and catalytic properties. Functional inactivation and complementation experiments showed that this acetyltransferase allows L. pneumophila to...

  7. Choline acetyltransferase-containing neurons in the human parietal neocortex

    V Benagiano

    2009-06-01

    Full Text Available A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT, the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.

  8. Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans

    Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2 A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains-a core α/β domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to α/β hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer

  9. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  10. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

    The crystal structure of a M. loti arylamine N-acetyltransferase 1 has been determined at 2.0 Å resolution. The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc)2, 16% PEG 3350, 0.1 M Tris–HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 Å was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P212121, with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 Å. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site

  11. Allele Specific p53 Mutant Reactivation

    Yu, Xin; Vazquez, Alexei; Levine, Arnold J.; Carpizo, Darren R.

    2012-01-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tu...

  12. Physiology: Kinetics of Acetyl Coenzyme A: Arylamine N-Acetyltransferase from Human Cumulus Cells

    Chang, Chi-Chen; Hsieh, Yao-Yuan; CHUNG, JING-GUNG; Tsai, Horng-Der; Tsai, Chang-Hai

    2001-01-01

    Purpose:N-acetyltransferase (NAT) activity is involved in the detoxification of exogenous amines. We aimed to evaluate the kinetics of acetyl coenzyme A (AcCoA): arylamine NAT for human cumulus cells.

  13. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  14. Inflammatory cytokines suppress arylamine N-acetyltransferase 1 in cholangiocarcinoma cells

    Buranrat, Benjaporn; Prawan, Auemduan; Sripa, Banchob; Kukongviriyapan, Veerapol

    2007-01-01

    AIM: To evaluate the effect of inflammatory cytokines on arylamine N-acetyltransferase 1 (NAT1), which is a phase-II enzyme involved in the biotransformation of aromatic and heterocyclic amines found in food, drugs and the environment.

  15. Leukemia Inhibitory Factor Decreases the Arylamine N-Acetyltransferase Activity in Human Cumulus Granulosa Cells

    Chang, Chi-Chen; Hsieh, Yao-Yuan; CHUNG, JING-GUNG; Tsai, Horng-Der; Tsai, Chang-Hai

    2001-01-01

    Purpose: To evaluate the activities of acetyl coenzyme A (AcCoA): arylamine N-acetyltransferase (NAT) of intact cumulus granulosa cells and the role of leukemia inhibitory factor (LIF) upon their NAT activities.

  16. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. PMID:26245695

  17. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels

    Timmers Marc HTH

    2010-12-01

    Full Text Available Abstract Background The addition of an acetyl group to protein N-termini is a widespread co-translational modification. NatB is one of the main N-acetyltransferases that targets a subset of proteins possessing an N-terminal methionine, but so far only a handful of substrates have been reported. Using a yeast nat3Δ strain, deficient for the catalytic subunit of NatB, we employed a quantitative proteomics strategy to identify NatB substrates and to characterize downstream effects in nat3Δ. Results Comparing by proteomics WT and nat3Δ strains, using metabolic 15N isotope labeling, we confidently identified 59 NatB substrates, out of a total of 756 detected acetylated protein N-termini. We acquired in-depth proteome wide measurements of expression levels of about 2580 proteins. Most remarkably, NatB deletion led to a very significant change in protein phosphorylation. Conclusions Protein expression levels change only marginally in between WT and nat3Δ. A comparison of the detected NatB substrates with their orthologous revealed remarkably little conservation throughout the phylogenetic tree. We further present evidence of post-translational N-acetylation on protein variants at non-annotated N-termini. Moreover, analysis of downstream effects in nat3Δ revealed elevated protein phosphorylation levels whereby the kinase Snf1p is likely a key element in this process.

  18. Comparison of Protein Acetyltransferase Action of CRTAase with the Prototypes of HAT

    Prija Ponnan

    2014-01-01

    Full Text Available Our laboratory is credited for the discovery of enzymatic acetylation of protein, a phenomenon unknown till we identified an enzyme termed acetoxy drug: protein transacetylase (TAase, catalyzing the transfer of acetyl group from polyphenolic acetates to receptor proteins (RP. Later, TAase was identified as calreticulin (CR, an endoplasmic reticulum luminal protein. CR was termed calreticulin transacetylase (CRTAase. Our persistent study revealed that CR like other families of histone acetyltransferases (HATs such as p300, Rtt109, PCAF, and ESA1, undergoes autoacetylation. The autoacetylated CR was characterized as a stable intermediate in CRTAase catalyzed protein acetylation, and similar was the case with ESA1. The autoacetylation of CR like that of HATs was found to enhance protein-protein interaction. CR like HAT-1, CBP, and p300 mediated the acylation of RP utilizing acetyl CoA and propionyl CoA as the substrates. The similarities between CRTAase and HATs in mediating protein acylation are highlighted in this review.

  19. Comparative studies of genome-wide maps of nucleosomes between deletion mutants of elp3 and hos2 genes of Saccharomyces cerevisiae.

    Takashi Matsumoto

    Full Text Available In order to elucidate the influence of histone acetylation upon nucleosomal DNA length and nucleosome position, we compared nucleosome maps of the following three yeast strains; strain BY4741 (control, the elp3 (one of histone acetyltransferase genes deletion mutant, and the hos2 (one of histone deactylase genes deletion mutant of Saccharomyces cerevisiae. We sequenced mononucleosomal DNA fragments after treatment with micrococcal nuclease. After mapping the DNA fragments to the genome, we identified the nucleosome positions. We showed that the distributions of the nucleosomal DNA lengths of the control and the hos2 disruptant were similar. On the other hand, the distribution of the nucleosomal DNA lengths of the elp3 disruptant shifted toward shorter than that of the control. It strongly suggests that inhibition of Elp3-induced histone acetylation causes the nucleosomal DNA length reduction. Next, we compared the profiles of nucleosome mapping numbers in gene promoter regions between the control and the disruptant. We detected 24 genes with low conservation level of nucleosome positions in promoters between the control and the elp3 disruptant as well as between the control and the hos2 disruptant. It indicates that both Elp3-induced acetylation and Hos2-induced deacetylation influence the nucleosome positions in the promoters of those 24 genes. Interestingly, in 19 of the 24 genes, the profiles of nucleosome mapping numbers were similar between the two disruptants.

  20. Identification and Functional Characterization of Arylamine N-Acetyltransferases in Eubacteria: Evidence for Highly Selective Acetylation of 5-Aminosalicylic Acid

    Deloménie, Claudine; Fouix, Sylvaine; Longuemaux, Sandrine; Brahimi, Naïma; Bizet, Chantal; Picard, Bertrand; Denamur, Erick; Dupret, Jean-Marie

    2001-01-01

    Arylamine N-acetyltransferase activity has been described in various bacterial species. Bacterial N-acetyltransferases, including those from bacteria of the gut flora, may be involved in the metabolism of xenobiotics, thereby exerting physiopathological effects. We characterized these enzymes further by steady-state kinetics, time-dependent inhibition, and DNA hybridization in 40 species, mostly from the human intestinal microflora. We report for the first time N-acetyltransferase activity in...

  1. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis.

    Ala' Aldeen, D A; Westphal, A H; De Kok, A; Weston, V; Atta, M S; Baldwin, T J; Bartley, J; Borriello, S P

    1996-12-01

    A lambdaZap-II expression library of Neisseria meningitidis was screened with a rabbit polyclonal antiserum (R-70) raised against c. 70-kDa proteins purified from outer membrane vesicles by elution from preparative SDS-polyacrylamide gels. Selected clones were isolated, further purified, and their recombinant pBluescript SKII plasmids were excised. The cloned DNA insert was sequenced from positive clones and analysed. Four open reading frames (ORFs) were identified, three of which showed a high degree of homology with the pyruvate dehydrogenase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase complex (PDHC) of a number of prokaryotic and eukaryotic species. Sequence analysis indicated that the meningococcal E2p (Men-E2p) contains two N-terminal lipoyl domains, an E1/E3 binding domain and a catalytic domain. The domains are separated by hinge regions rich in alanine, proline and charged residues. Another lipoyl domain with high sequence similarity to the Men-E2p lipoyl domain was found at the N-terminal of the E3 component. A further ORF, coding for a 16.5-kDa protein, was found between the ORFs encoding the E2p and E3 components. The identity and functional characteristics of the expressed and purified heterologous Men-E2p were confirmed as dihydrolipoyl acetyltransferase by immunological and biochemical assays. N-terminal amino-acid analysis confirmed the sequence of the DNA-derived mature protein. Purified Men-E2p reacted with monospecific antisera raised against the whole E2p molecule and against the lipoyl domain of the Azotobacter vinelandii E2p. Conversely, rabbit antiserum raised against Men-E2p reacted with protein extracts of A. vinelandii, Escherichia coli and N. gonorrhoeae and with the lipoyl and catalytic domains of E2p obtained by limited proteolysis. In contrast, the original R-70 antiserum reacted almost exclusively with the lipoyl domain, indicating the strong immunogenicity

  2. Serum Aminoglycoside Assay by Enzyme-Mediated Immunoassay (EMIT): Correlation with Radioimmunoassay, Fluoroimmunoassay, and Acetyltransferase and Microbiological Assays

    White, L O; Scammell, L. M.; Reeves, D S

    1981-01-01

    Enzyme-mediated immunoassay (EMIT) serum aminoglycoside assay results were accurate and precise and correlated well with radioimmunoassay, fluoroimmunoassay, and acetyltransferase and microbiological assay determinations.

  3. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells

    Gorman, C.M.; Moffat, L.F.; Howard, B.H.

    1982-09-01

    The authors constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV 40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. They also constructed a recombinant, pSVO-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

  4. Carnitine Acetyltransferase Mitigates Metabolic Inertia and Muscle Fatigue during Exercise.

    Seiler, Sarah E; Koves, Timothy R; Gooding, Jessica R; Wong, Kari E; Stevens, Robert D; Ilkayeva, Olga R; Wittmann, April H; DeBalsi, Karen L; Davies, Michael N; Lindeboom, Lucas; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B; Muoio, Deborah M

    2015-07-01

    Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance. PMID:26154055

  5. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Yonggang Wang

    2014-01-01

    Full Text Available Cardiovascular disease (CVD remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs and deacetylases (HDACs are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.

  6. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    Su, Jiaming; Wang, Fei; Cai, Yong; Jin, Jingji

    2016-01-01

    Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways. PMID:26784169

  7. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis

    Jiaming Su

    2016-01-01

    Full Text Available Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60 family of histone acetyltransferases (HATs. As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16; however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8, suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.

  8. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases.

    Chen, Dongrong; Murchie, Alastair I H

    2014-10-01

    The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches. PMID:24631585

  9. Rational design and validation of a Tip60 histone acetyltransferase inhibitor

    Gao, Chunxia; Bourke, Emer; Scobie, Martin; Famme, Melina Arcos; Koolmeister, Tobias; Helleday, Thomas; Eriksson, Leif A.; Lowndes, Noel F.; Brown, James A. L.

    2014-06-01

    Histone acetylation is required for many aspects of gene regulation, genome maintenance and metabolism and dysfunctional acetylation is implicated in numerous diseases, including cancer. Acetylation is regulated by histone acetyltransferases (HATs) and histone deacetylases and currently, few general HAT inhibitors have been described. We identified the HAT Tip60 as an excellent candidate for targeted drug development, as Tip60 is a key mediator of the DNA damage response and transcriptional co-activator. Our modeling of Tip60 indicated that the active binding pocket possesses opposite charges at each end, with the positive charges attributed to two specific side chains. We used structure based drug design to develop a novel Tip60 inhibitor, TH1834, to fit this specific pocket. We demonstrate that TH1834 significantly inhibits Tip60 activity in vitro and treating cells with TH1834 results in apoptosis and increased unrepaired DNA damage (following ionizing radiation treatment) in breast cancer but not control cell lines. Furthermore, TH1834 did not affect the activity of related HAT MOF, as indicated by H4K16Ac, demonstrating specificity. The modeling and validation of the small molecule inhibitor TH1834 represents a first step towards developing additional specific, targeted inhibitors of Tip60 that may lead to further improvements in the treatment of breast cancer.

  10. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    Linya You

    2015-03-01

    Full Text Available Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1 is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.

  11. MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML.

    Sauer, Tim; Arteaga, Maria Francisca; Isken, Fabienne; Rohde, Christian; Hebestreit, Katja; Mikesch, Jan-Henrik; Stelljes, Matthias; Cui, Chunhong; Zhou, Fengbiao; Göllner, Stefanie; Bäumer, Nicole; Köhler, Gabriele; Krug, Utz; Thiede, Christian; Ehninger, Gerhard; Edemir, Bayram; Schlenke, Peter; Berdel, Wolfgang E; Dugas, Martin; Müller-Tidow, Carsten

    2015-09-01

    Chromatin-modifying enzymes are frequently altered in acute myeloid leukemia (AML). In the current study, we identified MYST2, a core histone acetyltransferase, to be suppressed in blast cells from AML patients compared with nonmalignant hematopoietic progenitor cells. Functionally, loss of MYST2 accelerated leukemic growth and colony formation, while forced expression of MYST2 induced H4K5 acetylation (H4K5Ac) and suppressed hematopoietic progenitor cell growth. Consistently, global H4K5Ac levels were frequently decreased in AML blasts. Low levels of H4K5Ac were most prominent in patients with complex karyotype AML and were associated with inferior overall survival in univariate but not multivariate analysis. ChIP-seq experiments in primary AML patients' blasts revealed widespread H4K5Ac deregulation, most prominent at gene promoters. Taken together, MYST2 is a repressed growth suppressor in AML mediating reduced acetylation of histone 4 at residue 5 and is associated with inferior AML patient survival. PMID:26072331

  12. Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors.

    Sorum, Alexander W; Shrimp, Jonathan H; Roberts, Allison M; Montgomery, David C; Tiwari, Neil K; Lal-Nag, Madhu; Simeonov, Anton; Jadhav, Ajit; Meier, Jordan L

    2016-03-18

    Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluidic mobility shift platform for the discovery and characterization of small molecule KAT inhibitors. Novel fluorescent peptide substrates were developed for four well-known KAT enzymes (p300, Crebbp, Morf, and Gcn5). Enzyme-catalyzed acetylation alters the electrophoretic mobility of these peptides in a microfluidic chip, allowing facile and direct monitoring of KAT activity. A pilot screen was used to demonstrate the utility of microfluidic mobility shift profiling to identify known and novel modulators of KAT activity. Real-time kinetic monitoring of KAT activity revealed that garcinol, a natural product KAT inhibitor used in cellular studies, exhibits time-dependent and detergent-sensitive inhibition, consistent with an aggregation-based mechanism. In contrast, the cell-permeable bisubstrate inhibitor Tat-CoA exhibited potent and time-independent KAT inhibition, highlighting its potential utility as a cellular inhibitor of KAT activity. These studies define microfluidic mobility shift profiling as a powerful platform for the discovery and characterization of small molecule inhibitors of KAT activity, and provide mechanistic insights potentially important for the application of KAT inhibitors in cellular contexts. PMID:26428393

  13. Insight into the secondary structure of chloramphenicol acetyltransferase type I — computer analysis and FT-IR spectroscopic characterization of the protein structure

    Andreeva, A. E.; Karamancheva, I. R.

    2001-05-01

    The secondary structure of chloramphenicol O-acetyltransferase type I (CAT I) and an N-terminal deleted mutant has been studied by Fourier transform infrared spectroscopy. The analysis of the amide I band of different samples (KBr, hydrated films and buffer solution) by Fourier self-deconvolution followed by a curve fitting was performed. The spectroscopic data have been utilized to determine the α-helix and β-structure % contents, which depend strongly on the protein sample preparation. Furthermore, the secondary structure of the enzyme-inhibitor Crystal Violet complex was analyzed. The observed difference in the secondary structural contents suggests that some conformational changes of the enzyme are induced by the inhibitor after binding.

  14. N-acetyltransferase 2 (NAT2) gene polymorphism as a predisposing factor for phenytoin intoxication in tuberculous meningitis or tuberculoma patients having seizures - A pilot study

    Adole, Prashant S.; Kharbanda, Parampreet S.; Sharma, Sadhna

    2016-01-01

    Background & objectives: Simultaneous administration of phenytoin and isoniazid (INH) in tuberculous meningitis (TBM) or tuberculoma patients with seizures results in higher plasma phenytoin level and thus phenytoin intoxication. N-acetyltransferase 2 (NAT2) enzyme catalyses two acetylation reactions in INH metabolism and NAT2 gene polymorphism leads to slow and rapid acetylators. The present study was aimed to evaluate the effect of allelic variants of N-acetyltransferase 2 (NAT2) gene as a predisposing factor for phenytoin toxicity in patients with TBM or tuberculoma having seizures, and taking INH and phenytoin simultaneously. Methods: Sixty patients with TBM or tuberculoma with seizures and taking INH and phenytoin simultaneously for a minimum period of seven days were included in study. Plasma phenytoin was measured by high performance liquid chromatography. NAT2 gene polymorphism was studied using restriction fragment length polymorphism and allele specific PCR. Results: The patients were grouped into those having phenytoin intoxication and those with normal phenytoin level, and also classified as rapid or slow acetylators by NAT2 genotyping. Genotypic analysis showed that of the seven SNPs (single nucleotide polymorphisms) of NAT2 gene studied, six mutations were found to be associated with phenytoin intoxication. For rs1041983 (C282T), rs1799929 (C481T), rs1799931 (G857A), rs1799930 (G590A), rs1208 (A803G) and rs1801280 (T341C) allelic variants, the proportion of homozygous mutant was higher in phenytoin intoxicated group than in phenytoin non-intoxicated group. Interpretation & conclusions: Homozygous mutant allele of NAT2 gene at 481site may act as a predisposing factor for phenytoin intoxication among TBM or tuberculoma patients having seizures. PMID:27488001

  15. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  16. The Spt-Ada-Gcn5 Acetyltransferase (SAGA complex in Aspergillus nidulans.

    Paraskevi Georgakopoulos

    Full Text Available A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.

  17. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice.

    Fei Zheng

    Full Text Available Autism spectrum disorders (ASDs are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP cause Rubinstein-Taybi Syndrome (RTS, a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300 as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1 domain (CBPΔCH1/ΔCH1 have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.

  18. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice.

    Zheng, Fei; Kasper, Lawryn H; Bedford, David C; Lerach, Stephanie; Teubner, Brett J W; Brindle, Paul K

    2016-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations. PMID:26730956

  19. Mutation of the CH1 Domain in the Histone Acetyltransferase CREBBP Results in Autism-Relevant Behaviors in Mice

    Zheng, Fei; Kasper, Lawryn H.; Bedford, David C.; Lerach, Stephanie; Teubner, Brett J. W.; Brindle, Paul K.

    2016-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations. PMID:26730956

  20. Kinetic characterisation of arylamine N-acetyltransferase from Pseudomonas aeruginosa

    Sim Edith

    2007-03-01

    Full Text Available Abstract Background Arylamine N-acetyltransferases (NATs are important drug- and carcinogen-metabolising enzymes that catalyse the transfer of an acetyl group from a donor, such as acetyl coenzyme A, to an aromatic or heterocyclic amine, hydrazine, hydrazide or N-hydroxylamine acceptor substrate. NATs are found in eukaryotes and prokaryotes, and they may also have an endogenous function in addition to drug metabolism. For example, NAT from Mycobacterium tuberculosis has been proposed to have a role in cell wall lipid biosynthesis, and is therefore of interest as a potential drug target. To date there have been no studies investigating the kinetic mechanism of a bacterial NAT enzyme. Results We have determined that NAT from Pseudomonas aeruginosa, which has been described as a model for NAT from M. tuberculosis, follows a Ping Pong Bi Bi kinetic mechanism. We also describe substrate inhibition by 5-aminosalicylic acid, in which the substrate binds both to the free form of the enzyme and the acetyl coenzyme A-enzyme complex in non-productive reaction pathways. The true kinetic parameters for the NAT-catalysed acetylation of 5-aminosalicylic acid with acetyl coenzyme A as the co-factor have been established, validating earlier approximations. Conclusion This is the first reported study investigating the kinetic mechanism of a bacterial NAT enzyme. Additionally, the methods used herein can be applied to investigations of the interactions of NAT enzymes with new chemical entities which are NAT ligands. This is likely to be useful in the design of novel potential anti-tubercular agents.

  1. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa).

    Byeon, Yeong; Lee, Hyoung Yool; Back, Kyoungwhan

    2016-09-01

    The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat-knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232-fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event. PMID:27121038

  2. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense

    Freeman, John L; Persans, Michael W.; Nieman, Ken; Salt, David E.

    2005-01-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproducti...

  3. Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation.

    M Rajasekaran

    Full Text Available BACKGROUND: Arylamine N-acetyltransferase 2 (NAT2 is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. METHODOLOGY/PRINCIPAL FINDINGS: We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. CONCLUSIONS/SIGNIFICANCE: Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants

  4. Over-expression, purification, and characterization of recombinant human arylamine N-acetyltransferase 1.

    Wang, Haiqing; Vath, Gregory M; Kawamura, Akane; Bates, Caleb A; Sim, Edith; Hanna, Patrick E; Wagner, Carston R

    2005-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) has been overexpressed in E. coli as a mutant dihydrofolic acid reductase (DHFR) fusion protein with a thrombin sensitive linker. An initial DEAE anion-exchange chromatography resulted in partial purification of the fusion protein. The fusion protein was cleaved with thrombin, and human rNAT1 was purified with a second DEAE column. A total of 8 mg of human rNAT1 from 2 1 of cell culture was purified to homogeneity with this methodology. Arylamine substrate specificities were determined for human rNATI and hamster rNAT2. With both NATs, the second order rate constants (k(cat)/ Kmb) for p-aminobenzoic acid (PABA) and 2-aminofluorene (2-AF) were several thousand-fold higher than those for procainamide (PA), consistent with the expected substrate specificities of the enzymes. However, p-aminosalicylic acid (PAS), previously reported to be a human NAT1 and hamster NAT2 selective substrate, exhibits 20-fold higher specificity for hamster rNAT2 (k(cat)/Kmb 3410 microM(-1) s(-1)) than for human rNAT1 (k(cat)/Kmb 169.4 microM(-1) s(-1)). p-aminobenzoyl-glutamic acid (pABglu) was acetylated 10-fold more efficiently by human rNAT1 than by hamster rNAT2. Inhibition studies of human rNAT1 and hamster rNAT2 revealed that folic acid and methotrexate (MTX) are competitive inhibitors of both the unacetylated and acetylated forms of the enzymes, with K(I) values in 50 - 300 micro range. Dihydrofolic acid (DHF) was a much poorer inhibitor of human rNAT1 than of hamster rNAT2. The combined results demonstrate that human rNAT1 and hamster rNAT2 have similar but distinct kinetic properties with certain substrates, and suggest that folic acid, at least in the non-polyglutamate form, may not have an effect on human NAT1 activity in vivo. PMID:16003948

  5. Cigarette Smoking, N-Acetyltransferase 2 Acetylation Status, and Bladder Cancer Risk

    Marcus, P.M.; Hayes, R.B.; Vineis, P.;

    2000-01-01

    Tobacco use is an established cause of bladder cancer. The ability to detoxify aromatic amines, which are present in tobacco and are potent bladder carcinogens, is compromised in persons with the N-acetyltransferase 2 slow acetylation polymorphism. The relationship of cigarette smoking with bladder...... interaction between smoking and N-acetyltransferase 2 slow acetylation (OR, 1.3; 95% confidence interval, 1.0-1.6) that was somewhat stronger when analyses were restricted to studies conducted in Europe (OR, 1.5; confidence interval, 1.1-1.9), a pooling that included nearly 80% of the collected data. Using...

  6. Crystallization and preliminary X-ray diffraction analysis of PAT, an acetyltransferase from Sulfolobus solfataricus

    PAT, an acetyltransferase from the archaeon S. solfataricus that specifically acetylates the chromatin protein Alba, was expressed, purified and crystallized. PAT is an acetyltransferase from the archaeon Sulfolobus solfataricus that specifically acetylates the chromatin protein Alba. The enzyme was expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique. Native diffraction data were collected to 1.70 Å resolution on the BL13C1 beamline of NSRRC from a flash-frozen crystal at 100 K. The crystals belonged to space group P212121, with unit-cell parameters a = 44.30, b = 46.59, c = 68.39 Å

  7. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    Maes, Dominique; Crabeel, Marjolaine; Van de Weerdt, Cécile; Martial, Joseph; Peeters, Eveline; Charlier, Daniël; Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid

    2006-01-01

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques.

  8. Genetic Variation at the N-acetyltransferase (NAT) Genes in Global Populations

    Functional variability at the N-acetyltransferase (NAT) genes is associated with adverse drug reactions and cancer susceptibility in humans. Previous studies of small sets of ethnic groups have indicated that the NAT genes have high levels of amino acid variation that differ in f...

  9. Unintended Consequences: High phosphinothricin acetyltransferase activity causes reduced fitness in barley

    Selectable markers used in plant transformation, such as phosphinothricin acetyltransferase (PAT) derived from the bar gene, have been chosen for selection efficacy as well as for the absence of pleiotropic effects. Recent research has suggested that expression of bar in Arabidopsis affects the tran...

  10. Chloramphenicol acetyltransferase may confer resistance to fusidic acid by sequestering the drug.

    Proctor, G N; McKell, J.; Rownd, R H

    1983-01-01

    Enterobacterial chloramphenicol acetyltransferase bound fusidic acid with high affinity, but did not acetylate the drug at an experimentally detectable rate. The enzyme may therefore confer resistance to fusidic acid by sequestering the drug and thereby preventing the drug from binding to translational elongation factor G.

  11. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  12. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone

    Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase (OASS). Formation of the cysteine regulatory complex (CRC) is a critical biochem...

  13. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure

    Thangavelu, Bharani; Pavlovsky, Alexander G.; Viola, Ronald

    2014-01-01

    The structure of homoserine O-acetyltransferase (HTA) from the human pathogen Staphylococcus aureus has been determined. Despite a similar overall fold and active site architecture to other α/β-hydrolases, this more compact HTA structure has a more narrow access to the active site than can confer important specificity differences.

  14. High Persister Mutants in Mycobacterium tuberculosis

    Torrey, Heather L.; Keren, Iris; Via, Laura E.; Lee, Jong Seok; Lewis, Kim

    2016-01-01

    Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip) mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection. PMID:27176494

  15. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.

    Nishimura, Akira; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2010-09-01

    Saccharomyces cerevisiaeSigma1278b has the MPR1 gene encoding the N-acetyltransferase Mpr1 that acetylates the proline metabolism intermediate Delta(1)-pyrroline-5-carboxylate (P5C)/glutamate-gamma-semialdehyde (GSA) in vitro. In addition, Mpr1 protects cells from various oxidative stresses by regulating the levels of intracellular reactive oxygen species (ROS). However, the relationship between P5C/GSA acetylation and antioxidative mechanism involving Mpr1 remains unclear. Here, we report the synthesis of oxidative stress-induced arginine via P5C/GSA acetylation catalyzed by Mpr1. Gene disruption analysis revealed that Mpr1 converts P5C/GSA into N-acetyl-GSA for arginine synthesis in the mitochondria, indicating that Mpr1 mediates the proline and arginine metabolic pathways. More importantly, Mpr1 regulate ROS generation by acetylating toxic P5C/GSA. Under oxidative stress conditions, the transcription of PUT1 encoding the proline oxidase Put1 and MPR1 was strongly induced, and consequently, the arginine content was significantly increased. We also found that two deletion mutants (Deltampr1/2 and Deltaput1) were more sensitive to high-temperature stress than the wild-type strain, but that direct treatment with arginine restored the cell viability of these mutants. These results suggest that Mpr1-dependent arginine synthesis confers stress tolerance. We propose an antioxidative mechanism that is involved in stress-induced arginine synthesis requiring Mpr1 and Put1. PMID:20550582

  16. Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length.

    Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos

    2016-04-01

    Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications. PMID:26935656

  17. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks.

    Yang, Hee-Jeong; Bogomolnaya, Lydia M; Elfenbein, Johanna R; Endicott-Yazdani, Tiana; Reynolds, M Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin; McClelland, Michael; Andrews-Polymenis, Helene

    2016-04-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used bySalmonellato colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence ofSalmonella entericaserotype Typhimurium in chickens. A library of 182S.Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks.STM0580,STM1295,STM1297,STM3612,STM3615, andSTM3734are needed forSalmonellato colonize and persist in chicks and were not previously associated with this ability. One of these key genes,STM1297(selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  18. Productive mutants of niger

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  19. The histone acetyltransferase p300 regulates the expression of pluripotency factors and odontogenic differentiation of human dental pulp cells.

    Tong Wang

    Full Text Available p300 is a well-known histone acetyltransferase (HAT and coactivator that plays vital roles in many physiological processes. Despite extensive research on the involvement of p300 in the regulation of transcription in numerous cell lines, the roles of this protein in regulating pluripotency genes and odontogenic differentiation in human dental pulp cells (HDPCs are poorly understood. To address this issue, we investigated the expression of OCT4, NANOG and SOX2 and the proliferation and odontogenic differentiation capacity of HDPCs following p300 overexpression. We found that p300 overexpression did not overtly affect the ability of HDPCs to proliferate. The overexpression of p300 upregulated the promoter activity and the mRNA and protein expression of NANOG and SOX2. The HAT activity of p300 appeared to partially mediate the regulation of these factors; indeed, when a mutant form of p300 lacking the HAT domain was overexpressed, the promoter activity and expression of NANOG and SOX2 decreased relative to p300 overexpression but was greater than in the control. Furthermore, we demonstrated that the mRNA levels of the odontogenic marker genes dentine matrix protein-1 (DMP-1, dentin sialophosphoprotein (DSPP, dentin sialoprotein (DSP, osteopontin (OPN and osteocalcin (OCN were significantly decreased in HDPCs overexpressing p300 cultured under normal culture conditions and increased in HDPCs inducted to undergo odontogenic differentiation. This finding was further confirmed by measuring levels of alkaline phosphatase (ALP activity and assessing the formation of mineralized nodules. The HAT activity of p300 had no significant effect on odontogenic differentiation. p300 was recruited to the promoter regions of OCN and DSPP and might be acting as a coactivator to increase the acetylation of lysine 9 of histone H3 of OCN and DSPP. Collectively, our results show that p300 plays an important role in regulating the expression of key pluripotency genes in

  20. Spt-Ada-Gcn5-Acetyltransferase (SAGA Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination.

    Rakesh Srivastava

    Full Text Available The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.

  1. Catalytic Mechanism of Perosamine N-Acetyltransferase Revealed by High-Resolution X-ray Crystallographic Studies and Kinetic Analyses

    Thoden, James B.; Reinhardt, Laurie A.; Cook, Paul D.; Menden, Patrick; Cleland, W.W.; Holden, Hazel M. (UW); (Mount Union); (UW-MED)

    2012-09-17

    N-Acetylperosamine is an unusual dideoxysugar found in the O-antigens of some Gram-negative bacteria, including the pathogenic Escherichia coli strain O157:H7. The last step in its biosynthesis is catalyzed by PerB, an N-acetyltransferase belonging to the left-handed {beta}-helix superfamily of proteins. Here we describe a combined structural and functional investigation of PerB from Caulobacter crescentus. For this study, three structures were determined to 1.0 {angstrom} resolution or better: the enzyme in complex with CoA and GDP-perosamine, the protein with bound CoA and GDP-N-acetylperosamine, and the enzyme containing a tetrahedral transition state mimic bound in the active site. Each subunit of the trimeric enzyme folds into two distinct regions. The N-terminal domain is globular and dominated by a six-stranded mainly parallel {beta}-sheet. It provides most of the interactions between the protein and GDP-perosamine. The C-terminal domain consists of a left-handed {beta}-helix, which has nearly seven turns. This region provides the scaffold for CoA binding. On the basis of these high-resolution structures, site-directed mutant proteins were constructed to test the roles of His 141 and Asp 142 in the catalytic mechanism. Kinetic data and pH-rate profiles are indicative of His 141 serving as a general base. In addition, the backbone amide group of Gly 159 provides an oxyanion hole for stabilization of the tetrahedral transition state. The pH-rate profiles are also consistent with the GDP-linked amino sugar substrate entering the active site in its unprotonated form. Finally, for this investigation, we show that PerB can accept GDP-3-deoxyperosamine as an alternative substrate, thus representing the production of a novel trideoxysugar.

