WorldWideScience

Sample records for acetylenes

  1. Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes

    Rosner, Bettina M; Rainey, Frederick A.; Kroppenstedt, Reiner M.; Schink, Bernhard

    1997-01-01

    Aerobic acetylene-degrading bacteria were isolated from soil samples. Two isolates were assigned to the species Rhodococcus opacus, two others to Rhodococcus ruber and Gordona sp. They were compared with known strains of aerobic acetylene-, cyanide-, or nitrile-utilizing bacteria. The acetylene hydratases of R. opacus could be measured in cell-free extracts only in the presence of a strong reductant like titanium(III) citrate. Expression of these enzymes was molybdenum-dependent. Acetylene hy...

  2. Plasma Thermal Conversion of Methane to Acetylene

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging-diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described

  3. Acetylene diffusion in Na-Y zeolite

    S Mitra; S Sumitra; A M Umarji; R Mukhopadhyay; S Yashonath; S L Chaplot

    2004-08-01

    Study of diffusivity of acetylene adsorbed in Na-Y zeolite by quasi-elastic neutron scattering (QENS) measurements at temperatures of 300, 325 and 350 K is reported. A model in which the acetylene molecules undergo random-walk diffusion characterized by a Gaussian distribution of jump lengths inside zeolite cages describes the data consistently. The diffusion constant, residence time between jumps and root mean square jump length are determined.

  4. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures

    Hu, Tong-Liang

    2015-06-04

    The removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene is a technologically very important, but highly challenging task. Current removal approaches include the partial hydrogenation over a noble metal catalyst and the solvent extraction of cracked olefins, both of which are cost and energy consumptive. Here we report a microporous metal–organic framework in which the suitable pore/cage spaces preferentially take up much more acetylene than ethylene while the functional amine groups on the pore/cage surfaces further enforce their interactions with acetylene molecules, leading to its superior performance for this separation. The single X-ray diffraction studies, temperature dependent gas sorption isotherms, simulated and experimental column breakthrough curves and molecular simulation studies collaboratively support the claim, underlying the potential of this material for the industrial usage of the removal of acetylene from ethylene/acetylene mixtures containing 1% acetylene at room temperature through the cost- and energy-efficient adsorption separation process.

  5. Radical recombinations in acetylene-air flames

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    1965-01-01

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to th

  6. A mid-infrared absorption diagnostic for acetylene detection

    KC, Utsav; Nasir, Ehson F.; Farooq, Aamir

    2015-08-01

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm-1 over a wide range of temperatures (1000-2200 K) and pressures (1-5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

  7. Radiation Polymerization of Acetylene Hydrocarbons. Special Features

    The synthesis and study of the properties of polymers with conjugated bond systems offers new and extremely promising prospects in the chemistry of high molecular compounds. A high degree of de-localization of p-electrons in the macromolecule is characteristic of such polymer systems. The decrease in the energy excited in the triplet state, just like the diminished ionization potential with large conjugated bonds, conditions the semiconductor and specific magnetic properties of such compounds. In addition, polymer systems with conjugated bonds have proved to be extremely effective stabilizers in the thermo- and photo-oxidation destruction of polymers. The radiation polymerization of acetylene derivatives offers one suitable method of obtaining such polymers and is the only one which ensures that the polymers obtained are free of contamination from initiators at low temperatures. The kinetics of the radiation polymerization of ethynyl benzene and other acetylene derivatives have a number of features typical of ion polymerization quite rare in radical polymerization (speed of polymerization linearly proportional to speed of initiation: very low activation energy; no oxygen inhibition). Nevertheless this polymerization is obviously radical. We reached that conclusion on the basis of a study of polymerization initiation for acetylene hydrocarbons by typical radical initiators - benzoyl peroxide and the dinitrile of azoisobutyric acid. They investigated the kinetic features and mechanism of peroxide decomposition in the presence of acetylene hydrocarbons (e.g. ethynyl benzene, deutero-ethynyl benzene and phenylpropyne). The kinetics of radiation co-polymerization of ethynyl benzene with different vinyl monomers and the composition of copolymers in different initial mixtures were also studied. These data and the results of a study of the kinetics of inhibited ethynyl benzene polymerization (benzoquinone initiator) indicate a small reactivity capacity of the ethynyl

  8. Two new acetylenic compounds from Asparagus officinalis.

    Li, Xue-Mei; Cai, Jin-Long; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2016-01-01

    Two new acetylenic compounds, asparoffins A (1) and B (2), together with two known compounds, nyasol (3) and 3″-methoxynyasol (4), were isolated from stems of Asparagus officinalis. The structures of two new compounds were elucidated on the basis of detailed spectroscopic analyses (UV, IR, MS, 1D, and 2D NMR). All compounds were evaluated for their cytotoxicities against three human cancer cell lines. PMID:26558641

  9. Acetylene-sensitized radiation crosslinking of polytetrafluoroethylene

    The radiation crosslinking of polytetrafluoroethylene (PTFE) in the presence of acetylene under γ radiation (60Co) at a dose rate of 2 Gy/s up to absorbed doses of 20-60 kGy was studied. The yield of crosslinking was determined from thermomechanical testing data and, on this basis, it was concluded that crosslinking follows the chain mechanism. Radiation-crosslinked PTFE is shown to possess high wear resistance and enhanced radiation stability

  10. Opposite influence of haloalkanes on combustion and pyrolysis of acetylene

    Drakon, A. V.; Emelianov, A. V.; Eremin, A. V.; Mikheyeva, E. Yu

    2015-11-01

    An influence of haloalkanes CF3H and CCl4 (known as inflammation and explosion suppressors) on combustion and pyrolysis of acetylene behind shock waves was experimentally studied. While ignition delay times in stoihiometric acetylene-oxygen mixtures were expectedly increased by halogenoalkanes admixtures, the induction times of carbon particle formation at acetylene pyrolysis were dramatically reduced in presence of CCl4. A simplified kinetic model was suggested and characteristic rates of diacetylene C4H2 formation were estimated as a limiting stage of acetylene polymerization. An analysis of obtained data has indicated that promoting species is atomic chlorine forming in CCl4 pyrolysis, which interacts with acetylene and produces C2H radical, initiating a chain mechanism of acetylene decomposition. The results of kinetic modeling agree well with experimental data.

  11. Synthesis of acetylenic derivatives of hydroxynaphthoquinone

    The acetylene derivatives synthesis 2-hydroxy-1 ,4-naphthoquinones was studied using different reaction conditions: coupling with copper and silver acetylides, Sonogashira reaction with and without CU (I) as cocatalyst. The reaction conditions are optimized for coupling of iodine lawson and ylide phenyl lawsone of iodine with various terminal acetylenes: phenyl acetylene, propargyl alcohol, 1-heptin and 2-methyl-3-butyne-2-ol. Also, reactants such as bromides of hidroxinaphthoquinones were used with protecting groups such as acetate, methoxy, phenyloxy, benzyloxy and tricloroetoxy. The synthesis of 2-hydroxy-3-(3-hydroxy-3-ynyl-1-methylbutane)-1,4-naphthoquinone, 2-methoxy-3-(2-phenylethynyl) -1,4-naphthoquinone and 2-(2-phenylethynyl)-3-(2,2,2-tricloroetoxy)-1,4-naphthoquinone was performed with rates of return of 22%, 57% and 67% respectively. The reaction of the yodolawsona was obtained with 3-chloro-3-methyl-1-butyne in the presence of CuI, CsI and Cs2Co3 obtaining the enol ether: 3,3-dimethyl-2-methyl-2 ,3-dihydronaphto [2 ,3-b]furan-4,9-dione (dehydro-α-dunion), with a rate of return of 58%. This enol ether was used as a reactant for the formation, through a regioselective hydrogenation with PtO2/t-butanol of α-dunion with a yield of 50%. Furthermore, by acid hydrolysis with H2SO4 has been possible to obtain a percentage yield of 75% streptocarpone. Both, α-dunion and streptocarpone, natural products extracted from Streptocarpus dunni shrub, with antiparasitic activity, and which so far had not presented an efficient synthesis. A mechanism is proposed for the reaction of formation of the enol ether where it is presumed the presence of a zwitterion-vinyl carbene as key intermediate of the reaction. All products were characterized by spectroscopy 1H and 13C-NMR, UV-Vis and IR. (author)

  12. Largest Experimental Facility for Acetylene Production in Operation

    2005-01-01

    @@ Scientists from the CAS Institute of Plasma Physics (IPP) completed in early November, 2004, a 2-megawatt experimental facility for acetylene production by coal plasma pyrolysis. The successful operation of the largest installation of the kind in the world confirms a new method for the large-scale industrialization of acetylene production.

  13. 76 FR 75782 - Revising Standards Referenced in the Acetylene Standard

    2011-12-05

    ... organizations (``SDO standards'') (69 FR 68283). A SDO standard referenced in OSHA's Acetylene Standard (29 CFR... of the Compressed Gas Association standard, CGA G-1-2003, in the Acetylene Standard. See 74 FR 40442... appropriate, revoke references to outdated national SDO standards in OSHA rules (see, e.g., 69 FR 68283, 70......

  14. Acetylene-Based Materials in Organic Photovoltaics

    Fabio Silvestri

    2010-04-01

    Full Text Available Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (polyarylacetylenes that have been used in the field. A general introduction to (polyarylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (copolymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

  15. Diamond growth in oxygen-acetylene flame

    What was supposed to be a laboratory curiosity in the 80's, in recent years the low pressure process for the production of man-made diamond turned out to be a major target for research and development of many high-tech companies. The main reason for such an interest stems on the possibility of coating many materials with a diamond film possessing the same amazing properties of the bulk natural diamond. Polycrystalline diamond film has been deposited on Mo substrate by using oxygen-acetylene flame of a welding torch. The substrate temperature has been held constant about 700deg C by means of a water cooled mount designed properly. Precision flowmeters have been used to control the flow ratio oxygen/acetylene, a key parameter for the success in diamond growth. Diamond has been detected by X-ray diffraction, a fast foolproof technique for crystal identification. Another method of analysis often used in Raman spectroscopy, which is able to exhibit amorphous structure besides crystalline phase. (author)

  16. A mid-infrared absorption diagnostic for acetylene detection

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  17. Studies on the crystalline acetylene-d2 by thermal neutron powder diffraction technique

    The two crystalline phases of acetylene-d2, C2D2, have been investigated by thermal neutron powder diffraction technique. The crystal structure studies of the orthorhombic low phase at 4.2 K, 77 K and 109 K and of the cubic structure at 150.5 K, as well as investigations on molecular motion and lattice parameter dependence on temperature in the orthorhombic phase along with a report concerning with the orthorhombic-cubic solid phase transition have been published ealier. In the thesis, the reported studies are presented under a main title. A short description of the experimental details is given, and the results and discrepancies of the studies are discussed. (author)

  18. Synthesis and Antifeeding Activity of Acetylene-Containing Tonghaosu Analogs

    CHEN,Li; HU,Tai-Shan; XU,Han-Hong; YIN,Biao-Lin; XIAO,Chun; WU,Yu-Lin

    2004-01-01

    @@ During our continuous efforts towards the search for environmental benign insect antifeedant, we established a concise method for the synthesis of Tonghaosu, a naturally occurring antifeedant.[1] Herein, we report the synthesis and antifeeding activity of 22 new tonghaosu analogs, which contain varied B ring as well as one or two acetylene functionalities. Preliminary bioassay indicates that two acetylene groups containing tonghaosu analogs have better antifeedant activity against large white butterfly (Pieris brassicae L.) than those with one acetylene group. More interestingly,Z-isomers are much more active than their corresponding E-isomers.

  19. Inhibiting the combustion of air-acetylene mixtures

    Kopylov, S. N.; Gubina, T. V.

    2016-01-01

    The effect propane, methane, and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 have on the combustion of air-acetylene mixtures is investigated experimentally. The upper concentration limit of flame propagation, maximum explosion pressure, and maximum rate of rise of explosion pressure are determined. It is found that propane and a mixture of 18 vol % C3H6-40 vol % C3H8-42 vol % C4H10 are strong inhibitors of combustion of acetylene in its concentration ranges of 2-8 vol %. The inhibition effect becomes weaker as the acetylene content in the mixture increases. It disappears completely at C2H2 concentrations exceeding 15 vol %. The above experimental findings are explained using the proposed scheme of acetylene oxidation.

  20. Ion structure and sequence of ion formation in acetylene flames

    Larionova, I.A.; Fialkov, B.S.; Kalinich, K.YA.; Fialkov, A.B.; Ospanov, B.S.

    1993-06-01

    Results of a study of the ion composition of acetylene-air flames burning at low pressures are reported. Data on ion formation are compared for flames of saturated hydrocarbons, oxygen-containing fuels, and acetylene. It is shown that the characteristics of ion formation in the flame front and directly ahead of it are similar to those observed in flames of other fuels. These characteristics, however, are different in the low-temperature region. 9 refs.

  1. Is acetylene essential for carbon dust formation?

    Dhanoa, Harpreet

    2013-01-01

    We have carried out an investigation of the chemical evolution of gas in different carbon-rich circumstellar environments. Previous studies have tended to invoke terrestrial flame chemistries, based on acetylene (C2H2) combustion to model the formation of carbon dust, via Polycyclic Aromatic Hydrocarbons (PAHs). In this work we pay careful attention to the accurate calculation of the molecular photoreaction rate coefficients to ascertain whether there is a universal formation mechanism for carbon dust in strongly irradiated astrophysical environments. A large number of possible chemical channels may exist for the formation of PAHs, so we have concentrated on the viability of the formation of the smallest building block species, C2H2, in a variety of carbon-rich stellar outflows. C2H2 is very sensitive to dissociation by UV radiation. This sensitivity is tested, using models of the time-dependent chemistry. We find that C2H2 formation is sensitive to some of the physical parameters and that in some known sourc...

  2. Microgravity Superagglomerates Produced By Silane And Acetylene

    Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya

    2003-01-01

    The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were

  3. Channel-resolved above-threshold double ionization of acetylene.

    Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-04-24

    We experimentally investigate the channel-resolved above-threshold double ionization (ATDI) of acetylene in the multiphoton regime using an ultraviolet femtosecond laser pulse centered at 395 nm by measuring all the ejected electrons and ions in coincidence. As compared to the sequential process, diagonal lines in the electron-electron joint energy spectrum are observed for the nonsequential ATDI owing to the correlative sharing of the absorbed multiphoton energies. We demonstrate that the distinct channel-resolved sequential and nonsequential ATDI spectra can clearly reveal the photon-induced acetylene-vinylidene isomerization via proton migration on the cation or dication states. PMID:25955049

  4. Donor-Acceptor Chromophores based on Acetylenic Scaffolds and Indenofluorenes

    Christensen, Mikkel Andreas

    The work described in this thesis has been focused on synthesizing donor-acceptor chromophores with conjugated π-bridges. It has also led to the development of an alternative synthetic tool for acetylenic scaffolding. The first chapter focuses on the nitrophenol D-π-A system – A phenol in...

  5. 76 FR 75840 - Revising Standards Referenced in the Acetylene Standard

    2011-12-05

    ... language from outdated standards published by standards developing organizations (``SDO standards'') (69 FR... Association standard, CGA G-1-2003, in the Acetylene Standard. See 74 FR 40442 and 74 FR 40450, respectively... outdated standard; and impose no significant new compliance costs on employers (69 FR 68283, 68285).......

  6. 77 FR 13969 - Revising Standards Referenced in the Acetylene Standard

    2012-03-08

    ... Association (GGA) acetylene standard (see 76 FR 75782). In the DFR, OSHA deleted reference to CGA G-1-2003 and... final rule published on December 5, 2011 (76 FR 75782), is effective on March 5, 2012. For the purposes....C. 553, Secretary of Labor's Order 1-2012 (77 FR 3912), and 29 CFR part 1911. Signed at...

  7. Interstitial pneumonitis after acetylene welding: A case report

    Miran Brvar

    2014-02-01

    Full Text Available Acetylene is a colorless gas commonly used for welding. It acts mainly as a simple asphyxiant. In this paper, however, we present a patient who developed a severe interstitial pneumonitis after acetylene exposure during aluminum welding. A 44-year old man was welding with acetylene, argon and aluminum electrode sticks in a non-ventilated aluminum tank for 2 h. Four hours after welding dyspnea appeared and 22 h later he was admitted at the Emergency Department due to severe respiratory insufficiency with pO2 = 6.7 kPa. Chest X-ray showed diffuse interstitial infiltration. Pulmonary function and gas diffusion tests revealed a severe restriction (55% of predictive volume and impaired diffusion capacity (47% of predicted capacity. Toxic interstitial pneumonitis was diagnosed and high-dose systemic corticosteroid methylprednisolone and inhalatory corticosteroid fluticasone therapy was started. Computed Tomography (CT of the lungs showed a diffuse patchy ground-glass opacity with no signs of small airway disease associated with interstitial pneumonitis. Corticosteroid therapy was continued for the next 8 weeks gradually reducing the doses. The patient's follow-up did not show any deterioration of respiratory function. In conclusion, acetylene welding might result in severe toxic interstitial pneumonitis that improves after an early systemic and inhalatory corticosteroid therapy.

  8. Radiation-induced crosslinking of acetylene-impregnated polyesters

    Enhanced crosslinking and reduction in chain scission are found in the amorphous regions of polycrystalline polyesters, when they are irradiated in the presence of acetylene. Increasing the chain length of the alkyl moiety is also found to decrease the extent of damaging main chain scission

  9. Fuzzy logic control for selective hydrogenation of acetylene in ethylene rich streams using visual basic

    Presence of acetylene is technically disadvantageous in the ethylene rich gas streams from steam crackers. Acetylene tends to polymerize and inactivates the transition metal catalysts, forming highly explosive compounds. The acetylene content has to be selectively reduced to less than one part per million for such streams. The acetylene hydrogenation unit requires stringent control parameters and needs specialized process control techniques for its operation. This study is concerned with application of Fuzzy Logic Control to manipulate and control the process plant with higher precision and greater simplicity. The control program has been written in visual Basic and entails all major scenarios of work modes for successful hydrogenation of Acetylene. (author)

  10. Acetylene is an active-site-directed, slow-binding, reversible inhibitor of Azotobacter vinelandii hydrogenase

    The inhibition of purified and membrane-bound hydrogenase from Azotobacter vinelandii by dihydrogen-free acetylene was investigated. The inhibition was a time-dependent process which exhibited first-order kinetics. Both H2 and CO protected against the inhibition by acetylene. K/sub protect(app)/ values of 0.41 and 24 μM were derived for these gases, respectively. Both H2-oxidizing activity and the tritium exchange capacity of the purified enzyme were inhibited at the same rate by acetylene. Removal of acetylene reversed the inhibition for both the purified and the membrane-associated form of the enzyme. The purified hydrogenases from both Rhizobium japonicum and Alcaligenes eutrophus H16 were also inhibited by acetylene in a time-dependent fashion. These findings suggest that acetylene is an active-site-directed, slow-binding, reversible inhibitor of some membrane-bound hydrogenases from aerobic bacteria

  11. Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    Mulholland, G. W.; Hamins, A.; Sivathanu, Y.

    1999-01-01

    The evolution of smoke in a laminar diffusion flame involves several steps. The first step is particle inception/nucleation in the high-temperature fuel-rich region of the flame followed by surface growth and coagulation/coalescence of the small particles. As the primary spheres grow in size and lose hydrogen, the colliding particles no longer coalesce but retain their identity as a cluster of primary spheres, termed an agglomerate. Finally, in the upper portion of the flame, the particles enter an oxidizing environment which may lead to partial or complete burnout of the agglomerates. Currently there is no quantitative model for describing the growth of smoke agglomerates up to superagglomerates with an overall dimension of 10 microns and greater. Such particles are produced during the burning of acetylene and fuels containing benzene rings such as toluene and polystyrene. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed "raining" out from large fires. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame has been recently reported. Acetylene was chosen as the fuel since the particulate loading in acetylene/air diffusion flames is very high. Photographs were obtained by Sorensen using a microsecond xenon lamp of the "stream" of soot just above the flame. For low flow rates of acetylene, only submicrometer soot clusters are produced and they give rise to the homogeneous appearance of the soot stream. When the flow rate is increased to 1.7 cu cm/s, soot clusters up to 10 microns are formed and they are responsible for the graininess and at a flow rate of 3.4 cu cm/s, a web of interconnected clusters as large as the width of the flame is seen. This interconnecting web of superagglomerates is described as a gel state by Sorensen et al (1998). This is the first observation of a gel for a gas phase system. It was observed that this gel state immediately breaks up into agglomerates due to buoyancy

  12. Acetylene-Accelerated Alcohol Catalytic CVD Growth of Vertically Aligned Single-Walled Carbon Nanotubes

    R. Xiang; Einarsson, E.; Okawa, J.; Miyauchi, Y.; Maruyama, S.

    2008-01-01

    Addition of only 1% of acetylene into ethanol was found to enhance the growth rate of singlewalled carbon nanotubes (SWNTs) by up to ten times. Since acetylene is a byproduct of the thermal decomposition of ethanol, this suggests an alternative fast reaction pathway to the formation of SWNTs from ethanol via byproducts of decomposition. This accelerated growth, however, only occurred in the presence of ethanol, whereas pure acetylene at the same partial pressure resulted in negligible growth ...

  13. The IR acetylene spectrum in HITRAN: update and new results

    The 2000 HITRAN edition, with the updates of 2001, contains improved and new data on the acetylene molecule. The main changes concern the 13.6- and 7.5-μm spectral regions (improved line intensities), and the 5-μm region (previously absent from the database). These changes are reviewed, and the key problem of the validation of line intensities is dealt with. The status of the currently available line parameters is critically examined, and recommendations for future improvements are given

  14. BASF and acetylene. 70 years of reppe chemistry - long-standing reliability and promising future - and now, the only natural gas based clean technology for acetylene production

    Vicari, M. [BASF SE, Ludwigshafen (Germany)

    2013-11-01

    Acetylene is still an attractive intermediate synthesis component because carbon in methane from natural gas comes at a lower price than carbon in naphtha from crude oil or coal. Acetylene can be understood as a product of C-C coupling and functionalization. Beginning in the 1950s, BASF developed the partial oxidation (Pox) process, in addition to the electric arc process dating from the 1930s and the submerged flame process. The originally developed Pox process came along with severe emissions of hydrocarbons to the environment. Nowadays it is extremely important to have a clean, environmentally friendly technology. So in the 1990s a closed water-quench process was developed and built in the United States. The presentation focuses on the ways of making acetylene, the use of acetylene and BASF's closed water-quench process based on natural gas. This process will be presented including some important safety aspects. The process is available for licensing. (orig.)

  15. 46 CFR 56.50-103 - Fixed oxygen-acetylene distribution piping.

    2010-10-01

    ... outlet stations. (c) Acetylene distribution piping and pipe fittings must be seamless steel. Copper..., and other equipment used with acetylene. (d) Oxygen distribution piping and pipe fittings must be seamless steel or copper. (e) When more than two cylinders are connected to a manifold, the supply...

  16. A first principles study of the acetylene-water interaction

    We present an extensive study of the stationary points on the acetylene-water (AW) ground-state potential energy surface (PES) aimed in establishing accurate energetics for the two different bonding scenarios that are considered. Those include arrangements in which water acts either as a proton acceptor from one of the acetylene hydrogen atoms or a proton donor to the triple bond. We used a hierarchy of theoretical methods to account for electron correlation [MP2 (second-order Moller-Plesset), MP4 (fourth-order Moller-Plesset), and CCSD(T) (coupled-cluster single double triple)] coupled with a series of increasing size augmented correlation consistent basis sets (aug-cc-pVnZ, n=2,3,4). We furthermore examined the effect of corrections due to basis set superposition error (BSSE). We found that those have a large effect in altering the qualitative features of the PES of the complex. They are responsible for producing a structure of higher (C2v) symmetry for the global minimum. Zero-point energy (ZPE) corrections were found to increase the stability of the C2v arrangement. For the global (water acceptor) minimum of C2v symmetry our best estimates are ΔEe=-2.87 kcal/mol (ΔE0=-2.04 kcal/mol) and a van der Waals distance of Re=2.190 Aa. The water donor arrangement lies 0.3 kcal/mol (0.5 kcal/mol including ZPE corrections) above the global minimum. The barrier for its isomerization to the global minimum is Ee=0.18 kcal/mol; however, inclusion of BSSE- and ZPE-corrections destabilize the water donor arrangement suggesting that it can readily convert to the global minimum. We therefore conclude that there exists only one minimum on the PES in accordance with previous experimental observations. To this end, vibrational averaging and to a lesser extend proper description of intermolecular interactions (BSSE) were found to have a large effect in altering the qualitative features of the ground-state PES of the acetylene-water complex. (c) 2000 American Institute of Physics

  17. Inclusion of 13C and D in protonated acetylene

    Fortenberry, Ryan C.; Roueff, Evelyne; Lee, Timothy J.

    2016-04-01

    The rovibrational spectrum of cyclic, protonated acetylene has been established. The improvement in modern telescopes coupled with the different branching ratios in reaction models welcomes study of 13C-substitution for C2H3+. Quartic force fields (QFFs) have been previously utilized to predict the antisymmetric HCCH stretch in standard c-C2H3+ to within 0.1 cm-1 of experiment and are employed here to generate rovibrational insights for the 13C isotopologues. The zero-point energies are also given for the cyclic and 'Y'-shaped isomers for both 13C and D substitutions. Vibrational intensities and the dipole moments are provided in order to characterize more fully this simple cation.

  18. Acetylene fuel from atmospheric CO2 on Mars

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  19. Organogermanium Chemistry: Germacyclobutanes and digermane Additions to Acetylenes

    Andrew Michael Chubb

    2003-12-12

    This dissertation comprises two main research projects. The first project, presented in Chapter 1, involves the synthesis and thermochemistry of germacyclobutanes (germetanes). Four new germetanes (spirodigermetane, diallylgermetane, dichlorogermetane, and germacyclobutane) have been synthesized using a modified di-Grignard synthesis. Diallylgermetane is shown to be a useful starting material for obtaining other germetanes, particularly the parent germetane, germacyclobutane. The gas-phase thermochemistries of spirodigermetane, diallylgermetane and germacyclobutane have been explored via pulsed stirred-flow reactor (SFR) studies, showing remarkable differences in decomposition, depending on the substitution at the germanium atom. The second project investigates the thermochemical, photochemical, and catalytic additions of several digermanes to acetylenes. The first examples of thermo- and photochemical additions of Ge-Ge bonds to C{triple_bond}C are demonstrated. Mechanistic investigations are described and comparisons are made to analogous disilane addition reactions, previously studied in their group.

  20. Watching the acetylene vinylidene intramolecular reaction in real time

    Jiang, Y H; Rudenko, A; Madjet, M E; Vendrell, O; Kurka, M; Schnorr, K; Foucar, L; Kübel, M; Herrwerth, O; Lezius, M; Kling, M F; van Tilborg, J; Belkacem, A; Ueda, K; Düsterer, S; Treusch, R; Schröter, C D; Santra, R; Ullrich, J; Moshammer, R

    2014-01-01

    It is a long-standing dream of scientists to capture the ultra-fast dynamics of molecular or chemical reactions in real time and to make a molecular movie. With free-electron lasers delivering extreme ultraviolet (XUV) light at unprecedented intensities, in combination with pump-probe schemes, it is now possible to visualize structural changes on the femtosecond time scale in photo-excited molecules. In hydrocarbons the absorption of a single photon may trigger the migration of a hydrogen atom within the molecule. Here, such a reaction was filmed in acetylene molecules (C2H2) showing a partial migration of one of the protons along the carbon backbone which is consistent with dynamics calculations on ab initio potential energy surfaces. Our approach opens attractive perspectives and potential applications for a large variety of XUV-induced ultra-fast phenomena in molecules relevant to physics, chemistry, and biology.

  1. Acetylene plasma coated surfaces for covalent immobilization of proteins

    A modified plasma enhanced chemical vapor method was used for acetylene plasma polymerization of biocompatible surfaces on a range of substrates. Smooth polymerized surfaces with excellent mechanical properties were achieved suitable for a wide range of biochemical and biomedical applications. Horseradish peroxidase activity analysis showed that the proteins immobilized on the plasma polymerized surfaces maintained their biological function for a much longer period of time compared to untreated surfaces. The plasma polymerized surfaces and the protein immobilization were also analyzed using quartz crystal microbalance with dissipation analysis, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and tensile strength analysis. The results indicate that the plasma polymerized surfaces provide covalent bonding sites and immobilize a dense monolayer of proteins after incubation in protein containing solution.

  2. Acetylene as Fast Food: Implications for Development of Life on Anoxic Primordial Earth and in the Outer Solar System

    Oremland, Ronald S.; Voytek, Mary A.

    2008-02-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.

  3. Acetylene as fast food: Implications for development of life on anoxic primordial earth and in the outer solar system

    Oremland, R.S.; Voytek, M.A.

    2008-01-01

    Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem. ?? Mary Ann Liebert, Inc.

  4. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-01-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm3 (STP) g−1 and the second-highest volumetric uptake of 196 cm3 (STP) cm−3 ...

  5. A systematic investigation of acetylene activation and hydracyanation of the activated acetylene on Aun (n = 3-10) clusters via density functional theory.

    Gautam, Seema; Sarkar, Abir De

    2016-05-18

    A systematic investigation of the selective catalytic conversion of poisonous HCN gas through hydracyanation of C2H2 activated on Au clusters, presented here for the first time, is of paramount importance from both scientific and technological perspectives. Hydracyanation of activated acetylene on an Au-cluster based catalyst leads to vinyl isocyanide (H2C[double bond, length as m-dash]CHNC) formation, a versatile chemical intermediate. Using density functional theory, bond activation of acetylene and selective catalytic hydracyanation of activated acetylene on small gold clusters Aun (n = 3-10) have been studied through a detailed analysis of the geometric and electronic structures. Different possible complexes of Aun-CHCH have been studied and two possible modes of adsorption of acetylene over the gold clusters, namely, the π- and di-σ modes, have been observed. The hydracyanation of the acetylene molecule is found to occur via the cleavage of one of acetylene triple bonds at the cost of formation of two Au-C bonds followed by the binding of HCN to the activated C[double bond, length as m-dash]C bond via nitrogen's lone pair. Preferential binding sites for HCN and C2H2 are analyzed through Fukui function calculations, frontier molecular orbital analysis and natural population charge distribution analysis. Based on adsorption energies, odd-sized Aun clusters are found to be significantly more favorable for C2H2 adsorption with the C-C bond stretching up to 1.31 Å with respect to the C-C triple bond length of 1.21 Å in the gas phase. The stretching frequency of adsorbed complexes, C2H2/Aun, (3460 cm(-1)), decreases notably relative to the frequency of the free acetylene molecule (7948 cm(-1)), which is a signature of the bond activation of the acetylene molecule over the Au clusters. The high adsorption energy of HCN on the Au9-C2H2 complex implies the considerable binding strength and activation of C2H2 and HCN on the Au9 clusters. Due to the importance of

  6. KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene

    Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.

    2001-01-01

    The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.

  7. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  8. Synthesis of chirals regioisomers from D-mannitol: obtainment of a acetylenic alcohols mixture

    The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO2 released during microbial respiration by using a conductimetric system. (author)

  9. Adsorption of Acetylene on a Pd-Pb Bimetallic Surface — a Theoretical Study

    Ferullo, R. M.; Touroude, R.; Castellani, N. J.

    A semiempirical molecular orbital study of acetylene adsorption over Pd(111) and Pd3Pb(111) has been performed. A strong negative effect of Pb atoms on Pd chemisorptive strength was observed in the alloy. This behavior is related to a lower hybridization between acetylene π* and Pd orbitals when this mental interacts with Pb. Moreover this negative effect of Pb is of a strong local character.

  10. Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma

    Kavaliauskas, Žydrūnas

    2010-01-01

    The dissertation examines topics related to the formation of supercapacitors using plasma technology and their analysis. Plasma spray technology was used to form supercapacitors electrodes. Carbon was deposited on stainless steel surface using the atmospheric pressure argon-acetylene plasma. The deposition of nickel oxide on the surface of carbon electrodes was made using magnetron sputtering method. The influence of acetylene amount to the supercapacitors electrodes and the electrical charac...

  11. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions.

    Pang, Jiandong; Jiang, Feilong; Wu, Mingyan; Liu, Caiping; Su, Kongzhao; Lu, Weigang; Yuan, Daqiang; Hong, Maochun

    2015-01-01

    Acetylene, an important petrochemical raw material, is very difficult to store safely under compression because of its highly explosive nature. Here we present a porous metal-organic framework named FJI-H8, with both suitable pore space and rich open metal sites, for efficient storage of acetylene under ambient conditions. Compared with existing reports, FJI-H8 shows a record-high gravimetric acetylene uptake of 224 cm(3) (STP) g(-1) and the second-highest volumetric uptake of 196 cm(3) (STP) cm(-3) at 295 K and 1 atm. Increasing the storage temperature to 308 K has only a small effect on its acetylene storage capacity (∼200 cm(3) (STP) g(-1)). Furthermore, FJI-H8 exhibits an excellent repeatability with only 3.8% loss of its acetylene storage capacity after five cycles of adsorption-desorption tests. Grand canonical Monte Carlo simulation reveals that not only open metal sites but also the suitable pore space and geometry play key roles in its remarkable acetylene uptake. PMID:26123775

  12. Effect of surface free energy of acetylene black powder on air electrode performance

    OU Xiuqin; LIU Shuguang; LIANG Guangchuan; LI Ying; ZHI Xiaoke; HAN Bin

    2006-01-01

    The effects of acetylene black powder surface free energy on air electrode electrochemical performance and lifetime were studied. The acetylene black was immersed in 30% H2O2 at room temperature and the changes of functional groups and surface free energy were investigated by X-ray Photoelectron Spectroscopy (XPS) and powder contact angle (CA). The air electrode performance was characterized by the potential polarization curves and the lifetime was measured by constant-current discharge. It shows that, its surface free energy is the lowest when the acetylene black is immersed in H2O2 for 240 h. The polarization potential of the air electrode prepared by the pretreated acetylene black is 0.25 V(vs. Hg/HgO), 0.21 V lower than the air electrode with untreated acetylene black when the working current density is 100 mA·cm-1 . And its lifetime is over 800 h at 80 mA·cm-1 . The pretreatment of acetylene black for proper time by H2O2 is favorable for the stability of the tri-phase reaction interface of air electrode and improvement of its performance.

  13. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  14. Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination.

    Johnston, Peter; Carthey, Nicholas; Hutchings, Graham J

    2015-11-25

    Vinyl chloride monomer (VCM) is a major chemical intermediate for the manufacture of polyvinyl chloride (PVC), which is the third most important polymer in use today. Hydrochlorination of acetylene is a major route for the production of vinyl chloride, since production of the monomer is based in regions of the world where coal is abundant. Until now, mercuric chloride supported on carbon is used as the catalyst in the commercial process, and this exhibits severe problems associated with catalyst lifetime and mercury loss. It has been known for over 30 years that gold is a superior catalyst, but it is only now that it is being commercialized. In this Perspective we discuss the use and disadvantages of the mercury catalyst and the advent of the gold catalysts for this important reaction. The nature of the active site and the possible reaction mechanism are discussed. Recent advances in the design and preparation of active gold catalysts containing ultralow levels of gold are described. In the final part, a view to the future of this chemistry will be discussed as well as the possible avenues for the commercial potential of gold catalysis. PMID:26529366

  15. VOLT-AMPERE CHARACTERISTICS OF CIS-POLY (PHENYL ACETYLENE)

    HONG Haiping; ZHOU Shuqin; JIN Xiangfeng; QIAN Renyuan; Anita FURLANI

    1991-01-01

    The volt-ampere (I-V) characteristics of the cis-poly (phenyl acetylene) (PPA) of cis-transoidal structure has been studied in the temperature range of 253-288K. An ITO/ PPA/ Au sandwich configuration was used for the measurements. Under an applied field of less than 105V/ cm it showed ohmic behavior, while the space charge.limited current (SCLC) was observed at applied fields above 5 × 105V/ cm. In the ohmic region a conductivity of 1.37× 10-16S/ cm was obtained at room temperature with an activation energy of 0.5 eV. These data indicate that the conduction is not intrinsic one but is the result of thermal release of trapped carriers. In fact the data in the SCLC region treated according to the theory for a single Gaussian distribution of traps gave a mean trap energy of 0.48 eV with a half-width of 0.4 eV and a total density of trapping states of 5× 1016/ cm3 .

  16. Acetylene-chromene terminated resins as high temperature thermosets

    Godschalx, J. P.; Inbasekaran, M. N.; Bartos, B. R.; Scheck, D. M.; Laman, S. A.

    1990-01-01

    A novel phase transfer catalyzed process for the preparation of propargyl ethers has been developed. The propargyl ethers serve as precursors to a new class of thermosetting resins called acetylene-chromene terminated (ACT) resins. Heat treatment of a solution of propargyl ethers with various catalysts, followed by removal of solvent leads to the ACT resins via partial conversion of the propargyl ether groups to chromenes. This process reduces the energy content of the resin systems and reduces the amount of shrinkage found during cure. Due to the presence of the solvent the process is safe and gives rise to low viscosity products suitable for resin transfer molding and filament winding type applications. Due to the high glass transition temperature, high modulus, and low moisture uptake the cured resins display better than 232 C/wet performance. The thermal stability of the ACT resins in air at 204 C is superior to that of conventional bismaleimide resins. The resins also display excellent electrical properties.

  17. Acetylene fermentation: An Earth-based analog of biological carbon cycling on Titan

    Miller, L. G.; Baesman, S. M.; Hoeft, S. E.; Kirshtein, J.; Wolf, K.; Voytek, M. A.; Oremland, R. S.

    2009-12-01

    Acetylene (C2H2) is present in part per million quantities in the atmosphere of Titan; conceivably as an intermediate product of methane photolysis. Currently, Earth’s atmosphere contains only trace amounts of C2H2 (~40 pptv), however higher concentrations likely prevailed during the Hadean and early Archean eons (4.5 - 3.5 Ga). We isolated C2H2-fermenting microbes from various aquatic and sedimentary environments. Acetylene fermentation proceeds via acetylene hydratase (AH) through acetaldehyde, which dismutates to ethanol and acetate, and if oxidants are present (e.g., sulfate) eventually to CO2. Thus, the remnants of a C2H2 cycle exists today on Earth but may also occur on Titan and/or Enceladus, both being planetary bodies hypothesized to have liquid water underlying their frozen surfaces. We developed a molecular method for AH by designing PCR primers to target the functional gene in Pelobacter acetylenicus. We used this method to scan new environments for the presence of AH and we employed DNA sequencing of the 16S rRNA gene in order to positively identify pelobacters in environmental samples. Acetylene fermentation was documented in five diverse salt-, fresh-, and ground-water sites. Pelobacter was identified as the genus responsible for acetylene fermentation in some, but not all, of these sites. Successful probing for AH preceded the discovery of acetylene consumption in a contaminated groundwater site, demonstrating the utility of functional gene probing. A pure culture of a C2H2-fermenting pelobacter was obtained from an intertidal mudflat. We also obtained an enrichment culture (co-cultured with a sulfate reducer) from freshwater lake sediments, but neither was pelobacter nor AH detected in this sample, suggesting that an alternative pathway may be involved here. Slurry experiments using these lake sediments either with or without added C2H2 or sulfate showed that sulfate reduction and acetylene fermentation were independent processes. In general, the

  18. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    Kocisek, J.; Lengyel, J.; Farnik, M. [J. Heyrovsky Institute of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic)

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13

  19. Acetylene fuels reductive dechlorination of TCE by Dehalococcoides/Pelobacter-containing microbial consortia

    Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.

    2015-12-01

    Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE

  20. A study on methane coupling to acetylene under the microwave plasma

    2010-01-01

    By optimizing the microwave chemistry reactor made of the rectangular waveguide resonator,the methane conversion(the maximum 93.7%),the C2 hydrocarbon yield(the maximum 91.0%) and the acetylene yield(the maximum 88.6%) were all greatly increased under the microwave plasma.Furthermore,for the optimal reactor,the change of the methane conversion and the C2 hydrocarbon yield is little within the range of the pressures in the experiments.The C2 hydrocarbon is mainly made up of acetylene,and the selectivity for acetylene is above 90%.Energy yield and space time yield of acetylene are also high.Optical emission spectroscopy(OES) was adopted for the diagnosis of methane coupling to acetylene under microwave plasma.The excited species(CH,C2,H2,Hα) were detected in the spectra range of 300-750 nm.Based on the products and the excited species,the reaction mechanism of methane coupling under microwave plasma was investigated,using the thermodynamics and kinetics of the chemical reaction.

  1. Flexible band gap tuning of hexagonal boron nitride sheets interconnected by acetylenic bonds.

    Zhang, Hongyu; Luo, Youhua; Feng, Xiaojuan; Zhao, Lixia; Zhang, Meng

    2015-08-21

    The energetic and electronic properties of acetylenic-bond-interconnected hexagonal boron nitride sheets (BNyne), in which the number of rows of BN hexagonal rings (denoted as BN width) between neighboring arrays of acetylenic linkages increases consecutively, have been explored using first-principles calculations. Depending on the spatial position of B/N atoms with respect to the acetylenic linkages, there are two different types of configurations. The band structure features and band gap evolutions of BNyne structures as a function of the BN width can be categorized into two families, corresponding to two distinct types of configurations. In particular, for both types of BNyne structures, the band gap variations exhibit odd-even oscillating behavior depending on the BN width, which is related to the different symmetries of acetylenic chains in the unit cell. These results suggest that the embedded linear acetylenic chains can provide more flexibility for manipulation of the atomic and electronic properties of hexagonal boron nitride. These sp-sp(2) hybrid structures might promise importantly potential applications for developing nanoscale electronic and optoelectronic devices. PMID:26194068

  2. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors

    Gobbo R.

    2004-01-01

    Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.

  3. Electronic properties and strain sensitivity of CVD-grown graphene with acetylene

    Yang, Meng; Sasaki, Shinichirou; Ohnishi, Masato; Suzuki, Ken; Miura, Hideo

    2016-04-01

    Although many studies have shown that large-area monolayer graphene can be formed by chemical vapor deposition (CVD) using methane gas, the growth of monolayer graphene using highly reactive acetylene gas remains a big challenge. In this study, we synthesized a uniform monolayer graphene film by low-pressure CVD (LPCVD) with acetylene gas. On the base of Raman spectroscopy measurements, it was found that up to 95% of the as-grown graphene is monolayer. The electronic properties and strain sensitivity of the LPCVD-grown graphene with acetylene were also evaluated by testing the fabricated field-effect transistors (FETs) and strain sensors. The derived carrier mobility and gauge factor are 862-1150 cm2/(V·s) and 3.4, respectively, revealing the potential for high-speed FETs and strain sensor applications. We also investigated the relationship between the electronic properties and the graphene domain size.

