WorldWideScience

Sample records for acetylcholinesterase

  1. Photodestruction of acetylcholinesterase

    Ultraviolet irradiation of 11S acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) produces a loss of tryptophan fluorescence which is best described as the sum of two separable first-order processes, one much more rapid than the other. In addition, the enzyme undergoes an all-or-none inactivation that is monotonically first order. Simultaneous with activity loss, photoscission takes place and results in a molecular weight drop. The extreme sensitivity of acetylcholinesterase to photodestruction upon photon absorption and the several events that follow it not only suggest that these findings might be a basis for a useful molecular probe of the structure of this enzyme, but also indicate that additional care should be taken when conducting spectroscopic studies in the uv region

  2. Molecular Dynamics of Acetylcholinesterase

    Shen, T Y.; Tai, Kaihsu; Henchman, Richard H.; Mccammon, Andy

    2002-06-01

    Molecular dynamics simulations are leading to a deeper understanding of the activity of the enzyme acetylcholinesterase. Simulations have shown how breathing motions in the enzyme facilitate the displacement of substrate from the surface of the enzyme to the buried active site. The most recent work points to the complex and spatially extensive nature of such motions and suggests possible modes of regulation of the activity of the enzyme.

  3. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  4. Acetylcholinesterase: From 3D Structure to Function

    Dvir, Hay; Silman, Israel; Harel, Michal; Rosenberry, Terrone L.; Sussman, Joel L.

    2010-01-01

    By rapid hydrolysis of the neurotransmitter, acetylcholine, acetylcholinesterase terminates neurotransmission at cholinergic synapses. Acetylcholinesterase is a very fast enzyme, functioning at a rate approaching that of a diffusion-controlled reaction. The powerful toxicity of organophosphate poisons is attributed primarily to their potent inhibition of acetylcholinesterase. Acetylcholinesterase inhibitors are utilized in the treatment of various neurological disorders, and are the principal...

  5. Disulfide bonds of acetylcholinesterase

    The positions of the inter- and intrasubunit disulfide bridges were established for the 11S form of acetylcholinesterase (AChE) isolated from Torpedo californica. A major form of AChE localized within the basal lamina of the synapse is a dimensionally asymmetric molecule which contains either two (13S) or three (17S) sets of catalytic subunits linked to collagenous and non-collagenous structural subunits. Limited proteolysis yields a tetramer of catalytic subunits which sediments at 11S. Each catalytic subunit contains 8 cysteine residues. Initially, these Cys residues were identified following trypsin digestion of the reduced protein alkylated with [14C]-iodoacetate. Peptides were resolved by gel filtration followed by reverse phase HPLC. To determine the disulfide bonding profile, native non-reduced 11S AChE was treated with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to proteolytic digestion. One fluorescent Cys peptide was identified indicating that a single sulfhydryl residue was present in its reduced form. Three pairs of disulfide bonded peptides were identified, sequenced, and localized in the polypeptide chain. The Cys residue that is located in the C-terminal tryptic peptide was disulfide bonded to an identical peptide and thus forms the intersubunit crosslink. Finally, the cysteine positions have been compared with the sequence of the homologous protein, thyroglobulin. Both likely share a common pattern of folding

  6. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors

    Alžběta Kračmarová

    2015-08-01

    Full Text Available Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing cholinergic function using inhibitors of acetylcholinesterase like rivastigmine, donepezil or galantamine. These drugs can influence not only the acetylcholinesterase activity but also other processes in treated organism. The paper is aimed mainly on possibility of increased expression and protein level of acetylcholinesterase caused by the therapy with acetylcholinesterase inhibitors.

  7. Acetylcholinesterase: Enhanced Fluctuations and Alternative

    Bui, Jennifer M.; Tai, Kaihsu; Mccammon, J Andrew A.

    2004-05-21

    A 15 ns molecular dynamics simulation is reported for the complex of mouse acetylcholinesterase (mAChE) and the protein neurotoxin fasciculin-2. As compared to a 15 ns simulation of apo-mAChE, the structural fluctuations of the enzyme are substantially increased in magnitude for the enzyme in the complex. Fluctuations of part of the long omega loop (residues 69-96) are particularly enhanced. This loop forms one wall of the active site, and the enhanced fluctuations lead to additional routes of access to the active site.

  8. Possibility of Acetylcholinesterase Overexpression in Alzheimer Disease Patients after Therapy with Acetylcholinesterase Inhibitors

    Alžběta Kračmarová; Lucie Drtinová; Miroslav Pohanka

    2015-01-01

    Acetylcholinesterase is an enzyme responsible for termination of excitatory transmission at cholinergic synapses by the hydrolyzing of a neurotransmitter acetylcholine. Nowadays, other functions of acetylcholinesterase in the organism are considered, for example its role in regulation of apoptosis. Cholinergic nervous system as well as acetylcholinesterase activity is closely related to pathogenesis of Alzheimer disease. The mostly used therapy of Alzheimer disease is based on enhancing choli...

  9. Cyanobacterial secondary metabolites as acetylcholinesterase inhibitors

    Zelík, Petr; Masojídek, Jiří; Štys, Dalibor; Kopecký, Jiří

    Kunming : Verlag, 2006, s. 52-53. [International Conference on Applied Phycology /10./. Kunming (CN), 24.07.2005-28.07.2005] Institutional research plan: CEZ:AV0Z50200510 Keywords : cyanobacteria * acetylcholinesterase inhibitors Subject RIV: EE - Microbiology, Virology

  10. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.

    Kreimer, D. I.; Shnyrov, V. L.; Villar, E.; Silman, I.; Weiner, L

    1995-01-01

    Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation...

  11. Histochemical demonstration of acetylcholinesterase in neuroblastoma.

    Variend, S; Loughlin, M A

    1984-01-01

    The presence of acetylcholinesterase in the tumour cells of neuroblastoma has been shown by enzyme histochemistry. For comparison, some other tumours likely to be found in children and commonly presenting histologically as small cell tumours have also been studied. Acetylcholinesterase activity was seen in rhabdomyosarcoma, but, compared with neuroblastoma, the activity was focal and sparse. One Ewing's tumour and a lymphoblastic lymphoma were negative for the enzyme reaction. Some of the ult...

  12. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  13. Use of acetylcholinesterase inhibitors in Alzheimer's disease.

    Moghul, S; Wilkinson, D

    2001-09-01

    Alzheimer's disease is a growing problem in an aging Western world, estimated to have cost the US economy USD 1.75 trillion. Until recently, the management of Alzheimer's disease largely comprised support for the family, nursing care and the use of unlicensed medication to control behavioral disturbances. The three new acetylcholinesterase inhibitors licensed to treat Alzheimer's disease (donepezil, rivastigmine and galantamine) have provided clinicians with a major impetus to their desire to diagnose and treat this lethal disease. Their effects on cognition are proven. More recent work on the effects of acetylcholinesterase inhibitors on behavioral symptoms, activities of daily living and caregiver burden have also been encouraging. Emerging work indicates their likely efficacy in other dementias (e.g., vascular dementia, dementia with Lewy bodies). This review summarizes the evidence concerning the impact of acetylcholinesterase inhibitors in dementia both currently and over the next 5 years. PMID:19811047

  14. Inactivation of acetylcholinesterase by various fluorophores

    Guo, Lilu; Suarez, Alirica I.; Thompson, Charles M.

    2010-01-01

    The inhibition of recombinant mouse acetylcholinesterase (rMAChE) and electric eel acetylcholinesterase (EEAChE) by seven, structurally different chromophore-based (dansyl, pyrene, dabsyl, diethylamino- and methoxycoumarin, Lissamine rhodamine B, and Texas Red) propargyl carboxamides or sulfonamides was studied. Diethylaminocoumarin, Lissamine, and Texas Red amides inhibited rMAChE with IC50 values of 1.00 µM, 0.05 µM, and 0.70 µM, respectively. Lissamine and Texas Red amides inhibited EEAChE...

  15. Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon

    Kuča, K.; Musilová, L.; Paleček, J.; Církva, Vladimír; Paar, M.; Musílek, K.; Hrabinová, M.; Pohanka, M.; Zdarová Karasová, J.; Jun, D.

    2009-01-01

    Roč. 14, č. 12 (2009), s. 4915-4921. ISSN 1420-3049 Grant ostatní: MO0(CZ) FZV0000604 Institutional research plan: CEZ:AV0Z40720504 Keywords : acetylcholinesterase * reactivator * oxime Subject RIV: CC - Organic Chemistry Impact factor: 1.738, year: 2009

  16. ACETYLCHOLINESTERASE HISTOCHEMISTRY OF THE THALAMUS IN THE PRIMATE

    2001-01-01

    Objective To observe the distribution of acetylcholinesterase activity in the thalamus of the monkey.Methods Histochemical method was used to detect the acetylcholinesterase activity in the thalamus.Results Acetylcholinesterase was found to be inhomogeneous distribution in the primate thalamus and to reveal previously uncovered inhomogeneity within certain thalamic nuclei and their subdivisions. The medial, ventral and posterior nuclear groups displayed markedly uneven acetylcholinesterase reaction.In the mediodorsal nucleus,three distinct sbudivisions were revealed by acetylcholinesterase histochemistry, medial magnocellular part, ventral sector of central parvicellular part and dorsolateral sector of lateral pars multiformity showed weak, moderate and strong acetylcholinesterase activity, respectively. In the ventral nuclear group, acetylcholinesterase histochemistry was strong in the medial part of ventral posterior nucleus, moderate in the magnocellular part of ventral anterior, caudal, medial, oral and pars postrema parts of ventral lateral nucleus, as well as lateral part of ventral posterior nucleus, poor and weak in the inferior part of ventral posterior nucleus, par compacta of the medial part of ventral posterior nucleus and parvicellular part of ventral anterior nucleus. In the pulvinar nucleus, acetylcholinesterase reaction ranged from weak, moderate to strong in the parts of the oral, medial and lateral, as well as inferior of this nucleus, respectively. Regional variations of acetylcholinesterase activity within the thalamic nuclei and their subdivisions can help to identify them by acetylcholinesterase histochemistry. In addition, the dark patches of strong acetylcholinesterase activity contrasting with a lighter surrounding matrix were revealed within the parvicellular part and pars multiformis of mediodorsal nucleus, paracentral nucleus, central lateral nucleus, pars postrema part of ventral lateral nucleus and medial habenula nucleus, as well as

  17. Flavanone glycosides as acetylcholinesterase inhibitors: Computational and experimental evidence

    C Remya

    2014-01-01

    Full Text Available Acetylcholinesterase hydrolyzes the neurotransmitter called acetylcholine and is crucially involved in the regulation of neurotransmission. One of the observable facts in the neurodegenerative disorders like Alzheimer′s disease is the decrease in the level of acetylcholine. Available drugs that are used for the treatment of Alzheimer′s disease are primarily acetylcholinesterase inhibitors with multiple activities. They maintain the level of acetylcholine in the brain by inhibiting the acetylcholinesterase function. Hence acetylcholinesterase inhibitors can be used as lead compounds for the development of drugs against AD. In the present study, the binding potential of four flavanone glycosides such as naringin, hesperidin, poncirin and sakuranin against acetylcholinesterase was analysed by using the method of molecular modeling and docking. The activity of the top scored compound, naringin was further investigated by enzyme inhibition studies and its inhibitory concentration (IC 50 towards acetylcholinesterase was also determined.

  18. Altered Levels of Acetylcholinesterase in Alzheimer Plasma

    García Ayllón, María Salud; Riba Llena, Iolanda; Serra Basante, Carol; Alom, Jordi; Boopathy, Rathnam; Sáez-Valero, Javier

    2010-01-01

    Background Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem. Principal Findings Here we have estimated the levels of AChE activity in human plasma by first imm...

  19. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    Miroslav Pohanka

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. Thi...

  20. A simple radiometric in vitro assay for acetylcholinesterase inhibitors

    A radiometric method for screening acetylcholinesterase inhibitors has been described. The method is based on the production of [14C]carbon dioxide from the hydrolysis of acetylcholine. The inhibitory concentration at 50% (IC50) values for several known acetylcholinesterase inhibitors were in agreement with literature values. The new radiometric method is simple, inexpensive, and has the potential for automation

  1. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.

    Antosiewicz, J; Gilson, M K; Lee, I H; McCammon, J A

    1995-01-01

    For some enzymes, virtually every substrate molecule that encounters the entrance to the active site proceeds to reaction, at low substrate concentrations. Such diffusion-limited enzymes display high apparent bimolecular rate constants ((kcat/KM)), which depend strongly upon solvent viscosity. Some experimental studies provide evidence that acetylcholinesterase falls into this category. Interestingly, the asymmetric charge distribution of acetylcholinesterase, apparent from the crystallograph...

  2. Acetylcholinesterase-inhibiting Alkaloids from Zephyranthes concolor

    Sebastien Arseneau

    2011-11-01

    Full Text Available The bulbs and aerial parts of Zephyranthes concolor (Lindl. Benth. & Hook. f. (Amaryllidaceae, an endemic species to Mexico, were found to contain the alkaloids chlidanthine, galanthamine, galanthamine N-oxide, lycorine, galwesine, and epinorgalanthamine. Since currently only partial and low resolution 1H-NMR data for chlidanthine acetate are available, and none for chlidanthine, its 1D and 2D high resolution 1H- and 13C-NMR spectra were recorded. Unambiguous assignations were achieved with HMBC, and HSQC experiments, and its structure was corroborated by X-ray diffraction. Minimum energy conformation for structures of chlidanthine, and its positional isomer galanthamine, were calculated by molecular modelling. Galanthamine is a well known acetylcholinesterase inhibitor; therefore, the isolated alkaloids were tested for this activity. Chlidanthine and galanthamine N-oxide inhibited electric eel acetylcholinesterase (2.4 and 2.6 × 10−5 M, respectively, indicating they are about five times less potent than galanthamine, while galwesine was inactive at 10−3 M. Inhibitory activity of HIV-1 replication, and cytotoxicity of the isolated alkaloids were evaluated in human MT-4 cells; however, the alkaloids showed poor activity as compared with standard anti-HIV drugs, but most of them were not cytotoxic.

  3. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  4. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    Miroslav Pohanka

    2014-06-01

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE. Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.

  5. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  6. Flavanone glycosides as acetylcholinesterase inhibitors: Computational and experimental evidence

    Remya, C.; K V Dileep; I Tintu; Variyar, E. J.; Sadasivan, C.

    2014-01-01

    Acetylcholinesterase hydrolyzes the neurotransmitter called acetylcholine and is crucially involved in the regulation of neurotransmission. One of the observable facts in the neurodegenerative disorders like Alzheimer′s disease is the decrease in the level of acetylcholine. Available drugs that are used for the treatment of Alzheimer′s disease are primarily acetylcholinesterase inhibitors with multiple activities. They maintain the level of acetylcholine in the brain by inhibiting the acetylc...

  7. Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility

    Mor, I.; Sklan, EH; Podoly, E; Pick, M; Kirschner, M.; Yogev, L.; Bar-Sheshet Itach, S; Schreiber, L; B. Geyer; Mor, T.; Grisaru, D.; Soreq, H.

    2008-01-01

    Abstract Changes in protein subdomains through alternative splicing often modify protein-protein interactions, altering biological processes. A relevant example is that of the stress-induced up-regulation of the acetylcholinesterase (AChE-R) splice variant, a common response in various tissues. In germ cells of male transgenic TgR mice, AChE-R excess associates with reduced sperm differentiation and sperm counts. To explore the mechanism(s) by which AChE-R up-regulation affects spermatogenesi...

  8. The Effects of Exercise-induced Fatigue on Acetylcholinesterase Expression and Activity at Rat Neuromuscular Junctions

    Wen, Guo; Hui, Wang; Dan, Chen; Xiao-Qiong, Wu; Jian-Bin, Tong; Chang-Qi, Li; De-Liang, Lei; Wei-Jun, Cai; Zhi-Yuan, Li; Xue-Gang, Luo

    2009-01-01

    Acetylcholinesterase is the enzyme that terminates neurotransmission by hydrolyzing the acetylcholine released by the motoneurons at the neuromuscular junctions. Although acetylcholinesterase has been studied for almost a century, the underlying relationship between exercise-induced fatigue and acetylcholinesterase activity at the synaptic cleft is not clear. The purpose of this study was to assess the effects of exercise-induced fatigue on the expression and activity of acetylcholinesterase ...

  9. Mutation at codon 322 in the human acetylcholinesterase (ACHE) gene accounts for YT blood group polymorphism.

    Bartels, C F; Zelinski, T; Lockridge, O

    1993-01-01

    Acetylcholinesterase is present in innervated tissues, where its function is to terminate nerve impulse transmission. It is also found in the red blood cell membrane, where its function is unknown. We report the first genetic variant of human acetylcholinesterase and support the identity of acetylcholinesterase as the YT blood group antigen. DNA sequencing shows that the wild-type sequence of acetylcholinesterase with His322 (CAC) is the YT1 blood group antigen and that the rare variant of ac...

  10. Antioxidative/acetylcholinesterase inhibitory activity of some Asteraceae plants.

    Mekinić, Ivana Generalić; Burcul, Franko; Blazević, Ivica; Skroza, Danijela; Kerum, Daniela; Katalinić, Visnja

    2013-04-01

    The extracts obtained by 80% EtOH from some Asteraceae plants (Calendula officinalis, Inula helenium, Arctium lappa, Artemisia absinthium and Achillea millefolium) were studied. Rosmarinic acid, one of the main compounds identified in all extracts, was determined quantitatively by using HPLC. In addition, spectrophotometric methods were evaluated as an alternative for rosmarinic acid content determination. Total phenolic content was also established for all extracts. A. millefolium extract was found to have the highest content of rosmarinic acid as well as total phenols. All extracts were tested for antioxidant and acetylcholinesterase inhibitory activity. A. millefolium was shown to possess the best antioxidant activity (for all tested methods) as well as acetylcholinesterase inhibitory activity. Highly positive linear relationships were obtained between antioxidant/acetylcholinesterase inhibitory activity and the determined rosmarinic acid content indicating its significance for the observed activities. PMID:23738456

  11. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  12. Altered levels of acetylcholinesterase in Alzheimer plasma.

    María-Salud García-Ayllón

    Full Text Available BACKGROUND: Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE pose a major problem. PRINCIPAL FINDINGS: Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1+G(2 forms and not G(4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1+G(2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION: Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.

  13. The Dynamics of Ligand Barrier Crossing Inside the Acetylcholinesterase Gorge

    Bui, Jennifer M.(University of California, San Diego); Henchman, Richard H.(University of California, San Diego); Mccammon, Andy (University of California, San Diego)

    2003-10-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated .ux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholinesterase observed experimentally. From the results of the activated dynamics simulations, local conformational .uctuations of the gorge residues and larger scale collective motions of the protein are found to correlate highly with the ligand crossing.

  14. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  15. NEUROTOXICITY OF PARATHION-INDUCED ACETYLCHOLINESTERASE INHIBITION IN NEONATAL RATS

    The biochemical and morphological neurotoxic effects of postnatal acetylcholinesterase (AChE) inhibition were examined in rat pups dosed with parathion, at time points critical to hippocampal neurogenesis and synaptogenesis (i.e., D5-20). ippocampal cytopathology as assessed by l...

  16. Complexity of acetylcholinesterases in biting flies and ticks

    Acetylcholinesterase (AChE) inhibitors function as pesticides for invertebrates, vertebrate nerve agents, and medicine to reduce cognitive effects of Alzheimer’s disease. Organophosphate (OP) pesticides have been widely used to control biting flies and ticks, however, OP-resistance has compromised c...