  2. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.

    Freeman, John L; Persans, Michael W; Nieman, Ken; Salt, David E

    2005-12-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  3. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells

    Highlights: → Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. → Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. → Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-κB. → Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  4. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  5. Inhibition of Lysine Acetyltransferase KAT3B/p300 Activity by a Naturally Occurring Hydroxynaphthoquinone, Plumbagin*

    Ravindra, Kodihalli C.; Selvi, B. Ruthrotha; Arif, Mohammed; Reddy, B. A. Ashok; Thanuja, Gali R.; Agrawal, Shipra; Pradhan, Suman Kalyan; Nagashayana, Natesh; Dasgupta, Dipak; Tapas K. Kundu

    2009-01-01

    Lysine acetyltransferases (KATs), p300 (KAT3B), and its close homologue CREB-binding protein (KAT3A) are probably the most widely studied KATs with well documented roles in various cellular processes. Hence, the dysfunction of p300 may result in the dysregulation of gene expression leading to the manifestation of many disorders. The acetyltransferase activity of p300/CREB-binding protein is therefore considered as a target for new generation therapeutics. We describe here a natural compound, ...

  6. Glycyl-L-glutamine opposes the fall in choline acetyltransferase in the denervated superior cervical ganglion of the cat.

    Koelle, G B; O'Neill, J J; Thampi, N S; Han, M S; Caccese, R

    1989-01-01

    Intracarotid infusion of 3 microM glycyl-L-glutamine was found to oppose the fall in the choline acetyl-transferase content of the preganglionically denervated cat superior cervical ganglion; this same effect has been demonstrated previously for acetylcholinesterase content. Because choline acetyltransferase, in contrast to acetylcholinesterase, occurs exclusively in the preganglionic axons and their terminals, this finding raises the possibility that glycyl-L-glutamine opposes postsectional ...

  7. Choline acetyltransferase detection in normal and denervated electrocyte from Electrophorus electricus (L.) using a Confocal Scanning Optical Microscopy Analysis

    NILSON NUNES-TAVARES; NARCISA LEAL CUNHA-E-SILVA; AÍDA HASSÓN-VOLOCH

    2000-01-01

    Acetylcholine is the neurotransmitter responsible for the transmission of impulses from cholinergic neurons to cells of innervated tissues. Its biosynthesis is catalyzed by the enzyme Choline acetyltransferase that is considered to be a phenotypically specific marker for cholinergic system. It is well known that the regulation of Choline acetyltransferase activity under physiological and pathological conditions is important for development and neuronal activities of cholinergic functions. We ...

  8. Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3

    Kubiak, Xavier Jean Philippe; Pluvinage, Benjamin; Li de la Sierra-Gallay, Inès;

    2012-01-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterizat......Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X...

  9. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.

    Araki, Marito; Yang, Yinjie; Masubuchi, Nami; Hironaka, Yumi; Takei, Hiraku; Morishita, Soji; Mizukami, Yoshihisa; Kan, Shin; Shirane, Shuichi; Edahiro, Yoko; Sunami, Yoshitaka; Ohsaka, Akimichi; Komatsu, Norio

    2016-03-10

    Recurrent somatic mutations of calreticulin (CALR) have been identified in patients harboring myeloproliferative neoplasms; however, their role in tumorigenesis remains elusive. Here, we found that the expression of mutant but not wild-type CALR induces the thrombopoietin (TPO)-independent growth of UT-7/TPO cells. We demonstrated that c-MPL, the TPO receptor, is required for this cytokine-independent growth of UT-7/TPO cells. Mutant CALR preferentially associates with c-MPL that is bound to Janus kinase 2 (JAK2) over the wild-type protein. Furthermore, we demonstrated that the mutant-specific carboxyl terminus portion of CALR interferes with the P-domain of CALR to allow the N-domain to interact with c-MPL, providing an explanation for the gain-of-function property of mutant CALR. We showed that mutant CALR induces the phosphorylation of JAK2 and its downstream signaling molecules in UT-7/TPO cells and that this induction was blocked by JAK2 inhibitor treatment. Finally, we demonstrated that c-MPL is required for TPO-independent megakaryopoiesis in induced pluripotent stem cell-derived hematopoietic stem cells harboring the CALR mutation. These findings imply that mutant CALR activates the JAK2 downstream pathway via its association with c-MPL. Considering these results, we propose that mutant CALR promotes myeloproliferative neoplasm development by activating c-MPL and its downstream pathway. PMID:26817954

  10. N-Acetyltransferase 1 (NAT1) Genotype: A Risk Factor for Urinary Bladder Cancer in a Lebanese Population

    Yassine, Ibrahim A.; Kobeissi, Loulou; Jabbour, Michel E.; Dhaini, Hassan R.

    2012-01-01

    In Lebanon, bladder cancer is the second most incident cancer among men. This study investigates a possible association between N-acetyltransferase 1 (NAT1) genotype, a drug-metabolizing enzyme coding gene, and bladder cancer in Lebanese men. A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002–2008. Controls were conveniently identified and selected from the same settings. Data was collected using interview questionnaire and blood analysis. NAT1 genotypes were determined by PCR-RFLP. Statistical analysis revolved around univariate, bivariate, and multivariate logistic regression models, along with checks for effect modification. Results showed NAT1∗14A allele, smoking, occupational exposure to combustion fumes, and prostate-related symptoms, to be risk factors for bladder cancer. The odds of carrying at least one NAT1∗14A allele are 7 times higher in cases compared to controls (OR = 7.86, 95% CI: 1.53–40.39). A gene-environment interaction was identified for NAT1∗14A allele with occupational exposure to combustion fumes. Among carriers of NAT1∗14A allele, the odds of bladder cancer dropped to 2.03 from 3.72. Our study suggests NAT1∗14A allele as a possible biomarker for bladder cancer. Further research is recommended to confirm this association. PMID:22956951

  11. N-Acetyltransferase 1 (NAT1 Genotype: A Risk Factor for Urinary Bladder Cancer in a Lebanese Population

    Ibrahim A. Yassine

    2012-01-01

    Full Text Available In Lebanon, bladder cancer is the second most incident cancer among men. This study investigates a possible association between N-acetyltransferase 1 (NAT1 genotype, a drug-metabolizing enzyme coding gene, and bladder cancer in Lebanese men. A case-control study (54 cases and 105 hospital-based controls was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002–2008. Controls were conveniently identified and selected from the same settings. Data was collected using interview questionnaire and blood analysis. NAT1 genotypes were determined by PCR-RFLP. Statistical analysis revolved around univariate, bivariate, and multivariate logistic regression models, along with checks for effect modification. Results showed NAT1∗14A allele, smoking, occupational exposure to combustion fumes, and prostate-related symptoms, to be risk factors for bladder cancer. The odds of carrying at least one NAT1∗14A allele are 7 times higher in cases compared to controls (OR=7.86, 95% CI: 1.53–40.39. A gene-environment interaction was identified for NAT1∗14A allele with occupational exposure to combustion fumes. Among carriers of NAT1∗14A allele, the odds of bladder cancer dropped to 2.03 from 3.72. Our study suggests NAT1∗14A allele as a possible biomarker for bladder cancer. Further research is recommended to confirm this association.

  12. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family.

    Karagianni, Eleni P; Kontomina, Evanthia; Davis, Britton; Kotseli, Barbara; Tsirka, Theodora; Garefalaki, Vasiliki; Sim, Edith; Glenn, Anthony E; Boukouvala, Sotiria

    2015-01-01

    Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism. PMID:26245863

  13. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    Maes, Dominique, E-mail: dominique.maes@vub.ac.be; Crabeel, Marjolaine [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium); Van de Weerdt, Cécile; Martial, Joseph [Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Allée de la Chimie 3, B-4000 Liège (Belgium); Peeters, Eveline; Charlier, Daniël [Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-12-01

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques. A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å.

  14. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques. A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å

  15. Investigation of intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-pseudomonas syringae interactions using a fast neutron-generated mutant allele of EDS5 identified by genetic mapping and whole-genome sequencing.

    Jessie L Carviel

    Full Text Available A whole-genome sequencing technique developed to identify fast neutron-induced deletion mutations revealed that iap1-1 is a new allele of EDS5 (eds5-5. RPS2-AvrRpt2-initiated effector-triggered immunity (ETI was compromised in iap1-1/eds5-5 with respect to in planta bacterial levels and the hypersensitive response, while intra- and intercellular free salicylic acid (SA accumulation was greatly reduced, suggesting that SA contributes as both an intracellular signaling molecule and an antimicrobial agent in the intercellular space during ETI. During the compatible interaction between wild-type Col-0 and virulent Pseudomonas syringae pv. tomato (Pst, little intercellular free SA accumulated, which led to the hypothesis that Pst suppresses intercellular SA accumulation. When Col-0 was inoculated with a coronatine-deficient strain of Pst, high levels of intercellular SA accumulation were observed, suggesting that Pst suppresses intercellular SA accumulation using its phytotoxin coronatine. This work suggests that accumulation of SA in the intercellular space is an important component of basal/PAMP-triggered immunity as well as ETI to pathogens that colonize the intercellular space.

  16. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual fl...

  17. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    Acetyl-CoA:α-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal α-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The binding of acetyl-CoA to the enzyme is measured by exchange label from [3H]CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with [3H]acetyl-CoA. The acetyl group can be transferred to glucosamine, forming [3H]N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism

  18. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    Guo, Wei-Dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much hi...

  19. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression

    Li, Bin; Samanta, Arabinda; Song, Xiaomin; Iacono, Kathryn T.; Bembas, Kathryn; Tao, Ran; Basu, Samik; Riley, James L.; Hancock, Wayne W.; Shen, Yuan; Saouaf, Sandra J.; Mark I. Greene

    2007-01-01

    The forkhead family protein FOXP3 acts as a repressor of transcription and is both an essential and sufficient regulator of the development and function of regulatory T cells. The molecular mechanism by which FOXP3-mediated transcriptional repression occurs remains unclear. Here, we report that transcriptional repression by FOXP3 involves a histone acetyltransferase–deacetylase complex that includes histone acetyltransferase TIP60 (Tat-interactive protein, 60 kDa) and class II histone deacety...

  20. Morphological mutants of garlic

    Choudhary, A.D.; Dnyansagar, V.R. (Nagpur Univ. (India). Dept. of Botany)

    1982-01-01

    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order.

  1. Morphological mutants of garlic

    Cloves of garlic (Allium sativuum Linn.) were exposed to gamma rays with various doses and different concentrations of ethylmethane sulphonate (EMS), diethyl sulphate (dES) and ethylene imine (EI). In the second and third generations, 16 types of morphological mutants were recorded with varied frequencies. Of all the mutagens used, gamma rays were found to be the most effective in inducing the maximum number of mutations followed EI, EMS and dES in that order. (author)

  2. Irradiation of mutants of rose

    Radiation-induced Reddish-orange (R) and Pink (P) flowered mutants of the rose cultivar Montezuma were subjected to a second treatment of gamma radiation. Effects of this treatment were recorded on bud-take, growth, survival, flowering and essential oil content. The P mutant was more radiosensitive than the R mutant. The occurrence of certain early flowering and flower yielding plants in the latter mutant proved the efficiency of this technique for inducing genetic variability in garden roses. (author)

  3. Amphid defective mutant of Caenorhabditis elegans.

    De Riso, L; Ristoratore, F; Sebastiano, M; Bazzicalupo, P

    1994-01-01

    Studies are reported on a chemoreception mutant which arose in a mutator strain. The mutant sensory neurons do not stain with fluoresceine isothiocyanate (Dyf phenotype), hence the name, dyf-1, given to the gene it identifies. The gene maps on LGI, 0.4 map units from dpy-5 on the unc-11 side. The response of mutant worms to various repellents has been studied and shown to be partially altered. Other chemoreception based behaviors are less affected. The cilia of the sensory neurons of the amphid are shorter than normal and the primary defect may be in the capacity of the sheath cells to secrete the matrix material that fills the space between cilia in the amphid channel. Progress toward the molecular cloning of the gene is also reported. Relevant results from other laboratories are briefly reviewed. PMID:7896139

  4. Agronomically valuable mutant lines of castor

    Dry seeds of four castor varieties (VNIIMK 165-improved, VNIIMK 18, Chervonnaya and Antika) were treated with six chemical mutagens, N-nitroso-N-methyl urea (NMU), N-nitroso-N-ethyl urea (NEU), dimethyl sulphate (DMS), diethyl sulphate (DES), ethylenimine (EI) and 1,4-bis-diazoacetyl-butane (DAB) in various doses during 18 hours. About 40,000 plants were studied in M2 and 80 types of mutations were found, including a number of valuable mutants: short-stemmed, semi-dwarf, dwarf, early maturing, with female and interspersed types of racemes, highly productive etc. Based on trials in M3-M4, on small plots with two or three replications, the superior mutant lines were identified. The best mutants are presented in the table. Early maturation is very important for growing castor in the USSR, as it is the predecessor of winter wheat in crop rotation. The mutants M2-323 and Ml-83 are of great value as they show early maturation and high yield. Their productivity is mainly conditioned by a high percentage of interspersed plants. The reduction of plant height is of great importance for the successful combine harvesting of castor. Mutant lines M2-119 and Ml-284 characterised by low plant height and high yield are very interesting in this respect. The obtained initial material will be used in further breeding work

  5. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  6. Biochemical approaches in identifying mutants and duplicates in germplasm collections

    Full text: Traditional taxonomy and germplasm evaluations are extended by biochemical methods, the latter being often faster and more precise. Today we apply 4 basically different electrophoretic techniques (PAGIF, PoroPAGE, SDS-PAGE, PAGE) and combinations thereof since each method has its limitations, particularly PAGIF and SDS-PAGE. The storage proteins and esterases of plants yield very stable electrophoretic patterns under various environmental conditions. The same is true for the total DNA, split by restrictases, and separated by non-linear gradient PAGE in the range from 120 to 4200 bp. In the potato germplasm collection of CIP (Lima, Peru) about 11,000 duplicates (from 15,000 clones) were eliminated. The collection of sweet potatoes from CIP and AVRDC is under investigation. (author)

  7. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  8. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  9. Photorepair mutants of Arabidopsis

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  10. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  11. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  12. In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB

    Martin R. Hediger

    2013-08-01

    Full Text Available Our previously presented method for high throughput computational screening of mutant activity (Hediger et al., 2012 is benchmarked against experimentally measured amidase activity for 22 mutants of Candida antarctica lipase B (CalB. Using an appropriate cutoff criterion for the computed barriers, the qualitative activity of 15 out of 22 mutants is correctly predicted. The method identifies four of the six most active mutants with ≥3-fold wild type activity and seven out of the eight least active mutants with ≤0.5-fold wild type activity. The method is further used to screen all sterically possible (386 double-, triple- and quadruple-mutants constructed from the most active single mutants. Based on the benchmark test at least 20 new promising mutants are identified.

  13. The molecular structure of ornithine acetyltransferase from Mycobacterium tuberculosis bound to ornithine, a competitive inhibitor.

    Sankaranarayanan, Ramasamy; Cherney, Maia M; Garen, Craig; Garen, Grace; Niu, Chunying; Yuan, Marshall; James, Michael N G

    2010-04-01

    Mycobacterium tuberculosis ornithine acetyltransferase (Mtb OAT; E.C. 2.3.1.35) is a key enzyme of the acetyl recycling pathway during arginine biosynthesis. It reversibly catalyzes the transfer of the acetyl group from N-acetylornithine (NAORN) to L-glutamate. Mtb OAT is a member of the N-terminal nucleophile fold family of enzymes. The crystal structures of Mtb OAT in native form and in its complex with ornithine (ORN) have been determined at 1.7 and 2.4 A resolutions, respectively. ORN is a competitive inhibitor of this enzyme against L-glutamate as substrate. Although the acyl-enzyme complex of Streptomyces clavuligerus ornithine acetyltransferase has been determined, ours is the first crystal structure to be reported of an ornithine acetyltransferase in complex with an inhibitor. ORN binding does not alter the structure of Mtb OAT globally. However, its presence stabilizes the three C-terminal residues that are disordered and not observed in the native structure. Also, stabilization of the C-terminal residues by ORN reduces the size of the active-site pocket volume in the structure of the ORN complex. The interactions of ORN and the protein residues of Mtb OAT unambiguously delineate the active-site residues of this enzyme in Mtb. Moreover, modeling studies carried out with NAORN based on the structure of the ORN-Mtb OAT complex reveal important interactions of the carbonyl oxygen of the acetyl group of NAORN with the main-chain nitrogen atom of Gly128 and with the side-chain oxygen of Thr127. These interactions likely help in the stabilization of oxyanion formation during enzymatic reaction and also will polarize the carbonyl carbon-oxygen bond, thereby enabling the side-chain atom O(gamma 1) of Thr200 to launch a nucleophilic attack on the carbonyl-carbon atom of the acetyl group of NAORN. PMID:20184895

  14. An Inactive Geminin Mutant That Binds Cdt1

    Marissa Suchyta

    2015-05-01

    Full Text Available The initiation of DNA replication is tightly regulated in order to ensure that the genome duplicates only once per cell cycle. In vertebrate cells, the unstable regulatory protein Geminin prevents a second round of DNA replication by inhibiting the essential replication factor Cdt1. Cdt1 recruits mini-chromosome maintenance complex (MCM2-7, the replication helicase, into the pre-replication complex (pre-RC at origins of DNA replication. The mechanism by which Geminin inhibits MCM2-7 loading by Cdt1 is incompletely understood. The conventional model is that Geminin sterically hinders a direct physical interaction between Cdt1 and MCM2-7. Here, we describe an inactive missense mutant of Geminin, GemininAWA, which binds to Cdt1 with normal affinity yet is completely inactive as a replication inhibitor even when added in vast excess. In fact, GemininAWA can compete with GemininWT for binding to Cdt1 and prevent it from inhibiting DNA replication. GemininAWA does not inhibit the loading of MCM2-7 onto DNA in vivo, and in the presence of GemininAWA, nuclear DNA is massively over-replicated within a single S phase. We conclude that Geminin does not inhibit MCM loading by simple steric interference with a Cdt1-MCM2-7 interaction but instead works by a non-steric mechanism, possibly by inhibiting the histone acetyltransferase HBO1.

  15. Untersuchung lysosomaler Membranproteine mit dem Schwerpunkt der Charakterisierung der Acetyl-Coenzym A: a-Glucosaminid N-Acetyltransferase aus lysosomalen Membranpräparationen aus humaner Plazenta

    Wätzig, Kristin Irene

    2007-01-01

    Die Acetyl-CoA-Glucosaminid-N-Acetyltransferase ist ein lysosomales Protein, dessen Ausfall das Sanfilippo C-Syndrom (Mukopolysaccharidose Typ IIIC, OMIM 252930) bedingt. Dabei handelt es sich um eine von elf durch distinkte Enzymdefekte bedingten Mukopolysaccharidosen. Durch den Ausfall der lysosomalen Acetyltransferase kommt es zu einer Störung des Heparansulfatabbaus mit einer Ansammlung von Stoffwechselprodukten im Ly...

  16. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon; Oh, Sung Jin; Kim, Do Jin; Kang, Ji Yong; Yoon, Hye Jin; Kim, Se-Hee; Seo, Ji Hae; Kim, Kyu-Won; Suh, Se Won

    2006-01-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively.

  17. Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3

    B. cereus arylamine N-acetyltransferase 3 was expressed, purified and crystallized. X-ray diffraction data were collected to 2.42 Å resolution and the crystals belonged to the monoclinic space group C121. Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3], a putative NAT isoenzyme that possesses a unique catalytic triad containing a glutamate residue, is reported. The crystal diffracted to 2.42 Å resolution and belonged to the monoclinic space group C121, with unit-cell parameters a = 90.44, b = 44.52, c = 132.98 Å, β = 103.8°

  18. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  19. Synthesis of 4'-aminopantetheine and derivatives to probe aminoglycoside N-6'-acetyltransferase.

    Yan, Xuxu; Akinnusi, T Olukayode; Larsen, Aaron T; Auclair, Karine

    2011-03-01

    A convenient synthesis of 4'-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4'-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6'-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  20. Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma

    Wang Yong; Zhang Rui; Wu Donglu; Lu Zhihua; Sun Wentao; Cai Yong; Wang Chunxi; Jin Jingji

    2013-01-01

    Abstract Background MYST1 (also known as hMOF), a member of the MYST family of histone acetyltransferases (HATs) as an epigenetic mark of active genes, is mainly responsible for histone H4K16 acetylation in the cells. Recent studies have shown that the abnormal gene expression of hMOF is involved in certain primary cancers. Here we examined the involvement of hMOF expression and histone H4K16 acetylation in primary renal cell carcinoma (RCC). Simultaneously, we investigated the correlation be...

  1. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients

    Noon, Jason B.; Baum, Thomas J.

    2016-01-01

    Background Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismat...

  2. Differential regulation of rat beta-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice.

    Lee, K. F.; Atiee, S H; Rosen, J. M.

    1989-01-01

    Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of tr...

  3. Biochemical analysis and structure determination of bacterial acetyltransferases responsible for the biosynthesis of UDP-N,N'-diacetylbacillosamine.

    Morrison, Michael J; Imperiali, Barbara

    2013-11-01

    UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes. PMID:24064219

  4. Molecular Genetic Identification Of Some Flax Mutants

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  5. Mechanism of action of peptidoglycan O-acetyltransferase B involves a Ser-His-Asp catalytic triad.

    Moynihan, Patrick J; Clarke, Anthony J

    2014-10-01

    The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases. PMID:25215566

  6. Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3].

    Kubiak, Xavier; Pluvinage, Benjamin; Li de la Sierra-Gallay, Inès; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2012-02-01

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes (XMEs) that catalyze the acetylation of arylamines. All functional NATs described to date possess a strictly conserved Cys-His-Asp catalytic triad. Here, the purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-acetyltransferase 3 [(BACCR)NAT3], a putative NAT isoenzyme that possesses a unique catalytic triad containing a glutamate residue, is reported. The crystal diffracted to 2.42 Å resolution and belonged to the monoclinic space group C121, with unit-cell parameters a = 90.44, b = 44.52, c = 132.98 Å, β = 103.8°. PMID:22297998

  7. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT

    Abu Iftiaf Md Salah Ud-Din

    2016-06-01

    Full Text Available General control non-repressible 5 (GCN5-related N-acetyltransferases (GNAT catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.

  8. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.

    Hao, N; Mu, J; Hu, N; Xu, S; Yan, M; Li, Y; Guo, K; Xu, L

    2015-02-01

    In this study, Corynebacterium glutamicum ATCC 13032 was engineered to produce L-citrulline through a metabolic engineering strategy. To prevent the flux away from L-citrulline and to increase the expression levels of genes involved in the citrulline biosynthesis pathway, the argininosuccinate synthase gene (argG) and the repressor gene (argR) were inactivated. The engineered C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2) produced higher amounts of L-citrulline (5.43 g/L) compared to the wildtype strain (0.15 g/L). To determine new strategies for further enhancement of L-citrulline production, the effect of L-citrulline on ornithine acetyltransferase (EC 2.3.1.35; OATase; ArgJ) was first investigated. Citrulline was determined to inhibit Ornithine acetyltransferase; for 50 % inhibition, citrulline concentration was 30 mM. The argJ gene from C. glutamicum ATCC 13032 was cloned, and the recombinant shuttle plasmid pXMJ19-argJ was constructed and expressed in C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2). Overexpression of the argJ gene exhibited increased OAT activity and resulted in a positive effect on citrulline production (8.51 g/L). These results indicate that OAT plays a vital role during L-citrulline production in C. glutamicum. PMID:25492493

  9. Preliminary X-ray crystallographic analysis of ornithine acetyltransferase (Rv1653) from Mycobacterium tuberculosis

    Rv1653, an ornithine acetyltransferase from M. tuberculosis, has been crystallized and diffraction data have been collected to 1.7 Å resolution. The gene product of open reading frame Rv1653 from Mycobacterium tuberculosis is annotated as encoding a probable ornithine acetyltransferase (OATase; EC 2.3.1.35), an enzyme that catalyzes two steps in the arginine-biosynthesis pathway. It transfers an acetyl group from N-acetylornithine to l-glutamate to produce N-acetylglutamate and l-ornithine. Rv1653 was crystallized using the sitting-drop vapour-diffusion method. The native crystals diffracted to a resolution of 1.7 Å and belonged to space group P212121, with unit-cell parameters a = 60.1, b = 99.7, c = 155.3 Å. The preliminary X-ray study showed the presence of a dimer in the asymmetric unit of the crystals, which had a Matthews coefficient VM of 2.8 Å3 Da−1

  10. Purification and characterization of glutamate N-acetyltransferase involved in citrulline accumulation in wild watermelon.

    Takahara, Kentaro; Akashi, Kinya; Yokota, Akiho

    2005-10-01

    Citrulline is an efficient hydroxyl radical scavenger that can accumulate at concentrations of up to 30 mm in the leaves of wild watermelon during drought in the presence of strong light; however, the mechanism of this accumulation remains unclear. In this study, we characterized wild watermelon glutamate N-acetyltransferase (CLGAT) that catalyses the transacetylation reaction between acetylornithine and glutamate to form acetylglutamate and ornithine, thereby functioning in the first and fifth steps in citrulline biosynthesis. CLGAT enzyme purified 7000-fold from leaves was composed of two subunits with different N-terminal amino acid sequences. Analysis of the corresponding cDNA revealed that these two subunits have molecular masses of 21.3 and 23.5 kDa and are derived from a single precursor polypeptide, suggesting that the CLGAT precursor is cleaved autocatalytically at the conserved ATML motif, as in other glutamate N-acetyltransferases of microorganisms. A green fluorescence protein assay revealed that the first 26-amino acid sequence at the N-terminus of the precursor functions as a chloroplast transit peptide. The CLGAT exhibited thermostability up to 70 degrees C, suggesting an increase in enzyme activity under high leaf temperature conditions during drought/strong-light stresses. Moreover, CLGAT was not inhibited by citrulline or arginine at physiologically relevant high concentrations. These findings suggest that CLGAT can effectively participate in the biosynthesis of citrulline in wild watermelon leaves during drought/strong-light stress. PMID:16218965

  11. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  12. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  13. Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice.

    Boukouvala, Sotiria; Price, Naomi; Sim, Edith

    2002-07-01

    Arylamine N-acetyltransferase (NAT) polymorphism in humans has been associated with variation in susceptibility to drug toxicity and cancer. In mice, three NAT isoenzymes are encoded by Nat1, Nat2 and Nat3 genes. Only Nat2 has been shown previously to be polymorphic, a single nucleotide substitution causing the slow acetylator phenotype in the A/J strain. We sequenced the Nat genes from inbred (CBA and 129/Ola), outbred (PO and TO) and wild-derived inbred (Mus spretus and Mus musculus castaneus) mouse strains and report polymorphism in all three Nat genes of M. spretus and in Nat2 and Nat3 genes of M. m. castaneus. Enzymatic activity assays using liver homogenates demonstrated that M. m. castaneus is a 'fast' and M. spretus a 'slow' acetylator. Western blot analysis indicated that hepatic NAT2 protein is less abundant in M. spretus than M. m. castaneus. The new allozymes were expressed in a mammalian cell line and NAT enzymatic activity was measured with a series of substrates. NAT1 and NAT2 isoenzymes of M. m. castaneus exhibited a higher rate of acetylation, compared with those of M. spretus. Activity of the NAT3 allozymes was hardly detectable, although the Nat3 gene does appear to be transcribed, since mRNA was detected by RT-PCR in the spleen. Additional polymorphisms, useful for Nat-related genetic studies, have been identified between BALB/c, C57Bl/6J, A/J, 129/Ola, CBA, PO, TO, M. m. castaneus and M. spretus strains in four microsatellite repeats located close to the Nat genes. PMID:12142728

  14. The Swedish mutant barley collection

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  15. Construction and Use of a Replication-Competent Human Immunodeficiency Virus (HIV-1) that Expresses the Chloramphenicol Acetyltransferase Enzyme

    Terwilliger, E. F.; Godin, B.; Sodroski, J. G.; Haseltine, W. A.

    1989-05-01

    The construction and properties of an infectious human immunodeficiency virus (HIV) that expresses the bacterial gene chloramphenicol acetyltransferase are described. This virus can be used in vitro to screen for drugs that inhibit HIV infection. The marked virus may also be used to trace the routes of infection from the site of inoculation in animal experiments.

  16. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    Toth, Marta; Vakulenko, Sergei B.; Smith, Clyde A.

    2012-01-01

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken.

  17. Comparative genomic, phylogenetic, and functional investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated (Glenn and Bacon, 2009; Glenn et al., 2010). The NAT1 gene of Gibberella moniliformis was the...

  18. Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly

    Mengel-From, J; Christensen, K; Thinggaard, M; McGue, M; Christiansen, L

    2011-01-01

    Genetic variants in the choline acetyltransferase (ChAT) gene have been suggested as risk factors for neurodegenerative Alzheimer's disease (AD). Here we tested the importance of genetic variants in the ChAT gene in normal cognitive function of elderly in a study sample of Danish twins and single...

  19. Six complementation classes of conditionally lethal protein synthesis mutants of CHO cells selected by 3H-amino acid

    Using a tritiated amino acid suicide procedure designed specifically to select conditional protein synthesis mutants, we have isolated and characterized a large number of such mutants of Chinese hamster ovary cells. All of the mutants are genetically stable and behave as recessives in somatic cell hybrids. Most of the new mutants are phenotypically dependent on the concentration of a specific amino acid as well as on temperature. In addition to identifying many additional leucyl- and asparagyl-tRNA synthetase mutants, complementation analysis has distinguished four new genetic classes representing methionine-, glutamine-, histidine-, and arginine-dependent mutants. Biochemical characterization of representative mutants from each of these six classes has identified the primary lesions as being defective aminoacyl-tRNA synthetases. Our slection results further demonstrate the high specificity of the 3H-amino acid procedure for isolating protein synthesis mutants. Reconstruction experiments performed with two representative mutants indicated a selection efficiency of approximately 10% under standard conditions

  20. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory.

    Mitchnick, K A; Creighton, S D; Cloke, J M; Wolter, M; Zaika, O; Christen, B; Van Tiggelen, M; Kalisch, B E; Winters, B D

    2016-07-01

    The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe. PMID:27251651

  1. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes.

    Milner, J; Medcalf, E A; Cook, A. C.

    1991-01-01

    It has been suggested that the dominant effect of mutant p53 on tumor progression may reflect the mutant protein binding to wild-type p53, with inactivation of suppressor function. To date, evidence for wild-type/mutant p53 complexes involves p53 from different species. To investigate wild-type/mutant p53 complexes in relation to natural tumor progression, we sought to identify intraspecific complexes, using murine p53. The mutant phenotype p53-246(0) was used because this phenotype is immuno...

  2. Effect of different immunosuppressive drugs on calcineurin and its mutants

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis.Their phosphatase activity and the corresponding solution conformation were examined.Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immunosuppressive drugs with CN.The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN.Furthermore,circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein.Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN,and had no effects on the phosphatase activity of mutants in Loop7 region,which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN.Examination of the activities of these mutants resulted in the presence of immunosuppressive component from traditional Chinese drugs.The component of Chinese drug,ZIP1,could directly inhibit both CN and CN mutants without drug binding protein.These results suggest that the Loop7 region is an important structural area involved in the inhibition by CyP-CsA.It is valuable to further study the inhibition by ZIP1.

