WorldWideScience

Sample records for acetylcholine

  1. Morphogenetic roles of acetylcholine.

    Lauder, J. M.; Schambra, U B

    1999-01-01

    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive ...

  2. Novel acetylcholine and carbamoylcholine analogues

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.;

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ...

  3. Immunisation with Torpedo acetylcholine receptor.

    Elfman, L

    1984-01-01

    Acetylcholine mediates the transfer of information between neurons in the electric organ of, for example, Torpedo as well as in vertebrate skeletal muscle. The nicotinic acetylcholine receptor complex translates the binding of acetylcholine into ion permeability changes. This leads to an action potential in the muscle fibre. The nicotinic acetylcholine receptor protein has been purified from Torpedo by use of affinity chromatography. The receptor is an intrinsic membrane glycoprotein composed of five polypeptide chains. When various animals are immunised with the receptor they demonstrate clinical signs of severe muscle weakness coincident with high antibody titres in their sera. The symptoms resemble those found in the autoimmune neuromuscular disease myasthenia gravis in humans. This animal model has constituted a unique model for studying autoimmune diseases. This paper reviews some of the work using Torpedo acetylcholine receptor in order to increase the understanding of the motor nervous system function and myasthenia gravis. It is now known that the nicotinic acetylcholine receptor protein is the antigen involved in myasthenia gravis. The mechanism of immune damage involves a direct block of the receptor function. This depends on the presence of antibodies which crosslink the postsynaptic receptors leading to their degradation. The questions to be answered in the future are; (a) what initiates or triggers the autoimmune response, (b) how do the antibodies cause the symptoms--is there a steric hindrance of the interaction of acetylcholine and the receptor, (c) why is there not a strict relationship between antibody titre and severity of symptoms, and (d) why are some muscles affected and other spared? With help of the experimental model, answers to these questions may result in improved strategies for the treatment of the autoimmune disease myasthenia gravis. PMID:6097937

  4. Tubular crystals of acetylcholine receptor

    1984-01-01

    Well-ordered tubular crystals of acetylcholine receptor were obtained from suspensions of Torpedo marmorata receptor-rich vesicles. They are composed of pairs of oppositely oriented molecules arranged on the surface lattice with the symmetry of the plane group p2 (average unit cell dimensions: a = 90 A, b = 162 A, gamma = 117 degrees). The receptor in this lattice has an asymmetric distribution of mass around its perimeter, yet a regular pentagonal shape; thus its five transmembrane subunits ...

  5. Acetylcholine functionally reorganizes neocortical microcircuits

    Runfeldt, Melissa J.; Sadovsky, Alexander J.; MacLean, Jason N.

    2014-01-01

    Sensory information is processed and transmitted through the synaptic structure of local cortical circuits, but it is unclear how modulation of this architecture influences the cortical representation of sensory stimuli. Acetylcholine (ACh) promotes attention and arousal and is thought to increase the signal-to-noise ratio of sensory input in primary sensory cortices. Using high-speed two-photon calcium imaging in a thalamocortical somatosensory slice preparation, we recorded action potential...

  6. Dose protocols of acetylcholine test in Chinese

    向定成; 龚志华; 何建新; 洪长江; 邱建; 马骏

    2004-01-01

    @@ Acetylcholine test has been widely used clinically in several countries as a practical test provoking coronary artery spasm.1-3 Although it has also been launched recently in a few hospitals in China, the dose protocol for acetylcholine test used in these hospitals were from abroad.4,5 This study was aimed at developing a dose protocol for acetylcholine test suitable for Chinese people.

  7. Metabolism of acetylcholine in human erythrocytes

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-14C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identification of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 μCi of acetylcholine (choline methyl-14C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to 14C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of 14C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract

  8. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860. ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer ´s disease Subject RIV: CE - Biochemistry

  9. Parazoanthoxanthin A blocks Torpedo nicotinic acetylcholine receptors.

    Rozman, Klara Bulc; Araoz, Romulo; Sepcić, Kristina; Molgo, Jordi; Suput, Dusan

    2010-09-01

    Nicotinic acetylcholine receptors are implicated in different nervous system-related disorders, and their modulation could improve existing therapy of these diseases. Parazoanthoxanthin A (ParaA) is a fluorescent pigment of the group of zoanthoxanthins. Since it is a potent acetylcholinesterase inhibitor, it may also bind to nicotinic acetylcholine receptors (nAChRs). For this reason its effect on Torpedo nAChR (alpha1(2)betagammadelta) transplanted to Xenopus laevis oocytes was evaluated, using the voltage-clamp technique. ParaA dose-dependently reduced the acetylcholine-induced currents. This effect was fully reversible only at lower concentrations. ParaA also reduced the Hill coefficient and the time to peak current, indicating a channel blocking mode of action. On the other hand, the combined effect of ParaA and d-tubocurarine (d-TC) on acetylcholine-induced currents exhibited only partial additivity, assuming a competitive mode of action of ParaA on nAChR. These results indicate a dual mode of action of ParaA on the Torpedo AChR. PMID:20230806

  10. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. PMID:24508663

  11. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Esam E. El-Fakahany

    2010-08-01

    Full Text Available An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity or decrease (negative cooperativity in the binding or action of an orthosteric agonist (e.g., acetylcholine. Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer’s disease and other disorders involving impaired cognitive function.

  12. The Role of Acetylcholine in Cocaine Addiction

    Williams, Mark J.; Adinoff, Bryon

    2007-01-01

    Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience a...

  13. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine Binding Protein as a Structural Surrogate

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette; Balle, Thomas

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs a...

  14. The effect of ketamine on intraspinal acetylcholine release

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders;

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... release. Microdialysis probes were placed intraspinally in male rats, and acetylcholine was quantified with HPLC. Anaesthesia was switched from isoflurane (1.3%) to ketamine (150 mg/kg h), which resulted in a 500% increased acetylcholine release. The increase was attenuated during nicotinic receptor...... blockade (50 microM mecamylamine). The nicotinic receptor agonist epibatidine (175 microM) produced a ten-fold higher relative increase of acetylcholine release during isoflurane anaesthesia compared to ketamine anaesthesia (270% to 27%). Intraspinal administration of ketamine and norketamine both...

  15. Expression and function of nicotinic acetylcholine receptors in stem cells

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  16. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    Abagyan Ruben

    2002-01-01

    Full Text Available Abstract Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.

  17. The α7 nicotinic acetylcholine receptor complex

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and...... compounds in vivo is highly dependent on α7 nAChR-interacting proteins, such as RIC-3 and lynx1, which modulate expression and function of the receptor. These regulatory proteins are often not expressed in in vitro models used to study α7 nAChR function, and it is not known to what extent they are involved...... in diseases such as schizophrenia and Alzheimer's disease. Furthermore, α7 nAChR agonists and allosteric modulators differentially alter expression and functionality of the α7 nAChR with repeated administration, which suggests that there may be fundamentally different outcomes of long...

  18. Inhibition of acetylcholine synthesis in vitro

    In order to better understand diseases that stem from deficiencies in cholinergic activity, reproducible in vitro and in vivo models displaying cholinergic hypofunction are desirable. This necessitates the availability of specific inhibitors. This paper examines the design, synthesis and evaluation of quinuclidinyl compounds with structural features previously reported, but with certain key differences. Structure activity studies with in vitro assay systems are presented. In a few studies, choline was held constant and acetyl-CoA concentration was varied, but with a constant amount of (14C) - acetyl CoA. Acetylcholine synthesis and CO2 production from labelled glucose were measured in cerebral cortex slices from male rats after decapitation. The nanomoles of ACh and CO2 produced from (14C) -glucose were calculated from glucose specific activity. Results are presented

  19. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Gian-Pietro Di Sansebastiano

    2014-03-01

    Full Text Available We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.

  20. New insights on plant cell elongation: a role for acetylcholine.

    Di Sansebastiano, Gian-Pietro; Fornaciari, Silvia; Barozzi, Fabrizio; Piro, Gabriella; Arru, Laura

    2014-01-01

    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response. PMID:24642879

  1. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta.

    Hansen, K; Nedergaard, O A

    1999-08-01

    The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased with time. N(G)-Nitro-L-arginine abolished the inhibitory effect of EDTA and ascorbic acid. Acetylcholine evoked a rapid concentration-dependent relaxation that recovered spontaneously and slowly, but fully, with time. Relaxation evoked by equieffective concentrations of carbachol and acetylcholine had the same time course. Cumulative addition of acetylcholine (10(-7)-3 x 10(-5) M) caused a marked relaxation that was reverted slightly at high concentrations. The relaxation was the same with rings derived from the upper, middle, and lower part of the thoracic aorta. Two consecutive concentration-response curves for acetylcholine obtained at a 2-h interval demonstrated a slight development of tachyphylaxis. The relaxation was inversely related to precontractile tension evoked by phenylephrine when expressed as a percentage, but independent when expressed as g tension. Storage of aorta in cold salt solution for 24 h did not alter the relaxation. EDTA and ascorbic acid did not alter the relaxation. It is concluded that (1) EDTA and ascorbic acid can not be used with impunity to stabilize catecholamines used as preconstriction agents; (2) the reversal of the acetylcholine-evoked relaxation is not due to hydrolysis of acetylcholine; (3) the relaxation is uniform in all segments of thoracic aorta; (4) cold storage of aorta does not alter the relaxation; and (5) acetylcholine releases the same amount of relaxing factor, irrespective of the precontractile tension. PMID:10691020

  2. Nicotinic acetylcholine receptors mediate lung cancer growth

    PaulDGardner

    2013-09-01

    Full Text Available Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport – vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC, the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3β4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/β4-containing nAChRs promotes lung carcinogenesis.

  3. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. PMID:26572235

  4. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with [3H]choline accumulated [3H]choline and synthesized [3H]acethylcholine in an concentration-dependent manner. [3H]Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of [3H]acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum

  5. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-01-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine ester...

  6. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  7. Functional partial agonism at cloned human muscarinic acetylcholine receptors

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R;

    1996-01-01

    of maximal response, depending on the molar ratio of agonist and antagonist used. Using recombinant human muscarinic acetylcholine receptors (m1 and m5) and the functional assay, receptor selection and amplification technology (R-SAT), we have now shown that co-administration of the full agonist...

  8. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  9. Tissue-specific effects of acetylcholine in the canine heart

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter;

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh on...

  10. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  11. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors.

    Jakubík, J; Bacáková, L; El-Fakahany, E E; Tucek, S

    1997-07-01

    It is well known that allosteric modulators of muscarinic acetylcholine receptors can both diminish and increase the affinity of receptors for their antagonists. We investigated whether the allosteric modulators can also increase the affinity of receptors for their agonists. Twelve agonists and five allosteric modulators were tested in experiments on membranes of CHO cells that had been stably transfected with genes for the M1-M4 receptor subtypes. Allosterically induced changes in the affinities for agonists were computed from changes in the ability of a fixed concentration of each agonist to compete with [3H]N-methylscopolamine for the binding to the receptors in the absence and the presence of varying concentrations of allosteric modulators. The effects of allosteric modulators varied greatly depending on the agonists and the subtypes of receptors. The affinity for acetylcholine was augmented by (-)-eburnamonine on the M2 and M4 receptors and by brucine on the M1 and M3 receptors. Brucine also enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pilocarpine, 3-(3-pentylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine (pentylthio-TZTP), oxotremorine-M, and McN-A-343 on the M1, M3, and M4 receptors, for pentylthio-TZTP on the M2 receptors, and for arecoline on the M3 receptors. (-)-Eburnamonine enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pentylthio-TZTP, pilocarpine, oxotremorine and oxotremorine-M on the M2 receptors and for pilocarpine on the M4 receptors. Vincamine, strychnine, and alcuronium displayed fewer positive allosteric interactions with the agonists, but each allosteric modulator displayed positive cooperativity with at least one agonist on at least one muscarinic receptor subtype. The highest degrees of positive cooperativity were observed between (-)-eburnamonine and pilocarpine and (-)-eburnamonine and oxotremorine-M on the M2 receptors (25- and 7-fold increases in

  12. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    Rajendran, R.; Borghi, E.; M. Falleni; F Perdoni; Tosi, D.; D.F. Lappin; L. O'Donnell; Greetham, D.; G. Ramage; C. Nile

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathoge...