  17. Acetylcholinesterase assay for cerebrospinal fluid using bupivacaine to inhibit butyrylcholinesterase

    Anders Jens

    2001-12-01

    Full Text Available Abstract Background Most test systems for acetylcholinesterase activity (E.C.3.1.1.7. are using toxic inhibitors (BW284c51 and iso-OMPA to distinguish the enzyme from butyrylcholinesterase (E.C.3.1.1.8. which occurs simultaneously in the cerebrospinal fluid. Applying Ellman's colorimetric method, we were looking for a non-toxic inhibitor to restrain butyrylcholinesterase activity. Based on results of previous in vitro studies bupivacaine emerged to be a suitable inhibitor. Results Pharmacokinetic investigations with purified cholinesterases have shown maximum inhibition of butyrylcholinesterase activity and minimal interference with acetylcholinesterase activity at bupivacaine final concentrations between 0.1 and 0.5 mmol/l. Based on detailed analysis of pharmacokinetic data we developed three equations representing enzyme inhibition at bupivacaine concentrations of 0.1, 0.2 and 0.5 mmol/l. These equations allow us to calculate the acetylcholinesterase activity in solutions containing both cholinesterases utilizing the extinction differences measured spectrophotometrically in samples with and without bupivacaine. The accuracy of the bupivacaine-inhibition test could be confirmed by investigations on solutions of both purified cholinesterases and on samples of human cerebrospinal fluid. If butyrylcholinesterase activity has to be assessed simultaneously an independent test using butyrylthiocholine iodide as substrate (final concentration 5 mmol/l has to be conducted. Conclusions The bupivacaine-inhibition test is a reliable method using spectrophotometrical techniques to measure acetylcholinesterase activity in cerebrospinal fluid. It avoids the use of toxic inhibitors for differentiation of acetylcholinesterase from butyrylcholinesterase in fluids containing both enzymes. Our investigations suggest that bupivacaine concentrations of 0.1, 0.2 or 0.5 mmol/l can be applied with the same effect using 1 mmol/l acetylthiocholine iodide as substrate.

  18. Acupuncture on Gnosia and Acetylcholinesterase in Senile Dementia Patients

    TANG Yong; YU Shu-guang; CHEN Jin; ZHANG Wei

    2003-01-01

    Purpose To observe the effect of acupuncture on gnosia and acetylcholinesterase in patients with senile dementia. Methods Eight patients diagnosed with mild or moderate senile dementia were treated by acupuncture of Sishencong ( Ex-HN 1 ), Shenmen ( HT 7) and Taixi ( KI 3) for I month; gnosia was evaluated by Mini-mental state examination before and after the treatment; plasma acetylcholin esterase activity was measured by flourier before and after the treatment. Results There was a significant difference in gnosia between pre- and post--treatment with acupuncture (P<0.01); there was no significant difference in acetyl- cholinesterase activity between pre- and posttreatment ( P>0.05 ). Conclusion Acupuncture has a certain improving effect on gnosia in senile dementia;one month's acupuncture treatment had little effect on plasma acetyl-cholinesterase activity.

  19. Presence of a soluble form of acetylcholinesterase in human ocular fluids.

    Appleyard, M E; McDonald, B.; Benjamin, L

    1991-01-01

    Samples of ocular fluid obtained from normal persons at necropsy and during eye surgery have been assayed for the presence of acetylcholinesterase. Measurable levels could be detected in all samples examined, but levels of acetylcholinesterase in vitreous humour were consistently higher than those in aqueous humour, indicating a possible retinal origin. Polyacrylamide gel electrophoresis revealed that the enzyme of ocular fluid had the same mobility as that of acetylcholinesterase from cerebr...

  20. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.

    Harel, M; Kryger, G.; Rosenberry, T. L.; Mallender, W. D.; Lewis, T.; Fletcher, R. J.; Guss, J.M.; Silman, I.; Sussman, J. L.

    2000-01-01

    We have crystallized Drosophila melanogaster acetylcholinesterase and solved the structure of the native enzyme and of its complexes with two potent reversible inhibitors, 1,2,3,4-tetrahydro-N-(phenylmethyl)-9-acridinamine and 1,2,3,4-tetrahydro-N-(3-iodophenyl-methyl)-9-acridinamine--all three at 2.7 A resolution. The refined structure of D. melanogaster acetylcholinesterase is similar to that of vertebrate acetylcholinesterases, for example, human, mouse, and fish, in its overall fold, char...

  1. A human acetylcholinesterase gene identified by homology to the Ace region of Drosophila.

    Soreq, H.; Zevin-Sonkin, D; Avni, A.; Hall, L. M.; Spierer, P

    1985-01-01

    The Ace locus of the Drosophila genome controls biosynthesis of the neurotransmitter-hydrolyzing enzyme acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7). We injected the mRNA species hybridizing with DNA fragments from this region into Xenopus oocytes, in which acetylcholinesterase mRNA is translated into active acetylcholinesterase. A 2.0-kilobase (kb) fragment of DNA from this region selectively hybridizes with Drosophila mRNA capable of inducing the biosynthesis of acetylch...

  2. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase

    Lamouroux Lucille; Lougarre Andrée; Siadat Omid; Ladurantie Caroline; Fournier Didier

    2006-01-01

    Background Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use in biosensors for detection of these insecticides. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, its stability has to be improved for extensive utilization. Results To create a disulfide bond that could increase the stability of the Drosophila melanogaster acetylcholinesterase, we selected seven p...

  3. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III)

    M. Julia Arcos-Martínez; Olga Domínguez-Renedo; Silvia Sanllorente-Méndez

    2010-01-01

    Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs) were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concen...

  4. Development of translationally active mRNA for larval muscle acetylcholinesterase during ascidian embryogenesis.

    Meedel, T H; Whittaker, J R

    1983-01-01

    Relative quantities of translationally active acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) mRNA present at various developmental stages were compared in embryos of the ascidian Ciona intestinalis. Purified RNA was tested for its translational capacity by microinjection into Xenopus laevis oocytes; the acetylcholinesterase produced was immunoprecipitated with antibody to Ciona acetylcholinesterase and enzyme activity was assayed radiometrically. With this protocol, enzyme s...

  5. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    2014-01-01

    In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen an...

  6. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.

    Mutero, A; Pralavorio, M; Bride, J M; D. Fournier

    1994-01-01

    Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations asso...

  7. Acetylcholinesterase assay for cerebrospinal fluid using bupivacaine to inhibit butyrylcholinesterase

    Anders Jens; Pietsch Stefan; Bauer Heike I; Kluge Harald H; Kluge Wolfram H; Venbrocks Rudolf A

    2001-01-01

    Abstract Background Most test systems for acetylcholinesterase activity (E.C.3.1.1.7.) are using toxic inhibitors (BW284c51 and iso-OMPA) to distinguish the enzyme from butyrylcholinesterase (E.C.3.1.1.8.) which occurs simultaneously in the cerebrospinal fluid. Applying Ellman's colorimetric method, we were looking for a non-toxic inhibitor to restrain butyrylcholinesterase activity. Based on results of previous in vitro studies bupivacaine emerged to be a suitable inhibitor. Results Pharmaco...

  8. Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review

    Vikas Dhull; Anjum Gahlaut; Neeraj Dilbaghi; Vikas Hooda

    2013-01-01

    The exponentially growing population, with limited resources, has exerted an intense pressure on the agriculture sector. In order to achieve high productivity the use of pesticide has increased up to many folds. These pesticides contain organophosphorus (OP) toxic compounds which interfere with the proper functioning of enzyme acetylcholinesterase (AChE) and finally affect the central nervous system (CNS). So, there is a need for routine, continuous, on spot detection of OP compounds which ar...

  9. Latent acetylcholinesterase in secretory vesicles isolated from adrenal medulla

    Gratzl, Manfred; Krieger-Brauer, H.; Ekerdt, R

    1981-01-01

    A new procedure is described for the preparation of highly purified and stable secretory vesicles from adrenal medulla. Two forms of acetylcholinesterase, a membrane bound form as well as a soluble form, were found within these vesicles. The secretory vesicles, isolated by differential centrifugation, were further purified on a continuous isotonic Percoll™ gradient. In this way, secretory vesicles were separated from mitochondrial, microsomal and cell membrane contamination. The secretory ves...

  10. Geranylphenazinediol, an Acetylcholinesterase Inhibitor Produced by aStreptomycesSpecies

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F.

    2012-01-01

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures

  11. The Dynamics of Ligand Barrier Crossing inside the Acetylcholinesterase Gorge

    Bui, Jennifer M.; Henchman, Richard H.; McCammon, J. Andrew

    2003-01-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated flux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholineste...

  12. Conformational preferences of a 14-residue fibrillogenic peptide from acetylcholinesterase

    Vijayan, Ranjit; Biggin, Philip C

    2010-01-01

    A 14-residue fragment from near the C-terminus of the enzyme acetylcholinesterase (AChE) is believed to have a neurotoxic/neurotrophic effect acting via an unknown pathway. While the peptide is α-helical in the full-length enzyme, the structure and association mechanism of the fragment are unknown. Using multiple molecular dynamics simulations, starting from a tetrameric complex of the association domain of AChE and systematically disassembled subsets that include the peptide fragment, we sho...

  13. Effects of gamma radiation on solutions of acetylcholinesterase

    Dilute solutions of bovine erythrocyte acetylcholinesterase were irradiated by 30, 60, 90, and 120 krad of 60Co gamma rays under air at around 50C. The enzyme activity decreased progressively with radiation dose. Ultraviolet spectra measurements indicated conformational changes in the enzyme with radiation dose. Part of the decrease in the activity of the enzyme after irradiation by 120 krad could be accounted for by the splitting of the enzyme into two pieces of molecular weights 73,000 and 7500

  14. Binding partners for mouse acetylcholinesterase in the central nervous system

    Paraoanu, Laura Elena

    2004-01-01

    Acetylcholinesterase (AChE) is the enzyme that hydrolyses the neurotransmitter acetylcholine at the cholinergic synapses. Besides this principal role, called the classical function, AChE shows also other non-classical functions related to processes during embryonic development and diseases. The existence of multiple molecular forms, the homology with other neuronal cell adhesion molecules, and the early expression pattern, suggest that AChE may function in cell adhesion, and thus in neurite g...

  15. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis

    Grifman, Mirta; Galyam, Nilly; Seidman, Shlomo; Soreq, Hermona

    1998-01-01

    Accumulated evidence attributes noncatalytic morphogenic activitie(s) to acetylcholinesterase (AChE). Despite sequence homologies, functional overlaps between AChE and catalytically inactive AChE-like cell surface adhesion proteins have been demonstrated only for the Drosophila protein neurotactin. Furthermore, no mechanism had been proposed to enable signal transduction by AChE, an extracellular enzyme. Here, we report impaired neurite outgrowth and loss of neurexin Iα mRNA under antisense s...

  16. Acetylcholinesterase Clustering at the Neuromuscular Junction Involves Perlecan and Dystroglycan

    Peng, H. Benjamin; Xie, Hongbo; Rossi, Susanna G.; Rotundo, Richard L.

    1999-01-01

    Formation of the synaptic basal lamina at vertebrate neuromuscular junction involves the accumulation of numerous specialized extracellular matrix molecules including a specific form of acetylcholinesterase (AChE), the collagenic-tailed form. The mechanisms responsible for its localization at sites of nerve– muscle contact are not well understood. To understand synaptic AChE localization, we synthesized a fluorescent conjugate of fasciculin 2, a snake α-neurotoxin that tightly binds to the ca...

  17. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus.

    Rotundo, R. L.

    1984-01-01

    The synthesis, assembly, and processing of the multiple molecular forms of acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, EC 3.1.1.7) in quail muscle cultures was studied by using lectins to distinguish enzyme molecules residing in different subcellular compartments. Special emphasis was given to the assembly of asymmetric AcChoEase molecules because these appear to be the predominant, if not unique, forms of AcChoEase at the vertebrate neuromuscular junction. All cell surfac...

  18. Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species.

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F

    2012-07-27

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures. PMID:22775474

  19. Enzymatic and biochemical characterization of Bungarus sindanus snake venom acetylcholinesterase

    M Ahmed

    2012-01-01

    Full Text Available This study analyses venom from the elapid krait snake Bungarus sindanus, which contains a high level of acetylcholinesterase (AChE activity. The enzyme showed optimum activity at alkaline pH (8.5 and 45ºC. Krait venom AChE was inhibited by substrate. Inhibition was significantly reduced by using a high ionic strength buffer; low ionic strength buffer (10 mM PO4 pH 7.5 inhibited the enzyme by 1. 5mM AcSCh, while high ionic strength buffer (62 mM PO4 pH 7.5 inhibited it by 1 mM AcSCh. Venom acetylcholinesterase was also found to be thermally stable at 45ºC; it only lost 5% of its activity after incubation at 45ºC for 40 minutes. The Michaelis-Menten constant (Km for acetylthiocholine iodide hydrolysis was found to be 0.068 mM. Krait venom acetylcholinesterase was also inhibited by ZnCl2, CdCl2, and HgCl2 in a concentrationdependent manner. Due to the elevated levels of AChE with high catalytic activity and because it is more stable than any other sources, Bungarus sindanus venom is highly valuable for biochemical studies of this enzyme.

  20. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher than the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: → Acetylcholinesterase activity is induced by organophosphorus agents. → AChE induction is related to apoptosis. → Induction of AChE activity by OP is independent of BChE.

  1. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  2. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Orada Chumphukam; Thao T. Le; Cass, Anthony E. G.

    2014-01-01

    We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE). One selected aptamer sequence (R15/19) has a high affinity towards the enzyme (Kd = 157 ± 42 pM). Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM), however significant reduction in affinity occurred at high ionic strength (~1.2 M). In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of ...

  3. Acetylcholinesterase Modulates Presenilin-1 Levels and γ-Secretase Activity

    Campanari, María-Letizia; García Ayllón, María Salud; Belbin, Olivia; Galcerán, Joan; Lleó, Alberto; Sáez-Valero, Javier

    2014-01-01

    The cholinergic enzyme acetylcholinesterase (AChE) and the catalytic component of the ¿-secretase complex, presenilin-1 (PS1), are known to interact. In this study, we investigate the consequences of AChE-PS1 interactions, particularly the influence of AChE in PS1 levels and ¿-secretase activity. PS1 is able to co-immunoprecipitate all AChE variants (AChE-R and AChE-T) and molecular forms (tetramers and light subunits) present in the human brain. Overexpression of AChE-R or AChE-T, or their r...

  4. Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction

    Rotundo, R. L.; Ruiz, C.A.; Marrero, E.; Kimbell, L. M.; Rossi, S.G.; Rosenberry, T.; Darr, A; Tsoulfas, P.

    2008-01-01

    The collagen-tailed form of acetylcholinesterase (ColQ-AChE) is the major if not unique form of the enzyme associated with the neuromuscular junction (NMJ). This enzyme form consists of catalytic and non-catalytic subunits encoded by separate genes, assembled as three enzymatic tetramers attached to the three-stranded collagen-like tail (ColQ). This synaptic form of the enzyme is tightly attached to the basal lamina associated with the glycosaminoglycan perlecan. Fasciculin-2 is a snake toxin...

  5. ACETYLCHOLINESTERASE LEVELS IN FARMERS EXPOSED TO PESTICIDES IN MALAYSIA

    Ismarulyusda Ishak; Syarif Husin Lubis; Zariyantey Abd Hamid; Nihayah Mohammad; Hidayatulfathi Othman; Ahmad Rohi Ghazali; Muhammad Faiz Mohd Ismail; Shobna Sasitharan

    2015-01-01

    Agriculture is an important component of the Malaysian economy. Pesticides are widely used by farmers to increase crop production. Acetylcholinesterase (AChE) is known to play an important role in the degradation of acetylcholine (ACh) at the neuromuscular junction of the nervous system. The purpose of this study was to determine the effect of pesticide exposure on serum levels of AChE of farmers. A cross-sectional study was conducted. A total of 95 farmers from Kelantan (n = 49) and Selangor...

  6. Anti-Acetylcholinesterase Alkaloids from Annona glabra Leaf.

    Lee, Shoei-Sheng; Wu, Dong-Yi; Tsai, Sheng-Fa; Chen, Chien-Kuang

    2015-06-01

    Bioassay guided fractionation and separation of the EtOH extract of Annona glabra leaf against acetylcholinesterse led to the characterization of 15 alkaloids. Among them, (-)-actinodaphnine (2) and (-)-(6aS,7R)-7-hydroxyactinodaphnine (9) are new aporphines, although (+)-2 and (±)-2 have been found in several plants. Their structures were established by spectroscopic analysis. (-)-Anolobine (5) and (-)-roemeroline (8) showed moderate inhibitory activity against eel acetylcholinesterase with IC50 values of 22.4 and 26.3 μM, respectively. PMID:26197510

  7. Production of the Acetylcholinesterase Inhibitor from Yarrowia lipolytica S-3

    Lee, Dae-Hyung; Lee, Ji-Su; Yi, Sung-Hun; Lee, Jong-Soo

    2008-01-01

    The acetylcholinesterase (AChE) inhibitor of Yarrowia lipolytica S-3 was maximally produced when it was incubated at 30℃ for 36 h in an optimal medium containing 1% yeast extract, 2% peptone and 2% glucose, with an initial pH 6.0. The final AChE inhibitory activity under these conditions was an IC50 value of 64 mg/ml. After partial purification of the AChE inhibitor by means of systematic solvent extraction, the final IC50 value of the partially purified AChE inhibitor was 0.75 mg/ml. We prep...

  8. Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies.

    Graff-Radford, Jonathan; Boeve, Bradley F; Pedraza, Otto; Ferman, Tanis J; Przybelski, Scott; Lesnick, Timothy G; Vemuri, Prashanthi; Senjem, Matthew L; Smith, Glenn E; Knopman, David S; Lowe, Val; Jack, Clifford R; Petersen, Ronald C; Kantarci, Kejal

    2012-08-01

    Acetylcholinesterase inhibitors are commonly used to treat patients with dementia with Lewy bodies. Hippocampal atrophy on magnetic resonance imaging and amyloid-β load on positron emission tomography are associated with the Alzheimer's disease-related pathology in patients with dementia with Lewy bodies. To date, few studies have investigated imaging markers that predict treatment response in patients with dementia with Lewy bodies. Our objective was to determine whether imaging markers of Alzheimer's disease-related pathology such as hippocampal volume, brain amyloid-β load on (11)C Pittsburgh compound B positron emission tomography predict treatment response to acetylcholinesterase inhibitors in patients with dementia with Lewy bodies. We performed a retrospective analysis on consecutive treatment-naive patients with dementia with Lewy bodies (n = 54) from the Mayo Clinic Alzheimer's Disease Research Centre who subsequently received acetylcholinesterase inhibitors and underwent magnetic resonance imaging with hippocampal volumetry. Baseline and follow-up assessments were obtained with the Mattis Dementia Rating Scale. Subjects were divided into three groups (reliable improvement, stable or reliable decline) using Dementia Rating Scale reliable change indices determined previously. Associations between hippocampal volumes and treatment response were tested with analysis of covariance adjusting for baseline Dementia Rating Scale, age, gender, magnetic resonance field strength and Dementia Rating Scale interval. Seven subjects underwent (11)C Pittsburgh compound B imaging within 12 weeks of magnetic resonance imaging. Global cortical (11)C Pittsburgh compound B retention (scaled to cerebellar retention) was calculated in these patients. Using a conservative psychometric method of assessing treatment response, there were 12 patients with reliable decline, 29 stable cases and 13 patients with reliable improvement. The improvers had significantly larger

  9. Acetylcholinesterase inhibitory effects of some plants from Rosaceae

    S. Esmaeili

    2015-10-01

    Full Text Available Background and objectives: Alzheimer's disease (AD is an age dependent disorder. AD is associated with decrease of brain acetylcholine level. Nowadays, one of the methods for progression inhibition of AD is using acetylcholinesterase inhibitors. Rosaceae is a large plant family. Different biological effects of some species of this family have been reported. The aim of the present study was to assess the acetylcholinesterase inhibitory (AChEI activity of the selected plants belonging to Rosaceae family. Methods: AChEI activity of six species from Rosaceae including Cotoneaster nummularia, Cerasus microcarpa, Amygdalus scoparia, Agrimonia eupatoria, Rosa canina and Rosa damascena were evaluated based on Ellman’s method in concentration of 300 µg/mL using total extracts and methanol fractions which were obtained by maceration. Results: The results showed that the total extract and methanol fraction of the aerial parts of A. eupatoria demonstrated significant AChEI activity with 46.5% and 56.2% inhibition of the enzyme, respectively. Conclusion: According to the results of the AChEI activity of the methanol fraction of A. eupatoria, it seems that the polar components of the species such as flavonoids may be responsible for its effectiveness.