  3. Root hair mutants of barley

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M2 seeds were sown in the field the same day. Spikes, 4-6 per M1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  4. Mutants of alfalfa mosaic virus

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  5. Integration of Bioorthogonal Probes and Q-FRET for the Detection of Histone Acetyltransferase Activity.

    Han, Zhen; Luan, Yepeng; Zheng, Yujun George

    2015-12-01

    Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one-pot, mix-and-read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms-bioorthogonal HAT substrate labeling, alkyne-azide click chemistry, and quenching FRET-into one system for effective probing of HAT enzyme activity. PMID:26455821

  6. Preliminary X-ray crystallographic analysis of ornithine acetyltransferase (Rv1653) from Mycobacterium tuberculosis.

    Sankaranarayanan, R; Garen, C R; Cherney, M M; Yuan, M; Lee, C; James, M N G

    2009-02-01

    The gene product of open reading frame Rv1653 from Mycobacterium tuberculosis is annotated as encoding a probable ornithine acetyltransferase (OATase; EC 2.3.1.35), an enzyme that catalyzes two steps in the arginine-biosynthesis pathway. It transfers an acetyl group from N-acetylornithine to L-glutamate to produce N-acetylglutamate and L-ornithine. Rv1653 was crystallized using the sitting-drop vapour-diffusion method. The native crystals diffracted to a resolution of 1.7 A and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 60.1, b = 99.7, c = 155.3 A. The preliminary X-ray study showed the presence of a dimer in the asymmetric unit of the crystals, which had a Matthews coefficient V(M) of 2.8 A(3) Da(-1). PMID:19194014

  7. Changes in pineal N-acetyltransferase activity in gamma irradiated rats

    Male Wistar rats were exposed to whole-body irradiation with 14.35 Gy gamma rays after adaptation to the light/dark cycle (LD 12:12). Three groups of rats were studied: A) rats irradiated at night and placed in the 12 h LD cycle again, B) rats irradiated at daytime and placed in the 12 LD cycle, and C) rats irradiated at night and kept in constant darkness. All analyses were carried out in the dark. Radiation enhanced the activity of pineal N-acetyltransferase 3-4 days after exposure in all groups, in the C group significantly on the 4th day. Different light regimes during and after irradiation did not substantially affect the activity of this key enzyme of melatonin synthesis. (author) 1 fig., 8 refs

  8. Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity

    The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effect upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity

  9. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    Hu, Xiaohu [ORNL; Norris, Adrianne [University of Tennessee, Knoxville (UTK); Baudry, Jerome Y [ORNL; Serpersu, Engin H [University of Tennessee, Knoxville (UTK)

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  10. Depression of nocturnal pineal serotonin N-acetyltransferase activity in castrate male rats

    Pineal serotonin N-acetyltransferase (NAT) activity was examined in intact rats, castrated rats, and in rats that had been castrated and had received testosterone proprionate. Castration resulted in significantly depressing nocturnal levels of pineal NAT (p<0.05) when compared to enzyme activity in intact rats. Testosterone proprionate administration restored plasma LH levels to normal values in castrate rats but did not induce nocturnal pineal enzyme activity to levels seen in the pineal glands of intact rats. The data substantiate the existence of a feedback control of pineal biosynthetic activity by the hypophyseal-gonadal system, but the identity of the hormone(s) responsible for regulation of pineal NAT activity is not known. (author)

  11. A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals

    A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with [14C]chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of 14C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated 14C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intact mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice

  12. Potent Inhibitors of Acetyltransferase Eis Overcome Kanamycin Resistance in Mycobacterium tuberculosis.

    Willby, Melisa J; Green, Keith D; Gajadeera, Chathurada S; Hou, Caixia; Tsodikov, Oleg V; Posey, James E; Garneau-Tsodikova, Sylvie

    2016-06-17

    A major cause of tuberculosis (TB) resistance to the aminoglycoside kanamycin (KAN) is the Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. Upregulation of this enzyme is responsible for inactivation of KAN through acetylation of its amino groups. A 123 000-compound high-throughput screen (HTS) yielded several small-molecule Eis inhibitors that share an isothiazole S,S-dioxide heterocyclic core. These were investigated for their structure-activity relationships. Crystal structures of Eis in complex with two potent inhibitors show that these molecules are bound in the conformationally adaptable aminoglycoside binding site of the enzyme, thereby obstructing binding of KAN for acetylation. Importantly, we demonstrate that several Eis inhibitors, when used in combination with KAN against resistant Mtb, efficiently overcome KAN resistance. This approach paves the way toward development of novel combination therapies against aminoglycoside-resistant TB. PMID:27010218

  13. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB

    Chen, Wenjing; Biswas, Tapan; Porter, Vanessa R.; Tsodikov, Oleg V.; Garneau-Tsodikova, Sylvie (Michigan)

    2011-09-06

    The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.

  14. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules.

    Arif, M; Pradhan, Suman Kalyan; Thanuja, G R; Vedamurthy, B M; Agrawal, Shipra; Dasgupta, Dipak; Kundu, Tapas K

    2009-01-22

    Dysfunction of histone acetyltransferases (HATs) leads to several diseases including cancer, diabetes, and asthma. Therefore, small molecule inhibitors and activators of HATs are being considered as new generation therapeutics. Here, we report the molecular mechanisms of p300 HAT inhibition by specific and nonspecific HAT inhibitors: garcinol, isogarcinol, and 1 (LTK14). The p300 specific HAT inhibitor 1 behaves as a noncompetitive inhibitor for both acetyl-CoA and histone, unlike nonspecific HAT inhibitors garcinol and isogarcinol. The isothermal calorimetric data suggest that there is a high affinity enthalpy driven single binding site for 1 on p300HAT domain in contrast to two binding sites for garcinol and isogarcinol. Furthermore, the precise nature of molecular interactions was determined by using fluorescence, docking, and mutational studies. On the basis of these observations, we have proposed the mechanisms of specific versus nonspecific HAT inhibition by these small molecule compounds, which may be useful to design therapeutically favorable HAT inhibitors. PMID:19086895

  15. Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses.

    Mounce, Bryan C; Poirier, Enzo Z; Passoni, Gabriella; Simon-Loriere, Etienne; Cesaro, Teresa; Prot, Matthieu; Stapleford, Kenneth A; Moratorio, Gonzalo; Sakuntabhai, Anavaj; Levraud, Jean-Pierre; Vignuzzi, Marco

    2016-08-10

    Polyamines are small, positively charged molecules derived from ornithine and synthesized through an intricately regulated enzymatic pathway. Within cells, they are abundant and play several roles in diverse processes. We find that polyamines are required for the life cycle of the RNA viruses chikungunya virus (CHIKV) and Zika virus (ZIKV). Depletion of spermidine and spermine via type I interferon signaling-mediated induction of spermidine/spermine N1-acetyltransferase (SAT1), a key catabolic enzyme in the polyamine pathway, restricts CHIKV and ZIKV replication. Polyamine depletion restricts these viruses in vitro and in vivo, due to impairment of viral translation and RNA replication. The restriction is released by exogenous replenishment of polyamines, further supporting a role for these molecules in virus replication. Thus, SAT1 and, more broadly, polyamine depletion restrict viral replication and suggest promising avenues for antiviral therapies. PMID:27427208

  16. Density Functional Theory Study on the Histidine-assisted Mechanism of Arylamine N-Acetyltransferase Acetylation

    QIAO Qing-An; GAO Shan-Min; JIN Yue-Qing; CHEN Xin; SUN Xiao-Min; YANG Chuan-Lu

    2008-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc.In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products.When using histidine to mediate the acetylation process, these energies will drop in the 15~45 kJ/mol range.If the histidine residue is protonated, the corresponding energies will be decreased by about 35~87 kJ/mol.The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.

  17. Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274

    Bingfa Sun; Shunling Guo; Qingyu Tang; Chen Li; Rong Zeng; Zhiqi Xiong; Chen Zhong; Jianping Ding

    2011-01-01

    Dear Editor, Males-absent-on-the-first (MOF, also called MYST1 or KAT8) is a histone acetyltransferase (HAT) belonging to the MOZ, Ybf2/Sas3, Sas2 and Tip60 (MYST) family.MOF has been shown to possess a specific HAT activity towards Lysl6 of histone H4 (H4K16) [1].Homozygous knockout of MOF in mice results in loss of H4K16 acetylation and embryonic lethality, indicating that MOF and H4K16 acetylation are essential for embryogenesis and genome stability in mammals [2].Downregulation of human MOF (hMOF) leads to dramatic nuclear morphological deformation and inhibition of cell cycle progression [3], and has recently been correlated with primary breast carcinoma and medulloblastoma [4].

  18. Structure of homoserine O-acetyltransferase from Staphylococcus aureus: the first Gram-positive ortholog structure.

    Thangavelu, Bharani; Pavlovsky, Alexander G; Viola, Ronald

    2014-10-01

    Homoserine O-acetyltransferase (HTA) catalyzes the formation of L-O-acetyl-homoserine from L-homoserine through the transfer of an acetyl group from acetyl-CoA. This is the first committed step required for the biosynthesis of methionine in many fungi, Gram-positive bacteria and some Gram-negative bacteria. The structure of HTA from Staphylococcus aureus (SaHTA) has been determined to a resolution of 2.45 Å. The structure belongs to the α/β-hydrolase superfamily, consisting of two distinct domains: a core α/β-domain containing the catalytic site and a lid domain assembled into a helical bundle. The active site consists of a classical catalytic triad located at the end of a deep tunnel. Structure analysis revealed some important differences for SaHTA compared with the few known structures of HTA. PMID:25286936

  19. Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma

    Wang Yong

    2013-02-01

    Full Text Available Abstract Background MYST1 (also known as hMOF, a member of the MYST family of histone acetyltransferases (HATs as an epigenetic mark of active genes, is mainly responsible for histone H4K16 acetylation in the cells. Recent studies have shown that the abnormal gene expression of hMOF is involved in certain primary cancers. Here we examined the involvement of hMOF expression and histone H4K16 acetylation in primary renal cell carcinoma (RCC. Simultaneously, we investigated the correlation between the expression of hMOF and clear cell RCC (ccRCC biomarker carbohydrase IX (CA9 in RCC. Materials and methods The frozen RCC tissues and RCC cell lines as materials, the reverse transcription polymerase chain reaction (RT-PCR, western blotting and immunohistochemical staining approaches were used. Results RT-PCR results indicate that hMOF gene expression levels frequently downregulated in 90.5% of patients (19/21 with RCC. The reduction of hMOF protein in both RCC tissues and RCC cell lines is tightly correlated with acetylation of histone H4K16. In addition, overexpression of CA9 was detected in 100% of ccRCC patients (21/21. However, transient transfection of hMOF in ccRCC 786–0 cells did not affect both the gene and protein expression of CA9. Conclusion hMOF as an acetyltransferase of H4K16 might be involved in the pathogenesis of kidney cancer, and this epigenetic changes might be a new CA9-independent RCC diagnostic maker.

  20. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-01-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4′-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  1. Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells.

    Di Martile, Marta; Desideri, Marianna; De Luca, Teresa; Gabellini, Chiara; Buglioni, Simonetta; Eramo, Adriana; Sette, Giovanni; Milella, Michele; Rotili, Dante; Mai, Antonello; Carradori, Simone; Secci, Daniela; De Maria, Ruggero; Del Bufalo, Donatella; Trisciuoglio, Daniela

    2016-03-01

    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC. PMID:26870991

  2. Molecular analysis of mutants of the Neurospora adenylosuccinate synthetase locus

    A. Wiest; A. J. McCarthy; R. Schnittker; K. McCluskey

    2012-08-01

    The ad-8 gene of Neurospora crassa, in addition to being used for the study of purine biology, has been extensively studied as a model for gene structure, mutagenesis and intralocus recombination. Because of this there is an extensive collection of well-characterized N. crassa ad-8 mutants in the Fungal Genetics Stock Center collection. Among these are spontaneous mutants and mutants induced with X-ray, UV or chemical mutagens. The specific lesions in these mutants have been genetically mapped at high resolution. We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature of the mutation in each strain. We compare the historical fine-structure map to the DNA and amino acid sequence of each allele. The placement of the individual lesions in the fine-structure map was more accurate at the 5′ end of the gene and no mutants were identified in the 3′ untranslated region of this gene. We additionally analysed ad-8+ alleles in 18 N. crassa strains subjected to whole-genome sequence analysis and describe the variability among Neurospora strains and among fungi and other organisms.

  3. Isolation of Two Unknown Genes Potentially Involved in Differentiation of the Hematopoietic Pathway, and Studies of Spermidine/Spermine Acetyltransferase Regulation

    Kubera, C.; Gavin, I.; Huberman, E.

    2002-01-01

    Differential display identified a number of candidate genes involved with growth and differentiation in the human leukemia cell lines HL-60 and HL-525. Two of these genes were previously unknown, and one is the gene for the enzyme spermidine/spermine acetyltransferase (SSAT). One of our objectives is to isolate and sequence the unknown genes, 631A1 and 510C1, in order to characterize them and determine their functions. The other is to determine how SSAT is regulated, and look at how the polyamines that SSAT regulates effect macrophage differentiation. By screening the CEM T-cell DNA library and the fetal brain library, we were able to identify clones that had inserts with homology to the 631A1 cDNA probe sequence. The insert was amplified using the polymerase chain reaction (PCR) and is currently being sent to the University of Chicago for automated sequencing. The library screens for 510C1 are currently underway, but hybridization of the 510C1 cDNA probe with nylon membranes containing CEM library phage DNA produced strong signal, indicating the gene is there. SSAT experiments identified that the rate-limiting enzyme that marks the polyamines spermidine and spermine for degradation is regulated by PKC and a transcription factor called Nrf2. The knowledge of regulation and function of these genes involved in macrophage differentiation will provide new insight into this cellular process, potentially making it possible to discover the roots of the problems that cause cancerous diseases.

  4. Purification, crystallization and preliminary X-ray characterization of Bacillus cereus arylamine N-­acetyltransferase 3 [(BACCR)NAT3

    Kubiak, Xavier; Pluvinage, Benjamin; Li de la Sierra-Gallay, Inès; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2012-01-01

    B. cereus arylamine N-acetyltransferase 3 was expressed, purified and crystallized. X-ray diffraction data were collected to 2.42 Å resolution and the crystals belonged to the monoclinic space group C121.

  5. Effects of F171 Mutations in the 6′-N-Acetyltransferase Type Ib [AAC(6′)-Ib] Enzyme on Susceptibility to Aminoglycosides

    Chavideh, Ramona; Sholly, Steven; Panaite, Doina; Tolmasky, Marcelo E.

    1999-01-01

    Substitutions at position F171 of 6′-N-acetyltransferase type Ib cause variable loss of aminoglycoside resistance, indicating that this residue plays an important role in the structure and/or function of the enzyme.

  6. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays.

    Leena Pohjala

    Full Text Available Chikungunya virus (CHIKV, an alphavirus, has recently caused epidemic outbreaks and is therefore considered a re-emerging pathogen for which no effective treatment is available. In this study, a CHIKV replicon containing the virus replicase proteins together with puromycin acetyltransferase, EGFP and Renilla luciferase marker genes was constructed. The replicon was transfected into BHK cells to yield a stable cell line. A non-cytopathic phenotype was achieved by a Pro718 to Gly substitution and a five amino acid insertion within non-structural protein 2 (nsP2, obtained through selection for stable growth. Characterization of the replicon cell line by Northern blotting analysis revealed reduced levels of viral RNA synthesis. The CHIKV replicon cell line was validated for antiviral screening in 96-well format and used for a focused screen of 356 compounds (natural compounds and clinically approved drugs. The 5,7-dihydroxyflavones apigenin, chrysin, naringenin and silybin were found to suppress activities of EGFP and Rluc marker genes expressed by the CHIKV replicon. In a concomitant screen against Semliki Forest virus (SFV, their anti-alphaviral activity was confirmed and several additional inhibitors of SFV with IC₅₀ values between 0.4 and 24 µM were identified. Chlorpromazine and five other compounds with a 10H-phenothiazinyl structure were shown to inhibit SFV entry using a novel entry assay based on a temperature-sensitive SFV mutant. These compounds also reduced SFV and Sindbis virus-induced cytopathic effect and inhibited SFV virion production in virus yield experiments. Finally, antiviral effects of selected compounds were confirmed using infectious CHIKV. In summary, the presented approach for discovering alphaviral inhibitors enabled us to identify potential lead structures for the development of alphavirus entry and replication phase inhibitors as well as demonstrated the usefulness of CHIKV replicon and SFV as biosafe surrogate

  7. Two Proteins with Ornithine Acetyltransferase Activity Show Different Functions in Streptomyces clavuligerus: Oat2 Modulates Clavulanic Acid Biosynthesis in Response to Arginine

    de la Fuente, A.; Martín, J F; Rodríguez-García, A.; Liras, P

    2004-01-01

    The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and ...

  8. Aminoglycoside 6′-N-Acetyltransferase Variants of the Ib Type with Altered Substrate Profile in Clinical Isolates of Enterobacter cloacae and Citrobacter freundii

    Casin, Isabelle; Bordon, Florence; Bertin, Philippe; Coutrot, Anne; Podglajen, Isabelle; Brasseur, Robert; Collatz, Ekkehard

    1998-01-01

    Three clinical isolates, Enterobacter cloacae EC1562 and EC1563 and Citrobacter freundii CFr564, displayed an aminoglycoside resistance profile evocative of low-level 6′-N acetyltransferase type II [AAC(6′)-II] production, which conferred reduced susceptibility to gentamicin but not to amikacin or isepamicin. Aminoglycoside acetyltransferase assays suggested the synthesis in the three strains of an AAC(6′) which acetylated amikacin practically as well as it acetylated gentamicin in vitro. Bot...

  9. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms.

    Tang, Qiong-Yao; Zhang, Fei-Fei; Xu, Jie; Wang, Ran; Chen, Jian; Logothetis, Diomedes E; Zhang, Zhe

    2016-01-01

    Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects. PMID:26725113

  10. Mutant Varieties of Crop Plants

    Since 1969, the Joint PAO/IAEA Division undertakes to collect and publish information on varieties of crop plants that were developed directly from induced mutants or by using mutants in cross breeding (Micke 1972 and Sigurbjörnsson and Micke (1969, 1974). The purpose of this undertaking is to assess realistically the potential of induced mutation techniques to contribute towards progress in plant breeding. Varieties which have successfully passed official trials and were approved or recommended by national governmental authorities for cultivation, appear to be good indicators of practical success. By 1 October 1978, we know about 195 of such varieties in agricultural crop plants). They belong to 37 different plant species and come from 30 different countries. In addition, there are more than 120 mutant cultivars of ornamental plants known, which represent a considerable economic value for countries with developed horticulture (Broertjes and van Harten 1978)

  11. Positive Selection for Loss-of-Function tat Mutations Identifies Critical Residues Required for TatA Activity

    Hicks, Matthew G.; Lee, Philip A.; Georgiou, George; Berks, Ben C.; Palmer, Tracy

    2005-01-01

    The Tat system, found in the cytoplasmic membrane of many bacteria, is a general export pathway for folded proteins. Here we describe the development of a method, based on the transport of chloramphenicol acetyltransferase, that allows positive selection of mutants defective in Tat function. We have demonstrated the utility of this method by selecting novel loss-of-function alleles of tatA from a pool of random tatA mutations. Most of the mutations that were isolated fall in the amphipathic r...

  12. Selection for blast-resistant mutants in irradiated rice populations

    A newly released rice variety, Tongil, has many desirable agronomic characters and a particularly high resistance to blast disease. However, it may become susceptible in the future, since a resistant variety released for field planting often encounters the creation of new races of blast fungus. This study was undertaken to identify potential blast-resistant mutants from the population of the irradiated variety, Tongil, by inoculating these materials with induced mutant races of blast fungus which are likely to occur in the future. Blast conidia were irradiated with X-rays and the virulent mutants were identified according to their ability to infect Tongil. Seven blast-resistant mutant lines from the Pungkwang variety, selected through the uplands blast nursery test, were likewise outstanding in resistance in the field compared with the parent. Ten resistant lines from the variety Tongil, identified by artificial inoculation with the mutant race IA-67, were also selected. The results in the study of resistance inheritance showed that blast resistance was conditioned by a single dominant gene and the Tongil variety has three or more resistant genes. (author)

  13. Genetic variants in microsomal epoxide hydrolase and N-acetyltransferase 2 in susceptibility of IBD in the Danish population

    Ernst, Anja; Andersen, Vibeke; Østergaard, Mette;

    induce or sustain an immune response. Changes in detoxification of substances that causes epithelial damage may confer susceptibility to IBD. Hence, polymorphic enzymes involved in the detoxification processes may be risk factors of IBD. Methods. The two biotransformation enzymes microsomal epoxide...... hydrolase and N-acetyltransferase 2 were genotyped using TaqMan based Real-Time PCR in 388 patients with Crohn's disease (CD), 565 patients with ulcerative colitis (UC) and 796 healthy Danish controls. Results. No association was found between low microsomal epoxide hydrolase activity or slow N......-acetyltransferase 2 acetylator status and IBD. An association between high activity of microsomal epoxide hydrolase and disease diagnosis before age 40 in CD with an OR of 2.2(1.1- 4.2) P=0.02) was found. No other phenotypic associations were found for the two enzymes and IBD, regarding age at onset, disease location...

  14. Regulation of KAT6 Acetyltransferases and Their Roles in Cell Cycle Progression, Stem Cell Maintenance, and Human Disease.

    Huang, Fu; Abmayr, Susan M; Workman, Jerry L

    2016-07-15

    The lysine acetyltransferase 6 (KAT6) histone acetyltransferase (HAT) complexes are highly conserved from yeast to higher organisms. They acetylate histone H3 and other nonhistone substrates and are involved in cell cycle regulation and stem cell maintenance. In addition, the human KAT6 HATs are recurrently mutated in leukemia and solid tumors. Therefore, it is important to understand the mechanisms underlying the regulation of KAT6 HATs and their roles in cell cycle progression. In this minireview, we summarize the identification and analysis of the KAT6 complexes and discuss the regulatory mechanisms governing their enzymatic activities and substrate specificities. We further focus on the roles of KAT6 HATs in regulating cell proliferation and stem cell maintenance and review recent insights that aid in understanding their involvement in human diseases. PMID:27185879

  15. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni2+-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P41212 or P43212, with unit-cell parameters a = b = 50.08, c = 142.88 Å

  16. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  17. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin

    Whelan, Gabriela; Kreidl, Emanuel; Wutz, Gordana; Egner, Alexander; Peters, Jan-Michael; Eichele, Gregor

    2012-01-01

    Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin‐bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a ‘railroad’ track morphology. Here, we show that Esco2 deficiency leads to termination of mouse development at pre‐ and post‐implantatio...

  18. Maintenance of Neuronal Laterality in Caenorhabditis elegans Through MYST Histone Acetyltransferase Complex Components LSY-12, LSY-13 and LIN-49

    O'Meara, M. Maggie; Zhang, Feifan; Hobert, Oliver

    2010-01-01

    Left/right asymmetrically expressed genes permit an animal to perform distinct tasks with the right vs. left side of its brain. Once established during development, lateralized gene expression patterns need to be maintained during the life of the animal. We show here that a histone modifying complex, composed of the LSY-12 MYST-type histone acetyltransferase, the ING-family PHD domain protein LSY-13, and PHD/bromodomain protein LIN-49, is required to first initiate and then actively maintain ...

  19. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae.

    Martin, P R; Mulks, M H

    1992-01-01

    Clinical isolates of Neisseria gonorrhoeae frequently are deficient in arginine biosynthesis. These auxotrophs often have defects in the fifth step of the arginine biosynthetic pathway, the conversion of acetylornithine to ornithine. This reaction is catalyzed by the enzyme ornithine acetyltransferase, which is a product of the argJ gene. We have cloned and sequenced the gonococcal argJ gene and found that it contains an open reading frame of 1,218 nucleotides and encodes a peptide with a ded...

  20. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A.

    Clements, A.; Rojas, J R; Trievel, R C; Wang, L.; Berger, S L; Marmorstein, R

    1999-01-01

    The human p300/CBP-associating factor, PCAF, mediates transcriptional activation through its ability to acetylate nucleosomal histone substrates as well as transcriptional activators such as p53. We have determined the 2.3 A crystal structure of the histone acetyltransferase (HAT) domain of PCAF bound to coenzyme A. The structure reveals a central protein core associated with coenzyme A binding and a pronounced cleft that sits over the protein core and is flanked on opposite sides by the N- a...

  1. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  2. Wild Accessions and Mutant Resources

    Kawaguchi, Masayoshi; Sandal, Niels Nørgaard

    2014-01-01

    Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129 and Miy...

  3. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    Jia Li

    2015-12-01

    Full Text Available All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT, the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  4. Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials.

    Deng, Zhou J; Butcher, Neville J; Mortimer, Gysell M; Jia, Zhongfan; Monteiro, Michael J; Martin, Darren J; Minchin, Rodney F

    2014-03-01

    Humans are exposed to nanoparticles in the environment as well as those in nanomaterials developed for biomedical applications. However, the safety and biologic effects of many nanoparticles remain to be elucidated. Over the past decade, our understanding of the interaction of proteins with various nanomaterials has grown. The protein corona can determine not only how nanoparticles interact with cells but also their biologic effects and toxicity. In this study, we describe the effects that several different classes of nanoparticles exert on the enzymatic activity of the cytosolic protein human arylamine N-acetyltransferase 1 (NAT1), a drug-metabolizing enzyme widely distributed in the body that is also responsible for the activation and detoxification of known carcinogens. We investigated three metal oxides (zinc oxide, titanium dioxide, and silicon dioxide), two synthetic clay nanoparticles (layered double hydroxide and layered silicate nanoparticles), and a self-assembling thermo-responsive polymeric nanoparticle that differ in size and surface characteristics. We found that the different nanoparticles induced very different responses, ranging from inhibition to marked enhancement of enzyme activity. The layered silicates did not directly inactivate NAT1, but was found to enhance substrate-dependent inhibition. These differing effects demonstrate the multiplicity of nanoparticle-protein interactions and suggest that enzyme activity may be compromised in organs exposed to nanoparticles, such as the lungs or reticulo-endothelial system. PMID:24346836

  5. Application of the chloramphenicol acetyltransferase (CAT) diffusion assay to transgenic plant tissues.

    Peach, C; Velten, J

    1992-02-01

    Chloramphenicol acetyltransferase (CAT) activity was quantified in crude extracts from tobacco callus tissues using a modification of a previously reported diffusion assay. We describe here the alterations necessary in applying this rapid and simple assay procedure to plant materials. Due to the high concentration of nonspecific oxidases present in most plant tissues, some type of protective agent is required to maintain enzyme activity. We have tested beta-mercaptoethanol, cysteine, dithiothreitol, ascorbic acid and polyvinyl pyrrolidone as protective agents within the initial extraction buffer. We also investigated the effect of heat (60 degrees C, 10 min) and 5 mM EDTA on CAT activity. The highest CAT activity was obtained using 5 mM cysteine plus 5 mM EDTA in 40 mM Tris-HCl (pH 7.8) as the initial extraction buffer followed by a heat treatment. Using this buffer, CAT activity was stable on ice for more than two hours. In our hands, total acetyl-coenzyme A concentration within the assay mixture was found to be saturating at 250 microM and the Km determined to be 100 microM. Assays performed using the same crude plant extract indicate that 1) duplicate assays show less than 1.5% variation in activities and 2) CAT activity increases linearly with respect to volume of extract used. PMID:1616705

  6. Effects of humic acid-metal complexes on hepatic carnitine palmitoyltransferase, carnitine acetyltransferase and catalase activities

    Fungjou Lu; Youngshin Chen (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Biochemistry); Tienshang Huang (National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Medicine)

    1994-03-01

    A significant increase in activities of hepatic carnitine palmitoyltransferase and carnitine acetyltransferase was observed in male Balb/c mice intraperitoneally injected for 40 d with 0.125 mg/0.1 ml/d humic acid-metal complexes. Among these complexes, the humic acid-As complex was relatively effective, whereas humic acid-25 metal complex was more effective, and humic acid-26 metal complex was most effective. However, humic acid or metal mixtures, or metal such as As alone, was not effective. Humic acid-metal complexes also significantly decreased hepatic catalase activity. A marked decrease of 60-kDa polypeptide in liver cytoplasm was also observed on SDS-polyacrylamide gel electrophoresis after the mice had been injected with the complexes. Morphological analysis of a histopathological biopsy of such treated mice revealed several changes in hepatocytes, including focal necrosis and cell infiltration, mild fatty changes, reactive nuclei, and hypertrophy. Humic acid-metal complexes affect activities of metabolic enzymes of fatty acids, and this results in accumulation of hydrogen peroxide and increase of the lipid peroxidation. The products of lipid peroxidation may be responsible for liver damage and possible carcinogenesis. Previous studies in this laboratory had shown that humic acid-metal complex altered the coagulation system and that humic acid, per se, caused vasculopathy. Therefore, humic acid-metal complexes may be main causal factors of not only so-called blackfoot disease, but also the liver cancer prevailing on the southwestern coast of Taiwan.

  7. Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum.

    Hao, Ning; Mu, Jingrui; Hu, Nan; Xu, Sheng; Shen, Peng; Yan, Ming; Li, Yan; Xu, Lin

    2016-01-01

    l-Ornithine is an intermediate of the l-arginine biosynthetic pathway in Corynebacterium glutamicum. The effect of ornithine acetyltransferase (OATase; ArgJ) on l-ornithine production was investigated, and C. glutamicum 1006 was engineered to overproduce l-ornithine as a major product by inactivating regulatory repressor argR gene and overexpressing argJ gene. A genome sequence analysis indicated that the argF gene encoding ornithine carbamoyltransferase in C. glutamicum 1006 was mutated, resulting in the accumulation of a certain amount of l-ornithine (20.5 g/L). The assays using a crude extract of C. glutamicum 1006 indicated that the l-ornithine concentration for 50% inhibition of OAT was 5 mM. To enhance l-ornithine production, the argJ gene from C. glutamicum ATCC 13032 was overexpressed. In flask cultures, the resulting strain, C. glutamicum 1006∆argR-argJ, produced 31.6 g/L l-ornithine, which is 54.15% more than that produced by C. glutamicum 1006. The OAT activity of C. glutamicum 1006∆argR-argJ was significantly greater than that of C. glutamicum 1006, and this study achieved the highest conversion ratio of sugar to acid (0.396 g/g) compared with those of previous reports. ArgJ strongly influences the production of l-ornithine in C. glutamicum. PMID:25630515

  8. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75

    Berndsen, Christopher E; Tsubota, Toshiaki; Lindner, Scott E; Lee, Susan; Holton, James M; Kaufman, Paul D; Keck, James L; Denu, John M [UMASS, MED; (UCB); (UW-MED)

    2010-01-12

    Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109-Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109-Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by {approx}100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT-chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

  9. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H2O2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  10. In vitro inhibition of choline acetyltransferase by a series of 2-benzylidene-3-quinuclidinones

    Ten substituted 2-benzylidene-3-quinuclidinones were synthesized and evaluated for their relative potency as in vitro inhibitors of choline acetyltransferase (ChAT). Acetylcholine (ACh) synthesis was followed radiometrically by the incorporation of labeled acetate originating from 14C-acetyl-CoA. Woolf-Augustinsson-Hofstee data analysis was used to calculate Vmax, Km, and Ki values. The inhibition was found to be noncompetitive or uncompetitive with respect to choline. Quantitative structure activity relationship correlations demonstrated a primary dependence on κ-σ, as well as steric properties of the substituted benzene ring. Additional radiometric and spectrophotometric were performed with 2-(3'-methyl)-benzylidene-3-quinuclidinone, one of the more potent analogs, to further elucidate the inhibitory mechanism. ChAT-mediated cleavage of ACh was measured spectrophotometrically by following the appearance of NADH at 340 nanometers in an enzyme coupled assay. Lineweaver-Burk analysis indicated mixed or uncompetitive inhibition with respect to both substrates of the forward reaction, suggesting interference with a rate limiting step

  11. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair.