  4. Estimation of nitrogenase activity in the presence of ethylene biosynthesis by use of deuterated acetylene as a substrate

    Nitrogenase reduces deuterated acetylene primarily to cis dideuterated ethylene. This can be distinguished from undeuterated ethylene by the use of Fourier transform infrared spectroscopy. Characteristic bands in the region from 800 to 3,500 cm-1 can be used to identify and quantitate levels of these products. This technique is applicable to field studies of nitrogen fixation where ethylene biosynthesis by plants or bacteria is occurring. We have verified the reaction stoichiometry by using Klebsiella pneumoniae and Bradyrhizobium japonicum in soybeans. The most useful bands for quantitation of substrate purity and product distribution are as follows: acetylene-d0, 3,374 cm-1; acetylene-d1, 2,584 cm-1; acetylene-d2, 2,439 cm-1; cis-ethylene-d2, 843 cm-1; trans-ethylene-d2, 988 cm-1; ethylene-d1, 943 cm-1; ethylene-d0, 949 cm-1. (The various deuterated ethylenes and acetylenes are designated by a lowercase d and subscript to indicate the number, but not the position, of deuterium atoms in the molecule.) Mass spectrometry coupled to a gas chromatograph system has been used to assist in quantitation of the substrate and product distributions. Significant amounts of trans-ethylene-d2 were produced by both wild-type and nifV mutant K. pneumoniae. Less of this product was observed with the soybean system

  5. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  6. A joint theoretical and experimental study of phenylene-acetylene molecular wires

    Magyar, R J; Gao, Y; Wang, H L; Shreve, A P

    2004-01-01

    The excited state electronic structure of $\\pi$ conjugated phenylene-acetylene oligomers is calculated using time-dependent density functional theory (TD-DFT) approaches. The theoretical fluorescence spectra are analyzed in terms of Frank-Condon active nuclear normal modes and shown to compare well with experiment. Theoretical and experimental results for the optical absorption and emission spectra of these molecules indicate that the conjugation length can be significantly reduced by conformational rotations about the triple-bonded carbon links. This has serious implications on the electronic functionalities of polyphenylene-acetylene based molecular wires and their possible use as charge/energy conduits in nano-assemblies.

  7. Simulations of shock-induced mixing and combustion of an acetylene cloud in a chamber

    In this paper we present numerical simulations of the interaction of a blast wave with an acetylene bubble in a closed chamber. We model the system using the inviscid Euler equations for a mixture of ideal gases. The formulation specifies the thermodynamic behavior of the system using a Chemkin interface and includes the capability to model combustion as the ambient air mixes with the acetylene. The simulations are performed using a three-dimensional adaptive mesh refinement algorithm based on a second-order Godunov integration scheme. Simulations are compared with experimental measurements for the same configuration

  8. Acetylene- and Phenylacetylene-Terminated Poly(Arylene Ether Benzimidazole)s (PAEBI's)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1994-01-01

    Polymers prepared by first synthesizing polymers terminated with hydroxy groups, then reacting them with either 4-ethynylbenzoyl chloride or 4-fluoro-4'-phenylethynylbenzophenone. Endcapped polymers thermally cured to yield materials with attractive combination of properties. Cured acetylene-and phenylacetylene-terminated PAEBI's exhibit higher glass-transition temperatures and better retention of mechanical properties at high temperatures. Cured acetylene- and phenylacetylene-terminated polymers exhibit excellent adhesion to copper foil and polyimide film. Potentially useful as adhesives, coatings, composite matrices, fibers, films, membranes, and moldings.

  9. Synthesis of Fullerene by Pyrolysis of Acetylene in Thermal HF-Plasma

    ZHU Yanjuan; ZHANG Guofu; ZHANG Wei; LIN Tianjin; XIE Hongbo; LIU Qiuxiang; ZHANG Haiyan

    2007-01-01

    Carbon soot containing fullerene was continuously produced in volume by pyrolyzing acetylene in thermal HF-Plasma. The characteristics of the carbon soot and C60 were analyzed by thtransmission electron microscopy, UV/visible, IR and Raman spectroscopy. The results show that the main ingredients of the carbon soot with size of about 25 nm are amorphous carbon, graphite and fullerene. The fullerene yield in carbon soot is about 2.5 g·h-1. Compared with the graphite arc discharge method, the acetylene thermal plasma method is a preferential one for synthesis of fullerene.

  10. Near-infrared spectra of liquid/solid acetylene under Titan relevant conditions and implications for Cassini/VIMS detections

    Singh, S.; Cornet, T.; Chevrier, V. F.; Combe, J.-Ph.; McCord, T. B.; Roe, L. A.; Le Mouélic, S.; Le Menn, E.; Wasiak, F. C.

    2016-05-01

    Acetylene is thought to be abundant on Titan according to most photochemical models. While detected in the atmosphere, its likely presence at the surface still lacks physical evidence. It is thought that solid acetylene could be a major component of Titan's lakes shorelines and dry lakebed, detected as the 5 μm-bright deposits with the Cassini/VIMS instrument. Acetylene could also be present under its liquid form as dissolved solids in Titan's methane-ethane lakes, as emphasized by thermodynamics studies. This paper is devoted to the near-infrared spectroscopy study of acetylene under solid and liquid phases between 1 and 2.2 μm, synthesized in a Titan simulation chamber that is able to reproduce extreme temperature conditions. From experiments, we observed a ∼10% albedo increase between liquid acetylene at 193-188 K and solid acetylene at 93 K. Using the NIR spectroscopy technique we successfully calculated the reflectivity ratio of solid/liquid acetylene as 1.13. The second difference we observed between liquid and solid acetylene is a shift in the major absorption band detected at 1.54 μm, the shift of ∼0.01 μm occurring toward higher wavelength. In order to assess the detectability of acetylene on Titan using the Cassini/VIMS instrument, we adapted our spectra to the VIMS spectral resolution. The spectral band at 1.55 μm and a negative slope at 2.0 μm falls in the Cassini/VIMS atmospheric windows over several VIMS infrared spectels, thus Cassini/VIMS should be able to detect acetylene.

  11. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.

    2010-10-01

    ... cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8 cylinder is a seamless... the cylinders must comply with the following: (1) Standard taper pipe threads are required; (2) Length may not be less than as specified for American Standard pipe threads; tapped to gauge; clean cut,...

  12. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature. PMID:19488121

  13. Short review on the acetylene photochemistry in clusters: photofragment caging and reactivity

    Fárník, Michal; Poterya, Viktoriya; Kočišek, Jaroslav; Fedor, Juraj; Slavíček, P.

    2012-01-01

    Roč. 110, 21-22 (2012), s. 2817-2828. ISSN 0026-8976 R&D Projects: GA ČR GA203/09/0422; GA ČR GAP208/11/0161 Institutional support: RVO:61388955 Keywords : acetylene clusters * photochemistry * molecular beams Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.670, year: 2012

  14. Acetylenic dithiafulvene derived donor-pi-acceptor dyads: synthesis, electrochemistry and non-linear optical properties

    Nielsen, Mogens Brønsted; Petersen, Jan Conrad; Thorup, Niels;

    2005-01-01

    A selection of donor-acceptor chromophores containing the redox-active dithiafulvene unit about acetylenic and aryl scaffolds has been synthesized. The molecules were studied for their optical, redox and structural properties. Moreover, third-order non-linear optical properties were investigated ...

  15. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    WANG; JinXian

    2001-01-01

    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  16. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    Zheng, Huidong

    2012-12-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  17. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  18. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas; Sørensen, Rasmus Zink; Christensen, Claus H.; Nørskov, Jens Kehlet

    2008-01-01

    The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts ( often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional...

  19. Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts

    Stytsenko, V. D.; Mel'nikov, D. P.

    2016-05-01

    Studies on selective hydrogenation of dienic and acetylenic hydrocarbons and their derivatives on metal-containing catalysts are reviewed. The review covers publications over a wide period of time and concentrates on the fundamental principles of catalyst operation. The catalysts modified in the surface layer were shown to be promising for selective hydrogenation.

  20. The Electrooxidation of Tetracycline at Acetylene Black Electrode in the Presence of Sodium Dodecyl Sulfate

    Xue Ping DANG; Cheng Guo HU; Ying Liang WEI; Sheng Shui HU

    2004-01-01

    The electrooxidation of tetracycline (TC) at acetylene black electrode has been studied in the presence of sodium dodecyl sulfate (SDS). Tetracycline (TC) exhibited very sensitive oxidation peak in this system. The peak current was proportional to TC concentration, and the detection limit was 1.2 × 10-8 mol/L. The system was used to the determination of TC in pharmaceuticals.

  1. On the Role of Surface Modifications of Palladium Catalysts in the Selective Hydrogenation of Acetylene

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas;

    2008-01-01

    Summing Me up: DFT calculations have shown that alloying, subsurface carbon, and hydride formation, all increase the selectivity of Pd catalysts for acetylene hydrogenation by weakening the surface–adsorbate bond. A simple descriptor—the adsorption energy of a methyl group—has been used to quanti...

  2. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    2010-10-01

    ... Federal Register citations affecting § 173.303, see the List of CFR Sections Affected which appears in the... 49 Transportation 2 2010-10-01 2010-10-01 false Charging of cylinders with compressed gas in....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler...

  3. Conformational flexibility of fused tetracenedione propellers obtained from one-pot reductive dimerization of acetylenic quinones.

    Vasilevsky, Sergei F; Baranov, Denis S; Mamatyuk, Victor I; Fadeev, Dmitry S; Gatilov, Yurii V; Stepanov, Aleksandr A; Vasilieva, Nadezhda V; Alabugin, Igor V

    2015-02-01

    Reductive dimerization of acetylenic anthraquinones provides synthetic access to flexible nonplanar polyaromatics with a tetracenedione core. In solution, these nonplanar, contorted polycycles exist as equilibrating mixtures of two symmetric conformers. The fused tetracenediones are easily reduced and exhibit rich electrochemical behavior. PMID:25575160

  4. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film

    Graphene/acetylene black sandwich film was fabricated by a simple vacuum filtration procedure using a stable complex suspension of graphene oxide (GO) and acetylene black followed by a hydroiodic acid (HI) immersion process to fully reduce the GO to graphene sheets. The self-restacking of individual graphene sheets were greatly alleviated and electric conductivity was obviously improved using the acetylene black nanoparticles as both effective spacers to expand the inter-layer interval of the individual graphene sheets during the film assembly course and highly conducting bridges to facilitate the electron/ion transfer between the upper and lower graphene sheets. The flexible graphene/acetylene black film was utilized as supercapacitor electrode without additional conductive additives, binders and current collectors, which achieved an obviously higher specific capacitance (ca. 136.6 F g−1 at 0.5 A g−1) and much better specific capacitance retention at high current densities than that of the pure graphene film electrode, indicating that such a novel sandwich film structure allows for a higher charge storage capability. More importantly, the assembled symmetric supercapacitor device displayed a satisfactory specific capacitance of 59.2 F g−1 at 0.1 A g−1, 47.6 F g−1 at 0.5 A g−1 and 42.8 F g−1 at 1 A g−1, and only negligible 4.05% capacitance degradation have been found after 1000 continuous charge-discharge cycles at 0.5 A g−1, revealing outstanding rate capability, excellent electrochemical reversibility and long-term cyclability. These results proved that such a flexible and highly conductive graphene/acetylene black film can be promising electroactive materials in the development of advanced electrochemical energy storage devices

  5. Study on using acetylene in dual fuel mode with exhaust gas recirculation

    Interest in employing gaseous fuels to internal combustion (IC) engines whether for stationary or mobile automotive applications has gained importance because of the economical, sustainable and environmental technical features associated with their usage. However, the incidence of preignition and knock remains a significant barrier in achieving their optimum performance potential. With the advent of latest technologies, the above barriers are eliminated. One such technique is timed manifold injection (TMI) of the gaseous fuel, which is controlled electronically to precisely monitor the induction of fuel to overcome the preignition problem in the intake. In the present investigation, acetylene was injected in the intake manifold in a single cylinder diesel engine, with a gas flow rate of 240 g/h, start of injection time is 10o aTDC and 90o CA (9.9 ms) duration, operated in dual fuel mode. In order to decrease the NOx emissions from acetylene-diesel engine, cooled EGR was employed. The cylinder pressure, brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation with acetylene induction coupled with cooled EGR results in lowered NOx emissions and improved part load performance. -- Highlights: → Acetylene was tried in SI engines, but due to backfire further research was hindered as an alternative fuel. → But it is not tried in CI engine. Timed manifold injection was tried in diesel engine in the present work to combat backfire. → Author was successful in running the diesel engine in dual fuel mode. → 21% maximum diesel replacement was achieved. Author is confident that acetylene will be commercialised as a fuel for diesel engine in future.

  6. Influence of soil composition in the determination of chromium by atomic absorption spectrometry with flame air / acetylene

    The Air-acetylene Flame Atomic Absorption determination of chromium is a complex task, being strongly influenced by sample composition and instrumental conditions. The objective of this work was to study the influence of Al, Ca, Fe, K, Mg, and Na on the absorption of chromium in the air-acetylene flame, both separately and combined in solution, when acetylene flow and burner height vary. Dissolutions of the mixtures simulated the composition of four soils from the Quibu River Basin in Havana, Cuba. Chromium absorption first increased and then decreased with increment of acetylene flow for shorter burner heights (∼ 2-4 mm); while a continuous increase was observed for larger heights (> 4 mm). This behavior was the same in the presence and absence of interfering chemical element, mentioned above. On the other hand, the dependence of the magnitude of the interference with acetylene flow and burner height was complex and dependent on the interfering element, particularly at larger heights where the behavior of Al was remarkably different. The interference of the four mixtures of Al, Ca, K, Fe, Mg and Na decreased in comparison to individual interfering effects and was less dependent on acetylene flow and burner height. Finally, a significant reduction of interference on chromium determination in soil samples was achieved by an adequate selection of acetylene flow and burner height

  7. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme.

    Meckenstock, R U; Krieger, R; Ensign, S; Kroneck, P M; Schink, B

    1999-08-01

    Acetylene hydratase of Pelobacter acetylenicus is a tungsten iron-sulfur protein involved in the fermentation of acetylene to ethanol and acetate. Expression of the enzyme was increased 10-fold by feeding a 50-L batch culture continuously with 104 Pa acetylene at pH 6.8-7.0. Acetylene hydratase was purified to homogeneity by a three-step procedure in either the absence or presence of dioxygen. The enzyme was a monomer with a molecular mass of 73 kDa (SDS/PAGE) or 83 kDa (matrix-assisted laser-desorption ionization MS) and contained 0.5 +/- 0.1 W (inductively coupled plasma/MS) and 1.3 +/- 0.1 molybdopterin-guanine dinucleotide per mol. Selenium was absent. EPR spectra (enzyme as isolated, under air) showed a signal typical of a [3Fe-4S] cluster with gav = 2.01, at 10 K. In enzyme prepared under N2/H2, this signal was absent and reaction with dithionite led to a rhombic signal with gz = 2.048, gy = 1.939 and gx = 1.920 indicative of a low-potential ferredoxin-type [4Fe-4S] cluster. Upon oxidation with hexacyanoferrate(III), a new signal appeared with gx = 2.007, gy = 2.019 and gz = 2.048 (gav = 2.022), which disappeared after further oxidation. The signal was still visible at 150 K and was tentatively assigned to a W(V) center. The iron-sulfur center of acetylene hydratase (prepared under N2/H2) gave a midpoint redox potential of -410 +/- 20 mV in a spectrophotometric titration with dithionite. Enzyme activity depended on the redox potential of the solution, with 50% of maximum activity at -340 +/- 20 mV. The presence of a pterin-guanine dinucleotide cofactor differentiates acetylene hydratase from the aldehyde ferredoxin oxidoreductase-type enzymes which have a pterin mononucleotide cofactor. PMID:10447686

  8. Numerical Study on the Acetylene Concentration in the Hydrogen-Carbon System in a Hydrogen Plasma Torch

    CHEN Longwei; SHEN Jie; SHU Xingsheng; FANG Shidong; ZHANG Lipeng; MENG Yuedong

    2009-01-01

    Effects of the hydrogen/carbon mole ratio and pyrolysis gas pressure on the acetylene concentration in the hydrogen-carbon system in a plasma torch were numerically calculated by using the chemical thermodynamic equilibrium method of Gibbs free energy. The calculated results indicate that the hydrogen concentration and the pyrolysis gas pressure play crucial roles in acetylene formation. Appropriately abundant hydrogen, with a mole ratio of hydrogen to carbon about 1 or 2, and a relatively high pyrolysis gas pressure can enhance the acetylene concentration. In the experiment, a compromised project consisting of an appropriate hydrogen flow rate and a feasible high pyrolysis gas pressure needs to be carried out to increase the acetylene concentration from coal pyrolysis in the hydrogen plasma torch.

  9. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  10. Characterization of the Minimum Energy Paths and Energetics for the reaction of Vinylidene with Acetylene

    Walch, Stephen P.; Taylor, Peter R.

    1995-01-01

    The reaction of vinylidene (CH2C) with acetylene may be an initiating reaction in soot formation. We report minimum energy paths and accurate energetics for a pathway leading to vinylacetylene and for a number of isomers Of C4H4. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contacted configuration interaction (ICCI) and/or coupled cluster singles and doubles with a perturbational estimate of triple excitations (CCSD(T)) to determine the energetics. We find an entrance channel barrier of about 5 kcal/mol for the addition of vinylidene to acetylene, but no barriers above reactants for the reaction pathway leading to vinylacetylene.

  11. spectroscopic temperature measurements and verification of thermodynamic equilibrium in air-acetylene flame

    an attempt was made to use the Boltzmann plot method for the equivalent width of several absorption lines to measure the flame temperature. the equivalent width of iron atom and ion lines has been obtained from atomic absorbance measurements. the data have been used to determine the temperature of air-acetylene flame. the iron lines of interest fall in the range between 253.6 to 376.6 nm for the atom lines (Fe I)and from 249.3 to 271.4 nm for the ion lines (Fe II). the results showed that the flame temperature obtained ranged from 2100 to 2400 k, which are compatible with other spectroscopic measurements made for air acetylene flame. the question is discussed as to what extent thermodynamic equilibrium does exist in the flame.

  12. Modelingof Acetylene Pyrolysis under Steel Vacuum Carburizing Conditions in a Tubular Flow Reactor

    Rainer Reimert

    2007-03-01

    Full Text Available In the present work, the pyrolysis of acetylene was studied under steel vacuumcarburizing conditions in a tubular flow reactor. The pyrolysis temperature ranged from650 °C to 1050 °C. The partial pressure of acetylene in the feed mixture was 10 and 20mbar, respectively, while the rest of the mixture consisted of nitrogen. The total pressureof the mixture was 1.6 bar. A kinetic mechanism which consists of seven species andnine reactions has been used in the commercial computational fluid dynamics (CFDsoftware Fluent. The species transport and reaction model of Fluent was used in thesimulations. A comparison of simulated and experimental results is presented in thispaper.

  13. Isotope effect in normal-to-local transition of acetylene bending modes

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement

  14. Cold-atmospheric pressure plasma polymerization of acetylene on wood flour for improved wood plastics composites

    Lekobou, William; Pedrow, Patrick; Englund, Karl; Laborie, Marie-Pierre

    2009-10-01

    Plastic composites have become a large class of construction material for exterior applications. One of the main disadvantages of wood plastic composites resides in the weak adhesion between the polar and hydrophilic surface of wood and the non-polar and hydrophobic polyolefin matrix, hindering the dispersion of the flour in the polymer matrix. To improve interfacial compatibility wood flour can be pretreated with environmentally friendly methods such as cold-atmospheric pressure plasma. The objective of this work is therefore to evaluate the potential of plasma polymerization of acetylene on wood flour to improve the compatibility with polyolefins. This presentation will describe the reactor design used to modify wood flour using acetylene plasma polymerization. The optimum conditions for plasma polymerization on wood particles will also be presented. Finally preliminary results on the wood flour surface properties and use in wood plastic composites will be discussed.

  15. Absolute cross sections for dissociative electron attachment to acetylene and diacetylene

    May, Olivier; Fedor, Juraj; Ibănescu, Bogdan C.; Allan, Michael

    2008-01-01

    Absolute cross sections for the production of the two astronomy-relevant negative ions H−C≡C⁻ and H−C≡C−C≡C⁻ by dissociative electron attachment to acetylene C₂H₂ and diacetylene C₄H₂ were measured (with a ±25% error bar). Acetylene yielded the C₂H⁻ ion at an electron energy of 2.95  eV with a cross section of 3.6±0.9  pm² and also the C₂⁻ ion at 8.1  eV with a cross section of 4.1±1  pm². Diacetylene yielded the C₄H⁻ ion at 2.5  eV with a cross section of 3.0±0.8  pm² and at 5.25  eVwith a c...

  16. Pulse-induced nonequilibrium dynamics of acetylene inside carbon nanotube studied by an ab initio approach

    Y. Miyamoto; Zhang, H.; Rubio, A.

    2012-01-01

    Nanoscale molecular confinement substantially modifies the functionality and electronic properties of encapsulated molecules. Many works have approached this problem from the perspective of quantifying ground-state molecular changes, but little is known about the nonequilibrium dynamics of encapsulated molecular system. In this letter, we report an analysis of the nonequilibrium dynamics of acetylene (C2H2) inside a semiconducting carbon nanotube (CNT). An ultrashort high-intense laser pulse ...

  17. Rotation of a single acetylene molecule on Cu(001) by tunneling electrons in STM

    Shchadilova, Yulia E.; Tikhodeev, Sergei G.; Paulsson, Magnus; Ueba, Hiromu

    2013-01-01

    We study the elementary processes behind one of the pioneering works on STM controlled reactions of single molecules [Stipe et al., Phys. Rev. Lett. 81, 1263 (1998)]. Using the Keldysh-Green function approach for the vibrational generation rate in combination with DFT calculations to obtain realistic parameters we reproduce the experimental rotation rate of an acetylene molecule on a Cu(100) surface as a function of bias voltage and tunneling current. This combined approach allows us to ident...

  18. Dual fuel operation of used transformer oil with acetylene in a DI diesel engine

    Highlights: • Utilisation of Used transformer oil (UTO) as a fuel in a diesel engine. • UTO with acetylene in a diesel engine, on a dual fuel mode technique. • Analysis of combustion characteristics of the diesel engine. • Analysis of performance and emission characteristics of the diesel engine. - Abstract: Used transformer oil (UTO) is a waste oil obtained from power transformers and welding transformers. It possesses considerable heating value and properties similar to diesel fuel. A preliminary investigation on the utilization of the UTO in a single cylinder, four stroke small powered direct injection (DI) diesel engine revealed that at an optimum injection timing of 20°CA the engine exhibited lower nitric oxide (NO) and higher smoke emissions, compared to that of diesel operation. In order to improve the performance and reduce the smoke emission, a dual fuel operation was attempted in the present investigation. Acetylene was inducted as a primary fuel at four different flow rates viz 132 g/h, 198 g/h, 264 g/h and 330 g/h along with the air, to study the combustion, performance and emission behavior of a four-stroke, 4.4 kW diesel engine, while the UTO was injected as pilot fuel with the optimized injection timing. The experimental results were compared with diesel-acetylene dual fuel operation in the same engine. Acetylene aspiration reduced the ignition delay and maximum cylinder pressure by about 3°CA, and 25% respectively at full load in comparison with the sole UTO operation. Higher thermal efficiency and lower exhaust gas were also observed at full load. Smoke was reduced by about 13.7%, in comparison with the UTO operation at full load

  19. 1,3-Dipolar Cycloaddition Reactions of Substituted Benzyl Azides with Acetylenic Compounds

    Sultan T. Abu-Orabi

    2002-02-01

    Full Text Available We review in this article some of our work which has been published over the last fifteen years in the area of 1,3-dipolar cycloaddition reactions of substituted benzyl azides with acetylenic compounds to form the corresponding 1,2-3-triazoles. Several triazole derivatives were transformed into triazolopyridazine and triazolo-1,3,4-oxadiazole derivatives upon their reactions with hydrazine.

  20. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    Courtney, Amy; Andrusiv, Lubov; Courtney, Michael

    2011-01-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27 - 79 mm. A range of peak press...

  1. Dehalogenative Homocoupling of Terminal Alkynyl Bromides on Au(111): Incorporation of Acetylenic Scaffolding into Surface Nanostructures.

    Sun, Qiang; Cai, Liangliang; Ma, Honghong; Yuan, Chunxue; Xu, Wei

    2016-07-26

    On-surface C-C coupling reactions of molecular precursors with alkynyl functional groups demonstrate great potential for the controllable fabrication of low-dimensional carbon nanostructures/nanomaterials, such as carbyne, graphyne, and graphdiyne, which demand the incorporation of highly active sp-hybridized carbons. Recently, through a dehydrogenative homocoupling reaction of alkynes, the possibility was presented to fabricate surface nanostructures involving acetylenic linkages, while problems lie in the fact that different byproducts are inevitably formed when triggering the reactions at elevated temperatures. In this work, by delicately designing the molecular precursors with terminal alkynyl bromide, we introduce the dehalogenative homocoupling reactions on the surface. As a result, we successfully achieve the formation of dimer structures, one-dimensional molecular wires and two-dimensional molecular networks with acetylenic scaffoldings on an inert Au(111) surface, where the unexpected C-Au-C organometallic intermediates are also observed. This study further supplements the database of on-surface dehalogenative C-C coupling reactions, and more importantly, it provides us an alternative efficient way for incorporating the acetylenic scaffolding into low-dimensional surface nanostructures. PMID:27326451

  2. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    Han, Huixian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); School of Physics, Northwest University, Xi’an, Shaanxi 710069 (China); Li, Anyang; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  3. Molecular movie for the isomerization of acetylene dication made by time resolved Coulomb imaging

    Li, Zheng; Curchod, Basile; Liekhus-Schmaltz, Chelsea; Vendrell, Oriol; Medvedev, Nikita; Pabst, Stefan; Cryan, James; Osipov, Timur; Bucksbaum, Phil; Martinez, Todd

    2016-01-01

    Experimental evidence has pointed toward the existence of ultrafast proton migration and isomerization as a key process for acetylene and its ions, however the actual mechanism for ultrafast isomerization of the acetylene [HCCH]2+ to vinylidene [H2CC]2+ dication remains nebulous. Theoretical studies show a high potential barrier of over 2 eV [J. Chem. Phys. 123, 134320 (2005)] for the isomerization pathways on the low lying dicationic states, the corresponding isomerization should take picoseconds. However a recent experiment with femtosecond X-ray free electron laser (XFEL) [Nature Commun. 6, 8199 (2015)] suggests signature of isomerization proceeding on a sub-100 femtosecond time scale. We present here a complete theoretical study of the dynamics of acetylene dication from Auger decay induced by X-ray photoionizing the carbon K shell. We find a pathway from high lying dissociative dicationic states, which can lead to the sub-100fs isomerization with assistance of the non-Born-Oppenheimer effect. Moreover, o...

  4. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm−1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm−1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction

  5. Melamine Modification of Spherical Activated Carbon and Its Effects on Acetylene Hydrochlorination

    HAN Weijie; WANG Xugen; ZHU Mingyuan; ZHANG Haiyang; CHEN Kun; WANG Qinqin; LI Xiaoyan; DAI Bin

    2014-01-01

    Commercial spherical activated carbon (SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), elementary analysis, BET, and temperature-programmed desorption (TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70%under the following reaction conditions:temperature, 150℃;C2H2 hourly space velocity (GHSV), 36 h-1;feed volume ratio V (HCl)/V (C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.

  6. Interpretation of PAN, acetone and acetylene measurements from the MIPAS-E

    Moore, D. P.; Remedios, J. J.; Parker, R. J.

    2009-04-01

    Emissions of anthropogenic pollution, from biomass burning events in particular, result in the injection of a wide range of carbon compounds into the atmosphere. Carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are released in significant amounts, affecting both the oxidation capacity of the troposphere and ozone production. Upper troposphere (UT) measurements of PAN, acetone and acetylene have, in the past, been generally limited to sporadic in situ sampling during specialised campaign periods. The recent rapid progress in both the detection and retrieval of many VOC species from spaceborne instrumentation has been large. It has recently been established that the observation of the global distribution of VOCs in the UT can be made by measurements provided by instruments such as the Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E) or the Atmospheric Chemistry Experiment (ACE) onboard SCISAT-1. In this work, we discuss the ability of MIPAS-E to provide new global measurements of acetone in the UT. We also describe both the distribution and seasonality observed in UT PAN volume mixing ratios (vmrs). From the MIPAS-E acetylene measurements, we analyse the extent and magnitude of the chemical isolation observed over the Middle East during August 2003. We show that this enhancement is due to fast westward transport from Asia via the Easterly Jet associated with the Asian monsoon anticyclone. A full error analysis is carried out for each of the three gases we analyse. Previous work has shown that characteristic infrared signatures of PAN, acetone and acetylene can be detected in MIPAS-E thermal emission spectra, with the 787-790 cm-1, 1216-1218 cm-1 and 776.0-776.15 cm-1 spectral ranges respectively being particularly sensitive to changes in each of the gases. We invert the measured MIPAS-E spectra into vmrs using an independent offline-retrieval scheme based on the optimal estimation approach which was

  7. Evidence for alkali metal induced intermolecular acetylenic hydrogen atom transfer between hydrogen-bonded alkyne complexes in solid argon

    Condensation of acetylene, propyne, and 2-butyne/acetylene mixtures with heavy alkali metal atoms (Na, K, Cs) in an argon matrix at 15 K has led to the appearance of infrared absorptions due to ethylene, propylene, and trans-2-butene, respectively. These results stand in sharp contrast with the products obtained with lithium. Isotopic studies have shown that ethylene formation involved three different acetylene molecules and evidenced a difference in the product yield with hydrogen vs. deuterium as well as a preference for trans- vs. cis-C2H2D2 formation, which is discussed and rationalized by differences in the zero point energies for the different mixed deuterium isotopes of the intermediate vinyl radical. This trend is amplified by methyl substitution. Spectroscopic evidence was found in these experiments for cesium acetylide (Cs+C2H-) and a cesium-acetylene π complex, which are involved in the intermolecular acetylenic hydrogen atom transfer process. 26 references, 3 figures, 2 tables

  8. A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates

    Miller, Laurence G.; Baesman, Shaun M.; Kirshtein, Julie; Voytek, Mary A.; Oremland, Ronald S.

    2013-01-01

    Anoxic samples (sediment and groundwater) from 13 chemically diverse field sites were assayed for their ability to consume acetylene (C2H2). Over incubation periods ranging from ˜ 10 to 80 days, selected samples from 7 of the 13 tested sites displayed significant C2H2 removal. No significant formation of ethylene was noted in these incubations; therefore, C2H2 consumption could be attributed to acetylene hydratase (AH) rather than nitrogenase activity. This putative AH (PAH) activity was observed in only 21% of the total of assayed samples, while amplification of AH genes from extracted DNA using degenerate primers derived from Pelobacter acetylenicus occurred in even fewer (9.8%) samples. Acetylene-fermenting bacteria were isolated as a pure culture from the sediments of a tidal mudflat in San Francisco Bay (SFB93) and as an enrichment culture from freshwater Searsville Lake (SV7). Comparison of 16S rDNA clone libraries revealed that SFB93 was closely related to P. carbolinicus, while SV7 consisted of several unrelated bacteria. AH gene was amplified from SFB93 but not SV7. The inability of the primers to generate amplicons in the SV7 enrichment, as well as from several of the environmental samples that displayed PAH activity, implied that either the primers were too highly constrained in their specificity or that there was a different type of AH gene in these environmental samples than occurs in P. acetylenicus. The significance of this work with regard to the search for life in the outer Solar System, where C2HL2 is abundant, is discussed.

  9. Ab-initio simulation of the ionization and fragmentation of acetylene by strong femtosecond laser pulses

    The electron and nuclear dynamics of acetylene when interacting with strong short laser pulses has been simulated in the framework of real-space Time Dependent Density Functional Theory (TDDFT) and molecular dynamics. The stretching and dissociation of individual bonds are reported, and are shown to depend on the laser field intensity and orientation relative to the laser polarization. The ionization dynamics, including ionization from individual Kohn-Sham orbitals, is also reported. The orbital ionization dynamics are shown to vary with an increase in the intensity of the laser field

  10. Nitrogen/argon diluted acetylene and ethylene blue flames under infrared CO2 laser irradiation

    Peter V. Pikhitsa

    2011-09-01

    Full Text Available We investigated changes in emission spectra from nitrogen/argon diluted laminar diffusion acetylene and ethylene blue flames irradiated by a powerful cw infrared CO2 laser. The changes in the radical emission bands can be interpreted as an indication of laser-induced decomposition of ethylene (for laser absorbing C2H4 fuel and of laser-absorbing intermediates (for non-absorbing C2H2 fuel. The results indicate that released active hydrogen plays an important role in addition/abstraction reactions without any participation of oxygen.

  11. Nitrogen/argon diluted acetylene and ethylene blue flames under infrared CO2 laser irradiation

    Pikhitsa, Peter V.; Daegyu Kim; Mansoo Choi

    2011-01-01

    We investigated changes in emission spectra from nitrogen/argon diluted laminar diffusion acetylene and ethylene blue flames irradiated by a powerful cw infrared CO2 laser. The changes in the radical emission bands can be interpreted as an indication of laser-induced decomposition of ethylene (for laser absorbing C2H4 fuel) and of laser-absorbing intermediates (for non-absorbing C2H2 fuel). The results indicate that released active hydrogen plays an important role in addition/abstraction reac...

  12. Synthesis of (iso)quinoline, (iso)coumarin and (iso)chromene derivatives from acetylene compounds

    Ryabukhin, D. S.; Vasilyev, A. V.

    2016-06-01

    Published data on the methods of synthesis of quinoline, isoquinoline, coumarin, isocoumarin, chromene and isochromene derivatives from acetylene compounds are summarized. The reactions catalyzed by metal complexes (Pd, Pt, Ru, Rh, Au, Ag, Ni, Cu, etc.) and transformations induced by various electrophilic reagents (Brynsted and Lewis acids) are considered. Moieties of the mentioned heterocyclic systems are present in many biologically active natural products and pharmaceutical agents. Besides, derivatives of these heterocycles are used in the manufacture of catalysts, dyes, perfumery and cosmetic products, corrosion inhibitors and so on. The bibliography includes 211 references.

  13. Denitrification in Low pH Spodosols and Peats Determined with the Acetylene Inhibition Method

    1980-01-01

    Potential denitrification rates were determined for predominantly acid (pH ≥ 3.6) horizons of forestal, miry, and agricultural soils from 22 locations in southern Finland. The acetylene inhibition method was used with nitrate-amended water-logged soils incubated in an N2 atmosphere containing 2.5 or 5% C2H2. Complete inhibition of the reduction of N2O to N2 was observed in 99.3% of the samples. The denitrification rates varied from 0.12 to 53.8 μg of N·cm-3·day-1. Correlation between denitrif...

  14. Aerosols from oxy-acetylene gas cutting operations on metal plates: a laboratory study

    The decommissioning of radioactively contaminated sites has the potential for creating radioactive and other potentially toxic aerosols. Laboratory studies characterized aerosols from oxy-acetylene cutting of carbon steel and stainless steel, and steel coated with stable Cs, Cd and Sr to simulate fission product contamination. Aerosol characteristics were studied with an electrical aerosol analyzer, a scanning electron microscope, filters, cascade impactors and an HCl impinger trap. Quantification of aerosolized products was by atomic absorption spectroscopy. In general, gas cutting operations produced a multicomponent, multimodal, respirable-sized aerosol

  15. Mechanisms of π-bond oxidation by cytochrome p-450: acetylenes as probes

    Phenylacetylene and biphenylacetylene are oxidized by microsomal and purified P-450 to the corresponding arylacetic acids. During this transformation, the acetylenic hydrogen undergoes a 1,2 shift which causes a kinetic isotope effect of 1.8 on the overall enzymatic rate. The same products and kinetic isotope effects are observed when the arylacetylenes are oxidized by m-chloroperbenzoic acid. Suicide inactivation of P-450 by the arylacetylenes, which occurs simultaneously with metabolite formation, is insensitive to isotopic substitution so the partition ratio changes from 26 for phenylacetylene of 14 for [1-2H] phenylacetylene

  16. Single-molecule phenyl-acetylene-macrocycle-based optoelectronic switch functioning as a quantum-interference-effect transistor.

    Hsu, Liang-Yan; Rabitz, Herschel

    2012-11-01

    This work proposes a new type of optoelectronic switch, the phenyl-acetylene-macrocycle-based single-molecule transistor, which utilizes photon-assisted tunneling and destructive quantum interference. The analysis uses single-particle Green's functions along with Floquet theory. Without the optical field, phenyl-acetylene-macrocycle exhibits a wide range of strong antiresonance between its frontier orbitals. The simulations show large on-off ratios (over 10(4)) and measurable currents (~10(-11) A) enabled by photon-assisted tunneling in a weak optical field (~2 × 10(5) V/cm) and at a small source-drain voltage (~0.05 V). Field amplitude power scaling laws and a range of field intensities are given for operating one- and two-photon assisted tunneling in phenyl-acetylene-macrocycle-based single-molecule transistors. This development opens up a new direction for creating molecular switches. PMID:23215309

  17. Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cytotoxic evaluation of isoxazoles and pyrazoles

    J C Jeyaveeran; Chandrasekar Praveen; Y Arun; A A M Prince; P T Perumal

    2016-01-01

    The synthesis of substituted isoxazoles and pyrazoles through a general cycloisomerization methodology has been reported. The capability of gold(III) chloride to promote cycloisomerization of both , -acetylenic oximes and , -acetylenic hydrazones is the centrepiece of the strategy. A range of acetylenic precursors were investigated to afford 28 examples of the products with good to excellent chemical yields. Selected compounds were screened for their cytotoxic potential towards COLO320 cancer cell lines. The IC50 values of the tested compounds were in the micromolar range, with the best compound, 5-(6-Methoxy-naphthalen-2-yl)-3-phenyl-isoxazole (3h) displaying an IC50 of 38.9 M. For this compound, the crystal structure in complex with Aurora-A kinase was obtained which revealed details of its binding mode within the active site with a free energy of binding -9.54 kcal/mol.

  18. 2-methyl-3-butyn-2-ol as an acetylene precursor in the Mannich reaction. A new synthesis of suicide inactivators of monoamine oxidase

    A two-step reaction process is reported for the synthesis of 11C, 13C, or 14C-labelled propargylamines in moderate yields. The propargylamines were prepared by a modified Mannich scheme without the use of acetylene. The reaction scheme involved the use of 2-methyl-3-butyn-2-ol followed by KOH-catalyzed elimination of acetone from the acetylenic carbinols

  19. Structure and electrochemical properties of track membranes with a polymer layer obtained by plasma polymerization of acetylene

    The structure and electrochemical properties of poly(ethylene terephthalate) track membrane modified by acetylene plasma were studied. It was found that polymer deposition on the surface of a track membrane by plasma polymerization of acetylene results in the creation of composite membranes that, in the case of formation of a thin semipermeable layer, possess an asymmetry of conductivity in electrolyte solutions – a rectification effect. It is caused by the reduction of the pores diameter due to the plasma polymer that results in changing the pore geometry, and as well due to the existence of an interface between the initial membrane and the polymer layer which have various concentrations of carboxyl groups.

  20. A CATALYST, A PROCESS FOR SELECTIVE HYDROGENATION OF ACETYLENE TO ETHYLENE AND A METHOD FOR THE MANUFACTURE OF THE CATALYST

    2009-01-01

    A catalyst comprising a mixture of metal A selected from the group of Fe, Co and Ni and metal B selected from the group of Zn and Ga, and a support material, wherein the two metals are present in an intermetallic composition; A method for the manufacture of the catalyst; and the use of above...... mentioned catalyst for the selective hydrogenation of acetylene to ethylene in a gas mixture comprising acetylenic impurities and hydrogen and one or more of, ethylene and carbon monoxide. The catalyst has a high selectivity and is based on easily available metal compounds....

  1. Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported Nanoparticles

    Walker, Michael P.

    The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions. Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.

  2. π Type Lithium Bond Interaction between Ethylene,Acetylene,or Benzene and Amido-lithium

    YUAN,Kun; LIU,Yanzhi; L(U),Lingling; ZHU,Yuancheng; ZHANG,Ji; ZHANG,dunyan

    2009-01-01

    The optimization geometries and interaction energy corrected by basis set super-position error (BSSE) of the lithium bond complexes between ethylene,acetylene,or benzene and amido-lithium have been calculated at the B3L YP/6-311++G** and MP2/6-311 ++-G** levels.And only one configuration was obtained for each lithium bond system.All the equilibrium geometries were confirmed to be stable state by analytical frequency computations.The calculations showed that all the N(2)-Li(4) bond lengths increased obviously and the red shift of N(2)-Li(4) stretching frequency occurred after complexes formed.The calculated binding energies with BSSE and zero-point vibrational energy corrections of complexes Ⅰ,Ⅱ and Ⅲ are -26.04,-24.86 and -30.02 kJ·mol-1 via an MP2 method,respectively.Natural bond orbital (NBO) theory analysis revealed that the three complexes were all formed with π type lithium bond interaction between ethylene,acetylene,or benzene and amido-lithium.

  3. Experimental and theoretical studies of the reaction between cationic vanadium oxide clusters and acetylene

    YIN Shi; MA YanPing; DU Lin; HE ShengGui; GE MaoFa

    2008-01-01

    The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters (VmO+n) toward acetylene (C2H2) molecules under gas phase (P, ~ 1.14 kPa), under near room temperature (T, ~ 350 K) conditions. Association products, VmOnC2H+2 (m,n = 2,4; 2,6; 3,7-8; 4,9-11; 5,12-13;6,13-16, and 7,17), are observed. The oxidation of C2H2 by (V2O5)+n, (n = 1-3) is experimentally identified.The reactivity of (V2O5)+n decreases as n increases. Density functional theory (DFT) calculations were carried out to interpret the reaction mechanisms. The DFT results indicate that a terminal oxygen atom from V2O+5 can transfer overall barrierlessly to C2H2 at room temperature, which is in agreement with the experimental observation. Other experimental results such as the observation of V2O6C2H+2 and nonobservation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.

  4. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8μm

    Sajid, M.B.

    2015-04-01

    The mid-infrared wavelength region near 8 mu m contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the v(4) band of methane and the v(4)+v(5) band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm(-1)) and P23 (1275.5 cm(-1)) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane. (C) 2015 Elsevier Ltd. All rights reserved.

  5. Rhodium(III)-Catalyzed C-H Activation/Annulation with Vinyl Esters as an Acetylene Equivalent

    Webb, NJ; Marsden, SP; Raw, SA

    2014-01-01

    The behavior of electron-rich alkenes in rhodium-catalyzed C–H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed

  6. Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene

    Walch, Stephen P.