  10. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  11. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  12. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  13. Enzymatic and biochemical characterization of Bungarus sindanus snake venom acetylcholinesterase

    Ahmed, M; Latif, N.; Khan RA; Ahmad, A.; JBT Rocha; CM Mazzanti; MD Bagatini; VM Morsch; MRC Schetinger

    2012-01-01

    This study analyses venom from the elapid krait snake Bungarus sindanus, which contains a high level of acetylcholinesterase (AChE) activity. The enzyme showed optimum activity at alkaline pH (8.5) and 45ºC. Krait venom AChE was inhibited by substrate. Inhibition was significantly reduced by using a high ionic strength buffer; low ionic strength buffer (10 mM PO4 pH 7.5) inhibited the enzyme by 1. 5mM AcSCh, while high ionic strength buffer (62 mM PO4 pH 7.5) inhibited it by 1 mM AcSCh. Venom...

  14. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  15. A congenital myasthenic syndrome refractory to acetylcholinesterase inhibitors.

    Triggs, W J; Beric, A; Butler, I J; Roongta, S M

    1992-03-01

    We studied 4 siblings (3 men and 1 woman), ages 22 to 43 years, with congenital ptosis, external ophthalmoplegia, proximal muscle weakness and fatigability unresponsive to acetylcholinesterase (AChE) inhibitors. Repetitive nerve stimulation showed a significant compound muscle action potential (CMAP) area decrement at 2 or 3 Hz. Nerve conduction studies and concentric needle electromyography were normal, and repetitive CMAPs to single nerve stimulation were not observed. Voluntary single fiber electromyography (SFEMG) showed increased jitter and blocking. Assessment of individual end-plates using SFEMG with intramuscular axonal microstimulation showed no uniform relationship between jitter and the rate of stimulation, consistent with a postsynaptic defect of neuromuscular transmission. Edrophonium eliminated the decremental response to repetitive nerve stimulation, but caused no significant clinical improvement, suggesting an additional mechanism for weakness in these patients. PMID:1313543

  16. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  17. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    Atsmon, Jacob [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y. [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Bartfeld, Daniel [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shulman, Avidor, E-mail: avidors@protalix.com [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Soreq, Hermona [Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem (Israel); Shaaltiel, Yoseph [Protalix Biotherapeutics, Science Park, Carmiel (Israel)

    2015-09-15

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study

  18. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD50 and 1.5 × LD50 of toxin and 10 min after exposure to 1.5 × LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study exhibited its safety, tolerability

  19. N-[11C]methylpiperidine esters as acetylcholinesterase substrates: an in vivo structure-reactivity study

    A series of simple esters incorporating the N-[11C]methylpiperidine structure were examined as in vivo substrates for acetylcholinesterase in mouse brain. 4-N-[11C]Methylpiperidinyl esters, including the acetate, propionate and isobutyrate esters, are good in vivo substrates for mammalian cholinesterases. Introduction of a methyl group at the 4-position of the 4-piperidinol esters, to form the ester of a teritary alcohol, effectively blocks enzymatic action. Methylation of 4- N-[11C]methylpiperidinyl propionate at the 3-position gives a derivative with increased in vivo reactivity toward acetylcholinesterase. Esters of piperidinecarboxylic acids (nipecotic, isonipecotic and pipecolinic acid ethyl esters) are not hydrolyzed by acetylcholinesterase in vivo, nor do they act as in vivo inhibitors of the enzyme. This study has identified simple methods to both increase and decrease the in vivo reactivity of piperidinyl esters toward acetylcholinesterase

  20. Simultaneous ultrastructural visualization of acetylcholinesterase activity and tritiated norepinephrine uptake in renal nerves

    In this investigation we have combined the methods of ultrastructural demonstration of acetylcholinesterase activity with electron microscopic autoradiography for the demonstration of norepinephrine uptake. The results show electron-dense deposits indicative of acetylcholinesterase activity associated with perivascular axons overlaid by concentrations of silver grains representing exogenous tritiated norepinephrine. Forty-five percent of the intervaricose regions and 19% of the varicosities overlaid by autoradiographic grains showed ''moderate'' amounts of cholinesterase staining. A greater proportion of autoradiographic grains was observed on the varicosities than in the intervaricose regions; however, the amount of acetylcholinesterase activity was greater in the intervaricose regions than in the varicosities. This investigation provides evidence for the presence of periaxonal acetylcholinesterase staining in adrenergic axons in the rat kidney

  1. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  2. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease

    Bohnen, N; Kaufer, D; Hendrickson, R; Ivanco, L; Lopresti, B; Koeppe, R; Meltzer, C; Constantine, G; Davis, J.; Mathis, C.; DeKosky, S; Moore, R.

    2005-01-01

    Objectives: To determine in vivo cortical acetylcholinesterase (AChE) activity and cognitive effects in subjects with mild Alzheimer's disease (AD, n = 14) prior to and after 12 weeks of donepezil therapy.

  3. Assay of Acetylcholinesterase Activity and Electrochemical Determination of Fenthion in Oil-in-water Emulsion

    Sun Kai; He JingJing; Miao YuQing

    2009-01-01

    @@ Organophosphates (OPs) have been widely used as pesticides,insecticides or even chemical warfare agents.Acetylcholinesterase (ACHE) inhibition has been employed to develop verious assay methods for detection of pesticides with the advantages of low cost,simple procedure and quick assay time.The study of acetylcholinesterase (ACHE) activity and OPs inhibition in the solution containing organic solvent is extremely important owing to poor solubility of Ops in water and a higher solubility in organic solvents.

  4. Specific photoaffinity labeling induced by energy transfer: application to irreversible inhibition of acetylcholinesterase.

    Goeldner, M P; Hirth, C G

    1980-01-01

    p-Dimethylaminobenzene diazonium fluoroborate belongs to a class of potential photoaffinity labeling reagents which, by irradiation, produces a highly reactive electrophilic species. In addition, it can be photodecomposed by photoexcited tryptophan derivatives (e.g., N-acetyltryptophanamide and tryptophan residues belonging to acetylcholinesterase) by an energy transfer reaction. This substance is a competitive inhibitor of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) and ...

  5. Triterpenoids from Azorella trifurcata (Gaertn. Pers and their effect against the enzyme acetylcholinesterase

    Carlos Areche

    2009-01-01

    Full Text Available The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn. Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella.

  6. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase

    Carlos Areche; Patricia Cejas; Pablo Thomas; Aurelio San-Martín; Luis Astudillo; Margarita Gutiérrez; Luis A Loyola

    2009-01-01

    The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes i...

  7. Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase

    Sharabi, Oz; Peleg, Yoav; Mashiach, Efrat; Vardy, Eyal; Ashani, Yacov; Silman, Israel; Sussman, Joel L.; Shifman, Julia M.

    2009-01-01

    Predicting mutations that enhance protein–protein affinity remains a challenging task, especially for high-affinity complexes. To test our capability to improve the affinity of such complexes, we studied interaction of acetylcholinesterase with the snake toxin, fasciculin. Using the program ORBIT, we redesigned fasciculin's sequence to enhance its interactions with Torpedo californica acetylcholinesterase. Mutations were predicted in 5 out of 13 interfacial residues on fasciculin, preserving ...

  8. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    Maria Stasiuk; Alicja Janiszewska; Arkadiusz Kozubek

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, ...

  9. Quantitative and Qualitative Changes in the Skeletal Muscle Acetylcholinesterase Activity of Oreochromis niloticus Exposed to Methylparathion

    Elena Catap; Glorina Pocsidio

    1994-01-01

    Spectrophotometric assays and histochemical tests for acetylcholinesterase activity in the epaxial skeletal muscle of maturing Oreochromis niloticus after in-vivo exposure to 0.10 mg/L methylparathion showed significant inhibition of the enzyme by the pesticide. The assays manifested enzyme inhibition, after 48 and 96 hours of exposure, of 43.19% and 56.62%, respectively. These results were confirmed by the occurrences of decreased sites of acetylcholinesterase activity in the muscle fibers a...

  10. Distribution pattern of acetylcholinesterase in the optic tectum of two Indian air breathing teleosts

    Tripathi, Anurag; Rahman, Matiur; Chakraborty, Balarko

    2013-01-01

    Background A histoenzymological study has been carried out on the distribution of enzyme acetylcholinesterase in the optic tectum of two Indian air breathing teleosts by employing a histochemical technique to visualize acetylcholinesterase containing neurons described by Hedreen, JC (1985). Purpose Data available on enzyme localizaton in the brain of fishes, particularly Indian teleosts is inadequate and scattered. Methods AChE distribution in the optic tectum shows a prevalent pattern charac...

  11. Kolaviron, isolated from Garcinia kola, inhibits acetylcholinesterase activities in the hippocampus and striatum of wistar rats

    Ijomone, Omamuyovwi M.; Obi, Augustine U.

    2013-01-01

    Background Kolaviron, isolated from seeds of Garcinia kola, have been shown to possess wide pharmacological properties. Purpose The present study examined the effect of kolaviron on acetylcholinesterase activities in the hippocampus and striatum of adult Wistar rats. Methods In this study, histological and histochemical methods were used to investigate the effects of kolaviron on the histology of the hippocampus and striatum and on acetylcholinesterase activities in these brain regions. Resul...

  12. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives

    Trifone Schettino; Maria Elena Giordano; Antonio Calisi; Maria Giulia Lionetto; Roberto Caricato

    2013-01-01

    Acetylcholinesterase (AChE) is a key enzyme in the nervous system. It terminates nerve impulses by catalysing the hydrolysis of neurotransmitter acetylcholine. As a specific molecular target of organophosphate and carbamate pesticides, acetylcholinesterase activity and its inhibition has been early recognized to be a human biological marker of pesticide poisoning. Measurement of AChE inhibition has been increasingly used in the last two decades as a biomarker of effect on nervous system follo...

  13. Improvement of Drosophila acetylcholinesterase stability by elimination of a free cysteine

    Ladurantie Caroline; Arnaud Muriel; Brisson-Lougarre Andrée; Mazères Serge; Fremaux Isabelle; Fournier Didier

    2002-01-01

    Abstract Background Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is invo...

  14. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase

    The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella. (author)

  15. IN VITRO INHIBITION OF ACETYLCHOLINESTERASE ACTIVITY IN HUMAN RED BLOOD CELLS BY CADMIUM AND LEAD

    Abdollahi, M.; M. Biukabadi M. A. Ebrahimzadeh

    1998-01-01

    The effects of cadmium and lead on human erythrocyte acetylcholinesterase activity were studied. Blood used in this study was obtained from 24 healthy individuals, then after hemolysation, treated with 3 various concentrations of cadmium and lead. A strong inhibition of acetylcholinesterase was noted in treated samples by cadmium and lead. The remaining activity In the case of lead, the remaining activity was found to be 81% with the highest concentration , S7% with the middle and 94% with th...

  16. A Biosensor Using Poly(4-Aminophenol)/acetylcholinesterase modified graphite electrode for the detection of dichlorvos

    Edmar Isaías Melo; Diego Leoni Franco; André Santiago Afonso; Hélen Cristine Rezende; Ana Graci Brito-Madurro; João Marcos Madurro; Nívia Maria Melo Coelho

    2011-01-01

    The properties of poly(4-aminophenol) modified graphite electrode as material for the immobilization of acetylcholinesterase were investigated by the Cyclic Voltammetry, Electrochemical Impedance Spectroscopy and Atomic Force Microscopy. The polymer was deposited on graphite electrode surface by the oxidation of 4-aminophenol and then acetylcholinesterase was immobilized on the surface of the electrode. The biosensor coupled in the continuous flow system was employed for the detection of dich...

  17. Antioxidant and acetylcholinesterase inhibitory potential of Arnica montana cultivated in Bulgaria

    Zheleva-Dimitrova, Dimitrina; BALABANOVA, Vessela

    2012-01-01

    The antioxidant and acetylcholinesterase inhibitory potential of methanol extract from Arnica montana cultivated in Bulgaria was evaluated. For the determination of antioxidant activity 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS) free radicals, and ferric reducing antioxidant power (FRAP) assay were used. Modified Ellman's colorimetric method was used for quantitative assessment of acetylcholinesterase inhibiti...

  18. The effects of a food product containing lactic acid on the activity of acetylcholinesterase

    Andre-Michael Beer; Julian Lukanov; Yordanka Uzunova; Plamen Sagortchev

    2012-01-01

    Objective: Patients reported that a food product containing lactic acid improved their memory and thought processes. The ingredients of the tested food product are compound substances and smooth muscle fibre, the appropriate medium in which to analyse their effects. Acetylcholinesterase inhibitors are used to treat memory loss and failing thought performance. The aim of this study was to compare the effects of the lactic acid food product with the effects of acetylcholinesterase inhibitors. M...

  19. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase

    Areche, Carlos; Cejas, Patricia; Thomas, Pablo; San-Martin, Aurelio [University of Chile, Santiago (Chile). Faculty of Sciences. Dept. of Chemistry], e-mail: aurelio@uchile.cl; Astudillo, Luis; Gutierrez, Margarita [University of Talca, Talca (Chile). Inst. of Chemistry of Natural Resource; Loyola, Luis A. [University of Antofagasta (Chile). Faculty of Basic Sciences. Dept. of Chemistry

    2009-07-01

    The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella. (author)

  20. A Comparative Analysis of Perinatal Development of Barrel Cortex in Rat, Mouse and Guinea Pig Using Acetylcholinesterase Histochemistry

    ŞENDEMİR, Erdoğan

    2000-01-01

    The role of acetylcholinesterase (AChE) in the developing neocortex was reexamined by comparing its expression in rats, mice and guinea pigs, following the protocol for acetylcholinesterase histochemistry (described in Sendemir et al., 1996) in order to determine the suitability of the breeding colony at UludaÛ University for use as an animal model. A total of 103 pups as well as two adult animals of each species were used. In the rat pups, acetylcholinesterase-rich patches were d...

  1. Perspectives for the structure-based design of acetylcholinesterase reactivators.

    Ochoa, Rodrigo; Rodriguez, Carlos A; Zuluaga, Andres F

    2016-07-01

    Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design. PMID:27450771

  2. Sarin Assay using Acetylcholinesterases and Electrochemical Sensor Strip

    Miroslav Pohanka

    2009-05-01

    Full Text Available An electrochemical sensor strip was used for sarin assay. Three different acetylcholinesterases (AChEs were chosen as promising recognition elements. viz., human recombinant, electric eel, and bovine erythrocytes origin. Human recombinant AChE seems to be the most sensitive to inhibition by sarin when the achieved limit of detection (0.45×10-8 mol/l and IC50 [(9.77± 8.08×10-6 mol/l] are considered. On the contrary, AChE from bovine erythrocytes proved to reach highest IC50 (5.37± 4.52×10-7 mol/l and the one from electric eel reached the highest limit of detection 0.93×10-8 mol/l. From the AChEs tested as biorecognition element, human recombinant seems to be the best for construction of new ChE detectors.Defence Science Journal, 2009, 59(3, pp.300-304, DOI:http://dx.doi.org/10.14429/dsj.59.1525

  3. Are soluble and membrane-bound rat brain acetylcholinesterase different

    Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and greater than 250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AChE possess hydrophobic domain(s) different from the 20 kD peptide already described

  4. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.

    Tumturk, Hayrettin; Yüksekdag, Hazer

    2016-01-01

    Polyethyleneimine (PEI) coated-silica nanoparticles were prepared by the Stöber method. The formation and the structure of the nanoparticles were characterized by ATR-FT-IR spectroscopy and transmission electron microscopy (TEM). TEM images of the silica and PEI-coated nanoparticles revealed that they were well dispersed and that there was no agglomeration. The acetylcholineesterase enzyme was immobilized onto these nanoparticles. The effects of pH and temperature on the storage stability of the free and immobilized enzyme were investigated. The optimum pHs for free and immobilized enzymes were determined as 7.0 and 8.0, respectively. The optimum temperatures for free and immobilized enzymes were found to be 30.0 and 35.0°C, respectively. The maximum reaction rate (Vmax) and the Michaelis-Menten constant (Km) were investigated for the free and immobilized enzyme. The storage stability of acetylcholinesterase was increased when immobilized onto the novel PEI-coated silica nanoparticles. The reuse numbers of immobilized enzyme were also studied. These hybrid nanoparticles are desirable as carriers for biomedical applications. PMID:25365355

  5. Acetylcholinesterase in the human erythron. III. Regulation of differentiation.

    Barr, R D; Koekebakker, M

    1990-08-01

    Acetylcholinesterase (AChE) is present in both primitive and mature erythroid cells, but a role for the enzyme in human hematopoiesis has not been defined. This prospect represented the primary objective of the following study. In clonal culture of normal human bone marrow cells, a "wave" of AChE activity was demonstrated, rising from undetectable levels to a peak (of 1.48 femto-moles per min per cell) at 10 days in the course of progressive erythroid clonogenesis. At concentrations of enzyme inhibitor that clearly reduced AChE activity in a dose-dependent fashion, there was no overall effect on erythropoiesis in vitro, but the clones were generally smaller and significantly more often multi-focal than in control cultures. Furthermore, in the presence of AChE inhibitors, a concentration-dependent increase in the myeloid-erythroid ratios of the culture harvests was observed. Likewise, a clear reduction in hemoglobination was revealed, in cells of 10 day cultures, from a mean hemoglobin concentration of 35.0 pg per cell in controls to 20.1 pg per cell in the presence of the maximal concentration of the inhibitor (10(-6) M eserine). These data point to a role for AChE in the regulation of differentiation in the human erythron. PMID:2368693

  6. N-acetylcholinesterase-induced apoptosis in Alzheimer's disease.

    Debra Toiber

    Full Text Available BACKGROUND: Alzheimer's disease (AD involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended "synaptic" acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena. METHODOLOGY AND PRINCIPAL FINDINGS: In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation. CONCLUSIONS: Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.

  7. ACETYLCHOLINESTERASE LEVELS IN FARMERS EXPOSED TO PESTICIDES IN MALAYSIA

    Ismarulyusda Ishak

    2015-11-01

    Full Text Available Agriculture is an important component of the Malaysian economy. Pesticides are widely used by farmers to increase crop production. Acetylcholinesterase (AChE is known to play an important role in the degradation of acetylcholine (ACh at the neuromuscular junction of the nervous system. The purpose of this study was to determine the effect of pesticide exposure on serum levels of AChE of farmers. A cross-sectional study was conducted. A total of 95 farmers from Kelantan (n = 49 and Selangor (n = 46 aged between 23 and 71 years were recruited. AChE concentration was measured by spectrophotometry. The results of this study showed that the mean AChE concentrations in farmers from Kelantan and Selangor were 2,715 and 2,660 U/L, respectively, significantly different (p < 0.05 from normal reference value (3500 U/l. Pearson correlation test showed a moderate correlation betweenAChE level and age (r = -0.551 and a strong correlation between AChE level and working period (r = -0.872 in farmers in Kelantan. AChE levels in Selangor were also moderately correlated with age (r = -0.353 and working period (r = -0.515. In conclusion, increasing age and long-term pesticide exposure reduce AChE levels in farmers.