  13. Nicotinic Acetylcholine Receptor (nAChR Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    Zuo Jun Ren

    Full Text Available Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR, inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  14. Localization of muscarinic acetylcholine receptor in plant guard cells

    2001-01-01

    Acetylcholine (ACh), as an important neurotransmitter in animals, also plays a significant role in various kinds of physiological functions in plants. But relatively little is known about its receptors in plants. A green fluorescence BODIPY FL-labeled ABT, which is a high affinity ligand of muscarinic acetylcholine receptor (mAChR), was used to localize mAChR in plant guard cells. In Vicia faba L. and Pisum sativum L., mAChR was found both on the plasma membrane of guard cells. mAChR may also be distributed on guard cell chloroplast membrane of Vicia faba L. The evidence that mAChR localizes in the guard cells provides a new possible signal transduction pathway in ACh mediated stomata movement.

  15. Structures of acetylcholine picrate and methoxycarbonylcholine picrate hemihydrate

    Frydenvang, Karla Andrea; Grønborg, L; Jensen, B

    Acetylcholine picrate, C7H16NO2+.C6H2N3-O7-, Mr = 374.3, orthorhombic, Pbca, at 105 K: a = 18.799 (4), b = 7.726 (2), c = 22.878 (4) A, V = 3323 (2) A3, Z = 8, Dm(295 K, flotation) = 1.44, D chi(105 K) = 1.496 Mg m-3, mu(Mo K alpha) = 0.120 mm-1, F(000) = 1568, m.p. (hot-stage microscope) 381-382 K......(295 K, flotation) = 1.49, D chi(105 K) = 1.539 Mg m-3, mu(Mo K alpha) = 0.126 mm-1, F(000) = 836, m.p. (hot-stage microscope) 391-391.5 K, R = 0.033 for 6359 observed [I greater than or equal to 3.0 sigma(I)] reflections. The acetylcholine ion as well as the methoxycarbonylcholine ion have as first...

  16. Long release latencies are increased by acetylcholine at frog endplate

    Samigullin, D.; Bukharaeva, E. A.; Nikolsky, E.; Adámek, S.; Vyskočil, František

    2003-01-01

    Roč. 52, č. 4 (2003), s. 475-480. ISSN 0862-8408 R&D Projects: GA ČR GA305/02/1333; GA ČR GA202/02/1213 Grant ostatní: RFBR(RU) 02/04/48901 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : quantal release * acetylcholine * synaptic latency Subject RIV: ED - Physiology Impact factor: 0.939, year: 2003

  17. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    Alexandra eAcevedo-Rodriguez; Lifen eZhang; Fuwen eZhou; Suzhen eGong; Howard eGu; Mariella eDe Biasi; Fu-Ming eZhou; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine’s ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit...

  18. Threonine in the selectivity filter of the acetylcholine receptor channel.

    Villarroel, A.; Sakmann, B

    1992-01-01

    The acetylcholine receptor (AChR) is a cation selective channel whose biophysical properties as well as its molecular composition are fairly well characterized. Previous studies on the rat muscle alpha-subunit indicate that a threonine residue located near the cytoplasmic side of the M2 segment is a determinant of ion flow. We have studied the role of this threonine in ionic selectivity by measuring conductance sequences for monovalent alkali cations and bionic reversal potentials of the wild...

  19. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, E. E.; Doležal, Vladimír

    2011-01-01

    Roč. 6, č. 11 (2011), e27732. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA305/09/0681; GA AV ČR(CZ) IAA500110703; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : acetylcholine muscarinic receptors * G proteins * subtype differences Subject RIV: ED - Physiology Impact factor: 4.092, year: 2011

  20. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-01-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role o...

  1. Acetylcholine in plants: presence, metabolism and mechanism of action

    Tretyn, Andrzej; Kendrick, Richard E.

    1991-01-01

    Acetylcholine (ACh) has been detected in representatives of many taxonomic groups throughout the plant kingdom. The site of its synthesis in plants is probably young leaves. In some plant species choline acetyltransferase (CHAT) activity has been found. This enzyme showing properties similar to animal CHAT, probably participates in ACh synthesis from its precursors, choline and acetyl-Coenzyme A. Acetylcholinesterase (ACHE) activity has also been found in many plant tissues. Th...

  2. Leukocytic acetylcholine in chronic rejection of renal allografts

    Wilczynska, Joanna

    2011-01-01

    Leukocytes, which accumulate in graft blood vessels during fatal acute rejection of experimental renal allografts, synthesise and release acetylcholine (ACh). In this study, I tested the hypothesis that ACh produced by leukocytes accumulating in graft blood vessels contributes to the pathogenesis of chronic renal allograft vasculopathy (CAV). Kidneys were transplanted in the allogeneic Fischer 344 to Lewis rat strain combination. Isogeneic transplantations were performed in Lew...

  3. High-resolution mass spectrometry for detecting Acetylcholine in Arabidopsis

    Murata, Jun; Watanabe, Takehiro; Sugahara, Kohtaro; Yamagaki, Tohru; Takahashi, Toshio

    2015-01-01

    Acetylcholine (ACh) was first identified a century ago, and has long been known as a neurotransmitter in animals. However, it has been shown recently that the occurrence of ACh is widespread among various non-animal species including higher plants. Although previous reports suggest that various plant species are capable of responding to exogenously applied ACh, the molecular basis for ACh biosynthesis and regulatory mechanisms mediated by endogenous ACh are largely unclear. This is partly bec...

  4. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Gian-Pietro Di Sansebastiano; Silvia Fornaciari; Fabrizio Barozzi; Gabriella Piro; Laura Arru

    2014-01-01

    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and...

  5. A new family of insect muscarinic acetylcholine receptors.

    Xia, R-Y; Li, M-Q; Wu, Y-S; Qi, Y-X; Ye, G-Y; Huang, J

    2016-08-01

    Most currently used insecticides are neurotoxic chemicals that target a limited number of sites and insect cholinergic neurotransmission is the major target. A potential target for insecticide development is the muscarinic acetylcholine receptor (mAChR), which is a metabotropic G-protein-coupled receptor. Insects have A- and B-type mAChRs and the five mammalian mAChRs are close to the A-type. We isolated a cDNA (CG12796) from the fruit fly, Drosophila melanogaster. After heterologous expression in Chinese hamster ovary K1 cells, CG12796 could be activated by acetylcholine [EC50 (half maximal effective concentration), 73 nM] and the mAChR agonist oxotremorine M (EC50 , 48.2 nM) to increase intracellular Ca(2+) levels. Thus, the new mAChR is coupled to Gq/11 but not Gs and Gi/o . The classical mAChR antagonists atropine and scopolamine N-butylbromide at 100 μM completely blocked the acetylcholine-induced responses. The orthologues of CG12796 can also be found in the genomes of other insects, but not in the genomes of the honeybee or parasitoid wasps. Knockdown of CG12796 in the central nervous system had no effect on male courtship behaviours. We suggest that CG12796 represents the first recognized member of a novel mAChR class. PMID:27003873

  6. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  7. Comparison of [3H]nicotine and [3H]acetylcholine binding in mouse brain: regional distribution

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both [3H]nicotine and [3H]acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of [3H]nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-[3H]nicotine and that of [3H]acetylcholine

  8. Effects of cooling on the response of the snail bursting neuron to acetylcholine.

    Nedeljković, Miodrag; Kartelija, Gordana; Radenović, Lidija

    2005-06-01

    The Br-type neuron of the snail Helix pomatia, involved in neuronal regulation of various homeostatic and adaptive mechanisms, represents an interesting model for studying effects of temperature change on neuronal activity of poikilotherms. Acetylcholine induces a transient, inward dose-dependent current in the identified Br neuron. In the work presented, we analyzed the effects of cooling on the acetylcholine-induced inward current. The amplitude of acetylcholine-induced inward current was markedly decreased after cooling, and the speed of the decay of acetylcholine response was decreased. PMID:16154950

  9. Acetylcholine synthesis and possible functions during sea urchin development

    C Angelini

    2009-06-01

    Full Text Available Cholinergic neurotransmitter system molecules were found to play a role during fertilisation and early cell cycles of a large number of invertebrate and vertebrate organisms. In this study, we investigated the presence and possible function of choline acetyltransferase (ChAT, the biosynthetic enzyme of acetylcholine in gametes of the sea urchin, Paracentrotus lividus, through localisation and functional studies. ChAT-like molecules were detected in oocytes, mature eggs and zygotes with indirect immunofluorescence methods. Positive immunoreactivity was found in the ovarian egg cytoplasm and surface as well as at the zygote surface. This suggests the eggs' capacity to autonomously synthesise acetylcholine (ACh, the signal molecule of the cholinergic system. Acetylcholinesterase (AChE, the lytic enzyme of acetylcholine was also found in ovarian eggs, with a similar distribution; however, it disappeared after fertilisation. Ultrastructural ChAT localisation in sperms, which was carried out with the immuno-gold method, showed immunoreactivity in the acrosome of unreacted sperms and at the head surface of reacted sperms. In order to verify a functional role of ACh during fertilization and sea urchin development, in vivo experiments were performed. Exposure of the eggs before fertilisation to 1 mM ACh + 1 ?M eserine caused an incomplete membrane depolarisation and consequently enhanced polyspermy, while lower concentrations of ACh caused developmental anomalies. The exposure of zygotes to 0,045 AChE Units/mL of sea water caused developmental anomalies as well, in 50% of the embryos. Altogether, these findings and other previously obtained results, suggest that the cholinergic system may subserve two different tasks during development, according to which particular type of ACh receptor is active during each temporal window. The first function, taking place in the course of fertilisation is a result of autonomously synthesised ACh in sperms, while the

  10. Synthesis of poly(ester-carbonate) with a pendant acetylcholine analog for promoting neurite growth.

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    The modification of biodegradable polyesters with bioactive molecules has become an important strategy for controlling neuron adhesion and neurite outgrowth in nerve regeneration. In this study we report a biodegradable poly(ester-carbonate) with a pendant acetylcholine analog, which a neurotransmitter for the enhancement of neuron adhesion and outgrowth. The acetylcholine-functionalized poly(ester-carbonate) (Ach-P(LA-ClTMC)) was prepared by copolymerizing l-lactide (LA) and 5-methyl-5-chloroethoxycarbonyl trimethylene carbonate (ClTMC), followed by quaternization with trimethylamine. The acetylcholine analog content could be modulated by changing the molar feeding fraction of ClTMC. The incorporation of the acetylcholine analog improved the hydrophilicity of the films, but the acetylcholine analog content did not significantly influence the surface morphology of the acetylcholine-functionalized films. The results of PC12 cell culture showed that the acetylcholine analog promoted cell viability and neurite outgrowth in a concentration-dependent manner. The longest length of neurite and the percentage of cells bearing neurites were obtained on the Ach-P(LA-ClTMC)-10 film. All the results indicate that the integration of the acetylcholine analog at an appropriate fraction could be an effective strategy for optimizing the existing biodegradable polyesters for nerve regeneration applications. PMID:24998182

  11. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.; Frølund, Bente

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present the...

  12. Histamine H3 receptors regulate acetylcholine release from the guinea pig ileum myenteric plexus

    The effect of selective histamine H3-receptor agonists and antagonists on the acetylcholine release from peripheral nerves was evaluated in the guinea pig longitudinal muscle-myenteric plexus preparations, preloaded with (3H)choline. In the presence of H1 and H2 blockade, histamine and (R)-α-methylhistamine inhibited the electrically-evoked acetylcholine release, being (R)-α-methylhistamine more active than histamine, but behaving as a partial agonist. The effect of histamine was completely reversed by selective H3-blocking drugs, thioperamide and impromidine, while only submaximal doses of (R)-α-methylhistamine were antagonized. Furthermore, thioperamide and impromidine enhanced the electrically-evoked acetylcholine release. On the contrary, the new H3-blocker, HST-7, was found substantially ineffective, both as histamine antagonist and as acetylcholine overflow enhancer. These data suggest that histamine exerts an inhibitory control on the acetylcholine release from intestinal cholinergic nerves through the activation of H3 receptors

  13. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    Hugh J Freeman; Helen R Gillett; Peter M Gillett; Joel Oger

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a glutenfree diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms.

  14. Ca2+ is involved in muscarine-acetylcholine-receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba L.

    MENG Fanxia; MIAO Long; ZHANG Shuqiu; LOU Chenghou

    2004-01-01

    Acetylcholine (ACh) is an important neurochemical transmitter in animals; it also exists in plants and plays a significant role in various kinds of physiological functions in plants. ACh has been known to induce the stomatal opening. By monitoring the changes of cytosolic Ca2+ with fluorescent probe Fluo-3 AM under the confocal microscopy,we found that exogenous ACh increased cytosolic Ca2+ concentration of guard cells of Vicia faba L. Muscarine, an agonist of muscarine acetylcholine receptor (mAChR), could do so as well. In contrast, atropine, the antagonist of mAChR abolished the ability of ACh to increase Ca2+ in guard cells.This mechanism is similar to mAChR in animals. When EGTA was used to chelate Ca2+ or ruthenium red to block Ca2+ released from vacuole respectively, the results showed that the increased cytosolic Ca2+ mainly come from intracellular Ca2+ store. The evidence supports that Ca2+ is involved in guard-cell response to ACh and that Ca2+ signal is coupled to mAChRs in ACh signal transduction in guard cells.