    Bassi, C; Li, Y-T; Khu, K; Mateo, F; Baniasadi, P S; Elia, A; Mason, J; Stambolic, V; Pujana, M A; Mak, T W; Gorrini, C

    2016-07-01

    The acetyltransferase Tip60/Kat5 acetylates both histone and non-histone proteins, and is involved in a variety of biological processes. By acetylating p53, Tip60 controls p53-dependent transcriptional activity and so is implicated as a tumor suppressor. However, many breast cancers with low Tip60 also show p53 mutation, implying that Tip60 has a tumor suppressor function independent of its acetylation of p53. Here, we show in a p53-null mouse model of sporadic invasive breast adenocarcinoma that heterozygosity for Tip60 deletion promotes mammary tumorigenesis. Low Tip60 reduces DNA repair in normal and tumor mammary epithelial cells, both under resting conditions and following genotoxic stress. We demonstrate that Tip60 controls homologous recombination (HR)-directed DNA repair, and that Tip60 levels correlate inversely with a gene expression signature associated with defective HR-directed DNA repair. In human breast cancer data sets, Tip60 mRNA is downregulated, with low Tip60 levels correlating with p53 mutations in basal-like breast cancers. Our findings indicate that Tip60 is a novel breast tumor suppressor gene whose loss results in genomic instability leading to cancer formation. PMID:26915295

  12. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Hang-Yong Zhu

    2014-01-01

    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  13. Distinct Localization of Peripheral and Central Types of Choline Acetyltransferase in the Rat Cochlea

    We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures

  14. Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons

    The effect of insulin on the appearance of the enzyme choline acetyltransferase in embryonic chicken retina neurons cultured in defined medium was studied. In the presence of a minimal level of insulin (1 ng/ml), ChoAcT activity increased with time in culture. A correspondence between the insulin concentration in the defined medium (1-100 ng/ml) and both the rate of increase and maximum attained level of ChoAcT activity was observed. Maximal ChoAcT activity was 2- to 3-fold greater in cells cultured in the presence of 100 ng of insulin per ml than in cells cultured in the presence of 1 ng of insulin per ml. To elicit maximum ChoAcT activity, insulin at 100 ng/ml was required in the medium for only the first 4 days of the culture period, at which time insulin could be reduced to maintenance levels (10 ng/ml) without affecting ChoAcT activity. Insulin binding assays performed during a 7-day culture period revealed that irrespective of the 125I-insulin concentration in the medium during culture, cell-surface insulin receptors decreased by ≅ 90% between 4 and 7 days in culture. This decrease in insulin binding corresponded to the observed decrease in the sensitivity of ChoAcT activity to insulin. The findings suggest that insulin plays a role in mediating cholinergic differentiation in the embryonic chicken retina

  15. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek (SC); (Toronto); (UV)

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

  16. Structural Basis for Microcin C7 Inactivation by the MccE Acetyltransferase

    Agarwal, Vinayak; Metlitskaya, Anastasiya; Severinov, Konstantin; Nair, Satish K. (Rutgers); (Russ. Acad. Sci.); (UIUC)

    2015-10-15

    The antibiotic microcin C7 (McC) acts as a bacteriocide by inhibiting aspartyl-tRNA synthetase and stalling the protein translation machinery. McC is synthesized as a heptapeptide-nucleotide conjugate, which is processed by cellular peptidases within target strains to yield the biologically active compound. As unwanted processing of intact McC can result in self-toxicity, producing strains utilize multiple mechanisms for autoimmunity against processed McC. We have shown previously that the mccE gene within the biosynthetic cluster can inactivate processed McC by acetylating the antibiotic. Here, we present the characterization of this acetylation mechanism through biochemical and structural biological studies of the MccE acetyltransferase domain (MccE{sup AcTase}). We have also determined five crystal structures of the MccE-acetyl-CoA complex with bound substrates, inhibitor, and reaction product. The structural data reveal an unexpected mode of substrate recognition through p-stacking interactions similar to those found in cap-binding proteins and nucleotidyltransferases. These studies provide a rationale for the observation that MccE{sup AcTase} can detoxify a range of aminoacylnucleotides, including those that are structurally distinct from microcin C7.

  17. Disubstituted naphthyl β-D-xylopyranosides: Synthesis, GAG priming, and histone acetyltransferase (HAT) inhibition.

    Thorsheim, Karin; Persson, Andrea; Siegbahn, Anna; Tykesson, Emil; Westergren-Thorsson, Gunilla; Mani, Katrin; Ellervik, Ulf

    2016-04-01

    Xylosides are a group of compounds that can induce glycosaminoglycan (GAG) chain synthesis independently of a proteoglycan core protein. We have previously shown that the xyloside 2-(6-hydroxynaphthyl)β-D-xylopyranoside has a tumor-selective growth inhibitory effect both in vitro and in vivo, and that the effect in vitro was correlated to a reduction in histone H3 acetylation. In addition, GAG chains have previously been reported to inhibit histone acetyltransferases (HAT). To investigate if xylosides, or the corresponding xyloside-primed GAG chains, can be used as HAT inhibitors, we have synthesized a series of naphthoxylosides carrying structural motifs similar to the aromatic moieties of the known HAT inhibitors garcinol and curcumin, and studied their biological activities. Here, we show that the disubstituted naphthoxylosides induced GAG chain synthesis, and that the ones with at least one free phenolic group exhibited moderate HAT inhibition in vitro, without affecting histone H3 acetylation in cell culture. The xyloside-primed GAG chains, on the other hand, had no effect on HAT activity, possibly explaining why the effect of the xylosides on histone H3 acetylation was absent in cell culture as the xylosides were recruited for GAG chain synthesis. Further investigations are required to find xylosides that are effective HAT inhibitors or xylosides producing GAG chains with HAT inhibitory effects. PMID:27023911

  18. Garcinol Inhibits GCN5-Mediated Lysine Acetyltransferase Activity and Prevents Replication of the Parasite Toxoplasma gondii.

    Jeffers, Victoria; Gao, Hongyu; Checkley, Lisa A; Liu, Yunlong; Ferdig, Michael T; Sullivan, William J

    2016-04-01

    Lysine acetylation is a critical posttranslational modification that influences protein activity, stability, and binding properties. The acetylation of histone proteins in particular is a well-characterized feature of gene expression regulation. In the protozoan parasiteToxoplasma gondii, a number of lysine acetyltransferases (KATs) contribute to gene expression and are essential for parasite viability. The natural product garcinol was recently reported to inhibit enzymatic activities of GCN5 and p300 family KATs in other species. Here we show that garcinol inhibits TgGCN5b, the only nuclear GCN5 family KAT known to be required forToxoplasmatachyzoite replication. Treatment of tachyzoites with garcinol led to a reduction of global lysine acetylation, particularly on histone H3 and TgGCN5b itself. We also performed transcriptome sequencing (RNA-seq), which revealed increasing aberrant gene expression coincident with increasing concentrations of garcinol. The majority of the genes that were most significantly affected by garcinol were also associated with TgGCN5b in a previously reported chromatin immunoprecipitation assay with microarray technology (ChIP-chip) analysis. The dysregulated gene expression induced by garcinol significantly inhibitsToxoplasmatachyzoite replication, and the concentrations used exhibit no overt toxicity on human host cells. Garcinol also inhibitsPlasmodium falciparumasexual replication with a 50% inhibitory concentration (IC50) similar to that forToxoplasma Together, these data support that pharmacological inhibition of TgGCN5b leads to a catastrophic failure in gene expression control that prevents parasite replication. PMID:26810649

  19. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance.

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-04-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  20. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance

    Wei-dong GUO; Jun LIANG; Xiao-e YANG; Yue-en CHAO; Ying FENG

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyl-transferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance.

  1. Response of ATP sulfurylase and serine acetyltransferase towards cadmium in hyperaccumulator Sedum alfredii Hance*

    Guo, Wei-dong; Liang, Jun; Yang, Xiao-e; Chao, Yue-en; Feng, Ying

    2009-01-01

    We studied the responses of the activities of adenosine-triphosphate (ATP) sulfurylase (ATPS) and serine acetyltransferase (SAT) to cadmium (Cd) levels and treatment time in hyperaccumulating ecotype (HE) Sedum alfredii Hance, as compared with its non-hyperaccumulating ecotype (NHE). The results show that plant growth was inhibited in NHE but promoted in HE when exposed to high Cd level. Cd concentrations in leaves and shoots rapidly increased in HE rather than in NHE, and they became much higher in HE than in NHE along with increasing treatment time and Cd supply levels. ATPS activity was higher in HE than in NHE in all Cd treatments, and increased with increasing Cd supply levels in both HE and NHE when exposed to Cd treatment within 8 h. However, a marked difference of ATPS activity between HE and NHE was found with Cd treatment for 168 h, where ATPS activity increased in HE but decreased in NHE. Similarly, SAT activity was higher in HE than in NHE at all Cd treatments, but was more sensitive in NHE than in HE. Both ATPS and SAT activities in NHE leaves tended to decrease with increasing treatment time after 8 h at all Cd levels. The results reveal the different responses in sulfur assimilation enzymes and Cd accumulation between HE and NHE. With increasing Cd stress, the activities of sulfur assimilation enzymes (ATPS and SAT) were induced in HE, which may contribute to Cd accumulation in the hyperaccumulator Sedum alfredii Hance. PMID:19353742

  2. Molecular Evolution of Multiple Arylalkylamine N-Acetyltransferase (AANAT in Fish

    Bina Zilberman-Peled

    2011-05-01

    Full Text Available Arylalkylamine N-acetyltransferase (AANAT catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA to arylalkylamines, including indolethylamines and phenylethylamines. Multiple aanats are present in teleost fish as a result of whole genome and gene duplications. Fish aanat1a and aanat2 paralogs display different patterns of tissue expression and encode proteins with different substrate preference: AANAT1a is expressed in the retina, and acetylates both indolethylamines and phenylethylamines; while AANAT2 is expressed in the pineal gland, and preferentially acetylates indolethylamines. The two enzymes are therefore thought to serve different roles. Here, the molecular changes that led to their specialization were studied by investigating the structure-function relationships of AANATs in the gilthead seabream (sb, Sperus aurata. Acetylation activity of reciprocal mutated enzymes pointed to specific residues that contribute to substrate specificity of the enzymes. Inhibition tests followed by complementary analyses of the predicted three-dimensional models of the enzymes, suggested that both phenylethylamines and indolethylamines bind to the catalytic pocket of both enzymes. These results suggest that substrate selectivity of AANAT1a and AANAT2 is determined by the positioning of the substrate within the catalytic pocket, and its accessibility to catalysis. This illustrates the evolutionary process by which enzymes encoded by duplicated genes acquire different activities and play different biological roles.

  3. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  4. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  5. Development of highly glyphosate-tolerant tobacco by coexpression of glyphosate acetyltransferase gat and EPSPS G2-aroA genes

    Baoqing; Dun; Xujing; Wang; Wei; Lu; Ming; Chen; Wei; Zhang; Shuzhen; Ping; Zhixing; Wang; Baoming; Zhang; Min; Lin

    2014-01-01

    The widely used herbicide glyphosate targets 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS).Glyphosate acetyltransferase(GAT)effectively detoxifies glyphosate by N-acetylation.With the aim of identifying a new strategy for development of glyphosate-tolerant crops,the plant expression vector pG2-GAT harboring gat and G2-aroA(encoding EPSPS)has been transformed into tobacco(Nicotiana tabacum)to develop novel plants with higher tolerance to glyphosate.Results from Southern and Western blotting analyses indicated that the target genes were integrated into tobacco chromosomes and expressed effectively at the protein level.Glyphosate tolerance was compared among transgenic tobacco plants containing gat,G2-aroA,or both genes.Plants containing both gat and G2-aroA genes were the most glyphosate-tolerant.This study has shown that a combination of different strategies may result in higher tolerance in transgenic crops,providing a new approach for development of glyphosate-tolerant crops.

  6. Induced High Lysine Mutants in Barley

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    Screening of mutagenically treated materials by combined Kjeldahl nitrogen and dye-binding capacity determinations disclosed fourteen barley mutants, which have from a few to about 40 per cent more lysine in the protein and one mutant with 10 per cent less lysine in the protein than the parent...... variety. Comparisons of six high lysine mutants with the parent variety showed that grain yield and seed size of the mutants are reduced between 10 and 30 per cent. However, the most promising mutant had the lowest reduction in grain yield, and the absolute lysine yield of this mutant was some 30 per cent...... above that of the parent variety. Feeding tests with rats revealed substantial increases in the biological value of the high lysine mutant protein. Also the net protein utilization was improved but less so because of a somewhat reduced digestibility of the mutant protein....

  7. Isolation of mouse cell proteoglycan mutants

    The sulfated proteoglycans on the surface of cultured mammalian cells have been implicated in a variety of phenomena. To obtain more direct evidence for the role of these molecules in specific cellular functions, they are isolating mutants that produce altered sulfated proteoglycans from a cloned line of Swiss mouse 3T3 cells. This cell type was selected because it exhibits contact inhibition of growth and there is extensive information on its' cell surface and extracellular proteoglycans and other glycoproteins. Cells were chemically mutagenized and subjected to one or more cycles of radiation suicide in the presence of 35S-sulfate. By replica plating, 150 clones, which appear to incorporate abnormal amounts of 35S-sulfate, have been selected. After recloning three times via the replica plating technique, the proteoglycans of 29 clones have thus far been analyzed. They have identified four clones which appear to make altered amounts of either cell surface heparan sulfate or chondroitin sulfate. The biochemical bases for the altered levels of the proteoglycans are under study. Of particular interest, however, is the fact that in this limited collection of mutants the chemical alterations correlate with specific altered cellular morphologies

  8. Cell-associated hemagglutinin-deficient mutant of Vibrio cholerae.

    Finn, T M; Reiser, J; Germanier, R.; Cryz, S J

    1987-01-01

    Cell-associated hemagglutinin-negative mutants were derived from cholera enterotoxin-negative Vibrio cholerae JBK70 by Tn5 mutagenesis. One of the mutants identified, SB001, was characterized in greater detail. Its ability to colonize ilea of adult rabbits was determined by feeding approximately 10(8) V. cholerae to each animal. At 17 h after feeding, the numbers of viable vibrios in the ilea were determined. There was a significant, 4 log, decrease in the ability of the hemagglutinin-negativ...

  9. Evaluation of some garlic (Allium Sativum L.) mutants resistant to white rot disease by RAPD analysis

    Random amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic diversity among eight garlic mutants resistant to white rot disease (Sclerotium cepivorum) and two controls. Twelve of 13 synthetic random primers were found to identify polymorphism in amplification products. Mutants characterised with moderate resistance to white rot were closely related to the control using cluster and correlation analyses. On the other hand, highly resistant mutants were quite distant from the control with low correlation coefficients. The banding patterns produced by primer OPB-15 (GGAAGGGTGTT) with highly resistant mutants may be used as genetic markers for early selection of resistant plants. (author)

  10. Gamma ray Induced Light-orange Flower Mutant in Groundnut (Arachis hypogaea L. and its inheritance

    A. Mothilal* and M. Jayaramachandran

    2012-03-01

    Full Text Available A dwarf mutant plant having small leaves and light-orange flower was identified in the M2 generation from gammaray treated groundnut cultivar VRI 2. The mutant bred true in successive generations. An investigation was made toknow the genetics of light-orange flower in groundnut mutant. The Spanish bunch cultivar VRI 2 having orangeflower was crossed with the light-orange flower mutant. The F1 plants exhibited orange flower indicating that theorange colour is governed by dominant gene. However, the F2 population segregated as 3 orange: 1 light-orangeflower indicating the light-orange flower trait is governed by a single recessive gene.

  11. Performance of sorghum mutant lines for yield and quality of fodder under Udaipur conditions

    Jogendra Singh and Lata Chaudhary

    2015-01-01

    An investigation was carried out with multicut forage sorghum variety SSG 59-3 and its 15 mutants derived from gamma irradiation to identify the superior mutant genotypes for high fodder yield and quality in sorghum. Differences among the genotypes were found significant for all the quality traits and most of the yield traits studied at different cut(s). The mutant genotypes SSG 226 was the best performer for both quality and fodder yield and, another two mutant genotypes SSG 231 and SSG 222 ...

  12. Yeast mutants auxotrophic for choline or ethanolamine.

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  13. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  14. Use of mutants to study host/pathogen relations

    Forty-six mutants with changed reactions in powdery mildew resistance were selected after EMS treatment of seeds from three cultivars of spring barley. Recently, further experiments for the induction of new mutants were successfully run with EMS again and with sodium azide (NaN3); but no mutants were obtained in the same experiment after application of sublethal doses of N-methyl-N'-nitro-N-nitrosoguanidine. The original cultivars were characterized by a medium grade of resistance in the field. Mutations were expected to be of major and monogenic effect and consequently to be primarily race-specific in nature. A detailed analysis of resistance was started, both in the field and under spore-proof conditions of environment-controlled growth cabinets. In the field, the progress of disease was recorded during three summer periods on an individual plant basis. Specific mutants were clearly identified by their changed reactions to the natural epidemics, i.e. by (a) lower or (b) higher susceptibility; by (c) adult plant, or (d) by young plant resistance. Degrees of chlorosis or necrosis were estimated on the infected leaves and the influence of the attack on yield components was studied. By controlled infections with eight different isolates of mildew, race-specificity of resistance reactions was determined for all the 46 mutants. The results were unexpected in that they did not show clear-cut vertical relations between mutants and single pathogen races. In some instances, the general level of resistance appeared to be shifted from the original medium level to higher or lower degrees; in other cases, increase of severity of attack was recorded with some pathotypes and decrease with others on the same mutant host

  15. Problem-Solving Test: Tryptophan Operon Mutants

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  16. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.

    Tännler, Simon; Zamboni, Nicola; Kiraly, Csilla; Aymerich, Stéphane; Sauer, Uwe

    2008-09-01

    To identify novel targets for metabolic engineering of riboflavin production, we generated about 10,000 random, transposon-tagged mutants of an industrial, riboflavin-producing strain of Bacillus subtilis. Process-relevant screening conditions were established by developing a 96-deep-well plate method with raffinose as the carbon source, which mimics, to some extent, carbon limitation in fed batch cultures. Screening in raffinose and complex LB medium identified more efficiently riboflavin overproducing and underproducing mutants, respectively. As expected for a "loss of function" analysis, most identified mutants were underproducers. Insertion mutants in two genes with yet unknown function, however, were found to attain significantly improved riboflavin titers and yields. These genes and possibly further ones that are related to them are promising candidates for metabolic engineering. While causal links to riboflavin production were not obvious for most underproducers, we demonstrated for the gluconeogenic glyceraldehyde-3-phosphate dehydrogenase GapB how a novel, non-obvious metabolic engineering strategy can be derived from such underproduction mutations. Specifically, we improved riboflavin production on various substrates significantly by deregulating expression of the gluconeogenic genes gapB and pckA through knockout of their genetic repressor CcpN. This improvement was also verified under the more process-relevant conditions of a glucose-limited fed-batch culture. PMID:18582593

  17. Selection of high hectolitre weight mutants of winter wheat

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M2 grains with altered shape were selected. Examination of the M3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  18. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    Jablonski, Monica M. [University of Tennessee Health Science Center, Memphis; Wang, Xiaofei [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Miller, Darla R [ORNL; Rinchik, Eugene M [ORNL; Williams, Robert [University of Tennessee Health Science Center, Memphis; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.

  19. Effect of different immunosuppressive drugs on calcineurin and its mutants

    阎力君; 于翠娟; 张丽芳; 魏群

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis. Their phosphatase activity and the corresponding solution conformation were examined. Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immuno-suppressive drugs with CN. The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN. Furthermore, circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein. Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN, and had no effects on the phosphatase activity of mutants in Loop7 region, which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN. Examination of the activities of these

  20. Identification of some Rice Mutants using Morphological and Molecular Methods

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, abu zaabal in order to verify four rice genotypes i.e sakha 102, giza 178, high yielding mutant (Ms 6) and high yielding mutant (MG 16). the (UPOV) rice descriptor was used to identify the germplasm morphologically .Molecular RAPD-PCR was used to identify genetic variability on the molecular level for the tested genotypes. 1- the results indicated that according to (UPOV) rice descriptor eight morphological traits were completely different between mutant Ms 6 in comparison with the parent sakha 102 and mut. MG 16 in comparison parent giza 178, the traits were ; stem thickness, stem length, panicle length, 1000-grain weight, grain length, grain width decorticated grain length and decorticated grain width. 2- using 10 arbitrary primers, through four rice genotypes on the molecular level using RAPD markers. the size of the amplified fragments were ranged from 0.201 to 2.036 k bp. two primers OPB-13 and OPB-16 showed no polymorphism among genotypes tested. 3- the total number of amplicons produced by the 8 polymorphic RAPD profiels was 66. the total number of monomorphic amplicons was 32. however, the total number of polymorphic amplicons was 34. 4- the percentage of polymorphism ranged from (22.22%) for primer OPA-18 to (90%) for primer OPB-11. 5-the highest genetic similarity (90.3%) was between sakha 102 and high yielding mut. (Ms 6). the genetic similarity (75.5%) was between giza 178 and high yielding mut.(MG 16). 6- one positive unique marker amplified by OPA-18 Primer identified the high yielding mutant Ms 6 but three positive unique markers amplified by OPB-17 primer and OPA-18 primer identified the high yielding mutant MG 16

  1. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated β-galactosidase (SA-β-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that inhibits NHEJ

  2. Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining

    Oike, Takahiro [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Ogiwara, Hideaki [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Torikai, Kohta [Gunma University Heavy Ion Medical Center, Maebashi, Gunma (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma (Japan); Yokota, Jun [Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Kohno, Takashi, E-mail: tkkohno@ncc.go.jp [Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan)

    2012-11-01

    Purpose: Non-homologous end joining (NHEJ), a major pathway used to repair DNA double-strand breaks (DSBs) generated by ionizing radiation (IR), requires chromatin remodeling at DSB sites through the acetylation of histones by histone acetyltransferases (HATs). However, the effect of compounds with HAT inhibitory activities on the DNA damage response (DDR), including the NHEJ and cell cycle checkpoint, as well as on the radiosensitivity of cancer cells, remains largely unclear. Here, we investigated whether garcinol, a HAT inhibitor found in the rinds of Garcinia indica fruit (called mangosteens), has effects on DDR, and whether it can be used for radiosensitization. Methods and Materials: The following assays were used to examine the effect of garcinol on the inhibition of DSB repair, including the following: a conventional neutral comet assay; a cell-based assay recently developed by us, in which NHEJ repair of DSBs on chromosomal DNA was evaluated; the micrococcal nuclease sensitivity assay; and immunoblotting for autophosphorylation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We assessed the effect of garcinol on the cell cycle checkpoint after IR treatment by analyzing the phosphorylation levels of checkpoint kinases CHK1 and CHK2 and histone H3, and by cell cycle profile analysis using flow cytometry. The radiosensitizing effect of garcinol was assessed by a clonogenic survival assay, whereas its effects on apoptosis and senescence were examined by annexin V and senescence-associated {beta}-galactosidase (SA-{beta}-Gal) staining, respectively. Results: We found that garcinol inhibits DSB repair, including NHEJ, without affecting cell cycle checkpoint. Garcinol radiosensitized A549 lung and HeLa cervical carcinoma cells with dose enhancement ratios (at 10% surviving fraction) of 1.6 and 1.5, respectively. Cellular senescence induced by IR was enhanced by garcinol. Conclusion: These results suggest that garcinol is a radiosensitizer that

  3. N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer

    Tiago Donizetti da Silva

    2011-02-01

    Full Text Available AIM: To investigate the possible association between meat intake, cigarette smoking and N-acetyltransferase 2 (NAT2 genetic polymorphisms on colorectal cancer (CRC risk.METHODS: Patients with CRC were matched for gender and age to healthy controls. Meat intake and cigarette smoking were assessed using a specific frequency questionnaire. DNA was extracted from peripheral blood and the genotypes of the polymorphism were assessed by polymerase chain reaction-restriction fragment length polymorphism. Five NAT2 alleles were studied (WT, M1, M2, M3 and M4 using specific digestion enzymes.RESULTS: A total of 147 patients with colorectal cancer (76 women and 90 men with colon cancer and 212 controls were studied. The mean age of the two groups was 62 years. More than half the subjects (59.8% in the case group and 51.9% in the control group were NAT2 slow acetylators. The odds ratio for colorectal cancer was 1.38 (95% CI: 0.90-2.12 in slow acetylators. Although the number of women was small (n = 76 in the case group, the cancer risk was found to be lower in intermediate (W/Mx acetylators [odds ratio (OR: 0.55, 95% confidence interval (95% CI: 0.29-1.02]. This difference was not observed in men (OR: 0.56, 95% CI: 0.16-2.00. Among NAT2 fast acetylators (W/W or W/Mx, meat consumption more than 3 times a week increased the risk of colorectal cancer (OR: 2.05, 95% CI: 1.01-4.16. In contrast, cigarette smoking increased the risk of CRC among slow acetylators (OR: 1.97, 95% CI: 1.02-3.79.CONCLUSION: The risk of CRC was higher among fast acetylators who reported a higher meat intake. Slow NAT2 acetylation was associated with an increased risk of CRC.

  4. N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb

    Wei-chao GUO; Guo-fang LIN; Yong-lin ZHA; Ke-jian LOU; Qing-wen MA; Jian-hua SHEN

    2004-01-01

    AIM: To investigate the possible association of hereditary polymorphism of N-acetyltransferase 2 (NAT2) gene with the susceptibility towards senile dementia in farmer population of Shanghai suburb. METHODS: NAT2 gene genotyping was performed at 7 major polymorphic loci (G191A, C282T, T341C, C481T, G590A, A803G, and .G857A) with a polymerase chain reaction-based restriction fragment length polymorphism based procedure in 2 groups of farmer subjects in Shanghai suburb. A group of 51 diagnosed dementia patients [comprising 29 sporadic Alzheimer disease(AD) patients and 22 sporadic vascular dementia (VD) patients] and a group of 112 healthy individuals were in the same area. RESULTS: The homogenous rapid genotypes (R/R, including*4/*4, *13/*13, and *4/*13) was found over-present in both groups of patients, compared with healthy individuals, for all farmer dementia patients, 52.9 %vs 33.0 %, P=0.016, OR (95 % CI): 2.28(1.16-4.48); for AD group only, 51.7 % vs 33.0 %, P=0.063, OR (95 %CI): 2.18 (0.95-4.97); for VD group 54.5 % vs 33.0 %, P=0.055, OR (95 % CI): 2.43 (0.96-2.43). The significant frequency difference of genotype *4/* 7B between farmer dementia patients and healthy individuals, and that of solo-alleles *13, and *7B were observed between the healthy individuals and both groups of dementia patients.CONCLUSION: Our data suggest the involvement of various NAT2 rapid-acetylating genotypes in the individual susceptibility to senile dementia. Variant genotypes of NAT2 might serve as a hereditary risk factor for AD and VD in Chinese population.

  5. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  6. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode

    Zhang, Wei; Yang, Tao; Jiang, Chen; Jiao, Kui

    2008-05-01

    This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO 2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl 2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO 2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10 -10 to 1.0 × 10 -6 mol/L, and a detection limit of 3.1 × 10 -11 mol/L.

  7. Polymorphisms of arylamine N-acetyltransferase2 and risk of lung and colorectal cancer

    Amjad Mahasneh

    2012-01-01

    Full Text Available The arylamine N-acetyltransferase 2 (NAT2 enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A, M2 (NAT2*6A, M3 (NAT2*7 and M4 (NAT2 *14A from the wild-type WT (NAT2 *4 allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05. However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05. There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively, but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively. Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR: 0.51, 95% confidence interval (95% CI: 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.

  8. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  9. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Studies of [3H]diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot [Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture]. Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the [3H]diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT

  10. Arylamine N-acetyltransferase 2 (NAT2 genetic diversity and traditional subsistence: a worldwide population survey.

    Audrey Sabbagh

    Full Text Available Arylamine N-acetyltransferase 2 (NAT2 is involved in human physiological responses to a variety of xenobiotic compounds, including common therapeutic drugs and exogenous chemicals present in the diet and the environment. Many questions remain about the evolutionary mechanisms that have led to the high prevalence of slow acetylators in the human species. Evidence from recent surveys of NAT2 gene variation suggests that NAT2 slow-causing variants might have become targets of positive selection as a consequence of the shift in modes of subsistence and lifestyle in human populations in the last 10,000 years. We aimed to test more extensively the hypothesis that slow acetylation prevalence in humans is related to the subsistence strategy adopted by the past populations. To this end, published frequency data on the most relevant genetic variants of NAT2 were collected from 128 population samples (14,679 individuals representing different subsistence modes and dietary habits, allowing a thorough analysis at both a worldwide and continent scale. A significantly higher prevalence of the slow acetylation phenotype was observed in populations practicing farming (45.4% and herding (48.2% as compared to populations mostly relying on hunting and gathering (22.4% (P = 0.0007. This was closely mirrored by the frequency of the slow 590A variant that was found to occur at a three-fold higher frequency in food producers (25% as compared to hunter-gatherers (8%. These findings are consistent with the hypothesis that the Neolithic transition to subsistence economies based on agricultural and pastoral resources modified the selective regime affecting the NAT2 acetylation pathway. Furthermore, the vast amount of data collected enabled us to provide a comprehensive and up-to-date description of NAT2 worldwide genetic diversity, thus building up a useful resource of frequency data for further studies interested in epidemiological or anthropological research

  11. N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer.

    Rabstein, Sylvia; Brüning, Thomas; Harth, Volker; Fischer, Hans-Peter; Haas, Susanne; Weiss, Tobias; Spickenheuer, Anne; Pierl, Christiane; Justenhoven, Christina; Illig, Thomas; Vollmert, Caren; Baisch, Christian; Ko, Yon-Dschun; Hamann, Ute; Brauch, Hiltrud; Pesch, Beate

    2010-03-01

    The role of N-acetyltransferase 2 (NAT2) polymorphism in breast cancer is still unclear. We explored the associations between potential sources of exposure to aromatic and heterocyclic amines (AHA), acetylation status and receptor-defined breast cancer in 1020 incident cases and 1047 population controls of the German GENICA study. Acetylation status was assessed as slow or fast. Therefore, NAT2 haplotypes were estimated using genotype information from six NAT2 polymorphisms. Most probable haplotypes served as alleles for the deduction of NAT2 acetylation status. The risks of developing estrogen receptor alpha (ER) and progesterone receptor (PR)-positive or negative tumors were estimated for tobacco smoking, consumption of red meat, grilled food, coffee, and tea, as well as expert-rated occupational exposure to AHA with logistic regression conditional on age and adjusted for potential confounders. Joint effects of these factors and NAT2 acetylation status were investigated. Frequent consumption of grilled food and coffee showed higher risks in slow acetylators for receptor-negative tumors [grilled food: ER-: odds ratio (OR) 2.57, 95% confidence interval (CI) 1.07-6.14 for regular vs. rare; coffee: ER-: OR 2.55, 95% CI 1.22-5.33 for >or=4 vs. 0 cups/day]. We observed slightly higher risks for never smokers that are fast acetylators for receptor-positive tumors compared with slow acetylators (ER-: OR 1.32, 95% CI 1.00-1.73). Our results support differing risk patterns for receptor-defined breast cancer. However, the modifying role of NAT2 for receptor-defined breast cancer is difficult to interpret in the light of complex mixtures of exposure to AHA. PMID:19996973

  12. N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer

    Tiago Donizetti da Silva; Aledson Vitor Felipe; Jacqueline Miranda de Lima; Celina Tizuko Fujiyama Oshima; Nora Manoukian Forones

    2011-01-01

    AIM: To investigate the possible association between meat intake, cigarette smoking and N-acetyltransferase 2 (NAT2) genetic polymorphisms on colorectal cancer (CRC) risk.METHODS: Patients with CRC were matched for gender and age to healthy controls. Meat intake and cigarette smoking were assessed using a specific frequency questionnaire. DNA was extracted from peripheral blood and the genotypes of the polymorphism were assessed by polymerase chain reaction-restriction fragment length polymorphism. Five NAT2 alleles were studied (WT, M1,M2, M3 and M4) using specific digestion enzymes.RESULTS: A total of 147 patients with colorectal cancer (76 women and 90 men with colon cancer) and 212 controls were studied. The mean age of the two groups was 62 years. More than half the subjects (59.8% in the case group and 51.9% in the control group) were NAT2 slow acetylators. The odds ratio for colorectal cancer was 1.38 (95% CI: 0.90-2.12) in slow acetylators. Although the number of women was small (n = 76 in the case group),the cancer risk was found to be lower in intermediate (W/Mx) acetylators [odds ratio (OR): 0.55, 95% confidence interval (95% CI): 0.29-1.02]. This difference was not observed in men (OR: 0.56, 95% CI: 0.16-2.00). Among NAT2 fast acetylators (W/W or W/Mx), meat consumption more than 3 times a week increased the risk of colorectal cancer (OR: 2.05, 95% CI: 1.01-4.16). In contrast,cigarette smoking increased the risk of CRC among slow acetylators (OR: 1.97, 95% CI: 1.02-3.79).CONCLUSION: The risk of CRC was higher among fast acetylators who reported a higher meat intake. Slow NAT2 acetylation was associated with an increased risk of CRC.