  8. Chemical Constituents and Acetylcholinesterase Inhibition of Senecio ventanensis Cabrera (Asteraceae

    Natalia Paola Alza

    2016-01-01

    Full Text Available Chemical constituents and acetylcholinesterase inhibition was investigated in both essential oil and dichloromethane subextract obtained from the aerial parts of Senecio ventanensis, an endemic Asteraceae. The chemical composition of the oil was determined by GC and GC-MS. The major constituents were a -terpinene (12.2%, limonene (11.9%, -humulene (10.5%, sabinene (9.1%, terpinolene (8.8%, p-cymene (8.1% and a -ocimene (7.3%. The bioassay guided isolation of the constituents of the active dichloromethane subextract (IC 50 = 361.6 µg/mL led us to the isolation of two diastereoisomers of a sesquiterpene endoperoxide 3,6-epidioxy-1,10-bisaboladiene (1 and 2, reported here for the first time in S. ventanensis. The identification was achieved by comprehensive analyses of its 1H and 13C NMR spectroscopic data (including 2D experiments and mass spectrometric data. Their absolute configuration is proposed on the basis of AM1 calculations and NOESY experiments. This is the first time that compounds 1 and 2 have been separated as well as the first phytochemical investigation of S. ventanensis.

  9. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase.

    Zhuang, Qinggeng; Young, Amneh; Callam, Christopher S; McElroy, Craig A; Ekici, Özlem Dogan; Yoder, Ryan J; Hadad, Christopher M

    2016-06-01

    Aging is a dealkylation reaction of organophosphorus (OP)-inhibited acetylcholinesterase (AChE). Despite many studies to date, aged AChE cannot be reactivated directly by traditional pyridinium oximes. This review summarizes strategies that are potentially valuable in the treatment against aging in OP poisoning. Among them, retardation of aging seeks to lower the rate of aging through the use of AChE effectors. These drugs should be administered before AChE is completely aged. For postaging treatment, realkylation of aged AChE by appropriate alkylators may pave the way for oxime treatment by neutralizing the oxyanion at the active site of aged AChE. The other two strategies, upregulation of AChE expression and introduction of exogenous AChE, cannot resurrect aged AChE but may compensate for lowered active AChE levels by in situ production or external introduction of active AChE. Upregulation of AChE expression can be triggered by some peptides. Sources of exogenous AChE can be whole blood or purified AChE, either from human or nonhuman species. PMID:27327269

  10. Mechanism of Acetylcholinesterase Inhibition by Fasciculin: A 5-ns Molecular Dynamics Simulation

    Tai, Kaihsu; Shen, T Y.; Henchman, Richard H.; Bourne, Yves; Marchot, Pascale; Mccammon, Andy

    2002-05-01

    Our previous molecular dynamics simulation (10 ns) of mouse acetylcholinesterase (EC 3.1.1.7) revealed complex fluctuation of the enzyme active site gorge. Now we report a 5-ns simulation of acetylcholinesterase complexed with fasciculin 2. Fasciculin 2 binds to the gorge entrance of acetylcholinesterase with excellent complementarity and many polar and hydrophobic interactions. In this simulation of the protein-protein complex, where fasciculin 2 appears to sterically block access of ligands to the gorge, again we observe a two-peaked probability distribution of the gorge width. When fasciculin is present, the gorge width distribution is altered such that the gorge is more likely to be narrow. Moreover, there are large increases in the opening of alternative passages, namely, the side door (near Thr 75) and the back door (near Tyr 449). Finally, the catalytic triad arrangement in the acetylcholinesterase active site is disrupted with fasciculin bound. These data support that, in addition to the steric obstruction seen in the crystal structure, fasciculin may inhibit acetylcholinesterase by combined allosteric and dynamical means. Additional data from these simulations can be found at http://mccammon.ucsd.edu/.

  11. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III

    M. Julia Arcos-Martínez

    2010-03-01

    Full Text Available Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concentration and potential applied, were established. Under these conditions, repeatability and reproducibility of biosensors were determined, reaching values below 4% in terms of relative standard deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of arsenic in spiked tap water samples.

  12. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    Kucherenko, I. S.; Soldatkin, O. O.; Arkhypova, V. M.; Dzyadevych, S. V.; Soldatkin, A. P.

    2012-06-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l-1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants.

  13. A Biosensor Using Poly(4-Aminophenol/acetylcholinesterase modified graphite electrode for the detection of dichlorvos

    Edmar Isaías Melo

    2011-12-01

    Full Text Available The properties of poly(4-aminophenol modified graphite electrode as material for the immobilization of acetylcholinesterase were investigated by the Cyclic Voltammetry, Electrochemical Impedance Spectroscopy and Atomic Force Microscopy. The polymer was deposited on graphite electrode surface by the oxidation of 4-aminophenol and then acetylcholinesterase was immobilized on the surface of the electrode. The biosensor coupled in the continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L-1 dichlorvos, respectively. Graphite electrodes modified with the poly(4-aminophenol showed to be an efficient and promising material for immobilization of acetylcholinesterase enzyme. The proposed method requires simple parts which are easy to build, involves only one biosensor and the potentiometric detection is simple.

  14. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l−1) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants. (paper)

  15. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts

    Levi P. Machado

    2015-12-01

    Full Text Available Abstract Alzheimer's disease affects nearly 36.5 million people worldwide, and acetylcholinesterase inhibition is currently considered the main therapeutic strategy against it. Seaweed biodiversity in Brazil represents one of the most important sources of biologically active compounds for applications in phytotherapy. Accordingly, this study aimed to carry out a quantitative and qualitative assessment of Hypnea musciformis (Wulfen J.V. Lamouroux, Ochtodes secundiramea (Montagne M.A. Howe, and Pterocladiella capillacea (S.G. Gmelin Santelices & Hommersand (Rhodophyta in order to determine the AChE effects from their extracts. As a matter of fact, the O. secundiramea extract showed 48% acetylcholinesterase inhibition at 400 μg/ml. The chemical composition of the bioactive fraction was determined by gas chromatography–mass spectrometry (GC–MS; this fraction is solely composed of halogenated monoterpenes, therefore allowing assignment of acetylcholinesterase inhibition activity to them.

  16. Acetylcholinesterase in the human erythron. II. Biochemical assay.

    Barr, R D; Koekebakker, M; Lawson, A A

    1988-08-01

    Acetylcholinesterase (AChE) is an integral erythrocyte membrane protein. A role for the enzyme in the developing human erythron is being explored. Assays of AchE by the standard Ellman technique overestimate the amount of enzyme by failing to account for the contribution of hemoglobin to the optical density of the reaction mixture. Furthermore, reliance on substrate selection alone for specificity is unsatisfactory. Incorporation of inhibitors of "true" AchE and of pseudocholinesterase confer greater ability to distinguish one enzyme from the other. In our experience, the inhibitor constant (Kl) for edrophonium, which is highly specific for AChE, is approximately 5 x 10(-5) M against adult human erythrocytes that contain significantly more total cholinesterase activity than do erythrocytes from umbilical cord blood. This consists of both "true" and "pseudo" enzyme, the former predominating and accounting for 0.75-1.65 (mean 1.02, median 0.87) femtomoles of substrate hydrolysed per min per cell in adult blood, with values of 0.15-1.04 (mean 0.71, median 0.73) obtained on cord blood. Moreover, the enzyme activity in neonatal erythrocytes has a rather different inhibitor profile from that of adult cells. AChE was also demonstrated in fresh (ALL) and cultured (K562 and HL60) human leukemic cells, as well as in primitive granulocyte-macrophage and erythroid cells cloned from normal human bone marrow. In the erythroid colonies the enzyme activity was 0-3.76 (mean 1.20, median 0.76) femtomoles per min per cell, apparently the first successful measurement of AChE in such cells. PMID:3166338

  17. Novel acetylcholinesterase target site for malaria mosquito control.

    Yuan-Ping Pang

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  18. Changes of acetylcholinesterase activity in different brain areas of the rat following head irradiation

    Changes of acetylcholinesterase activity in rat hemispheres, brainstem, cerebellum and pontomedullar part following irradiation of the head with 7.0 Gy and 20.0 Gy, resp., were studied. The activity was increased after irradiation; the greatest changes of activity were observed in the hemispheres from the 2nd to the 7th day after irradiation and no changes in the cerebellum were detected. The acetylcholinesterase activity reached the normal level 10-30 days after irradiation. These results suggest that local irradiation of the head, beside other changes, caused a damage of the central cholinergic function. (author)

  19. Antigenic and structural differences in the catalytic subunits of the molecular forms of acetylcholinesterase.

    Doctor, B. P.; Camp, S; Gentry, M. K.; Taylor, S S; Taylor, P

    1983-01-01

    A mixture of the 5.6S hydrophobic dimer and the asymmetric, tail-containing (17 + 13)S forms of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) from Torpedo californica was used to immunize mice, and spleen cells from these mice were used to produce nine hybridoma lines secreting antibodies against acetylcholinesterase. Antibodies from one of the lines showed a 100-fold greater affinity for the 5.6S species when compared with the catalytic subunits of the (17 + 13)S species. ...

  20. Quantitative and Qualitative Changes in the Skeletal Muscle Acetylcholinesterase Activity of Oreochromis niloticus Exposed to Methylparathion

    Elena Catap

    1994-12-01

    Full Text Available Spectrophotometric assays and histochemical tests for acetylcholinesterase activity in the epaxial skeletal muscle of maturing Oreochromis niloticus after in-vivo exposure to 0.10 mg/L methylparathion showed significant inhibition of the enzyme by the pesticide. The assays manifested enzyme inhibition, after 48 and 96 hours of exposure, of 43.19% and 56.62%, respectively. These results were confirmed by the occurrences of decreased sites of acetylcholinesterase activity in the muscle fibers as exhibited upon performance of histochemical tests.

  1. Pharmacokinetics and pharmacodynamics of a novel Acetylcholinesterase Inhibitor, DMNG-3.

    Xin-Guo, Zhang; Kou, Fei; Guo-Di, Ma; Tang, Peng; Zhong-Duo, Yang

    2016-01-01

    DMNG-3(3β-Methyl-[2-(4-nitrophenoxy)ethyl]-amino]con-5-enine), is a new and the potentially most potent acetylcholinesterase inhibitor recently obtained from conessine by N-demethylation and nucleophilic substitution reaction. In the present study, a step-down passive avoidance test was used to investigate whether DMNG-3 could modulate impairment of learning and memory induced by scopolamine, and a high performance liquid chromatography(HPLC) method for the determination of DMNG-3 in biological samples was applied to study its pharmacokinetics and tissues distribution. Separation was achieved on C18 column using a mobile phase consisting methanol-water (70:30, v/v) at a flow rate of 1.0ml/min. The intra- and inter-day precisions were good and the RSD was all lower than 1.30%. The mean absolute recovery of DMNG-3 in plasma ranged from 88.55 to 96.45 %. Our results showed oral administration of DMNG-3(10,25,50 mg/kg/day) can significantly improve the latency and number of errors and had a positive effect of improvement of learning and memory in mice in passive avoidance tests. The elimination half-life (T1/2) was 14.07±1.29, 15.87±1.03h, and the total clearance (CL) values were 0.70±0.11, 0.78±0.13 L/h/kg, respectively. The pharmacokinetic studies showed that DMNG-3 has a slowly clearance and large distribution volume in experimental animals, and its disposition is linear over the range of doses tested. The liver, small intestine, stomach, and large intestine were the major distribution tissues of DMNG-3 in mice. It was found that DMNG-3 could be detected in brain, suggesting that DMNG-3 can cross the blood-brain barrier. The present study shows that DMNG-3 can be possible developed as a new drug for the treatment of Alzheimer's disease in the future. PMID:27373949

  2. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor

    Šepsová, V.; Krůšek, Jan; Zdarová Karasová, J.; Zemek, F.; Musílek, K.; Kuča, K.; Soukup, O.

    2014-01-01

    Roč. 63, č. 6 (2014), s. 771-777. ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : acetylcholinesterase inhibitor * nicotin receptor Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  3. Effect of X-irradiation on acetylcholinesterase activity in the brain of mouse Mus booduga

    Acetylcholinesterase (AChE; E.C. 1.1.7) activity in the brain of lethally X-irradiated mouse, Mus booduga decreased progressively from 2 hours to 5 days of post-irradiation periods. A general loss of affinity to substrate during early days of post-irradiation, and a subsequent tendency towards normalization were noticed. (auth.)

  4. Synthesis of Some Phenylpropanoid Glycosides (PPGs) and Their Acetylcholinesterase/Xanthine Oxidase Inhibitory Activities

    Jin-Hui Wang; Xiao-Dong Li; Shuai-Tao Kang; Guo-Yu Li; Xian Li

    2011-01-01

    In this research, three categories of phenylpropanoid glycosides (PPGs) were designed and synthesized with PPGs isolated from Rhodiola rosea L. as lead compounds. Their inhibitory abilities toward acetylcholinesterase (AChE) and xanthine oxidase (XOD) were also tested. Some of the synthetic PPGs exhibited excellent enzyme inhibitory abilities.

  5. EFFECTS OF WATER POLLUTANTS AND OTHER CHEMICALS ON FISH ACETYLCHOLINESTERASE (IN VITRO)

    Acetylcholinesterase (AChE) preparations from the muscle of the fathead minnow (Pimephales promelas Rafinesque) were treated (in vitro) with 74 chemicals of various classes, many of which are environmental contaminants, to determine their effect upon enzyme activity. A highly inh...

  6. Synthesis of Some Phenylpropanoid Glycosides (PPGs and Their Acetylcholinesterase/Xanthine Oxidase Inhibitory Activities

    Jin-Hui Wang

    2011-04-01

    Full Text Available In this research, three categories of phenylpropanoid glycosides (PPGs were designed and synthesized with PPGs isolated from Rhodiola rosea L. as lead compounds. Their inhibitory abilities toward acetylcholinesterase (AChE and xanthine oxidase (XOD were also tested. Some of the synthetic PPGs exhibited excellent enzyme inhibitory abilities.

  7. Adenosine triphosphatase, acetylcholinesterase and sulfhydryl groups of rat skin at local x-ray irradiation

    The activity of acetylcholinesterase (ACE), adenosine triphosphatase (ATPase), and sulfhydryl groups(SH-groups) in different structural elements of skin in the course of radiation epidermitis was studied. The posterior extremities of Wistar rats were exposed to single x-ray irradiation at a dose of 30 Gy

  8. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    Shikhar Gupta

    2014-01-01

    Full Text Available In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen and validated using test set, Fischer’s randomization technique. The best acetylcholinesterase and butyrylcholinesterase inhibitors pharmacophore hypotheses Hypo1_A and Hypo1_B, with high correlation coefficient of 0.96 and 0.94, respectively, were used as 3D query for screening the Zinc database. The screened hits were then subjected to the ADME/T and molecular docking study to prioritise the compounds. Finally, 18 compounds were identified as potential leads against AChE enzyme, showing good predicted activities and promising ADME/T properties.

  9. Bifunctional phenolic-choline conjugates as anti-oxidants and acetylcholinesterase inhibitors

    Šebestík, Jaroslav; Marques, S. M.; Falé, P. L.; Santos, S.; Arduíno, D. M.; Cardoso, S. M.; Oliveira, S. M.; Serralheiro, M. L. M.; Santos, A. M.

    Roč. 26, č. 4 (485), s. 497. ISSN 1475-6366 Institutional research plan: CEZ:AV0Z40550506 Keywords : acetylcholinesterase inhibitors * antioxidants * hybrid ligands * anti-neurodegeneratives * Alzheimer´s disease Subject RIV: CC - Organic Chemistry

  10. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc

    Zelík, Petr; Lukešová, Alena; Voloshko, L. N.; Štys, D.; Kopecký, Jiří

    2009-01-01

    Roč. 24, č. 2 (2009), s. 531-536. ISSN 1475-6366 R&D Projects: GA MŠk ME 874 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60660521 Keywords : acetylcholinesterase * bioactivity * inhibitors Subject RIV: EE - Microbiology, Virology Impact factor: 1.496, year: 2009

  11. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel–agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10–20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel–agarose–acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. - Highlights: • Acetylcholinesterase (AChE) dip-strip biosensor fabricated to detect carbamates. • AChE entrapped in fenugreek hydrogel–agarose matrix with gold nanoparticles (GNPs). • High enzyme retention efficiency (92%) and shelf life (half-life, 55 days). • Detection limits of carbofuran, oxamyl and methomyl: 2, 21 and 113 nM. • The biosensor had good testing capabilities to detect carbamates in food samples

  12. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang, E-mail: bhchiang@ntu.edu.tw

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel–agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10–20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel–agarose–acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. - Highlights: • Acetylcholinesterase (AChE) dip-strip biosensor fabricated to detect carbamates. • AChE entrapped in fenugreek hydrogel–agarose matrix with gold nanoparticles (GNPs). • High enzyme retention efficiency (92%) and shelf life (half-life, 55 days). • Detection limits of carbofuran, oxamyl and methomyl: 2, 21 and 113 nM. • The biosensor had good testing capabilities to detect carbamates in food samples.

  13. Acetylcholinesterase inhibition as an indicator of organophosphate and carbamate poisoning in Kenyan agricultural workers.

    Ohayo-Mitoko, G.J.A.; Heederik, D.; Kromhout, H.; Omondi, B.E.O.; Boleij, J.S.M.

    1997-01-01

    Acetylcholinesterase inhibition was determined for 666 Kenyan agricultural workers; 390 (58.6%) mainly pesticide applicators exposed to organophosphate and carbamate pesticides and 276 (41.4%) unexposed controls from four rural agricultural areas during 1993 and 1994. Baseline levels were depressed

  14. INHIBITION OF ACETYLCHOLINESTERASE IN ALZHEIMER’S DISEASE- AN IN SILICO APPROACH

    S. Aishwarya

    2012-05-01

    Full Text Available Alzheimer's disease (AD is a progressive degenerative disease of the brain marked by gradual and irreversible declines in cognitive functions. Acetylcholinesterase plays a biological role in the termination of nerve impulse transmissions at cholinergic synapses by rapid hydrolysis of acetylcholine. The deficit levels of acetylcholine lead to poor nerve impulse transmission. Thus the cholinesterase inhibitors would reverse the deficit in acetylcholine levels and consequently reverse the memory impairments characteristic of the disease. In the present work, functionalized coumarin compounds and their derivatives were docked into active site of Acetylcholinesterase using the docking programs GOLD and GLIDE. The compounds were screened using High throughput screening, and further subjected to Induced Fit Docking studies. Further, the QSAR studies revealed the best structure activity relationship and 100% of human oral absorption. The inhibitor compounds also satisfied the PASS (Prediction of Activity Spectra for Substances results of inhibiting the activity of acetylcholinesterase. The type of interaction they exhibit and the residues with which they interact convey that both the compounds are good inhibitors of Acetylcholinesterase as they exhibit drug like activity.

  15. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of α/β-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted in rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a Km of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a ki of 3048 nM-1 h-1, and a KD of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the ki increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave kis of 1.2 and 19.3 nM-1 h-1, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.

  16. Acetylcholinesterase Inhibition and Antioxidant Activity of Syzygium cumini, S. aromaticum and S. polyanthum from Indonesia

    Wulan Tri Wahyuni

    2013-01-01

    Full Text Available Acetylcholinesterase inhibition and antioxidant activity are considered to be highly correlated with Alzheimer’s disease treatment. Plants from Syzygium genus reported as potential antioxidant, however the potency of plants as acetylcholinesterase inhibitor has not been properly investigated. The present study was design to investigate the antioxidant and acetylcholinesterase inhibitory activity of three Syzygium plants, Syzygium cumini, S. aromaticum and S. polyanthum. Leaves of S. cumini, S. aromaticum, S. polyanthum and bud of S. aromaticum extracted with gradient polarity solvent consist of n-hexane, ethyl acetate and methanol. Acetylcholinesterase inhibitory activity was measured with modified Ellman method at 412 nm and physostigmine was used as positive control, meanwhile antioxidant activity measured based on 1,1-diphenyl-2-picrylhydrazil free radical scavenging test. The methanol extract of S. aromaticum leaves, S. aromaticum bud, S. polyanthum leaves and the ethyl acetate extract of S. polyanthum leaves were potential as acetylcholinesterase inhibitors. The IC50 values of the extracts respectively were 42.10±1.41; 45.25±0.07; 47.30±3.54 and 45.10±8.06 μg mL-1 when IC50 value of physostigmine was 0.01±0.002 μg mL-1. Meanwhile, antioxidant activity of potential extracts successively were 11.43±0.88, 9.26±0.25, 21.24±1.14 and 13.70±0.24 μg mL-1.