  15. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label

    The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]Nicotine binds at equilibrium with Keq = 0.6 μM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the α- and γ-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the α-subunit was labeled via both agonist sites but the γ-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the α-subunit confirmed that Try-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193

  16. Effects of cholinoblockers on acetylcholine content in rat striatum in neuroleptic-induced parkinsonism.

    Dagaev, S G; Kosmachev, A B; Soloveva, N E; Filko, O A; Sanotskii, V I; Dolgo-Saburov, V B

    2004-02-01

    Correction of neuroleptic-induced parkinsonism in rats with two central cholinoblockers atropine and pentifine (acetylene aminoalcohol synthesized at Institute of Toxicology) were studied by measuring the content of acetylcholine in the striatum. The content of the transmitter secretion was estimated from the content of bound acetylcholine fraction in homogenates of the above-mentioned compartment of the brain. The results indicate that atropine and pentifine in doses equally effectively preventing catalepsy in rats had different effects on acetylcholine secretion in the striatum. Hence, cholinolytics with different pharmacological selective effects differently interact with central muscarine receptor subtypes. PMID:15273765

  17. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.

    Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki

    2014-02-01

    Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans. PMID:24219868

  18. Valence of acetylcholine-receptor-antibody-titers in myasthenia gravis

    In a retrospective study in 47 patients with myasthenia gravis acetylcholine-receptor-antibody-titers (AChR-AB) were correlated with the severity of the disease. In 18 patients the course of titers was studied and two groups of patients could be differentiated: patients with relative constant and patients with fluctuating titers. Age, age of begin of myasthenia and sex did not influence the titers. Also the duration of the disease and the severity of symptoms did not influence the level of AChR-AB-titers. In this retrospective study the influence of immunsuppressive therapy on the intra-individual course of AB-titers and their correlation with the clinical symptoms could not be judged. Measurement of AChR-AB is of value for the diagnosis of myasthenia gravis and important for judging the clinical course and the effect of therapy. (Author)

  19. Structure and superorganization of acetylcholine receptor–rapsyn complexes

    Zuber, Benoît; Unwin, Nigel

    2013-01-01

    The scaffolding protein at the neuromuscular junction, rapsyn, enables clustering of nicotinic acetylcholine receptors in high concentration and is critical for muscle function. Patients with insufficient receptor clustering suffer from muscle weakness. However, the detailed organization of the receptor–rapsyn network is poorly understood: it is unclear whether rapsyn first forms a wide meshwork to which receptors can subsequently dock or whether it only forms short bridges linking receptors together to make a large cluster. Furthermore, the number of rapsyn-binding sites per receptor (a heteropentamer) has been controversial. Here, we show by cryoelectron tomography and subtomogram averaging of Torpedo postsynaptic membrane that receptors are connected by up to three rapsyn bridges, the minimum number required to form a 2D network. Half of the receptors belong to rapsyn-connected groups comprising between two and fourteen receptors. Our results provide a structural basis for explaining the stability and low diffusion of receptors within clusters. PMID:23754381

  20. Facilitation of acetylcholine signaling by the dithiocarbamate fungicide propineb.

    Marinovich, Marina; Viviani, Barbara; Capra, Valerie; Corsini, Emanuela; Anselmi, Laura; D'Agostino, Gianluigi; Di Nucci, Amalia; Binaglia, Marco; Tonini, Marcello; Galli, Corrado L

    2002-01-01

    Dithiocarbamates (DTCs) are used mainly in agriculture as pesticides and as alcohol deterrent drugs. Neurological complications as well as movement disorders characterized by plastic rigidity, muscle twitch and paralysis are the prevailing symptoms in chronically exposed animals and humans. We investigated whether propineb interfered with peripheral cholinergic transmission in various isolated model systems. In electrically stimulated longitudinal muscle-myenteric plexus preparations (LMMPs), propineb (0.01-1000 nM) concentration-dependently enhanced the amplitude of both neurogenic twitch contractions and tritiated acetylcholine ([3H]ACh) release. The maximum percent increase was achieved by 10 nM propineb and was 19% and 14%, respectively. The effect on twitch contractions was partially antagonized by hexamethonium, a ganglionic nicotinic receptor blocker. In unstimulated LMMPs, propineb (10 pM, 10 nM, 10 microM) did not affect contractions to applied acetylcholine (ACh; 1 nM-10 microM), a finding indicating that propineb has no anticholinesterase activity. In human neuroblastoma cells (SH-SY5Y), propineb facilitated ACh release evoked by KCl depolarization. The increase in ACh release was not associated with detectable alterations of intracellular Ca2+([Ca2+]i) homeostasis. Binding studies carried out with alpha-bungarotoxin in striated muscle cells (L6) failed to demonstrate any influence of propineb on both affinity and capacity of skeletal muscle nicotinic receptors. In conclusion, propineb was found to interfere with cholinergic transmission in LMMPs and SH-SY5Y cells. In LMMPs, the potentiation of cholinergic transmission is partly dependent on the activation of ganglionic nicotinic receptors. Other targets relevant to cholinergic transmission seem not to be affected by propineb. PMID:11800594

  1. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    Case, R M; Conigrave, A D; Novak, I;

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate.2. During perfusion with solutions containing acetylcholine, the gland secretes......) concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO(3), increased by about 25 mmol l(-1) during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was...... composition of isoproterenol-evoked saliva was vastly different from that evoked by acetylcholine, being particularly rich in K and HCO(3). The isoproterenol-evoked saliva was also extremely rich in protein so that the total protein secretion evoked by isoproterenol was much greater than that evoked by...

  2. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.

    Putrenko, Igor; Zakikhani, Mahvash; Dent, Joseph A

    2005-02-25

    The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors. PMID:15579462

  3. Inhibition by substance P of some peripheral actions of acetylcholine in the cat

    Clark, S.L.; Ryall, R. W.

    1982-01-01

    1 The effect of substance P on contractions of the nictitating membrane and pressor responses to acetylcholine (ACh) and dimethylphenyl-piperazinium (DMPP) which were mediated via nocotinic receptors was studied in cats anaesthetized with chloralose.

  4. Notexin preferentially inhibits the release of newly synthesized acetylcholine from rat brain synaptosomal fractions

    An investigation was made of the effects of the snake venom neurotoxin, notexin, on acetylcholine turnover in rat brain P2 fractions using a gas chromatographic mass spectrometric assay for acetylcholine and choline. In contrast to earlier reports, we found a stimulation of the uptake and acetylation of labeled choline by toxin-treated P2 fractions. More significantly, notexin inhibited the release of this newly synthesized transmitter. These effects were found to be dependent on the dose of the toxin and the time of exposure of the P2 fraction to notexin. Longer exposure to notexin or experiments involving resuspension of notexin-treated P2 fractions appeared to result in considerable lysis of the transmitter-containing particles. Thus, notexin may alter acetylcholine compartmentation in the nerve ending and thereby affect acetylcholine synthesis

  5. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Schuller Hildegard M; Dhar Madhu; Plummer Howard K

    2005-01-01

    Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was t...

  6. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    Matsuda, K; Buckingham, S D; Freeman, J.C.; Squire, M D; Baylis, H. A.; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine...

  7. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods

    Collin, Caitlin Alexis; Hauser, Frank; Gonzalez de Valdivia, Ernesto I; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M.M.; Khan, Zaid; Hansen, Niels Ø.; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin Robin; Grimmelikhuijzen, Cornelis

    2013-01-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In ...... (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs....

  8. Effect of organophosphorus insecticides on phosphorylation of the M2 muscarinic acetylcholine receptor

    Shuyin Li; Liming Zou; Carry Pope

    2008-01-01

    BACKGROUND: Organophosphorus insecticides may promote the accumulation of acetylcholine at synapses and the neuromuscular junction by inhibiting acetylcholinesterase activity to cause disturbance of neural signal conduction and induce a toxic reaction. Organophosphorus insecticides may act on M2 muscarinic acetylcholine receptors, whose combination with G proteins is regulated by phosphorylation of G protein-coupled receptor kinase 2.OBJECTIVE: To investigate the effects of organophosphorus insecticides on the phosphorylation of G protein-coupled receptor kinase 2-mediated M2 muscarinic acetylcholine receptors and to reveal other possible actions of organophosphorus insecticides.DESIGN, TIME AND SETTING: An observational study, which was performed in the Central Laboratory of Shenyang Medical College, and Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University from June 2002 to December 2004.METHODS: The M2 muscarinic acetylcholine receptor was extracted and purified from pig brain using affinity chromatography. Subsequently, the purified M2 muscarinic acetylcholine receptor, G protein-coupled receptor kinase 2, and [OP32] ATP were incubated with different concentrations of paraoxon and chlorpyrifos oxon together. The mixture then underwent polyacrylamide gel electrophoresis, and the gel film was dried and radioactively autographed to detect phosphorylation of the M2 muscarinic acetylcholine receptor. Finally, the radio-labeled phosphorylated M2 receptor protein band was excised for counting with an isotope liquid scintillation counter.MAIN OUTCOME MEASURES: Effects of chlorpyrifos oxon, paraoxon, chlorpyrifos, and parathion in different concentrations on the phosphorylation of the M2 muscarinic acetylcholine receptor; effects of chlorpyrifos oxon on the phosphorylation of the adrenergic receptor.CONCLUSION: Different kinds of organophosphorus insecticides have different effects on the phosphorylation of the G protein

  9. Identification of petrogenic produced water components as acetylcholine esterase inhibitors.

    Froment, Jean; Langford, Katherine; Tollefsen, Knut Erik; Bråte, Inger Lise N; Brooks, Steven J; Thomas, Kevin V

    2016-08-01

    Effect-directed analysis (EDA) was applied to identify acetylcholine esterase (AChE) inhibitors in produced water. Common produced water components from oil production activities, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and naphthenic acids were tested for AChE inhibition using a simple mixture of PAHs and naphthenic acids. Produced water samples collected from two offshore platforms in the Norwegian sector of the North Sea were extracted by solid phase extraction and fractionated by open-column liquid solid chromatography and high-performance liquid chromatography (HPLC) before being tested using a high-throughput and automated AChE assay. The HPLC fractions causing the strongest AChE inhibition were analysed by gas chromatography coupled to a high-resolution time-of-flight mass spectrometry (GC-HR-ToF-MS). Butylated hydroxytoluene and 4-phenyl-1,2-dihydronaphthalene were identified as two produced water components capable of inhibiting AChE at low concentrations. In order to assess the potential presence of such compounds discharged into aquatic ecosystems, AChE activity in fish tissues was measured. Saithe (Pollachius virens) caught near two offshore platforms showed lower enzymatic activity than those collected from a reference location. Target analysis of saithe did not detected the presence of these two putative AChE inhibitors and suggest that additional compounds such as PAHs, naphthenic acids and yet un-identified compounds may also contribute to the purported AChE inhibition observed in saithe. PMID:27176761

  10. Cocaine Inhibition of Nicotinic Acetylcholine ReceptorsInfluences Dopamine Release

    Alexandra eAcevedo-Rodriguez

    2014-09-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs potently regulate dopamine (DA release in the striatum and alter cocaine’s ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors.