  13. Estrogen intervention in microvascular morphology and choline acetyltransferase expression in rat hippocampal neurons in chronic cerebral ischemia

    Zhenjun Yang; Hongwei Yan; Guomin Zhang; Zhihong Chen; Jingfeng Xue

    2011-01-01

    We observed dynamic changes in microvessels and a protective effect of estrogen on chronic cerebral ischemia ovariectomized rat models established through permanent occlusion of bilateral carotid arteries at 7, 14 and 21 days. The results revealed that estrogen improved microvasculature in the hippocampus of chronic cerebral ischemic rats, upregulated Bcl-2 protein expression, downregulated Bax protein expression, increased choline acetyltransferase expression in hippocampal cholinergic neurons, and suppressed hippocampal neuronal apoptosis. These findings indicate that estrogen can protect hippocampal neurons in rats with chronic cerebral ischemia.

  14. PNRI mutant variety: Cordyline 'Afable'

    Cordyline 'Afable', registered by the Philippine Nuclear Research Institute as NSIC 2009 Or-83, is an induced mutant developed from Cordyline 'Kiwi' by treating stem cuttings with acute gamma radiation from a Cobalt-60 source. The new mutant is identical to Cordyline 'Kiwi' in growth habit but differs in foliage color, and exhibits field resistance to Phytophthora sp., a fungus that causes leaf blight and rot in Ti plants. Results of this mutation breeding experiment showed that leaf color was altered by gamma irradiation and resistance to fungal diseases was improved. It also demonstrated how mutations that occur in nature may be generated artificially. Propagation of cordyline 'Afable' is true-to-type by vegetative propagation methods, such as separation of suckers and offshoots, shoot tip cutting, and top cutting. Aside from landscaping material, terrarium or dish-garden plant, it is ideal as containerized plant for indoor and outdoor use. The leaves or shoots may be harvested as cut foliage for flower arrangements. (author)

  15. Gamma ray induced mutants in Coleus

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M1V1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  16. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D

    Welin, M.; Skovgaard, T.; Knecht, Wolfgang;

    2005-01-01

    The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3......'-modified nucleoside analogs like 3'-azidothymidine ( AZT) was nearly unchanged. Here, we identify the mutation N64D as being responsible for these changes. Furthermore, we crystallized the mutant enzyme in the presence of one of its substrates, thymidine, and the feedback inhibitor, dTTP. The introduction...

  17. The Mouse MC13 Mutant Is a Novel ENU Mutation in Collagen Type II, Alpha 1

    Cionni, Megan; Menke, Chelsea; Rolf W Stottmann

    2014-01-01

    Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A...

  18. Metabolite profiling of induced mutants of rice and soybean

    The study objects of the investigation were two low phytic acid (lpa) rice (Os-lpa-XS110-1, Os-lpa-XS110-2) and soybean (Gm-lpa-TW-75-1, Gm-lpa-ZC-2) mutants generated by irradiation. The aim was to compare these mutants to the corresponding wild-types by means of capillary gas chromatography metabolite profiling and to explore the usefulness of this approach to assist in the elucidation of the types of mutation resulting in the reduced contents of phytic acid. Metabolite profiling aspires to provide a comprehensive picture of the metabolites present in biological systems. It aims at extracting, detecting, identifying, and quantifying a broad spectrum of compounds in a single sample to provide a deeper insight into complex biological systems. The extraction and fractionation method used in the study allowed a comprehensive coverage of a broad spectrum of low molecular weight metabolites ranging from lipophilic (fatty acids methyl esters, hydrocarbons, free fatty acids, sterols, tocopherols) to hydrophilic (sugars, sugar alcohols, organic acids, amino acids) compounds. For rice, considerable amounts of the peaks detected were statistically significantly different between wild-types and lpa mutants within one field trial. However, only a few of these differences could be consistently observed in all analyzed field trials indicating a strong influence of the biological variability. Metabolites shown to be consistently statistically significantly different between wild-type and lpa rice mutants were found to be closely related to the biogenetic pathways leading to phytic acid. This allowed a prediction of the mutation targets for the lpa rice mutants in the biosynthetic pathway of phytic acid. Similar effects, e.g. clustering of wild-types and lpa mutants on the basis of metabolite profiling data, were observed for soybean. (author)

  19. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K. PMID:25615976

  20. Polymorphisms in the Human Cytochrome P450 and Arylamine N-Acetyltransferase: Susceptibility to Head and Neck Cancers

    Rim Khlifi

    2013-01-01

    Full Text Available The occurrence of head and neck cancer (HNC is associated with smoking and alcohol drinking. Tobacco smoking exposes smokers to a series of carcinogenic chemicals. Cytochrome P450 enzymes (CYP450s, such as CYP1A1, CYP1B1, and CYP2D6, usually metabolize carcinogens to their inactive derivatives, but they occasionally convert the chemicals to more potent carcinogens. In addition, via CYP450 (CYP2E1 oxidase, alcohol is metabolized to acetaldehyde, a highly toxic compound, which plays an important role in carcinogenesis. Furthermore, two N-acetyltransferase isozymes (NATs, NAT1 and NAT2, are polymorphic and catalyze both N-acetylation and O-acetylation of aromatic and heterocyclic amine carcinogens. Genetic polymorphisms are associated with a number of enzymes involved in the metabolism of carcinogens important in the induction of HNC. It has been suggested that such polymorphisms may be linked to cancer susceptibility. In this paper, we select four cytochrome P450 enzymes (CYP1A1, CYP1BA1, CYP2D6, and CYP2E1, and two N-acetyltransferase isozymes (NAT1 and NAT2 in order to summarize and analyze findings from the literature related to HNC risk by focusing on (i the interaction between these genes and the environment, (ii the impact of genetic defect on protein activity and/or expression, and (iii the eventual involvement of race in such associations.

  1. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis.

    Pathak, Deepika; Bhat, Aadil Hussain; Sapehia, Vandana; Rai, Jagdish; Rao, Alka

    2016-01-01

    Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogenetically divergent from eukaryotic NATs, and only a couple of them are characterized biochemically. Accordingly, not much is known about their substrate specificities. Rv3420c of Mycobacterium tuberculosis is a NAT ortholog coding for RimI(Mtb). Using in vitro peptide-based enzyme assays and mass-spectrometry methods, we provide evidence that RimI(Mtb) is a protein Nα-acetyltransferase of relaxed substrate specificity mimicking substrate specificities of eukaryotic NatA, NatC and most competently that of NatE. Also, hitherto unknown acetylation of residues namely, Asp, Glu, Tyr and Leu by a bacterial NAT (RimI(Mtb)) is elucidated, in vitro. Based on in vivo acetylation status, in vitro assay results and genetic context, a plausible cellular substrate for RimI(Mtb) is proposed. PMID:27353550

  2. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of enzymatic deactivation of the drugs. The aminoglycoside N-acetyltransferases (AACs) are a large family of bacterial enzymes that are responsible for coenzyme-A-facilitated acetylation of aminoglycosides. The gene encoding one of these enzymes, AAC(6′)-Im, has been cloned and the protein (comprising 178 amino-acid residues) was expressed in Escherichia coli, purified and crystallized as the kanamycin complex. Synchrotron diffraction data to approximately 2.0 Å resolution were collected from a crystal of this complex on beamline BL12-2 at SSRL (Stanford, California, USA). The crystals belonged to the hexagonal space group P65, with approximate unit-cell parameters a = 107.75, c = 37.33 Å, and contained one molecule in the asymmetric unit. Structure determination is under way using molecular replacement

  3. Histone acetyltransferase HAT4 modulates navigation across G2/M and re-entry into G1 in Leishmania donovani.

    Yadav, Aarti; Chandra, Udita; Saha, Swati

    2016-01-01

    Histone acetyltransferases impact multiple processes. This study investigates the role of histone acetyltransferase HAT4 in Leishmania donovani. Though HAT4 was dispensable for survival, its elimination decreased cell viability and caused cell cycle defects, with HAT4-nulls experiencing an unusually long G2/M. Survival of HAT4-nulls in macrophages was also substantially compromised. DNA microarray analysis revealed that HAT4 modestly regulated the expression of only a select number of genes, thus not being a major modulator of global gene expression. Significantly, cdc20 was among the downregulated genes. To ascertain if decreased expression of cdc20 was responsible for HAT4-null growth and cell cycle defects we expressed LdCdc20 ectopically in HAT4-nulls. We found this to alleviate the aberrant growth and cell cycle progression patterns displayed by HAT4-nulls, with cells navigating G2/M phase and re-entering G1 phase smoothly. HAT4-nulls expressing LdCdc20 ectopically showed survival rates comparable to wild type within macrophages, suggesting that G2/M defects were responsible for poor survival of HAT4-nulls within host cells also. These are the first data analyzing the in vivo functional role of HAT4 in any trypanosomatid. Our results directly demonstrate for the first time a role for Cdc20 in regulating trypanosomatid G2/M events, opening avenues for further research in this area. PMID:27272906

  4. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    Coon, S.L.; Bernard, M.; Roseboom, P.H. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-05-15

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable at low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.

  5. Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis

    Pathak, Deepika; Bhat, Aadil Hussain; Sapehia, Vandana; Rai, Jagdish; Rao, Alka

    2016-01-01

    Nα-acetylation is a naturally occurring irreversible modification of N-termini of proteins catalyzed by Nα-acetyltransferases (NATs). Although present in all three domains of life, it is little understood in bacteria. The functional grouping of NATs into six types NatA - NatF, in eukaryotes is based on subunit requirements and stringent substrate specificities. Bacterial orthologs are phylogenetically divergent from eukaryotic NATs, and only a couple of them are characterized biochemically. Accordingly, not much is known about their substrate specificities. Rv3420c of Mycobacterium tuberculosis is a NAT ortholog coding for RimIMtb. Using in vitro peptide-based enzyme assays and mass-spectrometry methods, we provide evidence that RimIMtb is a protein Nα-acetyltransferase of relaxed substrate specificity mimicking substrate specificities of eukaryotic NatA, NatC and most competently that of NatE. Also, hitherto unknown acetylation of residues namely, Asp, Glu, Tyr and Leu by a bacterial NAT (RimIMtb) is elucidated, in vitro. Based on in vivo acetylation status, in vitro assay results and genetic context, a plausible cellular substrate for RimIMtb is proposed. PMID:27353550

  6. Choline acetyltransferase expressed by radial neuroglia cells in the development of telencephalon: A validated study

    Li Zhou; Lingling Ding; Zhisuo Xiao; Yuanyuan Qin; Guibin Li

    2007-01-01

    BACKGROUND: Cholinergic neuron directly participants in human motion, learning and memory and is a target cell for multiple degenerative diseases of central nervous system.OBJECTIVE: To investigate whether the mitotic cell is the radial glial cell expressing choline acetyltransferase (ChAT) in ventricle zone (VZ) of telencephalon and whether cholinergic neuron is derived from radial glial cell in ventricle zone of telencephalon.DESIGN: Observational study.SETTING: Department of Histology and Embryology, Basic Medical College of Jilin University.MATERIALS: Nine healthy Wistar rats included 6 females and 3 male. Male and female rats were mated routinely, and the day when spermatozoa or vaginal plug were found was regarded as embryonic 0 (E0).Primary monoclonal antibodies ChAT and vimentin were provided respectively by Wuhan Boster Company,and Biogenex Company, USA.METHODS: The experiment was carried out in the Laboratory of Cell Culture and Immunohistochemistry,Department of Histology and Embryology from march 2002 to January 2003. Firstly, fluorescence-activated cell sorting (FACS) was used to confirm the time of generation of cholinergic neuron; secondly,telencephalons of rats at embryonic 14 days (E14) were performed coronary sections, then immunohistochemistry double staining for vimentin (a protein marker of radial neuroglia cell) and ChAT (a protein marker of cholinergic neuron) were used to test whether ChAT was expressed in the radial neuroglia cells.results of immunohistochemistry double staining.RESULTS: It is confirmed using by flow cytometer that embryogenesis time of cholinergic neuron was at E12, and shown the population of cells in VZ of dorsal telencephalon of E14 rat co-expressed vimentin and ChAT through immunohistochemistry double staining. A lot of vimentin-positive cells and ChAT-positive cells respectively were observed in VZ of lateral ganglionic eminence.CONCLUSION: Cholinergic neuron in cerebral cortex is derived from radial glial cells in VZ

  7. Rice mutant cultivar SCS114 Andosan

    The development process and its yield, quality performance of the mutant rice variety SCS Andosan 114 was described. SCS Andosan 114 was selected from the mutant progeny of IR 841 after treatment of 150 Gy gamma rays; It had a 7.4 ∼ 9.6% yield increase over IR 841 and a higher amylase content (28%) than IR 841 (19%). The mutant variety also showed high tolerance to iron toxicity and resistance to blast disease. (author)

  8. Regulation of Mutant p53 Protein Expression

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be e...

  9. Characterization of Sugar Insensitive (sis) Mutants of Arabidopsis

    Gibson, Susan I.

    2009-06-08

    Despite the fact that soluble sugar levels have been postulated to play an important role in the control of a wide variety of plant metabolic and developmental pathways, the mechanisms by which plants respond to soluble sugar levels remain poorly understood. Plant responses to soluble sugar levels are also important in bioenergy production, as plant sugar responses are believed to help regulate both carbon fixation and carbon partitioning. For example, accumulation of soluble sugars, such as sucrose and glucose, in source tissues leads to feedback inhibition of photosynthesis, thereby decreasing rates of carbon fixation. Soluble sugar levels can also affect sink strengths, affecting the rates of accumulation of carbon-based compounds into both particular molecular forms (e.g. carbohydrates versus lipids versus proteins) and particular plant organs and tissues. Mutants of Arabidopsis that are defective in the ability to respond to soluble sugar levels were isolated and used as tools to identify some of the factors involved in plant sugar response. These sugar insensitive (sis) mutants were isolated by screening mutagenized seeds for those that were able to germinate and develop relatively normal shoot systems on media containing 0.3 M glucose or 0.3 M sucrose. At these sugar concentrations, wild-type Arabidopsis germinate and produce substantial root systems, but show little to no shoot development. Twenty-eight sis mutants were isolated during the course of four independent mutant screens. Based on a preliminary characterization of all of these mutants, sis3 and sis6 were chosen for further study. Both of these mutations appear to lie in previously uncharacterized loci. Unlike many other sugar-response mutants, sis3 mutants exhibit a wild-type or near wild-type response in all phytohormone-response assays conducted to date. The sis6-1 mutation is unusual in that it appears to be due to overexpression of a gene, rather than representing a loss of function mutation

  10. Biochemical and histological characterization of tomato mutants

    Carolina C. Monteiro

    2012-06-01

    Full Text Available Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT, we observed that the malondialdehyde (MDA content was enhanced in the diageotropica (dgt and lutescent (l mutants, whilst the highest levels of hydrogen peroxide (H2O2 were observed in high pigment 1 (hp1 and aurea (au mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT activity when compared to MT. Guaiacol peroxidase (GPOX was enhanced in both sitiens (sit and notabilis (not mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX. Based on PAGE analysis, the activities of glutathione reductase (GR isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD isoform III was reduced in leaves of sit, epi, Never ripe (Nr and green flesh (gf mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.Neste trabalho, analisamos as respostas bioquímicas inerentes ao sistema antioxidante, assim como propriedades morfológicas e anatômicas de mutantes fotomorfogenéticos e hormonais de tomateiro. Comparados ao não mutante Micro-Tom (MT, observamos que o conteúdo de malondialdeído (MDA aumentou nos mutantes diageotropica (dgt e lutescent (l, enquanto os maiores níveis de H2O2 foram encontrados nos mutantes high pigment 1 (hp1 e aurea (au. Análises de enzimas antioxidantes mostraram que todos os mutantes reduziram a atividade de catalase (CAT quando comparado a MT. A

  11. Variability of yield structure and of physical traits determining lodging resistance in barley mutants

    Krajewski P.

    1998-09-01

    Full Text Available The paper presents an analysis of the variability of yield structure traits and lodging resistance of 32 spring barley mutants. The mutants were obtained from the DH line HK-119 using a chemomutagen N-ni-troso-N-methylurea (MNLJ and helium-neon laser. The mutants were chosen in such a way that they represented a broad spectrum of plant height. The investigation allowed mutants with improved parameters of yield structure in comparison to the initial form HK-119 to be selected. The analysis of morphological and physical traits stem diameters, wall thickness and stem elasticity (Young's modulus made possible the relationship between these traits and lodging grade to be estimated. The lodging grade was assessed in field conditions on a 9 degree scale, where 1 means no lodging and 9 the highest degree of lodging. Mutants of different plant height, with desirable yield structure and improved lodging resistance, were identified.

  12. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study

    This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord

  13. No germline mutations in the histone acetyltransferase gene EP300 in BRCA1 and BRCA2 negative families with breast cancer and gastric, pancreatic, or colorectal cancer

    Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for many, but not all, multiple-case breast and ovarian cancer families. The histone acetyltransferase gene EP300 may function as a tumour suppressor gene because it is sometimes somatically mutated in breast, colorectal, gastric and pancreatic cancers, and is located on a region of chromosome 22 that frequently undergoes loss of heterozygosity in many cancer types. We hypothesized that germline mutations in EP300 may account for some breast cancer families that include cases of gastric, pancreatic and/or colorectal cancer. We screened the entire coding region of EP300 for mutations in the youngest affected members of 23 non-BRCA1/BRCA2 breast cancer families with at least one confirmed case of gastric, pancreatic and/or colorectal cancer. These families were ascertained in Australia through the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. Denaturing HPLC analysis identified a heterozygous alteration at codon 211, specifically a GGC to AGC (glycine to serine) alteration, in two individuals. This conservative amino acid change was not within any known functional domains of EP300. The frequency of the Ser211 variant did not differ significanlty between a series of 352 breast cancer patients (4.0%) and 254 control individuals (2.8%; P = 0.5). The present study does not support a major role for EP300 mutations in breast and ovarian cancer families with a history of gastric, pancreatic and/or colorectal cancer

  14. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  15. Genetic and molecular characterization of radiation-sensitive mutants of the slime mold, Dictyostelium discoideum

    Several radiation-sensitive mutants of Dictyostelium discoideum, isolated on the basis of sensitivity to either 60Co gamma rays or 254 nm ultraviolet light (uv), were genetically characterized. The mutations studied can be classified into three types on the basis of their radiation-sensitive phenotype. Type one mutants are very sensitive compared to their parental radiation-resistant strains to both uv and gamma rays with no shoulder on their survival curves. Type two mutants have a sensitivity to both uv and gamma rays intermediate between that of the type one mutants and that of their parental strains; type two mutants have shoulders on both uv and gamma ray survival curves. Type three mutant are sensitive only to uv and are as resistant as their parental strains to gamma rays. The type three mutants have intermediate sensitivities to uv like the type two mutants and have shoulders on their survival curves. Linkage and complementation studies indicate that the ten radiation-sensitive mutations studied identify at least six but probably eight loci involved with DNA repair in D. discoideum. Alkaline sucrose gradient sedimentation profiles of DNA from cells following uv irradiation (15 J/m2) indicate that all type one and type two uv- and gamma-ray-sensitive mutants studied can make and repair single strand breaks. However the type three mutants (radC strains) made few single strand breaks under identical conditions, suggesting that these mutants are defective in excision repair. The evidence obtained indicates that D. discoideum has at least two pathways involved with the repair of uv-induced DNA damage

  16. Urinary acetylated metabolites and N-acetyltransferase-2 genotype in human subjects treated with a para-phenylenediamine-containing oxidative hair dye

    Nohynek, G.J.; Skare, J.A.; Meuling, W.J.A.; Hein, D.W.; Bie, A.T.H.J. de; Toutain, H.

    2004-01-01

    In the organism of mammals, important detoxification pathways of arylamines are catalysed by N-acetyltransferase 2 (NAT2). A recent case-control epidemiology study suggested that human NAT2 slow acetylators exposed to oxidative hair dyes may be at greater risk to develop bladder cancer. We therefore

  17. Bioprospecting for Trichothecene 3-O-acetyltransferases in the fungal genus Fusarium yields functional enzymes that vary in their Aaility to modify the mycotoxin deoxynivalenol

    The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to mod...

  18. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink® and WideStrike® Cotton

    LibertyLink® cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike® cultivars were obtained by using the similar pat gene as a selectable marker. The latter cultivars ca...

  19. Some properties of acetyl-CoA:arylamine N-acetyltransferase (EC 2.3.1.5) from rat pineal gland

    N-acetylation of serotonin to N-acetylserotonin in the pineal gland is catalysed by acetyl-CoA:arylamine N-acetyltransferase (SNAT). The present investigation was an attempt to design an assay technique which would permit sensitive evaluation of SNAT in order to evaluate some kinetic properties of the enzyme

  20. Effects of chronic renal failure rat serum on histone acetyltransferase p300 and activation of activating transcription factor 4 of arterial smooth muscle cells cultured in vitro

    张耀全

    2014-01-01

    Objective To investigate the effects of the rat serum with chronic renal failure(CRF)on ubiquitin-proteasome pathway,histone acetyltransferase p300 and activation of activating transcription factor 4(ATF4)of rat arterial vascular smooth muscle cells(VSMCs)cultured in vitro,and explore the possible mechanism.Methods Objective To establish the rat model of

  1. Radiation-sensitive mutants of yeast

    Nomenclature for various radiosensitive mutants of Saccharomyces cerevisiae is briefly discussed. Tables are presented to show results of allelism tests of most of the radiosensitive mutants isolated by various investigators together with a standardized rad locus designation and map positions of a number of rad loci in yeast

  2. Induced mutants for the improvement of sesame and hybrid seed production

    With an overall objective to develop hybrids in sesame, induced mutants were used in cross breeding and five initial yield trials were conducted. For obtaining the mutant hybrids, recessive morphological mutants were used as female, and check varieties as male parents. In each trial, seed yields of mutant hybrids were compared with: i) the original parent in which the mutants were induced, ii) best check variety and iii) best cultivar hybrid. Among 138 mutant hybrids evaluated between 1994 and 1997, 18 showed superiority. In the development of hybrids, it is also desirable to have male sterile lines. By irradiating seeds with 400 Gy gamma rays, four genetic male sterile mutants were isolated. One of them, TMST-11 appears to be promising for breeding programme showing 100% male sterility and characterised by dark green foliage. To study the percent outcrossing, a monogenic chlorina mutant which can be identified from the seedling stage, was used in experiments conducted for two years. Among open pollinated plants, 92-98% plants were found outcrossed. Based on plant to row progenies, percent outcrossing ranged between 0.0 to 13.8%. (author)

  3. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14CO2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  4. VP22 fusion protein-based dominant negative mutant can inhibit hepatitis B virus replication

    Jun Yi; Wei-Dong Gong; Ling Wang; Rui Ling; Jiang-Hao Chen; Jun Yun

    2005-01-01

    AIM: To investigate the inhibitory effect of VP22 fusion protein-based dominant negative (DN) mutant on Hepatitis Bvrus (HBV) replication.METHODS: Full-length or truncated fragment of VP22 was fused to C terminal of HBV core protein (HBc), and subcloned into pcDNA3.1 (-) vector, yielding eukaryotic expression plasmids of DN mutant. After transfection into HepG2.2.15 cells, the expression of DN mutant was identified by immunofluorescence staining. The inhibitory effect of DN mutant on HBV replication was indexed as the supernatant HBsAg concentration determined by RIA and HBV-DNA content by fluorescent quantification-PCR (FQ-PCR). Meanwhile, metabolism of HepG2.2.15 cells was evaluated by MTT colorimetry.RESULTS: VP22-based DN mutants and its truncated fragment were expressed in HepG2.2.15 cells, and had no toxic effect on host cells. DN mutants could inhibit HBV replication and the transduction ability of mutantbearing protein had a stronger inhibitory effect on HBV replication. DN mutants with full length of VP22 had the strongest inhibitory effect on HBV replication, reducing the HBsAg concentration by 81.94%, and the HBV-DNA content by 72.30%. MTT assay suggested that there were no significant differences in cell metabolic activity between the groups.CONCLUSION: VP22-based DN mutant can inhibit HBV replication effectively.

  5. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol.

    Ye, Xia; Yuan, Lei; Zhang, Li; Zhao, Jing; Zhang, Chun-Mei; Deng, Hua-Yu

    2014-01-01

    The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol (E2) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-κB/ p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl- xl. We found that on treatment with garcinol in MCF-7 cells, E2-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-κB/ac-p65 proteins in E2-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac- H4.The nuclear translocation of NF-κB/p65 in E2-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of E2 on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-κB/ p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by E2. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-κB pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl. PMID

  6. Characterization of the Saccharomyces cerevisiae ARG7 gene encoding ornithine acetyltransferase, an enzyme also endowed with acetylglutamate synthase activity.

    Crabeel, M; Abadjieva, A; Hilven, P; Desimpelaere, J; Soetens, O

    1997-12-01

    We have cloned by functional complementation and characterized the yeast ARG7 gene encoding mitochondrial ornithine acetyltransferase, the enzyme catalyzing the fifth step in arginine biosynthesis. While forming ornithine, this enzyme regenerates acetylglutamate, also produced in the first step by the ARG2-encoded acetylglutamate synthase. Interestingly, total deletion of the genomic ARG7 ORF resulted in an arginine-leaky phenotype, indicating that yeast cells possess an alternative route for generating ornithine from acetylornithine. Yeast ornithine acetyltransferase has been purified and characterized previously as a heterodimer of two subunits proposed to derive from a single precursor protein [Liu, Y-S., Van Heeswijck R., Hoj, P. & Hoogenraad, N. (1995) Eur. J. Biochem. 228, 291-296]; those authors further suggested that the internal processing of Arg7p, which is a mitochondrial enzyme, might occur in the matrix, while the leader peptide would be of the non-cleavable-type. The characterization of the gene (a) establishes that Arg7p is indeed encoded by a single gene, (b) demonstrates the existence of a cleaved mitochondrial prepeptide of eight residues, and (c) shows that the predicted internal processing site is unlike the mitochondrial proteolytic peptidase target sequence. Yeast Arg7p shares between 32-43% identity in pairwise comparisons with the ten analogous bacterial ArgJ enzymes characterized. Among these evolutionarily related enzymes, some but not all appear bifunctional, being able to produce acetylglutamate not only from acetylornithine but also from acetyl-CoA, thus catalyzing the same reaction as the apparently unrelated acetylglutamate synthase. We have addressed the question of the bifunctionality of the eucaryotic enzyme, showing that overexpressed ARG7 can complement yeast arg2 and Escherichia coli argA mutations (affecting acetylglutamate synthase). Furthermore, Arg7p-linked acetylglutamate synthase activity was measurable in an assay. The

  7. Transcriptomic comparison of Drosophila snRNP biogenesis mutants reveals mutant-specific changes in pre-mRNA processing: implications for spinal muscular atrophy.

    Garcia, Eric L; Wen, Ying; Praveen, Kavita; Matera, A Gregory

    2016-08-01

    Survival motor neuron (SMN) functions in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing. Here, we used disruptions in Smn and two additional snRNP biogenesis genes, Phax and Ars2, to classify RNA processing differences as snRNP-dependent or gene-specific in Drosophila Phax and Smn mutants exhibited comparable reductions in snRNAs, and comparison of their transcriptomes uncovered shared sets of RNA processing changes. In contrast, Ars2 mutants displayed only small decreases in snRNA levels, and RNA processing changes in these mutants were generally distinct from those identified in Phax and Smn animals. Instead, RNA processing changes in Ars2 mutants support the known interaction of Ars2 protein with the cap-binding complex, as splicing changes showed a clear bias toward the first intron. Bypassing disruptions in snRNP biogenesis, direct knockdown of spliceosomal proteins caused similar changes in the splicing of snRNP-dependent events. However, these snRNP-dependent events were largely unaltered in three Smn mutants expressing missense mutations that were originally identified in human spinal muscular atrophy (SMA) patients. Hence, findings here clarify the contributions of Phax, Smn, and Ars2 to snRNP biogenesis in Drosophila, and loss-of-function mutants for these proteins reveal differences that help disentangle cause and effect in SMA model flies. PMID:27268418

  8. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence.

    Chapman, Christine; Tisa, Louis S

    2016-08-01

    Photorhabdus temperata is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora and an insect pathogen. This bacterium produces a wide variety of virulence factors and hemolytic activity. The goal of this study was to identify hemolysin-defective mutants and test their virulence. A genetic approach was used to identify mutants with altered hemolytic activity by screening a library of 10 000 P. temperata transposon mutants. Three classes of mutants were identified: (i) defective (no hemolytic activity), (ii) delayed (delayed initiation of hemolytic activity), and (iii) early (early initiation of hemolytic activity). The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis and motility. The hemolysin-defective mutants, P10A-C11, P10A-H12, and P79-B5, had inserts in genes involved in RNA turnover (RNase II and 5'-pentaphospho-5'-adenosine pyrophosphohydrolase) and showed reduced virulence and production of extracellular factors. These data support the role of RNA turnover in insect pathogenesis and other physiological functions. PMID:27300499

  9. Metabolite Profiling of Induced Mutants of Rice and Soybean

    The low phytic acid (lpa) rice (Os-lpa-XS110-1, Os-lpa-XS110-2) and soybean (Gm-lpa-TW-75-1, Gm-lpa-ZC-2) mutants generated by γ-irradiation were studied, aimed at comparing these mutants to the corresponding wild-types by means of metabolite profiling based on capillary gas chromatography/mass spectrometry. The usefulness of this approach to assist in the elucidation of the types of mutation resulting in reduced contents of phytic acid should be explored. Metabolite profiling aspires to provide a comprehensive picture of the metabolites present in biological systems. It aims at extracting, detecting, identifying, and quantifying a broad spectrum of compounds in a single sample, to provide a deeper insight into complex biological systems. The extraction and fractionation method used allowed a comprehensive coverage of a broad spectrum of low molecular weight metabolites ranging from lipophilic (fatty acids methyl esters, hydrocarbons, free fatty acids, sterols, tocopherols) to hydrophilic (sugars, sugar alcohols, organic acids, amino acids) compounds. For rice, considerable amounts of the peaks detected were statistically significantly different between wild-types and lpa mutants grown in the same field trial. However, only a few of these differences could be consistently observed in all analyzed field trials, indicating a strong influence of the biological variability. Metabolites consistently shown to be significantly different between wild-type and lpa rice mutants, were found to be closely related to the biogenetic pathways leading to phytic acid. This allowed a prediction of the mutation targets for the lpa rice mutants in the biosynthetic pathway of phytic acid. Similar effects, i.e. statistically significantly different levels of metabolites closely related to the biosynthesis of phytic acid, were consistently observed for soybean. (author)

  10. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2.