  17. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k i's that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K d (binding affinity) and k 2 (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve

  18. Modification of radiation damage to acetylcholinesterase of shadow red discs by changing the osmotic power of the irradiation medium

    The model of erythrocyte membrane acetylcholinesterase was used to study the effect of the ion medium osmotic power, created by KCl, on radiation inactivation and postradiation additional damage to the enzyme in the course of ageing of shadow red discs

  19. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    The physically adsorbed acetylcholinesterase on mesoporous silicon surface is presented. The catalytic behavior of immobilized enzyme was assessed by spectrophotometric bioassay. The immobilization enhanced the reusability, shelf life and thermal as well as pH stability

  20. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): construction, expression and biochemical properties of the G119S orthologous mutant

    Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis, widespread in intertropical and temperate regions of the world. Previous cloning, expression, and biochemical characterization of recombinant P. papatasi acetylcholinesterase 1 (PpAChE1) revealed 85% amino acid sequence identity to mosq...

  1. Determination of Acetylcholinesterase activities in marine gastropod (Morula granulata) as a biomarker of neurotoxic contaminants along the Goan coast.

    Sarkar, A.; Tegur, P.M.; Jana, S.; Rao, P.V.S.S.D.P.

    Acetylcholinesterase (AChE) is an enzyme that degrades the neurotransmitter acetylcholine, producing choline and acetate. group. It is mainly found at neuromuscular junctions and cholinergic synapses in the central nervous system, where its activity...

  2. Histochemical diagnosis of Hirschsprung's disease and a comparison of the histochemical and biochemical activity of acetylcholinesterase in rectal mucosal biopsies.

    Patrick, W. J.; Besley, G T; Smith, I. I.

    1980-01-01

    Three hundred and seventy-two rectal mucosal biopsies, taken from 150 children and young adults with chronic constipation, were subjected to histochemical and biochemical analysis of acetylcholinesterase to excude Hirschsprung's disease. The relative merits of the procedures were compared. The histochemical method was considered to be the most practical for laboratories handling small numbers of biopsies but the biochemical estimation of acetylcholinesterase activity was found to be a useful ...

  3. Acetylcholinesterase inhibition starting from extracts of Bauhinia variegata L., Bauhinia var. candida (Aiton) Buch.-Ham., and Bauhinia ungulata L

    Kamilla Monteiro dos Santos; Priscila Sant'Ana Gonçalves; Maria José Nunes de Paiva; Guilherme Araújo Lacerda

    2011-01-01

    INTRODUCTION: A treatment to the Alzheimer's disease consists inhibition of the acetylcholinesterase, which is responsible for the acetylcholine control in the synapses. METHODS: We have investigated the potential of inhibition of the acetylcholinesterase produced by hexane extracts of leaves, branches, and flowers from three Bauhinia specimens, which is based on the technique of thin layer chromatography and on identifying the organ of the plant that possesses larger concentration of inhibit...

  4. alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. [125I]alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic

  5. Alpha-Bungarotoxin labeling and acetylcholinesterase localization at the Mauthner fiber giant synapse in the hatchetfish

    Autoradiographic and histochemical techniques have been used to characterize further the pharmacology of transmission at the Mauthner fiber giant synapse of the South American hatchetfish. [125I]alpha-Bungarotoxin was applied to hatchetfish medullae and a standard autoradiographic procedure was carried out on 3- to 4-microns sections of glutaraldehyde-fixed tissue. All Mauthner fiber giant synapses, as identified by light microscopic criteria, had closely associated silver grains. Labeling was blocked by d-tubocurarine. Glutaraldehyde-fixed slices of hatchetfish medulla were stained histochemically for acetylcholinesterase; all giant synapses that could be identified in the light microscope showed heavy deposits of reaction product. Staining was blocked by diisopropyl-fluorophosphate, which inhibits both pseudocholinesterase and acetylcholinesterase, but was not blocked by tetraisopropylpyrophosphoramide, a specific pseudocholinesterase inhibitor. This evidence strongly supports the suggestion that the Mauthner fiber giant synapse is nicotinic cholinergic

  6. Measurement of acetylcholinesterase inhibition using bienzymes immobilized monolith micro-reactor with integrated electrochemical detection

    He Ping; Davies, Joanna; Greenway, Gillian [Department of Chemistry, University of Hull, Hull HU6 7RX (United Kingdom); Haswell, Stephen J., E-mail: s.j.haswell@hull.ac.uk [Department of Chemistry, University of Hull, Hull HU6 7RX (United Kingdom)

    2010-02-05

    This paper reports a simple {mu}-FIA based method for the rapid evaluation of acetylcholinesterase inhibition based on bienzymes immobilized monolith micro-reactor, with integrated electrochemical detection. The monolith was prepared inside a micro-fluidic device from two precursors TMOS and MTMOS using a sol-gel method, followed by PEI polymer functionalization and subsequent enzyme immobilization via electrostatic attraction between electronegative enzymes and electropositive PEI polymers. A bienzyme system containing co-immobilized acetylcholinesterase and choline oxidase was used for the evaluation of enzyme inhibition induced by malaoxon, eserine and methomyl analytes. The proposed method, which gave a LOD of 0.5, 0.2 and 1.0 {mu}M for malaoxon, eserine and methomyl repeatedly, was found to offer several advantages over existing systems including efficient enzyme immobilization, minimal reagent consumption and rapid analysis capability.

  7. Measurement of acetylcholinesterase inhibition using bienzymes immobilized monolith micro-reactor with integrated electrochemical detection

    This paper reports a simple μ-FIA based method for the rapid evaluation of acetylcholinesterase inhibition based on bienzymes immobilized monolith micro-reactor, with integrated electrochemical detection. The monolith was prepared inside a micro-fluidic device from two precursors TMOS and MTMOS using a sol-gel method, followed by PEI polymer functionalization and subsequent enzyme immobilization via electrostatic attraction between electronegative enzymes and electropositive PEI polymers. A bienzyme system containing co-immobilized acetylcholinesterase and choline oxidase was used for the evaluation of enzyme inhibition induced by malaoxon, eserine and methomyl analytes. The proposed method, which gave a LOD of 0.5, 0.2 and 1.0 μM for malaoxon, eserine and methomyl repeatedly, was found to offer several advantages over existing systems including efficient enzyme immobilization, minimal reagent consumption and rapid analysis capability.

  8. IN VITRO INHIBITION OF ACETYLCHOLINESTERASE ACTIVITY IN HUMAN RED BLOOD CELLS BY CADMIUM AND LEAD

    M. Abdollahi

    1998-08-01

    Full Text Available The effects of cadmium and lead on human erythrocyte acetylcholinesterase activity were studied. Blood used in this study was obtained from 24 healthy individuals, then after hemolysation, treated with 3 various concentrations of cadmium and lead. A strong inhibition of acetylcholinesterase was noted in treated samples by cadmium and lead. The remaining activity In the case of lead, the remaining activity was found to be 81% with the highest concentration , S7% with the middle and 94% with the lowest one (30 fi g/dl, p<0.05. Cadmium showed a nearly linear correlation between doses used and decrease in activity (r- = 0.S3, lead showed a better correlation (r- = 0.92. The direct effect of metal ions on AChE, i.e. a decrease in quantity of the enzyme, may be a proposed mechanism for this depression.

  9. Chemical Constituents of Jacaranda oxyphylla and their Acetylcholinesterase Inhibitory and Antimicrobial Activities

    Vinicius Viana Pereira

    2015-10-01

    Full Text Available This study evaluated chemical composition of Jacaranda oxyphylla, acetylcholinesterase inhibitory and antimicrobial activities of the isolated compounds. Phytochemical investigation of leaves extract yielded three classes of substances: fatty compounds, sterols and triterpenes. Butyl hexadecanoate (1, fatty alcohol (2, 2-(4-hydroxyphenylethyl triacontanoate (3, β -sitosterol (4, sitosterol-3-O- β- D -glucoside (5, 6'-palmitoyl-sitosterol-3-O- β- D -glucoside (6, oleanolic acid (7, ursolic acid (8 and corosolic acid (9 were obtained from n-hexane, CHCl 3 and EtOH extracts of J. oxyphylla. It was found a pronounced acetylcholinesterase inhibitory activity for the fatty compounds 1-3 and sterols 5 and 6, with values between 60 to 77%. Substances 7-9 presented a high antibacterial action against Bacillus cereus and Salmonella typhimurium, with values of growth inhibition in the range of 84 to 90%.

  10. Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family

    Sanda Vladimir-Knežević; Biljana Blažeković; Marija Kindl; Jelena Vladić; Lower-Nedza, Agnieszka D.; Brantner, Adelheid H.

    2014-01-01

    The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman’s colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus ...

  11. Some novel antimicrobial therapeutic agents for acetylcholinesterase inhibitors; synthesis of hydroxyquinoline ester involving amino acid

    Şakıyan, İffet; Aynacı, Elif; Arslan, Fatma; Öğütcü, Hatice; Sarı, Nurşen

    2015-01-01

    The aim of this work was to investigate the new effective agents candidate for treatment of the Alzheimer’s disease. So, a series of new and highly active acetylcholinesterase inhibitors derived from hydroxyquinoline ester containing amino acid were synthesized. Antibacterial activities of the molecules were studied by the well-diffusion method against Listeria monocytogenes 4b, Staphylococcus aureus, Escherichia coli, Salmonella typhi H, Brucella abortus, Staphylococcus epidermis sp., ...

  12. Synthesis and anti-acetylcholinesterase activity of benzotriazinone-triazole systems

    SETAREH MOGHIMI; FERESHTEH GOLI-GARMROODI; HEDIEH PILALI; MOHAMMAD MAHDAVI; LOGHMAN FIROOZPOUR; HAMID NADRI; ALIREZA MORADI; ALI ASADIPOUR; ABBAS SHAFIEE; ALIREZA FOROUMADI

    2016-09-01

    An approach for the construction of benzotriazinone-triazole system is described. The synthesis is based on diazonium chemistry and subsequent intramolecular heteroatom-heteroatom bond formation. The introduction of triazole moiety occurred via click reaction catalyzed by nano-sized copper, supported on modified silica mesopore KIT-5 leading to the desired products in excellent yield. Also, in vitro acetylcholinesterase(AChE) inhibitory activities of the target compounds were screened by Ellman’s method.

  13. Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Yuan-Ping Pang; Singh, Sanjay K.; Yang Gao; T Leon Lassiter; MISHRA, Rajesh K.; Kun Yan Zhu; Stephen Brimijoin

    2009-01-01

    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. Ho...

  14. Performance evaluation of acetylcholinesterase-based biosensors for detection of heavy metals

    David, Melinda; Badea, Mihaela; Florescu, Monica

    2011-01-01

    In this work, mediated carbon-ink screen-printed electrodes are used to develop enzyme-based biosensors for detection of selected heavy metals. Two immobilisation methods were used for acetylcholinesterase (AChE) immobilisation on electrode surface together with two redox mediators. The methods used for the encapsulation of the enzyme were: cross-linking with bi-functional reagents like glutar-aldehyde (GA) and encapsulation with sol-gel method.The used mediators were TCNQ (tetracianoqu...

  15. Molecular Modeling Studies of Piperidine Derivatives as New Acetylcholinesterase Inhibitors against Neurodegenerative Diseases

    2013-01-01

    Neurodegenerative disorders are related to the progressive loss of structure or function and, eventually, death of neurons. These processes are responsible for diseases like Parkinson’s, Alzheimer’s, and Huntington’s, and the main molecular target for the drug design against these illnesses today is the enzyme acetylcholinesterase (AChE). Following this line, in the present work, we applied docking techniques to study some piperidine derivative inhibitors of AChE and further propose structure...

  16. Back-Scattering Interferometry: An Ultrasensitive Method for the Unperturbed Detection of Acetylcholinesterase-Inhibitor Interactions

    Haddad, Gabrielle L.; Young, Sherri C.; Heindel, Ned D.; Bornhop, Darryl J.; Flowers, Robert A.

    2012-01-01

    A series of inhibitors of acetylcholinesterase (AChE) have been screened by back-scattering interferometry (BSI). Enzyme levels as low as 100 pM (22,000 molecules of AChE) can be detected. This method can be used to screen for mixed AChE inhibitors, agents that have shown high efficacy against Alzheimer's disease, by detecting dual-binding interactions.

  17. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7.

    Getman, D K; Eubanks, J H; Camp, S; Evans, G.A.; Taylor, P

    1992-01-01

    Acetylcholinesterase (AChE) is a secreted enzyme essential for regulating cholinergic neurotransmission at neuronal and neuromuscular synapses. In view of the altered expression of AChE in some central neurological and neuromuscular disorders with a probable genetic basis, we have identified the chromosomal location of the gene encoding AChE. Chromosomal in situ suppression hybridization analysis revealed a single gene to be at 7q22, a result which was confirmed by PCR analysis of genomic DNA...

  18. Brain acetylcholinesterase activity is markedly reduced in dominantly-inherited olivopontocerebellar atrophy.

    Kish, S J; Schut, L; Simmons, J.; Gilbert, J.; Chang, L. J.; Rebbetoy, M

    1988-01-01

    The activity was measured of the acetylcholine catabolising enzyme acetylcholinesterase (AChE) in brain after necropsy of seven patients from one established pedigree with dominantly-inherited olivopontocerebellar atrophy (OPCA), a cerebellar ataxia disorder in which neuropathological changes are assumed to be primarily restricted to cerebellum, lower brain stem and spinal cord. Mean AChE activity was significantly reduced in cerebral (-51% to 65%) and cerebellar (-47%) cortex with a less sev...

  19. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase.

    Ripoll, D. R.; Faerman, C H; Axelsen, P H; Silman, I.; Sussman, J. L.

    1993-01-01

    Electrostatic calculations based on the recently solved crystal structure of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) indicate that this enzyme has a strong electrostatic dipole. The dipole is aligned with the gorge leading to its active site, so that a positively charged substrate will be drawn to the active site by its electrostatic field. Within the gorge, aromatic side chains appear to shield the substrate from direct interaction with most of the negatively charged...

  20. Wild Argentinian Amaryllidaceae, a New Renewable Source of the Acetylcholinesterase Inhibitor Galanthamine and Other Alkaloids

    Feresin, Gabriela E.; Jaume Bastida; Alejandro Tapia; German Roitman; Cristina Theoduloz; Strahil Berkov; Natalia B. Pigni; Javier E. Ortiz

    2012-01-01

    The Amaryllidaceae family is well known for its pharmacologically active alkaloids. An important approach to treat Alzheimer’s disease involves the inhibition of the enzyme acetylcholinesterase (AChE). Galanthamine, an Amaryllidaceae alkaloid, is an effective, selective, reversible, and competitive AchE inhibitor. This work was aimed at studying the alkaloid composition of four wild Argentinian Amarillydaceae species for the first time, as well as analyzing their inhibitory activity...

  1. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski’s Rule of Five and ZINC Databank

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular doc...

  2. In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies

    Gauresh Somani; Chinmay Kulkarni; Prashant Shinde; Rupesh Shelke; Kirti Laddha; Sadhana Sathaye

    2015-01-01

    Introduction: Alzheimer′s disease (AD) has increased at an alarming rate and is now a worldwide health problem. Inhibitors of acetylcholinesterase (AChE) leading to inhibition of acetylcholine breakdown constitute the main therapeutic strategy for AD. Psoralen was investigated as inhibitor of AChE enzyme in an attempt to explore its potential for the management of AD. Materials and Methods: Psoralen was isolated from powdered Psoralea corylifolia fruits. AChE enzyme inhibitory activity of dif...

  3. Acetylcholinesterase from Human Erythrocytes as a Surrogate Biomarker of Lead Induced Neurotoxicity

    Vivek Kumar Gupta; Rajnish Pal; Nikhat Jamal Siddiqi; Bechan Sharma

    2015-01-01

    Lead induced neurotoxicity in the people engaged in different occupations has received wide attention but very little studies have been carried out to monitor occupational neurotoxicity directly due to lead exposure using biochemical methods. In the present paper an endeavour has been made in order to assess the lead mediated neurotoxicity by in vitro assay of the activity of acetylcholinesterase (AChE) from human erythrocytes in presence of different concentrations of lead. The results sugge...

  4. Evaluation of Acetylcholinesterase Biosensor Based on Carbon Nanotube Paste in the Determination of Chlorphenvinphos

    Oliveira, A. C.; Mascaro, L. H.

    2011-01-01

    An amperometric biosensor for chlorphenvinphos (organophosphorus pesticide) based on carbon nanotube paste and acetylcholinesterase enzyme (CNTs-AChE biosensor) is described herein. This CNTs-AChE biosensor was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The SEM result shows the presence of CNTs and small lumps, due to the enzyme AChE, which has a type of cauliflower formation. From EIS analysis is possible to observe increased R tc fo...

  5. Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides

    2014-01-01

    In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1...

  6. A photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors

    Fenzl, Christoph; Genslein, Christa; Zöpfl, Alexander; Baeumner, Antje; Hirsch, Thomas

    2015-01-01

    We present a new scheme for sensing biomolecules by combining an enzyme hydrogel with a photonic crystal hydrogel layer that responds to ionic strength and pH changes. We demonstrate this unique combination by successfully detecting acetylcholine (ACh) and acetylcholinesterase (AChE) inhibitors. Specifically, the sandwich assembly is composed of layers of photonic crystals and a polyacrylamide hydrogel functionalized with AChE. The photonic crystal film has a red color and turns dark purple w...

  7. An Acetylcholinesterase-Based Chronoamperometric Biosensor for Fast and Reliable Assay of Nerve Agents

    Rene Kizek; Vojtech Adam; Miroslav Pohanka

    2013-01-01

    The enzyme acetylcholinesterase (AChE) is an important part of cholinergic nervous system, where it stops neurotransmission by hydrolysis of the neurotransmitter acetylcholine. It is sensitive to inhibition by organophosphate and carbamate insecticides, some Alzheimer disease drugs, secondary metabolites such as aflatoxins and nerve agents used in chemical warfare. When immobilized on a sensor (physico-chemical transducer), it can be used for assay of these inhibitors. In the experiments desc...

  8. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity

    Gholamhoseinian, A; Moradi, M.N.; Sharifi-far, F.

    2009-01-01

    Acetylcholinesterase (AChE) is the main enzyme for the breakdown of acetylcholine. Nowadays, usage of the inhibitors of this enzyme is one of the most important types of treatment of mild to moderate neurodegenerative diseases such as Alzheimer’s disease. Herbal medicines can be a new source of inhibitors of this enzyme. In this study we examined around 100 different plants to evaluate their inhibitory properties for AChE enzyme. Plants were scientifically identified and their extracts were p...

  9. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Shuping Zhang; Shaoyang Li; Jie Ma; Fei Xiong; Song Qu

    2013-01-01

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran i...

  10. Nanomaterials - Acetylcholinesterase Enzyme Matrices for Organophosphorus Pesticides Electrochemical Sensors: A Review

    Shen-Ming Chen; Arun Prakash Periasamy; Yogeswaran Umasankar

    2009-01-01

    Acetylcholinesterase (AChE) is an important cholinesterase enzyme present in the synaptic clefts of living organisms. It maintains the levels of the neurotransmitter acetylcholine by catalyzing the hydrolysis reaction of acetylcholine to thiocholine. This catalytic activity of AChE is drastically inhibited by trace amounts of organophosphorus (OP) pesticides present in the environment. As a result, effective monitoring of OP pesticides in the environment is very desirable and has been done su...