    1995-01-01

    The ring closure reaction of C4H3 with acetylene to give phenyl radical is one proposed mechanism for the formation of the first aromatic ring in hydrocarbon combustion. There are two low-lying isomers of C4H3; 1-dehydro-buta-l-ene-3-yne (n-C4H3) and 2-dehydro-buta-l-ene-3-yne (iso-C4H3). It has been proposed that only n-C4H3 reacts with acetylene to give phenyl radical, and since iso-C4H3 is more stable than n-C4H3, formation of phenyl radical by this mechanism is unlikely. We report restricted Hartree-Fock (RHF) plus singles and doubles configuration interaction calculations with a Davidson's correction (RHF+1+2+Q) using the Dunning correlation consistent polarized valence double zeta basis set (cc-pVDZ) for stationary point structures along the reaction pathway for the reactions of n-C4H3 and iso-C4H3 with acetylene. n-C4H3 plus acetylene (9.4) has a small entrance channel barrier (17.7) (all energetics in parentheses are in kcal/mol with respect to iso-C4H3 plus acetylene) and the subsequent closure steps leading to phenyl radical (-91.9) are downhill with respect to the entrance channel barrier. Iso-C4H3 Plus acetylene also has an entrance channel barrier (14.9) and there is a downhill pathway to 1-dehydro-fulvene (-55.0). 1-dehydro-fulvene can rearrange to 6-dehydro-fulvene (-60.3) by a 1,3-hydrogen shift over a barrier (4.0), which is still below the entrance channel barrier, from which rearrangement to phenyl radical can occur by a downhill pathway. Thus, both n-C4H3 and iso-C4H3 can react with acetylene to give phenyl radical with small barriers.

  7. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition

    Highlights: • Acetylene was decomposed on SBA-15 and Ni-SBA-15 at 650–850 °C. • Carbon spheres and filaments were formed after acetylene decomposition. • PAHs were determined in tar and residues. • Exhaust constituents include CO2, H2, NOx and hydrocarbon species. - Abstract: Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650–850 °C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850 °C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650–850 °C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp2 structure) cm−1. Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H2, and C2H2 were 3.9–2.6/2.7–1.5, 1.4–2.8/2.6–4.3, 4.2–2.4/3.2–1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850 °C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104 ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850 °C, and the aromatics contributed more than 87% fraction of VOC concentrations

  8. Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China); Wu, Trong-Neng [Department of Public Health, China Medical University, Taichung 40402, Taiwan (China); Ho, Yung-Shou [Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung 831, Taiwan (China); Zeng, Li-Xuan [Department of Risk Management, China Medical University, Taichung 40402, Taiwan (China)

    2014-07-15

    Highlights: • Acetylene was decomposed on SBA-15 and Ni-SBA-15 at 650–850 °C. • Carbon spheres and filaments were formed after acetylene decomposition. • PAHs were determined in tar and residues. • Exhaust constituents include CO{sub 2}, H{sub 2}, NO{sub x} and hydrocarbon species. - Abstract: Carbon materials including carbon spheres and nanotubes were formed from acetylene decomposition on hydrogen-reduced SBA-15 and Ni-SBA-15 at 650–850 °C. The physicochemical characteristics of SBA-15, Ni-SBA-15 and carbon materials were analyzed by field emission scanning electronic microscopy (FE-SEM), Raman spectrometry, and energy dispersive spectrometry (EDS). In addition, the contents of polyaromatic hydrocarbons (PAHs) in the tar and residue and volatile organic compounds (VOCs) in the exhaust were determined during acetylene decomposition on SBA-15 and Ni-SBA-15. Spherical carbon materials were observed on SBA-15 during acetylene decomposition at 750 and 850 °C. Carbon filaments and ball spheres were formed on Ni-SBA-15 at 650–850 °C. Raman spectroscopy revealed peaks at 1290 (D-band, disorder mode, amorphous carbon) and 1590 (G-band, graphite sp{sup 2} structure) cm{sup −1}. Naphthalene (2 rings), pyrene (4 rings), phenanthrene (3 rings), and fluoranthene (4 rings) were major PAHs in tar and residues. Exhaust constituents of hydrocarbon (as propane), H{sub 2}, and C{sub 2}H{sub 2} were 3.9–2.6/2.7–1.5, 1.4–2.8/2.6–4.3, 4.2–2.4/3.2–1.7% when acetylene was decomposed on SBA-15/Ni-SBA-15, respectively, corresponding to temperatures ranging from 650 to 850 °C. The concentrations of 52 VOCs ranged from 9359 to 5658 and 2488 to 1104 ppm for SBA-15 and Ni-SBA-15 respectively, at acetylene decomposition temperatures from 650 to 850 °C, and the aromatics contributed more than 87% fraction of VOC concentrations.

  9. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  10. Acetylene black nanoparticle-modified electrode as an electrochemical sensor for rapid determination of rutin

    Acetylene black nanoparticles were homogeneously dispersed into water in the presence of hydrophobic surfactant and then used to modify the surface of a glassy carbon electrode. An examination of the electrochemistry of rutin showed that this modification of the electrodes resulted in a considerable enhancement of the surface, thus remarkably increasing the signal for rutin. As a result, a sensitive and convenient electrochemical method was developed for the determination of rutin. The linear range is from 20 μg L-1 to 5 mg L-1, and the limit of detection is 10 μg L-1. The method was successfully employed to the determination of rutin in traditional Chinese medicines. (author)

  11. Interference in acetylene intersystem crossing acts as the molecular analog of Young's double-slit experiment.

    de Groot, Mattijs; Field, Robert W; Buma, Wybren J

    2009-02-24

    We report on an experimental approach that reveals crucial details of the composition of singlet-triplet mixed eigenstates in acetylene. Intersystem crossing in this prototypical polyatomic molecule embodies the mixing of the lowest excited singlet state (S(1)) with 3 triplet states (T(1), T(2), and T(3)). Using high-energy (157-nm) photons from an F(2) laser to record excited-state photoelectron spectra, we have decomposed the mixed eigenstates into their S(1), T(3), T(2), and T(1) constituent parts. One example of the interpretive power that ensues from the selective sensitivity of the experiment to the individual electronic state characters is the discovery and examination of destructive interference between two doorway-mediated intersystem crossing pathways. This observation of an interference effect in nonradiative decay opens up possibilities for rational coherent control over molecular excited state dynamics. PMID:19179288

  12. Features of photopolymerization of Langmiur-Blodgett thin films of acetylenic acids

    UV-induced polymerization of thin (1-4 monolayers) Langmuir-Blodgett films of acetylenic carboxylic acids with triple bonds in different positions (terminal: 23-tetracosinic acid HC≡C(CH2)21COOH, and internal: 2-docosinic CH3(CH2)18C≡CCOOH) and their lead salts is investigated. It is shown by means of IR spectroscopy that the topochemical reaction proceeds with the participation of carboxylic groups. The differences in the structure of mono- and bilayers are demonstrated. The mechanism of the topochemical reaction depends on the method of film transfer onto the substrate. It is shown by means of UV spectroscopy that short conjugated polyenes (containing 7 to 9 carbon atoms) are formed as the product of polymerization. The mechanism of the formation of these polyene chains is proposed on the basis of the experimental data and semi-empirical calculations.

  13. Features of photopolymerization of Langmiur-Blodgett thin films of acetylenic acids

    Dultsev, F.N., E-mail: fdultsev@thermo.isp.nsc.r [Institute of Semiconductor Physics SB RAS, Novosibisrk, 630090, Lavrentiev Ave., 13 (Russian Federation); Badmaeva, I.A. [Institute of Semiconductor Physics SB RAS, Novosibisrk, 630090, Lavrentiev Ave., 13 (Russian Federation)

    2009-11-02

    UV-induced polymerization of thin (1-4 monolayers) Langmuir-Blodgett films of acetylenic carboxylic acids with triple bonds in different positions (terminal: 23-tetracosinic acid HC{identical_to}C(CH2)21COOH, and internal: 2-docosinic CH3(CH2)18C{identical_to}CCOOH) and their lead salts is investigated. It is shown by means of IR spectroscopy that the topochemical reaction proceeds with the participation of carboxylic groups. The differences in the structure of mono- and bilayers are demonstrated. The mechanism of the topochemical reaction depends on the method of film transfer onto the substrate. It is shown by means of UV spectroscopy that short conjugated polyenes (containing 7 to 9 carbon atoms) are formed as the product of polymerization. The mechanism of the formation of these polyene chains is proposed on the basis of the experimental data and semi-empirical calculations.

  14. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J.

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label ‘amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  15. Analysis for Mar Vel Black and acetylene soot low reflectivity surfaces for star tracker sunshade applications

    Yung, E.

    1974-01-01

    Mar Vel Black is a revolutionary new extremely low reflectivity anodized coating developed by Martin Marietta of Denver. It is of great interest in optics in general, and in star trackers specifically because it can reduce extraneous light reflections. A sample of Mar Vel Black was evaluated. Mar Vel Black looks much like a super black surface with many small peaks and very steep sides so that any light incident upon the surface will tend to reflect many times before exiting that surface. Even a high reflectivity surface would thus appear to have a very low reflectivity under such conditions. Conversely, acetylene soot does not have the magnified surface appearance of a super black surface. Its performance is, however, predictable from the surface structure, considering the known configuration of virtually pure carbon.

  16. Atom-economic catalytic amide synthesis from amines and carboxylic acids activated in situ with acetylenes.

    Krause, Thilo; Baader, Sabrina; Erb, Benjamin; Gooßen, Lukas J

    2016-01-01

    Amide bond-forming reactions are of tremendous significance in synthetic chemistry. Methodological research has, in the past, focused on efficiency and selectivity, and these have reached impressive levels. However, the unacceptable amounts of waste produced have led the ACS GCI Roundtable to label 'amide bond formation avoiding poor atom economy' as the most pressing target for sustainable synthetic method development. In response to this acute demand, we herein disclose an efficient one-pot amide coupling protocol that is based on simple alkynes as coupling reagents: in the presence of a dichloro[(2,6,10-dodecatriene)-1,12-diyl]ruthenium catalyst, carboxylate salts of primary or secondary amines react with acetylene or ethoxyacetylene to vinyl ester intermediates, which undergo aminolysis to give the corresponding amides along only with volatile acetaldehyde or ethyl acetate, respectively. The new amide synthesis is broadly applicable to the synthesis of structurally diverse amides, including dipeptides. PMID:27282773

  17. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light.

    Shi, Xuetao; Li, Wen; Schlegel, H Bernhard

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C2 core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H2CCH(+) ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C2H3 (+) has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10(13) W/cm(2) and 3.15 × 10(13) W/cm(2), respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C2H3 (+). The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C2 core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C2 core of protonated acetylene. PMID:27586924

  18. Effect of the molecule structure of acetylene compound on the kinetics of the electrode reactions of iron in hydrochloric and sulfuric acids

    Electrochemical interaction between acetylene compounds both with and without α-hydrogen and ion in hydrochloric and sulfuric acids was studied by the method of potentiostatic voltammetry using rotating disk electrode and measurements of stationary electrode capacity. Tendency of acetylene compounds towards electrochemical reduction correlates with their capability to be polymerized on iron in acid solutions. The presence of α-hydrogen atom defines the acetylene compound ability for polymerization on iron providing secondary inhibition effect. Compound that does not contain α-hydrogen manifests solely adsorption mechanism of inhibition

  19. Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol

    The pyrolysis of acetylene-methanol, acetylene-ethanol, acetylene-isopropanol and acetylene-n-butanol mixtures has been studied in a flow reactor in the 975–1475 K temperature range. The purpose of this work is to analyze the effect of each alcohol on soot and gas products coming from the pyrolysis of the mixtures compared to the results observed in the pyrolysis of pure acetylene, taken as a reference. Results show that the presence of alcohols always reduces the formation of soot and that the lower the atomic carbon/oxygen (C/O) ratio in the reacting mixture, the higher the soot reduction achieved, mainly due to the enhancement of oxidation reactions by the presence of O in the fuel mixture. The experimental evolution of gas products at the reactor outlet is interpreted through a detailed gas phase chemical kinetic mechanism, which allows insight into the causes for soot reduction by the presence of the different alcohols. This analysis reveals that including methanol in the reacting mixture favours mainly the formation of CO, preventing most of the carbon coming from the alcohol to take part in soot formation and its precursors. The rest of the alcohols not only decompose into oxidation products but they can also form species that may contribute to soot formation. In particular, ethanol promotes the formation of CO and CH4, which come from competing reactions that prevent PAH formation, but also forms C2H4 that may contribute to soot precursors growth. Isopropanol contributes to disfavour PAH formation because it decomposes into CO and CH4, but it also forms C2 and C3 hydrocarbons that play an important role in PAH formation and growth. N-butanol enhances oxidation reactions to CO and CH4 formation in a lower degree than the rest of the alcohols and tends to decompose into small hydrocarbons, able to contribute to PAH formation and growth. -- Highlights: ► Study of acetylene-alcohol pyrolysis (including methanol, ethanol, isopropanol and n-butanol). ► The

  20. Mechanism of Ziegler-Natta polymerization of acetylene: a nutation NRMR study. Technical report, 22 Jun 82-9 Dec 83

    Clarke, T.C.; Yannoni, C.S.; Katz, T.J.

    1983-12-09

    Using nutation NMR spectroscopy the distance between adjacent /sup 13/C labels was measured in samples of polyacetylene prepared by polymerizing a dilute solution of double /sup 13/C-labelled acetylene in /sup 12/C-acetylene using titanium tetra-n-butoxide plus triethylaluminum as a catalyst. The experiments accord with expectation if the polymerization proceeds by a four-center insertion mechanism rather than by a metallacycle mechanism involving metal-carbenes.

  1. Design and implementation of a stable state control system for acetylene production by coal H-plasma pyrolysis

    To keep the 2 MW equipment for producing acetylene by coal H-plasma pyrolysis running stably and safely, and to improve acetylene yield, an multi-function control system has been designed and implemented. In this system, the time slice division method has been adopted to collect important signals at high speed and in continuous mode for a long time. For improving the stability and the response speed of the control system. Integral Separation Control Arithmetic has been used. Moreover, to meet local user and remote user requirements, the control system has provided fast and visual information by the combination of C/S mode and B/S mode. The control system has shown favorable stability, reliability and usability in many experiments. (authors)

  2. Ferrimagnetism in 2D networks of porphyrin-X and -XO (X=Sc,...,Zn) with acetylene bridges

    Wierzbowska, Małgorzata; Sobolewski, Andrzej L.

    2016-03-01

    Magnetism in 2D networks of the acetylene-bridged transition metal porphyrins M(P)-2(C-C)-2 (denoted P-TM), and oxo-TM-porphyrins OM(P)-2(C-C)-2 (denoted P-TMO), is studied with the density functional theory (DFT) and the self-interaction corrected pseudopotential scheme (pSIC). Addition of oxygen lowers magnetism of P-TMO with respect to the corresponding P-TM for most of the first-half 3d-row TMs. In contrast, binding O with the second-half 3d-row TMs or Sc increases the magnetic moments. Ferrimagnetism is found for the porphyrin networks with the TMs from V to Co and also for these cases with oxygen. This is a long-range effect of the delocalized spin-polarization, extended even to the acetylene bridges.

  3. Development of a spectrofluorimetry-based device for determining the acetylene content in the oils of power transformers.

    Quintella, Cristina M; Meira, Marilena; Silva, Weidson Leal; Filho, Rogério G D; Araújo, André L C; Júnior, Elias T S; Sales, Lindolfo J O

    2013-12-15

    Power transformers are essential for a functioning electrical system and therefore require special attention by maintenance programs because a fault can harm both the company and society. The temperature inside a power transformer and the dissolved gases, which are primarily composed of acetylene, are the two main parameters monitored when detecting faults. This paper describes the development of a device for analyzing the acetylene content in insulating oil using spectrofluorimetry. Using this device introduces a new methodology for the maintaining and operating power transformers. The prototype is currently operating in a substation. The results presented by this system were satisfactory; when compared to chromatographic data, the errors did not exceed 15%. This prototype may be used to confirm the quality of an insulating oil sample to detect faults in power transformers. PMID:24209339

  4. Quantum Chemical Evaluation of the Astrochemical Significance of Reactions between S Atom and Acetylene or Ethylene

    Woon, David E.

    2007-01-01

    Addition-elimination reactions of S atom in its P-3 ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X (sup 3 SIGMA (sub g) (sup -)) via a mechanism proposed by Saxena and Misra (Mon. Not. R. Astron. Soc. 1995, 272, 89). The acetylene and ethylene reactions proceed through C2H2S ((sup 3)A")) and C2H4S ((sup 3)A")) intermediates, respectively, to yield HCCS ((sup 2)II)) and C2H3S ((sup 2)A')). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates is formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for S atom and participate in reactions such as S + C2H2S (right arrow) S2 = C2H2 or S + C2H4S (right arrow) S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  5. Frequency Comb-Referenced Spectroscopy in the ν1 + ν3 Region of Acetylene

    Cich, Matthew J.; Forthomme, Damien; Hall, Gregory E.; Mcraven, Christopher P.; Sears, Trevor J.; Twagirayezu, Sylvestre

    2014-06-01

    class="MsoNormal">By using saturation dip absorption spectroscopy with an extended cavity diode laser locked to a frequency comb, we have measured the rest frequencies of transitions in the ν4 = 1 and ν5 = 1 hot bands in the ν1 + ν3 combination band of acetylene. The measured line frequencies are accurate to approximately 20 kHz i.e. approximately one part in 1011. Positions of the hot-band lines quoted in the HITRAN database, which are derived from the analysis of high-resolution FTIR spectra, are of the order of 10's of MHz in error. These measurements were undertaken because pressure broadened lineshape measurements of rotational lines in the combination band indicated that weak underlying hot band features were not correctly accounted for on the basis of their previously reported positions. As a result, measured line profiles in the band could not be accurately fit leading to errors of up to 1% in acetylene concentrations derived from the measurements. In addition, the pressure broadened P(11) line in the ν1 + ν3 combination band has been studied as a function of varying concentration of the absorber in nitrogen. Mixture concentrations of 1, 5 and 10% at 296 K and pressures between a few Torr and one atmosphere were made and the measurements analyzed using two different speeddependent broadening models. These experiments are designed to test the additivity of contributions to pressure broadening and shift in speed-dependent line-shape modeling, i.e. whether the lineshape parameters follow partial pressure weighting in the binary mixtures. P(11) is relatively isolated with respect to underlying hot band transitions and neighboring transitions of the same band, but it was found that the accurate positions of underlying hot-band transitions were crucial to the successful modeling of the observed line shapes, even though these lines are typically 100-1000 times weaker than P(11) itself and are many Doppler line widths removed from the line center

  6. The Study of the Adsorption Kinetics of Acetylene and Methanol on Silica Gel by Gravimetry and Global Fitting

    Galíková, Anna; Galík, Aftanas

    Bratislava: Slovak University of Technology , 2004 - (Markoš, J.; Štefuca, V.), s. 64 ISBN 80-227-2052-6. [International Conference of Slovak Society of Chemical Engineering /31./. Tatranské Matliare (SK), 24.05.2004-28.05.2004] R&D Projects: GA ČR GA104/04/2028 Institutional research plan: CEZ:AV0Z4072921 Keywords : adsorption * desorption * acetylene Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  7. Growth of bridging carbon nanofibers in cracks formed by heat-treating iron oxide thin sheets in acetylene gas

    Takeshi Hikata; Soichiro Okubo; Yugo Higashi; Teruaki Matsuba; Risa Utsunomiya; Sadahiro Tsurekawa; Katsuhisa Murakami; Jun-ichi Fujita

    2013-01-01

    We produced novel carbon nanofibers (CNFs) by oxidizing high-purity iron foil and then carburizing it in acetylene gas flow. This formed cracks in the heat-treated iron foil with CNFs bridging the two walls of each crack. The CNFs were drawn out from the walls as the crack opened during heat treatment. This will be a new method to grow and arrange carbon nanotubes and nanosheets without using metal nanoparticles or template substrates.

  8. Growth of bridging carbon nanofibers in cracks formed by heat-treating iron oxide thin sheets in acetylene gas

    Takeshi Hikata

    2013-04-01

    Full Text Available We produced novel carbon nanofibers (CNFs by oxidizing high-purity iron foil and then carburizing it in acetylene gas flow. This formed cracks in the heat-treated iron foil with CNFs bridging the two walls of each crack. The CNFs were drawn out from the walls as the crack opened during heat treatment. This will be a new method to grow and arrange carbon nanotubes and nanosheets without using metal nanoparticles or template substrates.

  9. Differences in acetylene chemistry of highly substituted zirconocene and titanocene complexes - thermal stability and linear dimerization of terminal alkynes

    Horáček, Michal; Štěpnička, P.; Kubišta, Jiří; Gyepes, R.; Mach, Karel

    Rende: Centro Editoriale e Librario, 2005 - (Giordano, G.), s. 55-58 ISBN 88-7458-032-0. [Convegno Nazionale Scienza e Tecnologia Delle Zeoliti /7./ joint with Czech-Italian Workshop on Catalysis and Zeolites /1./. Camigliatello Silano (IT), 26.06.2005-30.06.2005] Institutional research plan: CEZ:AV0Z40400503 Keywords : bis(trimethylsilyl)acetylene * zirconocene-BTMSA complexes * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Importance of surface carbide formation on the activity and selectivity of Pd surfaces in the selective hydrogenation of acetylene

    Yang, Bo; Burch, Robbie; Hardacre, Christopher; Hu, P.; Hughes, Philip

    2016-04-01

    A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.

  11. Using Acetylene for Selective Catalytic Reduction of NO in Excess Oxygen

    YU Shan-Shan; WANG Xin-Ping; WANG Chong; XU Yan

    2006-01-01

    Acetylene as a reducing agent for selective catalytic reduction of NO (C2H2-SCR) was investigated over a series of metal exchanged HY catalysts, in the reaction system of 0.16% NO, 0.08% C2H2, and 9.95% O2 (volume percent)in He. 75% of NO conversion to N2 with hydrocarbon efficiency about 1.5 was achieved over a Ce-HY catalyst around 300 ℃. The NO removal level was comparable with that of selective catalytic reduction of NOx by C3H6reported in literatures, although only one third of the reducing agent in carbon moles was used in the C2H2-SCR of NO. The protons in zeolite were crucial to the C2H2-SCR of NO, and the performance of HY in the reaction was significantly promoted by cerium incorporation into the zeolite. NO2 was proposed to be the intermediate of NO reduction to N2, and the oxidation of NO to NO2 was rate-determining step of the C2H2-SCR of NO over Ce-HY.The suggestion was well supported by the results of the NO oxidation with O2, and the C2H2 consumption under the conditions in the presence or absence of NO.

  12. Global modeling of vibration-rotation spectra of the acetylene molecule

    Lyulin, O. M.; Perevalov, V. I.

    2016-07-01

    The global modeling of both line positions and intensities of the acetylene molecule in the 50-9900 cm-1 region has been performed using the effective operators approach. The parameters of the polyad model of effective Hamiltonian have been fitted to the line positions collected from the literature. The used polyad model of effective Hamiltonian takes into account the centrifugal distortion, rotational and vibrational ℓ-doubling terms and both anharmonic and Coriolis resonance interaction operators arising due to the approximate relations between the harmonic frequencies: ω1≈ω3≈5ω4≈5ω5 and ω2≈3ω4≈3ω5. The dimensionless weighted standard deviation of the fit is 2.8. The fitted set of 237 effective Hamiltonian parameters allowed reproducing 24,991 measured line positions of 494 bands with a root mean squares deviation 0.0037 cm-1. The eigenfunctions of the effective Hamiltonian corresponding to the fitted set of parameters were used to fit the observed line intensities collected from the literature for 15 series of transitions: ΔP = 0-13,15, where P=5V1+5V3 +3V2+V4+V5 is the polyad number (Vi are the principal vibrational quantum numbers). The fitted sets of the effective dipole moment parameters reproduce the observed line intensities within their experimental uncertainties 2-20%.

  13. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  14. In situ acetylene reduction activity of Scytonema julianum in Vapor cave (Spain

    Asencio Antonia Dolores

    2011-01-01

    Full Text Available Nitrogen fixation was measured in situ for the first time by acetylene reduction for a greyish mat composed of Scytonema julianum in cave- like environments. Mat-specific rates (129.9-215.7 nmol C2 H4 m-2 s-1 for daytime fixation and 65.1-120.6 nmol C2 H4 m-2 s-1 for nighttime fixation recorded in the Vapor cave differed considerably due to the energy reserves stored during photosynthesis being exhausted and used in the dark phase. The most influential environmental parameter for nitrogen fixation in the Vapor cave is temperature in the daytime and nighttime fixations. Nitrogen fixation by cyanobacteria may contribute considerably to the overall nitrogen cycle in harsh environments such as caves. Nitrogenase activity in Scytonema julianum was roughly 30 times higher than that of Scytonema mirabile, which also grew in cave environments, which is due to the characteristics of each site. The entrance of Vapour cave (Spain faces SE, measures 0.75 x 0.6 m and opens to shafts of a total depth of 80 m. Its dimensions and environmental conditions (relative humidity up to 100%; maximum temperature, 43oC imply that it is isolated from external influences, and that the microclimate differs substantially from that experienced externally. Nitrogen fixation, photon flux density, relative humidity and temperature in the Vapor cave were taken hourly over a 24-hour period in winter.

  15. Molecular Heterogeneous Catalysis: a Single-Site Zeolite-Supported Rhodium Complex for Acetylene Cyclotrimerization

    By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from (Rh(C2H4)2(CH3COCHCOCH3)) and a crystalline support, dealuminated Y zeolite, giving {Rh(C2H4)2} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by 13C NMR spectroscopy. When the ethylene ligands are replaced by acetylene, catalytic cyclotrimerization to benzene ensues. Characterizing the working catalyst, we observed evidence of intermediates in the catalytic cycle by NMR spectroscopy. Calculations at the level of density functional theory confirmed the structure of the as-synthesized supported metal complex determined by EXAFS spectroscopy. With this structure as an anchor, we used the computational results to elucidate the catalytic cycle (including transition states), finding results in agreement with the NMR spectra.

  16. Dissociation of Methanol and Acetylene by slow Highly Charged Ion Collision

    We report here the results of dissociation of multiple charged methanol and acetylene molecules in collision with 1.2 MeV Ar8+ projectiles. We observed a wide range of dissociation products from the TOF spectrum starting from undissociated molecular ions, fragments losing an hydrogen atom due to breakage of C-H and/or O-H bonds, to complete rupture of C-C and C-O skeletons for the respective molecules. From the coincidence map of the fragments, we could separate out the different dissociation channels between carbon and oxygen ionic fragments as well as complete two-body dissociation events. The most striking feature in the breakup of CH3OH is the formation of H2+ and H3+ due to intramolecular rearrangement of the C-H bonds within the methyl group. In dissociative ionization studies of C2H2, we observed a diatom-like behaviour of the C-C charged complex as evidenced from the measured slopes of the coincidence islands for carbon atomic charged fragments and theoretical values determined from the charge and momentum distribution of the correlated particles. The shape and orientation of the islands give further information about the momentum balance in the fragmentation process in two-body dissociation

  17. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiters Great Red Spot

    Carlson, Robert W.; Baines, Kevin H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-01-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3 ) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2 ). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  18. Picosecond phase conjugation in two-photon absorption in poly-di-acetylenes

    Poly-di-acetylenes exhibit a large two-photon absorption at 1064 nm wavelength. Its different effects on phase-conjugate nonlinearity are described in the framework of picosecond experiments. In solutions, gels, and films (optically thin media), third-order susceptibility appears as an increasing intensity dependent function. Phase measurements by nonlinear interferometry with the substrate or with the solvent are compared with predictions of a resonantly driven three level system. Phase-conjugate response exhibits a multi-exponential decay. Polarization symmetries analysis shows a one-dimensional effect. Study under strong static electric field action reveals that we face charged species bound to photoconductive polymer chains. In PTS single crystals (optically thick media), response saturates and cancels at high light intensity. This is well accounted for by propagation equations solved in large two-photon absorption conditions. The effect is exploited in a phase conjugation experiment under external optical pump excitation. We thus demonstrate that enhanced nonlinearity is a two-photon absorption relayed and amplified by mid-gap absorbing species which have been created by this two-photon absorption. We formally face a four-photon absorption described by a positive imaginary seventh-order non-linearity. (author)

  19. SMFs-supported Pd nanocatalysts in selective acetylene hydrogenation:Pore structure-dependent deactivation mechanism

    Elaheh; Esmaeili; Ali; Morad; Rashidi; Yadollah; Mortazavi; Abbas; Ali; Khodadadi; Mehdi; Rashidzadeh

    2013-01-01

    In the present study,CNFs,ZnO and Al2O3 were deposited on the SMFs panels to investigate the deactivation mechanism of Pd-based catalysts in selective acetylene hydrogenation reaction.The examined supports were characterized by SEM,NH3-TPD and N2adsorption-desorption isotherms to indicate their intrinsic characteristics.Furthermore,in order to understand the mechanism of deactivation,the resulted green oil was characterized using FTIR and SIM DIS.FTIR results confirmed the presence of more unsaturated constituents and then,more branched hydrocarbons formed upon the reaction over alumina-supported catalyst in comparison with the ones supported on CNFs and ZnO,which in turn,could block the pores mouths.Besides the limited hydrogen transfer,N2 adsorption-desorption isotherms results supported that the lowest pore diameters of Al2O3/SMFs close to the surface led to fast deactivation,compared with the other catalysts,especially at higher temperatures.

  20. Theoretical investigation of alignment-dependent intense-field fragmentation of acetylene

    Doblhoff-Dier, Katharina; Kitzler, Markus; Gräfe, Stefanie

    2016-07-01

    We analyze the alignment-dependent dissociative and nondissociative ionization of acetylene, C2H2 . Numerical models describing the yield of the singly and doubly charged ions (C2H2+,C2H22 +) and several fragmentation and isomerization channels (C2H++H+ ,CH++CH+ ,CH2++C+ ) as a function of the relative alignment angle between the laser polarization axis and the molecular axis are presented. We apply and compare two different approaches. The first is based on time-dependent density functional theory. The second is a quasi-single-particle approach using the Dyson orbitals. We find good agreement between the results of both methods. A comparison of our theoretical predictions with experimental data allows us to show that the alignment-dependent yield of most reaction channels is described to high accuracy assuming sequential ionization. However, for some of the fragmentation channels, namely, CH++CH+ and C2H++H+ , we find non-negligible influence of recollisional ionization.

  1. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel

  2. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  3. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    Courtney, Michael

    2011-01-01

    Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

  4. Analysis of the influence of various effects on frequency shifts of the acetylene saturated absorption lines

    Dong Lei; Zhang Lei; Dou Hai-Peng; Yin Wang-Bao; Jia Suo-Tang

    2008-01-01

    Frequency shifts of the acetylene saturated absorption lines at 1.5μm with temperature,gas pressure and laser power have been investigated in detail.The second-order Doppler effect,the recoil effect,the Zeeman effect,the pressure shift and the power shift are taken into consideration.The magnitudes of those shifts caused by various effects are evaluated.In order to reproduce the stability of 5.7 x 10-14 obtained by Edwards,all necessary conditions are given.The results show that when there is a larger external magnetic field,the Zeeman shift could not be neglected,so that the shield should be employed.And the design of a long cavity is advantageous to reduce the influence of the second-order Doppler effect.The results also show that at least ±2.5°C temperature control for cavity can effectively prevent several effects and improve the frequency stability.

  5. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter's Great Red Spot

    Carlson, R. W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.; Simon, A. A.

    2016-08-01

    The high altitude of Jupiter's Great Red Spot (GRS) may enhance the upward flux of gaseous ammonia (NH3) into the high troposphere, where NH3 molecules can be photodissociated and initiate a chain of chemical reactions with downwelling acetylene molecules (C2H2). These reactions, experimentally studied earlier by (Ferris and Ishikawa [1987] Nature 326, 777-778) and (Ferris and Ishikawa [1988] J. Amer. Chem. Soc. 110, 4306-4312), produce chromophores that absorb in the visible and ultraviolet regions. In this work we photolyzed mixtures of NH3 and C2H2 using ultraviolet radiation with a wavelength of 214 nm and measured the spectral transmission of the deposited films in the visible region (400-740 nm). From these transmission data we estimated the imaginary indices of refraction. Assuming that ammonia grains at the top of the GRS clouds are coated with this material, we performed layered sphere and radiative transfer calculations to predict GRS reflection spectra. Comparison of those results with observed and previously unreported Cassini visible spectra and with true-color images of the GRS show that the unknown GRS chromophore is spectrally consistent with the coupled NH3-C2H2 photochemical products produced in our laboratory experiments. Using high-resolution mass spectrometry and infrared spectroscopy we infer that the chromophore-containing residue is composed of aliphatic azine, azo, and diazo compounds.

  6. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and 14N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC5H5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C2 axis of the pyridine. The a-type spectra of HCCH—NC5H5 and DCCD—NC5H5 are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC5H5, DCCH—NC5H5, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single 13C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the 13C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm−1 in the C2v configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene

  7. Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor

    Highlights: • CuS/AB composites were synthesized by a simple solvothermal route. • Supercapacitor electrode based on CuS/AB was fabricated. • Microstructures and electrochemical properties of the electrodes were evaluated. • CuS/AB electrode exhibited ultrahigh specific capacitance and good cycling stability. - Abstract: Two-dimensional transition metal chalcogenides are attracting increasing attention in energy storage due to their unique structures and electronic properties. CuS has been demonstrated with a metal-like electronic conductivity and a high theoretical capacity. In this work, a facile strategy was reported for one-step synthesis of acetylene black (AB) incorporated layered CuS nanosheet via a simple solvothermal route. X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy were used to investigate the morphologies and microstructures of the as-prepared materials. Electrochemical data showed that the CuS/AB composites displayed a high specific capacitance of 2981 F/g at 1.0 A/g and retained 64.6% (1924.5 F/g) at a high current density of 20 A/g, indicative of good rate capability. Furthermore, the composites retained approximately 92% of the initial specific capacitance after 600 cycles at a current density of 1.0 A/g, demonstrating good cycling stability. The outstanding electrochemical properties of the CuS/AB composite suggested that it had great potential for practical applications in high-performance supercapacitors and the present synthesis strategy maybe readily extended to the preparation of other composites based on CuS for potential applications in energy storage and conversion devices

  8. Measurement of cardiac output during exercise by open-circuit acetylene uptake.

    Barker, R C; Hopkins, S R; Kellogg, N; Olfert, I M; Brutsaert, T D; Gavin, T P; Entin, P L; Rice, A J; Wagner, P D

    1999-10-01

    Noninvasive measurement of cardiac output (QT) is problematic during heavy exercise. We report a new approach that avoids unpleasant rebreathing and resultant changes in alveolar PO(2) or PCO(2) by measuring short-term acetylene (C(2)H(2)) uptake by an open-circuit technique, with application of mass balance for the calculation of QT. The method assumes that alveolar and arterial C(2)H(2) pressures are the same, and we account for C(2)H(2) recirculation by extrapolating end-tidal C(2)H(2) back to breath 1 of the maneuver. We correct for incomplete gas mixing by using He in the inspired mixture. The maneuver involves switching the subject to air containing trace amounts of C(2)H(2) and He; ventilation and pressures of He, C(2)H(2), and CO(2) are measured continuously (the latter by mass spectrometer) for 20-25 breaths. Data from three subjects for whom multiple Fick O(2) measurements of QT were available showed that measurement of QT by the Fick method and by the C(2)H(2) technique was statistically similar from rest to 90% of maximal O(2) consumption (VO(2 max)). Data from 12 active women and 12 elite male athletes at rest and 90% of VO(2 max) fell on a single linear relationship, with O(2) consumption (VO(2)) predicting QT values of 9.13, 15.9, 22.6, and 29.4 l/min at VO(2) of 1, 2, 3, and 4 l/min. Mixed venous PO(2) predicted from C(2)H(2)-determined QT, measured VO(2), and arterial O(2) concentration was approximately 20-25 Torr at 90% of VO(2 max) during air breathing and 10-15 Torr during 13% O(2) breathing. This modification of previous gas uptake methods, to avoid rebreathing, produces reasonable data from rest to heavy exercise in normal subjects. PMID:10517785

  9. Concentration Dependence of Line Shapes in the ν_1 + ν_3 Band of Acetylene

    Cich, Matthew; Forthomme, Damien; Hall, Gregory; McRaven, C.; Sears, Trevor

    2014-06-01

    Using an extended cavity diode laser locked to a frequency comb, the line shape of the P(11) line in the ν_1 + ν_3 combination band of acetylene has been studied as a function of varying concentration of the absorber in nitrogen. Mixture concentrations of 1, 5 and 10% at 296 K and pressures between a few Torr and one atmosphere were made and the measurements analyzed using two different speed-dependent broadening models. These experiments are designed to test the additivity of contributions to pressure broadening and shift in speed-dependent line shape modeling, i.e. whether the lineshape parameters follow partial pressure weighting in the binary mixtures. P(11) is relatively isolated with respect to underlying hot band transitions and neighboring transitions of the same band, but it was found that the accurate positions of underlying hot band transitions were crucial to the successful modeling of the observed line shapes, even though these lines are typically 100-1000 times weaker than P(11) itself and are many Doppler line widths removed from the line center. Positions of the hot band lines quoted in the HITRAN database, which are derived from the analysis of high resolution FTIR spectra, are of the order of 10's of MHz in error. In parallel work, we have measured the positions of many of these lines by saturation dip spectroscopy. Progress in the analysis of the data and the new saturation dip line center measurements will be reported. [1] C. P. McRaven, et al. Paper RI05, 68th International Symposium on Molecular Spectroscopy, 2013 Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  10. Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor

    Huang, Ke-Jing, E-mail: kejinghuang11@163.com; Zhang, Ji-Zong; Jia, Yu-Ling; Xing, Ke; Liu, Yan-Ming

    2015-08-25

    Highlights: • CuS/AB composites were synthesized by a simple solvothermal route. • Supercapacitor electrode based on CuS/AB was fabricated. • Microstructures and electrochemical properties of the electrodes were evaluated. • CuS/AB electrode exhibited ultrahigh specific capacitance and good cycling stability. - Abstract: Two-dimensional transition metal chalcogenides are attracting increasing attention in energy storage due to their unique structures and electronic properties. CuS has been demonstrated with a metal-like electronic conductivity and a high theoretical capacity. In this work, a facile strategy was reported for one-step synthesis of acetylene black (AB) incorporated layered CuS nanosheet via a simple solvothermal route. X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy were used to investigate the morphologies and microstructures of the as-prepared materials. Electrochemical data showed that the CuS/AB composites displayed a high specific capacitance of 2981 F/g at 1.0 A/g and retained 64.6% (1924.5 F/g) at a high current density of 20 A/g, indicative of good rate capability. Furthermore, the composites retained approximately 92% of the initial specific capacitance after 600 cycles at a current density of 1.0 A/g, demonstrating good cycling stability. The outstanding electrochemical properties of the CuS/AB composite suggested that it had great potential for practical applications in high-performance supercapacitors and the present synthesis strategy maybe readily extended to the preparation of other composites based on CuS for potential applications in energy storage and conversion devices.

  11. Chromophores from Photolyzed Ammonia Reacting with Acetylene: Application to Jupiter’s Great Red Spot

    Carlson, Robert W.; Baines, K. H.; Anderson, M. S.; Filacchione, G.

    2012-10-01

    The production mechanisms of chromophores at Jupiter, and notably at the Great Red Spot (GRS), have been long-standing puzzles. A clue to the formation of the GRS coloring agent may be the great height of this storm, which can upwell ammonia to pressure levels of a few hundred mbar where solar photons capable of dissociating NH3 penetrate. Acetylene formed at higher altitudes can diffuse down and react with the NH3 photodissociation products, forming a deposit that absorbs in the ultraviolet and visible region (Ferris and Ishikawa, J. Amer. Chem. Soc. 110, 4306-4312, 1988). We have investigated the system NH3 + C2H2 + CH4 using a Zn lamp emitting at 214 nm to produce NH2 + H and subsequent reaction products. The deposits produced in these reactions were analyzed by optical and infrared spectroscopy and soft-ionization (He*) time-of-flight mass spectroscopy. The combination of NH3 + CH4 produced no visibly absorbing material, but NH3 + C2H2 and NH3 + C2H2 + CH4 mixtures both produced a yellow-orange film whose transmission spectra are similar to that of the GRS obtained by Cassini VIMS. Infrared spectra show a strong band at 2056 wavenumbers which may arise from nitrile (-CN), isonitrile (-NC), or diazide (-CNN) functional groups. The high-resolution mass spectra are consistent with compounds of the form CnH2n+1Nm, similar to the products formed in NH3 + CH4 spark discharges (Molton and Ponnamperuma, Icarus 21, 166-174, 1974). We thank NASA's Planetary Atmospheres Program for support.

  12. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site.

    Kroneck, Peter M H

    2016-03-01

    In living systems, tungsten is exclusively found in microbial enzymes coordinated by the pyranopterin cofactor, with additional metal coordination provided by oxygen and/or sulfur, and/or selenium atoms in diverse arrangements. Prominent examples are formate dehydrogenase, formylmethanofuran dehydrogenase, and aldehyde oxidoreductase all of which catalyze redox reactions. The bacterial enzyme acetylene hydratase (AH) stands out of its class as it catalyzes the conversion of acetylene to acetaldehyde, clearly a non-redox reaction and a reaction distinct from the reduction of acetylene to ethylene by nitrogenase. AH harbors two pyranopterins bound to W, and a [4Fe-4S] cluster. W is coordinated by four dithiolene sulfur atoms, one cysteine sulfur, and one oxygen ligand. AH activity requires a strong reductant suggesting W(IV) as the active oxidation state. Two different types of reaction pathways have been proposed. The 1.26 Å structure reveals a water molecule coordinated to W which could gain a partially positive net charge by the adjacent protonated Asp-13, enabling a direct attack of C2H2. To access the W-Asp site, a substrate channel was evolved distant from where it is found in other members of the DMSOR family. Computational studies of this second shell mechanism led to unrealistically high energy barriers, and alternative pathways were proposed where C2H2 binds directly to W. The architecture of the catalytic cavity, the specificity for C2H2 and the results from site-directed mutagenesis do not support this first shell mechanism. More investigations including structural information on the binding of C2H2 are needed to present a conclusive answer. PMID:26790879

  13. Measurement of ethylene and methane production in a temperate forest soil using inhibition of acetylene and carbon monoxide

    XU XingKai; INUBUSHI Kazuyuki

    2008-01-01

    We studied in the laboratory the effects of acetylene (C2H2) concentrations on the accumulation and consumption of ethylene and methane in a temperate pine forest soil, and in situ ethylene and methane production and flush effects of nitrogen sources on both productions in the pine forest stand (Pinus sylvestris L.). The addition of C2H2 at concentrations more than 50 Pa C2H2 in the headspace caused a more than 95% reduction in rates of ethylene and methane consumption in forest soil compared to those with no C2H2. Furthermore, addition of acetylene within a range of 50 to 10, 000 Pa C2H2 induced a similar rate of methane accumulation in forest soil. Hence, it can be concluded that presence of more than 50 Pa C2H2 in the headspace is an effective method to measure methane production in forest soil. The addition of C2H2 at concentrations more than 50 Pa C2H2 induced an increasing concentration of ethylene in the headspace (P≤0.05), indicating the reduction of acetylene to ethylene in forest soil. Using inhibition of 0.5 kPa C2H2 in combination with 5 kPa carbon monoxide that inhibits the reduction of acetylene in a short term, it was observed that there was a larger in situ methane production rate (218±26 μg C m-2 h-1 (μg C per square meter per hour, the same below)) than in situethylene produc-tion rate (92 ± 6 μg C m-2 h-1) in the pine forest soil. The addition of nitrogen sources such as urea, urea plus a nitrification inhibitor dicyandiamide, and potassium nitrate, could induce a 5-fold greater in-crease in rates of in situ ethylene and methane production compared to those in the control, particu-larly in the latter (P≤0.05). The results can promote in situ measurement of ethylene and methane production in forest soils at different sites.