    Bendaly, Jean; Zhao, Shuang; Neale, Jason R; Metry, Kristin J; Doll, Mark A; States, J Christopher; Pierce, William M; Hein, David W

    2007-07-01

    2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) is one of the most potent and abundant mutagens in the western diet. Bioactivation includes N-hydroxylation catalyzed by cytochrome P450s followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). In humans, NAT2*4 allele is associated with rapid acetylator phenotype, whereas NAT2*5B allele is associated with slow acetylator phenotype. We hypothesized that rapid acetylator phenotype predisposes humans to DNA damage and mutagenesis from MeIQx. Nucleotide excision repair-deficient Chinese hamster ovary cells were constructed by stable transfection of human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. CYP1A1 and NAT2 catalytic activities were undetectable in untransfected Chinese hamster ovary cell lines. CYP1A1 activity did not differ significantly (P > 0.05) among the CYP1A1-transfected cell lines. Cells transfected with NAT2*4 had 20-fold significantly higher levels of sulfamethazine N-acetyltransferase (P = 0.0001) and 6-fold higher levels of N-hydroxy-MeIQx O-acetyltransferase (P = 0.0093) catalytic activity than cells transfected with NAT2*5B. Only cells transfected with both CYP1A1 and NAT2*4 showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase mutagenesis following MeIQx treatment. Deoxyguanosine-C8-MeIQx was the primary DNA adduct formed and levels were dose dependent in each cell line and in the following order: untransfected < transfected with CYP1A1 < transfected with CYP1A1 and NAT2*5B < transfected with CYP1A1 and NAT2*4. MeIQx DNA adduct levels were significantly higher (P < 0.001) in CYP1A1/NAT2*4 than CYP1A1/NAT2*5B cells at all concentrations of MeIQx tested. MeIQx-induced DNA adduct levels correlated very highly (r2 = 0.88) with MeIQx-induced mutants. These results strongly support extrahepatic activation of MeIQx by CYP1A1 and a robust effect of human NAT2 genetic polymorphism

  11. Listeria monocytogenes Mutants with Altered Growth Phenotypes at Refrigeration Temperature and High Salt Concentrations

    Burall, Laurel S.; Laksanalamai, Pongpan; Datta, Atin R.

    2012-01-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and...

  12. Induced high yielding mutant in green gram (Vigna radiata (L.) Wilczek)

    Green gram (mungbean) plays a significant role in meeting the protein requirements in India, with its predominantly vegetarian population. Therefore, an attempt was made to induce desirable mutants. Dry seed of cultivar 'Pusa 105' were irradiated with gamma rays ranging from 10 to 50 krad. A high yielding mutant (Hy I) identified in the M4 generation from 40 krad dose, has shown significant increases in the number of pods/plants, number of branches/plant, and yield/plant. Further work is in progress. Comparison of the mutant HyI with the parent cultivar Pusa 105 is given

  13. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53.

    Xiong, Shunbin; Tu, Huolin; Kollareddy, Madhusudhan; Pant, Vinod; Li, Qin; Zhang, Yun; Jackson, James G; Suh, Young-Ah; Elizondo-Fraire, Ana C; Yang, Peirong; Chau, Gilda; Tashakori, Mehrnoosh; Wasylishen, Amanda R; Ju, Zhenlin; Solomon, Hilla; Rotter, Varda; Liu, Bin; El-Naggar, Adel K; Donehower, Lawrence A; Martinez, Luis Alfonso; Lozano, Guillermina

    2014-07-29

    p53(R172H/+) mice inherit a p53 mutation found in Li-Fraumeni syndrome and develop metastatic tumors at much higher frequency than p53(+/-) mice. To explore the mutant p53 metastatic phenotype, we used expression arrays to compare primary osteosarcomas from p53(R172H/+) mice with metastasis to osteosarcomas from p53(+/-) mice lacking metastasis. For this study, 213 genes were differentially expressed with a P value ETS2 suppressed mutant p53 induction of Pla2g16. Thus, our study identifies a phospholipase as a transcriptional target of mutant p53 that is required for metastasis. PMID:25024203

  14. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex.

    Oda, Akifumi; Kobayashi, Kana; Takahashi, Ohgi

    2010-01-01

    N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex. PMID:20930369

  15. The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways.

    Michael Tscherner

    2015-10-01

    Full Text Available Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host.

  16. Temperature-sensitive rubisco mutant of Chlamydomonas

    The Chlamydomonas reinhardtii mutant 68-4PP is a temperature-sensitive mutant that lacks photosynthetic ability at 350C, but is able to grow photosynthetically at 250C. Genetic analysis indicated that 68-4PP is a chloroplast mutant that is allelic with known Rubisco large-subunit structural-gene mutants, implying that 68-4PP also resulted from a mutation in the large-subunit gene. The 68-4PP mutant has about 35% of the wild-type level of Rubisco holoenzyme and carboxylase activity when grown at 250C, but it has less than 10% of normal holoenzyme and carboxylase activity when grown at 350C. However, [35S]-sulfate pulse labeling showed that Rubisco subunits were synthesized at normal rates at both temperatures. More significantly, the ratio of carboxylase activity in the absence and presence of oxygen at a limiting CO2 concentration (6.6 μM) was about 2.2 for the mutant enzyme, as compared to about 3.0 for the wild-type enzyme. The decreased ratio of the mutant enzyme is maternally inherited, indicating that this reduced oxygen sensitivity results from a mutation in chloroplast DNA. The authors have recently cloned the 68-4PP Rubisco large-subunit gene, and DNA sequencing is in progress

  17. Induction of Mutants in Durum Wheat

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  18. Induction and identification of japonica rice mutants for drought tolerance

    Two mutants G1 and G2 were identified and selected from M6 after 200 Gy 60Co γ-rays treatment to pure dry seeds of a Japonica rice cultivar Zhejing 20. These two lines showed significantly higher drought tolerance than their parent Zhejing 20, and moderately higher than Brazil upland rice IAPAR-9 at both vegetative growing stage observed in Hangzhou and reproductive growing stage in Hainan. It was also demonstrated from the separate field tests that two lines performed very well in both water-field and upland-soil, implicating that the two mutants have very good adaptability to water-field and upland-soil. The high yielding line G1 can be applied directly to immediate high yield rice breeding while the relatively low yielding line G2 could be used as a new source of drought tolerance in the future breeding programs. (authors)

  19. Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene.

    Frustaci, J M; O'Brian, M R

    1992-01-01

    A Tn5-induced mutant of Bradyrhizobium japonicum, strain LORBF1, was isolated on the basis of the formation of fluorescent colonies, and stable derivatives were constructed in backgrounds of strains LO and I110. The stable mutant strains LOek4 and I110ek4 were strictly dependent upon the addition of exogenous hemin for growth in liquid culture and formed fluorescent colonies. The fluorescent compound was identified as protoporphyrin IX, the immediate precursor of protoheme. Cell extracts of s...

  20. High-content screening of yeast mutant libraries by shotgun lipidomics

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert;

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....

  1. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid.

    Rosner, J. L.

    1993-01-01

    Escherichia coli and Salmonella typhimurium are normally resistant to > 500 micrograms of the antituberculosis drug isonicotinic acid hydrazide (isoniazid; INH) per ml. Susceptibility to INH (< 50 micrograms/ml) has now been found for mutants that are deficient in OxyR, the oxidative stress response regulator. Two OxyR-regulated enzymes, alkyl hydroperoxide reductase and hydroperoxidase I, were identified as playing important roles in INH resistance. OxyR regulon mutants should be useful for ...

  2. Three peroxisome protein packaging pathways suggested by selective permeabilization of yeast mutants defective in peroxisome biogenesis.

    Zhang, J W; Luckey, C; Lazarow, P B

    1993-01-01

    We have identified five complementation groups of peroxisome biogenesis (peb) mutants in Saccharomyces cerevisiae by a positive selection procedure. Three of these contained morphologically recognizable peroxisomes, and two appeared to lack the organelle altogether. The packaging of peroxisomal proteins in these mutants has been analyzed with a new gentle cell fractionation procedure. It employs digitonin titration for the selective permeabilization of yeast plasma and intracellular membranes...

  3. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F1 and F2 generations were analyzed. The altered leaf trait was presented in all F1 plants suggesting a dominant character. F2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  4. Productive potentials of short stemmed wheat mutants

    Air dry F2 seeds of the cross Skorospelka-35xMexipak were gamma irradiated (5 krad). It was established that the new short-stemmed wheat mutants can olay an important role both in hybrid combination breeding and as direct cultivars. Some of these mutants (No. 65, 67-I, 67-II, etc.), proved very promising because of their high productivity combined with other valuable biological and economic characters. The results obtained show also the great potentials and the perspectives of the method of combining hybrid and induced mutant variability. (author)

  5. Accumulation of the chalcone isosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalcone isomerase

    Mutants defective in flavonoid biosynthesis have become increasingly useful in elucidating the potential functions of these compounds in plants. To define the role of flavonoids as UV-B protectants in barley, we have screened part of the collection of proanthocyanidin-free barley mutants at the Carlsberg Research Laboratory, Copenhagen, Denmark. The four mutants ant 30–245, ant 30–272, ant 30–287 and ant 30–310 showed drastically reduced flavonoid levels in the primary leaf as compared to their corresponding parent varieties, and in addition accumulated a new mutant-specific phenolic compound which was identified as the chalcone glucoside isosalipurposide. Results from diallelic crosses indicate that all four mutants belong to the same new complementation group, which is designated as the Ant 30 locus. This gene has not earlier been described in barley. The data presented suggest a defective chalcone isomerase gene for the observed flavonoid pattern in leaves of ant 30 mutants. (author)

  6. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  7. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  8. DNA fingerprinting of safflower irradiation induced mutants by RAPD markers

    RAPD markers were utilized to identify the genetic differences and the genetic relationship between 8 safflower genotypes i.e. seven induced mutants namely Mut 1 H, Mut 2 H2 , Mut3, Mut4, Mut 5 , Mut6, Mut 7 and the parental variety Giza 1. Ten arbitrary primers were used; different primers generated polymorphic RAPD profiles. The number of amplified DNA amplicons across the ten primers ranged from seven amplicons for the primer OBC-18 to 17 amplicons for the primersOPA-03 and OPA-04. However the number of polymorphic amplicons ranged from 1 for the primer OPB-3 to 14 amplicons for the primers OPA-03 and OPA-17. The percentage of polymorphism ranged from 9.09 % for the primer OPB- 03 to 100% for the primer OPC-17.The highest genetic similarity (94%) was found between Mut 4 and Mut 7 and the lowest (79.0%) was found between Mut 1 and Giza 1. Seventeen positive and four negative unique RAPD markers were identified across the 8 safflower genotypes. The parent Giza 1 was characterized by one positive unique marker amplified by OPA-03 primer at the molecular weight of 2000 bp as well as, two negative unique markers generated by the OPB-6 and OPB-5 primers at the molecular weights of 1150 and 800 bp., respectively. The mutant 1 showed highest number of positive unique markers (8) generated by OPA-3 primer at the molecular weights of 1400, 800 ,700 and 600 bp, OPB-04 at the molecular weight 2000 bp., OPB-06 primers at the molecular weight of 900 bp., OPB-05 primer at the molecular weight of 500 bp., and OPA-04 primer at the molecular weight of 600 bp. Mut 2 was identified by two positive unique markers generated by the OPB-05 and OPA-03 primers at the molecular weights of 1500 and 500 bp respectively, However the Mut 3 was characterized by one positive unique marker amplified by OPC-17 primer at the molecular weight 550 bp., there is no unique number was found to characterize the mutant 4. The Mut 5 identified by one positive uniquemarker generated by OPA-04 Primer at the

  9. Induction and isolation of mutants in sugarcane

    A review of the progress made on the induction of mutations in sugarcane at the Sugarcane Breeding Institute, Coimbatore, is presented. A description of some of the mutants is given. A few disease-resistant mutants have been obtained. Yield of C.C.S./ha of some of the mutants has surpassed the parent variety. Selection based on individual canes has increased the mutation rate and stability of mutants. Different techniques such as decapitation, closer planting and growing vM1 generation at different N levels have been observed to be promising methods to increase mutation rate. Raising of plants from mutated tissues by in vitro culture seems to be a potential tool in induced mutagenesis in sugarcane. (author)

  10. Radiation induced promising mutants in Cowpea

    Cowpea (Vigna unguiculata L. Walp.) is an important legume crop of the tropics and subtropics of Asia, Africa and America. Breeding objectives in recent years have been to combine high yields with upright growth habit, bushy dwarf determinate plant type, early maturity and large seed size in addition to resistance to biotic and abiotic stresses. With a view to achieving these objectives and creating additional - variability, the seeds of an elite variety V-130 were irradiated with 200 Gy of gamma rays, and a number of morphological mutants were isolated. The mutants with desirable characters like erect growth habit, dwarf, large seed size, and high pod number were isolated in the M2 generation and studied further in subsequent generations for their yield potential and other characteristics. The dwarf plant mutant TCM 77-4, characterised by reduced plant height, bushy growth, large seed size and absence of tendril bred true when grown in rabi seasons, but behaved like parent in respect of growth habit in kharif season. It was far superior to the parent in respect of seed size in all the seasons. The mutant is envisaged to be the most suitable for rice fallows. Among the several promising mutants with large seed size, the mutant TCM 13-5 showed a test weight of 16.8 g against 8.8 g of the parent. A mutant with large pod number designated as TCM 121-8 showed promise with its very high yield, when grown in summer albeit with delayed maturity. Several mutants with maturity similar to that of the parent have shown higher seed yield. The variability generated through the radiation- induced mutation is being utilised for creating novel high yielding early maturing varieties of cowpea. (author)

  11. Induced mutants for rice functional genomics

    Induced mutations have been playing important roles in both crop germplasm enhancement and new variety development. With the completion of the rice genome sequence, the study on functional genomics in rice has become a major task. Construction of rice mutant library is an essential approach for rice functional genomics study. This paper briefly reviewed several common techniques for generation of rice mutant library and its application in rice functional research, taking examples of developing rice chloroplast development related mutant library to provide the basic materials for functional genes cloning. A rice Chlorophyll (Chl) deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. Another green-revertible albino leaf (gral) mutant involved in chloroplast development was screened from a M2 population induced by 300Gy 60Co gamma rays irradiation to the seeds of rice male sterile line PA64S with the collaboration of Zhejiang University. The mutant seedling leaves exhibit albino firstly but turn to normal green after the sixth leaf extended thoroughly. Systematical research including photosynthetic pigment, chloroplast microscopic observation and gene cloning was carried out on the gral mutant. (author)

  12. Identification of amylase inhibitor deficient mutants in pigeonpea (Cajanus cajan (L.) Millisp.).

    Chougule, N P; Giri, A P; Hivrale, V K; Chhabda, P J; Kachole, M S

    2004-06-01

    We have developed and analyzed several mutant lines (M6 generation) of pigeonpea (Cajanus cajan (L.) Millsp.) for the content of defensive proteins and antinutritional factors. Inhibitors of proteinase and of amylase, lectins, and raffinose family oligosaccharides were analyzed in mature seeds of different pigeonpea accessions (untreated) and compared with mutant lines. Proteinase inhibitor profiles were similar in terms of number and intensities of activity bands but they differ marginally in the activity units in pigeonpea accessions and mutants. Pigeonpea mutants showed significant differences in amylase inhibitor profiles as well as activity units from those of pigeonpea accessions. Interestingly, two mutants (A6-5-1 and A7-3-2) were identified to have absence of amylase inhibitor isoforms. Hemagglutinating activity and raffinose family oligosaccharides content were found to be significantly higher in mutants than in accessions. It is evident from the results that proteinase inhibitors of pigeonpea are stable while amylase inhibitors, lectins, and raffinose family oligosaccharides show altered expression upon mutagen treatments. These mutants will be ideal candidates for further evaluation. PMID:15260142

  13. An Arabidopsis embryonic lethal mutant with reduced expression of alanyl—t RNA synthetase gene

    SUNJIANGE; XIAOLIYAO; 等

    1998-01-01

    In present paper,one of the T-DNA insertional embryonic lethal mutant of Arabidopsis is identified and designated as acd mutant.The embryo developmant of this mutant is arrested in globular stage,The cell division pattern is abnormal during early embryogenesis and results in distubed cellular differentiation.Most of mutant embryos are finally degenerated and aborted in globular stage,However,a few of them still can germinate in agar palte and produce seedlings with shoter hypoctyl and distorted shoot meristem.To understand the molecular basis of the phenotype of this mutant,the joint fragment of T-DNA/plant DNA is isolated by plasmid rescue and Dig-labeled as probe for cDNA library screening.According to the sequence analysis and similarity searching,a 936 bp cDNA sequence(EMBL accession #:Y12555)from selectoed positive clone shows a 99.8%(923/925bp) sequence homolgy with Alanyl-tRNA Synthetase(AlaRS) gene of Arabidopsis thaliana.Furthermore,the data of in situ hybridization experiment indicate that the expression of Ala RS gene is weak in early embryogenesis and declines along with globular embryodevelopment in this mutant Accordingly,the reduced expression of Ala RS gene may be closely related to the morphological changes in early embryogenesis of this lethal mutant.

  14. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M6, eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  15. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    Sho W Suzuki

    Full Text Available Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA. We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  16. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition.

    Schultz, Hayley J; Gochi, Andrea M; Chia, Hannah E; Ogonowsky, Alexie L; Chiang, Sharon; Filipovic, Nedim; Weiden, Aurora G; Hadley, Emma E; Gabriel, Sara E; Leconte, Aaron M

    2015-09-29

    Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution. PMID:26334839

  17. Barley mutant line with high protein yield

    Mutation breeding was initiated in 1969 at the Agricultural Research Institute, Nicosia, aiming at developing high yielding barley lines having also high protein or lysine content. The final results were reported at the FAO/IAEA Research Co-ordination Meeting at Nicosia in 1980. At that time some lines were superior to their mother line in grain yield, protein content or protein yield. However, high yield is essential for feed-barley as there is no premium price for protein content or quality. In the experiments reported earlier, the mean grain yield of mutant M-Att-73-337-1 was 3202 kg/ha, 9.9% higher than the mother variety 'Attiki'. The Kjeldahl protein content was 12.7% for the mutant line and 13.4% for the mother variety. The mutant line was further evaluated in field trials (11 m2 plots and 6 replications) during 1983-88, along with other promising material from the breeding programme. The mutant line outyielded its mother variety by 9.7% in grain yield and 16% in straw yield. These increases are apparently the result of increased 1000-grain weight and a higher number of culms per m2. Protein content of the mutant line was slightly lower, but its protein yield was 5.5% higher. The yield of the mutant line over 16 trials during 1983-88 was also 4% higher than the yield of the main commercially grown variety Athenais

  18. Selection and agronomic evaluation of induced mutant lines of sesame

    Station yield trial: Three high yielding mutants (8, 48, and EFM92) with better and stable performance were developed in our breeding programme and submitted for registration to the Agricultural Research Center (ARC), Egyptian Ministry of Agriculture and Land Reclamation. Multi-location yield trials indicated that mutant line EFM92 ranked first in all locations; significant yield increases recorded for it ranged from 14.7 to 74.0% over the check variety. Moreover, it was 15-20 days earlier than the check and/or other mutants. Mutant lines 8 and 48 produced higher seed yields than the check at two different locations. These mutants can probably be grown and produce more yield than the check variety at the low yielding environments. Seed quality assay: During 1996 and 1997, 15 promising lines of sesame including mutants and hybrid populations as well as the local variety were evaluated for seed protein, oil content and fatty acid composition. The protein content varied from 20.6 to 26.7%; hybrid population EXM90 gave the highest value. About 85% of the total fatty acids in the oil are unsaturated (oleic and linoleic) and 15% saturated, mainly palmitic and stearic. Linoleic acid ranged from 41.8 to 47.9%. Mutant lines 6, 9, and EFM92, which gave high oil content (54-55.5%) together with high linoleic acid values (45.2-47.8%), are recommended for breeding for seed oil quality. Heterosis, combining ability and type of gene action in sesame: A half diallel set of crosses involving seven parents was used to study heterosis and combining ability in the F1 generation as well as the nature of gene action controlling seed yield and its contributing traits in both F1 and F2 in order to identify the most efficient breeding methods leading to rapid genetic improvement. The expressions of heterosis varied with the crosses and characters investigated. The maximal significant positive useful heterosis was observed for branches/plant (52.9%) followed by seed yield/plant (38

  19. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants.

    Laura H Tsang

    Full Text Available Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases. Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results

  20. Induced mutant for male sterility in niger

    Full text: Niger (Guizotia abyssinica Cass.), an important oilseed crop of the family Compositae is highly cross-pollinated due to the twin mechanisms of protandry and incompatibility. Studies revealed the functional nature of protandry and the breakdown of incompatibility with alteration in temperature. It has very small flowers (disc florets) arranged in a capitulum that open on 3-4 consecutive days which pose problems in emasculation for cross-breeding. To induce mutations, seeds of variety 'IGP-76' were irradiated with γ-rays 200 to 1000 Gy. All seeds of M1 plants were sown separately in individual plant-to progeny rows. The results of screening of M2 segregating material indicated that γ-ray treatment was effective in induction of male sterility. Frequency of visible mutations were higher in sibbed progeny as compared to open pollinated population and male sterile plants were observed only in sibbed population (1000 Gy). Male sterile plants could easily be identified at the flowering stage by their altered floral morphology (disc florets transformed into ligulate ray florets) and complete absence or presence of a rudimentary anther column. Seeds were collected following sib-mating with the fertile counterparts. Progeny segregated in a ration of 3 normal : 1 male sterile. Further work on the mechanism of sterility, maintenance and linkage relationships with associated characters is under progress. This is the first report of induction of male sterility in niger through the use of physical mutagens. The availability of this mutant will be of great value for exploitation of heterosis on commercial basis. (author)

  1. Dwarf mutant of Papaver somniferum with high morphine content

    Opium poppy, Papaver somniferum L. is an important medicinal plant known for its morphine, codeine, and thebaine alkaloids. This Institute had earlier released two latex opium yielding poppy varieties, Shyama and Shweta, which are now cultivated by the farmers under the supervision of the Narcotic Department of the Government of India. However, both these varieties became susceptible to downy mildew (Peronospora arborescens). Lodging due to heavy capsule weight is another problem affecting latex yield. With these problems in mind, we undertook mutation breeding on the above mentioned two varieties employing gamma rays (5 kR, 15 kR, 20 kR) and EMS (0.2%, 0.4%, 0.6%) and combined mutagens (5 kR + 0.2% EMS, 5 kR + 0.4% EMS and 5 kR + 0.6% EMS). M1 from the treated seeds (405 plants) was raised in winter 1984-85. M2 generation of 13,500 plants (i.e. 270 M1 progenies x 50 plants) was raised in winter 1985/86. A dwarf mutant with high morphine content was identified in M2 from the variety Shweta treated with 5 kR + 0.4% EMS. The mutant differs by its dwarf stature, compact leaf arrangements, multilocular capsules, increased capsule number, and small capsule size. The mutant is under testing for its superior morphine production. It may be used as dwarf gene source in hybridization for improving lodging resistance. This mutant is a novel type, which was not available in our germplasm collection

  2. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts+ recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P1, P2, P3, HA, NP, and NS proteins

  3. Rhizobium japonicum mutants induced by gamma rays and some chemical mutagens

    Numerous symbiotic mutants of R.japonicum were isolated after UV irradiation or nitrosoguanidine mutagensis. Cultures of R.japonicum GM 377 were irradiated with 0, 25, 50, 75, 100, 150, 175, 200, 250 and 300 krad of gamma-rays. As for chemical mutagensis, cultures were treated with Sodium azide and colchicin at concentration of 1x10-6, 1x10-5, 5x10-5, 1x10-4, 5x10-4, 1x10-3 and 5x10-3 mol. Results revealed that gentamicin at concentration of 24.0 Mg/ml was able to kill all the populations of R.japonicum. Therefore, this concentration was used for mutants selection. However, numerous mutants at different freguencies were identified. The highest percentage of mutant was obtained with Sodium azide at 1x10-4 mol

  4. [Evaluation of penicillin expandase mutants and complex substrate inhibition characteristics at high concentrations of penicillin G].

    Wu, Linjun; Fan, Keqiang; Ji, Junjie; Yang, Keqian

    2015-12-01

    Penicillin expandase, also known as deacetoxycephalosporin C synthase (DAOCS), is an essential enzyme involved in cephalosporin C biosynthesis. To evaluate the catalytic behaviors of penicillin expandase under high penicillin G concentration and to identify mutants suitable for industrial applications, the specific activities of wild-type DAOCS and several mutants with increased activities toward penicillin G were determined by HPLC under high penicillin G concentrations. Their specific activity profiles were compared with theoretical predictions by different catalytic dynamics models. We evaluated the specific activities of wild-type DAOCS and previous reported high-activity mutants H4, H5, H6 and H7 at concentrations ranging from 5.6 to 500 mmol/L penicillin G. The specific activities of wild-type DAOCS and mutant H4 increased as penicillin G concentration increased, but decreased when concentrations of substrate go above 200 mmol/L. Other mutants H5, H6 and H7 showed more complex behaviors under high concentration of penicillin G. Among all tested enzymes, mutant H6 showed the highest activity when concentration of penicillin G is above 100 mmol/L. Our results revealed that the substrate inhibition to wild-type DAOCS' by penicillin G is noncompetitive. Other DAOCS mutants showed more complex trends in their specific activities at high concentration of penicillin G (>100 mmol/L), indicating more complex substrate inhibition mechanism might exist. The substrate inhibition and activity of DAOCS mutants at high penicillin G concentration provide important insight to help select proper mutants for industrial application. PMID:27093832

  5. Protein and carbohydrate components in the Risoe high-lysine barley mutants

    Seeds of the Risoe high-lysine barley mutant were analysed for nitrogenous and carbohydrate components to identify possible interactions between the high-lysine character and the low grain yield. The protein yields of the high-lysine mutants are 73-97% of that of the parents. In the parents protein is fractionated into approximately 40% prolamin (approximately 1% lysine), 55% non-prolamin protein (NPP) (6% lysine) and 5% non-protein nitrogen (NPN). In all high-lysine mutants NPP is increased and prolamin reduced. Neither different high-lysine genes nor large differences in N content in the seeds have any significant influence on the amino acid composition of NPP. The amounts of the main prolamin components, hordein-1 and hordein-2, are reduced in different and often characteristic ways in most of the mutants. The starch yields of the mutants are 38-88% of the yields of the parents. This decrease is mainly caused by a reduced content of starch per seed, but also by a reduced seed number. The latter may be independent of the high-lysine genes. There is no correlation between the amounts of starch and prolamin in the mutants, but both may be changed in the same direction in allelic mutants with different genetic background. The percentage of starch and soluble sugars in all the high-lysine mutants shows a highly significant negative correlation. This suggests a possible common mechanism responsible for the reduction in starch synthesis in all the high-lysine mutants. (author)

  6. Characterization of a Lignified Secondary Phloem Fibre‐deficient Mutant of Jute (Corchorus capsularis)

    SENGUPTA, GARGI; PALIT, P.

    2004-01-01

    • Background and Aims High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value‐added products. To aid the development of low‐lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. • Methods An x‐ray‐induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. • Key Results The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin‐walled, less lignified fibre cells formed uni‐ or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. • Conclusions In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low‐lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells. PMID:14707004

  7. Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity

    Baluchamy, Sudhakar; Rajabi, Hasan N.; Thimmapaya, Rama; Navaraj, Arunasalam; Thimmapaya, Bayar

    2003-01-01

    p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two highly homologous, conserved transcriptional coactivators, and histone acetyltransferases (HATs) that link chromatin remodeling with transcription. Cell transformation by viral oncogene products such as adenovirus E1A and SV40 large T antigen depends on their ability to inactivate p300 and CBP. To investigate the role of p300 in cell-cycle progression, we constructed stable rat cell lin...

  8. Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer

    Cavallini Aldo; Notarnicola Maria; Giannini Romina; Linsalata Michele

    2006-01-01

    Abstract Background The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates adipogenic differentiation and glucose homeostasis. Spermidine/spermine N1-acetyltransferase (SSAT) and ornithine decarboxylase (ODC) are key enzymes involved in the metabolism of polyamines, compounds that play an important role in cell proliferation. While the PPARγ role in tumour growth has not been clearly defined, the involvement of the altered polyamine metabolism in col...

  9. DOM-fold: A structure with crossing loops found in DmpA, ornithine acetyltransferase, and molybdenum cofactor-binding domain

    Cheng, Hua; Grishin, Nick V.

    2005-01-01

    Understanding relationships between sequence, structure, and evolution is important for functional characterization of proteins. Here, we define a novel DOM-fold as a consensus structure of the domains in DmpA (L-aminopeptidase D-Ala-esterase/amidase), OAT (ornithine acetyltransferase), and MocoBD (molybdenum cofactor-binding domain), and discuss possible evolutionary scenarios of its origin. As shown by a comprehensive structure similarity search, DOM-fold distinguished by a two-layered β/α ...

  10. Single Residue Mutation in Active Site of Serine Acetyltransferase Isoform 3 from Entamoeba histolytica Assists in Partial Regaining of Feedback Inhibition by Cysteine

    Kumar, Sudhir; Mazumder, Mohit; Dharavath, Sudhaker; Gourinath, S.

    2013-01-01

    The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site res...

  11. Development of high yielding mutants in lentil

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  12. Officially released mutant varieties in China

    The use of mutation techniques for crop improvement in China has a long and well-established tradition of more than 50 years. As the result of intensive research in many institutes dealing with application of nuclear technologies more than 620 cultivars of 44 crop species have been released. Numerous mutant varieties have been grown on a large scale bringing significant economic impact, sustaining crop production and greatly contributing to increase of food production also in stress prone areas of the country. However, there is still missing information not only on the number of mutant varieties released in particular crop species but also on mutagens applied, selection approaches and on the use of mutants in cross breeding. Numerous Chinese scientists collected and systematized this information. Results of their work were often published in local scientific journals in the Chinese language and as such were unavailable to breeders from other countries. Having this in mind, we requested Dr. Liu Luxiang, the Director of the Department of Plant Mutation Breeding and Genetics, Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences in Beijing to help us in finding as much information as possible on mutant varieties officially released in China. The data has been collected in close collaboration with his colleagues from various institutions all over the country and then evaluated, edited and prepared for publication by our team responsible for the FAO/IAEA Database of Officially Released Mutant Varieties. We would like to thank all Chinese colleagues who contributed to this list of Chinese mutant varieties. We hope that this publication will stimulate plant breeders in China to collect more information on released mutant varieties and especially on the use of mutated genes in cross breeding. (author)

  13. Modifiers of mutant huntingtin aggregation

    Teuling, Eva; Bourgonje, Annika; Veenje, Sven; Thijssen, Karen; Boer, Jelle de; van der Velde, Joeri; Swertz, Morris; Nollen, Ellen

    2011-01-01

    Protein aggregation is a common hallmark of a number of age-related neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine-expansion disorders such as Huntington’s disease, but how aggregation-prone proteins lead to pathology is not known. Using a genome-wide RNAi screen in a C. elegans-model for polyglutamine aggregation, we previously identified 186 genes that suppress aggregation. Using an RNAi screen for human orthologs of these genes, we here present 26 human g...