  11. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    Sirin, Gulseher Sarah; Zhang, Yingkai

    2014-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characteriz...

  12. Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1

    Sperling, Laura E.; Klaczinski, Janine; Schütz, Corina; Rudolph, Lydia; Layer, Paul G.

    2012-01-01

    The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fib...

  13. Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin

    1992-01-01

    Multinucleated skeletal muscle fibers are compartmentalized with respect to the expression and organization of several intracellular and cell surface proteins including acetylcholinesterase (AChE). Mosaic muscle fibers formed from homozygous myoblasts expressing two allelic variants of AChE preferentially translate and assemble the polypeptides in the vicinity of the nucleus encoding the mRNA (Rotundo, R. L. 1990. J. Cell Biol. 110:715-719). To determine whether the locally synthesized AChE m...

  14. AhR-Mediated Effects of Dioxin on Neuronal Acetylcholinesterase Expression in Vitro

    Xie, Heidi Qunhui; Xu, Hai-ming; Fu, Hua-Ling; Hu, Qin; Tian, Wen-Jing; Pei, Xin-Hui; Zhao, Bin

    2013-01-01

    Background: Deficits in cognitive functioning have been reported in humans exposed to dioxins and dioxin-like compounds. Evidence suggests that dioxins induce cholinergic dysfunction mediated by hypothyroidism. However, little is known about direct effects of dioxins on the cholinergic system. Objectives: We investigated the action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on acetylcholinesterase (AChE), a key enzyme in cholinergic neurotransmission. Methods: We used SK-N-SH human-derived...

  15. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle

    1985-01-01

    In skeletal muscles that have been damaged in ways which spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fibers are characterized by junctional folds and accumulations of acetylcholine receptors and acetylcholinesterase (AChE). The formation of junctional folds and the accumulation of acetylcholin...

  16. Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates

    Sternfeld, Meira; Shoham, Shai; Klein, Omer; Flores-Flores, Cesar; Evron, Tamah; Idelson, Gregory H.; Kitsberg, Dani; Patrick, James W.; Soreq, Hermona

    2000-01-01

    Acute stress increases the risk for neurodegeneration, but the molecular signals regulating the shift from transient stress responses to progressive disease are not yet known. The “read-through” variant of acetylcholinesterase (AChE-R) accumulates in the mammalian brain under acute stress. Therefore, markers of neurodeterioration were examined in transgenic mice overexpressing either AChE-R or the “synaptic” AChE variant, AChE-S. Several observations demonstrate that excess AChE-R attenuates,...

  17. Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans

    1985-01-01

    Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment ...

  18. Phytochemicals Content, Antioxidant Activity and Acetylcholinesterase Inhibition Properties of Indigenous Garcinia parvifolia Fruit

    Siti Hawa Ali Hassan; FRY, Jeffrey R.; Mohd Fadzelly Abu Bakar

    2013-01-01

    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as “asam kandis” or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol...

  19. Kinetics of Acetylcholinesterase Inhibition by an Aqueous Extract of Mentha longifolia Leaves

    Chandra Shekhar; Suresh Kumar

    2014-01-01

    Cholinesterase inhibitors are the class of compounds which inhibit cholinesterase enzyme. These are used as drugs for symptomatic treatment of Alzheimer’s disease (AD). The present study, evaluate anti-cholinesterase property of an aqueous extract of Mentha longifolia leaves, which is an aromatic plant traditionally used for several medicinal properties. Ellman’s method was used to determine the acetylcholinesterase (AChE) enzyme inhibitory activity of an aqueous extracts of Mentha longifolia...

  20. Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors

    Schuster, Daniela; Kern, Lisa; Hristozov, Dimitar P.; Terfloth, Lothar; Bienfait, Bruno; Laggner, Christian; Kirchmair, Johannes; Grienke, Ulrike; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Gasteiger, Johann; Rollinger, Judith M.

    2010-01-01

    Nature, especially the plant kingdom, is a rich source for novel bioactive compounds that can be used as lead compounds for drug development. In order to exploit this resource, the two neural network-based virtual screening techniques novelty detection with self-organizing maps (SOMs) and counterpropagation neural network were evaluated as tools for efficient lead structure discovery. As application scenario, significant descriptors for acetylcholinesterase (AChE) inhibitors were determined a...

  1. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    Shin-Ichi Yokota; Kaai Nakamura; Midori Ando; Hiroyasu Kamei; Fumihiko Hakuno; Shin-Ichiro Takahashi; Shigenobu Shibata

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepa...

  2. Biochemical and cytochemical evidence indicates that coated vesicles in chick embryo myotubes contain newly synthesized acetylcholinesterase

    1985-01-01

    We have isolated highly purified coated vesicles from 17-d-old chick embryo skeletal muscle. These isolated coated vesicles contain acetylcholinesterase (AChE) in a latent, membrane-protected form as demonstrated enzymatically and morphologically using the Karnovsky and Roots histochemical procedure (J. Histochem. Cytochem., 1964, 12:219- 221). By the use of appropriate inhibitors the cholinesterase activity can be shown to be specific for acetylcholine. It also can be concluded that most of ...

  3. In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora.

    Niño, Jaime; Hernández, Jimmy A; Correa, Yaned M; Mosquera, Oscar M

    2006-11-01

    The methanol extracts from five different plant families (Asteraceae, Euphorbiaceae, Melastomataceae, Rubiaceae, and Solanaceae) collected at Regional Natural Park Ucumarí (Colombia), were screened for their acetylcholinesterase inhibitory activity through the modified Ellman's spectrophotometric method. The best inhibitory activities on this study were shown by the extracts of Solanum leucocarpum Dunal (IC50 = 204.59 mg/l) and Witheringia coccoloboides (Damm) (IC50 = 220.68 mg/l), both plants belonging to the Solanaceae family. PMID:17160288

  4. Inhibitory Effects of Sodium Arsenite and Acacia Honey on Acetylcholinesterase in Rats

    Aliyu Muhammad; Oyeronke A Odunola; Michael A. Gbadegesin; Sallau, Abdullahi B.; Ndidi, Uche S.; Ibrahim, Mohammed A.

    2015-01-01

    This study was conducted to investigate the effect of sodium arsenite and Acacia honey on acetylcholinesterase (AChE) activity and electrolytes in the brain and serum of Wistar rats. Male Wistar albino rats in four groups of five rats each were treated with distilled water, sodium arsenite (5 mg/kg body weight), Acacia honey (20% v/v), and sodium arsenite and Acacia honey, daily for one week. The sodium arsenite and Acacia honey significantly P

  5. Irradiation inactivation analysis of acetylcholinesterase and the effect of buffer salts

    Loss of function of membrane-bound proteins after bombardment with ionizing radiation has been used to obtain information about the size of such proteins. Human erythrocyte ghosts are a convenient source of acetylcholinesterase, a membrane-bound enzyme which has been studied with this technique and so could be used as an internal standard for calibration with the high doses required. After freeze-drying from buffers containing Tris, Hepes, or Bicine, irradiation of erythrocyte ghosts with increasing doses of 16-MeV electrons gave size estimates for acetylcholinesterase of between 56,000 and 80,000 molecular weight. These values are similar to those that have been reported in the literature. However, erythrocyte ghosts freeze dried from phosphate buffer gave larger size estimates for acetylcholinesterase of about twice that found in the other buffers. This value was close to the molecular weight of 154,000 reported for the purified enzyme. The different sizes did not appear to be due to different ionic strengths. The implications of these results for the interpretation of data from irradiation inactivation analysis are discussed

  6. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Rafiq, Muhammad; Seo, Sung-Yum [Department of Biology, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  7. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  8. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635-670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  9. Effect of Donepezil, Tacrine, Galantamine and Rivastigmine on Acetylcholinesterase Inhibition in Dugesia tigrina

    Cristiane Bezerra da Silva

    2016-01-01

    Full Text Available Dugesia tigrina is a non-parasitic platyhelminth, which has been recently utilized in pharmacological models, regarding the nervous system, as it presents a wide sensitivity to drugs. Our trials aimed to propose a model for an in vivo screening of substances with inhibitory activity of the enzyme acetylcholinesterase. Trials were performed with four drugs commercialized in Brazil: donepezil, tacrine, galantamine and rivastigmine, utilized in the control of Alzheimer’s disease, to inhibit the activity of acetylcholinesterase. We tested five concentrations of the drugs, with an exposure of 24 h, and the mortality and the inhibition of acetylcholinesterase planarian seizure-like activity (pSLA and planarian locomotor velocity (pLMV were measured. Galantamine showed high anticholinesterasic activity when compared to the other drugs, with a reduction of 0.05 μmol·min−1 and 63% of convulsant activity, presenting screw-like movement and hypokinesia, with pLMV of 65 crossed lines during 5 min. Our results showed for the first time the anticholinesterasic and convulsant effect, in addition to the decrease in locomotion induced by those drugs in a model of invertebrates. The experimental model proposed is simple and low cost and could be utilized in the screening of substances with anticholinesterasic action.

  10. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions

    Hermona Soreq

    2012-03-01

    Full Text Available Hematopoietic stem cells (HSC differentiate and generate all blood cell lineages while maintaining self renewal ability throughout life. Systemic responses to stressful insults, either psychological or physical exert both stimulating and down-regulating effects on these dynamic members of the immune system. Stress-facilitated division and re-oriented differentiation of progenitor cells modifies hematopoietic cell type composition, while enhancing cytokine production and promoting inflammation. Inversely, stress-induced increases in the neurotransmitter acetylcholine act to mitigate inflammatory response and regain homeostasis. This signaling process is terminated when acetylcholine is hydrolyzed by acetylcholinesterase. Alternative splicing, which is stress-modified, changes the composition of acetylcholinesterase variants, modifying their terminal sequences, susceptibility for microRNA suppression and sub-cellular localizations. Intriguingly, the effects of stress and acetylcholinesterase variants on hematopoietic development and inflammation in health and disease are both subject to small molecule as well as oligonucleotide-mediated manipulations in vitro and in vivo. The therapeutic agents can thus be targeted to the enzyme protein, its encoding mRNA transcripts or the regulator microRNA-132, opening new venues for therapeutic interference with multiple nervous and immune system diseases.

  11. The effect of engineered disulfide bonds on the stability of Drosophila melanogaster acetylcholinesterase

    Lamouroux Lucille

    2006-04-01

    Full Text Available Background Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use in biosensors for detection of these insecticides. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, its stability has to be improved for extensive utilization. Results To create a disulfide bond that could increase the stability of the Drosophila melanogaster acetylcholinesterase, we selected seven positions taking into account first the distance between Cβ of two residues, in which newly introduced cysteines will form the new disulfide bond and second the conservation of the residues in the cholinesterase family. Most disulfide bonds tested did not increase and even decreased the stability of the protein. However, one engineered disulfide bridge, I327C/D375C showed significant stability increase toward denaturation by temperature (170 fold at 50°C, urea, organic solvent and provided resistance to protease degradation. The new disulfide bridge links the N-terminal domain (first 356 aa to the C-terminal domain. The quantities produced by this mutant were the same as in wild-type flies. Conclusion Addition of a disulfide bridge may either stabilize or unstabilize proteins. One bond out of the 7 tested provided significant stabilisation.

  12. 5,6-Dimethoxybenzofuran-3-one Derivatives: a Novel Series of Dual Acetylcholinesterase/Butyrylcholinesterase Inhibitors Bearing Benzyl Pyridinium Moiety

    Mohammad Abdollahi

    2013-02-01

    Full Text Available Several studies have been focused on design and synthesis of multi-target anti Alzheimer compounds. Utilizing of the dual Acetylcholinesterase/Butyrylcholinesterase inhibitors has gained more interest to treat the Alzheimer’s disease. As a part of a research program to find a novel drug for treating Alzheimer disease, we have previously reported 6-alkoxybenzofuranone derivatives as potent acetylcholinesterase inhibitors. In continuation of our work, we would like to report the synthesis of 5,6-dimethoxy benzofuranone derivatives bearing a benzyl pyridinium moiety as dual Acetylcholinesterase/Butyrylcholinesterase inhibitors.MethodsThe synthesis of target compounds was carried out using a conventional method. Bayer-Villiger oxidation of 3,4-dimethoxybenzaldehyde furnished 3,4-dimethoxyphenol. The reaction of 3,4-dimethoxyphenol with chloroacetonitrile followed by treatment with HCl solution and then ring closure yielded the 5,6-dimethoxy benzofuranone. Condensation of the later compound with pyridine-4-carboxaldehyde and subsequent reaction with different benzyl halides afforded target compounds. The biological activity was measured using standard Ellman’s method. Docking studies were performed to get better insight into interaction of compounds with receptor.ResultsThe in vitro anti acetylcholinesterase/butyrylcholinesterase activity of compounds revealed that, all of the target compounds have good inhibitory activity against both Acetylcholinesterase/Butyrylcholinesterase enzymes in which compound 5b (IC50 = 52 ± 6.38nM was the most active compound against acetylcholinesterase. The same binding mode and interactions were observed for the reference drug donepezil and compound 5b in docking study.ConclusionsIn this study, we presented a new series of benzofuranone-based derivatives having pyridinium moiety as potent dual acting Acetylcholinesterase/Butyrylcholinesterase inhibitors.

  13. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  14. Interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42

    Li Shuai

    2013-01-01

    Full Text Available Background: Lobed kudzuvine root and rhizoma chuanxiong are effective drugs in traditional Chinese medicine. Objective: Extracts of the two medicines were investigated for their in vitro of beta-amyloid (Aβ1-42-aggregation-and acetylcholinesterase (AChE-inhibitory activities. Materials and Methods: The interaction of lobed kudzuvine root, rhizoma chuanxiong with both acetylcholinesterase and beta-amyloid (Aβ1-42 were studied by Michaelis-Menten equations, Thioflavin T (ThT fluorescence analysis and transmission electron microscope (TEM. Results: Inhibition of acetylcholinesterase showed that 1-butanol fraction of the two medicines were noncompetitive inhibition, apparent inhibition constants were 9.947 and 7.1523. ThT fluorescence analysis and TEM results indicated that inhibition of the water fraction and 1-butanol fraction (both lobed kudzuvine root and rhizoma chuanxiong was better. Conclusion: The result supported further research on chemical constituents and pharmacological mechanisms.

  15. Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations.

    Zhu, Xiao-Lei; Yu, Ning-Xi; Hao, Ge-Fei; Yang, Wen-Chao; Yang, Guang-Fu

    2013-04-01

    Acetylcholinesterase (AChE) is a key enzyme of the cholinergic nervous system. More than one gene encodes the synaptic AChE target. As the most potent known AChE inhibitor, the syn1-TZ2PA6 isomer was recently shown to have higher affinity as a reversible organic inhibitor of acetylcholinesterase1 (AChE1) than the anti1-TZ2PA6 isomer. Opposite selectivity has been shown for acetylcholinesterase2 (AChE2). In an attempt to understand the selectivity of the syn1-TZ2PA6 and anti1-TZ2PA6 isomers for AChE1 and AChE2, six molecular dynamics (MD) simulations were carried out with mouse AChE (mAChE, type of AChE1), Torpedo californica AChE (TcAChE, type of AChE1), and Drosophila melanogaster AChE (DmAChE, type of AChE2) bound with syn1-TZ2PA6 and anti1-TZ2PA6 isomers. Within the structure of the inhibitor, the 3,8-diamino-6-phenylphenanthridinium subunit and 9-amino-1,2,3,4-tetrahydroacridine subunit, via π-π interactions, made more favorable contributions to syn1-TZ2PA6 or anti1-TZ2PA6 isomer binding in the mAChE/TcAChE enzyme than the 1,2,3-triazole subunit. Compared to AChE1, the triazole subunit had increased binding energy with AChE2 due to a greater negative charge in the active site. The binding free energy calculated using the MM/PBSA method suggests that selectivity between AChE1 and AChE2 is mainly attributed to decreased binding affinity for the inhibitor. PMID:23500627

  16. Thermal denaturation of Bungarus fasciatus acetylcholinesterase: Is aggregation a driving force in protein unfolding?

    Shin, I; Wachtel, E; Roth, E; Bon, C; Silman, I; Weiner, L

    2002-08-01

    A monomeric form of acetylcholinesterase from the venom of Bungarus fasciatus is converted to a partially unfolded molten globule species by thermal inactivation, and subsequently aggregates rapidly. To separate the kinetics of unfolding from those of aggregation, single molecules of the monomeric enzyme were encapsulated in reverse micelles of Brij 30 in 2,2,4-trimethylpentane, or in large unilamellar vesicles of egg lecithin/cholesterol at various protein/micelle (vesicle) ratios. The first-order rate constant for thermal inactivation at 45 degrees C, of single molecules entrapped within the reverse micelles (0.031 min(-1)), was higher than in aqueous solution (0.007 min(-1)) or in the presence of normal micelles (0.020 min(-1)). This clearly shows that aggregation does not provide the driving force for thermal inactivation of BfAChE. Within the large unilamellar vesicles, at average protein/vesicle ratios of 1:1 and 10:1, the first-order rate constants for thermal inactivation of the encapsulated monomeric acetylcholinesterase, at 53 degrees C, were 0.317 and 0.342 min(-1), respectively. A crosslinking technique, utilizing the photosensitive probe, hypericin, showed that thermal denaturation produces a distribution of species ranging from dimers through to large aggregates. Consequently, at a protein/vesicle ratio of 10:1, aggregation can occur upon thermal denaturation. Thus, these experiments also demonstrate that aggregation does not drive the thermal unfolding of Bungarus fasciatus acetylcholinesterase. Our experimental approach also permitted monitoring of recovery of enzymic activity after thermal denaturation in the absence of a competing aggregation process. Whereas no detectable recovery of enzymic activity could be observed in aqueous solution, up to 23% activity could be obtained for enzyme sequestered in the reverse micelles. PMID:12142456

  17. Effect of Moringa oleifera flower extract on larval trypsin and acetylcholinesterase activities in Aedes aegypti.

    Pontual, Emmanuel Viana; Napoleão, Thiago Henrique; Dias de Assis, Caio Rodrigo; de Souza Bezerra, Ranilson; Xavier, Haroudo Satiro; Navarro, Daniela Maria do Amaral Ferraz; Coelho, Luana Cassandra Breitenbach Barroso; Paiva, Patrícia Maria Guedes

    2012-03-01

    Aedes aegypti control is crucial to reducing dengue fever. Aedes aegypti larvae have developed resistance to organophosporous insecticides and the use of natural larvicides may help manage larval resistance by increasing elements in insecticide rotation programs. Here, we report on larvicidal activity of Moringa oleifera flower extract against A. aegypti L(1), L(2), L(3), and L(4) as well as the effect of flower extract on gut trypsin and whole-larval acetylcholinesterase from L(4.) In addition, the heated flower extract was investigated for larvicidal activity against L(4) and effect on larval gut trypsin. Moringa oleifera flower extract contains a proteinaceous trypsin inhibitor (M. oleifera flower trypsin inhibitor, MoFTI), triterpene (β-amyrin), sterol (β-sitosterol) as well as flavonoids (kaempferol and quercetin). Larvicidal activity was detected against L(2), L(3), and L(4) (LC(50) of 1.72%, 1.67%, and 0.92%, respectively). Flower extract inhibited L(4) gut trypsin (MoFTI K(i) = 0.6 nM) and did not affect acetylcholinesterase activity. In vivo assay showed that gut trypsin activity from L(4) treated with M. oleifera flower extract decreased over time (0-1,440 min) and was strongly inhibited (98.6%) after 310 min incubation; acetylcholinesterase activity was not affected. Thermal treatment resulted in a loss of trypsin inhibitor and larvicidal activities, supporting the hypothesis that flower extract contains a proteinaceous trypsin inhibitor that may be responsible for the deleterious effects on larval mortality. PMID:22392801