  11. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia. PMID:17349863

  12. Increased expression of the nicotinic acetylcholine receptor in stimulated muscle.

    O'Reilly, Clare; Pette, Dirk; Ohlendieck, Kay

    2003-01-10

    Chronic low-frequency stimulation has been used as a model for investigating responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation. Fast-to-slow isoform shifting of markers of the sarcoplasmic reticulum and the contractile apparatus demonstrated successful fibre transitions prior to studying the effect of chronic electro-stimulation on the expression of the nicotinic acetylcholine receptor. Comparative immunoblotting revealed that the alpha- and delta-subunits of the receptor were increased in 10-78 day stimulated specimens, while an associated component of the surface utrophin-glycoprotein complex, beta-dystroglycan, was not drastically changed in stimulated fast skeletal muscle. Previous studies have shown that electro-stimulation induces degeneration of fast glycolytic fibres, trans-differentiation leading to fast-to-slow fibre transitions and activation of muscle precursor cells. In analogy, our results indicate a molecular modification of the central functional unit of the post-synaptic muscle surface within existing neuromuscular junctions and/or during remodelling of nerve-muscle contacts. PMID:12504123

  13. Effects of two oxadiazolidinones on cholinesterases and acetylcholine receptors

    Inhibition of acetylcholinesterase (AChE) and butyryl cholinesterase (BuChE) by 3-(2,3-dihydro-2,2-dimethyl-benzofuran-'7-yl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (DBOX) and 3-(2-methoxyphenyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (MPOX) was measured by the Ellmann spectrophotometric method. Inhibition was quasi first order and irreversible. DBOX was 2-3 orders of magnitude more potent than MPOX. Housefly brain AChE and horse serum BuChE were more sensitive than AChEs of red blood cells or eel and Torpedo electric organs. It is suggested that the nonesteratic oxadiazolidinones are activated to carbanillates on the surface of the enzyme and produce a carbanillated enzyme which ages rapidly. Carbamate anticholinesterases protected AChE against carbanillation as they did against phosphorylation. At higher concentrations, the two oxadiazolidinones also affected binding of [125I] α bungarotoxin and [3H]perhydrohistrionicotoxin to Torpedo nicotinic acetylcholine receptors, but did not affect binding of [3H]quinuclidinyl benzilate to rat brain muscarinic receptors

  14. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors.

    Bertrand, Daniel; Lee, Chih-Hung L; Flood, Dorothy; Marger, Fabrice; Donnelly-Roberts, Diana

    2015-10-01

    Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states. PMID:26419447

  15. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    Layla AZAM; J Michael MCINTOSH

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the a-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain a-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiol-ogy of Parkinson's disease and nociception. Structure/function characterization of a-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipo-philic moieties has led to improved stability and bioavailability of a-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of a-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

  16. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  17. Bolus injection of acetylcholine terminates atrial fibrillation in rats.

    Fleidervish, Ilya A; Goldberg, Yuri; Ovsyshcher, I Eli

    2008-01-28

    It is well established that a tonic increase in the availability of the atrial muscarinic K(+) channels, either by enhanced vagal tone or by steady infusion of a low-dose of cholinergic or adenosine receptor agonists, promotes the genesis of atrial fibrillation. Here, we aimed to test the hypothesis that bolus administration of a muscarinic receptor agonist would destabilize and terminate atrial arrhythmia by uniformly and transiently activating K(+) channels throughout the atria, and that if the agonist was rapidly hydrolysable, it would dissipate before the more tonic, pro-arrhythmic effects could take hold. The episodes of untreated atrial fibrillation, induced in anesthetized rats by programmed electrical stimulation via trans-esophageal bipolar catheter, lasted on average 8.6+/-2.2 min (n=32). Intravenous injection of a model hydrolysable muscarinic agonist, acetylcholine (0.2 mg/kg body weight), converted atrial fibrillation into sinus rhythm within 8.4+/-1.9 s (n=10, Ppre-atrial fibrillation values within 10-20 s of injection. In conclusion, our evidence indicates that bolus administration of rapidly hydrolysable muscarinic agonist could be an effective way to pharmacologically terminate atrial fibrillation and restore sinus rhythm. PMID:18078927

  18. Role of acetylcholine on plant root-shoot signal transduction

    2003-01-01

    The role of acetylcholine (ACh) on plant root- shoot communication was investigated using the root-split system of Vicia faba L. In the experiments, slight osmotic stress caused the decrease of ACh content in root tips and the xylem sap transported up per time unit from root tip to the shoot when the water potential of the shoot was kept unchanged. It also caused the decrease of ACh content in the abaxial epidermis. The decrease was highly correlative to the changes of transpiration rate, suggesting that the decrease of ACh content probably functions as a signal to regulate stomatal behavior. The effect of osmotic stress might be mainly through the inhibition of the ACh synthesis in root tip; thus further influences the ACh content in root tip, xylem sap and abaxial epidermis and resulting in the changes of stomatal behavior. These results provide new evidence that plants transduce positive and negative signals among roots and shoots to coordinate stomatal behavior and adapt to variable environments.

  19. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed

  20. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-01

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies. PMID:26849939

  1. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    Sérgio M Pinto

    Full Text Available The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  2. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (Ki) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [11C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [11C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [11C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [11C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  3. Acetylcholine receptors in dementia and mild cognitive impairment

    Sabri, Osama; Kendziorra, Kai [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig (Germany)

    2008-03-15

    To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[{sup 18}F]F-A-85380, which is supposed to be specific for {alpha}4{beta}2 nicotinic acetylcholine receptors (nAChRs). We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. Both patients with AD and MCI showed significant reductions in {alpha}4{beta}2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in {alpha}4{beta}2 nAChRs occurs during early symptomatic stages of AD. The {alpha}4{beta}2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the {alpha}4{beta}2 nAChR status. Together, our results provide evidence for the potential of 2-[{sup 18}]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[{sup 18}F]F-A-85380, we developed the new {alpha}4{beta}2 nAChR-specific radioligands (+)- and (-)-[{sup 18}F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[{sup 18}F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[{sup 18}F]NCFHEB should be a suitable radioligand for larger clinical investigations. (orig.)

  4. Acetylcholine receptors in dementia and mild cognitive impairment

    To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[18F]F-A-85380, which is supposed to be specific for α4β2 nicotinic acetylcholine receptors (nAChRs). We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. Both patients with AD and MCI showed significant reductions in α4β2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in α4β2 nAChRs occurs during early symptomatic stages of AD. The α4β2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the α4β2 nAChR status. Together, our results provide evidence for the potential of 2-[18]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[18F]F-A-85380, we developed the new α4β2 nAChR-specific radioligands (+)- and (-)-[18F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[18F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[18F]NCFHEB should be a suitable radioligand for larger clinical investigations. (orig.)

  5. Insensitive Acetylcholine Receptor Conferring Resistance of Plutella xylostella to Nereistoxin Insecticides

    CHENG Luo-gen; YU Guang; CHEN Zi-hao; LI Zhong-yin

    2008-01-01

    The combinative rate measurement of (3-[Ⅰ125] iodotyrosyl) α-bungarotoxin was applied in the analysis of the relation between nerve acetylcholine receptor and three types of insecticide resistance in diamondback moth, Plutella xylostella (L.). In the dimehypo-resistant strain and in the cartap-resistant strain, the nerve acetylcholine receptor showed the remarkable insensitivity to dimehypo and cartap, of which the binding rate to ligand was approximately 66 and 60%, respectively, of the susceptible strain. The sensitivity to deltamethrin in the deltamethrin-resistant strain did not show visible change. These results indicated that the decline in the sensitivity of nerve acetylcholine receptor to insecticide might be a potential mechanism to nereistoxin insecticides resistance in the diamondback moth.

  6. Prejunctional inhibition of norepinephrine release caused by acetylcholine in the human saphenous vein

    We performed experiments to determine whether or not acetylcholine exerts a prejunctional inhibitory effect on adrenergic neurotransmission in the human blood vessel wall. Rings of human greater saphenous veins were prepared 2 to 15 hours after death and mounted for isometric tension recording in organ chambers filled with Krebs-Ringer solution. Acetylcholine depressed contractile responses to electric activation of the sympathetic nerve endings significantly more than those to exogenous norepinephrine; the relaxations caused by the cholinergic transmitter were antagonized by atropine. Helical strips were incubated with [/sub 3/H]norepinephrine and mounted for superfusion. Electric stimulation augmented the fractional release of labeled norepinephrine. Acetylcholine caused a depression of the evoked /sub 3/H release which was antagonized by atropine but not by hexamethonium. These experiments demonstrate that, as in animal cutaneous veins, there are prejunctional inhibitory muscarinic receptors on the adrenergic nerve endings in the human saphenous vein. By contrast, the human vein also contains postjunctional inhibitory muscarinic receptors

  7. Reduced acetylcholine synthesis in Alzheimer's disease is a clinically relevant change

    This paper presents a study of patients in the presenium. Psychological assessment was carried out to provide measures of relative severity of dementia, with which pathological and chemical indices of impairment could be compared. Fresh cortical biopsy tissue permitted the assay of ChAT activity, and also the determination of acetylcholine synthesis in a preparation enriched in cortical synaptosomes. Additionally, choline uptake has been measured for comparison. Nuerosurgical samples from all patients were handled and processed for measuring acetylcholine synthesis by incorporation of U-14C-glucoase into C 14-acetylcholine in neocortical tissue prisms. Cortical sections from most of the patients were found on light microscopy to contain the characteristic changes of Alzheimer's disease

  8. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  9. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA. PMID:27380048

  10. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine

    Darin Bloemberg

    2016-06-01

    Full Text Available The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals.

  11. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and i......4+/+ littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4-/- mice consuming more alcohol than their M4+/+ controls were re...... as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders....

  12. Increases in muscle Ca2+ mediate changes in acetylcholinesterase and acetylcholine receptors caused by muscle contraction.

    Rubin, L L

    1985-01-01

    The synthesis of acetylcholinesterase (AcChoE; acetylcholine acetylhydrolase, EC 3.1.1.7) and of acetylcholine receptors (AcChoR) by cultured rat muscle fibers is influenced strongly by the level of muscle contractile activity. If fibers are grown in the presence of tetrodotoxin (TTX) to block spontaneous contraction, the total amount of AcChoE decreases markedly, as does the percentage of AcChoE assembled as the collagen-tailed presumed synaptic form of the enzyme. Under these conditions, ho...

  13. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats.

    Blandina, P.; Giorgetti, M.; L. Bartolini; M.Cecchi; Timmerman, H.; Leurs, R.; Pepeu, G; Giovannini, M. G.

    1996-01-01

    1. The effects of histamine and agents at histamine receptors on spontaneous and 100 mM K(+)-evoked release of acetylcholine, measured by microdialysis from the cortex of freely moving, rats, and on cognitive tests are described. 2. Local administration of histamine (0.1-100 microM) failed to affect spontaneous but inhibited 100 mM K(+)-stimulated release of acetylcholine up to about 50%. The H3 receptor agonists (R)-alpha-methylhistamine (RAMH) (0.1-10 microM), imetit (0.01-10 microM) and im...

  14. Autophagic flux data in differentiated C2C12 myotubes following exposure to acetylcholine and caffeine.

    Bloemberg, Darin; Quadrilatero, Joe

    2016-06-01

    The C2C12 line of mouse myoblasts is a useful cell culture model in which to conduct in vitro analyses related to skeletal muscle. Here we present data regarding the autophagic response induced by two chemicals known to influence calcium release and contraction in skeletal muscles and C2C12 cells: acetylcholine and caffeine. More specifically, by concurrently administering acetylcholine or caffeine along with chloroquine to differentiated myotubes for various amounts of time and assessing the protein expression of LC3 and p62, we report data on the relative level of autophagic flux induced by these two calcium- and contraction-regulating chemicals. PMID:27054179

  15. Exocrine secretion of epidermal growth factor from Brunner's glands. Stimulation by VIP and acetylcholine

    Poulsen, Steen Seier

    1983-01-01

    Brunner's glands of the duodenum are innervated by cholinergic and VIP-ergic nerves, and the glands have been shown to contain epidermal growth factor (EGF). In this study the effect of VIP and acetylcholine (Ach) on secretion of EGF from Brunner's glands was investigated in the rat. Intravenous ...

  16. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  17. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    Ren, Guilin Robin

    mutants created with the CRISP/Cas9 technique showed thatCCHamide-2 is probly an orexigenic peptide and also that is an important factor for larvaldevelopmental timing.In mammals, muscarinic acetylcholine signalling is involved in the signal transmission of theparasympathetic nervous system. However...

  18. Characterization of the positive and negative inotropic effects of acetylcholine in the human myocardium

    X.Y. Du (Xiaoyi); R.G. Schoemaker (Regien); E. Bos (Egbert); P.R. Saxena (Pramod Ranjan)

    1995-01-01

    textabstractIn the human isolated myocardium, acetylcholine (10−9 to 10−3 M) elicited a biphasic inotropic effect (a decrease in the lower and an increase in the higher concentration range) in atrial and a positive inotropic effect in ventricular trabeculae. However, under conditions of raised contr

  19. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  20. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik; Glibstrup, Emil; Kristensen, Jesper Langgaard

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and...

  1. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A; Indurthi, Dinesh C; Pedersen, Henrik; Andreasen, Jesper T; Balle, Thomas; Kristensen, Jesper L

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  2. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  3. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H; Redrobe, John P; Mikkelsen, Jens D

    determined in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment...