  14. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Amandeep K Dhaliwal

    Full Text Available Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L. were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87% were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

  15. An Ethylmethane Sulfonate Mutant Resource in Pre-Green Revolution Hexaploid Wheat.

    Dhaliwal, Amandeep K; Mohan, Amita; Sidhu, Gaganjot; Maqbool, Rizwana; Gill, Kulvinder S

    2015-01-01

    Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar 'Indian'. Released in early 1900s, 'Indian' is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, 'gritty' coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community. PMID:26678261

  16. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants

    de Montaigu Amaury

    2011-07-01

    Full Text Available Abstract A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker and in the strategies used to maintain and store transformants.

  17. Probable mechanism of catalysis of acetyl coenzyme A:arylamine N-acetyltransferase (EC 2.3.1.5.) from rat pineal gland

    The hormone melatonin is produced in the pineal gland by O-methylation of N-acetylserotonin. The enzyme responsible for O-methylation in the pineal, hydroxy-indole O-methyltransferase, can utilize serotonin only one-tenth as efficiently as it can use N-acetylserotonin, implying that N-acetylation precedes O-methylation. Serotonin has been shown to be N-acetylated to N-acetylserotonin in vivo, and this reaction is catalysed by an N-acetyltransferase (SNAT) enzyme. This enzyme would be more accurately termed acetyl coenzyme A: arylamine N-acetyltransferase and is not unique to the pineal gland, being found in other tissues such as the liver. The pineal enzyme, however, is unique in that it is under beta-adrenergic cyclic AMP control, levels rising during the dark phase. It is the formation of N-acetylserotonin that is rate-limiting in the formation of melatonin. The lability of pineal N-acetyltransferase has precluded any in-depth investigation and few kinetic determinations have been made. The assay for SNAT involved transfer of a 14C-acetyl group from [1-14C]acetyl coenzyme A (AcCoA) to tryptamine HCl (Tryp) to form N-acetyltryptamine (NAT). The present study is the first successful attempt to elucidate the catalytic behaviour of the enzyme. This information increases understanding of pineal biochemistry and enables more accurate interpretation of any physiological or pharmacological effects exerted on the enzyme

  18. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Yoon, Sung-il, E-mail: sungil@kangwon.ac.kr [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.

  19. Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila

    Belikoff Esther J

    2010-11-01

    Full Text Available Abstract Background In male Drosophila melanogaster, the male specific lethal (MSL complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac. This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator. Results MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in Drosophila. We found that expression of a UAS-red fluorescent protein (DsRed reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680 reduced HAT activity in vitro and UAS-DsRed activation in Drosophila. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-lacZ and UAS-arm-lacZ reporter genes. The latter utilizes the constitutive promoter from the arm gene to drive lacZ expression. In contrast to the strong induction of UAS-DsRed expression, UAS-arm-lacZ expression increased by about 2-fold in both sexes. Conclusions Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional

  20. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site

  1. Use of a Drosophila Model to Identify Genes Regulating Plasmodium Growth in the Mosquito

    Brandt, Stephanie M; Jaramillo-Gutierrez, Giovanna; Kumar, Sanjeev; Barillas-Mury, Carolina; Schneider, David S.

    2008-01-01

    We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune respons...

  2. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  3. Identification of a new mutant allele, Grm6nob7, for complete congenital stationary night blindness

    Qian, Haohua; Ji, Rui; Gregg, Ronald G; PEACHEY, NEAL S.

    2015-01-01

    Electroretinogram (ERG) studies identified a new mouse line with a normal a-wave but lacking the b-wave component. The ERG phenotype of this new allele, nob7, matched closely that of mouse mutants for Grm6, Lrit3, Trpm1, and Nyx, which encode for proteins expressed in depolarizing bipolar cells (DBCs). To identify the underlying mutation, we first crossed nob7 mice with Grm6nob3 mutants and measured the ERGs in offspring. All the offspring lacked the b-wave, indicating that nob7 is a new alle...

  4. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay; Keller, Beat

    2002-01-01

    The Arabidopsis thaliana (L.) Heynh. mutant delayed-dehiscence2-2 (dde2-2) was identified in an En1/Spm1 transposon-induced mutant population screened for plants showing defects in fertility. The dde2-2 mutant allele is defective in the anther dehiscence process and filament elongation and thus e...

  5. Relationship between genetic polymorphism of N-acetyltransferase and early-onset Parkinson disease%N-乙酰基转移酶基因多态性与早发性帕金森病关系的研究

    刘平; 杨静芳; 董秀敏; 陈彪; 邵明; 刘振华; 郭艳平

    2001-01-01

    Objective To investigate the relationship between the slowacetylator genotype induced by the genetic polymorphism of N-acetyltransferase 2 (NAT2) gene and the early-onset Parkinson disease. Methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used and three mutant alleles M1, M2 and M3 of NAT2 were studied in 126 patients with idiopathic early-onset Parkinson disease and 122 age-matched randomly selected controls. Results The frequencies of alleles M1, M2 and M3 of NAT2 in patients were 8.7%,26.6% and 13.1%,respectively,however,there were 2.9%,19.7% and 14.8% in controls, respectively. The difference in frequency of allele M1 was statistically significant(P=0.005). The frequency of slow acetylator genotype was higher in patients (23.0%) than in controls (10.7%), showing an OR of 2.507(P=0.009). Conclusion Our study suggests that the slow acetylator genotype of N-acetyltransferase 2 might be associated with the occurrence of the idiopathic early-onset Parkinson′s disease.%目的 探讨N-乙酰基转移酶基因(NAT2)的多态性所导致的慢乙酰化基因型与早发性帕金森病(PD)的关系。方法 利用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)技术分析了126例早发性帕金森病患者(发病年龄≤50岁)与122名正常健康成人对照组NAT2基因3个常见突变的等位基因M1、M2、M3的分布频率,比较慢乙酰化基因型在早发性PD病人与正常人之间的分布差异。结果 等位基因M1、M2、M3在病例组中的分布频率分别为8.7%、26.6%、13.1%;在对照组中为2.9%、19.3%、14.8%,等位基因M1在两组中之间差异有显著意义(P=0.005)。病例组慢乙酰化型基因频率为23.0%,对照组为10.7%,两者差异有显著意义(P=0.009)。OR值为2.507。结论 N-乙酰基转移酶慢乙酰化基因型可能与早发性PD的发病有关。

  6. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  7. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories.

    Stephanie A Maddox

    Full Text Available The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD. Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica, to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories.

  8. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms. PMID:27005412

  9. Crohn's disease in Japanese is associated with a SNP-haplotype of N-acetyltransferase 2 gene

    Haruhisa Machida; Ikuo Murata; Shigeru Kohno; Chen-Yang Wen; Kazuhiro Tsukamoto; Chun-Yang Wen; Saburou Shikuwa; Hajime Isomoto; Yohei Mizuta; Fuminao Takeshima; Kunihiko Murase; Naomichi Matsumoto

    2005-01-01

    AIM: To investigate the frequency and distribution of N-acetyltransferase 2 (NAT2) and uridine 5′-diphosphate (UDP)-glucuronosyltransferase 1A7 (UGT1A7) genes in patients with ulcerative colitis (UC) and Crohn's disease (CD).METHODS: Frequencies and distributions of NAT2 and UGT1A7SNPs as well as their haplotypes were investigated in 95 patients with UC, 60 patients with CD, and 200gender-matched, unrelated, healthy, control volunteers by PCR-restriction fragment length polymorphism (RFLP),PCR-denaturing high-performance liquid chromatography (DHPLC), and direct DNA sequencing.RESULTS: Multiple logistic regression analysis revealed that the frequency of haplotype, NAT2*7B, significantly increased in CD patients, compared to that in controls (P= 0.0130, OR = 2.802, 95%CI = 1.243-6.316). However,there was no association between NAT2 haplotypes and UC, or between any UGT1A7haplotypes and inflammatory bowel disease (IBD).CONCLUSION: It is likely that the NAT2 gene is one of the determinants for CD in Japanese. Alternatively, a new CD determinant may exist in the 8p22 region, whereNAT2is located.

  10. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain.

    Ryan P Vetreno

    Full Text Available During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55 treatment led to persistent, global reductions of choline acetyltransferase (ChAT expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70 produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48 and adult (P70-P90 binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.

  11. Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection.

    Shin, Kyungha; Guo, Haiyu; Cha, Yeseul; Ban, Young-Hwan; Seo, Da Woom; Choi, Youngjin; Kim, Tae-Su; Lee, Sung-Pyo; Kim, Jong-Choon; Choi, Ehn-Kyoung; Yon, Jung-Min; Kim, Yun-Bae

    2016-07-01

    In Alzheimer disease (AD), amyloid-beta (Aβ) peptides induce the degeneration of presynaptic cholinergic system, in which decreased activity of enzyme choline acetyltransferase (ChAT) responsible for acetylcholine synthesis is observed. Cereboost™, an extract of American ginseng extract, contains a high concentration of Rb1 ginsenoside which is a well-known ingredient improving human cognitive function. We investigated the effects of Cereboost™ on learning and memory function of mice challenged with an Aβ1-42 peptide and the underlying mechanisms in vitro. Cereboost™ protected against Aβ1-42-induced cytotoxicity in F3.ChAT stem cells, and enhanced the ChAT gene expression. Aβ1-42 injection into the mouse brain impaired the cognitive function, which was recovered by oral administration of Cereboost™. In addition, Cereboost™ restored brain microtubule-associated protein 2 and synaptophysin as well as acetylcholine concentration. The results demonstrate that Cereboost™ administration recovered the cognitive function of AD model animals by enhancing acetylcholine level via ChAT gene expression and neuroprotection. PMID:27112419

  12. C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe

    Background and purpose: Chromatin remodeling through histone modifications, including acetylation, plays an important role in the appropriate response to DNA damage induced by ionizing radiation (IR). Here we investigated the radiosensitizing effect of C646, a selective small molecule inhibitor of p300 histone acetyltransferase, and explored the underlying mechanisms. Materials and methods: A549, H157 and H460 human non-small cell lung carcinoma (NSCLC) cells, and HFL-III human lung fibroblasts were assessed by clonogenic survival assay. Apoptosis and necrosis were assessed by annexin V staining. Senescence was assessed by Senescence-associated β-galactosidase staining. Mitotic catastrophe was assessed by evaluating nuclear morphology with DAPI staining. Cell cycle profiles were analyzed by flow cytometry. Protein expression was analyzed by immunoblotting. Results: C646 sensitized A549, H460 and H157 cells to IR with a dose enhancement ratio at 10% surviving fraction of 1.4, 1.2 and 1.2, respectively. C646 did not radiosensitize HFL-III cells. In A549 cells, but not in HFL-III cells, C646 (i) enhanced mitotic catastrophe but not apoptosis, necrosis, or senescence after IR; (ii) increased the hyperploid cell population after IR; and (iii) suppressed the phosphorylation of CHK1 after IR. Conclusions: C646 radiosensitizes NSCLC cells by enhancing mitotic catastrophe through the abrogation of G2 checkpoint maintenance

  13. Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A.

    Shi, Shasha; Liu, Ke; Chen, Yanheng; Zhang, Shijun; Lin, Juanyu; Gong, Chenfang; Jin, Quanwen; Yang, Xiang-Jiao; Chen, Ruichuan; Ji, Zhiliang; Han, Aidong

    2016-07-01

    The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor. PMID:27143356

  14. The early response of pineal N-acetyltransferase activity, melatonin and catecholamine levels in rats irradiated with gamma rays

    Male Wistar rats adapted to an artificial light-dark regimen were whole-body gamma-irradiated with a dose of 14.35 Gy. Irradiation, sham-irradiation and decapitation 30, 60 and 120 min after the exposure were performed between 2000 h and 0100 h in the darkness. The serotonin N-acetyltransferase activity (NAT), the concentration of melatonin and corticosterone were also determined. Ionizing radiation did not change the activity of NAT, the key enzyme of melatonin synthesis; however, it decreased the concentration of pineal melatonin. The concentration of pineal dopamine and norepinephrine decreased 30 and 120 min after exposure, while the concentration of epinephrine was elevated 30 min after irradiation, though later it was markedly decreased. The serum melatonin level was not changed but an increase in corticosterone level was observed. In the early period after exposure a decrease in pineal melatonin occurred, accompanied by a decrease in pineal catecholamines. On the contrary, in the phase of developed radiation injury the signs of increased melatonin synthesis were observed on days 3 and 4 after the exposure. (author) 6 figs., 25 refs

  15. Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: coexistence with vasoactive intestinal peptide and choline acetyltransferase

    Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. The authors report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat measured by radioimmunoassay. High-performance liquid chromatographic analysis of the immunoreactive material present in the otic ganglion indicates that this material is very similar to porcine NPY and indistinguishable from the NPY-like immunoreactivity present in rat sympathetic neurons. These findings raise the possibility that NPY acts as a neuromodulator in the parasympathetic as well as the sympathetic nervous system. In contrast to what had been observed for sympathetic neurons, NPY-immunoreactive neurons in cranial parasympathetic ganglia do not contain detectable catecholamines or tyrosine hydroxylase immunoreactivity, and many do contain immunoreactivity for vasoactive intestinal peptide and/or choline acetyltransferase. These findings suggest that there is no simple rule governing coexpression of NPY with norepinephrine, acetylcholine, or vasoactive intestinal peptide in autonomic neurons. Further, while functional studies have indicated that NPY exerts actions on the peripheral vasculature which are antagonistic to those of acetylcholine and vasoactive intestinal peptide, the present results raise the possibility that these three substances may have complementary effects on other target tissues

  16. Raman and surface enhanced Raman spectroscopic studies of specific, small molecule activator of histone acetyltransferase p300

    Kundu, Partha P.; Pavan Kumar, G. V.; Mantelingu, Kempegowda; Kundu, Tapas K.; Narayana, Chandrabhas

    2011-07-01

    We report for the first time, the Raman and surface enhanced Raman scattering (SERS) studies of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB). This molecule is specific activator of human histone acetyltransferase (HAT), p300, and serves as lead molecule to design anti-neoplastic therapeutics. A detailed Raman and SERS band assignments have been performed for CTB, which are compared with the density functional theory calculations. The observed red shift of N sbnd H stretching frequency from the computed wavenumber indicates the weakening of N sbnd H bond resulting from proton transfer to the neighboring oxygen atom. We observe Ag sbnd N vibrational mode at 234 cm -1 in SERS of CTB. This indicates there is a metal-molecule bond leading to chemical enhancement in SERS. We also observe, enhancement in the modes pertaining to substituted benzene rings and methyl groups. Based on SERS analysis we propose the adsorption sites and the orientation of CTB on silver surface.

  17. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of [3H]acetyl-CoA in the assay using [3H]acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-[3H]acetylarylamine after separation from [3H]acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase

  18. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression.

    Zhang, Xi; Peng, Danni; Xi, Yuanxin; Yuan, Chao; Sagum, Cari A; Klein, Brianna J; Tanaka, Kaori; Wen, Hong; Kutateladze, Tatiana G; Li, Wei; Bedford, Mark T; Shi, Xiaobing

    2016-01-01

    The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. PMID:26960573

  19. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclic amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.

  20. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  1. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  2. Severe congenital myasthenia gravis of the presynaptic type with choline acetyltransferase mutation in a Chinese infant with respiratory failure.

    Yeung, Wai L; Lam, Ching W; Fung, Lai W E; Hon, Kam L E; Ng, Pak C

    2009-01-01

    We report a severe case of congenital myasthenia gravis in a Chinese newborn who presented with complete ptosis, severe hypotonia, dysphagia and respiratory insufficiency with recurrent apnea that required mechanical ventilatory support since birth. Routine neurophysiologic studies, including the 3-Hz repetitive stimulation test and electromyogram were normal. Neostigmine and edrophonium tests were also negative. However, decremental response to 3-Hz stimulation became apparent after depleting the muscles with trains of 10-Hz stimuli for 10 min. The infant was subsequently confirmed to have heterozygous mutations in the choline acetyltransferase genes, p.T553N and p.S704P. Both missense mutations are novel mutations. The child remained on positive pressure ventilation at 3 years of age despite treatment with high-dose anticholinesterase. This case highlights the difficulty of making an early diagnosis based on clinical presentation and routine electrophysiologic tests, especially when neonatologists are not familiar with this condition. Further, as there are different genetic defects causing different types of congenital myasthenia gravis, anticholinesterase therapy may be beneficial to some but detrimental to others. Therefore, the exact molecular diagnosis is an important guide to therapy. A high index of suspicion coupled with extended electrodiagnostic tests in clinically suspected patients will ensure the selection of appropriate genetic molecular study for confirming the diagnosis. PMID:18797171

  3. Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: probed by surface enhanced Raman spectroscopy.

    Arif, Mohammed; Kumar, G V Pavan; Narayana, Chandrabhas; Kundu, Tapas K

    2007-10-18

    Reversible acetylation of histone and non-histone proteins plays an important role in the regulation of gene expression and cellular homeostasis. A balance between acetylation and deacetylation of these proteins are maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Among different HATs, p300/CBP is the most widely studied chromatin modifying enzymes. p300 is involved in several physiological processes like cell growth, regulation of gene expression, development, and tumor suppressor, and therefore its dysfunction causes different diseases. The autoacetylation of p300 is one of the key regulators of its catalytic activity. Mechanistically, autoacetylation induced structural changes in the p300 HAT domain acts as a master switch. In this report, we have shown that the natural HAT inhibitor garcinol could potently inhibit the autoacetylation activity. Furthermore, for the first time, we demonstrate that indeed autoacetylation induces structural changes in p300 HAT domain, as probed by surface-enhanced Raman scattering. Presumably, SERS will be a very useful tool to find out the structural changes in the other self-modifying enzymes like kinases and methyltransferases. PMID:17894486

  4. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories.

    Maddox, Stephanie A; Watts, Casey S; Doyère, Valérie; Schafe, Glenn E

    2013-01-01

    The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories. PMID:23349897

  5. What a Role did Histidine Residue Play in Arylamine N-Acetyltransferase 2 Acetylation? A Quantum Chemistry Study

    QIAO Qing-An; CAI Zheng-Ting; YANG Chuan-Lu; WANG Mei-Shan

    2006-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs and carcinogens. Experiments revealed that His-107 was likely the residues responsible for mediating acetyl transfer.The full catalytic mechanism of acetylation process has been examined by density functional theory. The results indicate that, if the acetyl group is directly transferred from the donor, p-nitrophenyl acetate, to the acceptor, cysteine,the high activation energy will be a great hindrance. These energies have dropped in a little range of 20-25 k J/mol when His-107 assisted the transfer process. However, when protonated His-107 mediated the reaction, the activation energies have been dropped about 73-85 kJ/mol. Our calculations strongly supported an enzyme acetylation mechanism that experiences a thiolate-imidazolium pair, and verified the presumption from experiments.

  6. G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression

    Zhang, Xi; Peng, Danni; Xi, Yuanxin; Yuan, Chao; Sagum, Cari A.; Klein, Brianna J.; Tanaka, Kaori; Wen, Hong; Kutateladze, Tatiana G.; Li, Wei; Bedford, Mark T.; Shi, Xiaobing

    2016-01-01

    The euchromatin histone methyltransferase 2 (also known as G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a coactivator of the endogenous oestrogen receptor α (ERα) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERα at K235 both in vitro and in cells. Dimethylation of ERαK235 is recognized by the Tudor domain of PHF20, which recruits the MOF histone acetyltransferase (HAT) complex to ERα target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our data suggest the molecular mechanism by which G9a functions as an ERα coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERα methylation and histone acetylation that governs the epigenetic regulation of hormonal gene expression. PMID:26960573

  7. Prevalence of the N-Acetyltransferase (NAT2 gene polymorphism 282C>T in Peruvian population and health implications

    Salazar-Granara Alberto

    2016-03-01

    Full Text Available Objective: To determine the frequency of the C282T polymorphism of the NAT2 gene (N acetyltransferase in Peruvian populations. Field work, focused on exploring genetic risk factor in Peruvian populations, which has influence in the response to drugs and malignancies aetiology. Material and Methods: Cross-sectional study. 166 voluntaries from Lima, Lambayeque, Apurimac, Puno, San Martin, Amazonas and Loreto were enrolled. The sampling was done by convenience and it was use the RFLP-PCR conventional technique was used. Results: The allele frequency were 54% (n=126 for C282 and 46% (n=106 for T282. For the T allele, by its orign , stand out 2 those which origins were Lima 42% (n=25, Amazonas 47% (n=16, San Martin 74% (n=28 and Apurimac 50% (n=13 (X , p>0.05. A global genotype frequency were 26.7% (n=31 for C282/C282, 56.0% (n=65 for C282/T282 and 17.2% (n=20 for T282/T282 (Hardy Weinberg Test p>0.05. By origin, Puno presented allelic imbalance (Hardy Weinberg test p0.05. Conclusion: The overall frequency of NAT2 allele T282 was 46%; San Martin had the highest prevalence (74%. The T282 allele is linked to neoplastic diseases and adverse reactions to anti-TB drugs, these results will be used for the application of pharmacogenetics in Peru

  8. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    HUANG Xiao-qun; WANG Ping-rong; ZHAO Hai-xin; DENG Xiao-jian

    2008-01-01

    A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B.It showed whole green-yellow plant from the seedling stage,reduced number of tillers and longer growth duration.The contents of chlorophyll,chlorophyll a,chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased,as well as the number of spikelets per panicle,seed setting rate and 1000-grain weight compared with its wild-type parent.Genetic analyses on F1 and F2 generetions of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene.Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys,and the mutant gene of 824ys was mapped on the shon arm of rice chromosome 3.The genetic distances from the target gene to the markers RM218,RM282 and RM6959 were 25.6 cM,5.2 cM and 21.8 cM,respectively.It was considered to be a now chlorophyll-deficit mutant gene and tentatively named as chl11(t).

  9. Potential Mitochondrial Isocitrate Dehydrogenase R140Q Mutant Inhibitor from Traditional Chinese Medicine against Cancers

    Lee, Wen-Yuan; Chen, Kuan-Chung; Chen, Hsin-Yi; Chen, Calvin Yu-Chian

    2014-01-01

    A recent research of cancer has indicated that the mutant of isocitrate dehydrogenase 1 and 2 (IDH1 and 2) genes will induce various cancers, including chondrosarcoma, cholangiocarcinomas, and acute myelogenous leukemia due to the effect of point mutations in the active-site arginine residues of isocitrate dehydrogenase (IDH), such as IDH1/R132, IDH2/R140, and IDH2/R172. As the inhibition for those tumor-associated mutant IDH proteins may induce differentiation of those cancer cells, these tumor-associated mutant IDH proteins can be treated as a drug target proteins for a differentiation therapy against cancers. In this study, we aim to identify the potent TCM compounds from the TCM Database@Taiwan as lead compounds of IDH2 R140Q mutant inhibitor. Comparing to the IDH2 R140Q mutant protein inhibitor, AGI-6780, the top two TCM compounds, precatorine and abrine, have higher binding affinities with target protein in docking simulation. After MD simulation, the top two TCM compounds remain as the same docking poses under dynamic conditions. In addition, precatorine is extracted from Abrus precatorius L., which represents the cytotoxic and proapoptotic effects for breast cancer and several tumor lines. Hence, we propose the TCM compounds, precatorine and abrine, as potential candidates as lead compounds for further study in drug development process with the IDH2 R140Q mutant protein against cancer. PMID:24995286

  10. Development of photoperiod insensitive mutant lines using gamma irradiation of traditional aromatic rice

    Traditional high quality rice varieties are very often photoperiod sensitive and thus have long growth duration. The aromatic rice varieties, Aromatic Tam Rice (ATR) grown in North Viet Nam, and Khaodowmali 105 (KDML 105) grown in Thailand, are representative of this kind. ATR has been grown in the Red River Delta of North Viet Nam for thousands of years. It is a strictly photoperiod sensitive variety, and has a long growth duration of more than 160 days, therefore, it can be grown only once a year. It has also other non-preferred characteristics, such as high plant type (>160 cm), small and short grains (19 g per 1000 grains), and low yield (60Co at the dosage of 60 Gy. Three novel mutant lines were selected at M4 and became bred-true at M6-7. The mutant characteristics included photoperiod insensitivity, shortened plant type (<100 cm), early maturity (90 - 100 d), and extra long and large grain type (35-65% increase of 1000 grains weight). Subsequently, the mutant lines all had higher yields (over 5.5 t/ha) than ATR, while their grain quality remained high. In addition, a mutant line with red pericarped grains was also isolated from the mutant population. Similar results had been obtained from the irradiated KDML105 progeny. Two photoperiod insensitive mutant lines were identified and have already been demonstrated in large scale trials in Soctrang Province

  11. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini.

    McMenamin, Sarah K; Minchin, James E N; Gordon, Tiffany N; Rawls, John F; Parichy, David M

    2013-04-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity. PMID:23456361

  12. Impairment in motor learning of somatostatin null mutant mice.

    Zeyda, T; Diehl, N; Paylor, R; Brennan, M B; Hochgeschwender, U

    2001-07-01

    Somatostatin was first identified as a hypothalamic factor which inhibits the release of growth hormone from the anterior pituitary (somatotropin release inhibitory factor, SRIF). Both SRIF and its receptors were subsequently found widely distributed within and outside the nervous system, in the adult as well as in the developing organism. Reflecting this wide distribution, somatostatin has been implicated regulating a diverse array of biological processes. These include body growth, homeostasis, sensory perception, autonomous functions, rate of intestinal absorption, behavior, including cognition and memory, and developmental processes. We produced null mutant mice lacking somatostatin through targeted mutagenesis. The mutant mice are healthy, fertile, and superficially indistinguishable from their heterozygous and wildtype littermates. A 'first round' phenotype screen revealed that mice lacking somatostatin have elevated plasma growth hormone levels, despite normal body size, and have elevated basal plasma corticosterone levels. In order to uncover subtle and unexpected differences, we carried out a systematic behavioral phenotype screen which identified a significant impairment in motor learning revealed when increased demands were made on motor coordination. Motor coordination and motor learning require an intact cerebellum. While somatostatin is virtually absent from the adult cerebellum, the ligand and its receptor(s) are transiently expressed at high levels in the developing cerebellum. This result suggests the functional significance of transient expression of SRIF and its receptors in the development of the cerebellum. PMID:11430867

  13. Testing, cross-breeding, induction and nutritional evaluation of wheat and triticale mutants

    Through eight years of research our Project was able to identify several outstanding mutants, derived from the gamma irradiation of six wheat genotypes tested for protein content, yield, adaptability and disease resistance over a wide range of environmental conditions. Shortly before releasing some of these mutants for commercial cultivation, race 15 B of stem rust (Puccinia graminis f.sp. tritici), absent from Chile for over 20 years, was identified, causing devastating effects on the mutants and other material. Only low levels of resistance were found among Chilean spring wheat cultivars and advanced breeding lines available in 1979. This paper presents the results of our research from 1971 until 1979, and a series of procedures which have been programmed to solve the problem, and rapidly induce resistance to the material, without causing loss of characteristics, especially high yield and improved protein content. (author)

  14. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa.

    Lew, Roger R; Giblon, Rachel E; Lorenti, Miranda S H

    2015-09-01

    In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension. PMID:26212074

  15. Straight Mutants of Spirillum volutans Can Swim

    Padgett, P. J.; Friedman, M. W.; Krieg, N R

    1983-01-01

    Nonhelical mutant cells of Spirillum volutans ATCC 19554 can swim as fast as the helical cells. Consequently, a helical cell shape is not required for motility of this species, and the function of the polar flagellar fascicles is not merely to cause rotation, and therefore translocation, of the corkscrew-shaped cell.

  16. A dominant semi dwarf mutant in rice

    2002-01-01

    @@ In the winter of 1997, a semi dwarf mutant was found in the F6 population of M9056/ R8018 xuan in Hainan Province. In the spring of 1998, the seeds were sown in Hefei, Anhui Province and the plant height of the population was measured at maturity.

  17. Induced mutants for cereal grain protein improvement

    Out of 17 papers and one summary presented, six dealing with the genetic improvement of seed protein using ionizing radiations fall within the INIS subject scope. Other topics discussed were non-radiation induced mutants used for cereal grain protein improvement

  18. Regulatory Citrate Lyase Mutants of Salmonella typhimurium

    Kulla, Hans G.

    1983-01-01

    Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present.

  19. Regulatory citrate lyase mutants of Salmonella typhimurium.

    Kulla, H G

    1983-01-01

    Citrate lyase, the key enzyme of anaerobic citrate catabolism, could not be deleted from Salmonella typhimurium. The only class of mutants found had a mode of covalent regulation that strongly resembled the Escherichia coli system: citrate lyase was only active, i.e., acetylated, when a cosubstrate was present. PMID:6336740

  20. Identification of a natural mutant of HBV X protein truncated 27 amino acids at the COOH terminal and its effect on liver cell proliferation

    Hang ZHANG; Xiao-dong ZHANG; Chang-liang SHAN; Nan LI; Xuan ZHANG; Xue-zhi ZHANG; Fu-qing XU; Shuai ZHANG; Li-yan QIU; Li-hong YE

    2008-01-01

    Aim:To identify mutants of the hepatitis B virus (HBV) X (HBx) gene and inves-tigate the effect of the natural mutant on liver cell proliferation. Methods:We identified natural mutants of the HBx gene from 188 sera and 48 tissues of Chinese patients infected with HBV by PCR, respectively. Based on the identification of the mutants ofHBx gene, we cloned the fragments of the mutants into the pcDNA3 vector. The biological activities of the mutants were investigated. Results:We identified a natural mutant of the HBx gene with deletion from 382 to 401 base pairs from 3 sera out of 188 patients, which resulted in the expression deletion of the HBx protein from the 128th amino acid at the COOH terminal. The similar mutant with deletion from 382 base pair at the COOH terminal was identified from 5 cases of genomes out of 48 hepatocellular carcinoma tissues. Regarding the biological activities of the mutant, we found that the mutant of the HBx protein failed to induce apoptosis by transient transfection, but promoted proliferation of human liver immortalized L-O2 cells by stable transfection, compared with the wild-type HBx protein. The data showed that the proliferation of the mutant stably-trans-fected L-O2-X-Sera cells and fragment stably-transfected L-O2-X△127 cells was enhanced by the BrdU incorporation assay and flow cytometry analysis. Lu-ciferase reporter gene assay showed that the transcriptional activities of NF-kB, survivin, and human telomerase reverse transcriptase were upregulated, and West-ern blot analysis revealed that the expression levels of c-Myc and proliferating cell nuclear antigen (PCNA) were upregulated in the cells. Conclusion:Our find-ings suggest that the natural HBx mutant truncated 27 amino acids at the COOH terminal promotes cell proliferation.

  1. Phanerochaete mutants with enhanced ligninolytic activity

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  2. Evaluation of high yielding mungbean mutants

    Mungbean is the second major (Vigna radiata (L.) Wilczek) pulse crop in Pakistan, after chickpea, and is the main pulse crop grown during the spring season in the province of Sindh. Its yield is very low (450 kg/ha) which is mainly due to the non-availability of pure seed of high yield potential genotypes. Keeping in view the importance of induced mutations in all field crops and particularly in the evolution of mungbean cultivars, an induced mutation programme was initiated at AEARC, Tandojam during 1985. Since then a large number of mutants have been developed and are at various stages of evaluation. Among them two mungbean mutants (AEM 6/20 and AEM 32/20) isolated from the treated population of a local cultivar '6601' with 200 Gy gamma-ray treatment gave very encouraging performance in station as well as zonal trials. On the basis of these results they were promoted in the National Trials, where they remained under evaluation for four years during spring as well as summer seasons. The pool data of four consecutive years of both seasons indicated that mutant lines AEM 32/20 and AEM 6/20 produced 1298 and 1246 kg/ha grain yield respectively as compared to the check variety 'NM 121-25' (1055 kg/ha) evolved at NIAB, Faisalabad through induced mutations. The seed yield increase over the check variety ranged from 18-23%. These two mungbean mutants have short stature combined with short duration and synchrony in maturity. Keeping in view the outstanding performance of these mutant lines, variety release proposals are being submitted to the Technical Sub-Committee for approval of varieties and techniques

  3. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate : purification from Alcaligenes defragrans and gene clusters in taurine degradation

    Ruff, Jürgen; Denger, Karin; Cook, Alasdair M.