  14. Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

    D Sen; K Dasgupta; J Bahadur; S Mazumder; D Sathiyamoorthy

    2008-11-01

    Small angle neutron scattering (SANS) has been utilized to study the morphology of the multi-walled carbon nanotubes prepared by chemical vapour deposition of acetylene. The effects of various synthesis parameters like temperature, catalyst concentration and catalyst support on the size distribution of the nanotubes are investigated. Distribution of nanotube radii in two length scales has been observed. The number density of the smaller diameter tubes was found more in number compared to the bigger one for all the cases studied. No prominent scaling of the structure factor was observed for the different synthesis conditions.

  15. Temperature dependence of corrosion inhibition of steels used in oil well stimulation using acetylenic compound and halide ion salt mixtures

    Menezes, M.A.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: marcom@eq.ufrj.br; Valle, M.L.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Dweck, J. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Queiroz Neto, J.C. [Petroleo Brasileiro S.A. (CENPES / PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2007-07-15

    Halogenated salt (HS)-acetylenic compound (AC) mixtures were tested as corrosion inhibitors of 13Cr and 22Cr stainless steel and N80 and P110 carbon steel when exposed to 15 wt.% HCl solutions, at 50 deg C, 80 deg C and 100 deg C. The best corrosion inhibition efficiency is obtained when the concentration of both AC and HS is 1.5 wt. %, which indicates the use of all tested steels in oil well stimulation operated at 50 deg C and the use of 13Cr, N80 and P110 steels in oil well processing temperatures up to 100 deg C. (author)

  16. Nuclear magnetic resonance study of the structure of simple molecules adsorbed on metal surfaces: acetylene on platinum

    We have used NMR to determine the structure of acetylene (HC - CH) adsorbed at room temperature on small platinum particles by studying the 13C-13C, 13C-1H, and 1H-1H dipolar interactions among the nuclei in the adsorbed molecules. We find a model of 77% CCH2 and 23% HCCH to be the only one consistent with all of our data. The C-C bond length of the majority species, CCH2, is determined as 1.44 +- 0.02 A, midway between a single and double bond, suggesting that both carbon atoms bond to the surface. 36 references, 29 figures, 1 table

  17. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted

  18. El cieno de acetileno como tratamiento de la tricofitosis de los terneros-(Acetylene mud as tricophytosis treatment in calves.

    Hernández Barreto, Miguel A

    2011-04-01

    Full Text Available ResumenLa tricofitosis es una enfermedad micótica que afecta a numerosas especies animales, incluyendo al hombre. Los tratamientos utilizados para combatir esta entidad son numerosos e incluyen antimicóticos, vacunas y desinfectantes.SummaryTricophytosis is a mycotic disease that affects numerous animal species, including man. The treatments used to combat this entity are numerous and include antimycotics, vaccines and disinfectants. In our work we use acetylene mud paste made from waste carbide (industrial residual as topical treatment in dermatomycoses lesions in calves (group I, study, comparing the results with cooper sulfate dissolution 22% (group II, control.

  19. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  20. The Effect of Surface Finish on Low-Temperature Acetylene-Based Carburization of 316L Austenitic Stainless Steel

    Ge, Yindong; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-12-01

    We observed a strong influence of surface finish on the efficacy of low-temperature acetylene-based carburization of AISI 316L austenitic stainless steel. Steel coupons were prepared with different surface finishes prior to carburization, from P400 SiC grit paper to 1- µm-diameter-diamond-paste. The samples with the finer surface finish developed a thicker "case" (a carbon-rich hardened surface layer) and a larger surface carbon concentration. Transmission electron microscopy revealed that the differences arose mainly from the nature of the deformation-induced disturbed layer on the steel surface. A thick (>400 nm) disturbed layer consisting of nano-crystalline grains (≈10 nm diameter) inhibits acetylene-based carburization. The experimental observations can be explained by assuming that during machining or coarse polishing, the surface oxide layer is broken up and becomes incorporated into the deformation-induced disturbed layer. The incorporated oxide-rich films retard or completely prevent the ingress of carbon into the stainless steel.

  1. Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition

    We used thermal chemical vapor deposition (CVD) to synthesize few-layer graphene (FLG) films at a low temperature (600 °C). The FLG films were synthesized on Ni foils using a gaseous mixture of various ratios of H2 to acetylene (C2H2). We investigated that the effects of C2H2 flow on the structural properties of graphene. The quality of low-temperature CVD FLG films was investigated by Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. The results of Raman spectroscopy revealed that C2H2 flux clearly influences the features of FLG films. To enhance the quality of FLG films grown by low-temperature CVD, the films were grown under various gas flow ratios. The results demonstrated that the common thermal CVD method that uses C2H2 as a supplemental carbon source constitutes a low-cost and easy way to synthesize graphene films at low temperature for graphene-based applications. - Highlights: • We synthesized the graphene on nickel foil by thermal CVD method. • The graphene was successfully synthesized at a low temperature of 600 °C. • The acetylene flows were controlled to enhance the quality of graphene

  2. Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode

    The increase in demand and decrease in availability of fossil fuels with more stringent emission norms have led to research in finding an alternative fuel for internal combustion (IC) engines. Among the alternative fuels, gaseous fuels find a great potential. The gaseous fuel taken up for the present study is acetylene, which possesses excellent combustion properties. Preignition is the major problem with this fuel. In the present study, timed manifold injection technique is adopted to induct the fuel into the IC engine. A four-stroke, 4.4 kW diesel engine is selected, with slight modification in intake manifold for holding the gas injector, which is controlled by an electronic control unit (ECU). By using an ECU, an optimized injection timing of 10o after top dead center and 90o crank angle duration are arrived. At this condition, experiments were conducted for the various gas flow rates of 110 g/s, 180 g/s and 240 g/s. The performance was nearer to diesel at full load. Oxides of nitrogen, hydrocarbon and carbon monoxide emission decreased due to lean operation with marginal increase in smoke emission. To conclude, a safe operation of acetylene replacement up to 24% was possible with reduction in emission parameters.

  3. Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    Eres, Gyula [ORNL; Wang, Ying [Nagoya University, Japan; Gao, Xingfa [Institute of High Energy Physics, Chinese Academy of Sciences, China; Qian, Hu-Jun [Jilin University, Changchun; Ohta, Yasuhito [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Wu, Xiaona [Nagoya University, Japan; Morokuma, Keiji [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Irle, Stephan [WPI-Institute of Transformative Bio-Molecules and Department of Chemistry, Nagoya University, Japan

    2014-01-01

    Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

  4. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu [Department of Chemistry, University of Minnesota, 207 Pleasant St., SE, Minneapolis, Minnesota 55455 (United States); Coulston, Emma; Cole, George C. [Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom); Legon, Anthony C., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu; Tew, David P., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu [Department of Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS (United Kingdom)

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  5. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system; implications for the expression of denitrification in ex situ experiments

    Nadeem, Shahid; Dörsch, Peter; Bakken, Lars

    2013-04-01

    Denitrification allows microorganisms to sustain respiration under anoxic conditions. The typical niche for denitrification is an environment with fluctuating oxygen concentrations such as soils and borders between anoxic and oxic zones of biofilms and sediments. In such environments, the organisms need adequate regulation of denitrification in response to changing oxygen availability to tackle both oxic and anoxic spells. The regulation of denitrification in soils has environmental implications, since it affects the proportions of N2, N2O and NO emitted to the atmosphere. The expression of denitrification enzymes is regulated by a complex regulatory network involving one or several positive feedback loops via the intermediate nitrogen oxides. Nitric oxide (NO) is known to induce denitrification in model organisms, but the quantitative effect of NO and its concentration dependency has not been assessed for denitrification in soils. NO is chemically unstable in the presence of oxygen due to autoxidation, and the oxidation of NO is accelerated by acetylene (C2H2) which is commonly used as an inhibitor of N2O reductase in denitrification studies. As a first step to a better understanding of NO's role in soil denitrification, we investigated NO oxidation kinetics for a closed "two phase" system (i.e. liquid phase + headspace) typically used for denitrification experiments with soil slurries, with and without acetylene present. Models were developed to adequately predict autoxidation and acetylene-accelerated oxidation. The minimum oxygen concentration in the headspace ([O2]min, mL L-1) for acetylene-accelerated NO oxidation was found to increase linearly with the NO concentration ([NO], mL L-1); [O2]min= 0.192 + [NO]*0.1 (r2=0.978). The models for NO oxidation were then used to assess NO-oxidation rates in denitrification experiments with batches of bacterial cells extracted from soil. The batches were exposed to low initial oxygen concentrations in gas tight serum

  6. Denitrification rate determined by nitrate disapperance is higher than determined by nitrous oxide production with acetylene blockage

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise;

    2008-01-01

    A mixed beech and spruce forest soil was incubated under potential denitrification assay (PDA) condition with 10% acetylene (C2H2) in the headspace of soil slurry bottles. Nitrous oxide (N2O) concentration in the headspace, as well as nitrate, nitrite and ammonium concentrations in the soil...... different treatments. Commonly applied PDA measurement likely underestimates the nitrate removal capacity of a system. Incubation time and organic matter/nitrate ratio are the most critical factors to consider using C2H2 inhibition technique to quantify denitrification. By comparing the treatments with and...... slurries were monitored during the incubation. Results show that nitrate disappearance rate was higher than N2O production rate with C2H2 blockage during the incubation. Sum of nitrate, nitrite, and N2O with C2H2 blockage could not recover the original soil nitrate content, showing an N imbalance in such a...

  7. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  8. Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation.

    Kawata, Yoshiyuki; Hyashi, Kyohei; Aoto, Tomohiro

    2015-06-15

    A two-wavelength interferometer (TWI) based on a sinusoidal-phase-modulation method with an acetylene stabilized laser and a second harmonic generation (SHG) was developed. The periodic non-linearity error for the TWI was estimated to be ± 0.1 µm at a dead path of 0.32 m. A long-term measurement showed that the TWI stability was ± 3 × 10(-7) at a dead path of 1.00 m for 12 hours with an ambient pressure variation of 3 hPa under controlled conditions of ambient temperature and humidity. Finally, we confirmed that the TWI has substantially better stability than a single-wavelength interferometer by comparing both interferometers with large temporal and spatial temperature variations. PMID:26193576

  9. Full-dimensional quantum dynamics study of vinylidene-acetylene isomerization: a scheme using the normal mode Hamiltonian.

    Ren, Yinghui; Li, Bin; Bian, Wensheng

    2011-02-14

    Full-dimensional quantum dynamics calculations of vinylidene-acetylene isomerization are performed and the state-specific resonance decay lifetimes of vinylidene(-d(2)) are computed. The theoretical scheme is a combination of several methods: normal coordinates are chosen to describe the nuclear motion of vinylidene, with both the parity and permutation symmetry exploited; phase space optimization in combination with physical considerations is used to generate an efficient discrete variable representation; the reaction coordinate is defined by us according to the three most relevant normal coordinates, along which a kind of optimal complex absorbing potential is imposed; the preconditioned inexact spectral transform method combined with an efficient preconditioner is employed to extract the energies and lifetimes of vinylidene. The overall computation is efficient. The computed energy levels generally agree with experiment well, and several state-specific lifetimes are reported for the first time. PMID:21186383

  10. Rapid Diamond Deposition on Ni and Co Coatings by Using Twin Acetylene/Oxygen Gas Welding Torches

    Ando, Yasutaka; Noda, Yoshimasa; Adachi, Shin-ichiro

    2015-12-01

    Cermet coatings have been widely used because of their high hardness and excellent wear resistance even under high-temperature conditions. However, since cermet coatings include expensive materials such as WC, TiC, TiN and so on, low-cost hard particles as a dispersing agent need to be developed. In this study, in order to develop a low-cost diamond dispersion system for the creation of diamond/thermal sprayed metal hybrid coatings, diamond deposition on thermal sprayed Ni and Co coatings and Mo and Ni metal substrates by the combustion flame method using twin acetylene/oxygen gas welding torches was carried out. Consequently, even in cases of thermal sprayed Ni and Co coatings, diamond particles could be deposited within only 5 min. From these results, this technique is proved to have a high potential for rapid diamond deposition in order to create diamond/thermal sprayed metal hybrid coatings.

  11. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System.

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-12-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water. PMID:27295256

  12. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System

    Teng, Tun-Ping; Wang, Wei-Ping; Hsu, Yu-Chun

    2016-06-01

    In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water.

  13. Synthesis of chirals regioisomers from D-mannitol: obtainment of a acetylenic alcohols mixture; Sintese de regioisomeros quirais a partir de D-manitol: obtencao de uma mistura de alcoois acetilenicos

    Cito, Antonia Maria das Gracas Lopes; Araujo, Bruno Quirino; Lopes, Jose Arimateia Dantas [Universidade Federal do Piaui (UFPI), Teresina, PI(Brazil). Dept. de Quimica; Magalhes, Aderbal Farias; Magalhes, Eva Goncalves [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO{sub 2} released during microbial respiration by using a conductimetric system. (author)

  14. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination.

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au(3+) reduction to metallic Au(0) is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au(0) exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  15. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  16. Measurements of linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene in the ν4+ν5 combination band using a cw quantum cascade laser

    Sajid, Muhammad Bilal

    2014-11-01

    Linestrengths, N2-, Ar-, He- and self-broadening coefficients of acetylene have been measured at 296K in the P branch of the ν4+ν5 combination band for 25 rotational transitions. The effect of gas temperature is studied over 296-683K for five transitions to allow the determination of the temperature dependent exponent n for N2- and Ar-broadening coefficients. These measurements were performed using a continuous-wave quantum cascade laser (cw-QCL) operating over 1253-1310cm-1. Spectroscopic parameters were obtained by fitting absorption spectra using Voigt, Galatry and Rautian profiles. Linestrength and broadening results are compared with previous studies available in literature for the ν4+ν5 combination band and other vibrational bands of acetylene. © 2014 Elsevier Ltd.

  17. Effects of acetylene at low concentrations on nitrification, mineralization and microbial biomass nitrogen concentrations in forest soils

    ZHANG TengYu; XU XingKai; LUO XianBao; HAN Lin; WANG YingHong; PAN GenXing

    2009-01-01

    Temperate forest surface soils at the varying distances from main trunks (e.g., Pinus koraiensis and Quercus mongolica) were used to study the effects of acetylene (C2H2) at low concentrations on nitri-fication, mineralization and microbial biomass N concentrations of the soils, and to assess the contri-bution of heterotrophic nitrification to nitrous oxide (N2O) emissions from soils. The use of acetylene at partial pressures within a range from 10 to 100 Pa C2H2 in headspace gas gave a significant decrease in N2O emission at soil moisture of c. 45% water-filled porosity space, and the decrease was almost the same in each soil after exposure of C2H2 at low concentrations. Heterotrophic nitrification could ac-count for 21%-48% of total N2O emission from each soil; the contribution would increase with in-creasing distances from the Pinus koraiensis trunks rather than from the Quercus mongolica trunks.Under the experimental conditions, the use of C2H2 at low concentrations showed no significant influ-ence on soil microbial biomass N, net N mineralization and microbial respiration. However, 100 Pa C2H2in headspace gas could reduce carbon dioxide (CO2) emissions from soils. According to the rapid consumption of 10 Pa C2H2 by forest soils and convenience for laboratory incubations, 50 Pa C2H2 in headspace gas can be used to study the origin of N2O emissions from forest soils under aerobic con-ditions and the key associated driving mechanisms. The N2O and CO2 emissions from the soils at the same distances from the Quercus mongolica trunks were larger than those from the Pinus koraiensis trunks, and both emissions decreased as the distances from trunks increased. The stepwise regression analysis showed that 95% of the variability in soil CO2 emissions could be accounted for by the con-centrations of soil total C and water soluble organic C and soil pH, and that 72% of the variability in soil N2O emissions could be accounted for by the concentrations of soil total N

  18. Effects of acido-basic support properties on the catalytic hydrogenation of acetylene on gold nano-particles

    Manda, Abdullah Ahmed

    Metallic gold nanoparticles supported on gamma-Al2O 3 and magnesia-alumina mixed oxide, with different magnesia content have been prepared by sol-gel method and characterized by different techniques (inductive coupled plasma-mass spectroscopy (ICP-MS), XRD, BET surface area analysis, transmission electron microscopy (TEM), CO2 and NH 3 temperature programmed desorption (TPD), H2 temperature programmed reduction (TPR) and FTIR of adsorbed CO2). Such systems were found to produce catalysts with controllable acidity, varying from catalyst possessing large density of acidic and low density of basic sites, others with acidic and basic sites of equal strength and density, and others with large basic and low acid sites densities, respectively. The catalytic assessment of the generated acidity was carried out using 2-propanol decomposition as a test reaction. The results obtained indicate that the presence of magnesia and reduced gold nanopartilces has imparted the catalysts, 1%Au/4%Mg-Al 2O3 and 1%Au/8%Mg-Al2O3, with significant base-catalytic properties. Acetylene hydrogenation and formation of coke deposits were investigated on a gold catalyst supported on gamma-Al2O3 and gold supported on alumina-magnisia mixed oxide with different gold content; 1%Au/gamma-Al 2O3, 1%Au/15%Mg-Al2O3, 2%Au/15%Mg-Al 2O3 and 4%Au/15%Mg-Al2O3. The effect of the H2/C2H2 ratio was studied over a range of values. The catalytic activity and selectivity towards ethylene and other products were investigated at different reaction temperatures. Acetylene hydrogenation was investigated in the presence and absence of ethylene in stream. It is investigated that the adsorption of the triple bond is preferred over the double bond and during selective catalytic (SCR) of C2H2 the two hydrocarbons do not compete for the same adsorption sites. The deactivation of catalysts was studied by temperature programmed oxidation (TPO). Higher content of coke over 1%Au/Al2O3 catalyst was investigated in contrast to

  19. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    Bin Dai; Qinqin Wang; Feng Yu; Mingyuan Zhu

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction...

  20. Three-step laser induced ionization of Ir and Hg atoms in an air-acetylene flame and a gas cell

    The feasibility and the application of three-step excitation and ionization schemes with excimer-pumped, pulsed dye lasers have been studied in the case of Iridium atoms in an air acetylene flame and of Mercury atoms in a gas cell. The detection limits obtained were 0.2 ng/ml in the case of Ir and 107 atoms per cubic centimeter of air

  1. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Rohe, Lena

    2013-01-01

    Acetylene inhibition of N2O reduction in laboratory soil and groundwaterdenitrification assays: evaluation by 15N tracer and 15N site preference ofN2ODaniel Weymann (1), Reinhard Well (2), Dominika Lewicka-Szczebak (2,3), and Rohe Lena (2)(1) Forschungszentrum Juelich, Agrosphere Institute (IBG-3), Juelich, Germany (), (2)Thünen-Institute of Climate-Smart Agriculture, Braunschweig, Germany, (3) University of Wroclaw, PolandThe measurement of denitrification in soils and...

  2. Mechanism-based inactivation of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, 3H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells

  3. Superior mercury-free catalysts for acetylene hydrochlorination to VCM. Achieving high productivities and long catalyst life-time

    Liebens, A.T.; Piccinini, M. [Solvay S.A., Bruxelles (Belgium)

    2013-11-01

    New mercury-free catalytic systems based on the use of ionic liquids (IL) and noble metals (e.g. Pd, Au) have been evaluated for the hydrochlorination reaction of acetylene to produce Vinyl Chloride Monomer (VCM). Two different approaches have been investigated: gas-liquid homogeneous catalytic systems in the presence of molten IL/Metal and heterogeneous gas-solid ones using solid materials. For the latter case, very positive results have been obtained using SILP-type catalysts (SILP: Supported Ionic Liquid Phase) where IL/Metal were deposited onto a solid mesoporous support. Remarkably, both systems display very high Space Time Yield (STY) and breakthrough life-time stability. No deactivation is observed even after 500 h on stream indicating the strong advantages of these new materials compared to most investigated Au/C supported systems. The development of heterogeneous catalysts was preferred as the scale-up of gas-liquid technology implies important CAPEX investments to convert current plants from gas-solid to gas-liquid equipment. (orig.)

  4. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  5. Rotationally Resolved Vacuum Ultraviolet Resonance-Enhanced Multiphoton Ionization (VUV REMPI) of Acetylene via the G̃ Rydberg State.

    Schmidt-May, Alice F; Grütter, Monika; Neugebohren, Jannis; Kitsopoulos, T N; Wodtke, Alec M; Harding, Dan J

    2016-07-14

    We present a 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme for acetylene via the linear G̃ 4sσ (1)Πu Rydberg state, offering partial rotational resolution and the possibility to detect excitation in both the cis- and trans-bending modes. The resonant transition to the G̃ state is driven by a vacuum ultraviolet (VUV) photon, generated by resonant four-wave mixing (FWM) in krypton. Ionization from the short-lived G̃ state then occurs quickly, driven by the high intensity of the residual light from the FWM process. We have observed nine bands in the region between 79 200 cm(-1) and 80 500 cm(-1) in C2H2 and C2D2. We compare our results with published spectra in this region and suggest alternative assignments for some of the Renner-Teller split bands. Similar REMPI schemes should be applicable to other small molecules with picosecond lifetime Rydberg states. PMID:27073931

  6. Double-slit experiment with a polyatomic molecule: vibrationally resolved C 1s photoelectron spectra of acetylene

    We report the first evidence for double-slit interferences in a polyatomic molecule, which we have observed in the experimental carbon 1s photoelectron spectra of acetylene (or ethyne). The spectra have been measured over the photon energy range of 310-930 eV and show prominent oscillations in the intensity ratios σg(υ)/σu(υ) for the vibrational quantum numbers υ = 0,1 and for the ratios σs(υ 1)/σs(υ = 0) for the symmetry s = g,u. The experimental findings are in very good agreement with ab initio density functional theory (DFT) calculations and are compatible with the Cohen-Fano mechanism of coherent emission from two equivalent atomic centers. This interpretation is supported by the qualitative predictions of a simple model in which the effect of nuclear recoil is taken into account to the lowest order. Our results confirm the delocalized character of the core hole created in the primary photoionization event and demonstrate that intramolecular core-hole coherence can survive the decoherent influence associated with the asymmetric nuclear degrees of freedom which are characteristic of polyatomic molecules. (paper)

  7. Measurements of hydrogen cyanide (HCN and acetylene (C2H2 from the Infrared Atmospheric Sounding Interferometer (IASI

    V. Duflot

    2013-04-01

    Full Text Available Hydrogen cyanide (HCN and acetylene (C2H2 are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E and Jungfraujoch (46° N, 8° E in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI. A first order comparison with local ground-based Fourier transform infraRed (FTIR measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.

  8. Measurements of hydrogen cyanide (HCN and acetylene (C2H2 from the Infrared Atmospheric Sounding Interferometer (IASI

    C. Clerbaux

    2012-10-01

    Full Text Available Hydrogen cyanide (HCN and acetylene (C2H2 are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q-branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S; 55° E and Jungfraujoch (46° N; 8° E in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI. These are compared with local ground-based Fourier Transform InfraRed (FTIR measurements and we demonstrate that the seasonality is well captured, except for HCN at Jungfraujoch. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.

  9. Direct Observation of Cascade of Photoinduced Ultrafast Intramolecular Charge Transfer Dynamics in Diphenyl Acetylene Derivatives: Via Solvation and Intramolecular Relaxation.

    Karunakaran, Venugopal; Das, Suresh

    2016-07-21

    Interaction of light with electron donor-acceptor π-conjugated systems leading to intramolecular charge transfer (ICT) plays an essential role in transformation of light energy. Here the cascade of photoinduced ICT processes is directly observed by investigating the excited state relaxation dynamics of cyano and mono/di methoxy substituted diphenyl acetylene derivatives using femtosecond pump-probe spectroscopy and nanosecond laser flash photolysis. The femtosecond transient absorption spectra of the chromophores upon ultrafast excitation reveal the dynamics of intermediates involved in transition from initially populated Frank-Condon state to local excited state (LE). It also provides the dynamic details of the transition from the LE to the charge transfer state yielding the formation of the radical ions. Finally, the charge transfer state decays to the triplet state by geminate charge recombination. The latter dynamics are observed in the nanosecond transient absorption spectra. It is found that excited state relaxation pathways are controlled by different stages of solvation and intramolecular relaxation depending on the solvent polarity. The twisted ICT state is more stabilized (978 ps) in acetonitrile than cyclohexane where major components of transient absorption originate from the S1 state. PMID:27347705

  10. Reactivity of free radical intermediates that form spontaneously during molecular chlorine action on acetylene and vinyl monomers at low temperatures

    In this study ESR, UV, VIS and IR spectroscopy, chromatography, calorimetry, and elemental analysis were employed to show the spontaneous formation of free radicals under low-temperature action of molecular chlorine on acetylene monomer p-diethynylbenzene, and vinyl monomer acrylamide. These radicals are able to initiate chain reaction of polymerization of monomers at low temperatures. This reaction results in a completely soluble polymer with a yield of 25 %, while an insoluble cross-linked polymer has been obtained during polymerization of p-diethynylbenzene initiated by other means. For example, under radiolysis by 1000 kGy the soluble fraction of obtained polymer was ∼ 1% while the overall yield was ∼ 10%. p-Diethynylbenzene polymerizes at temperatures close to chlorine melting (170 K). Polymerization of acrylamide takes place in the temperature range of 180-210 K with an yield of polymer ∼ 10%. The low-temperature chlorination of a 20%-solution of acrylamide in glycerol enables a twofold increase of the polymer yield, and a tenfold decrease of the chlorine content in it.

  11. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis.

    Amama, Placidus B; Lim, Sangyun; Ciuparu, Dragos; Yang, Yanhui; Pfefferle, Lisa; Haller, Gary L

    2005-02-24

    Fe-substituted MCM-41 molecular sieves with ca. 1, 2, and 3 wt % Fe were synthesized hydrothermally using different sources of colloidal silica (HiSil and Cab-O-Sil) and characterized by ICP, XRD, N2 physisorption, UV-vis, EPR, TPR, and X-ray absorption. Catalysts synthesized from Cab-O-Sil showed higher structural order and stability than those from HiSil. The local environment of Fe in the mesoporous material as studied by UV-vis reveals the dominance of framework Fe in all the as-synthesized Fe-MCM-41 samples. Dislodgement of some Fe species to extraframework location occurs upon calcination, and this effect is more severe for Fe-MCM-41 (2 wt %) and Fe-MCM-41 (3 wt %), as confirmed by EPR and X-ray absorption. These materials have been used as catalytic templates for the production of carbon nanotubes (CNTs) by acetylene pyrolysis at atmospheric pressure. A relationship between the Fe loading in MCM-41 and the carbon species produced during this reaction has been established. Using our optimized conditions for this system, Fe-MCM-41 with ca. 2 wt % Fe showed the best results with particularly high selectivity for single-wall carbon nanotube (SWNT) production. This catalyst was selective for carbon nanotubes with a low amount of amorphous carbon for a narrow range of temperatures from 1073 to 1123 K. To account for the different selectivity of these catalysts for CNTs production, the local environment and chemical state of Fe in the used catalyst was further probed by X-band EPR. PMID:16851270

  12. A DFT study on the mechanisms for the cycloaddition reactions between 1-aza-2-azoniaallene cations and acetylenes.

    Wang, Jing-mei; Li, Zhi-ming; Wang, Quan-rui; Tao, Feng-gang

    2013-01-01

    The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3 H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions. PMID:22810049

  13. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s

    Miller, Laurence G.; Baesman, Shaun M.; Oremland, Ronald S.

    2015-01-01

    Abstract We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sedi...

  14. Reuse of waste sodium hypochlorite solution from the purification of acetylene%乙炔清净次氯酸钠废水的回用

    唐红建; 秦明月

    2013-01-01

    Technologies for the treatment of waste sodium hypochlorite solution from acetylene purification process were introduced .Through adopting such methods as vacuum extraction ,oxida-tion ,flocculation ,precipitation ,and filtration ,acetylene dissolved in the waste sodium hypochlo-rite solution was recovered ;the contained impurities ,such as chlorides ,silicon ,phosphorus ,and magnesium ,were removed ;thus ,the hidden danger existed in the preparation of sodium hypochlo-rite solution was reduced as well as the influences on the production and quality of cement .%介绍了乙炔清净工序产生的次氯酸钠废水的处理技术,通过采用真空萃取、氧化、絮凝、沉淀、过滤等方法,回收了次氯酸钠废水中溶解的乙炔,去除了其中的氯化物、硅、硫、磷、镁等杂质,减少了次氯酸钠配制的安全隐患和对电石渣水泥生产及质量的影响。

  15. X-H···π and X-H···N hydrogen bonds - Acetylene and hydrogen cyanide as proton acceptors

    The hydrogen-bonded systems were considered where acetylene or hydrogen cyanide acts as a proton acceptor and different proton donating molecules are taken into account. The B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) calculations were performed for the systems considered; for HCN···HF and C2H2···HF complexes various levels of approximation were applied up to CCSD(T)/6-311++G(3df,3pd)//CCSD/6-311++G(3df,3pd). The Quantum Theory of 'Atoms in Molecules' (QTAIM) was also applied. It was found that π-electrons of acetylene might act as the proton accepting centers and the found complex conformations are T-shaped ones. For hydrogen cyanide molecule the nitrogen atom acts as the proton acceptor center but not π-electrons. The characteristics of the bond critical points were also considered for the analyzed interactions and numerous correlations were found between geometrical, energetic and QTAIM parameters. The decomposition of the interaction energy for the systems analyzed was also applied.

  16. Full dimensional Franck-Condon factors for the acetylene A~ 1Au—X~1Σ+g  transition. I. Method for calculating polyatomic linear—bent vibrational intensity factors and evaluation of calculated intensities for the gerade vibrational modes in acetylene

    Franck-Condon vibrational overlap integrals for the A~1Au—X~1Σ+g transition in acetylene have been calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosenstock [J. Chem. Phys. 41(11), 3453–3463 (1964)], and previously applied to acetylene by Watson [J. Mol. Spectrosc. 207(2), 276–284 (2001)] in a reduced-dimension calculation. Because the transition involves a large change in the equilibrium geometry of the electronic states, two different types of corrections to the coordinate transformation are considered to first order: corrections for axis-switching between the Cartesian molecular frames and corrections for the curvilinear nature of the normal modes at large amplitude. The angular factor in the wave function for the out-of-plane component of the trans bending mode, ν4″, is treated as a rotation, which results in an Eckart constraint on the polar coordinates of the bending modes. To simplify the calculation, the other degenerate bending mode, ν5″, is integrated in the Cartesian basis and later transformed to the constrained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated A~-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The results for transitions involving the gerade vibrational modes are in qualitative agreement with experiment. Calculated results for transitions involving ungerade modes are presented in Paper II of this series [G. B. Park, J. H. Baraban, and R. W. Field, “Full dimensional Franck–Condon factors for the acetylene A~1Au—X~1Σ+g transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes,” J. Chem. Phys. 141, 134305 (2014)

  17. The energy separation between the classical and nonclassical isomers of protonated acetylene - An extensive study in one- and n-particle space saturation

    Lindh, Roland; Rice, Julia E.; Lee, Timothy J.

    1991-01-01

    The energy separation between the classical and nonclassical forms of protonated acetylene has been reinvestigated in light of the recent experimentally deduced lower bound to this value of 6.0 kcal/mol. The objective of the present study is to use state-of-the-art ab initio quantum mechanical methods to establish this energy difference to within chemical accuracy (i.e., about 1 kcal/mol). The one-particle basis sets include up to g-type functions and the electron correlation methods include single and double excitation coupled-cluster (CCSD), the CCSD(T) extension, multireference configuration interaction, and the averaged coupled-pair functional methods. A correction for zero-point vibrational energies has also been included, yielding a best estimate for the energy difference between the classical and nonclassical forms of 3.7 + or - 1.3 kcal/mol.

  18. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE)

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  19. Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM

    s Aires, F. J. Cadete Santo; Epicier, T.; Wagner, Jakob Birkedal;

    2012-01-01

    In situ studies of micro- and nano-objects in their characteristic environment have been performed ever since the early days of electron microscopy [1]. Over several decades the in situ observation of the synthesis of filamentous carbon (nanotubes/nanofilaments) during hydrocarbon decomposition has...... been one of the most popular topics [2] for investigation in the environmental transmission electron microscope (ETEM). In this work we study the growth of carbon nanotubes (CNTs) by the decomposition of acetylene on Co nanoparticles inserted into mesoporous silicas (SBA-15) using both conventional...... were reduced in situ in a flow of hydrogen (1 mbar, ~500°C). Electron energy-loss spectra taken before and during reduction showed that the Co oxide nanoparticles were reduced to metallic Co. In situ high resolution TEM images are consistent with cubic Co. A first attempt to study carbon nanotube...

  20. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.

    Labunov, Vladimir A; Basaev, Alexander S; Shulitski, Boris G; Shaman, Yuriy P; Komissarov, Ivan; Prudnikava, Alena L; Tay, Beng Kang; Shakerzadeh, Maziar

    2012-01-01

    Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of IG/ID is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. Mössbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles. PMID:22300375

  1. 'Clicking' on the nanoscale: 1,3-dipolar cycloaddition of terminal acetylenes on azide functionalized, nanometric surface templates with nanometer resolution

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S.

    2009-04-01

    Electro-oxidative lithography is used as a tool to create chemical nanostructures on an n-octadecyltrichlorosilane (OTS) monolayer self-assembled on silicon. The use of a bromine precursor molecule, which is exclusively assembled on these chemical templates, can be used to further functionalize the nanostructures by the site-selective generation of azide functions and performing the highly effective 1,3-dipolar cycloaddition reaction with acetylene functionalized molecules. The versatility of this reaction scheme provides the potential to integrate a large variety of functional molecules, to tailor the surface properties of the nanostructures or to anchor molecular building blocks or particles in confined, pre-defined surface areas. The results demonstrated in the present study introduce a conceivable route towards the functionalization of chemically active surface templates with high fidelity and reliability. It is demonstrated that surface features with a lateral resolution of 50 nm functionalized with propargyl alcohol can be fabricated.

  2. 'Clicking' on the nanoscale: 1,3-dipolar cycloaddition of terminal acetylenes on azide functionalized, nanometric surface templates with nanometer resolution

    Electro-oxidative lithography is used as a tool to create chemical nanostructures on an n-octadecyltrichlorosilane (OTS) monolayer self-assembled on silicon. The use of a bromine precursor molecule, which is exclusively assembled on these chemical templates, can be used to further functionalize the nanostructures by the site-selective generation of azide functions and performing the highly effective 1,3-dipolar cycloaddition reaction with acetylene functionalized molecules. The versatility of this reaction scheme provides the potential to integrate a large variety of functional molecules, to tailor the surface properties of the nanostructures or to anchor molecular building blocks or particles in confined, pre-defined surface areas. The results demonstrated in the present study introduce a conceivable route towards the functionalization of chemically active surface templates with high fidelity and reliability. It is demonstrated that surface features with a lateral resolution of 50 nm functionalized with propargyl alcohol can be fabricated.

  3. In situ spectroscopic characterization of Ni1-xZnx/ZnO catalysts and their selectivity for acetylene semihydrogenation in excess ethylene

    Spanjers, Charles S.; Sim, Richard S.; Sturgis, Nicholas P.; Kabius, Bernd; Rioux, Robert M. (Penn State)

    2015-10-30

    The structures of ZnO-supported Ni catalysts were explored with in situ X-ray absorption spectroscopy, temperature-programmed reduction, X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy, and electron energy loss spectroscopy. Calcination of nickel nitrate on a nanoparticulate ZnO support at 450 °C results in the formation of Zn-doped NiO (ca. N₀̣̣₈₅ Zn₀̣̣₁₅O) nanoparticles with the rock salt crystal structure. Subsequent in situ reduction monitored by X-ray absorption near-edge structure (XANES) at the Ni K edge reveals a direct transformation of the Zn-doped NiO nanoparticles to a face-centered cubic alloy, Ni1-xZnx, at ~400 °C with x increasing with increasing temperature. Both in situ XANES and ex situ HRTEM provide evidence for intermetallic β₁-NiZn formation at ~550 °C. In comparison to a Ni/SiO₂ catalyst, Ni/ZnO necessitates a higher temperature for the reduction of NiII to Ni⁰, which highlights the strong interaction between Ni and the ZnO support. The catalytic activity for acetylene removal from an ethylene feed stream is decreased by a factor of 20 on Ni/ZnO in comparison to Ni/SiO₂. The decrease in catalytic activity of Ni/ZnO is accompanied by a reduced absolute selectivity to ethylene. H–D exchange measurements demonstrate a reduced ability of Ni/ZnO to dissociate hydrogen in comparison to Ni/SiO₂.These results of the catalytic experiments suggest that the catalytic properties are controlled, in part, by the zinc oxide support and stress the importance of reporting absolute ethylene selectivity for the catalytic semihydrogenation of acetylene in excess ethylene.

  4. Síntese de regioisômeros quirais a partir de D-manitol: obtenção de uma mistura de álcoois acetilênicos Synthesis of chirals regioisomers from D-mannitol: obtainment of a acetylenic alcohols mixture

    Antônia Maria das Graças Lopes Citó

    2009-01-01

    Full Text Available The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO2 released during microbial respiration by using a conductimetric system.

  5. Gaseous nitrogen losses from field plots grown with pea (Pisum sativum L.) or spring barley (Hordeum vulgare L.) estimated by 15N mass balance and acetylene inhibition techniques

    Bertelsen, F.; Jensen, E.S.

    1992-01-01

    In a mass balance of N-15-labelled nitrate added to soil grown with pea or barley, denitrification estimates using the acetylene-inhibition technique were compared with unaccounted for N-15. During the growth season of 1989, which was drier than average, N losses due to denitrification estimated by...... the acetylene-inhibition technique were negligible. A substantial amount of fertilizer N was unaccounted for by the N-15 mass balance, especially in the pea plots. The loss took place during the period of grain-filling in which no leaching occurred, and was accompanied by a decrease in N-15 content of...... the plants. Volatilization of ammonia from the aerial parts of the plants is a possible explanation of the observed loss. An estimation of denitrification relying only on the N-15 mass balance would have resulted in an overestimation of denitrification....

  6. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  7. Effect of Solvent and Acid-Base on Palladium(ll)-catalyzed Dicarbonylation of Terminal Acetylenes: a General, Efficient andStereoselective Synthesis of Maleic Diesters and Maleic Anhydrides

    JIANG, Huan-Feng; LI, JiN-Heng; CHEN, Ming-Cai

    2001-01-01

    The productions of maleic diesters and maleic anhydrises depend on the effect of solvint and acid-bade of solvent and acid-base in palladium-catalyzed dicarbonylation of terminal acetylenes. For primaryand secondary alcohol in benzene.only maleic diesters wereobtained stereospecifically from the sicabonylation ofacetylenes in the presence of PdCl2,and NaHCO3.For tERTIARy alcohols,maleic anhydrides were synthesized selectively.

  8. Differences of cardiac output measurements by open-circuit acetylene uptake in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: a cohort study

    Schwaiblmair Martin

    2012-03-01

    Full Text Available Abstract Background As differences in gas exchange between pulmonary arterial hypertension (PAH and chronic thromboembolic pulmonary hypertension (CTEPH have been demonstrated, we asked if cardiac output measurements determined by acetylene (C2H2 uptake significantly differed in these diseases when compared to the thermodilution technique. Method Single-breath open-circuit C2H2 uptake, thermodilution, and cardiopulmonary exercise testing were performed in 72 PAH and 32 CTEPH patients. Results In PAH patients the results for cardiac output obtained by the two methods showed an acceptable agreement with a mean difference of -0.16 L/min (95% CI -2.64 to 2.32 L/min. In contrast, the agreement was poorer in the CTEPH group with the difference being -0.56 L/min (95% CI -4.96 to 3.84 L/min. Functional dead space ventilation (44.5 ± 1.6 vs. 32.2 ± 1.4%, p 2 gradient (9.9 ± 0.8 vs. 4.1 ± 0.5 mmHg, p Conclusion Cardiac output evaluation by the C2H2 technique should be interpreted with caution in CTEPH, as ventilation to perfusion mismatching might be more relevant than in PAH.

  9. Determination of halogens via molecules in the air-acetylene flame using high-resolution continuum source absorption spectrometry, Part II: Chlorine

    As continuation of the work on fluorine, the second part of the studies of halogens in the air-acetylene flame attends to the determination of chlorine using high-resolution continuum source absorption spectrometry and molecular absorption. In case of chlorine, the diatomic InCl molecule proved to be a suitable species. For an excess of In in the flame, chlorine is converted to InCl which produces a distinctive band head at 267.24 nm that could be evaluated analytically. The influence of concentrated inorganic acids and metallic matrices on the absorption at this band head was tested. In all cases the signal proved to be unaffected, i.e., no spectral interferences were observed. However, serious chemical interferences were found in the presence of sulfuric and phosphoric acids, which could be partially eliminated by adding Ca in the form of nitrate. Moreover, nitric and hydrofluoric acids as well as Cu and Ga matrices also produced significant chemical interferences. Therefore, the method of standard additions should be used for calibration purposes. Concerning the limit of detection, a value of 3 mg L-1 was achieved for a measurement time of 5 s in the presence of 10,000 mg L-1 In. The calibration curve was linear up to a chlorine concentration of 1800 mg L-1. Three certified reference materials (BCR 151, HISS-1, and PACS-2) were analyzed to test the performance of the new method, yielding good precision and accuracy

  10. Determination of halogens via molecules in the air-acetylene flame using high-resolution continuum source absorption spectrometry: Part I. Fluorine

    The particular capabilities of a high-resolution continuum source absorption spectrometer were exploited to the determination of halogens in an ordinary air-acetylene flame. In the first part of the studies, a simple method was developed, which allows the determination of fluorine by measuring GaF molecular absorption. The molecules are generated in the presence of an excess of Ga in the flame. Under such conditions, all fluorine is converted into GaF, yielding an evaluable signal for the fluorine determination. Molecular bands of GaF were found between 211 and 214 nm; the strongest absorption band head at 211.248 nm was examined in detail to prove its applicability to analytical measurements. To this end, potential chemical and spectral interferences were tested, using various highly concentrated acids and metallic salt solutions. Since no serious interferences were found, the new method proved to be very reliable. As limit of detection, 1 mg L-1 fluorine in the presence of 10 g L-1 Ga was achieved, using a measurement time of five seconds. The linear dynamic range covers more than three orders of magnitude. Accuracy and precision were verified by analysis of a standard reference material (BCR No. 33)

  11. Stable carbon isotope fractionation during bacterial acetylene fermentation: Potential for life detection in hydrocarbon-rich volatiles of icy planet(oid)s

    Miller, Laurence; Baesman, Shaun; Oremland, Ron

    2015-01-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus.