  4. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice

    Dolejší, Eva; Liraz, O.; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, D. M.

    Roč. 136, č. 3 ( 2016 ), s. 503-509. ISSN 0022-3042 R&D Projects: GA MŠk(CZ) LH13269 Institutional support: RVO:67985823 Keywords : acetylcholine release * Alzheimer's disease (AD) * apolipoprotein E4 (apoE4) * hippocampus Subject RIV: FH - Neurology Impact factor: 4.281, year: 2014

  5. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  6. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  7. Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action.

    Ann Sluder

    Full Text Available The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.

  8. Mechanisms of the inhibition of endplate acetylcholine receptors by antiseptic chlorhexidine (experiments and models)

    Shaihutdinova, A.R.; Nikolsky, E. E.; Vyskočil, František; Skorinkin, A.I.

    2009-01-01

    Roč. 380, č. 6 (2009), s. 551-560. ISSN 0028-1298 R&D Projects: GA AV ČR(CZ) IAA500110905 Institutional research plan: CEZ:AV0Z50110509 Keywords : acetylcholine * endplate currents Subject RIV: ED - Physiology Impact factor: 2.631, year: 2009

  9. VISUALIZATION OF CHOLINOCEPTIVE NEURONS IN THE RAT NEOCORTEX - COLOCALIZATION OF MUSCARINIC AND NICOTINIC ACETYLCHOLINE-RECEPTORS

    VANDERZEE, EA; STREEFLAND, C; STROSBERG, AD; SCHRODER, H; LUITEN, PGM

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluores

  10. Visualization of cholinoceptive neurons in the rat neocortex : colocalization of muscarinic and nicotinic acetylcholine receptors

    Zee, E.A. van der; Streefland, C.; Strosberg, A.D.; Schröder, H.; Luiten, P.G.M.

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluores

  11. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  12. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  13. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system.

    Schäfer, M K; Eiden, L E; Weihe, E

    1998-05-01

    The peripheral sympathetic and parasympathetic cholinergic innervation was investigated with antibodies directed against the C-terminus of the rat vesicular acetylcholine transporter. Immunohistochemistry for the vesicular acetylcholine transporter resulted in considerably more detailed visualization of cholinergic terminal fields in the peripheral nervous system than reported previously and was well suited to also identify cholinergic perikarya. Vesicular acetylcholine transporter immunoreactivity completely delineated the preganglionic sympathetic terminals in pre- and paravertebral sympathetic ganglia, and in the adrenal medulla as well as postganglionic cholinergic neurons in the paravertebral chain. Cholinergic terminals of sudomotor and vasomotor nerves of skeletal muscle were optimally visualized. Mixed peripheral ganglia, including periprostatic and uterovaginal ganglia, exhibited extensive preganglionic cholinergic innervation of both noradrenergic and cholinergic postganglionic principal neurons which were intermingled in these ganglia. Varicose vesicular acetylcholine transporter-positive fibres and terminals, representing the cranial parasympathetic innervation of the cerebral vasculature, of salivary and lacrimal glands, of the eye, of the respiratory tract and of the upper digestive tract innervated various target structures including seromucous gland epithelium and myoepithelium, respiratory epithelium, and smooth muscle of the tracheobronchial tree. The only macrovascular elements receiving vesicular acetylcholine transporter-positive innervation were the cerebral arteries. The microvasculature throughout the viscera, with the exception of lymphoid tissues, the liver and kidney, received vesicular acetylcholine transporter-positive innervation while the microvasculature of limb and trunk skeletal muscle appeared to be the only relevant somatic target of vesicular acetylcholine transporter innervation. Vesicular acetylcholine transporter

  14. Anti-acetylcholine receptor antibody titres in the sera of myasthenia patients treated with plasma exchange combined with immunosuppressive therapy.

    Carter, B.; Harrison, R.; Lunt, G G; Behan, P O; Simpson, J. A.

    1980-01-01

    Anti-acetylcholine receptor antibody titres have been monitored in the sera of 19 myasthenic patients treated with plasma exchange combined with a three month period of immunosuppressive therapy. In general the post-exchange titres stabilised at below pre-exchange levels for prolonged periods which were associated with clinical improvement. In seven instances recurrence of symptoms occurred and in six of these cases relapse was shown to be associated with a rise in anti-acetylcholine receptor...

  15. Modulatory effect of neuropeptide Y on acetylcholine-induced oedema and vasoconstriction in isolated perfused lungs of rabbit.

    Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M

    1994-01-01

    1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four compo...

  16. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Monica S Guzman; Xavier De Jaeger; Sanda Raulic; Souza, Ivana A; Li, Alex X.; Susanne Schmid; Menon, Ravi S.; Gainetdinov, Raul R.; Caron, Marc G.; Robert Bartha; Prado, Vania F.; Prado, Marco A. M.

    2011-01-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent...

  17. Combination of Ca2+-activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery

    Stankevičius, E; Lopez-Valverde, V; Rivera, L; Hughes, A D; Mulvany, M J; Simonsen, Ulf

    2006-01-01

    Background and purpose: The present study investigated whether calcium-activated K+ channels are involved in acetylcholine-evoked nitric oxide (NO) release and relaxation. Experimental approach: Simultaneous measurements of NO concentration and relaxation were performed in rat superior mesenteric artery and endothelial cell membrane potential and intracellular calcium ([Ca2+]i) were measured. Key results. A combination of apamin plus charybotoxin, which are, respectively, blockers of small-conductance and of intermediate- and large-conductance Ca2+-activated K channels abolished acetylcholine (10 μM)-evoked hyperpolarization of endothelial cell membrane potential. Acetylcholine-evoked NO release was reduced by 68% in high K+ (80 mM) and by 85% in the presence of apamin plus charybdotoxin. In noradrenaline-contracted arteries, asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase inhibited acetylcholine-evoked NO release and relaxation. However, only further addition of oxyhaemoglobin or apamin plus charybdotoxin eliminated the residual acetylcholine-evoked NO release and relaxation. Removal of extracellular calcium or an inhibitor of calcium influx channels, SKF96365, abolished acetylcholine-evoked increase in NO concentration and [Ca2+]i. Cyclopiazonic acid (CPA, 30 μM), an inhibitor of sarcoplasmic Ca2+-ATPase, caused a sustained NO release in the presence, but only a transient increase in the absence, of extracellular calcium. Incubation with apamin and charybdotoxin did not change acetylcholine or CPA-induced increases in [Ca2+]i, but inhibited the sustained NO release induced by CPA. Conclusions and Implications: Acetylcholine increases endothelial cell [Ca2+]i by release of stored calcium and calcium influx resulting in activation of apamin and charybdotoxin-sensitive K channels, hyperpolarization and release of NO in the rat superior mesenteric artery. PMID:16967048

  18. Uptake of 3H-choline and synthesis of 3H-acetylcholine by human penile corpus cavernosum

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in 3H-choline (10-5M, 80 Ci/mmol) in oxygenated physiological salt solution at 370C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; 14C-acetylcholine was used as internal standard. 3H-choline was accumulated by the tissues (20 +/- 1.9 fmol/mg), and 3H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of 3H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10-5M) diminished tissue accumulation of 3H-choline and significantly reduced the synthesis of 3H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection

  19. Acetylcholine produces contraction mediated by cyclooxigenase pathway in arterial vessels in the marine fish (Isacia conceptionis).

    Moraga, F A; Urriola-Urriola, N

    2015-05-01

    Preliminary studies showed that dorsal artery contraction mediated by acetylcholine (ACh) is blocked with indomethacin in intertidal fish (G. laevifrons). Our objective was to characterize the cholinergic pathway in several artery vessels of the I. conceptionis. Afferent and efferent branchial, dorsal and mesenteric arteries were dissected of 6 juvenile specimens, isometric tension studies were done using doses response curves (DRC) for Ach (10(-13) to 10(-3) M), and cholinergic pathways were obtained by blocking with atropine or indomethacin. CRC to ACh showed a pattern of high sensitivity only in efferente branchial artery and low sensibility in all vessels. Furthermore, these contractions were blocked in the presence of atropine and indomethacin in all vessels. Our results corroborate previous results observed in intertidal species that contraction induced by acetylcholine is mediated by receptors that activate a cyclooxygenase contraction pathway. PMID:26132019

  20. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors

    2009-01-01

    Alzheimer’s disease(AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetylcholine esterase inhibitors(AChEI) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors(tacrine,rivastigmine,huperzine A,TV-3326(ladostigil),donepezil and anseculin) and acetylcholine esterase(AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrine

  1. Use of intact rat brain cells as a model to study regulation of muscarinic acetylcholine receptors

    Lee, J.H.; El-Fakahany, E.E.

    1985-08-12

    Intact rat brain cells were dissociated and used to study the regulation of muscarinic acetylcholine receptors upon exposure to muscarinic receptor agonists. Incubation of cells with carbamylcholine resulted in a time-dependent decrease in subsequent (/sup 3/H)N-methylscopolamine specific binding, an effect which reached a steady state after 3 hr at 37/sup 0/C. This effect of carbamylcholine was dependent on the concentration of the agonist in the incubation medium and was due to a reduction in the maximal binding capacity of the receptor with no decrease in the affinity of the remaining receptors. This preparation might be useful in future studies to elucidate the mechanisms underlying the regulation of muscarinic acetylcholine receptors in the central nervous system. 20 references, 3 tables.

  2. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [3H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  3. Acetylcholine determination of microdialysates of fetal neocortex grafts that induce recovery of learning.

    Miranda, M I; Bermúdez-Rattoni, F

    1998-03-01

    The microdialysis technique for acetylcholine (ACh) first became possible when sensitive and specific assays for ACh (pmol/sample range) were developed [G. Damsma, B.H.C. Westerink, P. de Boer, J.B. de Vries, A.S. Horn, Determination of basal acetylcholine release in freely moving rats by transstriatal dialysis coupled to on-line HPLC analysis: pharmacological aspects, Life Sci. 43 (1988) 1161-1168; G. Damsma, B.H.C. Westerink, A. Imperato, H. Rollema, J.B. de Vries, A. S. Horn, Automated brain dialysis of acetylcholine in freely moving rats: detection of basal acetylcholine, Life Sci. 41 (1987) 873-876; P.E. Potter, J.L. Meek, N.H. Neff, Acetylcholine and choline in neural tissue measured by HPLC with electrochemical detection, J. Neurochem. 41 (1983) 188-194; B.H.C. Westerink, G. Damsma, Determination of acetylcholine in microdialysates by HPLC and electrochemical detection, Neurosci. Protocols 20 (1993) 1-9.]. In the present protocol, the microdialysis technique was used to correlate ACh release with the recovery of the ability to acquire a conditioning taste aversion (CTA), by fetal brain grafts in insular cortex (IC) lesioned rats [M.I. Miranda, A.M. Lopez-Colome, F. Bermúdez Rattoni, Recovery of conditional taste aversion induced by fetal neocortex grafts. In vivo correlation of acetylcholine levels, Brain Res. 759 (1997) 141-148]. Three groups of IC lesioned rats showing disrupted CTA received cell suspension grafts of fetal tissue dissected from either the IC or occipital cortex (OC) of 16-day-old rat fetuses. One of the groups of IC-grafted animals was tested after 15 days post-graft; the other groups, IC- and OC-grafted animals, were tested after a recovery time of 45 days, as well as the groups of lesioned and unoperated animals used as control. After the CTA test, guide cannulas were stereotaxically implanted into the IC of all groups. Two days later, microdialysis was performed to determine the extracellular levels of ACh inside the graft. The

  4. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior

    Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.

    2012-01-01

    Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of ...

  5. On homology modeling of the M-2 muscarinic acetylcholine receptor subtype

    Jakubík, Jan; Randáková, Alena; Doležal, Vladimír

    2013-01-01

    Roč. 27, č. 6 (2013), s. 525-538. ISSN 0920-654X R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptor * G-protein coupled receptor * homology energy estimation * MM-GBSA Subject RIV: ED - Physiology Impact factor: 2.782, year: 2013

  6. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  7. Acetylcholine Elevation Relieves Cognitive Rigidity and Social Deficiency in a Mouse Model of Autism

    Karvat, Golan; Kimchi, Tali

    2013-01-01

    Autism spectrum disorders (ASD) are defined by behavioral deficits in social interaction and communication, repetitive stereotyped behaviors, and restricted interests/cognitive rigidity. Recent studies in humans and animal-models suggest that dysfunction of the cholinergic system may underlie autism-related behavioral symptoms. Here we tested the hypothesis that augmentation of acetylcholine (ACh) in the synaptic cleft by inhibiting acetylcholinesterase may ameliorate autistic phenotypes. We ...