  18. Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase

    Effects of commonly used carbamate pesticides on rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes have been investigated using the two-electrode voltage clamp technique. The potencies of these effects have been compared to the potencies of the carbamates to inhibit rat brain acetylcholinesterase. The potency order of six carbamates to inhibit α4β4 nicotinic receptors is fenoxycarb > EPTC > carbaryl, bendiocarb > propoxur > aldicarb with IC50 values ranging from 3 μM for fenoxycarb to 165 μM for propoxur and >1 mM for aldicarb. Conversely, the potency order of these carbamates to inhibit rat brain acetylcholinesterase is bendiocarb > propoxur, aldicarb > carbaryl >> EPTC, fenoxycarb with IC50 values ranging from 1 μM for bendiocarb to 17 μM for carbaryl and >>1 mM for EPTC and fenoxycarb. The α4β2, α3β4, and α3β2 nicotinic acetylcholine receptors are inhibited by fenoxycarb, EPTC, and carbaryl with potency orders similar to that for α4β4 receptors. Comparing the potencies of inhibition of the distinct subtypes of nicotinic acetylcholine receptors shows that the α3β2 receptor is less sensitive to inhibition by fenoxycarb and EPTC. The potency of inhibition depends on the carbamate as well as on a combination of α and β subunit properties. It is concluded that carbamate pesticides affect different subtypes of neuronal nicotinic receptors independently of acetylcholinesterase inhibition. This implicates that neuronal nicotinic receptors are additional targets for some carbamate pesticides and that these receptors may contribute to carbamate pesticide toxicology, especially after long-term exposure

  19. Antioxidant and acetylcholinesterase inhibition properties of Amorpha fruticosa L. and Phytolacca americana L.

    Dimitrina Zh Zheleva-Dimitrova

    2013-01-01

    Full Text Available Background: Amorpha fruticosa L. and Phytolacca americana L. are native plants for North America, but invasive for Central Europe and the Mediterranean areas. Previous investigation reported DPPH radical scavenging activity of A. fruticosa seeds from Mississippi river basin and P. americana berries from Iran. The aim of the present study was to investigate methanol extracts from leaves and fruits of these invasive species growing in Bulgaria for radical scavenging and acetylcholinesterase inhibitory potential. Materials and Methods: Antioxidant activity was investigated using DPPH and ABTS free radicals; FRAP assay and inhibition of lipid peroxidation in linoleic acid system by FTC. Modified Ellman′s colorimetric method was carried out to quantify acetylcholinesterase inhibition potential. In addition, the quantities of total polyphenols, flavonoids, and hydroxycinnamic derivatives were determinated using Folin-Chiocalteu reagent, AlCl 3 , and Na 2 MoO 4 , respectively. Results: The highest concentrations of total polyphenols and flavonoids were found in A. fruticosa leaves (786.70±1.78 mg/g dry extract and 32.19±0.29 mg/g dry extract, respectively. A. fruticosa fruit was found to be the most enriched in total hydroxycinnamic derivatives (153.55±1.11 mg/g dry extract and demonstrated the highest antioxidant activity: DPPH, IC 50 9.83 μg/mL; ABTS, IC 50 2.90 μg/mL; FRAP , 642.95±3.95 μg TE/mg de, and acetylcholinesterase inhibitory activity, 48.86±0.55% (2 mg/mL. Conclusions: Phytolacca americana leaves and Amorpha fruticosa could be useful in therapy of free radical pathologies and neurodegenerative disorders.

  20. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper

    Khan Rahmat

    2012-05-01

    Full Text Available Abstract Background Sonchus asper (SA is traditionally used as a folk medicine to treat mental disorders in Pakistan. The aim of this study was to investigate the effect of polyphenolic rich methanolic fraction of SA on cognitive performance, brain antioxidant activities and acetylcholinesterase activity in male rats. Methods 30 male Sprague–Dawley rats were equally divided into three groups in this study. Animals of group I (control received saline (vehicle, group II received SA (50 mg/kg body weight (b.w., and group III treated with SA (100 mg/kg b.w., orally in dimethyl sulphoxide (DMSO for 7 days. The effect of SA was checked on rat cognitive performance, brain antioxidatant and acetylcholinesterase activities. Evaluation of learning and memory was assessed by a step-through a passive avoidance test on day 6 after two habituation trials and an initial acquisition trial on day 5. Antioxidant potential was determined by measuring activities of superoxide dismutase (SOD, catalase (CAT, contents of thiobarbituric acid reactive substances (TBARS and reduced glutathione (GSH in whole-brain homogenates. Acetylcholinesterase (AChE activity was determined by the colorimetric method. Results Results showed that 100 mg/kg b.w., SA treated rats exhibited a significant improvement in learning and memory (step-through latency time. SA administration reduced lipid peroxidation products and elevated glutathione levels in the SA100-treated group. Furthermore, salt and detergent soluble AChE activity was significantly decreased in both SA-treated groups. Short-term orally supplementation of SA showed significant cognitive enhancement as well as elevated brain antioxidant enzymes and inhibited AChE activity. Conclusion These findings stress the critical impact of Sonchus asper bioactive components on brain function.

  1. Sesquiterpenes produced by endophytic fungus Phomopsis cassiae with antifungal and acetylcholinesterase inhibition activities

    Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase. (author)

  2. Acetylcholinesterase Immobilized on Magnetic Beads for Pesticides Detection: Application to Olive Oil Analysis

    Ihya Ait-Ichou

    2012-06-01

    Full Text Available This work presents the development of bioassays and biosensors for the detection of insecticides widely used in the treatment of olive trees. The systems are based on the covalent immobilisation of acetylcholinesterase on magnetic microbeads using either colorimetry or amperometry as detection technique. The magnetic beads were immobilised on screen-printed electrodes or microtitration plates and tested using standard solutions and real samples. The developed devices showed good analytical performances with limits of detection much lower than the maximum residue limit tolerated by international regulations, as well as a good reproducibility and stability.

  3. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III) Chronoamperometric Determination in Aqueous Media

    Miriam Barquero-Quirós; Olga Domínguez-Renedo; Maria Asunción Alonso-Lomillo; María Julia Arcos-Martínez

    2014-01-01

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III) ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III). The...

  4. Pharmacological evaluation of [11c]donepezil as tracer for visualization of acetylcholinesterase by PET

    Donepezil is a highly potent and selective reversible acetylcholinesterase inhibitor. [11C]Donepezil is prepared by methylation with [11C]CH3I of the corresponding 6'-O-desmethylprecursor. Tissue distribution in mice revealed a high uptake in brain and rapid clearance from the blood. Metabolization studies in mice indicated the formation of one 11C-labeled polar metabolite that didn't penetrate the blood-brain barrier. Regional brain distribution in rabbits didn't reflect the measured achetylcholinesterase distribution in rabbit brain

  5. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    Khanit Suwanborirux; Anuchit Plubrukarn; Kornkanok Ingkaninan; Akkharawit Kanjana-opas; Supreeya Yuenyongsawad; Oraphan Sakulkeo; Yutthapong Sangnoi

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 mM). Two related pyrrole derivatives, 3-(2'-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 froma natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifac...

  6. The effect of dichlorvos on acetylcholinesterase activity in some tissues in rats

    Dere E.; Ari Ferda; Ugur S.

    2010-01-01

    In this study, the changes with respect to time in the serum, brain, liver, kidney and small intestine acetylcholinesterase activities were investigated in both male and female rats administered dichlorvos intraperitoneally (i.p.). For this purpose, 4 mg kg-1 doses of dichlorvos were injected i.p. in the rats. The control groups, on the other hand, were administered physiological saline via the same route. Rats were killed by decapitation at 0, 2, 4, 8, 16, 32, 64 and 72 hours after administr...

  7. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    Sangnoi, Yutthapong; Sakulkeo, Oraphan; Yuenyongsawad, Supreeya; Kanjana-opas, Akkharawit; Ingkaninan, Kornkanok; Plubrukarn, Anuchit; Suwanborirux, Khanit

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 μM). Two related pyrrole derivatives, 3-(2′-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 from a natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifa...

  8. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide

    de Melo, Joana Barbosa; Agostinho, Paula; Oliveira, Catarina Resende

    2003-01-01

    Acetylcholinesterase (AChE) activity is increased within and around amyloid plaques, which are present in Alzheimer's disease (AD) patient's brain. In this study, using cultured retinal cells as a neuronal model, we analyzed the effect of the synthetic peptide A[beta]25-35 on the activity of AChE, the degradation enzyme of acetylcholine, as well as the involvement of oxidative stress in this process. The activity of AChE was increased when retinal cells were incubated with A[beta]25-35 (25 [m...

  9. Increases in muscle Ca2+ mediate changes in acetylcholinesterase and acetylcholine receptors caused by muscle contraction.

    Rubin, L L

    1985-01-01

    The synthesis of acetylcholinesterase (AcChoE; acetylcholine acetylhydrolase, EC 3.1.1.7) and of acetylcholine receptors (AcChoR) by cultured rat muscle fibers is influenced strongly by the level of muscle contractile activity. If fibers are grown in the presence of tetrodotoxin (TTX) to block spontaneous contraction, the total amount of AcChoE decreases markedly, as does the percentage of AcChoE assembled as the collagen-tailed presumed synaptic form of the enzyme. Under these conditions, ho...

  10. Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons.

    Seidman, S; Sternfeld, M; Ben Aziz-Aloya, R; Timberg, R; Kaufer-Nachum, D; Soreq, H.

    1995-01-01

    Tissue-specific heterogeneity among mammalian acetylcholinesterases (AChE) has been associated with 3' alternative splicing of the primary AChE gene transcript. We have previously demonstrated that human AChE DNA encoding the brain and muscle AChE form and bearing the 3' exon E6 (ACHE-E6) induces accumulation of catalytically active AChE in myotomes and neuromuscular junctions (NMJs) of 2- and 3-day-old Xenopus embryos. Here, we explore the possibility that the 3'-terminal exons of two altern...

  11. MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction

    Cartaud, Annie; Strochlic, Laure; Guerra, Manuel; Blanchard, Benoît; Lambergeon, Monique; Krejci, Eric; Cartaud, Jean; Legay, Claire

    2004-01-01

    At the neuromuscular junction, acetylcholinesterase (AChE) is mainly present as asymmetric forms in which tetramers of catalytic subunits are associated to a specific collagen, collagen Q (ColQ). The accumulation of the enzyme in the synaptic basal lamina strictly relies on ColQ. This has been shown to be mediated by interaction between ColQ and perlecan, which itself binds dystroglycan. Here, using transfected mutants of ColQ in a ColQ-deficient muscle cell line or COS-7 cells, we report tha...

  12. Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin.

    Marchot, P.; Ravelli, R. B.; Raves, M. L.; Bourne, Y.; Vellom, D. C.; Kanter, J.; Camp, S; Sussman, J. L.; Taylor, P

    1996-01-01

    A soluble, monomeric form of acetylcholinesterase from mouse (mAChE), truncated at its carboxyl-terminal end, was generated from a cDNA encoding the glycophospholipid-linked form of the mouse enzyme by insertion of an early stop codon at position 549. Insertion of the cDNA behind a cytomegalovirus promoter and selection by aminoglycoside resistance in transfected HEK cells yielded clones secreting large quantities of mAChE into the medium. The enzyme sediments as a soluble monomer at 4.8 S. H...

  13. Presenilin 1 Interacts with Acetylcholinesterase and Alters Its Enzymatic Activity and Glycosylation▿

    Silveyra, María-Ximena; Evin, Geneviève; Montenegro, María-Fernanda; Vidal, Cecilio J; Martínez, Salvador; Culvenor, Janetta G.; Sáez-Valero, Javier

    2008-01-01

    Presenilin 1 (PS1) plays a critical role in the γ-secretase processing of the amyloid precursor protein to generate the β-amyloid peptide, which accumulates in plaques in the pathogenesis of Alzheimer's disease (AD). Mutations in PS1 cause early onset AD, and proteins that interact with PS1 are of major functional importance. We report here the coimmunoprecipitation of PS1 and acetylcholinesterase (AChE), an enzyme associated with amyloid plaques. Binding occurs through PS1 N-terminal fragmen...

  14. Expression of two types of acetylcholinesterase gene from the silkworm, Bombyx mori, in insect cells

    JIN-YAN SHANG; YA-MING SHAO; GUO-JUN LANG; GAN YUAN; ZHEN-HUA TANG; CHUAN-XI ZHANG

    2007-01-01

    Complementary DNAs encoding two types of acetylcholinesterase(AChE)were isolated from the silkworm, Bombyx mori. The type 1 (Bmace1) and type 2 (Bmace2) ORFs are 2052 and 1917 bp in length, respectively. Both the complete ORFs of the Bmaces and Cterminal truncated forms were recombined into the Bacmid baculovirus vector under the control of the polyhedrin promoter and expressed in Trichoplusia ni (Tn-5B 1-4) cells. The resulting products exhibited AChE activity and glycosylation of the expressed proteins. An inhibition assay indicated that the ace2-type enzyme was more sensitive than the acel-type enzyme to inhibition by eserine and paraoxon.

  15. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

    Shuping Zhang

    2013-01-01

    Full Text Available A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE to MWNTs-modified glassy carbon electrode (GCE with chitosan (CS by layer-by-layer (LBL technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from  g/L to  g/L with a detection limit of  g/L. This biosensor is a promising new method for pesticide analysis.

  16. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration

    Boudinot, Eliane; Bernard, Véronique; Camp, Shelley; Taylor, Palmer; Champagnat, Jean; Krejci, Eric; Foutz, Arthur S.

    2008-01-01

    A mouse strain with a deleted acetylcholinesterase (AChE) gene (AChE knockout) shows a decreased inspiration time and increased tidal volume and ventilation. To investigate the respective roles of AChE in brain and muscle, we recorded respiration by means of whole-body plethysmography in knockout mice with tissue selective deletions in AChE expression. A mouse strain with the anchoring domains of AChE deleted (del E5+6 knockout mice) has very low activity in the brain and neuromuscular juncti...

  17. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Xiao Ding; Ming-An Ouyang; Xiang Liu; Rei-Zhen Wang

    2013-01-01

    Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE) inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ra...

  18. Nanomaterials-Based Optical Techniques for the Detection of Acetylcholinesterase and Pesticides

    Ning Xia

    2014-12-01

    Full Text Available The large amount of pesticide residues in the environment is a threat to global health by inhibition of acetylcholinesterase (AChE. Biosensors for inhibition of AChE have been thus developed for the detection of pesticides. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. The aim of this review is to provide insight into nanomaterial-based optical techniques for the determination of AChE and pesticides, including colorimetric and fluorescent assays and surface plasmon resonance.

  19. Progress in mechanisms of acetylcholinesterase inhibitors and memantine for the treatment of Alzheimer's disease

    Shao-Min Li

    2015-01-01

    Full Text Available Alzheimer's disease (AD is the most common causes of dementia in the elderly. Currently, only two classes of drugs, acetylcholinesterase inhibitors (AChEIs and memantine are approved. AChEIs ameliorate cognitive and psychiatric symptoms in AD patients through activation of acetylcholine (ACh receptors by increased synaptic ACh levels and also have protective effects against glutamate neurotoxicity and inflammation, whereas memantine appears to mainly protect against excitotoxicity and neurodegeneration. Herein, we review the pharmacologic properties of the available AChEIs and memantine, and focus on recent progress in the mechanisms of AD in relation to acetylcholinergic and glutamatergic involvement.

  20. Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing Yarrowia lipolytica S-3

    Kang, Min-Gu; Yoon, Min-Ho; Choi, Young-Jun; Lee, Jong-Soo

    2012-01-01

    This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally...

  1. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski’s Rule of Five and ZINC Databank

    Pablo Andrei Nogara

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh in the brain by using acetylcholinesterase inhibitors (AChEIs. In this study, we used the ZINC databank and the Lipinski’s rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1 aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE from Equus ferus (EfBChE, with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms.

  2. The effect of dichlorvos on acetylcholinesterase activity in some tissues in rats

    Dere E.

    2010-01-01

    Full Text Available In this study, the changes with respect to time in the serum, brain, liver, kidney and small intestine acetylcholinesterase activities were investigated in both male and female rats administered dichlorvos intraperitoneally (i.p.. For this purpose, 4 mg kg-1 doses of dichlorvos were injected i.p. in the rats. The control groups, on the other hand, were administered physiological saline via the same route. Rats were killed by decapitation at 0, 2, 4, 8, 16, 32, 64 and 72 hours after administration of dichlorvos and tissues were harvested. Enzyme activities were determined following the necessary treatments. While a significant decrease in enzyme activities in the kidney and small intestine tissues with respect to time were not observed in either sex, a significant decrease in enzyme activities in the serum, as well as in the brain and liver tissues were observed. As a result of our study, acetylcholinesterase activity was found to be decreased compared to controls in both male and female rats from 2 and 4 hours. Enzyme inhibition continued for up to 72 hours.

  3. Acetylcholinesterase from Human Erythrocytes as a Surrogate Biomarker of Lead Induced Neurotoxicity

    Vivek Kumar Gupta

    2015-01-01

    Full Text Available Lead induced neurotoxicity in the people engaged in different occupations has received wide attention but very little studies have been carried out to monitor occupational neurotoxicity directly due to lead exposure using biochemical methods. In the present paper an endeavour has been made in order to assess the lead mediated neurotoxicity by in vitro assay of the activity of acetylcholinesterase (AChE from human erythrocytes in presence of different concentrations of lead. The results suggested that the activity of this enzyme was localized in membrane bound fraction and it was found to be highly stable up to 30 days when stored at −20°C in phosphate buffer (50 mM, pH 7.4 containing 0.2% Triton X-100. The erythrocyte’s AChE exhibited Km for acetylcholinesterase to be 0.1 mM. Lead caused sharp inhibition of the enzyme and its IC50 value was computed to be 1.34 mM. The inhibition of the enzyme by lead was found to be of uncompetitive type (Ki value, 3.6 mM which negatively influenced both the Vmax and the enzyme-substrate binding affinity. Taken together, these results indicate that AChE from human erythrocytes could be exploited as a surrogate biomarker of lead induced neurotoxicity particularly in the people occupationally exposed to lead.

  4. Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase

    The hydrophobic, membrane-binding domain of purified human erythrocyte acetylcholinesterase was labeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. The radiolabel was incorporated when the enzyme was prepared in detergent-free aggregates, in detergent micelles, or in phospholipid liposomes, but the highest percentage of labeling occurred in the detergent-free aggregates. Papain digestion of the enzyme released the hydrophobic domain, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate or gel exclusion chromatography demonstrated that the label was localized exclusively in the cleaved hydrophobic domain fragment. This fragment was purified in a three-step procedure. Digestion was conducted with papain attached to Sepharose CL-4B, and the supernatant was adsorbed to acridinium affinity resin to remove the hydrophilic enzyme fragment. The nonretained fragment associated with Triton X-100 micelles was then chromatographed on Sepharose CL-6B, and finally detergent was removed by chromatography on Sephadex LH-60 in an ethanol-formic acid solvent. The fragment exhibited an apparent molecular weight of 3100 on the Sephadex LH-60 column when compared with peptide standards. However, amino acid analysis of the purified fragment revealed only 1 mol each of histidine and glycine per mole of fragment in contrast to the 25-30 mole of amino acids expected on the basis of the molecular weight estimate. This result suggests a novel non-amino acid structure for the hydrophobic domain of human erythrocyte acetylcholinesterase

  5. Wild Argentinian Amaryllidaceae, a New Renewable Source of the Acetylcholinesterase Inhibitor Galanthamine and Other Alkaloids

    Gabriela E. Feresin

    2012-11-01

    Full Text Available The Amaryllidaceae family is well known for its pharmacologically active alkaloids. An important approach to treat Alzheimer’s disease involves the inhibition of the enzyme acetylcholinesterase (AChE. Galanthamine, an Amaryllidaceae alkaloid, is an effective, selective, reversible, and competitive AchE inhibitor. This work was aimed at studying the alkaloid composition of four wild Argentinian Amarillydaceae species for the first time, as well as analyzing their inhibitory activity on acetylcholinesterase. Alkaloid content was characterized by means of GC-MS analysis. Chloroform basic extracts from Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina and Zephyranthes filifolia collected in the Argentinian Andean region all contained galanthamine, and showed a strong AChE inhibitory activity (IC50 between 1.2 and 2 µg/mL. To our knowledge, no previous reports on alkaloid profiles and AChEIs activity of wild Argentinian Amarillydaceae species have been publisihed. The demand for renewable sources of industrial products like galanthamine and the need to protect plant biodiversity creates an opportunity for Argentinian farmers to produce such crops.