  12. Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer

    Shintani, Haruhiko; Kakinuma, Katsuyoshi; Uchida, Hiroyuki; Watanabe, Masahiro; Uchida, Makoto

    2015-04-01

    The performance of practical-sized membrane-electrode assemblies (MEAs) using titanium nitride-supported platinum (Pt/TiN) as the cathode catalysts was evaluated with the use of a practical single cell designed for microscale combined heat and power (CHP) applications. The performance can be controlled by adding acetylene black (AB), with the behavior being dominated by the percolation law. The electrical resistance of the MEAs drastically decreased for AB contents greater than 37 vol%. The Pt utilization percentage was close to 100% for Pt/TiN with percolated AB networks. It was also found that the percolated AB networks supplied effective gas transport pathways, which were not flooded by generated water, thus enhancing the oxygen mass transport. The practical-sized MEA using Pt/TiN + 47 vol% AB showed 1.5 times greater mass activity and a comparable performance under a practical operating condition for micro-CHP applications, compared with the MEA using a commercial graphitized carbon black-supported platinum catalyst.

  13. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  14. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s

    Baesman, Shaun M.; Oremland, Ronald S.

    2015-01-01

    Abstract We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Key Words: Acetylene—Fermentation—Isotope fractionation—Enceladus—Life detection. Astrobiology 15, 977–986. PMID:26539733

  15. Acetylene Black Induced Heterogeneous Growth of Macroporous CoV2O6 Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode.

    Zhang, Lei; Zhao, Kangning; Luo, Yanzhu; Dong, Yifan; Xu, Wangwang; Yan, Mengyu; Ren, Wenhao; Zhou, Liang; Qu, Longbing; Mai, Liqiang

    2016-03-23

    Metal vanadates suffer from fast capacity fading in lithium-ion batteries especially at a high rate. Pseudocapacitance, which is associated with surface or near-surface redox reactions, can provide fast charge/discharge capacity free from diffusion-controlled intercalation processes and is able to address the above issue. In this work, we report the synthesis of macroporous CoV2O6 nanosheets through a facile one-pot method via acetylene black induced heterogeneous growth. When applied as lithium-ion battery anode, the macroporous CoV2O6 nanosheets show typical features of pseudocapacitive behavior: (1) currents that are mostly linearly dependent on sweep rate and (2) redox peaks whose potentials do not shift significantly with sweep rate. The macroporous CoV2O6 nanosheets display a high reversible capacity of 702 mAh g(-1) at 200 mA g(-1), excellent cyclability with a capacity retention of 89% (against the second cycle) after 500 cycles at 500 mA g(-1), and high rate capability of 453 mAh g(-1) at 5000 mA g(-1). We believe that the introduction of pseudocapacitive properties in lithium battery is a promising direction for developing electrode materials with high-rate capability. PMID:26938306

  16. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+

  17. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen

  18. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies.

    Ramanathan, N; Sundararajan, K; Vidya, K; Jemmis, Eluvathingal D

    2016-03-15

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed. PMID:26722673

  19. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  20. Secondary Organic Aerosol Formation from Acetylene (C2H2: seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase

    P. J. Ziemann

    2009-03-01

    Full Text Available The lightest Non Methane HydroCarbon (NMHC, i.e., acetylene (C2H2 is found to form secondary organic aerosol (SOA. Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3

  1. Non-covalent C-Cl…π interaction in acetylene-carbon tetrachloride adducts: Matrix isolation infrared and ab initio computational studies

    Ramanathan, N.; Sundararajan, K.; Vidya, K.; Jemmis, Eluvathingal D.

    2016-03-01

    Non-covalent halogen-bonding interactions between π cloud of acetylene (C2H2) and chlorine atom of carbon tetrachloride (CCl4) have been investigated using matrix isolation infrared spectroscopy and quantum chemical computations. The structure and the energies of the 1:1 C2H2-CCl4 adducts were computed at the B3LYP, MP2 and M05-2X levels of theory using 6-311 ++G(d,p) basis set. The computations indicated two minima for the 1:1 C2H2-CCl4 adducts; with the C-Cl…π adduct being the global minimum, where π cloud of C2H2 is the electron donor. The second minimum corresponded to a C-H…Cl adduct, in which C2H2 is the proton donor. The interaction energies for the adducts A and B were found to be nearly identical. Experimentally, both C-Cl…π and C-H…Cl adducts were generated in Ar and N2 matrixes and characterized using infrared spectroscopy. This is the first report on halogen bonded adduct, stabilized through C-Cl…π interaction being identified at low temperatures using matrix isolation infrared spectroscopy. Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were performed to support the experimental results. The structures of 2:1 ((C2H2)2-CCl4) and 1:2 (C2H2-(CCl4)2) multimers and their identification in the low temperature matrixes were also discussed.

  2. Characteristics of Carbon Material Formation on SBA-15 and Ni-SBA-15 Templates by Acetylene Decomposition and Their Bioactivity Effects

    Hsiu-Mei Chiang

    2016-05-01

    Full Text Available Carbon spheres and tubes were formed from acetylene decomposition on SBA-15 and Ni-SBA-15 at 650–850 °C. At 650 °C, the decomposed carbons covered the surface of the support, and no carbon spheres and filament materials were formed. Carbon sphere formation occurred at 750 °C–850 °C; with diameters ranging from 0.8 μm–1.1 μm. For Ni-SBA-15, the diameters of the spheres and filaments were 0.8 μm and 62 nm, respectively, at 650 °C. At 750 °C, the diameter of the ball carbon materials ranged from 0.7 μm–0.8 μm, the diameter of the carbon tubes formed was 120–130 nm, and their pore diameter was 8.0 nm–11 nm. At 850 °C, the diameters of ball carbon materials and carbon tubes were similar to those of the materials at the formation temperature, 750 °C. Si, O and C were the main constituents of SBA-15; Ni-SBA-15 and carbon material formation supports. High-ring PAHs (such as BaP (five rings; IND (six rings; DBA (five rings and B[ghi]P (six rings exist in carbon materials. SBA-15 revealed insignificant cytotoxicity, but Ni-SBA-15 inhibited the proliferation of human lung cancer cells (A549. Less inhibition on cell viability and reactive oxidative species (ROS generation on A549 were determined for carbon material formation on the Ni-SBA-15 compared to the Ni-SBA-15.

  3. Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene)2(Cr2O7)]n.

    Scott, Hayley S; Bajpai, Alankriti; Chen, Kai-Jie; Pham, Tony; Space, Brian; Perry, John J; Zaworotko, Michael J

    2015-10-14

    A primitive cubic (pcu) network of formula [Ni(1,2-bis(4-pyridyl)acetylene)2(Cr2O7)]n, , has been synthesised and found to exhibit a novel type of inclined 2-fold interpenetration and an isosteric heat of adsorption (Q(st)) of 30.5 kJ mol(-1) towards CO2 at zero loading. Q(st) is relatively high in the broad context but less than that observed in related hybrid ultramicroporous materials, a feature that can be understood after studying pore structure and molecular simulations of CO2 adsorption. PMID:26307270

  4. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC0–24h was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the kel was 0.068 h−1. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes in multiple organs.

  5. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH4-argon and C2H2-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH4 and C2H2 concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH4. Copper crystallites with an anisotropic shape were found in films deposited from C2H2. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C2H radicals for films produced from CH4 and C2H2, respectively, play probably a crucial role in the growth

  6. Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action

    Kostov, Rumen V.; Knatko, Elena V.; McLaughlin, Lesley A.; Henderson, Colin J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Zheng, Suqing [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Huang, Jeffrey T.-J. [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Honda, Tadashi [Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794 (United States); Dinkova-Kostova, Albena T., E-mail: a.dinkovakostova@dundee.ac.uk [Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, DD1 9SY, Scotland (United Kingdom); Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States); Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 (United States)

    2015-09-25

    The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC{sub 0–24h} was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the k{sub el} was 0.068 h{sup −1}. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs. - Highlights: • TBE-31 is a cysteine targeting compound with a reversible covalent mode of action. • After a single oral dose, the blood concentration of TBE-31 exhibits two peaks. • Oral TBE-31 is a potent activator of Nrf2-dependent enzymes in

  7. Facile, soot free approach toward synthesis of carbon nanoropes via chemical vapor deposition of acetylene in the presence of MnFe2O4 coated on stainless steel

    Dhand, Vivek; Bharadwaj, S.; Amareshwari, K.; Himabindu, V.; Rhee, Kyong Yop; Park, Soo-Jin; Hui, David

    2015-12-01

    High density, soot free, novel and a facile approach toward synthesis of carbon nanoropes (CNRs) were successfully carried out in a chemical vapor deposition (CVD) process. Manganese ferrite (MnFe2O4) coated on stainless steel foil (SS 316 grade) was used as a catalyst to initiate the growth of CNR. The coated catalyst was introduced into the CVD and the chamber temperature was set at 700 °C later followed with the release of acetylene (50 sccm) and nitrogen (500 sccm) gas, respectively. Total reaction continued until 30 min. No purification or oxidation process of the soot was involved. Analysis reveals the presence of intermingled CNRs with semi crystalline nature of the sample. The elemental analysis confirms the presence of manganese and iron whereas Raman spectrum shows the characteristic narrow G and D bands. The sample displays a super-paramagnetic behavior and is thermally stable up to 500-550 °C presenting a strong exothermic reaction.

  8. 乙炔法聚氯乙烯生产减少汞排放的“最佳环境实践”%Mercury Emission Control in Acetylene-route PVC Production

    于建国

    2011-01-01

    “最佳环境实践”是国际上普遍推行的旨在减少和控制目标领域和场所环境污染与健康危害的综合管理手段。文中论述了我国乙炔法聚氯乙烯生产中汞使用和排放的“最佳环境实践”,并提出了建议。%World mercury annual consumption is 1,6 kt. China annual mercury consumption in acetylene-route PVC production is 67 ton. Mercury pollution in China is considered to be one of the focal points worldwide. The negotiation committee has been established amon

  9. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4).

    Parker, D S N; Mebel, A M; Kaiser, R I

    2014-04-21

    The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO). PMID:24418936

  10. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  11. Synthesis of nano-carbon materials by decomposing acetylene using iron supported on sodium chloride as catalyst%NaCl担载Fe催化裂解乙炔制备纳米碳材料

    王存景; 王艳博; 陈改荣

    2011-01-01

    Nano-carbon materials were synthesized by the catalytic decomposition of acetylene at 400 ℃ and 420℃ in a chemical vapor deposition process using iron supported on sodium chloride as catalyst Hie catalyst was examined by X-ray diffraction,scanning electron microscopy and energy dispersive spectroscopy. The results show that the active composition iron was dispersed into nanoparticles with diameters in the range 10-40 nm on the surface of NaCl support successfully. The products were examined by scanning electron microscopy and high resolution transmission electron microscopy. The results show that nano onion-like fullerenes encapsulating Fe cores with diameters in the range 20-50 nm were obtained when the reaction temperature was 400℃ and there were no carbon nanotubes in the product These onion-like fullerenes are composed of concentric graphene layers with an interlayer distance of 0. 348 nm between the layers. When the reaction temperature was 420℃ , carbon nanotubes with a structure of rope were obtained and the graphitization degree of these carbon nanotubes was not high due to the low reaction temperature.%以水溶性NaCl担载Fe作催化剂,于400℃和420C下化学气相沉积法催化裂解乙炔进行了反应.通过X射线衍射仪、扫描电子显微镜和能谱分析仪对催化剂进行了表征,表征结果显示:活性组分Fe被分散成了粒径在10~40nm之间的纳米颗粒;通过扫描电子显微镜和高分辨透射电镜对产物进行了表征,表征结果显示:当裂解温度为400℃时,主要产物为直径在20~50 nm之间,基本具有清晰同心石墨壳层结构的内包铁NOLFs,同心石墨壳层的层间距约为0.348nm,产物中没有碳纳米管出现;当裂解温度为420℃时,主要产物为直径在10 ~40 nm之间结构呈绳结状的碳纳米管,其石墨壳层不是十分规整,石墨化程度较低.

  12. Effects of radio-frequency power on the properties of carbon thin films prepared by thermal chemical vapor deposition enhanced with remote inductively-coupled-plasma using acetylene/nitrogen mixtures

    The effects of radio-frequency (rf) power on the properties of carbon thin films prepared by thermal chemical vapor deposition (CVD) enhanced with remote inductively-coupled-plasma (ICP) are investigated. Acetylene and nitrogen were used as the precursor gases, and rf-powers of ICP were set as 0, 100, 200, 300, and 400 W. The deposition temperature, working pressure, and deposition time were set as 1248 K, 4 kPa, and 2 h, respectively. The residual gases, film thicknesses, microstructures, chemical characteristics, mechanical properties, and electrical properties of carbon thin films were investigated by residual gas analyzer (RGA), field emission scanning electron microscopy, X-ray diffractometer (and Raman scattering spectrometer), X-ray photoelectron spectrometer, nanoindenter, and four point probe, respectively. RGA results reveal that the main species in the gas phase contain H2, C2H, C2H2, HCN (or C2H3), and N2 (or C2H4). Moreover, C2H, C2H2, and C2H4 can be speculated as the main species for carbon thin film deposition. As the rf-power increases from 0 to 400 W, the deposition rate of carbon thin films decreases from 204 to 36.0 nm/h. The crystallinity and ordering degree of carbon thin films increase with increasing rf-power from 0 to 400 W, but the ratio of sp2 carbon sites in carbon thin films decreases from 95 to 75%. The Young's modulus, hardness, and electrical resistivity of carbon thin films increase with increasing rf-power. Furthermore, the effects of rf-power on the deposition rates of carbon thin films prepared by thermal CVD enhanced with remote ICP using C2H2/N2 and CH4/N2 mixtures are compared. - Highlights: • Carbon films are prepared by TCVD enhanced with remote ICP using C2H2/N2 mixtures. • The deposition rate of carbon thin films decreases with increasing the rf-power. • C2H, C2H2, and C2H4 are speculated as the main species for carbon film deposition. • The sp2 sites in carbon thin films decrease with increasing rf-power.

  13. Syntheses and studies of acetylenic polymers

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity ({sigma} = 10{sup {minus}3} S/cm) after doping with AsF{sub 5}. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 {times} 10{sup 3} to 5.3 {times} 10{sup 3}. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  14. Superexcited states on ethylene and acetylene

    Electron energy loss spectra were obtained for C2H2 and C2H4 in the energy loss range from 12 to 50 eV for 1 Kev electrons. Elastic and inelastic cross sections and generalized oscillator strengths for transitions at 13.3, 15.7 and 18.7 eV were obtained. (A.C.A.S.)

  15. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  16. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    F. Sgouridis

    2015-08-01

    Full Text Available Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS. The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume. Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands by lowering the 15N tracer application rate to 0.04–0.5 kg 15N ha−1. For our chamber design (volume / surface = 8:1 and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m−2 h−1 and 0.2 ng N m−2 h−1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m−2 h−1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique

  17. Effects of radio-frequency power on the properties of carbon thin films prepared by thermal chemical vapor deposition enhanced with remote inductively-coupled-plasma using acetylene/nitrogen mixtures

    Lai, Liang-Hsun; Wu, Kuan-Chang; Shiue, Sham-Tsong, E-mail: stshiue@dragon.nchu.edu.tw

    2014-11-03

    The effects of radio-frequency (rf) power on the properties of carbon thin films prepared by thermal chemical vapor deposition (CVD) enhanced with remote inductively-coupled-plasma (ICP) are investigated. Acetylene and nitrogen were used as the precursor gases, and rf-powers of ICP were set as 0, 100, 200, 300, and 400 W. The deposition temperature, working pressure, and deposition time were set as 1248 K, 4 kPa, and 2 h, respectively. The residual gases, film thicknesses, microstructures, chemical characteristics, mechanical properties, and electrical properties of carbon thin films were investigated by residual gas analyzer (RGA), field emission scanning electron microscopy, X-ray diffractometer (and Raman scattering spectrometer), X-ray photoelectron spectrometer, nanoindenter, and four point probe, respectively. RGA results reveal that the main species in the gas phase contain H{sub 2}, C{sub 2}H, C{sub 2}H{sub 2}, HCN (or C{sub 2}H{sub 3}), and N{sub 2} (or C{sub 2}H{sub 4}). Moreover, C{sub 2}H, C{sub 2}H{sub 2}, and C{sub 2}H{sub 4} can be speculated as the main species for carbon thin film deposition. As the rf-power increases from 0 to 400 W, the deposition rate of carbon thin films decreases from 204 to 36.0 nm/h. The crystallinity and ordering degree of carbon thin films increase with increasing rf-power from 0 to 400 W, but the ratio of sp{sup 2} carbon sites in carbon thin films decreases from 95 to 75%. The Young's modulus, hardness, and electrical resistivity of carbon thin films increase with increasing rf-power. Furthermore, the effects of rf-power on the deposition rates of carbon thin films prepared by thermal CVD enhanced with remote ICP using C{sub 2}H{sub 2}/N{sub 2} and CH{sub 4}/N{sub 2} mixtures are compared. - Highlights: • Carbon films are prepared by TCVD enhanced with remote ICP using C{sub 2}H{sub 2}/N{sub 2} mixtures. • The deposition rate of carbon thin films decreases with increasing the rf-power. • C{sub 2}H, C{sub 2}H

  18. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE); Estudo comparativo da enxertia dos monomeros: etileno, acetileno, 1,3-butadieno e estireno na matriz de politetrafluoroetileno (PTFE) reciclado

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil); Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B., E-mail: hferreto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Moreira, Otavio M. [Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil)

    2009-07-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  19. Large amplitude motion of the acetylene molecule within acetylene-neon complexes hosted in helium droplets.

    Briant, M; Mengesha, E; de Pujo, P; Gaveau, M-A; Soep, B; Mestdagh, J-M; Poisson, L

    2016-06-28

    Superfluid helium droplets provide an ideal environment for spectroscopic studies with rotational resolution. Nevertheless, the molecular rotation is hindered because the embedded molecules are surrounded by a non-superfluid component. The present work explores the dynamical role of this component in the hindered rotation of C2H2 within the C2H2-Ne complex. A HENDI experiment was built and near-infrared spectroscopy of C2H2-Ne and C2H2 was performed in the spectral region overlapping the ν3/ν2 + ν4 + ν5 Fermi-type resonance of C2H2. The comparison between measured and simulated spectra helped to address the above issue. PMID:27263427

  20. Graphite Nanostructures Produce in the Acetilene, Argon-Acetylene and Argon-Hydrogen-Acetylene Plasmas

    Grigonis A.; Marcinauskas L.; Carnauskas M.; Kaliasas R.

    2012-01-01

    The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon coatings have been prepared at atmospheric pressure in Ar/ C2H2 and Ar/H2/C2H2 mixtures. The films prepared in Ar/C2H2 plasma are at-tributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the coatings, but coatings have low fraction of oxygen (~5 at.%) The formation of t...

  1. Effects of Exogenous Acetylene on Floral Bud Differentiation and Endogenous Hormone Content of Guzmania‘Denise’%乙炔催花对凤梨‘丹尼斯’花芽分化及内源激素含量的影响

    段九菊; 曹冬梅; 王丽萍; 张超; 王云山

    2012-01-01

    为了探讨凤梨开花的生理机制以及为凤梨花期调控提供理论依据,以凤梨‘丹尼斯’为试材,研究乙炔催花对其花芽分化及内源激素含量的影响。结果表明:乙炔催花7天后诱导‘丹尼斯’进入花芽分化状态,其花芽分化进程可分为花芽未分化期、花序原基分化期、花原基分化期、花萼花瓣分化期、雌雄蕊分化期。在整个花芽分化过程中,植株生长点及叶片中生长素(IAA)、脱落酸(ABA)含量未见明显改变,而玉米素核苷(ZRs)在花序原基分化期和花原基分化期呈现出2次显著增加,赤霉素(GAs)含量在花序原基分化期和器官分化早期显著下降,从而引起ABA/GAs、ZRs/GAs、ZRs/IAA比值在花序原基分化期、花原基分化期和器官分化早期显著增加。因此,高水平的ZRs含量、ABA/GAs、ZRs/GAs、ZRs/IAA比值以及低水平的GAs含量有利于凤梨‘丹尼斯’花芽分化的完成。%In order to study the flowering mechanism in Bromeliaceae, and to provide a theoretical basis for flowering regulation, the effects of exogenous acetylene on floral bud differentiation and endogenous hormone contents of Guzmania‘Denise’were investigated. The results showed that: Guzmania‘Denise’was introduced into floral bud differentiation stage by exogenous acetylene application 7 days. The process of bud differentiation included no differentiation stage, inflorescence primordium differentation stage, single flower primordium differentiation stage, sepal and petal differentiation stage and stamen and pistil differentiation stage. During the process of bud differentiation, the contents of auxins (IAA) and abscisic acid (ABA) in the growing point and leaves kept mostly unchangeable. However, the contents of zeatin nucleotides (ZRs) increased significantly in inflorescence primordium differentation stage and single flower primordium differentiation stage. The contents of

  2. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    2010-10-01

    ... stagnate in the compressor while it continues to run. (2) Discharge piping from each compressor stage or each cylinder in the same stage of a reciprocating compressor that has: (i) Two temperature actuated... following features: (1) A vapor compressor that does not raise the temperature and pressure of the...

  3. Enediyne antibiotics and their models: new potential of acetylene chemistry

    Maretina, Irina A.; Trofimov, Boris A.

    2006-09-01

    Structures and chemical properties of enediynes, viz., compounds comprising a system of conjugated double and triple bonds, are surveyed. The presence of this system in the molecules of enediyne antitumour antibiotics ensures their high activity. The mechanism of biological action of enediynes is discussed based on cycloaromatisation of the enediyne chromophore resulting in highly active benzenoid 1,4-diradicals, which selectively cleave DNA. The key strategies of enediyne synthesis are analysed.

  4. Enediyne antibiotics and their models: new potential of acetylene chemistry

    Structures and chemical properties of enediynes, viz., compounds comprising a system of conjugated double and triple bonds, are surveyed. The presence of this system in the molecules of enediyne antitumour antibiotics ensures their high activity. The mechanism of biological action of enediynes is discussed based on cycloaromatisation of the enediyne chromophore resulting in highly active benzenoid 1,4-diradicals, which selectively cleave DNA. The key strategies of enediyne synthesis are analysed.

  5. Enediyne antibiotics and their models: new potential of acetylene chemistry

    Maretina, Irina A; Trofimov, Boris A [A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk (Russian Federation)

    2006-09-30

    Structures and chemical properties of enediynes, viz., compounds comprising a system of conjugated double and triple bonds, are surveyed. The presence of this system in the molecules of enediyne antitumour antibiotics ensures their high activity. The mechanism of biological action of enediynes is discussed based on cycloaromatisation of the enediyne chromophore resulting in highly active benzenoid 1,4-diradicals, which selectively cleave DNA. The key strategies of enediyne synthesis are analysed.

  6. Nanoscale molecular systems : designed phenyl-acetylene architectures

    Eaton, Thomas R.

    2015-01-01

    Molecular design should be about fulfilling function. However designing molecular structures that will fulfill a particular function is incredibly difficult. The delicate interplay of structure-property relationships and further emergent phenomena that arise when molecules come together are very unpredictable. This thesis sets out tools to guide the budding molecular architect in successfully making the transition in mindset from structure-property relationships to structure-function relatio...

  7. 75 FR 5707 - Revising Standards Referenced in the Acetylene Standard

    2010-02-04

    ... 4, 2010, the proposed rule published August 11, 2009 (74 FR 40450), is withdrawn. FOR FURTHER... CFR 1910.102 (74 FR 40442). OSHA also published a companion proposed rule along with the direct-final rule (74 FR 40450). In the direct-final rule, OSHA stated that it would withdraw the companion...

  8. 77 FR 13997 - Revising Standards Referenced in the Acetylene Standard

    2012-03-08

    ... 8, 2012, the proposed rule published December 5, 2011 (76 FR 75840), is withdrawn. FOR FURTHER... CFR 1910.102 (76 FR 75782). OSHA also published a companion proposed rule along with the direct-final rule (76 FR 75840). In the direct-final rule, OSHA stated that it would withdraw the companion...

  9. Isotope effect in dissociative electron attachment cross sections in acetylene

    May, Olivier; Fedor, Juraj; Allan, Michael, E-mail: olivier.may@unifr.c [Department of Chemistry, University of Fribourg, Chemin du Muse 9, 1700 Fribourg (Switzerland)

    2009-11-01

    We present absolute cross section measurement of dissociative electron attachment to C{sub 2}H{sub 2} and C{sub 2}D{sub 2}. The C{sub 2}H{sup -}/ C{sub 2}D{sup -} band at 3 eV shows pronounced isotope effect with the cross section for C{sub 2}H{sub 2} being 14.7 times larger than that for C{sub 2}D{sub 2}. The light fragments H{sup -} and D{sup -} dominate the second dissociative electron attachment band around 8 eV. These bands exhibit much weaker isotope effects which is in agreement with their assignment to Feshbach resonances.

  10. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.

    2010-10-01

    ... seamless steel cylinder with a service pressure of 250 psig. However, the attachment of heads by welding or... operations. Liquid quenching is not authorized. (i) Openings. Standard taper pipe threads required in all openings. The length of the opening may not be less than as specified for American Standard pipe...

  11. Gas temperature effect on the time for onset of particle nucleation in argon diluted acetylene plasma

    Stefanovic, I; Berndt, J; Winter, J; Stefanovic, Ilija; Kovacevic, Eva; Berndt, Johannes; Winter, Jorg

    2004-01-01

    In our work we are focused on study of powder formation in C2H2/Ar plasmas. In this scope we used a combination of FTIR and mass spectroscopy, which are the mostly used experimental techniques for plasma powder formation diagnostics. To test the proposed mechanism for particle nucleation delay we measured the particle nucleation under different plasma conditions: firstly we increased the gas temperature and secondly we changed the background gas from argon to helium.

  12. Effect of Acetylene Concentration on Denitrification and Related Microbial Processes in Anaerobically Incubasted Soil Slurries

    巩晓佘

    1996-01-01

    In order to study the influence of difference in C2H2 concentration on the production of CO2,N2O,NH4-N and volatile fatty acids(VFA).soil slurries with a gradient in C2H2 concentration were anaerobically incubated at 25℃ for 2 weeks.Acetate,butyrate and CO2 production and NH4-N accumulation were inhibited in the slurres in the presence of C2H2;and the inhibition effect increased with increasing C2H2 from 0 to 20 kPa in the headspace gas of the incubation bottle.However,N2O,isobutyrate and propionate production was not obviously different among the slurres amended with C2H2 from 2.5 to 20 kPa.Therefore,the results implied that the C2H2 did not promote the inhibition but only increased the side effect on other microbial processes.The C2H2 of 2.5 kPa was suggested to be the optimum choice for the present denitrification study.

  13. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    2010-10-01

    ..., and that does not allow vapor to stagnate in the compressor while it continues to run. (2) At the discharge piping from each compressor stage or each cylinder in the same stage of a reciprocating compressor... a refrigeration system with the following features: (1) A vapor compressor that does not raise...

  14. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers

    Triches, Marco; Michieletto, Mattia; Hald, Jan;

    2015-01-01

    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1+ν3) transition at 1542 nm using saturated absorption. Four hollow-core fibers with different crystal structure are compared in terms of long term lock-point repeatability and fractional freq...

  15. Gaseous carburising of self-passivating Fe–Cr-Ni alloys in acetylene-hydrogen mixtures

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2011-01-01

    Gaseous carburising of self-passivating Fe–Cr–Ni alloys in acetylene–hydrogen was investigated for temperatures up to 823 K. Acetylene–hydrogen gas mixtures allow both the activation of the surface and the subsequent carburising at a high and adjustable carburising potential. For relatively low t...... temperatures, carbon stabilised expanded austenite develops, which has high hardness, while retaining the corrosion performance of the untreated alloy; for relatively high temperatures, Cr based carbides develop, and eventually, the material deteriorates by metal dusting corrosion....

  16. Dynamic Load on a Pipe Caused by Acetylene Detonations – Experiments and Theoretical Approaches

    Axel Sperber

    1999-01-01

    Full Text Available The load acting on the wall of a pipe by a detonation, which is travelling through, is not yet well characterized. The main reasons are the limited amount of sufficiently accurate pressure time history data and the requirement of considering the dynamics of the system. Laser vibrometry measurements were performed to determine the dynamic response of the pipe wall on a detonation. Different modelling approaches were used to quantify, theoretically, the radial displacements of the pipe wall. There is good agreement between measured and predicted values of vibration frequencies and the propagation velocities of transverse waves. Discrepancies mainly due to wave propagation effects were found in the amplitudes of the radial velocities. They might be overcome by the use of a dynamic load factor or improved modelling methods.

  17. Microstructure and performance of titanium oxide coatings sprayed by oxygen-acetylene flame

    Ctibor, Pavel; Štengl, Václav; Zahálka, F.; Murafa, Nataliya

    Prague: ICT Prague Press, 2010 - (Krýsa, J.), s. 144-145 ISBN 978-80-7080-750-7. [European meeting on Solar Chemistry and Photocatalysis: Environmental Applications (SPEA6)/6th./. Prague (CZ), 13.06.2010-16.06.2010] R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : flame spraying * photocatalysis * TiO2 Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  18. Experimental and ab initio studies of the novel piperidine-containing acetylene glycols

    Mirsakiyeva, Amina; Elgammal, Karim; Ten, Assel; Hugosson, Håkan W; Delin, Anna; Yu, Valentina K

    2015-01-01

    Synthesis routes of novel piperidine-containing diacetylene are presented. The new molecules are expected to exhibit plant growth stimulation properties. In particular, the yield in a situation of drought is expected to increase. The synthesis makes use of the Favorskii reaction between cycloketones/piperidone and triple-bond containing glycols. The geometries of the obtained molecules were determined using nuclear magnetic resonance (NMR). The electronic structure and geometries of the molecules were studied theoretically using first-principles calculations based on density functional theory. The calculated geometries agree very well with the experimentally measured ones, and also allow us to determine bond lengths, angles and charge distributions inside the molecules. The stability of the OH-radicals located close to the triple bond and the piperidine/cyclohexane rings was proven by both experimental and theoretical analyses. The HOMO/LUMO analysis was done in order to characterize the electron density of t...

  19. Preparation of conjugated poly(ethyl acetylene carboxylate) as optical limiter of laser radiation

    The optical limiting action of poly (ethylacetylene carboxylate) dissolved in dichloroethane were investigated under irradiation with 8 ns laser pulses at 532 nm. The optical limiting measurements were performed at a series of concentrations. The threshold limiting fluence was observed for high concentrations at 5 J/cm2 with a transmission of about 20 %. No optical limiting action was observed at very low concentration of the prepared polymer in the dichloroethane solvent. The observed data show that poly (ethylacetylene carboxylate) has the potential for the use as optical limiting material for future applications. (author)

  20. Beyond-thermal-equilibrium" conversion of methane to acetylene and hydrogen under pulsed corona discharge

    朱爱民; 宫为民; 张秀玲; 李小松

    2002-01-01

    At ambient temperature and pressure, C2H2 and H2 are the dominating products from pure methane conversion under pulsed corona discharge (PCD). When the energy density of 194-1788 kJ/mol was applied, 7%-30% of C2H2 yield and 6%-35% of H2 yield per pass have been obtained. These results are higher than the maximum thermodynamic yield of C2H2 (5.1%) and H2 (3.8%) at 100 kPa and 1100 K, respectively. Thereby, pulsed corona discharge is a very effective tool for "beyond-thermal-equilibrium" conversion of methane to C2H2 and H2 at ambient temperature and pressure. In the PCD energy density range of 339-822 kJ/mol, the carbon distribution of the methane conversion products is found to be: C2H2 86%-89%, C2H6 4%-6%, C2H4 4%-6%, C3 -2%, C4 -1%. Through comparison of the product from pure methane, ethane and ethylene conversion at the same discharge conditions, it can be concluded that three pathways may be responsible for the C2H2 formation via CHx radicals produced from the collisions of CH4 molecules with energi

  1. "Beyond-thermal-equilibrium" conversion of methane to acetylene and hydrogen under pulsed corona discharge

    朱爱民; 张秀玲; 李小松; 宫为民

    2002-01-01

    At ambient temperature and pressure, C2H2 and H2 are the dominating products from pure methane conversion under pulsed corona discharge (PCD). When the energy density of 194-1788 kJ/mol was applied, 7%-30% of C2H2 yield and 6%-35% of H2 yield per pass have been obtained. These results are higher than the maximum thermodynamic yield of C2H2 (5.1%) and H2 (3.8%) at 100 kPa and 1100 K, respectively. Thereby, pulsed corona discharge is a very effective tool for "beyond-thermal-equilibrium" conversion of methane to C2H2 and H2 at ambient temperature and pressure. In the PCD energy density range of 339-822 kJ/mol, the carbon distribution of the methane conversion products is found to be: C2H2 86%-89%, C2H6 4%-6%, C2H4 4%-6%, C3 ~2%, C4~1%. Through comparison of the product from pure methane, ethane and ethylene conversion at the same discharge conditions, it can be concluded that three pathways may be responsible for the C2H2 formation via CHx radicals produced from the collisions of CH4 molecules with energized electrons in the PCD plasma: (i) C2H2 is formed directly from free radical reactions, (ii) C2H2 is formed through the dehydrogenation of C2H4, which is formed via free radical reactions primarily, and (iii) C2H6 is the primary product and then dehydrogenates to C2H4 (secondary product) and followed by C2H4 dehydrogenation to C2H2.

  2. Hetero-Diels-Alder reactions of hetaryl and aryl thioketones with acetylenic dienophiles.

    Mlostoń, Grzegorz; Grzelak, Paulina; Mikina, Maciej; Linden, Anthony; Heimgartner, Heinz

    2015-01-01

    Selected hetaryl and aryl thioketones react with acetylenecarboxylates under thermal conditions in the presence of LiClO4 or, alternatively, under high-pressure conditions (5 kbar) at room temperature yielding thiopyran derivatives. The hetero-Diels-Alder reaction occurs in a chemo- and regioselective manner. The initially formed [4 + 2] cycloadducts rearrange via a 1,3-hydrogen shift sequence to give the final products. The latter were smoothly oxidized by treatment with mCPBA to the corresponding sulfones. PMID:26124858

  3. New catalytic reaction of elemental sulfur with acetylenes by the action of cobalt complexes

    Dzhemilev, U.M.; Selimov, F.A.; Khafizov, V.R.; Khalilov, L.M.; Tolstikov, G.A.

    1986-11-20

    The authors report that the reaction of 1-hexyne with CS/sub 2/ taken in 3:1 mole ratio by the action of a catalyst prepared by the reduction of Co(2-ethylhexanoate)/sub 2/ by triethylaluminum in the presence of absolute DMSO (Co:Al:DMSO = 1:3:10-20) in absolute toluene solution at 150/sup 0/C for 6 h gives a 1:1 mixture of stereoisomeric 1,2-dithia-3,6-dibutyl-3,5-cyclohexadienes in about 40% total yield. By analogy, 1-hexyne and S/sub 8/ (S/sub ..cap alpha../-cyclooctasulfane) give 40% disulfides, 15% 2,4-dibutylthiophene, and about 45% of a mixture of 1,3,4- and 1,3,5-tributylbenzenes in 45% total yield identified by comparison with authentic samples.

  4. Microstructure and performance of titanium oxide coatings sprayed by oxygen-acetylene flame

    Ctibor, Pavel; Štengl, Václav; Zahálka, F.; Murafa, Nataliya

    2011-01-01

    Roč. 10, č. 3 (2011), s. 403-407. ISSN 1474-905X R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : Plasma spray ing * flame spray ing * photocatalysis * TiO2 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.584, year: 2011

  5. Structural and optical properties of plasma polymerized films from acetylene-oxygen-argon mixtures

    Actinometric optical emission spectroscopy of the discharge revealed the relative concentrations of the species C H and CO as a function of the percentage of oxygen in the feed in the plasma polymerization of C2 H2-O2 mixtures. Transmission infrared and ultraviolet-visible spectroscopy (uvis) of deposited films allowed identification of chemical groups and determination of refractive indices, respectively. (author). 6 refs, 3 figs, 1 tab

  6. Nucleation Behavior of Oxygen-Acetylene Torch-Produced Diamond Films

    Roberts, F. E.

    2003-01-01

    A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formation steps leading to nucleation. The developed mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films. An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provides a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. The test surfaces were measured as an independent measure of the instantaneous nucleation environent. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C3H6 as the fuel gas phase precursor with addition of carbon monoxide gas 01 addition of liquid toluene.

  7. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating. Microstructural analyses reveal that TiC and Fe are the dominant phases in the coatings. The reaction between Ti and C happens step by step along with the reactive spray powder flight, and TiC-Fe materials were mainly synthesized where the spray distance is 125~170 mm. The TiC-Fe coatings are composed of alternate TiC-rich and TiC-poor lamellae with different microhardness of 11.9~13.7 and 3.0~6.0 Gpa, respectively. Submicron and round TiC particles are dispersed within a ductile metal matrix. The peculiar microstructure is thought to be responsible for its good wear resistance, which is better nearly five times than WC-reinforced cermet coatings obtained by traditional oxyacetylene flame spray.

  8. Adsorption and reaction of acetylene and ethylene on the Si(001)2x1 surface

    The electronic structures and the thermal reaction of chemisorbed C2H2 and C2H4 on the Si(001)2x1 surface have been investigated by carbon K-edge near-edge x-ray absorption fine structure (NEXAFS) and ultraviolet photoemission spectroscopy (UPS) using synchrotron radiation. The bonding and antibonding states due to the interaction of the molecules and the Si surface atoms are identified by detailed polarization-dependent UPS and NEXAFS measurements, respectively. These bonding and antibonding states are shown to originate from the hybridization between the occupied Si dangling bonds and the lowest unoccupied molecular orbitals (πC-C*) of C2H2 and C2H4 double-σ-bonded on the top of the Si dimer. The thermal evolution of mainly C2H2 is investigated in detail for a wide temperature range of 60-1500 K from the condensation to the surface alloy formation. The coexistence of the physisorbatelike and the chemisorbed molecular species is observed at 70-90 K for C2H2 and C2H4, for the coverages greater than ∼0.25 monolayer (ML). The πC-C* resonance of those physisorbatelike C2H4 species in NEXAFS exhibits an unusual polarization dependence indicating adsorption with their molecular planes aligned perpendicular to the surface. The dissociation of C2H2 chemisorbates is shown to occur at 600-700 K as observed by UPS. After the dissociation of molecules, the atomic hydrogen adsorbates are identified by the monohydridelike surface resonance states in the UP spectra at 800-950 K. Most of the Si dangling bonds are passivated by, at least partly, the hydrogen adsorbates at this stage. At ∼1000 K, the desorption of hydrogen occurs, which accompanies the appearance of a broad SiC-like feature in the UP spectra at ∼3 eV below Fermi level

  9. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10-8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k5 = 3 x 106 M-1sec-1. (orig./HK)

  10. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene

    Tibelius, K.H.; Knowles, R.

    1984-10-01

    Nitrite, NO, CO, and C/sub 2/H/sub 2/ inhibited O/sub 2/-dependent H/sub 2/ uptake (H/sup 3/H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N/sub 2/O or NO/sub 3//sup -/. The apparent K/sub i/ values for inhibition of O/sub 2/-dependent H/sub 2/ uptake were 20 ..mu..M for NO/sub 2//sup -/, 0.4 ..mu..M for NO, 28 ..mu..M for CO, and 88 ..mu..M for C/sub 2/H/sub 2/. These inhibitors also affected methylene blue-dependent H/sub 2/ uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H/sub 2/ uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N/sub 2/. The C/sub 2/H/sub 2/ inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO/sub 2//sup -/ inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO/sub 2//sup -/ on H/sub 2/-dependent respiration. These results suggest that the low hydrogenase activities observed in NO/sub 3//sup -/-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO produced by NO/sub 3//sup -/ reduction.

  11. 15N2 incorporation and acetylene reduction by azospirillum isolated from rice roots and soils

    Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by 15N2 incorporation and C2H2 reduction. C2H2 reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in 15N2 incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N2-fixing ability and that plant genotype is of importance for optimal associations. (orig.)

  12. Chemistry of anthracene-acetylene oligomers XXV: on-surface chirality of a self-assembled molecular network of a fan-blade-shaped anthracene-acetylene macrocycle with a long alkyl chain.

    Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji

    2015-03-27

    An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. PMID:25688524

  13. Synthesis of Stable and Soluble One-Handed Helical Homopoly(substituted acetylene)s without the Coexistence of Any Other Chiral Moieties via Two-Step Polymer Reactions in Membrane State: Molecular Design of the Starting Monomer

    Takashi Kaneko; Masahiro Teraguchi; Yu Zang; Lijia Liu; Yuriko Kakihana; Takeshi Namikoshi; Hongge Jia; Shingo Hadano; Toshiki Aoki; Yunosuke Abe

    2012-01-01

    A soluble and stable one-handed helical poly(substituted phenylacetylene) without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1) removing the chiral groups (desubstitution); and (2) introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitutio...

  14. Synthesis of “Acetylene-Expanded” Tridentate Ligands

    T. W. Hanks

    2002-05-01

    Full Text Available Synthetic routes to four new tridentate ligands with large cavities have been developed. Each ligand features two halides at the termini of the molecules that could be used for further elaboration of the system. Such compounds are ideal for encapsulating organoiodide guests using charge-transfer interactions.