  8. CHRNB2 Is the Second Acetylcholine Receptor Subunit Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy*

    Phillips, Hilary A.; Favre, Isabelle; Kirkpatrick, Martin; Zuberi, Sameer M; Goudie, David; Heron, Sarah E.; Scheffer, Ingrid E.; Sutherland, Grant R.; Berkovic, Samuel F; Bertrand, Daniel; Mulley, John C

    2000-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon, idiopathic partial epilepsy characterized by clusters of motor seizures occurring in sleep. We describe a mutation of the β2 subunit of the nicotinic acetylcholine receptor, effecting a V287M substitution within the M2 domain. The mutation, in an evolutionary conserved region of CHRNB2, is associated with ADNFLE in a Scottish family. Functional receptors with the V287M mutation are highly expressed in Xenopus oocytes ...

  9. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan

    2015-01-01

    Roč. 97, Jul 2015 (2015), s. 27-39. ISSN 1043-6618 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * atypical agonists * xanomeline * activation mechanism Subject RIV: ED - Physiology Impact factor: 4.408, year: 2014

  10. Evidence for a neurotransmitter function of acetylcholine in rabbit superior colliculus.

    Wichmann, T; Illing, R B; Starke, K

    1987-12-01

    Acetylcholinesterase staining and studies on the uptake of [3H]choline into the subsequent efflux of tritium from collicular slices were carried out in order to provide evidence for a neurotransmitter function of acetylcholine in rabbit superior colliculus. Acetylcholinesterase staining was dense and homogeneous in superficial layers whereas the staining was arranged in patches with slightly higher density caudally than rostrally in the intermediate layers. The accumulation of tritium in slices incubated with [3H]choline depended on time, temperature and concentration, and was inhibited by hemicholinium-3. Accumulation was slightly higher in caudal than in rostral slices. Electrical stimulation enhanced tritium outflow from slices preincubated with [3H]choline. Tetrodotoxin and a low calcium medium inhibited the evoked overflow whereas hemicholinium-3 caused an enhancement. Oxotremorine decreased the evoked overflow; atropine prevented this effect. The opioids [D-Ala2, MePhe4, Glycol5]enkephalin, [D-Ala2, D-Leu5]enkephalin and ethylketocyclazocine caused an inhibition. The effects of the latter two agonists were antagonized by naloxone. The GABAB-receptor-agonist (-)-baclofen decreased the evoked overflow at lower concentrations than GABA, whereas the GABAA-receptor-agonist muscimol was ineffective. Serotonin produced an inhibition which was prevented by metitepin, alpha- and beta-adrenoceptor as well as dopamine-receptor ligands caused no change. It is concluded that in the rabbit superior colliculus the pattern of acetylcholinesterase staining is comparable, but not identical to the distribution in other species. The accumulation of [3H]choline, as well as the tetrodotoxin-sensitive and calcium-dependent overflow of tritium upon electrical stimulation (reflecting presumably release of [3H]acetylcholine) indicate that acetylcholine has a neurotransmitter function in this tissue. The release of [3H]acetylcholine was modulated by various transmitter substances and

  11. Chemical Stimulation of Adherent Cells by Localized Application of Acetylcholine from a Microfluidic System

    Susanne Zibek

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup micro-droplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanop...

  12. M2 Muscarinic acetylcholine receptor modulates rat airway smooth muscle cell proliferation

    Placeres-Uray, Fabiola A; Febres-Aldana, Christopher A; Fernandez-Ruiz, Ruth; Gonzalez de Alfonzo, Ramona; Lippo de Becemberg, Itala A; Alfonzo, Marcelo J

    2013-01-01

    Airways chronic inflammatory conditions in asthma and COPD are characterized by tissue remodeling, being smooth muscle hyperplasia, the most important feature. Non-neuronal and neuronal Acetylcholine acting on muscarinic receptors (MAChRs) has been postulated as determinant of tissue remodeling in asthma and COPD by promoting proliferation and phenotypic changes of airway smooth muscle cells (ASMC). The objective was to evaluate proliferative responses to muscarinic agonist as carbamylcholine...

  13. A photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors

    Fenzl, Christoph; Genslein, Christa; Zöpfl, Alexander; Baeumner, Antje; Hirsch, Thomas

    2015-01-01

    We present a new scheme for sensing biomolecules by combining an enzyme hydrogel with a photonic crystal hydrogel layer that responds to ionic strength and pH changes. We demonstrate this unique combination by successfully detecting acetylcholine (ACh) and acetylcholinesterase (AChE) inhibitors. Specifically, the sandwich assembly is composed of layers of photonic crystals and a polyacrylamide hydrogel functionalized with AChE. The photonic crystal film has a red color and turns dark purple w...

  14. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J.; Nomikos, George; Raufman, Jean-Pierre

    2008-01-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor...

  15. INFLUENCE OF ANTIBIOTICS ON THE MECHANICAL RESPONSES OF GUINEA-PIG ILEUM TO ACETYLCHOLINE AND HISTAMINE

    1998-01-01

    The side effects of antibiotics have been extensively described during the last decades, however, their role on digestive motility must be better investigated. Following a line of research, the influence of penicillin, chloranfenicol tetracycline and gentamicine on longitudinal smooth muscle responses to acetylcholine and histamine were studied on guinea-pig ileum. There were no differences between the responses before and after the addition of each antibiotic. Further investigations must be ...

  16. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis; Thany, Steeve H.; Tricoire-Leignel, Helene

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and ...

  17. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors

    Tomizawa, Motohiro; Casida, John E.

    1999-01-01

    The major nitroimine insecticide imidacloprid (IMI) and the nicotinic analgesics epibatidine and ABT-594 contain the 6-chloro-3-pyridinyl moiety important for high activity and/or selectivity. ABT-594 has considerable nicotinic acetylcholine receptor (AChR) subtype specificity which might carry over to the chloropyridinyl insecticides. This study considers nine IMI analogues for selectivity in binding to immuno-isolated α1, α3 and α7 containing nicotinic AChRs and to purported α4β2 nicotinic ...

  18. Utilization of Superfused Cerebral Slices in Probing Muscarinic Receptor Autoregulation of Acetylcholine Release

    Alquicer, Glenda; Doležal, Vladimír; El-Fakahany, E. E.

    New York: Springer, 2016 - (Mysliveček, J.; Jakubík, J.), s. 221-233. (Neuromethods. 107). ISBN 978-1-4939-2857-6 R&D Projects: GA ČR(CZ) GA14-05696S; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : muscarinic receptors * acetylcholine release * autoregulation * superfusion Subject RIV: FH - Neurology

  19. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus

    Sugiyama, Kou-ichi; Tezuka, Takafumi

    2011-01-01

    Radish (Raphanus sativus L.) was grown on four layers of paper towel moistened with distilled water with and without acetylcholine (ACh) for five days in the dark after sowing. ACh at 1 nM promoted the growth (emergence and elongation) of lateral roots of radish plants, but had no effect on the stems and main roots. Moreover, ACh enhanced the dry weight of roots [main (primary) + lateral roots]. Neostigmine, an inhibitor of acetylcholinesterase (AChE) also promoted the emergence and elongatio...

  20. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence†

    Chen, Xiangning; Chen, Jingchun; Williamson, Vernell S; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Nicotinic acetylcholine receptors bind to nicotine and initiate the physiological and pharmacological responses to tobacco smoking. In this report, we studied the association of α5 and α3 subunits with nicotine dependence and with the symptoms of alcohol and cannabis abuse and dependence in two independent epidemiological samples (n = 815 and 1,121, respectively). In this study, seven single nucleotide polymorphisms were genotyped in the CHRNA5 and CHRNA3 genes. In both samples, we found that...

  1. Evidence that coated vesicles transport acetylcholine receptors to the surface membrane of chick myotubes

    1984-01-01

    Coated vesicles are present in the myoplasm of embryonic chick myotubes grown in vitro. They are most numerous beneath regions of the surface membrane that contain a high density of acetylcholine receptors (AChR). Prolonged exposure of myotubes to saline extract of chick brain increases the number of intracellular AChR and the number of coated vesicles. This suggests that coated vesicles contain AChR, and this hypothesis was tested with horseradish peroxidase-alpha-bungarotoxin (HRP-alpha BTX...

  2. Ionomycin-induced acetylcholine release and its inhibition by adenosine at frog motor nerve endings.

    Hunt, J M; Silinsky, E. M.

    1993-01-01

    1. Acetylcholine (ACh) evoked secretion by the calcium ionophore, ionomycin, was studied at frog motor nerve endings. 2. Bath application of ionomycin stimulated an irreversible increase in the rate of spontaneous, quantal ACh release in the presence of extracellular Ca2+. In contrast, local application of ionomycin stimulated a rapid, reversible acceleration of spontaneous ACh release. 3. The magnitude of the secretory response to ionomycin was dependent both upon the concentration of ionoph...

  3. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes

    Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas

    2014-01-01

    We report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system. These cells exhibit structural markers of respiratory chemosensory cells (“brush cells”). They use the classical taste transduction cascade to detect potential hazardous compounds (bitter, umami, uropathogenic bacteria) and release acetylcholine in response. They lie next to sensory ...

  4. Synthesis of [11C]N-methyl tetrahydroaminoacridine, a potent acetylcholine esterase inhibitor

    Tetrahydroaminoacridine (THA) is a potent central acting acetylcholine esterase (AChE) inhibitor which might be used as therapeutic agent in the treatment of Alzheimer's disease (AZD). In order to study the AChE activity in the brain by PET, the authors selected N-methyl THA, a potent AChE inhibitor, as a potential radioligand. In this paper, they report the synthesis and labelling of N-methyl THA with [11C]methyl iodide

  5. Quantitative Molecular Imaging of Neuronal Nicotinic Acetylcholine Receptors in the Human Brain with A-85380 Radiotracers

    Lotfipour, Shahrdad; Mandelkern, Mark; Brody, Arthur L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated in a spectrum of cognitive functions as well as psychiatric and neurodegenerative disorders, including tobacco addiction and Alzheimer's Disease. The examination of neuronal nAChRs in living humans is a relatively new field. Researchers have developed brain-imaging radiotracers for nAChRs, with radiolabeled A-85380 compounds having the most widespread use. We provide a brief background on nAChRs, followed by a discussion...

  6. Inducibility of human atrial fibrillation in an in silico model reflecting local acetylcholine distribution and concentration

    Hwang, Minki; Lee, Hyun-Seung; Pak, Hui-Nam; Shim, Eun Bo

    2015-01-01

    Vagal nerve activity has been known to play a crucial role in the induction and maintenance of atrial fibrillation (AF). However, it is unclear how the distribution and concentration of local acetylcholine (ACh) promotes AF. In this study, we investigated the effect of the spatial distribution and concentration of ACh on fibrillation patterns in an in silico human atrial model. A human atrial action potential model with an ACh-dependent K+ current (IKAch) was used to examine the effect of vag...

  7. Isolation of acetylcholine receptor clusters in substrate-associated material from cultured rat myotubes using saponin

    1984-01-01

    After exposure of rat myotube cultures to saponin, less than 1% of the cellular protein was found to remain associated with the tissue culture substrate. This substrate-associated material contained approximately 10% of the acetylcholine receptors (AChRs) and greater than 80% of the large, ventral AChR clusters present in the original culture. The domain structure evident in intact cells was maintained in AChR clusters after isolation using saponin. However, vinculin, present at the clusters ...

  8. CaMKIIα, a modulator of M4 muscarinic acetylcholine receptors

    Guo, Ming-Lei; Liu, Zhenguo; Chu, Xiang-Ping; Mao, Li-Min; WANG, John Q.

    2010-01-01

    G protein-coupled receptors (GPCRs) are subject to the regulation by protein kinases. By controlling the phosphorylation-dephosphorylation balance, protein kinases actively modify GPCR expression and function. In a recent study, we have identified a novel phosphorylation-dependent regulation of Gαi/o-coupled muscarinic acetylcholine receptors. A synapse-enriched protein kinase, Ca2+/calmodulin-dependent protein kinase II (CaMKIIα), binds directly and selectively to second intracellular loops ...

  9. Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors

    Zee, E.A. van der; Streefland, C.; Strosberg, A D; Schröder, H.; Luiten, P.G.M.

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluorescent double-labeling techniques. For both classes of receptors, pyramidal and nonpyramidal cells were found immunostained and an identical laminar distribution pattern of immunopositive neurons in ...

  10. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose.

    Ragozzino, M E; Unick, K E; Gold, P. E.