    2003-01-01

    The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for...

  4. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al+3. (author)

  5. Genetic study of necrotic leaf pea (Pisum sativum L.) mutants

    Four pea (Pisum sativum L.) mutants characterized by necrotic leaves were isolated following mutagenesis. The mutants were shown to have single-gene recessive inheritance, characterized morphologically and for seed production. New mutants 1/704, 1/711M, XV/915 and 2/352 had similar phenotypes, respectively, to previously named mutants dgl (degenerating leaves), nec (necrosis), bls (brown leaf spots) and bls (brown leaf), but no allelism tests were made between the new and the previously reported mutants. Mutants 1/704 and 1/711M were shown to be non-allelic. The mutation in line 2/352 may be useful as a genetic marker

  6. Disease mutant analysis identifies a new function of DAXX in telomerase regulation and telomere maintenance

    Tang, Mengfan; Li, Yujing; Zhang, Yi; Chen, Yuxi; Huang, Wenjun; Wang, Dan; Zaug, Arthur J.; Liu, Dan; Zhao, Yong; Cech, Thomas R.; Ma, Wenbin; Songyang, Zhou

    2015-01-01

    Most human cancers depend on the telomerase to maintain telomeres; however, about 10% of cancers are telomerase negative and utilize the alternative lengthening of telomeres (ALT) mechanism. Mutations in the DAXX gene have been found frequently in both telomerase-positive and ALT cells, and how DAXX mutations contribute to cancers remains unclear. We report here that endogenous DAXX can localize to Cajal bodies, associate with the telomerase and regulate telomerase targeting to telomeres. Fur...

  7. Thermodynamic stability and denaturation kinetics of a benign natural transthyretin mutant identified in a Danish kindred

    Jensen, Minna Grønning; Campos, Raul I.; Fagerberg, Christina;

    2011-01-01

    The disease phenotype of transthyretin (TTR) is dramatically influenced by single point mutations in the TTR gene. Herein, we report on a novel mutation D99N (Asp99Asn) in TTR found in a Danish kindred. None of the family members carrying this mutation have so far shown any clinical signs of amyl...

  8. Ex Vivo Expansion of Human Hematopoietic Stem Cells by Garcinol, a Potent Inhibitor of Histone Acetyltransferase

    Nishino, Taito; Wang, Changshan; Mochizuki-Kashio, Makiko; Osawa, Mitsujiro; Nakauchi, Hiromitsu; Iwama, Atsushi

    2011-01-01

    Background Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However, methods suitable for clinical practice have yet to be fully established. Methodology/Principal Findings In this study, we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo, and identified Garcinol, a pl...

  9. A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin-free fruit pigmentation

    Induced or spontaneously occuring color mutants in plants provide valuable tools for elucidating the genetic and developmental regulation of genes that influence pigmentation. We identified a single plant of the eggplant (Solanum melongena) cultivar Black Beauty bearing green fruit. Black Beauty no...

  10. Molecular Marker Development and Linkage Analysis in Three Low Phytic Acid Barley (Hordeum vulgare) Mutant Lines

    Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases...

  11. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity.

    Inagaki, Yuji; Shiraki, Katsuya; Sugimoto, Kazushi; Yada, Takazumi; Tameda, Masahiko; Ogura, Suguru; Yamamoto, Norihiko; Takei, Yoshiyuki; Ito, Masaaki

    2016-02-01

    Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC. PMID:26676548

  12. Effects of human arylamine N-acetyltransferase I knockdown in triple-negative breast cancer cell lines

    Expression of human arylamine N-acetyltransferase I (NAT1) has been associated with various cancer subtypes and inhibition of this enzyme with small molecule inhibitors or siRNA affects cell growth and survival. Here, we have investigated the role of NAT1 in the invasiveness of breast cancer cells both in vitro and in vivo. We knocked down NAT1 using a lentivirus-based shRNA approach and observed marked changes in cell morphology in the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-436, and BT-549. Most notable was a reduction in the number and size of the filopodia protrusions on the surface of the cells. The loss of filopodia could be rescued by the reintroduction of NAT1 into the knockdown cells. NAT1 expression was localized to the lamellipodia and extended into the filopodia protrusions. In vitro invasion through Geltrex was significantly inhibited in both the MDA cell lines but not in the BT-549 cells. The expression of Snail increased when NAT1 was knocked down, while other genes associated with mesenchymal to epithelial transition (vimentin, cytokeratin-18, and Twist) did not show any changes. By contrast, both N-cadherin and β-catenin were significantly reduced. When MDA-MB-231 cells expressing shRNA were injected in vivo into BALB/c nu/nu nude mice, a significant reduction in the number of colonies that formed in the lungs was observed. Taken together, the results show that NAT1 can alter the invasion and metastatic properties of some triple-negative breast cancer cells but not all. The study suggests that NAT1 may be a novel therapeutic target in a subset of breast cancers

  13. Paradoxical attenuation of autoimmune hepatitis by oral isoniazid in wild-type and N-acetyltransferase-deficient mice.

    Metushi, Imir G; Cai, Ping; Vega, Libia; Grant, Denis M; Uetrecht, Jack

    2014-06-01

    Isoniazid (INH) treatment can cause serious liver injury and autoimmunity. There are now several lines of evidence that INH-induced liver injury is immune mediated, but this type of liver injury has not been reproduced in animals, possibly because immune tolerance is the dominant response of the liver. In this study, we immunized mice with isonicotinic acid (INA)-modified proteins and Freund's adjuvant, which led to mild experimental autoimmune hepatitis (EAH) with an increase in cells staining positive for F4/80, CD11b, CD8, CD4, CD45R, and KI67. We expected that subsequent treatment of mice with oral INH would lead to more serious immune-mediated liver injury, but paradoxically it markedly attenuated the EAH caused by immunization with INA-modified hepatic proteins. In addition, patients of the slow acetylator phenotype are at increased risk of INH-induced liver injury. Treatment of arylamine N-acetyltransferase-deficient Nat1/2(-/-) mice with INH for up to 5 weeks produced mild increases in glutamate and sorbitol dehydrogenase activities, but not severe liver injury. Female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days developed steatosis, an increase in Oil Red O staining, and abnormal mitochondrial morphology in the liver. A decrease in M1 and an increase in M2a and M2b macrophages was observed in female Nat1/2(-/-) mice treated with INH for 1, 3, or 7 days; these changes returned to baseline levels by day 35. These data indicate that INH has immunosuppressive effects, even though it is also known to induce autoantibody production and a lupus-like autoimmune syndrome in humans. PMID:24623063

  14. Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells.

    Wilhelm, Márta; Lawrence, J Josh; Gábriel, Robert

    2015-02-01

    We studied cholinergic circuit elements in the enteric nervous system (ENS) of two distinct transgenic mouse lines in which fluorescent protein expression was driven by the choline-acetyltransferase (ChAT) promoter. In the first mouse line, green fluorescent protein was fused to the tau gene. This construct allowed the visualization of the fiber tracts and ganglia, however the nerve cells were poorly resolved. In the second mouse line (ChATcre-YFP), CRE/loxP recombination yielded cytosolic expression of yellow fluorescent protein (YFP). In these preparations the morphology of enteric neurons could be well studied. We also determined the neurochemical identity of ENS neurons in muscular and submucous layers using antibodies against YFP, calretinin (CALR), calbindin (CALB), and vasoactive intestinal peptide (VIP). Confocal microscopic imaging was used to visualize fluorescently-conjugated secondary antibodies. In ChATcre-YFP preparations, YFP was readily apparent in somatodendritic regions of ENS neurons. In the myenteric plexus, YFP/CALR/VIP staining revealed that 34% of cholinergic cells co-labeled with CALR. Few single-stained CR-positive cells were observed. Neither YFP nor CALR co-localized with VIP. In GFP/CALB/CALR staining, all co-localization combinations were represented. In the submucosal plexus, YFP/CALR/VIP staining revealed discrete neuronal populations. However, in separate preparations, double labeling was observed for YFP/CALR and CALR/VIP. In YFP/CALR/CALB staining, all combinations of double staining and triple labeling were verified. In conclusion, the neurochemical coding of ENS neurons in these mouse lines is consistent with many observations in non-transgenic animals. Thus, they provide useful tools for physiological and pharmacological studies on distinct neurochemical subtypes of ENS neurons. PMID:25592616

  15. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  16. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells.

    Lamparter, Christina L; Winn, Louise M

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. PMID:27381264

  17. Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma

    Cobbs Gary A

    2007-05-01

    Full Text Available Abstract Background N-acetyltransferase 1 (NAT1 and 2 (NAT2 are polymorphic isoenzymes responsible for the metabolism of numerous drugs and carcinogens. Acetylation catalyzed by NAT1 and NAT2 are important in metabolic activation of arylamines to electrophilic intermediates that initiate carcinogenesis. Inflammatory bowel diseases (IBD consist of Crohn's disease (CD and ulcerative colitis (UC, both are associated with increased colorectal cancer (CRC risk. We hypothesized that NAT1 and/or NAT2 polymorphisms contribute to the increased cancer evident in IBD. Methods A case control study was performed with 729 Caucasian participants, 123 CRC, 201 CD, 167 UC, 15 IBD dysplasia/cancer and 223 controls. NAT1 and NAT2 genotyping were performed using Taqman based techniques. Eight single nucleotide polymorphisms (SNPs were characterized for NAT1 and 7 SNPs for NAT2. Haplotype frequencies were estimated using an Expectation-Maximization (EM method. Disease groups were compared to a control group for the frequencies at each individual SNP separately. The same groups were compared for the frequencies of NAT1 and NAT2 haplotypes and deduced NAT2 phenotypes. Results No statistically significant differences were found for any comparison. Strong linkage disequilibrium was present among both the NAT1 SNPs and the NAT2 SNPs. Conclusion This study did not demonstrate an association between NAT1 and NAT2 polymorphisms and IBD or sporadic CRC, although power calculations indicate this study had sufficient sample size to detect differences in frequency as small as 0.05 to 0.15 depending on SNP or haplotype.

  18. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1225) mediates ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1225 and human ARD1235.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P41 (or P43), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (VM) of 2.13 Å3 Da−1 and a solvent content of 42.1%. Ta1140 was also crystallized at 297 K using

  19. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Brooks Wynse S

    2011-09-01

    Full Text Available Abstract Background The trichothecene mycotoxin deoxynivalenol (DON may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON, and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201 were cloned and expressed in yeast (Saccharomyces cerevisiae during a series of small-scale ethanol fermentations using barley (Hordeum vulgare. DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation.

  20. Selection of Bacillus subtilis mutants impaired in ammonia assimilation.

    Dean, D R; Aronson, A I

    1980-01-01

    The selection of Bacillus subtilis mutants capable of using D-histidine to fulfill a requirement for L-histidine resulted in mutants with either no glutamate synthase activity or increased amounts of an altered glutamine synthetase.

  1. PNRI mutant variety: sansevieria 'Sword of Ibe'

    Sansevieria 'Sword of Ibe,' registered by the Philippine Nuclear Research Institute as NSIC 2008 Or-66, is a chlorophyll mutant of Sansevieria trifasciata 'Moonshine' developed by treating its suckers or shoots arising from a rhizome with acute gamma radiation from a Cobalt-60 source. The new mutant is identical in growth habit and vigor to Sansevieria 'Moonshine,' also known as Moonglow. Results of this mutation breeding experiment showed that leaf color and flowering were altered by gamma irradiation without changing the other characteristics of the plant. Propagation is true-to-type by separation of sucker and top cutting. The plant is recommended for use as landscaping material and as pot plant for indoor and outdoor use. The leaves may be harvested as cut foliage for Japanese flower arrangements. (author)

  2. Serine:glyoxylate aminotransferase mutant of barley

    A photorespiratory mutant of barley (LaPr 85/84), deficient in both of the major peaks of serine:glyoxylate aminotransferase activity detected in the wild type, also lacks serine:pyruvate and asparagine:glyoxylate aminotransferase activities. Genetic analysis of the mutation demonstrated that these three activities are all carried on the same enzyme. The mutant, when placed in air, accumulated a large pool of serine, showed the expected rate (50%) of ammonia release during photorespiration but produced CO2 at twice the wild type rate when it was fed [14C] glyoxylate. Compared with the wild type, LaPr 85/84 exhibited abnormal transient changes in chlorophyll a fluorescence when the CO2 concentration of the air was altered, indicating that the rates of the fluorescence quenching mechanisms were affected in vivo by the lack of this enzyme

  3. Nutritive value of horse gram mutants

    The gamma-rays induced mutation of seeds in horse gram Var. DPL-1 resulted in significant increase in crude protein and crude fibre content in grain. Fat and ash contents were also increased in some of the mutants. Induced mutation, however, did not show beneficial effect on methionine and tryptophan content of the grain. Both these limiting amino acids were deficient in all the genotypes. The mutant ACCK-304 and ACCL-302 appeared to be superior in respect of crude protein content (21.9% and 21.5%), grain yield (15.7 and 15.6 q/ha) and protein yield (3.4 and 3.3 q/ha), respectively. (author)

  4. Fibrinolytic Activity of Recombinant Mutant Streptokinase

    Mahboobeh Mobarrez

    2015-04-01

    Full Text Available Background: Streptokinase is a bacterial protein produced by different beta hemolytic streptococci and widely used in thrombolytic treatment. The main disadvantage of using streptokinase is antibody formation which causes allergic reaction to neutralize effects of streptokinase therapy. Aim of this study was investigate of recombinant mutant streptokinase fibrinolytic activity.Materials and Methods: In this study recombinant mutant streptokinase without 42 amino acids from the C terminal region was purified by affinity S-Tag column chromatography and its fibrinolytic activity was studied.Results: The concentration of expressed and purified protein was 10 mg/ml. Its enzyme activity was assayed using zymography, radial caseinolytic activity and fibrin plate test methods and estimated quantitatively by casein digestion method compared to a commercial form.Conclusion: It was found that this product had the more volume and more enzymatic activity.

  5. Iron deficiency anemia's effect on bone formation in zebrafish mutant.

    Bo, Lin; Liu, Zhichun; Zhong, Yingbin; Huang, Jian; Chen, Bin; Wang, Han; Xu, Youjia

    2016-07-01

    Iron is one of the essential elements of life. Iron metabolism is related to bone metabolism. Previous studies have confirmed that iron overload is a risk factor for osteoporosis. But the correlation between iron deficiency and bone metabolism remains unclear. Ferroportin 1 is identified as a cellular iron exporter and required for normal iron cycling. In zebrafish, the mutant of ferroportin 1 gene (fpn1), weh(tp85c) exhibited the defective iron transport, leading to developing severe hypochromic anemia. We used weh(tp85c) as a model for investigating iron deficiency and bone metabolism. In this study, we examined the morphology of the developing cartilage and vertebrae of the Weh(tp85) compared to the wild type siblings by staining the larvae with alcian blue for cartilage and alizarin red for the bone. In addition, we evaluated the expression patterns of the marker genes of bone development and cell signaling in bone formation. Our results showed that weh(tp85c) mutant larvae exhibited the defects in bone formation, revealing by decreases in the number of calcified vertebrae along with decreased expression of osteoblast novel genes: alpl, runx2a and col1a1a and BMPs signaling genes in osteoblast differentiation: bmp2a and bmp2b. Our data suggest that iron deficiency anemia affects bone formation, potentially through the BMPs signaling pathway in zebrafish. PMID:27184405

  6. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  7. Mutants of complement component C3 cleaved by the C4-specific C1-s protease.

    Mathias, P; Carrillo, C J; Zepf, N E; Cooper, N R; Ogata, R T

    1992-01-01

    To identify some of the structural features determining specific protease recognition of complement components C3 and C4, we used site-specific mutagenesis to construct mutants of murine C3 that are cleaved by the C4-specific C1-s protease. Insertion of three amino acid residues corresponding to residues at the C1-s cleavage site of human C4 into murine C3 at the analogous C3 convertase cleavage site was adequate to render the mutant protein susceptible to C1-s cleavage. In addition, insertio...

  8. Genetic variation of space flight carried rice and mutant analysis by AFLP molecular marker

    Rice seeds were carried by 'Shenzhou No.3' space shuttle, a mutant with golden chaff, stem and leaf was selected and named Golden 1 after the seeds returned to the earth. Except the golden color, other traits of Golden 1 are no obviously different with its original material H9808. Genetic analysis identified that color variation was control by a pair of recessive gene. The DNA fragments of the mutant were compared with its parent by AFLP molecular markers. Five specific bands were found through a serial selection. (authors)

  9. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  10. Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes

    Zolman, Bethany K.; Martinez, Naxhiely; Millius, Arthur; Adham, A. Raquel; Bartel, Bonnie

    2008-01-01

    Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid β-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal ...

  11. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    Beer, Philip A; Ortmann, Christina A; Stegelmann, Frank;

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia......, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL...

  12. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants

    Mechanisms of plasma-induced microbial inactivation have commonly been studied with physicochemical techniques. In this letter, Escherichia coli K-12 and its ΔrecA, ΔrpoS, and ΔsoxS mutants are employed to discriminate effects of UV photons, OH radicals, and reactive oxygen species produced in atmospheric discharges. This microbiological approach exploits the fact that these E. coli mutants are defective in their resistance against various external stresses. By interplaying bacterial inactivation kinetics with optical emission spectroscopy, oxygen atoms are identified as a major contributor in plasma inactivation with minor contributions from UV photons, OH radicals, singlet oxygen metastables, and nitric oxide

  13. Proteomic and Transcriptomic Elucidation of the Mutant Ralstonia eutropha G+1 with Regard to Glucose Utilization▿ †

    Raberg, Matthias; Peplinski, Katja; Heiss, Silvia; Ehrenreich, Armin; Voigt, Birgit; Döring, Christina; Bömeke, Mechthild; Hecker, Michael; Steinbüchel, Alexander

    2011-01-01

    By taking advantage of the available genome sequence of Ralstonia eutropha H16, glucose uptake in the UV-generated glucose-utilizing mutant R. eutropha G+1 was investigated by transcriptomic and proteomic analyses. Data revealed clear evidence that glucose is transported by a usually N-acetylglucosamine-specific phosphotransferase system (PTS)-type transport system, which in this mutant is probably overexpressed due to a derepression of the encoding nag operon by an identified insertion mutat...

  14. Proteome Analysis of the Wild and YX-1 Male Sterile Mutant Anthers of Wolfberry (Lycium barbarum L.)

    Zheng, Rui; Sijun Yue,; Xu, Xiaoyan; Liu, Jianyu; Xu, Qing; Wang, Xiaolin; Han, Lu; Yu, Deyue

    2012-01-01

    Pollen development is disturbed in the early tetrad stage of the YX-1 male sterile mutant of wolfberry (Lycium barbarum L.). The present study aimed to identify differentially expressed anther proteins and to reveal their possible roles in pollen development and male sterility. To address this question, the proteomes of the wild-type (WT) and YX-1 mutant were compared. Approximately 1760 protein spots on two-dimensional differential gel electrophoresis (2D-DIGE) gels were detected. A number o...

  15. RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Tiang, Jacky M; Butcher, Neville J.; Cullinane, Carleen; Humbert, Patrick O.; Minchin, Rodney F

    2011-01-01

    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in c...

  16. C646, a Novel p300/CREB-Binding Protein-Specific Inhibitor of Histone Acetyltransferase, Attenuates Influenza A Virus Infection.

    Zhao, Dongming; Fukuyama, Satoshi; Sakai-Tagawa, Yuko; Takashita, Emi; Shoemaker, Jason E; Kawaoka, Yoshihiro

    2016-03-01

    New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agent in vitro and in vivo and explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development. PMID:26711748

  17. Circadian Dynamics of the Cone-Rod Homeobox (CRX) Transcription Factor in the Rat Pineal Gland and Its Role in Regulation of Arylalkylamine N-Acetyltransferase (AANAT)

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K;

    2014-01-01

    The cone-rod homeobox (Crx) gene encodes a transcription factor in the retina and pineal gland. Crx deficiency influences the pineal transcriptome, including a reduced expression of arylalkylamine N-acetyltransferase (Aanat), a key enzyme in nocturnal pineal melatonin production. However, previou...... the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression....

  18. N-Acetyltransferase Genotypes and the Pharmacokinetics and Tolerability of para-Aminosalicylic Acid in Patients with Drug-Resistant Pulmonary Tuberculosis

    Sherwin K. B. Sy; de Kock, Lizanne; Diacon, Andreas H.; Werely, Cedric J.; Xia, Huiming; Rosenkranz, Bernd; van der Merwe, Lize; Donald, Peter R.

    2015-01-01

    The aim of this study was to examine the relationships between N-acetyltransferase genotypes, pharmacokinetics, and tolerability of granular slow-release para-aminosalicylic acid (GSR-PAS) in tuberculosis patients. The study was a randomized, two-period, open-label, crossover design wherein each patient received 4 g GSR-PAS twice daily or 8 g once daily alternately. The PAS concentration-time profiles were modeled by a one-compartment disposition model with three transit compartments in serie...

  19. Identification of a novel 6'-N-aminoglycoside acetyltransferase, AAC(6')-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia.

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Dahal, Rajan K; Mishra, Shyam K; Shimada, Kayo; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2014-10-01

    Stenotrophomonas maltophilia IOMTU250 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Iak. The encoded protein, AAC(6')-Iak, consists of 153 amino acids and has 86.3% identity to AAC(6')-Iz. Escherichia coli transformed with a plasmid containing aac(6')-Iak exhibited decreased susceptibility to arbekacin, dibekacin, neomycin, netilmicin, sisomicin, and tobramycin. Thin-layer chromatography showed that AAC(6')-Iak acetylated amikacin, arbekacin, dibekacin, isepamicin, kanamycin, neomycin, netilmicin, sisomicin, and tobramycin but not apramycin, gentamicin, or lividomycin. PMID:25092711

  20. Genetic Analysis of Dictyostelium Slug Phototaxis Mutants

    Darcy, P. K.; Wilczynska, Z.; Fisher, P R

    1994-01-01

    Mapping and complementation analysis with 17 phototaxis mutations has established 11 complementation groups phoA-phoK distributed over six linkage groups. Statistical calculations from the complementation data yielded 17 as the maximum likelihood estimate of the number of pho genes assuming all loci are equally mutable. Most of the phototaxis mutants were found to exhibit bimodal phototaxis and all were found to be impaired in positive thermotaxis supporting convergence of the photosensory an...

  1. Endonuclease IV (nfo) mutant of Escherichia coli.

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomyci...

  2. Recombination-deficient mutant of Streptococcus faecalis.

    Yagi, Y; Clewell, D B

    1980-01-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli.

  3. Molecular characterization of phycobilisome regulatory mutants of Fremyella diplosiphon.

    Bruns, B U; Briggs, W R; Grossman, A R

    1989-01-01

    Three classes of pigment mutants were generated in Fremyella diplosiphon in the course of electroporation experiments. The red mutant class had high levels of phycoerythrin in both red and green light and no inducible phycocyanin in red light. Thus, this mutant behaved as if it were always in green light, regardless of light conditions. Blue mutants exhibited normal phycoerythrin photoregulation, whereas the inducible phycocyanin was present at high levels in both red- and green-light-grown c...

  4. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Verma, A.K.; Singh, R R

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  5. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity

    Verma A

    2010-01-01

    Full Text Available Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L. G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  6. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  7. Vanadate-resistant yeast mutants are defective in protein glycosylation.

    Ballou, L; Hitzeman, R A; Lewis, M. S.; Ballou, C E

    1991-01-01

    Spontaneous recessive orthovanadate-resistant mutants of Saccharomyces cerevisiae were obtained in five complementation groups, and all show defects in protein glycosylation that mimic the previously isolated mnn mutants. Three of the groups are allelic to the known mnn8, mnn9, and mnn10 mutants, whereas the other two groups show other glycosylation defects. The vanadate-resistant phenotype was associated with enhanced hygromycin B sensitivity. The glycosylation phenotypes of the mutants are ...

  8. A Mutant of Mycobacterium smegmatis Defective in Dipeptide Transport

    Bhatt, Achal; Green, Renee; Coles, Roswell; Condon, Michael; Connell, Nancy D.

    1998-01-01

    A mutant of Mycobacterium smegmatis unable to use the dipeptide carnosine (β-alanyl-l-histidine) as a sole carbon or nitrogen source was isolated. Carnosinase activity and the ability to grow on β-Ala and/or l-His were similar in the mutant and the wild type. However, the mutant showed significant impairment in the uptake of carnosine. This study is the first description of a peptide utilization mutant of a mycobacterium.

  9. Mutant cultivars of legumes in Poland

    Mutation breeding has played an important role in the improvement of legume cultivars. It is assumed that artificial induction of variability will also be indispensable in the future - for realizing desired ideotypes. This should be true for the pea (one species and three types of usage; discontinuous variation), as well as for the lupin (several species adapted to different soil requirements, a domestication that is not well advanced and about 35-45% protein in the dry seeds). Twelve pea and four broad bean varieties have so far been registered in Poland. Most of the pea varieties have the mutant gene afila, which plays a role in improving one of the most important characters, resistance to lodging. A number of other improved pea varieties resulted from the recombination of mutant genes in crosses with another cultivar. At present, the advanced breeding material of three lupin species and of Phaseolus coccineus are based on mutagen induced variability. The introduction of mutant characters such as self-completing, earliness or a short/stiff stem can easily increase the range of cultivation of these species, both areawise and with regard to marketing. (author). 7 refs, 3 tabs

  10. Grain product of 34 soya mutant lines

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R4M18) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L25 and L32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  11. Multivariate analysis for selecting apple mutants

    The mutlivariate analysis of four year records on several vegetative and productive traits of twenty-one apple mutants (3 of 'Jonathan', 3 of 'Ozark Gold', 14 of 'Mollie's Delicious', 1 of 'Neipling's Early Stayman)' induced by gamma radiations showed that observation of some traits of one-year-old shoots is the most efficient way to reveal compact growing apple mutants. In particular, basal cross-section area, total length and leaf area resulted the most appropriate parameters, while internode length together with conopy height and width are less appropriate. The most interesting mutants we found are: one of 'Mollie's Delicious for the best balance among tree and fruit traits and for high skin color; one of 'Neipling's Early Stayman' with an earlier and more extensively red colored apple than the original clone. (author)

  12. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus. PMID:24371171

  13. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus

    Renu Kumari; Gitanjali Yadav; Vishakha Sharma; Vinay Sharma; Sushil Kumar

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv ‘Nirmal’ (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine methylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus.

  14. Evaluation and Characterization of Mutant Cowpea Plants for Enhanced Abiotic Stress Tolerance

    The objective of the project is to use the radiation-induced mutations in cowpea to improve cowpea varieties grown by resource-poor farmers in South Africa. The first aim of the project was to select mutant cowpea plants with improved levels of drought tolerance without alteration to the color of the testa or the growth form. It was demonstrated that it was possible to examine mutant lines at seedling stage in wooden boxes. Mature plants were screened in rain out shelters and physiological traits for drought stress were identified among the lines tested. Roots of mature plants were also assessed and variations observed could be correlated with drought tolerance. The data demonstrated that physiological methods can be used to screen mutants. The yield performance of some mutant lines proved to be outstanding under well-watered, as well as under drought stress conditions. The second aim was to further characterize the most promising mutant lines using molecular and physiological techniques. cDNA-Amplified Fragment Length Polymorphism showed differential gene expression at different time points of drought stress. The sequenced transcript derived fragments (TDF) showed high homology to expressed sequence tags of soybean, with a possible function in cell defense/resistance and most importantly, signal transduction. Reverse transcription PCR using a number of primers from published sequences, as well as from the TDF sequences, validated the differential gene expression obtained from the cDNA-AFLP display. The third aim was to evaluate selected mutants on station and at different communities. On station field trials were conducted at the ARC-VOPI's research farm under dry land as well as irrigation conditions for the last two seasons. The long term plan is to introgress the drought tolerance trait from the best mutant line into drought susceptible South African cultivars grown by resource-poor farmers. (author)

  15. TagSmart: analysis and visualization for yeast mutant fitness data measured by tag microarrays

    Xie Dan

    2007-04-01

    Full Text Available Abstract Background A nearly complete collection of gene-deletion mutants (96% of annotated open reading frames of the yeast Saccharomyces cerevisiae has been systematically constructed. Tag microarrays are widely used to measure the fitness of each mutant in a mutant mixture. The tag array experiments can have a complex experimental design, such as time course measurements and drug treatment with multiple dosages. Results TagSmart is a web application for analysis and visualization of Saccharomyces cerevisiae mutant fitness data measured by tag microarrays. It implements a robust statistical approach to assess the concentration differences among S. cerevisiae mutant strains. It also provides an interactive environment for data analysis and visualization. TagSmart has the following advantages over previously described analysis procedures: 1 it is user-friendly software rather than merely a description of analytical procedure; 2 It can handle complicated experimental designs, such as multiple time points and treatment with multiple dosages; 3 it has higher sensitivity and specificity; 4 It allows users to mask out "bad" tags in the analysis. Two biological tests were performed to illustrate the performance of TagSmart. First, we generated titration mixtures of mutant strains, in which the relative concentration of each strain was controlled. We used tag microarrays to measure the numbers of tag copies in each titration mixture. The data was analyzed with TagSmart and the result showed high precision and recall. Second, TagSmart was applied to a dataset in which heterozygous deletion strain mixture pools were treated with a new drug, Cincreasin. TagSmart identified 53 mutant strains as sensitive to Cincreasin treatment. We individually tested each identified mutant, and found 52 out of the 53 predicted mutants were indeed sensitive to Cincreasin. Conclusion TagSmart is provided "as is" to analyze tag array data produced by Affymetrix and Agilent

  16. High yielding early mutant of Mashuri rice variety

    Mashuri mutant was evolved by treating a Malaysian popular rice variety (Mashuri) with gamma rays. This mutant differed from its parent by exhibiting short duration (25 days less), short height (14 cm less) and blast resistance with all other desirable characters of parent type. These desirable changes brought by mutation made the mutant line suitable for the rabi season. (author)

  17. Biological changes in Barley mutants resistant to powdery mildew disease

    physiological studies showed that all kinds of chlorophyll (a), (b) and (a + b) content in infected plant were decreased while, the carotenes pigment were increased. Infection generally reduced total sugars content of all resistant mutants. Infected resistant mutant showed more phenols content and peroxidase, polyphenoloxidase activities than healthy ones of the mutants. (Author)

  18. Identification of Drosophila Mutants Altering Defense of and Endurance to Listeria monocytogenes Infection

    Ayres, Janelle S.; Freitag, Nancy; Schneider, David S.

    2008-01-01

    We extended the use of Drosophila beyond being a model for signaling pathways required for pattern recognition immune signaling and show that the fly can be used to identify genes required for pathogenesis and host–pathogen interactions. We performed a forward genetic screen to identify Drosophila mutations altering sensitivity to the intracellular pathogen Listeria monocytogenes. We recovered 18 mutants with increased susceptibility to infection, none of which were previously shown to functi...

  19. Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J.; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S.; Scanlon, Michael J.

    2007-01-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of ...

  20. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.