  15. K and Au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties.

    Tsou, Tsung-Yu; Lee, Chi-Young; Chiu, Hsin-Tien

    2012-12-01

    We demonstrated the growth of carbon nanocoils (CNCs) via chemical vapor deposition (CVD) using Au and K metals as the catalysts to assist the thermal decomposition of C(2)H(2). Typical CNCs (wire diameter: 50-80 nm, coil diameter: 110-140 nm, pitch: 100-200 nm, tens of micrometers), identified as amorphous coiled carbon fibers by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were grown at proper combinations of reaction parameters. Au nanoparticles (NPs), identified by energy dispersion X-ray spectroscopy (EDX) and electron diffraction (ED), were located at the tips of the CNCs. The observations suggested that a tip-growth mechanism involving the Au NPs as the nucleation sites was in operation. In the reaction, the liquid-phase K metal assisted the decomposition of C(2)H(2) by lowering the reaction temperature. We propose that acetylide and hydride intermediates were formed in the reaction. Further decomposition of the acetylide intermediates generated solid-phase carbon to grow the CNCs. Effects of varying the reaction conditions on the CNC growth were investigated. On the basis of the results, a Au and K bicatalyst enhanced tip-growth vapor-liquid-solid (VLS) mechanism was proposed to rationalize the CNC formation process. Electron field emission (EFE) characteristics of the CNCs were studied. The best EFE result showed a turn-on field (E(to)) of 3.78 V/μm and a field enhancement factor (β) of 1852. In addition, the current density (J) was as high as 43 mA/cm(2) at 6.87 V/μm. The data suggest that the CNCs could be employed for field emission device applications. PMID:23167627

  16. Tomographic reconstruction of FT-IR measurements of an oxygen-acetylene flame during diamond film growth

    This paper employs Fourier Transform Infrared (FT-IR) spectroscopy and tomography to elucidate the gas phase chemistry of the flame CVD of diamond. A combination of emission and transmission measurements yields species concentrations (CO, CO2, H2O, and OH) and gas temperature. The data demonstrate that the substrate significantly perturbs the flame structure in both temperature and species concentrations

  17. Acetylene (C2H2 and hydrogen cyanide (HCN from IASI satellite observations: global distributions, validation, and comparison with model

    V. Duflot

    2015-05-01

    Full Text Available We present global distributions of C2H2 and HCN total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5% precision and HCN abundance in the tropical (subtropical belt with a 10% (30% precision. IASI data are compared for validation purposes with ground-based Fourier Transform Infrared (FTIR spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. IASI measurements are also compared to the distributions from the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model. However, the model seems to overestimate (underestimate anthropogenic (biomass burning emissions and a negative global mean bias of 1% (16% of the model relative to the satellite observations was found for C2H2 (HCN.

  18. Synthesis of Hexadehydrotribenzo[a,e,i][12]annulenes by Acetylene Insertion into an Open-Chain Precursor

    Dudič, Miroslav; Císařová, I.; Michl, Josef

    2012-01-01

    Roč. 77, č. 1 (2012), s. 68-74. ISSN 0022-3263 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional research plan: CEZ:AV0Z40550506 Keywords : one-step synthesis * alkyne metathesis * convenient synthesis * derivatives * macrocycle Subject RIV: CC - Organic Chemistry Impact factor: 4.564, year: 2012

  19. Development of vinylic and acetylenic functionalized structures based on high permeable glassy polymers as membrane materials for gas mixtures separation

    There are several challenging separation problems in industries which can be solved with the help of membrane technologies. It is the case for instance of the purification of gas energy carriers (i.e. H2, CH4) from CO2 as well as the CO2 recovery from flue gas. Glassy polymers containing trimethylsilyl residues like poly(1-trimethylsilyl-1-propyne) [PTMSP] and polyvinyltrimethylsilane [PVTMS] are known to exhibit good membrane properties for gas separation. This paper reports two ways of improving their performances based on the controlled introduction of selective groups – alkyl imidazomium salts (C4I) and polyethyleneglycol (M-PEG)- able to enhance CO2 selectivity. CO2 Isotherm sorption data and permeability measurements have shown that the membrane performances could be significantly improved when C4I and M-PEG were introduced as residues covalently bounded to the main polymer chain. Moreover the introduced bromine reactive centres could also be used to induce chemical crosslinking giving rise to more resistant and stable membranes to organic vapours. With the C4I groups, the CO2 sorption could be enhanced by a factor 4.4.

  20. Development of vinylic and acetylenic functionalized structures based on high permeable glassy polymers as membrane materials for gas mixtures separation

    Roizard, D.; Kiryukhina, Y.; Masalev, A.; Khotimskiy, V.; Teplyakov, V.; Barth, D.

    2013-03-01

    There are several challenging separation problems in industries which can be solved with the help of membrane technologies. It is the case for instance of the purification of gas energy carriers (i.e. H2, CH4) from CO2 as well as the CO2 recovery from flue gas. Glassy polymers containing trimethylsilyl residues like poly(1-trimethylsilyl-1-propyne) [PTMSP] and polyvinyltrimethylsilane [PVTMS] are known to exhibit good membrane properties for gas separation. This paper reports two ways of improving their performances based on the controlled introduction of selective groups - alkyl imidazomium salts (C4I) and polyethyleneglycol (M-PEG)- able to enhance CO2 selectivity. CO2 Isotherm sorption data and permeability measurements have shown that the membrane performances could be significantly improved when C4I and M-PEG were introduced as residues covalently bounded to the main polymer chain. Moreover the introduced bromine reactive centres could also be used to induce chemical crosslinking giving rise to more resistant and stable membranes to organic vapours. With the C4I groups, the CO2 sorption could be enhanced by a factor 4.4.

  1. 改进型湿法乙炔工艺介绍%Introduction to improved wet acetylene production process

    李富勇; 唐湘零; 肖军

    2012-01-01

    对传统湿法乙炔发生工艺的破碎单元、发生单元、清净单元、渣浆处理单元进行了技术改进,改进后的工艺生产1tPVC电石单耗降至1.40t,工业水单耗降至1.55t,经济和环保效益显著。%The crushing unit, gcnerating unit, purifying unit and slag slurry processing unit in the production of acctylcnc by traditional wet proccss wcrc modificd technologically. After modifi- cation, thc unit consumption of calcium carbide and industrial water for 1 ton of PVC were reduced to 1.40 and 1.55 tons, rcspcctively, and the economic effects and social cffccts wcrc obvious.

  2. Ionic .pi.-conjugated polyelectrolytes by catalyst free polymerization of bis(pyridyl)acetylenes and bis[(pyridyl)ethynyl]benzenes

    Faukner, T.; Trhlíková, Olga; Zedník, J.; Sedláček, J.

    2015-01-01

    Roč. 216, č. 14 (2015), s. 1540-1554. ISSN 1022-1352 R&D Projects: GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polymers * ionic polymers * polyacetylenes Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.616, year: 2014

  3. Asymbiotic Acetylene Reduction by a Fast-Growing Cowpea Rhizobium Strain with Nitrogenase Structural Genes Located on a Symbiotic Plasmid

    Bender, Gregory L.; Plazinski, Jacek; Rolfe, Barry G.

    1986-01-01

    A procedure was designed which enabled the detection of ex planta nitrogenase activity in the fast-growing cowpea Rhizobium strain IHP100. Nitrogenase activity in agar culture under air occurred at a rate similar to that found for Bradyrhizobium strain CB756 but lower than that for Rhizobium strain ORS571. Hybridization studies showed that both nod and nif genes were located on a 410-kilobase Sym plasmid in strain IHP100.

  4. Diversity of Δ12 fatty acid desaturases in santalaceae and their role in production of seed oil acetylenic fatty acids.

    Okada, Shoko; Zhou, Xue-Rong; Damcevski, Katherine; Gibb, Nerida; Wood, Craig; Hamberg, Mats; Haritos, Victoria S

    2013-11-01

    Plants in the Santalaceae family, including the native cherry Exocarpos cupressiformis and sweet quandong Santalum acuminatum, accumulate ximenynic acid (trans-11-octadecen-9-ynoic acid) in their seed oil and conjugated polyacetylenic fatty acids in root tissue. Twelve full-length genes coding for microsomal Δ12 fatty acid desaturases (FADs) from the two Santalaceae species were identified by degenerate PCR. Phylogenetic analysis of the predicted amino acid sequences placed five Santalaceae FADs with Δ12 FADs, which include Arabidopsis thaliana FAD2. When expressed in yeast, the major activity of these genes was Δ12 desaturation of oleic acid, but unusual activities were also observed: i.e. Δ15 desaturation of linoleic acid as well as trans-Δ12 and trans-Δ11 desaturations of stearolic acid (9-octadecynoic acid). The trans-12-octadecen-9-ynoic acid product was also detected in quandong seed oil. The two other FAD groups (FADX and FADY) were present in both species; in a phylogenetic tree of microsomal FAD enzymes, FADX and FADY formed a unique clade, suggesting that are highly divergent. The FADX group enzymes had no detectable Δ12 FAD activity but instead catalyzed cis-Δ13 desaturation of stearolic acid when expressed in yeast. No products were detected for the FADY group when expressed recombinantly. Quantitative PCR analysis showed that the FADY genes were expressed in leaf rather than developing seed of the native cherry. FADs with promiscuous and unique activities have been identified in Santalaceae and explain the origin of some of the unusual lipids found in this plant family. PMID:24062307

  5. Reaction between thiocarbamidoalkyl naphthols and acetylenic esters: An interesting cyclocondensation reaction for the synthesis of new thiazolidin-4-one derivatives

    Sakineh Amini; Ahmad Momeni Tikdari; Hojatollah Khabazzadeh

    2015-10-01

    This investigation was set to provide derivatives of thiazolidin-4-ones incorporated with amino-alkyl naphthols in a molecular frame work. For this purpose, a series of 1-thiocarbamidoalkyl-2-naphthols was prepared by the three component condensation of aromatic aldehydes, phenylthiourea and 2-naphthol. In the next step, these compounds underwent reaction with dialkyl acetylenedicarboxylates at ambient temperature in ethanol to afford the corresponding 4-thiazolidinones in high yields. Following the completion of the reaction, the products were solidified and isolated by filtration. The method is easy, inexpensive, chemoselective and environmentally benign and illustrates an interesting instance of click chemistry.

  6. /sup 15/N/sub 2/ incorporation and acetylene reduction by azospirillum isolated from rice roots and soils

    Nayak, D.N.; Charyulu, P.B.B.; Rajaramamohan Rao, V. (Central Rice Research Inst., Cuttack (India). Dept. of Soil Microbiology)

    1981-01-01

    Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by /sup 15/N/sub 2/ incorporation and C/sub 2/H/sub 2/ reduction. C/sub 2/H/sub 2/ reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in /sup 15/N/sub 2/ incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N/sub 2/-fixing ability and that plant genotype is of importance for optimal associations.

  7. Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors.

    Cherkasov, Nikolay; Ibhadon, Alex O; Rebrov, Evgeny V

    2015-04-21

    Catalysis in microreactors allows reactions to be performed in a very small volume, reducing the environmental problems and greatly intensifying the processes through easy pressure control and the elimination of heat- and mass-transfer limitations. In this study, we report a novel method for the controlled synthesis of micrometre-thick mesoporous TiO2 catalytic coatings on the walls of long channels (>1 m) of capillary microreactors in a single deposition step. The method uses elevated temperature and introduces a convenient control parameter of the deposition rate (displacement speed controlled by a stepper motor), which allows deposition from concentrated and viscous sols without channel clogging. A capillary microreactor wall-coated with titania supported Bi-poisoned Pd catalyst was obtained using the method and used for the semihydrogenation of 2-methyl-3-butyn-2-ol providing 93 ± 1.5% alkene yield for 100 h without deactivation. Although the coating method was applied only for TiO2 deposition, it is nonetheless suitable for the deposition of volatile sols. PMID:25749619

  8. Degradation and cis-to-trans isomerization of poly[(2,4-difluorophenyl)acetylene]s of various initial molecular weight: SEC, NMR, DLS and EPR study

    Trhlíková, O.; Zednik, J.; Matějíček, P.; Horáček, Michal; Sedláček, J.

    2013-01-01

    Roč. 98, č. 9 (2013), s. 1814-1826. ISSN 0141-3910 R&D Projects: GA ČR(CZ) GAP108/11/1661 Institutional support: RVO:61388955 Keywords : 1,3,5-Tris(2,4-difluorophenyl) benzene * Conjugated polymers * Degradation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.633, year: 2013

  9. Selective Liquid-Phase Semihydrogenation of Functionalized Acetylenes and Propargylic Alcohols with Silica-Supported Bimetallic Palladium—Copper Catalysts

    Koten, G. van; Spee, M.P.R.; Meijer, M.D.; Slagt, M.Q.; Geus, John W.

    2001-01-01

    Silica-supported, bimetallic palladium-copper catalysts were prepared in solution under mild conditions by reacting lithium di(4-tolyl)cuprate with palladium acetate in the presence of silica particles. Small bimetallic palladium-copper particles were deposited on the silica surface as confirmed wit

  10. A combined IRAM and Herschel/HIFI study of cyano(di)acetylene in Orion KL: tentative detection of DC3N

    Esplugues, G B; Viti, S; Goicoechea, J R; Tercero, B; Marcelino, N; Palau, Aina; Bell, T A; Bergin, E A; Crockett, N R; Wang, S

    2013-01-01

    We present a study of cyanoacetylene (HC3N) and cyanodiacetylene (HC5N) in Orion KL, through observations from two line surveys performed with the IRAM 30m telescope and the HIFI instrument on board the Herschel telescope. The frequency ranges covered are 80-280 GHz and 480-1906 GHz. We model the observed lines of HC3N, HC5N, their isotopologues (including DC3N), and vibrational modes, using a non-LTE radiative transfer code. To investigate the chemical origin of HC3N and DC3N in Orion KL, we use a time-dependent chemical model. We detect 40 lines of the ground state of HC3N and 68 lines of its 13C isotopologues. We also detect 297 lines of six vibrational modes of this molecule (nu_7, 2nu_7, 3nu_7, nu_6, nu_5, and nu_6+nu_7) and 35 rotational lines of the ground state of HC5N. We report the first tentative detection of DC3N in a giant molecular cloud with a DC3N/HC3N abundance ratio of 0.015. We provide column densities and isotopic and molecular abundances. We also perform a 2x2" map around Orion IRc2 and w...

  11. Long-Chain Acetylenic Ketones from the Micronesian Sponge Haliclona sp. Importance of the 1-yn-3-ol Group for Antitumor Activity

    Guang-Xiong Zhou

    2003-11-01

    Full Text Available Abstract: Two new long-chain C33 polyacetylenic compounds, halicynones A and B were isolated from the marine sponge Haliclona sp. along with known analogs. The known compound pellynol A possessing a 1-yn-3-ol terminus, exhibited strong antitumor activity against the human colon tumor cell line HCT-116 (IC50 0.026 μg/mL, however, the corresponding 1-yn-3-one, halicynone A, was inactive, which suggests an important role for the terminal 1-yn-3-ol functional group in mediating cytotoxic activity.

  12. Diamond synthesis by a CVD techniques using an acetylene combustion flame. Sintesis de diamante mediante deposicion quimica en fase vapor con llama de combustion de acetileno

    Garcia Diego, I.; Vazquez-Vaamonde, A.J. (Centro Nacional de Investigaciones Metalurgicas, Madrid (Spain))

    1994-01-01

    Diamond particles and films with good crystallinity were grown on a molybdenum substrate with and oxyacetylene combustion flame. The diamond deposition has been carried out at ambient atmosphere. It depends on both the O[sub 2]/C[sub 2]H[sub 2] molar ratio and the substrate temperature. Diamond quality was analyzed by scanning electron microscopy and Raman spectroscopy. This Chemical Vapor Deposition (CVD) technique is an alternative method to grow diamond protective layers on metal substrates. Author (23 refs.)

  13. Super acid catalysed sequential hydrolysis/cycloisomerization of -(acetylenic)benzamides under microwave condition: Synthesis, antinociceptive and antiinflammatory activity of substituted isocoumarins

    Chandrasekaran Praveen; P Dheenkumar; P T Perumal

    2013-01-01

    Synthesis of isocoumarins and related compounds via triflic acid promoted hydrolysis/cyclization sequence of 2-(alkynyl)benzamides under microwave condition was achieved. The substrate scope of the reaction was broad to include not only aromatic but also polyaromatic and heteroaromatic motifs, thus highlighting the significance of this methodology. One-pot operation, short reaction time, good chemical yields and excellent regioselectivity are the advantages of this protocol. All the synthesized compounds were evaluated for their antinociceptive and antiinflammatory activities using in vivo rodent models.

  14. Isoquinoline-catalyzed reaction between 4-hydroxycoumarin or 4-hydroxy-6-methylpyran-1-one and dialkyl acetylene dicarboxylates: synthesis of coumarin and pyranopyrane derivatives

    Anary-Abbasinejad, Mohammad; Anaraki-Ardakani, Hossein; Mosslemin, Mohammad Hossein [Islamic Azad University, Yazd (Iran, Islamic Republic of). Dept. of Chemistry; Khavasi, Hamid Reza [Shahid Beheshti University, Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2010-07-01

    In this work we report the reaction between dialkyl acetylenedicarboxylates and enolic systems such as 5,5-dimethyl-1,3-cyclohexanedione, 1,3-cyclohexanedione, 4-hydroxycoumarin or 4-hydroxy-6-methylpyran-1-one in the presence of isoquinoline, which leads to new coumarin and pyranopyran derivatives. (author)

  15. Synthesis of 5,6-dihydroquinolines and succinates via the reaction of α,α-dicyanoolefins and acetylenic esters in a ratio of 2:1

    Alizadeh, A.; Hosseini, S.Y.; Sedighian, H.; Bayat, F.; Zhu, Z.; Dušek, Michal

    2015-01-01

    Roč. 71, č. 41 (2015), s. 7885-7891. ISSN 0040-4020 Institutional support: RVO:68378271 Keywords : alpha,alpha-dicyanoolefin * dialkyl acetylenedicarboxylate * 5,6-dihydroquinoline * 2-(3,4-dihydronaphthalen-1(2H)-ylidene) * malononitriles * succin Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.641, year: 2014

  16. REDUCTIVE TRANSFORMATION OF TRICHLOROETHENE CATALYZED BY COBALAMIN: REACTIVITIES OF THE INTERMEDIATES, ACETYLENE, CHLOROACETYLENE, AND THE DCE ISOMERS. (R825689C073)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Synthesis of Stable and Soluble One-Handed Helical Homopoly(substituted acetylenes without the Coexistence of Any Other Chiral Moieties via Two-Step Polymer Reactions in Membrane State: Molecular Design of the Starting Monomer

    Takashi Kaneko

    2012-01-01

    Full Text Available A soluble and stable one-handed helical poly(substituted phenylacetylene without the coexistence of any other chiral moieties was successfully synthesized by asymmetric-induced polymerization of a chiral monomer followed by two-step polymer reactions in membrane state: (1 removing the chiral groups (desubstitution; and (2 introduction of achiral long alkyl groups at the same position as the desubstitution to enhance the solubility of the resulting one-handed helical polymer (resubstitution. The starting chiral monomer should have four characteristic substituents: (i a chiral group bonded to an easily hydrolyzed spacer group; (ii two hydroxyl groups; (iii a long rigid hydrophobic spacer between the chiral group and the polymerizing group; (iv a long achiral group near the chiral group. As spacer group a carbonate ester was selected. The two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed helical structure in solution before and after the two-step polymer reactions in membrane state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the solubility of the starting polymer, and realized effective chiral induction from the chiral side groups to the main chain in the asymmetric-induced polymerization. The long alkyl group near the chiral group avoided shrinkage of the membrane and kept the reactivity of resubstitution in membrane state after removing the chiral groups. The g value (g = ([θ]/3,300/ε for the CD signal assigned to the main chain in the obtained final polymer was almost the same as that of the starting polymer in spite of the absence of any other chiral moieties. Moreover, since the one-handed helical structure was maintained by the intramolecular hydrogen bonds in a solution, direct observation of the one-handed helicity of the final homopolymer has been realized in CD for the solution for the first time.

  18. Ru Catalysts with Oxygenated Carbon Supports for Acetylene Hydrochlorination%氧改性活性炭负载Ru催化剂对乙炔氢氯化反应的影响

    戴卉; 代斌; 张金利

    2014-01-01

    催化剂的活性和载体性质关系很大,活性炭是一种最常见的催化剂载体.本文选取椰壳活性炭作为催化剂载体,经煅烧之后进行了氧化处理改性研究,实验考察了改性载体负载钌基活性组分在乙炔氢氯化反应中的应用,并利用比表面积测试法、拉曼光谱分析、化学吸脱附分析、X射线光电子能谱测试和热重分析等对其结构和表面形貌进行了表征.实验结果表明:不同温度煅烧处理对载体的氧含量和表面含氧官能团密切相关,改性后载体表面富含酸酐和羰基基团,制备的钌基催化剂,主要活性组分为RuO2和RuOx,能减少催化剂表面的积碳含量;改性后最好的催化剂为Ru/C800-A5,在反应温度为180℃,乙炔空速为150 h-1时,乙炔初始转化率可以达到97%.上述实验方法与结果说明:这种对载体先煅烧后氧化的改性方法操作简单,容易实施;Ru/C800-A5是一种绿色、高效、价格低廉的催化剂,同时具有很好的工业化应用前景.

  19. ONE-POT SYNTHESIS OF FUNCTIONALIZED 2-THIAZOLIDIN-4-ONES FROM THIOSEMICARBAZONE DERIVATIVES AND ACETYLENIC ESTERS IN WATER Ein-Topf-Synthese funktionalisierter 2-THIAZOLIDIN-4-one FROM Thiosemicarbazone DERIVATE UND Acetylenische ESTERS IM WASSER.

    Sayed Ali Ahmadi*, Dadkhoda Ghazanfari

    2013-07-01

    Full Text Available Some derivatives of 2-thiazolidin-4-ones were synthesized from dialkyl acetylenedicarboxylates and thiosemicarbazone derivatives of chalchones in the presence of triphenylphosphine in water

  20. The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes.

    Zhang, Weiwei; Wu, Huayue; Liu, Zhiqing; Zhong, Ping; Zhang, Lin; Huang, Xiaobo; Cheng, Jiang

    2006-12-14

    An efficient Pd-catalyzed copper and amine free coupling reaction of acetylene and aryl bromides was achieved with calcium carbide as an acetylene source, using inorganic base and easily prepared, air-stable aminophosphine ligand in common organic solvents, providing symmetric diaryl ethynes in one-pot with yields ranged from moderate to excellent. PMID:17345742

  1. Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology.

    Rodygin, Konstantin S; Werner, Georg; Kucherov, Fedor A; Ananikov, Valentine P

    2016-04-01

    Acetylene, HC≡CH, is one of the primary building blocks in synthetic organic and industrial chemistry. Several highly valuable processes have been developed based on this simplest alkyne and the development of acetylene chemistry has had a paramount impact on chemical science over the last few decades. However, in spite of numerous useful possible reactions, the application of gaseous acetylene in everyday research practice is rather limited. Moreover, the practical implementation of high-pressure acetylene chemistry can be very challenging, owing to the risk of explosion and the requirement for complex equipment; special safety precautions need to be taken to store and handle acetylene under high pressure, which limit its routine use in a standard laboratory setup. Amazingly, recent studies have revealed that calcium carbide, CaC2 , can be used as an easy-to-handle and efficient source of acetylene for in situ chemical transformations. Thus, calcium carbide is a stable and inexpensive acetylene precursor that is available on the ton scale and it can be handled with standard laboratory equipment. The application of calcium carbide in organic synthesis will bring a new dimension to the powerful acetylene chemistry. PMID:26898248

  2. 1,4-diphenylbutadiyne as a potential tritium getter

    Research on the acetylene compound 1,4-diphenylbutadiyne is an effort to develop an air-operative tritium gas scavenger. T2 adds to the acetylene bond of the organic in the presence of a metal catalyst. The catalyst also stimulates the oxidation reaction as well. The butadiyne compound has shown good reaction efficiency at 300 ppM T2 in static dry air. At this concentration 75% of the scavenged tritium was in the organic. This work has expanded to the investigation of liquid acetylenes, metal acetylene complexes, organometallics and acetylene based alcohols. The best of these compounds has gettered 100% of 10 to 500 ppM T2 for both static and dynamic air flow conditions

  3. Growth stress in tungsten carbide-diamond-like carbon coatings

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  4. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Cal, E. de la; Tabares, F. L.

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  5. C2 hydrocarbon synthesis from natural gas by thermal plasma splitting decomposition

    The effects of feed rate of nitrogen and natural gas on natural gas conversion and acetylene yield have been studied in nitrogen plasma torch. Experiments showed that best result can be obtained when the ratio of feed rate of natural gas to nitrogen is 1:1. Particularly, when plasma power is 15 kW and feed rate of natural gas and nitrogen are 3Nm3·h-1, the best results are obtained as follows: the natural gas conversion 57%, acetylene yield 34%, the acetylene volume concentration in the product gas 13.2% excluding nitrogen and 7.5% including nitrogen

  6. The influence of C2H2 and dust formation on the time dependence of metastable argon density in pulsed plasmas

    Stefanovic, Ilija; Sadeghi, Nader; Winter, Jörg

    2010-01-01

    Abstract Diode laser absorption at 772.38 nm is used to measure the time resolved density of Ar*(3 P 2) metastable atoms in a capacitively coupled radio-frequency (RF) discharge running in argon/acetylene mixture at 0.1 mbar. The RF power is pulsed at 100 Hz and the density of Ar*(3 P 2) atoms in the 5 ms ON time and in the afterglow are recorded. Different plasma conditions, namely: 1) pure argon, 2) argon + 7% acetylene before powder formation, 3) argon + 7% acetylene after dust particle...

  7. Source Molecular Effect on Amorphous Carbon Film Deposition

    Kawazoe, Hiroki; Inayoshi, Takanori; Shinohara, Masanori; Matsuda, Yoshinobu; Fujiyama, Hiroshi; Nitta, Yuki; Nakatani, Tatsuyuki

    2009-01-01

    We investigated deposition process of amorphous carbon films using acetylene and methane as a source molecule, by using infrared spectroscopy in multiple internal reflection geometry (MIR-IRAS). We found that deposited film structures were different due to source molecules.

  8. Fragmentation Control of a Polyatomic Molecule by fully determined Laser-Fields

    Varga K.; Atkinson M.; Bubin S.; Gräfe S.; Doblhoff-Dier K.; Paulus G. G.; Rathje T.; Xu H; Zhang L; Kartashov D.; Schöffler M.; Roither S.; Xie X; Yamanouchi K.; Baltuška A.

    2013-01-01

    Strong-field control of acetylene fragmentation by fully determined few-cycle laser pulses is demonstrated. The control mechanism is shown to be based on electron recollision and inelastic ionization from inner-valence molecular orbitals.

  9. Fragmentation Control of a Polyatomic Molecule by fully determined Laser-Fields

    Varga K.

    2013-03-01

    Full Text Available Strong-field control of acetylene fragmentation by fully determined few-cycle laser pulses is demonstrated. The control mechanism is shown to be based on electron recollision and inelastic ionization from inner-valence molecular orbitals.

  10. Pyrolytic Synthesis of Carbon Nanotubes on Ni, Co/MCM-41 Catalysts

    Katok, K. V.; Tertykh, V. A.; Pavlenko, A. N.; Brichka, S. Ya.; Prikhod'ko, G. P.

    2004-01-01

    Process of vapor pyrolytic deposition of carbon on nickel and cobalt-containing ordered mesoporous MCM-41 matrices at decomposition of acetylene have been investigated. Formation of nanotubes, nanowires and amorphous carbon particles depending pyrolysis conditions is observed.

  11. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization

    Krovi, Sai Archana; Smith, DeeDee; Nguyen, SonBinh T.

    2010-01-01

    The versatility of copper-catalyzed alkyne-azide coupling (CuAAC) in functionalizing drug-loaded polymer nanoparticles is demonstrated via the modification of surfaces of acetylene-functionalized PNPs with folate, biotin, and gold nanoparticles.

  12. Energy partitioning in elementary chemical processes

    Bersohn, R. [Columbia Univ., New York, NY (United States)

    1993-12-01

    In the past year research has centered on the decomposition of hot molecules, the reaction of ethynyl radicals with hydrogen molecules and the reaction of oxygen atoms with acetylene. Reaction kinetics studies are reported for each of these systems.

  13. Eye Protection

    ... of protection is wise indeed. WHAT ARE THE DANGERS ASSOCIATED WITH WELDING? Acetylene torch welding and cutting ... welding masks with filtering lenses. Mail order and Internet–based safety suppliers are also an option. National ...

  14. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine Wetland

    King, G. M.

    1996-01-01

    Methane oxidation associated with the belowground tissues of a common aquatic macrophyte, the burweed Sparganium eurycarpum, was assayed in situ by a chamber technique with acetylene or methyl fluoride as a methanotrophic inhibitor at a headspace concentration of 3 to 4%. Acetylene and methyl fluoride inhibited both methane oxidation and peat methanogenesis. However, inhibition of methanogenesis resulted in no obvious short-term effect on methane fluxes. Since neither inhibitor adversely affe...

  15. External cavity diode laser based upon an integrated optical fiber platform

    Lynch, Stephen; Holmes, Christopher; Berry, Sam; Gates, James; Jantzen, Alexander; Ferreiro, Teresa; Smith, Peter

    2016-01-01

    Plotted Data Description: Acetylene Spectrum OSA Col 1 Wavelength (nm) Col 2 Power (dBm) Grating Reflection Spectrum Col 1 Wavelength (nm) Col 2 Power (dBc) Current Power & Voltage Col 1 Current (mA) Col 2 Power (mW) Col 3 Potential (V) Laser Spectrum OSA Col 1 Wavelength (nm) Col 2 Power (dBm) Acetylene Scan Col 1 Wavelength (nm) Col 2 Absorption Coefficient Agilent 81640B RIN Col 1 Frequency (Hz) Col 2 ...

  16. Properties changes of Ti(C, O, N) films prepared by PVD : the effect of reactive gases partial pressure

    Cunha, L.; Moura, C.; Vaz, F; Chappé, J. M.; Olteanu, C.; D. Munteanu; Munteanu, A.

    2009-01-01

    Dark Ti-C-O-N thin films were deposited by dc reactive magnetron sputtering. A titanium target was sputtered while three different gas flows were injected into the deposition chamber: argon (working gas), acetylene and a mixture of oxygen and nitrogen (reactive gases). The films were produced with variation of the gases flow rates, maintaining the remaining parameters constant. Varying the ratio between the reactive gases flow (gas mixture/acetylene) allowed obtaining films with different cha...

  17. Burn Injury Arise From Flying Balloon Toys

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  18. Laboratory IR Studies and Astrophysical Implications of C2H2-Containing Binary Ices

    Knez, C.; Moore, M. H.; Ferrante, R. F.; Hudson, R. L.

    2012-04-01

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's ν5-band position (743 cm-1, 13.46 μm) and FWHM on temperature. Our results show that the ν5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  19. LABORATORY IR STUDIES AND ASTROPHYSICAL IMPLICATIONS OF C2H2-CONTAINING BINARY ICES

    Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's ν5-band position (743 cm–1, 13.46 μm) and FWHM on temperature. Our results show that the ν5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.

  20. Characterization of the Minimum Energy Paths for the Reactions of CH(X(sup 2 Pi) and (1)CH2 with C2H2

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    The reactions of CH(sup 2 Pi) and singlet methylene (1)CH2 with acetylene lead to intermediates which may be important in soot formation. CH(sup 2 Pi) + acetylene leads to CHCHCH (C3H3), CHCCH (C3H2), and propargyl (CH2CCH). (1)CH2 + acetylene leads to cyclopropene and propargyl. All of these reaction products are formed with no barrier. Miller and Melius have previously discussed the dimerization of propargyl to give benzene. C3H3 and C3H2 can dimerize with no barrier to give benzene and para-benzyne, respectively. C3H3 and C3H2 can also add to smaller polynuclear aromatic hydrocarbons (PAH), and may be important species in forming larger PAH or fullerenes.

  1. An Approach for Hydrogen Recycling in a Closed-loop Life Support Architecture to Increase Oxygen Recovery Beyond State-of-the-Art

    Abney, Morgan B.; Miller, Lee; Greenwood, Zachary; Alvarez, Giraldo

    2014-01-01

    State-of-the-art atmosphere revitalization life support technology on the International Space Station is theoretically capable of recovering 50% of the oxygen from metabolic carbon dioxide via the Carbon Dioxide Reduction Assembly (CRA). When coupled with a Plasma Pyrolysis Assembly (PPA), oxygen recovery increases dramatically, thus drastically reducing the logistical challenges associated with oxygen resupply. The PPA decomposes methane to predominantly form hydrogen and acetylene. Because of the unstable nature of acetylene, a down-stream separation system is required to remove acetylene from the hydrogen stream before it is recycled to the CRA. A new closed-loop architecture that includes a PPA and downstream Hydrogen Purification Assembly (HyPA) is proposed and discussed. Additionally, initial results of separation material testing are reported.

  2. Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. In representative soils of central Amazonia

    Sylvester-Bradley, R.; De Oliverira, L.A.; De Podesta Filho, J.A.; St. John, T.V.

    1980-12-01

    Leguminosae do not predominate in the Brazilian Amazon rain forest, although they are among the five best represented families. Plant roots from various soils were examined for the presence of nodules, acetylene-reducing activity and N/sub 2/-fixing Azospirillum spp. Abundant nodulation was found in black earth (''terra preta dos indios'') and in one case on sandy soil under campinarana vegetation along a tributary of the upper Rio Negro. In sandy latosol some nodules occurred in secondary forest and fewer in primary forest. Legumes in disturbed clayey or sandy latosol showed more frequent nodulation. Primary forest on alluvial (''varzea'') soil, and in Bahia coastal rain forest on sandy latosol and Erythrina glauca used for shading cacao plantations were abundantly nodulated. Acetylene reduction assays showed no, or very little, nitrogenase activity of roots from primary or secondary forest on clayey latosol near Manaus. Nodulated roots from secondary forest on sandy latosol showed acetylene-reducing activity. High rates of acetylene reduction were observed in nodulated roots of primary forest on alluvial ''varzea'' soil. Root samples showed ethylene absorption in controls without acetylene which might interfere with the results of acetylene reduction tests. The incidence of Azospirillum was also higher in black earth than the other soils examined, and in soils with higher pH. The hypothesis that Azospirillum is associated with Trema micantha roots was refuted. Roots and soils collected under cultivated grasses showed a higher incidence of Azospirillum when fertilized with phosphorus and lime. Results indicate that nitrogen fixation did occur in association with roots in some soils, but not with roots of primary or secondary forest on clayey latosol in the vicinity of Manaus, which is the most common soil in Central Amazonia. The possible reasons for this are discussed.

  3. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  4. Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes

    Curry, S.; Ciuffetti, L.; Hyman, M.

    1996-01-01

    The growth of a filamentous fungus, a Graphium sp., on n-alkanes (C(inf2) to C(inf4)) was inhibited by low concentrations of acetylene, propyne, 1-butyne, ethylene, and propylene. Acetylene and other unsaturated hydrocarbons had no effect on the growth of the Graphium sp. on potato dextrose broth, ethanol, or acetate. Our results suggest that n-alkynes and n-alkenes are selective inhibitors of a nonspecific monooxygenase enzyme responsible for the initial oxidation of n-alkanes.

  5. Atomic absorption spectroscopy with high temperature flames.

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  6. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    The formation of C2 and C3 hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  7. Improved low concentration gas detection system based on intracavity fiber laser

    Zhang, Hongxia; Liu, Kun; Jia, Dagong; Xu, Tianhua; Liu, Tiegen; Peng, Gangding; Jing, Wencai; Zhang, Yimo

    2011-02-01

    The improvement of a low concentration gas detection system based on the intracavity fiber laser is proposed in this paper. The sensitivity of the system is deduced based on Lambert-Beer law. The optimized system was established with the gas cell made elaborately. In order to apply the wavelength sweeping technique, the fiber Bragg grating reflector was substituted by the wavelength independent Faraday rotation reflector. The sensitivity of the system for acetylene detection is reduced to less than 100 ppm by using the average of three absorption spectra. The acetylene detection coefficients of variation with different concentrations are measured. The gas measurement system is validated to detect low concentration gas effectively.

  8. Synthesis and study of conjugated polymers containing Di- or Triphenylamine

    Sukwattanasinitt, M.

    1996-06-21

    This thesis consists of two separate parts. The first part addresses the synthesis and study of conjugated polymers containing di- or triphenylamine. Two types of polymers: linear polymers and dendrimers, were synthesized. The polymers were characterized by NMR, IR, UV, GPC, TGA and DSC. Electronic and optical properties of the polymers were studied through the conductivity measurements and excitation- emission spectra. the second part of this thesis deals with a reaction of electron-rich acetylenes with TCNE. The discovery of the reaction from charge transfer complex studies and the investigation of this reaction on various electron-rich acetylenes are presented.

  9. Preparation of Pt–Ru bimetallic catalyst supported on carbon nanotubes

    B Rajesh; K Ravindranathan Thampi; J -M Bonard; B Viswanathan

    2000-10-01

    The template carbonization of polyphenyl acetylene yields hollow, uniform cylindrical carbon nanotubes with outer diameter almost equal to pore diameter of the template used. High resolution transmission electron microscopic investigation reveals that Pt–Ru nanoparticles are highly dispersed inside the tube with an average particle size of 1.7 nm.

  10. Effect of UV-C on thylakoid arrangement, pigment content and nitrogenase activity in the cyanobacterium .i.Microchaete./i. sp

    Sahu, J.K.; Šimek, Miloslav

    2013-01-01

    Roč. 51, č. 5 (2013), s. 388-392. ISSN 0019-5189 R&D Projects: GA AV ČR IAA600660605; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : acetylene reduction assay * carotenoid * chlorophyll-a Subject RIV: ED - Physiology Impact factor: 0.753, year: 2013

  11. Simultaneous description of conductance and thermopower in single-molecule junctions from many-body ab initio calculations

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer

    2014-01-01

    We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...

  12. Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent

    Weng, Zhiqiang

    2012-03-01

    A catalytic process for trifluoromethylation of terminal alkynes with Togni\\'s reagent has been developed, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  13. Denitrification and methane/nitrous oxide emissions from recreational and agricultural riparian buffers in the southeastern United States

    Denitrification was measured via the acetylene inhibition method in riparian buffers adjacent to a golf course and sites with various agronomic management and landscape positions in the southeastern Coastal Plain of the USA. Denitrification in the riparian buffers adjacent to the golf course was neg...

  14. 48 CFR 25.104 - Nonavailable articles.

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Nonavailable articles. 25... PROGRAMS FOREIGN ACQUISITION Buy American Act-Supplies 25.104 Nonavailable articles. (a) The following articles have been determined to be nonavailable in accordance with 25.103(b)(1)(i): Acetylene, black....

  15. Nepheliosyne B, a New Polyacetylenic Acid from the New Caledonian Marine Sponge Niphates sp.

    Patrick Auberger

    2013-06-01

    Full Text Available A new C47 polyoxygenated acetylenic acid, nepheliosyne B (2, along with the previously described nepheliosyne A (1, have been isolated from the New Caledonian marine sponge Niphates sp. Their structures have been elucidated on the basis of extensive spectroscopic analyses. These metabolites exhibited a moderate cytotoxicity against K562, U266, SKM1, and Kasumi cancer cell lines.

  16. The potential for chemical evolution on Titan

    Beauchamp, P. M.; Lunine, J. I.; Welch, C.

    2002-01-01

    Sampling of organics to determine oxygen content, extent of acetylene polymerization, existence of chiral molecules and enantiomeric excesses, and searches for specific polymer products, would be of interest in assessing how organic chemistry evolves toward biochemistry. Such efforts would require fairly sophisticated chemical analyses from landed missions. This paper examines this chemistry and the potential instruments that could distinguish chemical evolution.

  17. ONE POT SYNTHESIS OF THIAZOLIDINONES IN MOLTEN (ET3NHHSO4. ONE Eintopfsynthese Thiazolidinone in Mölten (Et3NH HSO4.

    Maryam Kalantari

    2013-07-01

    Full Text Available Some thiazolidinones have been synthesized by the reaction of semicarbazones with acetylenic esters in molten (Et3NHHSO4 as an acid ionic liquid. This method provides several advantages such as operational simplicity, higher yield, safety and environment friendly protocol.

  18. Molecular isomerization and fragmentation of polyatomic molecules controlled by inner-valence recollision-ionization

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets.

  19. Selective inner-valence ionization of aligned polyatomic molecules for controlling molecular fragmentation

    We show experimentally and theoretically, using acetylene as an example, that the strong preponderance of ionization from specific molecular orbitals to the alignment of the molecular axis with respect to the laser polarization direction allows implementing a method for controlling fragmentation reactions of polyatomic molecules.

  20. Combination moisture and hydrogen getter

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  1. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations in...

  2. Post cold-storage conditioning time affects soil denitrifying enzyme activity

    Chirinda, Ngonidzashe; J. E. Olesen; Porter, J R

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage.Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold storage warming-up time prior to soil analysis) as a factor influencing results. We observed fluctuations in DEA following cold storage, suggesting a need to consider conditioning time when planning and interpreting results.

  3. A general metal-free approach for the stereoselective synthesis of C-glycals from unactivated alkynes

    Shekaraiah Devari; Manjeet Kumar; Ramesh Deshidi; Masood Rizvi; Bhahwal Ali Shah

    2014-01-01

    A novel metal-free strategy for a rapid and α-selctive C-alkynylation of glycals was developed. The reaction utilizes TMSOTf as a promoter to generate in situ trimethylsilylacetylene for C-alkynylation. Thanks to this methodology, we can access C-glycosides in a single step from a variety of acetylenes , i.e., arylacetylenes and most importantly aliphatic alkynes.

  4. A general metal-free approach for the stereoselective synthesis of C-glycals from unactivated alkynes

    Devari, Shekaraiah; Kumar, Manjeet; Deshidi, Ramesh; Rizvi, Masood; Shah, Bhahwal Ali

    2014-01-01

    A novel metal-free strategy for a rapid and α-selctive C-alkynylation of glycals was developed. The reaction utilizes TMSOTf as a promoter to generate in situ trimethylsilylacetylene for C-alkynylation. Thanks to this methodology, we can access C-glycosides in a single step from a variety of acetylenes , i.e., arylacetylenes and most importantly aliphatic alkynes.

  5. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; Bøggild, Peter;

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as...

  6. Theoretical studies of the dynamics of chemical reactions

    Wagner, A.F. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  7. A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1

    Irvine, W. M.; Brown, R. D.; Cragg, D. M.; Godfrey, P. D.; Friberg, P.

    1988-01-01

    The detection of the acetylene derivative propynal in the cold cloud TMC-1, with an abundance that is very close to that for the related species tricarbon monoxide, is reported. Propadienone, an isomer of propynal, was not detected and is hence less abundant than either C3O or HC2CHO.