    1996-01-01

    Several lines of evidence indicate that a modest increase in circulating glucose levels enhances memory. One mechanism underlying glucose effects on memory may be an increase in acetylcholine (ACh) release. The present experiment determined whether enhancement of spontaneous alternation performance by systemic glucose treatment is related to an increase in hippocampal ACh output. Samples of extracellular ACh were assessed at 12-min intervals using in vivo microdialysis with HPLC-EC. Twenty-fo...

  11. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac)

    García-Colunga, J; Awad, J. N.; Miledi, R

    1997-01-01

    Fluoxetine (Prozac), a widely used antidepressant, is said to exert its medicinal effects almost exclusively by blocking the serotonin uptake systems. The present study shows that both muscle and neuronal nicotinic acetylcholine receptors are blocked, in a noncompetitive and voltage-dependent way, by fluoxetine, which also increases the rate of desensitization of the nicotinic receptors. Because these receptors are very widely distributed in the both central and peripheral nervous systems, th...

  12. ACETYLCHOLINE RELEASE IN THE HIPPOCAMPUS AND PRELIMBIC CORTEX DURING ACQUISITION OF A SOCIALLY TRANSMITTED FOOD PREFERENCE

    Gold, P E; Countryman, R.A.; Dukala, D.; Chang, Q.

    2011-01-01

    Interference with cholinergic functions in hippocampus and prefrontal cortex impairs learning and memory for social transmission of food preference, suggesting that acetylcholine (ACh) release in the two brain regions may be important for acquiring the food preference. This experiment examined release of ACh in the hippocampus and prefrontal cortex of rats during training for social transmission of food preference. After demonstrator rats ate a food with novel flavor and odor, a social transm...

  13. The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine

    1988-01-01

    Chick myoblast fusion in culture was investigated using prostanoid synthesis inhibitors to delay spontaneous fusion. During this delay myoblast fusion could be induced by prostaglandin E1 (PGE1), by raising extracellular potassium and by addition of carbachol. Carbachol-induced fusion, but not PGE-induced fusion, was prevented by the acetylcholine receptor blocker alpha-bungarotoxin. Fusion induced by any of these agents was prevented by the Ca channel blockers lanthanum and D600. The thresho...

  14. Regulation of Synaptic Transmission and Plasticity by Neuronal Nicotinic Acetylcholine Receptors

    McKay, Bruce E.; Placzek, Andon N; Dani, John A.

    2007-01-01

    Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and participate in a variety of physiological functions. Recent advances have revealed roles of nAChRs in the regulation of synaptic transmission and synaptic plasticity, particularly in the hippocampus and midbrain dopamine centers. In general, activation of nAChRs causes membrane depolarization and directly and indirectly increases the intracellular calcium concentration. Thus, when nAChRs ...

  15. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  16. Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors.

    Sodhi, Puneet; Hartwick, Andrew T E

    2016-09-01

    Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists. PMID:27055770

  17. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined. PMID:21151808

  18. Chemical Stimulation of Adherent Cells by Localized Application of Acetylcholine from a Microfluidic System

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose–response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined. PMID:21151808

  19. Evidence for the extramembranous location of the putative amphipathic helix of acetylcholine receptor

    Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the α and β subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na[3H]BH4. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, α and β polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na[3H]BH4 in the presence of 8 M urea. The labeled α and β polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the α and β subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2',4'-dinitrophenyl)-3-aminopropionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane

  20. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain. PMID:27154173

  1. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  2. Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase

    Effects of commonly used carbamate pesticides on rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes have been investigated using the two-electrode voltage clamp technique. The potencies of these effects have been compared to the potencies of the carbamates to inhibit rat brain acetylcholinesterase. The potency order of six carbamates to inhibit α4β4 nicotinic receptors is fenoxycarb > EPTC > carbaryl, bendiocarb > propoxur > aldicarb with IC50 values ranging from 3 μM for fenoxycarb to 165 μM for propoxur and >1 mM for aldicarb. Conversely, the potency order of these carbamates to inhibit rat brain acetylcholinesterase is bendiocarb > propoxur, aldicarb > carbaryl >> EPTC, fenoxycarb with IC50 values ranging from 1 μM for bendiocarb to 17 μM for carbaryl and >>1 mM for EPTC and fenoxycarb. The α4β2, α3β4, and α3β2 nicotinic acetylcholine receptors are inhibited by fenoxycarb, EPTC, and carbaryl with potency orders similar to that for α4β4 receptors. Comparing the potencies of inhibition of the distinct subtypes of nicotinic acetylcholine receptors shows that the α3β2 receptor is less sensitive to inhibition by fenoxycarb and EPTC. The potency of inhibition depends on the carbamate as well as on a combination of α and β subunit properties. It is concluded that carbamate pesticides affect different subtypes of neuronal nicotinic receptors independently of acetylcholinesterase inhibition. This implicates that neuronal nicotinic receptors are additional targets for some carbamate pesticides and that these receptors may contribute to carbamate pesticide toxicology, especially after long-term exposure

  3. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans.

    Maelle Jospin

    2009-12-01

    Full Text Available In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.

  4. Partial nicotinic acetylcholine (α4β2 agonists as promising new medications for smoking cessation

    Singh J

    2008-01-01

    Full Text Available Objective: To review the pharmacology, clinical efficacy and safety of partial agonists of a4β 2 nicotinic acetylcholine receptor. Data Sources: Primary literature and review articles were obtained via a PUBMED search (1988-August 2006 using the key terms smoking cessation, partial agonist alpha4beta2 nicotinic acetylcholine receptor, varenicline, cytisine and SSR591813. Additional studies and abstracts were identified from the bibliographies of reviewed literature. Study Selection and Data Extraction: Studies and review articles related to varenicline, cytisine and the partial agonist alpha4beta2 nicotinic acetylcholine receptor were reviewed. Data Synthesis: Smoking is widely recognized as a serious health problem. Smoking cessation has major health benefits. According to the US Public Health Services, all patients attempting to quit smoking should be encouraged to use one or more effective pharmacotherapy. Currently, along with nicotine replacement therapy, bupropion, nortriptyline and clonidine, are the mainstay of pharmacotherapy. More than ¾ of patients receiving treatment for smoking cessation return to smoking within the first year. Nicotine, through stimulating α4β 2 nAChR, releases dopamine in the reward pathway. Partial agonist of α4β 2 nAChR elicits moderate and sustained release of dopamine, which is countered during the cessation attempts; it simultaneously blocks the effects of nicotine by binding with α4β 2 receptors during smoking. Recently, varenicline, a partial agonist at α4β 2 nAChR, has been approved by the FDA (Food and Drug Administration for smoking cessation. Conclusion: Partial agonist α4β 2 nAChR appears to be a promising target in smoking cessation. Varenicline of this group is approved for treatment of smoking cessation by the FDA in May 2006.

  5. m1 Acetylcholine Receptor Expression is Decreased in Hippocampal CA1 region of Aged Epileptic Animals

    Cavarsan, Clarissa Fantin; Avanzi, Renata Della Torre; Queiroz, Claudio Marcos; Xavier, Gilberto Fernando; Mello, Luiz Eugênio; Covolan, Luciene

    2011-01-01

    In the present study, we investigated the possible additive effects of epilepsy and aging on the expression of m1 muscarinic acetylcholine receptors (AChR) in the rat hippocampus. Young (3 months) and Aged (20 months) male, Wistar rats were treated with pilocarpine to induce status epilepticus (SE). Immunohistochemical procedure for m1 AChR detection was performed 2 months after pilocarpine-induced SE. In the CA1 pyramidal region m1 AChR staining was significantly decreased in aged epileptic ...

  6. Temperature effect on proximal to distal gradient of quantal release of acetylcholine at frog endplate

    Samigullin, D.; Bukharaeva, E.; Nikolsky, E.; Vyskočil, František

    2003-01-01

    Roč. 28, 3-4 (2003), s. 507-514. ISSN 0364-3190 R&D Projects: GA AV ČR IAA7011902; GA ČR GA305/02/1333; GA ČR GA202/02/1213 Grant ostatní: RFBR(RU) 02/04/48901 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : neuromuscular junction * acetylcholine release * temperature Subject RIV: ED - Physiology Impact factor: 1.511, year: 2003

  7. INFLUENCE OF ANTIBIOTICS ON THE MECHANICAL RESPONSES OF GUINEA-PIG ILEUM TO ACETYLCHOLINE AND HISTAMINE

    Petroianu Andy

    1998-01-01

    Full Text Available The side effects of antibiotics have been extensively described during the last decades, however, their role on digestive motility must be better investigated. Following a line of research, the influence of penicillin, chloranfenicol tetracycline and gentamicine on longitudinal smooth muscle responses to acetylcholine and histamine were studied on guinea-pig ileum. There were no differences between the responses before and after the addition of each antibiotic. Further investigations must be performed in order to find a possible influence of antibiotics on digestive motility.

  8. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Schuller Hildegard M

    2005-04-01

    Full Text Available Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was to determine the extent of α7 mRNA and protein expression in the human lung. Methods Experiments were done using reverse transcription polymerase chain reaction (RT-PCR, a nuclease protection assay and western blotting using membrane proteins. Results We detected mRNA for the neuronal nicotinic acetylcholine receptor α7 receptor in seven small cell lung cancer (SCLC cell lines, in two pulmonary adenocarcinoma cell lines, in cultured normal human small airway epithelial cells (SAEC, one carcinoid cell line, three squamous cell lines and tissue samples from nine patients with various types of lung cancer. A nuclease protection assay showed prominent levels of α7 in the NCI-H82 SCLC cell line while α7 was not detected in SAEC, suggesting that α7 mRNA levels may be higher in SCLC compared to normal cells. Using a specific antibody to the α7 nicotinic receptor, protein expression of α7 was determined. All SCLC cell lines except NCI-H187 expressed protein for the α7 receptor. In the non-SCLC cells and normal cells that express the α7 nAChR mRNA, only in SAEC, A549 and NCI-H226 was expression of the α7 nicotinic receptor protein shown. When NCI-H69 SCLC cell line was exposed to 100 pm NNK, protein expression of the α7 receptor was increased at 60 and 150 min. Conclusion Expression of mRNA for the neuronal nicotinic acetylcholine receptor α7 seems to be ubiquitously expressed in all human lung cancer cell lines tested (except for NCI-H441 as well as normal

  9. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system.

    Weinstein, Leon Islas; Revuelta, Alberto; Pando, Rogelio Hernandez

    2015-09-01

    Recent studies suggest that catecholamines (CAs) and acetylcholine (ACh) play essential roles in the crosstalk between microbes and the immune system. Host cholinergic afferent fibers sense pathogen-associated molecular patterns and trigger efferent cholinergic and catecholaminergic pathways that alter immune cell proliferation, differentiation, and cytokine production. On the other hand, microbes have the ability to produce and degrade ACh and also regulate autogenous functions in response to CAs. Understanding the role played by these neurotransmitters in host-microbe interactions may provide valuable information for the development of novel therapies. PMID:26378438

  10. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria; Pinborg, Lars Hageman; Thomsen, Morten Skøtt

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial...

  11. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R; Heinemann, Stephen F.; Booker, T.K.

    2011-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbra...

  12. The role of alpha4 containing nicotinic acetylcholine receptors in dopamine neurons

    McGranahan, Tresa Michelle

    2011-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and, thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4- containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midb...

  13. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system

    Susanne Zibek

    2010-11-01

    Numerical modelling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 µm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 µM acetylcholine independent of pore size were determined.

  14. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Zhang Chuan-Xi; Dong Ke; Shao Ya-Ming

    2007-01-01

    Abstract Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based o...

  15. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M.; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D.; Wainer, Irving W.

    2010-01-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in...