  6. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells.

    Pérez-Aguilar, Benjamín; Vidal, Cecilio J; Palomec, Guillermina; García-Dolores, Fernando; Gutiérrez-Ruiz, María Concepción; Bucio, Leticia; Gómez-Olivares, José Luis; Gómez-Quiroz, Luis Enrique

    2015-07-01

    Acetylcholinesterase (AChE), the enzyme that rapidly splits acetylcholine into acetate and choline, presents non-cholinergic functions through which may participate in the control of cell proliferation and apoptosis. These two features are relevant in cancer, particularly in hepatocellular carcinoma (HCC), a very aggressive liver tumor with high incidence and poor prognosis in advanced stages. Here we explored the relation between acetylcholinesterase and HCC growth by testing the influence of AChE on proliferation of Huh-7 and HepG2 cell lines, addressed in monolayer cultures, spheroid formation and human liver tumor samples. Results showed a clear relation in AChE expression and cell cycle progression, an effect which depended on cell confluence. Inhibition of AChE activity led to an increase in cell proliferation, which was associated with downregulation of p27 and cyclins. The fact that Huh-7 and HepG2 cell lines provided similar results lent weight to the relationship of AChE expression with cell cycle progression in hepatoma cell lines at least. Human liver tumor samples exhibited a decrease in AChE activity as compared with normal tissue. The evidence presented herein provides additional support for the proposed tumor suppressor role of AChE, which makes it a potential therapeutic target in therapies against hepatocellular carcinoma. PMID:25869328

  7. Kinetics of acetylcholinesterase inhibition by an aqueous extract of Cuminum cyminum seeds

    Suresh Kumar

    2014-03-01

    Full Text Available The cholinergic hypothesis of Alzheimer’s disease (AD has provided the rationale for the current pharmacotherapy of this disease. Acetylcholinesterase (AChE inhibitors are currently the only approved therapy for the symptomatic treatment of AD. The current drugs available in the market has shown various side effect which prompted scientist to search for new and potent AChE inhibitors which exerts minimal side effect in AD patient. In present study, an aqueous extract of Cumin cyminum was tested for in vitro acetylcholinesterase inhibitory activity based on Ellman’s method. C. cyminum showed maximum inhibition of 76.90±0.003% in an aqueous extract at 50μg/ml final concentration. Further studies were conducted to elucidate the mode of AChE inhibition by kinetic studies. Competitive inhibition was observed at lower concentrations (12.5μg/ml & 25μg/ml and mixed inhibition was observed at higher concentrations (50μg/ml & 100μg/ml.

  8. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. PMID:26489065

  9. Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase

    Roberts, W.L.; Rosenberry, T.L.

    1986-06-03

    The hydrophobic, membrane-binding domain of purified human erythrocyte acetylcholinesterase was labeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine. The radiolabel was incorporated when the enzyme was prepared in detergent-free aggregates, in detergent micelles, or in phospholipid liposomes, but the highest percentage of labeling occurred in the detergent-free aggregates. Papain digestion of the enzyme released the hydrophobic domain, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate or gel exclusion chromatography demonstrated that the label was localized exclusively in the cleaved hydrophobic domain fragment. This fragment was purified in a three-step procedure. Digestion was conducted with papain attached to Sepharose CL-4B, and the supernatant was adsorbed to acridinium affinity resin to remove the hydrophilic enzyme fragment. The nonretained fragment associated with Triton X-100 micelles was then chromatographed on Sepharose CL-6B, and finally detergent was removed by chromatography on Sephadex LH-60 in an ethanol-formic acid solvent. The fragment exhibited an apparent molecular weight of 3100 on the Sephadex LH-60 column when compared with peptide standards. However, amino acid analysis of the purified fragment revealed only 1 mol each of histidine and glycine per mole of fragment in contrast to the 25-30 mole of amino acids expected on the basis of the molecular weight estimate. This result suggests a novel non-amino acid structure for the hydrophobic domain of human erythrocyte acetylcholinesterase.

  10. Dietary supplementation with fermented legumes modulate hyperglycemia and acetylcholinesterase activities in Streptozotocin-induced diabetes.

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Boligon, Aline A; Athayde, Margareth L

    2015-12-01

    The study investigated the hypoglycemic and anticholinesterase activities of some fermented legumes (bambara groundnut and locust bean) in Streptozotocin (STZ)-induced diabetic rats. The rats were made diabetic by intraperitoneal administration of STZ (35mg/kg b.w.) and were fed diets containing fermented legumes (10% inclusion) for 14 days. The effect of the diets on blood glucose, pancreatic glutathione peroxidase (GPx) activity, reduced glutathione (GSH) and malondialdehyde (MDA) contents, α-amylase, intestinal α-glucosidase and acetylcholinesterase activities were studied. Significant (Pglucose, pancreatic MDA, α-amylase, intestinal α-glucosidase and acetylcholinesterase activities with concomitant decrease in pancreatic GPx and GSH contents were observed in diabetic rats. However, this trend was reversed in rats fed fermented legumes supplemented diets for 14 days. The HPLC-DAD finger printing revealed the presence of gallic acid, catechin, caffeic acid, epicatechin, rutin, isoquercitrin, quercitrin, quercetin and kaempferol as the dominant phenolic compounds of the fermented legumes. However, possible contributing role of some bioactive peptides could not be ruled out. Hence, the hypoglycemic and antiacetylcholinesterase activities of the fermented legume condiments could be attributed to their constituent phytochemicals. PMID:26349771

  11. Use of cytectrene marked by the technetium 99 to study the activity of Acetylcholinesterase in the rat brain

    Alzheimer's disease is a degenerative neurological disorder that causes progressive and irreversible loss of mental functions. It is the most common form of dementia and is characterized by a decrease in serotonergic neurons that carry the 5HT1A receptors. Derivatives piperidine with a tertiary amine and ester are similar to acetylcholine [natural substrate of acetylcholinesterase)], we used the cytectrene [molecule based piperidine marked the technetium 99m] as a substrate to investigate the activity of Acetylcholinesterase in the brain. The use of cytectrene for the quantitative measurement of the activity of the Acetylcholinesterase in the brain depends on the rate of hydrolysis and the enzymatic specificity. The results showed that the cytectrene can be used as a substrate for a precise and quantitative determination of the activity of this enzyme. The use of cytectrene as a substrate of Acetylcholinesterase and determination of its activity can use this molecule as an agent for early diagnosis of Alzheimer's disease. The results will, therefore, not only their importance on a fundamental level but also on a plan applied in the medical field. (Author)

  12. Post-irradiation changes in acetylcholinesterase and butyrylcholinesterase activity in blood platelets of whole-body irradiated rats

    After 24, 96 and 144 hours following whole-body irradiation of rats with 8 Gy an increased acetylcholinesterase activity was found in platelets. The activity of butyrylcholinesterase in platelets increased in all investigated intervals after whole-body irradiation of rats with 8 Gy. The highest values were recorded after 144, 192 and 264 hours. (author)

  13. Effects of hunger level and nutrient balance on survival and acetylcholinesterase activity of dimethoate exposed wolf spiders

    Pedersen, Lars-Flemming; Dall, Lars G.; Sorensen, Bo C.; Mayntz, David; Toft, Soren

    2002-01-01

    were created by feeding them fruit flies of either high or low nutrient content for 28 days. Both groups were then split into satiated and 14 days starved subgroups. Each of these was further divided into insecticide treated and control halves. Survivorship and acetylcholinesterase (AChE) activity...

  14. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  15. Effects of Green Tea Extract on Learning, Memory, Behavior and Acetylcholinesterase Activity in Young and Old Male Rats

    Kaur, Tranum; Pathak, C. M.; Pandhi, P.; Khanduja, K. L.

    2008-01-01

    Objective: To study the effects of green tea extract administration on age-related cognition in young and old male Wistar rats. Methods: Young and old rats were orally administered 0.5% green tea extract for a period of eight weeks and were evaluated by passive avoidance, elevated maze plus paradigm and changes in acetylcholinesterase activity.…

  16. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  17. Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation

    Prickaerts, L.; Sik, A.; Staay, van der F.J.; Vente, de J.; Blokland, A.

    2005-01-01

    Rationale Phosphodiesterase enzyme type 5 (PDE5) inhibitors and acetylcholinesterase (AChE) inhibitors have cognition-enhancing properties. However, it is not known whether these drug classes affect the same memory processes. Objective We investigated the memory-enhancing effects of the PDE5 inhibit

  18. Antidotal effects of varthemia persica DC extract in organophosphate poisoning or warfare agents by measuring whole blood acetylcholinesterase

    The organophosphates (ORPs) or war fare agents toxicity results from inhibition of acetylcholinesterase (AchE). phosphylation of the active serin of AchE leads to accumulation of acetylcholine in synaptic clefts leading to generalized cholinergic over-stimulation. Standard treatment of ORP poisoning includes a muscarinic antagonist such as Atropine, and acetylcholinesterase reactivator (oxime). Presently, oximes like abidoxime and pralidoxime are approved as antidotes against ORP poisoning but are considered to be rather ineffective against certain ORP. Like Soman. In this study, the protective effect of Varthemia persica DC extract on acetylcholinesterase was examined in rats. Animals in weight range of 200-225 g were divided in 8 groups. The negative control group received only 0.4 ml normal saline, reference group, received ethylparaoxone in dose of 50 percent of LD50, positive control group, received ethylparaoxone (50% LD50) and one minute later 50 mol of pralidoxime. Test group 1: received ethylparaoxone and one minute later single dose of methanolic extract of Varthemia persica (250 mg/kg), Test Group 2: daily received methanolic extract of V.persica (250 mg/kg) in six days and one minute after last dose of extract, ethylparaoxone (50% LD50) were injected, Test Group 3: received ethylparaoxone (50% LD50) and then six doses of methanolic extract of V.persica (250 mg/kg) in six continuous days. Test Group 4: received ethylparaoxone and then single dose of dichloromethane extract of V.persica (250 mg/kg). Test Group 5: received ethylparaoxone and one minute later single high dose of methanolic extract of V.persica (1000 mg/kg). Then blood withdrawn and acetylcholinesterase activity was measured according to modified Ellman's method. Only in groups which received extract of V. persica before and after injection of ethylparaoxone, the mean of acetylcholinesterase activity was significantly different with reference group (p 0.05) but no significant difference with

  19. Acetylcholinesterase Inhibition-Based Biosensor for Aluminum(III Chronoamperometric Determination in Aqueous Media

    Miriam Barquero-Quirós

    2014-05-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme acetylcholinesterase has been developed. The immobilization of the enzyme was performed on screen-printed carbon electrodes modified with gold nanoparticles. The oxidation signal of acetylthiocholine iodide enzyme substrate was affected by the presence of Al(III ions leading to a decrease in the amperometric current. The developed system has a detection limit of 2.1 ± 0.1 μM for Al(III. The reproducibility of the method is 8.1% (n = 4. Main interferences include Mo(VI, W(VI and Hg(II ions. The developed method was successfully applied to the determination of Al(III in spiked tap water . The analysis of a certified standard reference material was also carried out. Both results agree with the certified values considering the respective associated uncertainties.

  20. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism.

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S

    2016-04-01

    Acetylcholinesterase (AChE), an acetylcholine-hydrolyzing enzyme, exists widely in plants, although its role in plant signal transduction is still unclear. We have hypothesized that the plant AChE regulates asymmetric distribution of hormones and substrates due to gravity stimulus, based on indirect pharmacological experiments using an AChE inhibitor. As a direct evidence for this hypothesis, our recent study has shown that AChE overexpression causes an enhanced gravitropic response in rice seedlings and suggested that the function of the rice AChE relates to the promotion of shoot gravitropism in the seedlings. Here, we report that AChE suppression inhibited shoot gravitropism in rice seedlings, as supportive evidence demonstrating the role of AChE as a positive regulator of shoot gravitropic response in plants. PMID:26979939

  1. High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors

    Su, Shao; He, Yao; Zhang, Mingliang; Yang, Kun; Song, Shiping; Zhang, Xiaohong; Fan, Chunhai; Lee, Shuit-Tong

    2008-07-01

    We report the use of a silicon-based nanocomplex, i.e., gold nanoparticles-coated silicon nanowires, for the improvement of acetylcholinesterase (AChE)-based electrochemical sensors for pesticide detection. Owing to the high electrical conductivity of the nanocomplex and its compatibility with the enzyme, the sensor exhibited significantly enhanced performance. The AChE enzyme bound to the surface possessed Michaelis-Menton constant of 81μM, resembling that in its free form. The sensor showed rapid response toward substrate acetylcholine in the concentration range of 1.0μM-1.0mM. This AChE nanosensor could detect as low as 8ng/L dichlorvos, an organophosphate pesticide.

  2. Graphene quantum dots for ultrasensitive detection of acetylcholinesterase and its inhibitors

    Li, Nan; Wang, Xuewan; Chen, Jie; Sun, Lei; Chen, Peng

    2015-09-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of novel applications including development of optical sensors. Herein, a GQD-based fluorometric sensor is devised to detect acetylcholinesterase (AChE, a critical enzyme in central nervous system and neuromuscular junctions) with an ultralow detection limit (0.58 pM with S/N of 5.0), using a photoluminescence ‘turn-off’ mechanism. This simple ‘mix-and-detect’ platform can also be employed to sense a variety of compounds that can directly or indirectly inhibit the enzymatic activities of AChE, such as nerve gases, pesticides, and therapeutic drugs. As the proof-of-concept demonstrations, we show the sensitive detection of paraoxon (a pesticide), tacrine (a drug to treat Alzheimer’s disease), and dopamine (an important neurotransmitter).

  3. Catalytic recruitment in the inactivation of acetylcholinesterase by soman: temperature dependence of the solvent isotope effect

    3,3-Dimethyl-2-butyl methylphosphonofluoridate (soman) recruits at least 60-70% of the catalytic power of acetylcholinesterase during phosphonylation of the active-site serine, as compared with the acetylation by acetylcholine. The solvent isotope effect is 1.34 +/- 0.11 and is temperature independent within experimental error between 5 and 450C. This observation is quite similar to what has been found for the reactions of aryl acetates and anilides. Average activation parameters for the same temperature range are ΔH* = 7.3 +/- 0.6 kcal/mol and ΔS* = -4 +/- 2 eu (H2O) and ΔH* = 7.1 +/- 0.4 kcal/mol and ΔS* = -6 +/- 1 eu (D2O). A rate-limiting process with 50% contribution of an induced-fit conformational change is supported by the data

  4. A radiotracer for In vivo studies of acetylcholinesterase: p-[18F]fluorodonepezil

    Alzheimer's disease (AD) is one of senile dementia caused by lack of acetylcholine in central nervous system, and in vivo studies of acetylcholinesterase (AChE) have been carried out using many radiolabeled AChE inhibitors (donepezil, tacrine, physostigmine, CP-126,998, etc). Donepezil, a FDA approved drug for AD is now in clinical use. Therefore, we synthesized and evaluated p-[18F]fluorodonepezil in mice. Biodistribution studies demonstrated that p-[18F]fluorodonepezil binds non-specifically in vivo and does not suffer from metabolism in mouse brain. This study suggests that radioligands with higher binding affinity may be required to visualize AChE in vivo and further studies are needed to develop better radiotracers

  5. Efficient perturbation analysis of elastic network models - Application to acetylcholinesterase of T. californica

    Hamacher, K.

    2010-09-01

    Elastic network models in their different flavors have become useful models for the dynamics and functions of biomolecular systems such as proteins and their complexes. Perturbation to the interactions occur due to randomized and fixated changes (in molecular evolution) or designed modifications of the protein structures (in bioengineering). These perturbations are modifications in the topology and the strength of the interactions modeled by the elastic network models. We discuss how a naive approach to compute properties for a large number of perturbed structures and interactions by repeated diagonalization can be replaced with an identity found in linear algebra. We argue about the computational complexity and discuss the advantages of the protocol. We apply the proposed algorithm to the acetylcholinesterase, a well-known enzyme in neurobiology, and show how one can gain insight into the "breathing dynamics" of a structural funnel necessary for the function of the protein. The computational speed-up was a 60-fold increase in this example.

  6. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  7. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment.

    da Silva Gonçalves, Arlan; França, Tanos Celmar Costa; Vital de Oliveira, Osmair

    2016-06-01

    Here, we propose five fullerene (C60) derivatives as new drugs against Alzheimer's disease (AD). These compounds were designed to act as new human acetylcholinesterase (HssAChE) inhibitors by blocking its fasciculin II (FASII) binding site. Docking and molecular dynamic results show that our proposals bind to the HssAChE tunnel entrance, forming stable complex, and further binding free energy calculations suggest that three of the derivatives proposed here could be potent HssAChE inhibitors. We found a region formed by a set of residues (Tyr72, Asp74, Trp286, Gln291, Tyr341, and Pro344) which can be further exploited in the drug design of new inhibitors of HssAChE based on C60 derivatives. Results presented here report for the first time by a new class of molecules that can become effective drugs against AD. PMID:26219766

  8. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study.

    Merad, M; Soufi, W; Ghalem, S; Boukli, F; Baig, M H; Ahmad, K; Kamal, Mohammad A

    2014-04-01

    Alzheimer's disease is a progressive degenerative disease of the brain marked by gradual and irreversible declines in cognitive functions. Acetylcholinesterase (AChE) plays a biological role in the termination of nerve impulse transmissions at cholinergic synapses by rapid hydrolysis of its substrate, "acetylcholine". The deficit level of acetylcholine leads to deprived nerve impulse transmission. Thus the cholinesterase inhibitors would reverse the deficit in acetylcholine level and consequently may reverse the memory impairments, which is characteristic of the Alzheimer's disease. The molecular interactions between AChE and Carnosic acid, a well known antioxidant substance found in the leaves of the rosemary plant has always been an area of interest. Here in this study we have performed in silico approach to identify carnosic acid derivatives having the potential of being a possible drug candidate against AChE. The best candidates were selected on the basis of the results of different scoring functions. PMID:24059305

  9. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  10. False positive gel-acetylcholinesterase results in blood-stained amniotic fluids.

    Barlow, R D; Cuckle, H S; Wald, N J; Rodeck, C H

    1982-10-01

    The effect of blood contamination on the gel-acetylcholinesterase (AChE) test used in the diagnosis of fetal open neural-tube defects was studied with amniotic fluid samples artificially contaminated with fetal or maternal blood in concentrations covering a range exceeding that usually found in clinical practice. Amniotic fluid samples contaminated with maternal blood gave negative gel-AChE results at all concentrations. Contamination with fetal blood yielded positive results if the erythrocyte concentration was greater than about 60 x 10(6) cells/ml. Thus contamination of amniotic fluid with blood is only likely to cause false positive gel-AChE results if this critical concentration is exceeded. Such samples will occur only rarely in clinical practice but when they do the diagnosis should be made with caution. PMID:7126503