  8. Photo- and heterotrophic nitrogenase activity by the cyano-bacterium Nostoc in symbiosis with the bryophyte Anthoceros

    In symbiosis with Anthoceros, Nostoc is thought to do little or no photosynthesis. However, light-dependent 14CO2 fixation by symbiotic Nostoc, freshly isolated from pure cultures of the reconstituted Anthoceros-Nostoc association, was 16% of that by free-living Nostoc. A DCMU-resistant mutant of Nostoc was isolated that fixed CO2 at rates comparable to wild-type in both symbiotic and free-living growth states. To determine if symbiotic Nostoc can use its photosynthate directly to fix nitrogen, acetylene reduction by Anthoceros associations reconstituted with wild-type Nostoc was compared to associations with the DCMU-resistant mutant. In wild-type Anthoceros-Nostoc acetylene reduction was inhibited 97% by 5 μM DCMU, while inhibition of the DCMU-resistant Nostoc association was only 63%. Additions of glucose, fructose, maltose or sucrose to wild-type associations completely restored DCMU-inhibited acetylene reduction in the light. Acetylene reduction in the dark was stimulated by glucose, attaining 84% of the uninhibited light-dependent value. The authors conclude that symbiotic Nostoc maintains a pool of photosynthate which supports nitrogenase activity. The pool can also be supplemented from plant sources

  9. Modulation of the charge transfer and photophysical properties in non-fused tetrathiafulvalene-benzothiadiazole derivatives.

    Pop, Flavia; Seifert, Sabine; Hankache, Jihane; Ding, Jie; Hauser, Andreas; Avarvari, Narcis

    2015-01-28

    Bis(thiomethyl)- and bis(thiohexyl)-tetrathiafulvalene-bromo-benzothiadiazoles, containing electron donor tetrathiafulvalene (TTF) and electron acceptor benzothiadiazole (BTD) units, have been prepared by Stille coupling reactions between the TTF-SnMe3 precursors and BTD-Br2. In another series of experiments, TTF-acetylene-BTD compounds have been synthesized by Sonogashira coupling between either TTF-acetylenes and BTD-Br2 in low yields, or TTF-iodine and BTD-acetylene in moderate yields. In the compound TTF-C≡C-BTD the TTF and BTD units are coplanar in the solid state, as shown by the single crystal X-ray structure, and there is segregation in the packing between the donor and acceptor units. All the derivatives have good electron donor properties, as determined by cyclic voltammetry measurements, and they can also be reversibly reduced thanks to the presence of the BTD moiety. UV-visible spectroscopy and photophysical investigations show the presence of an intramolecular charge transfer (ICT) band and an emission band originating from the charge transfer. Both the absorption and the emission are modulated by the substitution scheme and the insertion of the acetylenic bridge. PMID:25410315

  10. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    2001-01-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  11. ''Titration'' polymerization of monovinylacetylene

    Mavinkurve, A; Visser, S; vandenBroek, W; Pennings, AJ

    1996-01-01

    A polymer consisting of a saturated carbon backbone with pendent acetylenic groups was prepared from monovinylacetylene. A titration was performed between the monomer and tertiary butyllithium, its lithiating agent. The charge transfer complex formed between the solvent THF and the tertiary butyllit

  12. Regioselectivity in the Sonogashira coupling of 4,6-dichloro-2-pyrone.

    Fairlamb, Ian J S; O'Brien, Ciara T; Lin, Zhenyang; Lam, King Chung

    2006-04-01

    The Sonogashira cross-coupling of 4,6-dichloro-2-pyrone with terminal acetylenes proceeds in good yields and high regioselectivity for the 6-position; dibenzylidene acetone (dba) type ligands play a non-innocent role in reactions mediated by Pd(dba)2/PPh3; theoretical studies indicate that C-6 oxidative addition is favoured both kinetically and thermodynamically. PMID:16557307

  13. Scattering experiments with hydrogen and helium beams for the study of the interaction of H2, N2, and C2H2 with the (001)-surfaces of LiF, NaCl, KCl, and MgO

    In the present work the interaction of hydrogen, nitrogen and acetylene with the surfaces of ionic crystals has been investigated. These studies use the scattering of molecular hydrogen beams from clean surfaces as well as information on structure and dynamics of molecular adsorbates obtained from elastic and inelastic helium atom scattering. (orig.)

  14. Deformation and failure mechanism of nano-composite coatings under nano-indentation

    Galvan, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2006-01-01

    Two nano-composite coatings based on nc-TiC particles in an a-C:H matrix are deposited via closed-field unbalanced reactive magnetron sputtering. The compositions of the coatings are varied by changing the acetylene gas flow during the depositions. A Cr/Cr-Ti/Ti-TiC graded interlayer is introduced b

  15. MODELLING OF THERMAL PROCESS OF DRAWING COVERINGS Моделирование теплового процесса нанесения покрытий

    Gorokhovа M. N.

    2013-06-01

    Full Text Available The article shows that the distribution of temperature regime in EIS corresponds to a known process of cutting and surface plastic deformation with heating details with acetylene-oxygen burner, which allows to combine the process of welding filler powders with finish-hardening treatment with combined instrument in the form of a two-pole bracket

  16. 40 CFR Appendix G to Part 50 - Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From...

    2010-07-01

    ... lead content of the sample is analyzed by atomic absorption spectrometry using an air-acetylene flame... Recommended Practices for Atomic Absorption Spectrometry.” ASTM Book of Standards, part 30, pp. 1596-1608... described in appendix B to this part. 5.2 Analysis. 5.2.1 Atomic absorption spectrophotometer. Equipped...

  17. A facile synthesis of terminal arylacetylenes via Sonogashira coupling reactions catalyzed by MCM-41-supported mercapto palladium(0) complex

    Ya Ping Xu; Rong Hua Hu; Ramesh C.Kamboj

    2008-01-01

    A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex,followed by desilylation under mild conditions.This polymeric palladium catalyst can be reused many times without any decrease in activity.

  18. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  19. ATMOSPHERE POLLUTION AT STORAGE OF SLAGS OF ALUMINIUM SECONDARY PROCESSING

    A. S. Panasyugin

    2015-05-01

    Full Text Available Thermodynamic probability of the processes of the formation of compounds of aluminum (which release in the environment by hydrolysis ammonia, acetylene, propane and hydrogen sulfide is determined. In the article the economic loss from irrecoverable waste of aluminum and fines for emissions of air pollutants is estimated.

  20. ATMOSPHERE POLLUTION AT STORAGE OF SLAGS OF ALUMINIUM SECONDARY PROCESSING

    A. S. Panasyugin; D. P. Mihalap; S. A. Panasyugin; N. D. Pavlovsky; Z. N. Chipurko

    2015-01-01

    Thermodynamic probability of the processes of the formation of compounds of aluminum (which release in the environment by hydrolysis ammonia, acetylene, propane and hydrogen sulfide) is determined. In the article the economic loss from irrecoverable waste of aluminum and fines for emissions of air pollutants is estimated.

  1. Controlled Synthesis of Carbon-Encapsulated Copper Nanostructures by Using Smectite Clays as Nanotemplates

    Tsoufis, Theodoros; Colomer, Jean-Francois; Maccallini, Enrico; Jankovic, Lubos; Rudolf, Petra; Gournis, Dimitrios; Jankovič, Lubos

    2012-01-01

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These

  2. Fluoride-promoted rearrangement of organo silicon compounds : A new synthesis of 2-(arylmethyl)aldehydes from 1-alkynes

    Aronica, LA; Raffa, P; Caporusso, AM; Salvadori, P

    2003-01-01

    A new approach to 2-(arylmethyl)aldehydes 4 based upon a 1,2-anionotropic rearrangement of an aryl group is presented. The synthetic sequence begins with a silylformylation reaction of terminal acetylenes 5 with aryl and heteroaryl silanes 6, followed by treatment of the products (Z)-1 with TBAF. Th

  3. One pot synthesis of bis-silicon-bridged stilbene derivatives

    2007-01-01

    Bis-silicon-bridged stilbene derivatives were synthesized in a modified procedure that combined the preparation of bis[2-(silyl)phenyl]acetylene and its intrmolecular reductive cyclization in one pot. The results indicated that the one pot approach produced target products in a comparable yield to that of the two-step method reported previously.

  4. New uranium compounds preparation and use as catalyst for hydrogenation of non-saturated organic compounds

    Preparation of new organic uranium compounds and their use as catalysts for hydrogenation of non-saturated organic compounds are described. These compounds include Uranium III, a cyclopentadienic group, an alkyl group and an acetylenic derivative C6H5C triple bonds CR fixed by a π bond. Catalysts can be prepared with depleted uanium for hydrogenation of olefins for example

  5. 49 CFR 173.205 - Specification cylinders for liquid hazardous materials.

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification cylinders for liquid hazardous... Than Class 1 and Class 7 § 173.205 Specification cylinders for liquid hazardous materials. When § 172... use of any specification or UN cylinder, except those specified for acetylene, is...

  6. Growth Mechanism of Silicon Carbide (SIC) on Clean Silicon Surfaces

    An understanding of the growth mechanisms of silicon carbide (SiC) on the silicon surfaces is important not only for technological applications but also from the point of view of fundamental research. Due to the great lattice (20%) mismatch as well as to the high reaction temperature (above 1000 degrees for standard thermal techniques), rough silicon carbide surfaces with high density of defects and voids have been generally obtained. The voids are related to the low diffusion coefficient of silicon in SiC, which should enhance the Si diffusion mechanism throughout the silicon layers. Therefore, in order to improve the crystalline quality several types of precursors have been used with the aim to lower the silicon carbide temperature formation. Among the several growth processes investigated, the exposure of a hot silicon substrate to C60, acetylene, ethylene and graphite has been reported to produce cubic SiC films at temperatures in the range between 600 degrees and 900 degrees. Acetylene, in doses between 3600 and 30000 Langmuir (1 L= 1x1O-6 Torr.s), has been found to strongly react with Si(111)7x7 reconstructed substrate kept at temperature ranging between 6000C and 8000C and to form cubic silicon carbide nanostructures. They grow following the heteroepitaxial relationship SiC[111]//Si[111] and are characterized, for the highest acetylene doses, by a good crystalline quality with a rather flat morphology. A scanning tunneling microscopy (STM) study performed on Si(111)7x7 reconstructed surface imaged in real time, during low acetylene exposures (less than 600 L) while keeping the silicon surface at 6000C, has shown that this surface technique allows to image in real space the local modifications of the system and to identify the starting point of the reaction process together with its time evolution. Besides we investigated the role played by the temperature of Si(111)7x7 surface during different acetylene exposures in the morphology modification of the reacted

  7. Scattering and Chemical Investigations of Semiconductor Surfaces.

    Wallace, Robert Milo

    1988-12-01

    This two-part thesis describes: (i) the design of an ion scattering system to examine the surface and near-surface region of semiconductors, and (ii) the chemical reaction channels of unsaturated hydrocarbons on the silicon (100) surface. Details on the design and construction of an ultrahigh vacuum, high-energy ion scattering system are presented. The use of MeV ion scattering to investigate surface and near -surface regions of materials is described and the combination of ion scattering with complimentary surface science techniques is stressed. The thermal activation of chemical bonds of the adsorbed unsaturated hydrocarbon molecules ethylene, propylene, and acetylene is investigated on the Si(100)-(2 times 11) surface with a goal of understanding the surface chemistry of Si-C formation. The use of precision dosing techniques, Low Energy Electron Diffraction, Auger Electron Spectroscopy, and Temperature Programmed Desorption in the investigation of the remaining carbonaceous species is described. Comparisons of the adsorption and desorption behavior of these molecules is made in terms of the carbon -carbon double and triple bonds (ethylene to acetylene) and the methyl functional group (ethylene to propylene). We find that the monolayer saturation coverage of these hydrocarbons is in very good agreement with the number of dimer sites on the surface estimated from scanning-tunneling microscopy, which suggests that the bonding of these hydrocarbons to the Si(100) surface is similar. It is also found that ethylene, in particular, does not provide an efficient Si-C reaction channel upon thermal activation, with nearly 100% of the ethylene molecules desorbing. In contrast, acetylene is found to be very efficient in SiC formation: >=q90% of the adsorbed acetylene thermally dissociates and eventually leads to SiC formation. Propylene has an efficiency of roughly 70% upon heating. Evidence for the diffusion of carbon into the bulk is seen at >=q850 K for propylene and

  8. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting. PMID:22664582

  9. Measurement of denitrification on grassland using gas chromatography and 15N tracer technique

    Alternative covering of grassland micro-plots fertilized with 15NH415NO3 allowed on the basis on N2 and N2O quantities released within several weeks to measure denitrification and to calculate it by means of methane as gas tracer. Thus the gas exchange was rendered visible and the N quantities measured could be corrected. In some variants, the acetylene blocking technique was successfully applied by adding acetylene to the soil air. The losses measured at 6 dates are discussed together with the 15N balance and atmospherical conditions. The method is suited for recording the high losses occurring mainly in the second quarter of the year immediately after fertilization. Under the conditions mentioned soil N losses were small (3 kg N/ha). The immobilized fertilizer N quantities reached 20 to 30 kg/ha (fertilizer rate 100 kg N/ha) and were comparably independent of the date of fertilization. (author)

  10. Fiber ring laser sensor based on hollow-core photonic crystal fiber

    Zhao, Z. Q.; Lu, Y.; Duan, L. C.; Wang, M. T.; Zhang, H. W.; Yao, J. Q.

    2015-09-01

    We report an erbium-doped fiber ring laser intra-cavity sensor. Hollow-core photonic crystal fiber (HC-PCF) used as the gas absorption chamber is introduced into the laser cavity. When the HC-PCF is filled with gas, its absorption attenuation changes the cavity loss and the laser output. We use a modular NI PXI platform equipped with a programmable voltage and current source and a LabVIEW program to generate driving voltage for the tunable optical filter (TOF) to ensure high precision. The relationship between the concentrations of acetylene, coupling ratios, pump power and output power is theoretically and experimentally investigated. Different output spectra are measured by the optical spectral analyzer (OSA). A minimum detectable acetylene concentration (MDAC) of 5.4 ppm has been experimentally achieved.

  11. Application of laser raman spectroscopy to analysis of isotopic C2 hydrocarbons in fusion fuel gas processing

    Gaseous C2 hydrocarbons, which would be the major impurities after methane in plasma exhaust gases, were analyzed by laser Raman spectrometry. Deuterated C2 hydrocarbons, which were prepared by mixing acetylene, ethylene or ethane with D2 gas were experimentally measured. Suitable bands for quantitative analyses can be selected as the ν2 vibrations at 1,764 ∼ 1,973 cm-1, ν2 vibrations at 1,518 ∼ 1,627 cm-1 and some ν3 vibrations at 985 ∼ 1,344 cm-1, and ν3 vibrations at 824 ∼ 994 cm-1, for deuterated acetylenes, ethylenes and ethanes respectively. Those bands are based on the CC stretching vibrations, except for the deformation vibration ν3 of the ethylenes. Isotopic hydrocarbons in fusion fuel gas processing will be analyzed by using the same bands in laser Raman spectroscopy. (author)

  12. Synthesis of [14C]-labelled eicosa-5,8,11-triynoic acid and conversion to anti-inflammatory amides

    A four step synthesis of [5,6-14C]-eicosa-5,8,11-triynoic acid from [14C]-labelled acetylene is described. [14C2]-acetylene was converted to 5-chloro-[1,2-14C]-pentyne via reaction of its monolithium salt with 3-bromo-1-chloropropane. The doubly labelled 5-chloropentyne thus obtained was transformed to [5,6-14C]-hex-5-ynoic acid which was then coupled with 1-chloro-tetradeca-2,5-diyne to give the title compound. Using 2-(2-aminoethoxy)ethanol and 1-(2-hydroxyethyl)piperazine, amides which had previously been found to be potent inhibitors of the 5-lipoxygenase enzyme, were prepared from [14C-labelled eicosatriynoic acid by way of acylimidazole chemistry. (author)

  13. Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys

    Wheeler, D. R.; Brainard, W. A.

    1979-01-01

    Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer.

  14. Acetylene–ammonia–18-crown-6 (1/2/1

    Tobias Grassl

    2012-10-01

    Full Text Available The title compound, C2H2·C12H24O6·2NH3, was formed by co-crystallization of 18-crown-6 and acetylene in liquid ammonia. The 18-crown-6 molecule has threefold rotoinversion symmetry. The acteylene molecule lies on the threefold axis and the whole molecule is generated by an inversion center. The two ammonia molecules are also located on the threefold axis and are related by inversion symmetry. In the crystal, the ammonia molecules are located below and above the crown ether plane and are connected by intermolecular N—H...O hydrogen bonds. The acetylene molecules are additionally linked by weak C—H...N interactions into chains that propagate in the direction of the crystallographic c axis. The 18-crown-6 molecule [occupancy ratio 0.830 (4:0.170 (4] is disordered and was refined using a split model.

  15. Analysis of uranium concentrates by atomic-absorption spectrometry

    The determination of As, Ca, Fe, Mo and V in uranium concentrates, removing the bulk of the uranium matrix by extracting with tributyl phosphate in hexane has been tried. No interferences were found due to uranium, sodium, aluminium, sulfates and phosphates. Only for calcium a depressive effect of aluminium and uranium has been found and it is overcome by addition of lanthanum. Air-acetylene flame for Fe, Ca and As, and nitrous oxide-acetylene flame for Mo and V have been used. The considered concentration range has been 0.15 - 3% for Ca and Fe, 0.1 -2% for As and 0.1 - 1% for Mo and V. (author)

  16. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    simultaneous measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the......Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by...

  17. Dissociative electron attachment to HCCH, HCN and HCCCN

    Chourou, S T; Orel, A E, E-mail: stchourou@ucdavis.ed, E-mail: aeorel@ucdavis.ed [Department of Applied Science, University of California, Davis, CA-95616 (United States)

    2009-11-01

    Previous work on the dissociative electron attachment (DEA) to acetylene, hydrogen cyanide and its isomer and cyano-acetylene shows that the dissociation process for these systems is inherently polyatomic. We present a comparative summary of the study of these species believed to play a role in the chemistry of interstellar media and to present key elements in the prebiotic synthesis in early Earth. Our treatment was carried out in the low energy range (0-6 eV for HCCH and HCN/HNC and 0-12 eV for HCCCN) using a suitable coordinate system that allows taking into account distortions in the symmetry of the polyatomic target molecule. Computations show that these systems exhibit an intrinsic polyatomic behavior as they break apart.

  18. Carbon particles

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  19. Epitaxial growth of beta-SiC on TiCx by reactive evaporation

    A parametric growth study was performed to determine optimum conditions for epitaxial growth of β-SiC on TiCx by reactive evaporation. The growth sources were E-beam evaporated Si and acetylene. The polycrystalline to epitaxial growth transition temperature was determined to be about 1,250C, and the optimum epitaxial growth temperature was about 1,400C. All β-SiC epilayers exhibited an n-type carrier concentration of about 2 x 1018, independent of growth conditions, due to the high concentration of nitrogen in the acetylene. The Ti concentration ([Ti]) at the β-SiC/TiC epitaxial interface was graded, due to Ti diffusion during epitaxial growth. The as-grown [Ti] profile at the β-SiC/TiCx interface was stable at 500C. However, the [Ti] profile, ion implanted into a β-SiC epilayer, changed appreciably at 500C

  20. Does Infrared Multiphoton Dissociation of Vinyl Chloride Yield Cold Vinylidene?

    Fernando, Ravin; Qu, Chen; Bowman, Joel M; Field, Robert W; Suits, Arthur G

    2015-07-01

    Velocity map imaging of the infrared multiphoton dissociation of vinyl chloride shows the formation of HCl in rotational levels below J = 10 that are associated with the three-center elimination pathway. The total translational energy release is observed to peak at 3-5 kcal/mol, which is consistent with the low reverse barrier predicted for the formation of HCl with vinylidene coproducts. Direct dynamics trajectory studies from the three-center transition state reproduce the observed distributions and show that the associated vinylidene is formed with only modest rotational excitation, precluding Coriolis-induced mixing among the excited vibrational levels of acetylene that would lead to distribution of vinylidene character into many vibrationally mixed acetylene vibrational levels. The results suggest that infrared multiphoton dissociation of vinyl chloride is an efficient route to synthesis of stable, cold vinylidene. PMID:26266719

  1. Methane Post-Processor Development to Increase Oxygen Recovery beyond State-of-the-Art Carbon Dioxide Reduction Technology

    Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny

    2013-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported

  2. Absorption Line Profile Recovery Based on TDLS and MEMS Micro-Mirror for Photoacoustic Gas Sensing

    LI Li; Norhana Arsad; George Stewart; Graham Thursby; Deepak Uttamchandani; Brian Culshaw; WANG Yi-ding

    2011-01-01

    A novel and efficient absorption line recovery technique is presented. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used to generate laser intensity modulation through the mirror reflection. Tunable diode laser spectroscopy (TDLS) and photoacoustic spectroscopy (PAS) are used to recover the target absorption line profile which is compared with the theoretical Voigt profile. The target gas is 0.01% acetylene (C2 H2 ) in a nitrogen host gas. The laser diode wavelength is swept across the P17 absorption line of acetylene at 1 535.4 nm by a current ramp, and an erbium-doped fibre amplifier (EDFA) is used to enhance the optical intensity and increase the signal-to-noise ratio (SNR). A SNR of about 35 is obtained with 100 mW laser power from the EDFA Good agreement is achieved between the experimental results and the theoretical simulation for the P17 absorption line profile.

  3. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Hyunjoon Song

    2012-11-01

    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  4. Interactions between tetrathiafulvalene units in dimeric structures – the influence of cyclic cores

    Huixin Jiang

    2015-06-01

    Full Text Available A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV–vis–NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically.

  5. Investigation of porous water transport plates used for the humidification of a membrane electrode assembly

    Guo, Xiaoqian; Zeng, Yachao; Wang, Zhiqiang; Shao, Zhigang; Yi, Baolian

    2016-01-01

    In this study, a novel porous hydrophilic acetylene black plate (HABP), possessing water permeability and gas-blocking properties, is employed as a water transport plate with which to improve the performance of a proton exchange membrane fuel cell under low-humidity. Porosity, tortuosity, hydrophilic pore size, hydrophilic pore fraction and wettability of the HABPs which may influence the permeated water flux, are measured by mercury intrusion, weighing and contact angle methods. By introducing nano-sized hydrophilic acetylene black (HAB) powders into the HABPs, the porosity, hydrophilic pore fraction and wettability increase, while the tortuosity and hydrophilic pore size decrease, which results in higher permeated water flux. By employing the HABP as an anode plate, the maximum power density of the cell is 194.3 mW cm-2 higher than that with a conventional solid plate. The favorable performance of the cell indicates that the HABP is a promising plate material for water transportation.

  6. Nitrogen fixation by the Azolla-Anabaena azollae symbiosis

    A concise outline is presented on the main characteristics of the Azolla association in relation to tropical wetland rice cultivation and the nitrogen economy of paddy soils. Due to the presence of a nitrogen fixing cyanobiont occurring in a special leaf cavity of the Azolla leaf, the water fern Azolla can grow in a nitrogen-deficient environment and is able to contribute considerably to the nitrogen status of the soil. An experimental set-up is presented for how the nitrogen-fixing capacity of Azolla plants can be measured in the field by means of the acetylene reduction assay using a rather simple glass vessel. A comparison was made between 15N2 fixation by Azolla and acetylene reduction of Azolla plants under identical conditions

  7. Steering of hydrogen migration in hydrocarbons using intense few-cycle laser fields

    Li, Hui; Kuebel, Matthias; Burger, Christian; Kling, Nora; Foerg, Benjamin; Zherebtsov, Sergey; Kling, Matthias; Kaziannis, Spyros; Siemering, Robert; de Vivie-Riedle, Regina; Stierle, Johannes; Kessel, Alexander; Betsch, Kelsie; Bergues, Boris; Trushin, Sergei; Alnaser, Ali; Azzeer, Abdallah; Ben-Itzhak, Itzik; Moshammer, Robert

    2016-05-01

    Structural rearrangements in hydrocarbons, namely acetylene, allene and toluene, are initiated by phase- and intensity-controlled few-cycle laser pulses. The momentum distributions of several ionic fragments are monitored using single-shot VMI and COLTRIMS. The results show that the hydrogen migration in these hydrocarbons can be steered by changing the CEP and the intensity of the few-cycle pulses. Quantum dynamical calculations performed on acetylene and allene show that a superposition of vibrational modes can be created by wave-form controlled few-cycle laser fields, which will result in a directionality of the hydrogen migration. This mechanism, which appears to be of general importance for such complex molecules, should also be able to explain the molecular dynamics observed in toluene.

  8. Formation of molybdenum boride cermet coating by the detonation spray process

    Yang, Gao; Zu-Kun, Hei; Xiaolei, Xu; Gang, Xin

    2001-09-01

    The effects of the powder particle size and the acetylene/oxygen gas flow ratio during the detonation spray process on the amount of molybdenum phase, porosity, and hardness of the coatings using MoB powder were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The results show that the presence of metallic molybdenum in the coating results from decomposition of MoB powder during thermal spray. The compositions of the coatings are metallic Mo, MoB, and Mo2B, which are different from the phases of the original powder. The amount of molybdenum phase increases monotonously with the oxygen/acetylene ratio, but the increasing rate for the fine powder is faster than that for the coarse powder. The porosity and hardness of the coating are related to the amount of molybdenum phase. The phase constitution of the coating is discussed.

  9. Synthesis and characterization of LiTi2(PO4)3/C nanocomposite as lithium intercalation electrode materials

    The LiTi2(PO4)3 has been successfully synthesized by a PEG (polyethylene glycol, mean molecular weight of 2000) based sol–gel route at a relative low temperature. For further improve its electrochemical properties, a ball milling process with acetylene black has been used to form LiTi2(PO4)3/C nanocomposite. The samples are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrochemical performance of the samples is characterized by the charge–discharge test and cyclic voltammetry. The results show that the ball milling process enables LiTi2(PO4)3 nanoparticles networked with conductive acetylene black, which offered higher electrochemical performance. The LiTi2(PO4)3/C nanocomposite delivers a higher specific capacity, enhanced rate capability, and better cyclability.

  10. Building Conjugated Organic Structures on Si(111) Surfaces via Microwave-Assisted Sonogashira Coupling

    Lin, Jui-Ching; Kim, Jun-Hyun; Kellar, Joshua A.; Hersam, Mark C.; Nguyen, SonBinh T.; Bedzyk, Michael J. (NWU)

    2010-08-27

    A novel step-by-step method employing microwave-assisted Sonogashira coupling is developed to grow fully conjugated organosilicon structures. As the first case study, p-(4-bromophenyl)acetylene is covalently conjugated to a p-(4-iodophenyl)acetylene-derived monolayer on a Si(111) surface. By bridging the two aromatic rings with C {triple_bond} C, the pregrown monolayer is structurally extended outward from the Si surface, forming a fully conjugated (p-(4-bromophenylethynyl)phenyl)vinylene film. The film growth process, which reaches 90% yield after 2 h, is characterized thoroughly at each step by using X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). The high yield and short reaction time offered by microwave-assisted surface Sonogashira coupling chemistry make it a promising strategy for functionalizing Si surfaces.

  11. Interference and diffraction in photoelectron spectra

    Decleva, P., E-mail: decleva@univ.trieste.it; Ponzi, A.; Santizo, I.

    2014-08-15

    Highlights: • High energy oscillations in the photoionization cross sections. • Interference and diffraction in molecular photoionization. • Non-stoichiometric cross sections. • Core and valence photoionization cross sections in haloacetylenes. - Abstract: Theoretical calculations are employed to disentangle the effect due to coherent emission from equivalent centres and diffraction from neighbouring inequivalent atoms in core and valence photoelectron spectra. The molecules investigated are mono and disubstituted fluoro and iodo acetylenes, compared to the simple acetylene system. The two effects appear well separated and additive in the core region, with diffraction giving oscillations of smaller amplitude, shorter period, and more strongly damped. Their interplay is more complex in the valence region giving rise to irregular patterns which, although rich in information, are more difficult to analyze. It is shown that the use of an external standard molecule can be profitably used to reveal diffraction patterns in the case where no internal ratio is available.

  12. The rapid formation of functional monolayers on silicon under mild conditions.

    Ciampi, Simone; Luais, Erwann; James, Michael; Choudhury, Moinul H; Darwish, Nadim A; Gooding, J Justin

    2014-05-01

    We report on an exceedingly mild chemical functionalization of hydrogen-terminated Si(100) with unactivated and unprotected bifunctional α,ω-dialkynes. Monolayer formation occurs rapidly in the dark, and at room temperature, from dilute solutions of an aromatic-conjugated acetylene. The method addresses the poor reactivity of p-type substrates under mild conditions. We suggest the importance of several factors, including an optimal orientation for electron transfer between the adsorbate and the Si surface, conjugation of the acetylenic function with a π-system, as well as the choice of a solvent system that favors electron transfer and screens Coulombic interactions between surface holes and electrons. The passivated Si(100) electrode is amenable to further functionalization and shown to be a viable model system for redox studies at non-oxide semiconductor electrodes in aqueous solutions. PMID:24647452

  13. Nitrous oxide reduction in nodules: denitrification or N2 fixation?

    Detached cowpea nodules that contained a nitrous oxide reductase-positive (Nor+) rhizobium strain (8A55) and a nitrous oxide reductase-negative (Nor-) rhizobium strain (32H1) were incubated with 1% 15N2O (95 atom% 15N) in the following three atmospheres: aerobic with C2H2 (10%), aerobic without C2H2, and anaerobic (argon atmosphere) without C2H2. The greatest production of 15N2 occurred anaerobically with 8A55, yet very little was formed with 32H1. Although acetylene reduction activity was slightly higher with 32H1, about 10 times more 15N2 was produced aerobically by 8A55 than by 32H1 in the absence of acetylene. The major reductive pathway of N2O reduction by denitrifying rhizobium strain 8A55 is by nitrous oxide reductase rather than nitrogenase

  14. Selective Functionalization of Independently Addressed Microelectrodes by Electrochemical Activation and Deactivation of a Coupling Catalyst

    Devaraj, Neal. K.; Dinolfo, Peter H.; Chidsey, Christopher E. D.; Collman, James P.

    2006-01-01

    We demonstrate selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. 1,2,3-Triazole formation between terminal acetylenes and organic azides is efficiently catalyzed by copper(I) complexes (a Sharpless “click” reaction) while the oxidized copper (II) complexes are inactive. By electrochemically activating or deactivating the catalyst by switching its redox state, we demonstrate control over triazole format...

  15. CuO hollow nanosphere-catalyzed cross-coupling of aryl iodides with thiols

    Woo, Hyunje; Mohan, Balaji; Heo, Eunjung; Park, Ji Chan; Song, Hyunjoon; Park, Kang Hyun

    2013-01-01

    New functionalized CuO hollow nanospheres on acetylene black (CuO/AB) and on charcoal (CuO/C) have been found to be effective catalysts for C-S bond formation under microwave irradiation. CuO catalysts showed high catalytic activity with a wide variety of substituents which include electron-rich and electron-poor aryl iodides with thiophenols by the addition of two equivalents of K2CO3 as base in the absence of ligands.

  16. Highly Ordered Carbon Nanotube Arrays with Open Ends Grown in Anodic Alumina Nanoholes

    2003-01-01

    Highly ordered multiwalled carbon nanotube arrays were fabricated by pyrolysis of acetylene within anodic alumina templates.Nanotubes are very uniform in diameter and open at both ends. High resolution transmission electron microscopy and electron diffraction analysis show that the carbon nanotubes are well graphitized. These standing and open carbon nanotubes are possible to offer a potential elegant technique for electron emitting devices,chemical functionalization and nanotube composites.

  17. TIN-a combinatorial compound collection of synthetically feasible multicomponent synthesis products.

    Dorschner, Kristl V; Toomey, David; Brennan, Marian P.; Heinemann, Tim; Duffy, Fergal J; Nolan, Kevin B.; Cox, Dermot; Adamo, Mauro FA; Chubb, Anthony J.

    2011-01-01

    The synthetic feasibility of any compound library used for virtual screening is critical to the drug discovery process. TIN, a recursive acronym for 'TIN Is Not commercial', is a virtual combinatorial database enumeration of diversity-orientated multicomponent syntheses (MCR). Using a 'one-pot' synthetic technique, 12 unique small molecule scaffolds were developed, predominantly styrylisoxazoles and bis-acetylenic ketones, with extensive derivatization potential. Importantly, the scaffolds we...

  18. Initiation and sustaining mechanisms of stabilized Oblique Detonation Waves around projectiles

    Maeda, shinichi; Sumiya, Satoshi; Kasahara, Jiro; Matsuo, Akiko

    2013-01-01

    Direct initiations and stabilizations of three-dimensional conical detonation waves were attained by launching spheres with 1.06–1.31 times the C–J velocities into detonable mixtures. We conducted high time-resolution Schlieren visualizations of the whole processes over unsteady initiations to stable propagations of the stabilized Oblique Detonation Waves (ODWs) using a high-speed camera. The detonable mixtures were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They wer...

  19. Click chemistry on the surface of PLGA-b-PEG polymeric nanoparticles: a novel targetable fluorescent imaging nanocarrier

    Pucci, Andrea; Locatelli, Erica; Ponti, Jessica; Uboldi, Chiara; MOLINARI Valerio; Comes Franchini, Mauro

    2013-01-01

    In the quest for biocompatible nanocarriers for biomedical applications a great deal of effort is put on engineering the nanocomposites surface in order to render them specific to the particular purpose. We developed biocompatible PLGA-b-PEG-based nanoparticles carrying a double functionality (i.e. carboxylic and acetylenic) able to serve as flexible highly selective grafting centers for cancer diagnosis and treatment. As a proof of concept the nanocarrier was successfully functionalized with...

  20. Theoretical description of electronically excited vinylidene up to 10 eV: First high level ab initio study of singlet valence and Rydberg states

    Boyé-Péronne, Séverine; Gauyacq, Dolores [Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS and Université Paris-Sud, Bât. 210, F-91405 Orsay Cedex (France); Liévin, Jacques, E-mail: jlievin@ulb.ac.be [Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Cpi 160/09, 50 Av. F.D. Roosevelt, B-1050 Bruxelles (Belgium)

    2014-11-07

    The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0–10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores {sup 2}A{sub 1} and {sup 2}B{sub 1} results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the {sup 2}B{sub 1} cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the {sup 2}A{sub 1} ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic

  1. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    Sánchez-Pérez, J. M.; C. Bouey; Sauvage, S.; Teissier, S.; Antiguedad, I.; Vervier, P.

    2003-01-01

    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3‾), bromide (Br‾), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simula...

  2. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    Sánchez-Pérez, J. M.; C. Bouey; Sauvage, S.; Teissier, S.; Antiguedad, I.; Vervier, P.

    2003-01-01

    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3‾), bromide (Br‾), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried o...

  3. The Effect of Wheat Straw, Corn Straw and Tobacco Residues on Denitrification Losses in a Field Planted with Wheat

    COŞKAN, Ali; Gök, Mustafa; ONAÇ, Işık

    2002-01-01

    A field experiment was conducted to determine the effects of different organic residues (OR) (e.g., wheat straw corn straw and tobacco residues) on nitrogen mineralization and denitrification loss (N2O-N) using application rates recommended to local farmers. Nitrate and ammonium analyses were carried out on periodically collected soil samples. In-situ denitrification loss was determined using the acetylene inhibition technique (AIT). The results revealed that OR application increased N minera...

  4. Formation of Nodular Structures and Nitrogen Fixation by Rhizobia on Oilseed Rape Roots Following Treatment with Pectionolytic Bacteria

    HUXIAOJIA; ZHANGXUEJIANG

    1996-01-01

    Nodular structures were formed by rhizobia on oilseed rape oilseed rape roots following treatment with pectinolytic bacteria.Nodules developed within 50 days.Photomicrograph of nodule cells showed that the capsulated bacteria were intracellular.Rhizobia resolated from the root nodules retained not only the ability of nodulation but also the characteristic of resistance to 100μg neomycin mL-1,A low nitrogenase activity of the nodules was determined by the method of acetylene reduction.

  5. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author)

  6. New Petrochemical Processes Based on Direct Conversion of Methane

    Faraguna F.; Jukić A.

    2015-01-01

    Petrochemistry is a branch of chemistry and chemical engineering that studies reactions and processes of the transformation of petroleum derivatives and natural gas into useful petrochemicals. In its beginning, petrochemistry, or rather the organic chemical industry, was based on the acetylene and Reppe chemistry. The main raw materials of the petrochemical industry nowadays are olefins and aromatic hydrocarbons, with a pronounced tendency toward development of new processes and higher usage ...

  7. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  8. An intramolecular inverse electron demand Diels–Alder approach to annulated α-carbolines

    Zhiyuan Ma

    2012-06-01

    Full Text Available Intramolecular inverse electron demand cycloadditions of isatin-derived 1,2,4-triazines with acetylenic dienophiles tethered by amidations or transesterifications proceed in excellent yields to produce lactam- or lactone-fused α-carbolines. Beginning with various isatins and alkynyl dienophiles, a pilot-scale library of eighty-eight α-carbolines was prepared by using this robust methodology for biological evaluation.

  9. Design, synthesis, characterization and study of novel conjugated polymers

    Chen, W.

    1997-06-24

    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  10. On the formation of cyclopentadiene in the C3H5˙ + C2H2 reaction

    Bouwman, J.; Bodi, A.; Oomens, J.; Hemberger, P.

    2015-01-01

    The reaction between the allyl radical (C3H5˙) and acetylene (C2H2) in a heated microtubular reactor has been studied at the VUV beamline of the Swiss Light Source. The reaction products are sampled from the reactor and identified by their photoion mass-selected threshold photoelectron spectra (ms-TPES) by means of imaging photoelectron photoion coincidence spectroscopy. Cyclopentadiene is identified as the sole reaction product by comparison of the measured photoelectron spectrum with that o...

  11. Simulation of the dc Plasma in Carbon Nanotube Growth

    Hash, David; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics.

  12. Simulation of the dc plasma in carbon nanotube growth

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics

  13. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules

    Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S.; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G.; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2012-01-01

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wavepackets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work de...

  14. Inhibition of existing denitrification enzyme activity by chloramphenicol.

    Brooks, M H; Smith, R L; Macalady, D L

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chlo...

  15. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Hongfang Sun; Zishanshan Li; Jing Bai; Shazim Ali Memon; Biqin Dong; Yuan Fang; Weiting Xu; Feng Xing

    2015-01-01

    Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (...

  16. Interferences from titanium and zirconium during calcium determination by flame spectrometry

    DIMITRIJE DJ. STOJANOVIC; JELENA S. MILINOVIC; SNEZANA D. NIKOLIC–MANDIC

    2007-01-01

    Titration methods based on an inhibition effect were used to investigate the interferences from Ti and Zr in the determination of Ca by atomic absorption and flame emission spectrometry using an air–acetylene flame. Changes either in the absorption or emission signal of Ca was continuously registered on a computer display and characteristic titration curves were obtained. The mole ratios between Ti or Zr and Ca at characteristic points on titration curves were used to explain the quantitative...

  17. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity.

    Whiting, G J; Gandy, E L; Yoch, D C

    1986-01-01

    The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentration...

  18. Quantitative Recognizing Dissolved Hydrocarbons with Genetic Algorithm-Support Vector Regression

    Qu Zhou; Weigen Chen; Xiaoping Su; Shudi Peng

    2013-01-01

    Online monitoring of dissolved fault characteristic hydrocarbon gases, such as methane, ethane, ethylene and acetylene in power transformer oil has significant meaning for condition assessment of transformer. Recently, semiconductor tin oxide based gas sensor array has been widely applied in online monitoring apparatus, while cross sensitivity of the gas sensor array is inevitable due to same compositions and similar structures among the four hydrocarbon gases. Based on support vector regress...

  19. 世界七カ国の乳児用調製粉乳中のリチウム含有量とリチウムの起源

    玉利, 祐三; Yuzo, Tamari

    2005-01-01

    The trace lithium content of infant formulas was determined by flame photometry using the atomic absorption spectrophotometer with air-acetylene flame, after the decomposition of a sample with nitric-perchloric acid mixture. Infant formulas were divided into five groups; cow's milk-based, goat-based, soy-based, special use (for allergy or diarrhea infants) formulas and milk-powder for cuisine; collected from seven countries of Japan, Korea, USA, Belgium, Spain, Canada and New Zealand. There w...

  20. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    Fatime Eren Erol; Deniz Sinirlioglu; Sedat Cosgun; Ali Ekrem Muftuoglu

    2014-01-01

    Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP) and Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA) random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-M...

  1. Predictive QSPR analysis of corrosion inhibitors for super 13% Cr steel in hydrochloric acid

    S. P. Cardoso; J. A. C. P. Gomes; L. E. P. Borges; E. Hollauer

    2007-01-01

    An experimental and theoretical study on the inhibition corrosion efficiencies of twenty three compounds in hydrochloric acid (15% w/v) on 13% Cr modified stainless steel (martensitic) has been carried out. This inhibitor set includes amines, thiourea derivatives and acetylenic alcohols. Experimental weight losses at 60ºC were correlated with group and quantum AM1 descriptors obtained from QSPR analysis. Such data, for a large set of molecules, offer a unique opportunity for searching for cor...

  2. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Birgitta Bergman; Ulla Rasmussen; Johan Eriksson; Sven Erasmie; Narin Celepli; Lotta Berntzon

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene red...

  3. Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems

    Gauthier, Francis; Neufeld, Josh D.; Driscoll, Brian T.; Archibald, Frederick S.

    2000-01-01

    The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene redu...

  4. Nitrification at Low pH by Aggregated Chemolithotrophic Bacteria

    De Boer, W.; Klein Gunnewiek, P.J.A.; Veenhuis, M; Bock, E; Laanbroek, H. J.

    1991-01-01

    A study was performed to gain insight into the mechanism of acid-tolerant, chemolithotrophic nitrification. Microorganisms that nitrified at pH 4 were enriched from two Dutch acid soils. Nitrate production in the enrichment cultures was indicated to be of a chemolithoautotrophic nature as it was (i) completely inhibited by acetylene at a concentration as low as 1-mu-mol/liter and (ii) strongly retarded under conditions of carbon dioxide limitation. Electron microscopy of the enrichment cultur...

  5. Permeation of gases through modified polymer films. V. permeation and diffusion of helium, nitrogen, methane, ethane, and propane through γ-ray crosslinked polyethylene

    The permeation and diffusion of helium, nitrogen, mehane, ethane, and propane through γ-irradiated polyethylene films were investigated. These studies were carried out with two objectives in mind: (1) to determine the effect of crosslinking by γ irradiation on permeability and diffusivity using the gas molecules as molecular probes; and (2) to study the plasticizing effects of the low hydrocarbons on the polyethylene film. The γ-ray-induced crosslinking efficiency of polyethylene was investigated in the following irradiation atmospheres: vacuum, acetylene, and nitrogen-acetylene mixtures. Results showed that irradiation in acetylene decreased the crosslinking efficiency while an acetylene-nitrogen atmosphere increased the efficiency compared to irradiation in vacuum. Both the permeation constants and the diffusion coefficients were found to decrease with increasing irradiation dose while the activation energies increased. The permeation constants of the organic gases through polyethylene increased with molecular diameter while the diffusion coefficients decreased. This increase in permeability was attributed to an increase in the solubility due to solubilization of the membrane by the penetrant. For example, the molecular diameter of propane is 4.397 A compared with 2.807 A for methane; however, propane permeated the polyethylene film at a rate twice that of methane. Nitrogen and methane have approximately the same molecular diameters - 2.7085 and 2.807 A, respectively - but owing to the plasticizing effect of methane, it permeated the film at a rate three times greater than that of nitrogen. It is interesting to note that the stronger the plasticizing ability of the penetrant, the greater the effect of the irradiation dose. The permeability of propane decreased by 40.7%, while the permeability of helium decreased by 6.4% after an irradiation dose of 50 Mrad

  6. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles.

    Danda, Adithi; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed β-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine. PMID:25846800

  7. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere and...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  8. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere and...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  9. A poly(p-phenylene ethynylene vinylene) with pendant fullerenes

    Marcos Ramos, A.; Rispens, M.T; Hummelen, J.C.; Janssen, R. A. J.

    2001-01-01

    In order to obtain a predefined nanoscopic phase segregation of semiconducting polymers and fullerenes for application in photovoltaic devices we have prepared a conjugated polymer with dangling fullerenes. For this purpose an oligo(p-phenylene vinylene) with acetylene end groups has been polymerized with a diiodo-aryl-fullerene derivative via a Pd-catalyzed coupling reaction. Photoinduced absorption (PIA) and photoluminescence spectra give evidence of a photoinduced electron transfer in this...

  10. Penetapan Kadar Kalium, Natrium dan Magnsium pada Semangka (Citrullus vulgaris, Schard) secara Spektrofotometri Serapan Atom.

    Saraan, Sri Muftri Diani

    2012-01-01

    Watermelon is a tropical fruit which is favoured by people cause of it tastes crisp and sweet. Some informed that this fruit can decrease blood pressure cause of its potassium content. The aim of this research is to have a quantitative levels of potassium, sodium and magnesium in yellow and red watermelon’s fruit flesh, also in seed and seedless watermelon. Quantitative analysis is done by atomic absorption spectrophotometer with acetylene-air flame. Potassium, sodium and magnesium are qua...

  11. Determination of the Macro Elements Content of Some Medicinal Herbs

    Ducu Sandu Ştef; Iosif Gergen; Monica Hărmănescu; Cecilia Pop; Mărioara Drugă; Gabriel Bujancă; Mirela Popa

    2010-01-01

    The metals contents of plants are variable, due to the factors like differences between the plants species, geographical area, conditions of drying process. Metals contents in soil are a great importance for their effect of animals and humans, through the biologic chain: soil – plant – feed and food. Analysis of metals content was made with ContrAA-300, Analytik-Jena device, by flame atomic absorption spectrometry (FASS) in air/acetylene flame. It were analyzed the macro elements content for ...

  12. Determination of trace amounts of scandium by atomic absorption spectroscopy.

    Chau, Y K

    1968-05-01

    Optimum instrumental conditions were investigated for the determination of trace quantities of scandium by atomic-absorption spectroscopy. Enhancement effects by organic solvents and by complex extractions were also studied. (46)Sc was used to establish the optimum extraction conditions. A sensitivity of 0.06 ppm of Sc was observed when using extraction into oxine-butanol and atomic absorption was measured with an acetylene-nitrous oxide flame. PMID:18960315

  13. Abundances of Jupiter's Trace Hydrocarbons From Voyager and Cassini

    Nixon, Conor A.; Achterberg, Richard K.; Romani, Paul. N.; Allen, Mark; Zhang, Xi; Teanby, Nicholas A.; Irwin, Patrick G. J.; Flasar, F. Michael

    2010-01-01

    The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C_2H_2) and ...

  14. Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots

    Bellone, Carlos H.; de Bellone Silvia, Carrizo

    2011-01-01

    Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar c...

  15. Glyoxal observations in the global marine boundary layer

    Mahajan, Anoop S.; Prados-Roman, Cristina; Hay, Timothy D.; Lampel, Johannes; Pöhler, Denis; Groβmann, Katja; Tschritter, Jens; Frieß, Udo; Platt, Ulrich; Johnston, Paul; Kreher, Karin; Wittrock, Folkard; Burrows, John P; Plane, John M. C.; Saiz-Lopez, Alfonso

    2014-01-01

    Glyoxal is an important intermediate species formed by the oxidation of common biogenic and anthropogenic volatile organic compounds such as isoprene, toluene and acetylene. Although glyoxal has been shown to play an important role in urban and forested environments, its role in the open ocean environment is still not well understood, with only a few observations showing evidence for its presence in the open ocean marine boundary layer (MBL). In this study, we report observations of glyoxal f...

  16. Integrating Carbon Nanotubes into Microfluidic Chip for Separating Biochemical Compounds

    Chen, Miaoxiang Max; Mogensen, Klaus Bo; BØGGILD, Peter; Kutter, Jörg Peter

    2012-01-01

    We present a new type of device to separate biochemical compounds wherein carbon nanotubes (CNTs) are integrated as chromatographic stationary phase. The CNTs were directly grown on the bottom of microfluidic channels on Si/SiO2 substrates by chemical vapor deposition (CVD). Acetylene was used as carbon source and Ni was employed as catalyst. For electrokinetic separations, higher electrical field strength is usually required; therefore, the CNTs were constructed in pillar-array-form by patte...

  17. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water in Hot, Hydrogen-dominated Atmospheres

    Heng, Kevin; Lyons, James R.

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres in hot, hydrogen-dominated atmospheres. We construct novel analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the m...

  18. Diversity and function from the ground up : microbial mediation of wetland plant structure and ecosystem function via nitrogen fixation

    Moseman, Serena M

    2008-01-01

    Plant-dependent functions of coastal wetlands are strongly influenced by nitrogen availability. Diazotrophs, microbes that fix nitrogen, in surface sediments and rhizospheres (roots and surrounding sediments) of plants may fundamentally affect wetland ecosystems. In testing roles of nitrogen fixing microbes in niche differentiation between two key plants, Spartina foliosa and Salicornia virginica, a mensurative experiment reveals plant-specific diel patterns of nitrogen fixation (acetylene re...

  19. Synthesis of dehydrobenzoannulenes with pyrene core

    Antony Joseph; Gandikota Venkataramana; Sethuraman Sankararaman

    2012-05-01

    Synthesis of dehydrobenzoannulenes (DBAs) with pyrene core from 1,8-diethynylpyrene and 1,3,6,8-tetraethynylpyrene as building blocks is reported. A sequence involving Sonogashira coupling, Corey- Fuchs reaction and oxidative coupling (Eglinton coupling) is used for the synthesis of pyrene-based dehydrobenzoannulenes. Due to the presence of pyrenechromophore these DBAs and their precursors are highly fluorescent and emit in the visible region, due to extended conjugation of the acetylenic units with the pyrene core.

  20. Estimation of N-2 Fixation in four tropical leguminous trees in Sri Lanka

    DiNitrogen-fixing capacity of four species of leguminous trees of Sri Lanka (Abarema bigemina, Adenanthera bicolor, Humboldtia laurifolia and Pericopsis mooniana) by analyzing their xylem sap and by taking acetylene reducyion (AR) measurements of nodulated roots of all species, except A.bicolor which had no nodules. Based on the results of the study on P.mooniana, a method to determine the C2H2/N2 conversion factor by analysing the total NH2 compounds is being developed

  1. Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii

    Welsh, Dt; Bourgues, S; Dewit, R; Auby, Isabelle

    1997-01-01

    Rates of nitrogen fixation (measured as acetylene reduction) in the rhizosphere of the seagrass Zostera noltii were highly dependent upon plant photosynthetic activity being significantly stimulated at elevated CO2 concentrations and by light, both in the short-term and over diurnal cycles. Stimulation by light became insignificant when 5 mM sucrose was added to the sediment porewater, indicating that in the absence of added carbon sources, light stimulation was due to direct inputs of plant ...

  2. Denitrification in Marl and Peat Sediments in the Florida Everglades

    Gordon, A S; Cooper, W. J.; Scheidt, D. J.

    1986-01-01

    The potential for denitrification in marl and peat sediments in the Shark River Slough in the Everglades National Park was determined by the acetylene blockage assay. The influence of nitrate concentration on denitrification rate and N2O yield from added nitrate was examined. The effects of added glucose and phosphate and of temperature on the denitrification potential were determined. The sediments readily denitrified added nitrate. N2O was released from the sediments both with and without a...

  3. Polysaccharides: The “Click” Chemistry Impact

    Romain Lucas; Daniel Montplaisir; Rachida Zerrouki; Pierre-Antoine Faugeras; François Brouillette; Benjamin Boëns; Pierre-Henri Elchinger

    2011-01-01

    Polysaccharides are complex but essential compounds utilized in many areas such as biomaterials, drug delivery, cosmetics, food chemistry or renewable energy. Modifications and functionalizations of such polymers are often necessary to achieve molecular structures of interest. In this area, the emergence of the “click” chemistry concept, and particularly the copper-catalyzed version of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides, had an impact on the ...

  4. Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC–CoCr coatings

    Picas Barrachina, Josep Anton; Punset Fusté, Miquel; Baile Puig, Maria Teresa; Martín Fuentes, Enrique; Forn Alonso, Antonio

    2010-01-01

    High Velocity Oxy-Fuel (HVOF) spray techniques can produce high performance alloy and cermet coatings for applications that require wear resistant surfaces. In HVOF spraying heat is produced by burning mixtures of oxygen and fuel, mainly hydrogen, kerosene, propane, propylene, natural gas or acetylene. In these processes, the particle velocity and temperature determine the resultant coating properties and in many cases enables a better understanding of the process. The aim o...

  5. N2-fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn

    Nitrogenase (EC 1.7.99.2) activity (acetylene reduction) and nitrogen fixation (15N2 fixation) were measured in cyanobacteria freshly isolated from the coralloid roots of Macrozamia riedlei (Fisch. ex Gaud.) Gardn. The data indicate that cyanobacteria within cycad coralloid roots are differentiated specifically for symbiotic functioning in a microaerobic environment. Specializations include a high heterocyst frequency, enhanced permeability to O2, and a direct dependence on the cycad for substrates to support nitrogenase activity

  6. Influence of the initial pressure in bubble media on the detonation wave parameters

    Sychev, A. I.

    2015-04-01

    The influence of the initial pressure in bubble media on the initiation, structure, velocity, and pressure of detonation waves in single-component bubble media is studied. The test medium (bubbles of a stoichiometric acetylene-oxygen mixture in a hydroglyceric solution) falls under the category of "chemically inactive liquid—bubbles of a chemically active gas." It is found that one can effectively control the parameters of bubble detonation waves by varying the initial pressure in the bubble medium.

  7. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    Sosa, G.; Molina, L. T.; V. H. Almanza

    2012-01-01

    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order to estimate emission rates of combustion by-products of interest for air quality: acetylene, ethylene, nitrogen oxides, carbon monoxide, soot and sulfur dioxide. The emission rates of NO2 and SO2 were compared with measurements obtained at Tula as part of MILAGRO field campaig...

  8. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    V. H. Almanza; Molina, L. T.; Sosa, G.

    2012-01-01

    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order to estimate emission rates of combustion by-products of interest for air quality: acetylene, ethylene, nitrogen oxides, carbon monoxide, soot and sulfur dioxide. The emission rates of NO2 and SO2 were compared with measurements obtained at Tula as part of MIL...

  9. Total synthesis of (+/-)-11 alpha-hydroxyprogesterone by cyclization of a polyunsaturated epoxide.

    van Tamelen, E E; Faler, D L

    1985-01-01

    The total synthesis of a typical 11-hydroxylated steroid, (+/-)-11 alpha-hydroxyprogesterone, was achieved by picric acid-catalyzed tricyclization of a polyunsaturated epoxide appropriately substituted with ketal, hydroxyl, and acetylenic units. This epoxide was prepared by a multistage sequence featuring two successive alkylations of intermediary, monocyclic sulfones. The first sulfone intermediate was obtained by means of a short sequence starting from levulinic acid and diethyl succinate a...

  10. Status of high-temperature laminating resins and adhesives

    Hergenrother, P. M.; Johnston, N. J.

    1980-01-01

    High-temperature polymers now being developed as adhesives and composite matrices are reviewed, including aromatic polyimides, polybenzimidazoles, polyphenylquinoxalines, nadic end-capped imide oligomers, maleimide end-capped oligomers, and acetylene-terminated imide oligomers. The mechanical properties of laminates based on these resins are reported together with preliminary test results on the adhesive properties for titanium-to-titanium and composite-to-composite lap shear specimens.

  11. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    Andrews, Ian P.; Kwon, Ohyun

    2008-01-01

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethy...

  12. Optimization, Yield Studies and Morphology of WO3Nano-Wires Synthesized by Laser Pyrolysis in C2H2and O2Ambients—Validation of a New Growth Mechanism

    Sideras-Haddad E

    2008-01-01

    Full Text Available Abstract Laser pyrolysis has been used to synthesize WO3nanostructures. Spherical nano-particles were obtained when acetylene was used to carry the precursor droplet, whereas thin films were obtained at high flow-rates of oxygen carrier gas. In both environments WO3nano-wires appear only after thermal annealing of the as-deposited powders and films. Samples produced under oxygen carrier gas in the laser pyrolysis system gave a higher yield of WO3nano-wires after annealing than the samples which were run under acetylene carrier gas. Alongside the targeted nano-wires, the acetylene-ran samples showed trace amounts of multi-walled carbon nano-tubes; such carbon nano-tubes are not seen in the oxygen-processed WO3nano-wires. The solid–vapour–solid (SVS mechanism [B. Mwakikunga et al., J. Nanosci. Nanotechnol., 2008] was found to be the possible mechanism that explains the manner of growth of the nano-wires. This model, based on the theory from basic statistical mechanics has herein been validated by length-diameter data for the produced WO3nano-wires.

  13. Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan

    Hiroyuki Tobita; Shigeaki F Hasegawa; Kenichi Yazaki; Masabumi Komatsu; Mitsutoshi Kitao

    2013-11-01

    To estimate the N2 fixation ability of the alder (Alnus hirsuta (Turcz.) var. sibirica), we examined the seasonal variation in nitrogenase activity of nodules using the acetylene reduction method in an 18-year-old stand naturally regenerated after disturbance by road construction in Japan. To evaluate the contribution of N2 fixation to the nitrogen (N) economy in this alder stand, we also measured the phenology of the alder, the litterfall, the decomposition rate of the leaf litter, and N accumulation in the soil. The acetylene reduction activity per unit nodule mass (ARA) under field conditions appeared after bud break, peaked the maximum in midsummer after full expansion of the leaves, and disappeared after all leaves had fallen. There was no consistent correlation between ARA and tree size (dbh). The amount of N2 fixed in this alder stand was estimated at 56.4 kg ha−1 year−1 when a theoretical molar ratio of 3 was used to convert the amount of reduced acetylene to the amount of fixed N2. This amount of N2 fixation corresponded to the 66.4% of N in the leaf litter produced in a year. These results suggested that N2 fixation still contributed to the large portion of N economy in this alder stand.

  14. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  15. Mixed azide-terminated monolayers: a platform for modifying electrode surfaces.

    Collman, James P; Devaraj, Neal K; Eberspacher, Todd P A; Chidsey, Christopher E D

    2006-03-14

    We have prepared and characterized mixed self-assembled monolayers (SAM) on gold electrodes from azido alkane thiols and various omega-functionalized alkane thiols. In the presence of copper(I) catalysts, these azide-modified surfaces are shown to react rapidly and quantitatively with terminal acetylenes forming 1,2,3-triazoles, via "click" chemistry. The initial azide substituents can be identified and monitored using both grazing-angle infrared (IR) and X-ray photoelectron spectrosopies. Acetylenes possessing redox-active ferrocene substituents react with the azide-terminated mixed SAMs and electrochemical measurements of the ferrocene-modified SAM electrodes have been used to quantify the redox centers attached to these platforms. Time-resolved electrochemical measurements have enabled us to follow the formation of these ferrocene centers and thus to measure the rate of the surface "click" reaction. Under optimal conditions this well-behaved second-order reaction takes place with a rate constant of 1 x 10(3) M(-)(1) s(-)(1). Typical reaction times of several minutes were realized using micromolar concentrations of acetylene. These techniques have been used to construct well-characterized, covalently modified monolayers that can be employed as functional electrode surfaces. PMID:16519441

  16. In-situ tritium borehole probe for measurement of tritium

    An apparatus for measuring the in situ levels of tritium in ground water at depth in the earth. A tritium analyzer is made to fit in a sonde or probe which is placed in a borehole. This analyzer can perform a programmed cycle and has a sample intake to allow ambient water to enter; a reaction chamber; a drying chamber; an ion chamber; a cryogenic gas pump, and a spent capsule collection chamber. After the water sample is brought into the unit, it rises into the reaction chamber where it reacts with a preweighed quantity of calcium carbide in a capsule to yield acetylene. Next the acetylene vapor passes through the drying chamber to remove excess water and then flows into the evacuated ion chamber. Following this, the ion chamber is sealed off and a count of tritium beta decay events is started. Following the completion of the count, a valve is opened to remove the acetylene from the ion chamber with the cryogenic gas pump. The spent capsule containing the residue from the reaction is ejected into a collection chamber. Last, the holder for the preweighed calcium carbide capsule is refilled from a stock of such capsules in preparation for a new measurement cycle

  17. Denitrification and Nitrate Reduction to Ammonium in Taihu Lake and Yellow sea Inter—Tidal Marine Sediments

    YINSHIXUE; SHENQIRONG; 等

    1999-01-01

    Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marine sediments were studied.The sediment samples were made slurry containing 150g dry matter per liter.Various of glucose-C to nitrate-N.Acetylene inhibition technique was applied to measure denitrification in the slurres,All samples were incubated anaerobically under argon atmosphere,Data showed that Taihu Lake sediment produced more N2O than marine sediment,Denitrification potential was higher in Taihu Lake sediment than in marine one,Glucose added increase denitrification activity but not the denitrification potential of the sediments.Dissimilatory nitrate reduction to ammonium seemed to occur in marine sediment,but not in freshwater one.When the marine sediment was treated with 25mmol L-1 glucose,its denitrification potentail,as indicated by maximum N2O production by acetylene blockage,was lower than that treated with no or 2.5mmol L-1 glucose.Acetylene was suspected to have inhibitory effect on dissimilatory nitrate reduction to ammonium.

  18. On the relevance of polyynyl-substituted PAHs to astrophysics

    Rouillé, G; Carpentier, Y; Jäger, C; Huisken, F; Henning, Th; Czerwonka, R; Theumer, G; Börger, C; Bauer, I; Knölker, H -J

    2012-01-01

    We report on the absorption spectra of the polycyclic aromatic hydrocarbon (PAH) molecules anthracene, phenanthrene, and pyrene carrying either an ethynyl (-C2H) or a butadiynyl (-C4H) group. Measurements were carried out in the mid infrared at room temperature on grains embedded in CsI pellets and in the near ultraviolet at cryogenic temperature on molecules isolated in Ne matrices. The infrared measurements show that interstellar populations of polyynyl-substituted PAHs would give rise to collective features in the same way non-substituted PAHs give rise to the aromatic infrared bands. The main features characteristic of the substituted molecules correspond to the acetylenic CH stretching mode near 3.05 mum and to the almost isoenergetic acetylenic CCH in- and out-of-plane bending modes near 15.9 mum. Sub-populations defined by the length of the polyynyl side group cause collective features which correspond to the various acetylenic CC stretching modes. The ultraviolet spectra reveal that the addition of an...

  19. The genes encoding the delta subunits of dinitrogenases 2 and 3 are required for mo-independent diazotrophic growth by Azotobacter vinelandii.

    Waugh, S I; Paulsen, D M; Mylona, P V; Maynard, R H; Premakumar, R; Bishop, P E

    1995-03-01

    vnfG and anfG encode the delta subunits of alternative nitrogenases 2 and 3 in Azotobacter vinelandii, respectively. As a first step towards elucidating the role of these subunits, diazotrophic growth and acetylene reduction studies were conducted on mutants containing alterations in the genes encoding these subunits. Mutants containing a stop codon (C36stop) or an in-frame deletion in anfG were unable to grow in N-free, Mo-deficient medium (Anf-). Mutants in which cysteine 36 of AnfG (a residue conserved between VnfG and AnfG) was changed to Ala or Ser were Anf+. Thus, this conserved cysteine is not essential for the function of AnfG in dinitrogenase 3. A mutant with a stop codon in vnfG (C17stop) grew after a lag of 25 h in N-free, Mo-deficient medium containing V2O5. However, a Nif- Anf- strain with this mutation was unable to grow under these conditions. This shows that the vnfG gene product is required for nitrogenase 2-dependent growth. Strains with mutations in vnfG and anfG reduced acetylene to different degrees. This indicates that the delta subunits are not required for acetylene reduction by nitrogenases 2 and 3. PMID:7883707

  20. Requirement of homocitrate for the transfer of a 49V-labeled precursor of the iron-vanadium cofactor from VnfX to nif-apodinitrogenase.

    Ruttimann-Johnson, C; Rangaraj, P; Shah, V K; Ludden, P W

    2001-02-01

    A vanadium- and iron-containing cluster has been shown previously to accumulate on VnfX in the Azotobacter vinelandii mutant strain CA11.1 (DeltanifHDKvnfDGK::spc). In the present study, we show the homocitrate-dependent transfer of (49)V label from VnfX to nif-apodinitrogenase in vitro. This transfer of radiolabel correlates with acquisition of acetylene reduction activity. Acetylene is reduced both to ethylene and ethane by the hybrid holodinitrogenase so formed, a feature characteristic of alternative nitrogenases. Structural analogues of homocitrate prevent the acetylene reduction ability of the resulting dinitrogenase. Addition of NifB cofactor (-co) or a source of vanadium (Na(3)VO(4) or VCl(3)) does not increase nitrogenase activity. Our results suggest that there is in vitro incorporation of homocitrate into the V-Fe-S cluster associated with VnfX and that the completed cluster can be inserted into nif-apodinitrogenase. The homocitrate incorporation reaction and the insertion of the cluster into nif-apodinitrogenase (alpha(2)beta(2)gamma(2)) do not require MgATP. Attempts to achieve FeV-co synthesis using extracts of other FeV-co-negative mutants were unsuccessful, showing that earlier steps in FeV-co synthesis, such as the steps requiring VnfNE or VnfH, do not occur in vitro. PMID:11053414

  1. Novel technique for coal pyrolysis and hydrogenation product analysis

    Pfefferle, L.D.

    1992-01-01

    This report covers the last quarter of the last year of the three-year grant period. In the final project year, we concentrated on the pyrolysis and oxidative pyrolysis of large hydrocarbons and mixtures of large and small hydrocarbons in order to develop the VUV-MS technique for compounds more representative of those in coal pyrolysis applications. Special focus was directed at the pyrolysis and oxidative pyrolysis of benzene and benzene acetylene mixtures. The acetylene/benzene mixtures were used to gain a better understanding of the mechanisms of molecular growth in such systems specifically to look at the kinetics of aryl-aryl reactions as opposed to small molecule addition to phenyl radicals. Sarofim and coworkers at MIT have recently demonstrated the importance of these reactions in coal processing environments. In the past, the growth mechanism for the formation of midsized PAH has been postulated to involve primarily successive acetylene additions to phenyl-type radicals, our work confmns this as an important mechanism especially for smaller PAH but also investigates conditions where biaryl formation can play an important role in higher hydrocarbon formation.

  2. Novel technique for coal pyrolysis and hydrogenation product analysis. Quarterly report, June 1, 1992

    Pfefferle, L.D.

    1992-12-31

    This report covers the last quarter of the last year of the three-year grant period. In the final project year, we concentrated on the pyrolysis and oxidative pyrolysis of large hydrocarbons and mixtures of large and small hydrocarbons in order to develop the VUV-MS technique for compounds more representative of those in coal pyrolysis applications. Special focus was directed at the pyrolysis and oxidative pyrolysis of benzene and benzene acetylene mixtures. The acetylene/benzene mixtures were used to gain a better understanding of the mechanisms of molecular growth in such systems specifically to look at the kinetics of aryl-aryl reactions as opposed to small molecule addition to phenyl radicals. Sarofim and coworkers at MIT have recently demonstrated the importance of these reactions in coal processing environments. In the past, the growth mechanism for the formation of midsized PAH has been postulated to involve primarily successive acetylene additions to phenyl-type radicals, our work confmns this as an important mechanism especially for smaller PAH but also investigates conditions where biaryl formation can play an important role in higher hydrocarbon formation.

  3. In situ gelatin carbonation to prepare a binder-free LiFePO4 cathode for high-power lithium ion batteries

    A binder-free LiFePO4 cathode is prepared by simple in situ gelatin carbonation at 600 °C under pure N2. In this process, gelatin which is used as a binder in the traditional electrodes, is converted into carbon materials evenly and coated on LiFePO4 with acetylene black particles. The obtained binder-free cathode possesses uniform distribution of LiFePO4 and acetylene black, gelatin-based carbon coating and the porous structure. The gelatin-based carbon coating can enhance the effective electronic conductivity among LiFePO4, acetylene black particles and current collector. And the porous structure formed by decomposition and shrinkage during carbonation of gelatin can facilitate penetration of the liquid electrolyte into the pores, serving as a fast ionic pathway. The electrochemical results show the rate capability is greatly improved and the discharge capacity still reaches 108 mAh/g at 5 C. There is almost no capacity fading at the same C-rate cycles.

  4. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor

    A green process for the oxygen-free conversion of methane to high-concentration ethylene and hydrogen in a plasma-followed-by-catalyst (PFC) reactor is presented. Without any catalysts and with pure methane used as the feed gas, a stable kilohertz spark discharge leads to an acetylene yield of 64.1%, ethylene yield of 2.5% and hydrogen yield of 59.0% with 80.0% of methane conversion at a methane flow rate of 50 cm3/min and a specific input energy of 38.4 kJ/L. In the effluent gas from a stable kilohertz spark discharge reactor, the concentrations of acetylene, ethylene and hydrogen were 18.1%, 0.7% and 66.9%, respectively. When catalysts Pd-Ag/SiO2 were employed in the second stage with discharge conditions same as in the case of plasma alone, the PFC reactor provides an ethylene yield of 52.1% and hydrogen yield of 43.4%. The concentrations of ethylene and hydrogen in the effluent gas from the PFC reactor were found to be as high as 17.1% and 62.6%, respectively. Moreover, no acetylene was detected in the effluent gas. This means that a high concentration of ethylene and oxygen-free hydrogen can be co-produced directly from methane in the PFC reactor.

  5. Sub-Doppler infrared spectroscopy of propargyl radical (H2CCCH) in a slit supersonic expansion

    The acetylenic CH stretch mode (ν1) of propargyl (H2CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (Trot = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (εaa = − 518.1(1.8), εbb = − 13.0(3), εcc = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH2) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations

  6. Structure of MoCN films deposited by cathodic arc evaporation

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C2H2 flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated

  7. Metal-ligand synergistic effects in the complex Ni(η(2)-TEMPO)2: synthesis, structures, and reactivity.

    Isrow, Derek; DeYonker, Nathan J; Koppaka, Anjaneyulu; Pellechia, Perry J; Webster, Charles Edwin; Captain, Burjor

    2013-12-16

    In the current investigation, reactions of the "bow-tie" Ni(η(2)-TEMPO)2 complex with an assortment of donor ligands have been characterized experimentally and computationally. While the Ni(η(2)-TEMPO)2 complex has trans-disposed TEMPO ligands, proton transfer from the C-H bond of alkyne substrates (phenylacetylene, acetylene, trimethylsilyl acetylene, and 1,4-diethynylbenzene) produce cis-disposed ligands of the form Ni(η(2)-TEMPO)(κ(1)-TEMPOH)(κ(1)-R). In the case of 1,4-diethynylbenzene, a two-stage reaction occurs. The initial product Ni(η(2)-TEMPO)(κ(1)-TEMPOH)[κ(1)-CC(C6H4)CCH] is formed first but can react further with another equivalent of Ni(η(2)-TEMPO)2 to form the bridged complex Ni(η(2)-TEMPO)(κ(1)-TEMPOH)[κ(1)-κ(1)-CC(C6H4)CC]Ni(η(2)-TEMPO)(κ(1)-TEMPOH). The corresponding reaction with acetylene, which could conceivably also yield a bridging complex, does not occur. Via density functional theory (DFT), addition mechanisms are proposed in order to rationalize thermodynamic and kinetic selectivity. Computations have also been used to probe the relative thermodynamic stabilities of the cis and trans addition products and are in accord with experimental results. Based upon the computational results and the geometry of the experimentally observed product, a trans-cis isomerization must occur. PMID:24262003

  8. The theoretical estimation of the G-values for the ionization and excitation of thirty-eight gaseous compounds irradiated by 100 keV electrons

    The G-values for the ionization and excitation of thirty-eight gaseous compounds irradiated by 100 keV electrons have been calculated by combining the binary-encounter-collision theory with the theory of the degradation spectrum, which is based on the continuous-slowing-down approximation (CSDA). The thirty-eight compounds include C2-C6 alkanes, cycloalkanes, C2-C4 olefins, acetylene, 1,3-butadiene, benzene, toluene, phenol, pyrrole, furan, several alcohols, ethers, ketones, acetaldehyde, carbon dioxide, and hydrogen cyanide. Most of the calculated G-values of the electrons were in fair agreement with the experimental values. In the cases of several hydrocarbons, the dissociation from the superexcited state into the neutral fragments was taken into account, since the data for the fragmentation ratios were available. In the case of acetylene, the discrepancy in the G-values of electrons obtained experimentally and theoretically suggests that excited acetylene gives rise to a chemi-ionization reaction. In order to check the CSDA, the Fowler equation for helium has been calculated and the results compared with those obtained under the CSDA. The discrepancy in the G-values obtained by the two methods did not exceed 7%. (auth.)

  9. Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide

    Mohammad Asif

    2012-01-01

    Full Text Available Ripening is the final stage of the maturation process, when the fruit changes color, softens and develops the flavor, texture and aroma that constitute optimum eating quality. This study was conducted to discuss the use of unsatisfactory calcium carbide to ripen fruits for domestic markets as well as their toxic effects on human health. The commonly used ripening agents are calcium carbide, acetylene, ethylene, propylene, ethrel (2-chloroethyl phosphonic acid, glycol, ethanol and some other agents. The calcium carbide is one of the most commonly used ripening agent for fruits, while other calcium salts like calcium ammonium nitrate, calcium chloride and calcium sulfate are used to delay fruit ripening agents for local fruit industries. The use of calcium carbide is being discouraged worldwide, due to associated health hazards. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous, and once dissolved in water, it produces acetylene gas. Arsenic, phosphorous and acetylene gas may affect the different body organs and causes various health problems like headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema, seizures and prolonged hypoxia.

  10. Parametric investigation of the kinetics of growth of carbon-nanotube arrays on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700°C is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the significant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons. (authors)

  11. Structure of MoCN films deposited by cathodic arc evaporation

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  12. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  13. Development of dual-broadband rotational CARS for combustion diagnostics

    Bood, Joakim

    2000-06-01

    The present thesis concerns development and application of dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) for temperature and species concentration measurements in combustion processes. Both fundamental development of the technique, including experimental as well as modelling results, and measurements in practical combustion devices were conducted. A code for calculation of rotational CARS spectra of pure acetylene as well as mixtures of acetylene and nitrogen was developed. Using this code, temperatures and relative acetylene to nitrogen concentrations were evaluated from DB-RCARS measurements in pure acetylene and different acetylene/nitrogen mixtures. Moreover, rotational CARS spectra of dimethyl-ether (DME) have been analyzed. A powerful tool for simultaneous temperature and multiple species concentration measurements was developed by combining rotational CARS with vibrational CARS. The concept was demonstrated for measurements of temperature, oxygen, and carbon monoxide concentrations simultaneously in a premixed sooting ethene/air flame. Rotational CARS spectra of nitrogen at very high pressures (0.1-44 MPa) at room temperature were investigated. The experimental spectra were compared with calculated spectra using different Raman linewidth models. The results indicate some shortcomings in the present model, basically the density calculation and neglecting overlapping effects between adjacent spectral lines. A new method for CARS measurements in several spatially separated points simultaneously was developed. By using DB-RCARS the method was demonstrated for quantitative measurements of profiles of temperatures and oxygen concentrations. An atomic filter for rejection of stray light was developed. The filter was shown to efficiently reject stray light from the narrowband laser without affecting the shape of the rotational CARS spectrum or causing any signal losses. Within an interdisciplinary project intended to increase the

  14. Effect of carbon black on the performance of gas diffusion electrode of lithium-air battery%炭黑对锂空气电池气体扩散电极性能的影响

    马玉林; 于海滨; 刘元贵; 尹鸽平

    2012-01-01

    Effects of 3 kinds of carbon black, such as BP2000,XC-72 and acetylene black on electrochemical performance of gas diffusion electrodes for lithium-air battery were studied. The discharge performance of lithium-air battery was tested, acetylene black was determined to be superior to others for electrode. Acetylene black content and load were optimized and it delivered a specific capacity of 2 531 mAh/g at 0.2 mA/cm2 by discharging to 2.0 V when the content and load reached to 80% and 1.0 mg in electrode.SEM test result showed that the battery failure was mainly due to the accumulation of reaction products in electrode.%研究了BP2000、XC-72及乙炔黑等3种炭黑对锂空气电池气体扩散电极的电化学性能影响,测试了锂空气电池的放电性能,确定了电极用的最佳炭黑为乙炔黑.对电极上乙炔黑的含量及载量进行优化,当乙炔黑含量为80%、载量为1.0 mg时,以0.2 mA/cm2的电流放电至2.0V,炭黑的比容量可达2 531 mAh/g.SEM测试结果表明:反应产物在电极上的堆积是电池失效的主要原因.

  15. Controlled Synthesis of Polyenes by Catalytic Methods. Progress Report, December 1, 1989 -- November 30, 1992

    Schrock, R. R.

    1992-01-01

    A more direct approach to polyenes by the direct polymerization of acetylenes has been achieved. We were able to show that polymerization of acetylene itself can be controlled with a well- characterized alkylidene catalyst, but only if a base such as quinuclidine is present in order to slow down the rate of propagation relative to initiation. (Quinuclidine may also stabilize vinylalkylidene intermediates formed in the reaction). Unfortunately, living polyenes were no more stable than isolated polyenes, and so this approach had its limitations. Direct polymerization of acetylene by Mo(CH-t-Bu)(NAr)(O-t-Bu){sub 2} was more successful, but inherent polyene instability was still a problem. The most important result of the past grant period is the finding that dipropargyl derivatives (HC=CCH{sub 2}XCH{sub 2}C=CH; X = CH{sub 2}, C(CO{sub 2}R){sub 2}, SiR{sub 2}, etc.), which have been reported to be cyclopolymerized by various classical catalysts by as yet unknown mechanisms, are polymerized by Mo(CH-t-Bu)(NAr)[OCMe(CF{sub 3}){sub 2}]{sub 2} in dimethoxyethane. We speculate that intramolecular formation of a five-membered ring in the product of {alpha} addition is fast enough to yield another terminal alkylidene on the time scale of the polymerization reaction, while a six-membered ring is formed in a reaction involving a more reaction terminal alkylidene. Either intermediate alkylidene, but most likely the terminal alkylidene, could react with additional monomer to lead to growth of a chain having dangling triple bonds that eventually could be employed to form crosslinks.

  16. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem

    Florez-Leiva, Lennin; Damm, Ellen; Farías, Laura

    2013-05-01

    Coastal upwelling ecosystems are areas of high productivity and strong outgassing, where most gases, such as N2O and CH4, are produced in subsurface waters by anaerobic metabolisms. We describe seasonal CH4 variation as well as potential mechanisms producing CH4 in surface waters of the central Chile upwelling ecosystem (36°S). Surface waters were always supersaturated in CH4 (from 125% up to 550%), showing a clear seasonal signal triggered by wind driven upwelling processes (austral spring-summer period), that matched with the periods of high chlorophyll-a and dimethylsulfoniopropionate (DMSP) levels. Methane cycling experiments, with/without the addition of dimethylsulfide (including 13C-DMS) and acetylene (a nonspecific inhibitor of CH4 oxidation) along with monthly measurements of CH4, DMSP and other oceanographic variables revealed that DMS can be a CH4 precursor. Net CH4 cycling rates (control) fluctuated between -0.64 and 1.44 nmol L-1 d-1. After the addition of acetylene, CH4 cycling rates almost duplicated relative to the control, suggesting a strong methanotrophic activity. With a spike of DMS, the net CH4 cycling rate significantly increased relative to the acetylene and control treatment. Additionally, the δ13C values of CH4 at the end of the incubations (after addition of 13C enriched-DMS) were changed, reaching -32‰ PDB compared to natural values between -44‰ and -46‰ PDB. These findings indicate that, in spite of the strong CH4 consumption by methanotrophs, this upwelling area is an important source of CH4 to the atmosphere. The effluxes are derived partially from in situ surface production and seem to be related to DMSP/DMS metabolism.

  17. Oxy-gasoline torch. Innovative technology summary report

    NONE

    1998-12-01

    Under the deactivation and decommissioning (D and D) Implementation Plan of the US Department of Energy`s (DOE) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create significant depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene cutting torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, Babcock and Wilcox (B and W) Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, improvements are sought in the areas of productivity, airborne contamination, safety, and cost. This demonstration investigated the feasibility of using an oxy-gasoline torch as an alternative to the baseline oxy-acetylene torch for segmenting D and D components. This report provides a comparative analysis of the cost and performance of the baseline oxy-acetylene torch currently used by B and W Services, Inc., and the innovative oxy-gasoline torch.

  18. High-sensitivity remote detection of atmospheric pollutants and greenhouse gases at low ppm levels using near-infrared tunable diode lasers

    Roy, Anirban; Upadhyay, Abhishek; Chakraborty, Arup Lal

    2016-05-01

    The concentration of atmospheric pollutants and greenhouse gases needs to be precisely monitored for sustainable industrial development and to predict the climate shifts caused by global warming. Such measurements are made on a continuous basis in ecologically sensitive and urban areas in the advanced countries. Tunable diode laser spectroscopy (TDLS) is the most versatile non-destructive technology currently available for remote measurements of multiple gases with very high selectivity (low cross-sensitivity), very high sensitivity (on the order of ppm and ppb) and under hazardous conditions. We demonstrate absolute measurements of acetylene, methane and carbon dioxide using a fielddeployable fully automated TDLS system that uses calibration-free 2f wavelength modulation spectroscopy (2f WMS) techniques with sensitivities of low ppm levels. A 40 mW, 1531.52 nm distributed feedback (DFB) diode laser, a 10 mW, 1650 nm DFB laser and a 1 mW, 2004 nm vertical cavity surface emitting laser (VCSEL) are used in the experiments to probe the P9 transition of acetylene, R4 transition of methane and R16 transition of carbon dioxide respectively. Data acquisition and on-board analysis comprises a Raspberry Pi-based embedded system that is controllable over a wireless connection. Gas concentration and pressure are simultaneously extracted by fitting the experimental signals to 2f WMS signals simulated using spectroscopic parameters obtained from the HITRAN database. The lowest detected concentration is 11 ppm for acetylene, 275 ppm for methane and 285 ppm for carbon dioxide using a 28 cm long single-pass gas cell.

  19. An investigation into the traffic-related fraction of isoprene at an urban location

    Borbon, Agnès; Fontaine, Hervé; Veillerot, M.; Locoge, N.; Galloo, J. C.; Guillermo, René

    Continuous hourly measurements of isoprene and 30 other hydrocarbons were performed at an urban centre site in Lille, France, from May 1997 to April 1999. Parallel mass emissions of the same hydrocarbons from in-service passenger vehicles were determined from measurements made on a chassis dynamometer using the European MVEG driving cycle. On the one hand, descriptive statistics and principal component analysis revealed the strong traffic origin of isoprene in winter months and its double biogenic and anthropogenic origin during the summer. On the other hand, the emission measurements of individual hydrocarbons in exhaust gases confirmed the presence of isoprene in petrol fuelled (with or without catalytic converters) and diesel car exhausts. Finally, the isoprene/acetylene ratios, both of them derived from ambient concentrations and emission factors, were compared. No statistically significant difference was found in winter, indicating the strict traffic origin of isoprene during that period. For the winter period, a simple regression analysis was performed on daily isoprene concentrations vs. those of acetylene and three other exhaust gases tracers—propene, ethylene and 1,3-butadiene. The established regression equations, together with the four tracer concentrations, were used to estimate the vehicle exhaust fractions of isoprene. From November to March, vehicle exhaust explained the totality of isoprene levels. While traffic remained the major source of isoprene with a contribution greater than 50% during the growing season, it still constituted a non-negligible source of isoprene in summer, anti-correlated to temperature and fluctuating between 10% and 50%. The application with 1,3-butadiene gives the greatest estimation of the anthropogenic fraction of isoprene. Other sources of 1,3-butadiene, acetylene, ethylene and propene were suspected in addition to their known traffic origin.

  20. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars.

    Segura, Antígona; Navarro-González, Rafael

    2005-10-01

    Methane and other larger hydrocarbons have been proposed as possible greenhouse gases on early Mars. In this work we explore if volcanic processes may have been a source for such molecules based on theoretical and experimental considerations. Geologic evidence and numerical simulations indicate that explosive volcanism was widely distributed throughout Mars. Volcanic lightning is typically produced in such explosive volcanism. Therefore this geologic setting was studied to determine if lightning could be a source for hydrocarbons in volcanic plumes. Volcanic lightning was simulated by focusing a high-energy infrared laser beam inside of a Pyrex reactor that contained the proposed volcanic gas mixture composed of 64% CH(4), 24% H(2), 10% H(2)O and 2% N(2), according to an accretion model and the nitrogen content measured in Martian meteorites. The analysis of products was performed by gas chromatography coupled to infrared and mass spectroscopy. Eleven hydrocarbons were identified among the products, of which acetylene (C(2)H(2)) was the most abundant. A thermochemical model was used to determine which hydrocarbons could arise only from volcanic heat. In this case, acetylene and ethylene are formed at magmatic temperatures. Our results indicate that explosive volcanism may have injected into the atmosphere of early Mars approximately 6 x 10(12) g yr(-1) of acetylene, and approximately 2 x 10(12) g yr(-1) of 1,3-butadiyne, both produced by volcanic lightning, approximately 5 x 10(11) g yr(-1) of ethylene produced by volcanic heat, and 10(13) g yr(-1) of methane. PMID:16231210