  16. Interaction of ibogaine with human α3β4-nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single s...

  17. Changes in acetylcholine release from the chick retina are not associated with myopia development

    Full text: The effectiveness of muscarinic receptor antagonists in inhibiting myopia progression in animal models and humans implicates cholinergic signalling in ocular growth regulation. Therefore to determine if changes in the release of acetylcholine from the retina are involved in myopia development, the efflux of acetylcholine from the in vitro retina of normal and myopic chick eyes was investigated. Chicks were monocularly deprived (MD) of pattern vision with translucent occluders for 2 or 7 days and refractive error of MD groups and age matched normals was monitored using retinoscopy (n=6 each group). 3H-choline-Cl (1 Ci in 7μL) was injected into the vitreous of each eye under 2.5% halothane anaesthesia. After 1hr, the eyes were enucleated, under terminal anaesthesia (sodium pentobarbital, 120 mg/kg, im). Retinas were flat-mounted on acetate filter discs and superfused with oxygenated physiological saline solution (PSS) for 30min at 0.4mL/min. Five baseline fractions were collected (B1-B5), then three stimulated fractions were collected in the presence of PSS containing 50mM KCl (K1-K3) at 2min intervals. 3H-acetylcholine ( 3H-ACh) in each fraction was quantified by liquid scintillation counting. Significant amounts of myopia were induced in MD eyes after 2 (-5.1±0.8D) and 7 days (-18.8±2.4D) relative to control eyes (paired t-test p3H-ACh release was 146±15% above basal levels (K2/B1%) from retinas of normal animals. After 2 days MD, there was no significant difference between KCl-evoked release of 3H-ACh from deprived eyes (147 39%) compared to control eyes (198±61%, paired t-test, p=0.27) or the eyes of normal animals (ANOVA, p>0.5). Similar results were obtained following 7 days MD. The results demonstrate that evoked acetylcholine release from the chick retina of myopic eyes is unaltered relative to control or normal eyes using an in vitro approach. Copyright (2002) Australian Neuroscience Society

  18. Block by acetylcholine of mouse muscle nicotinic receptors, stably expressed in fibroblasts

    1995-01-01

    We have measured the concentration and voltage dependence of block by acetylcholine (ACh) of fetal- and adult-type mouse muscle nicotinic receptors, expressed in a fibroblast cell line. Data, obtained at a transmembrane potential of -60 mV and with ACh concentrations of 1 mM and above, are broadly consistent with the occlusion of an open channel with a single ACh+ ion (simple open channel block). The rate of recovery from block is approximately 40,000s-1 and has only a weak voltage dependence...

  19. Synthesis, Nicotinic Acetylcholine Receptor Binding, and Pharmacological Properties of 3’- (Substituted phenyl) Deschloroepibatidine Analogs

    F. Ivy Carroll; Yokota, Yasuno; Ma, Wei; Lee, Jeffrey R.; Brieaddy, Lawrence E.; Burgess, Jason P.; Navarro, Hernán A.; Damaj, M. I.; Martin, Billy R.

    2007-01-01

    A series of 3’-(substituted phenyl)deschloroepibatidine analogs (5a–j) were synthesized. The α4β2* and α7 nicotinic acetylcholine receptor (nAChR) binding properties and functional activity in the tail-flick, hot-plate, locomotor, and body temperature tests in mice of 5a–j were compared to those of the nAChR agonist, nicotine (1), epibatidine (4), and deschloroepibatidine (13) the partial agonist, varenicline (3) and the antagonist 2’-fluoro-3’-(substituted phenyl)deschloroepibatidine analogs...

  20. Spontaneous quantal and non-quantal release of acetylcholine at mouse endplate during onset of hypoxia

    Bukharaeva, E.A.; Salakhutdinov, R.I.; Vyskočil, František; Nikolsky, E.E.

    2005-01-01

    Roč. 54, č. 2 (2005), s. 251-255. ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA5011411; GA ČR(CZ) GA305/02/1333 Grant ostatní: RFBR(RU) 05-04-49723; Scientific Schools of Russia(RU) 1063.2003.4 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypoxia * non-quantal * acetylcholine Subject RIV: ED - Physiology Impact factor: 1.806, year: 2005

  1. Regional distribution of muscarinic acetylcholine receptors in the telencephalon of the pigeon (Columba livia f. domestica)

    The distribution of muscarinic acetylcholine receptors was studied autoradiographically in croystat sections of the pigeon telencephalon using 3H-quinuclidinylbenzylate as a ligand. Highest receptor density was observed in the hyperstriatum ventrale, palaeostriatum augmentatum, septum, and parts of the archistriatum. In sites of known sensory input of neostriatum (field L) and ectostriatum low receptor binding was observed. Acetylcholinesterase distribution is in good agreement with the receptor picture only in the basal telencephalon. In the pallium differences in the pattern of these two components can be seen. (author)

  2. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission.

    Cohen, A S; Olek, A J

    1989-01-01

    A soluble toxic extract derived from spine tissue of the lionfish (Pterois volitans) decreased heart rate and force of contraction in isolated clam and frog hearts. These actions were due to the presence of micromolar concentrations of acetylcholine in the extract. Toxicity was retained after hydrolysis of acetylcholine by exogenous acetylcholinesterase, but heart function was no longer affected. Toxin treated in this way induced muscle fibrillation in an isolated nerve-muscle preparation, followed by blockade of neuromuscular transmission. Bursts of transient depolarizations were recorded at the muscle endplate shortly after toxin addition that correlated in time with the duration of toxin-induced muscle fibrillation. These effects are thought to be due to the increased release and then depletion of acetylcholine from the nerve terminal. PMID:2560846

  3. Critical Evaluation of Acetylcholine Determination in Rat Brain Microdialysates using Ion-Pair Liquid Chromatography with Amperometric Detection

    Yvette Michotte

    2008-08-01

    Full Text Available Liquid chromatography with amperometric detection remains the most widely used method for acetylcholine quantification in microdialysis samples. Separation of acetylcholine from choline and other matrix components on a microbore chromatographic column (1 mm internal diameter, conversion of acetylcholine in an immobilized enzyme reactor and detection of the produced hydrogen peroxide on a horseradish peroxidase redox polymer coated glassy carbon electrode, achieves sufficient sensitivity for acetylcholine quantification in rat brain microdialysates. However, a thourough validation within the concentration range required for this application has not been carried out before. Furthermore, a rapid degradation of the chromatographic columns and enzyme systems have been reported. In the present study an ion-pair liquid chromatography assay with amperometric detection was validated and its long-term stability evaluated. Working at pH 6.5 dramatically increased chromatographic stability without a loss in sensitivity compared to higher pH values. The lower limit of quantification of the method was 0.3 nM. At this concentration the repeatability was 15.7%, the inter-day precision 8.7% and the accuracy 103.6%. The chromatographic column was stable over 4 months, the immobilized enzyme reactor up to 2-3 months and the enzyme coating of the amperometric detector up to 1-2 months. The concentration of acetylcholine in 30 μl microdialysates obtained under basal conditions from the hippocampus of freely moving rats was 0.40 ± 0.12 nM (mean ± SD, n = 30. The present method is therefore suitable for acetylcholine determination in rat brain microdialysates.

  4. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [3H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  5. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    Dwyer, B.P. (Univ. of California, San Diego, La Jolla (USA))

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  6. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2011-01-01

    We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population.......We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population....

  7. Contrasting Effects of Allosteric and Orthosteric Agonists on M1 Muscarinic Acetylcholine Receptor Internalization and Down-regulation

    Thomas, Rachel L.; Christopher J Langmead; Wood, Martyn D; Challiss, R.A. John

    2009-01-01

    A new class of subtype-selective muscarinic acetylcholine (mACh) receptor agonist that activates the receptor through interaction at a site distinct from the orthosteric acetylcholine binding site has been reported recently. Here, we have compared the effects of orthosteric (oxotremorine-M, arecoline, pilocarpine) and allosteric [4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine (AC-42); 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1)] agonists on M1 mAC...

  8. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    Miles, K.; Anthony, D.T.; Rubin, L.L.; Greengard, P.; Huganir, R.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.

  9. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with [32P]orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the β and δ subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the δ subunit 20-fold over basal phosphorylation and induced phosphorylation of the α subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 μM in the presence of 35 μM Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of δ subunit phosphorylation was almost maximal within 5 min, whereas stimulation of α subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the δ subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the δ subunit increases the rate of AcChoR desensitization in rat myotubes

  10. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (3H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane

  11. Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes

    Smith, M.M.; Merlie, J.P.; Lawrence, J.C. Jr.

    1987-09-01

    By using /sup 32/P-labeling methods and performing immunoprecipitations with specific antibodies, the authors have found that three subunits of the nicotinic acetylcholine receptor and phosphorylated in mouse skeletal muscle cells. In nonstimulated cells, the molar ratios of phosphate estimated in ..cap alpha.., ..beta.., and delta subunits were 0.02, 0.05, and 0.5, respectively. All three subunits contained predominantly phosphoserine with some phosphothreonine; the ..beta.., subunit also contained phosphotyrosine. Incubating cells with agents that stimulate cAMP-dependent pathways (isoproterenol, forskolin, 8-Br-cAMP) increased the phosphorylation of the delta subunit by 50%, but phosphate labeling of the ..beta.. subunit was depressed by a third. In contrast, when cells were incubated with the divalent cation ionophores A-23187 or ionomycin, phosphorylation of both the delta and ..beta.. subunits increased. The results indicate that acetylcholine receptors are phosphorylated to significant levels in skeletal muscle cells and that cAMP-dependent and Ca/sup 2 +/-dependent pathways exist for controlling the phosphorylation state of the receptor subunits.

  12. The Anti-Acetylcholine Receptor Antibody Test in Suspected Ocular Myasthenia Gravis

    Jung Jin Lee

    2014-01-01

    Full Text Available Aim. To estimate the clinical significance of anti-acetylcholine receptor antibody (anti-AChR-Ab levels in suspected ocular myasthenia gravis. Methods. In total, 144 patients complaining of fluctuating diplopia and ptosis were evaluated for serum levels of anti-acetylcholine receptor antibody and their medical charts were retrospectively reviewed. Subjects were classified into three groups: variable diplopia only, ptosis only, and both variable diplopia and ptosis. We investigated serum anti-AChR-Ab titer levels and performed thyroid autoantibody tests. Results. Patients’ chief complaints were diplopia (N=103, ptosis (N=12, and their concurrence (N=29. Abnormal anti-AChR-Ab was observed in 21 of 144 patients (14.1%. Between the three groups, mean age, number of seropositive patients, and mean anti-AChR-Ab level were not significantly different (P=0.224, 0.073, and 0.062, resp.. Overall, 27.5% of patients had abnormal thyroid autoantibodies. Conclusion. The sensitivity of anti-AChR-Ab was 14.1% in suspected ocular myasthenia gravis and seropositivity in myasthenia gravis patients showed a high correlation with the presence of thyroid autoantibodies.

  13. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Gαq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Gαi/o-protein coupled M2 receptor activity mediated neuronal differentiation

  14. Relation between Pro-inflammatory Cytokines and Acetylcholine Levels in Relapsing-Remitting Multiple Sclerosis Patients

    Ada Maria Tata

    2012-10-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND. We observed higher levels of pro-inflammatory cytokines such as IL-1β and IL-17 in both CSF and serum of RR-MS patients compared to control subjects. Moreover, ACh levels were lower in CSF and serum of RR-MS patients compared to levels of control subjects. Although the relationship between high inflammatory cytokine levels and low ACh levels need to be further investigated in the future, our data suggest that IL-1β, and cytokines induced by it, such as IL-17 and ACh, may be involved in the pathogenesis of MS.

  15. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.

    Thal, David M; Sun, Bingfa; Feng, Dan; Nawaratne, Vindhya; Leach, Katie; Felder, Christian C; Bures, Mark G; Evans, David A; Weis, William I; Bachhawat, Priti; Kobilka, Tong Sun; Sexton, Patrick M; Kobilka, Brian K; Christopoulos, Arthur

    2016-03-17

    Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. PMID:26958838

  16. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles. PMID:26516688

  17. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder

    Thomsen, Morten Skøtt; Weyn, Annelies; Mikkelsen, Jens D

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in cognitive function and synaptic plasticity. Consequently, changes in α7 nAChR function have been implicated in a variety of mental disorders, especially schizophrenia. However, there is little knowledge regarding the levels of the α7 n...

  18. Changes in Temperature Have Opposing Effects on Current Amplitude in alpha 7 and alpha 4 beta 2 Nicotinic Acetylcholine Receptors

    Jindřichová, Marie; Lansdell, S. J.; Millar, N. S.

    2012-01-01

    Roč. 7, č. 2 (2012), e32073. E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50110509 Keywords : effect of temperature * nicotinic acetylcholine receptor * voltage - clamp recording Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  19. An allosteric enhancer of M4muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    Dencker, Ditte; Weikop, Pia; Sørensen, Gunnar;

    2012-01-01

    The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M4 acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M4 receptors could be...

  20. Pharmacological Evaluation of the Long-Term Effects of Xanomeline on the M1 Muscarinic Acetylcholine Receptor

    Grant, M.K.O.; Noetzel, M.J.; De Lorme, K.C.; Jakubík, Jan; Doležal, Vladimír; El-Fakahany, E. E.

    2010-01-01

    Roč. 5, č. 12 (2010), e15722-16. E-ISSN 1932-6203 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : Xanomeline * muscarinic acetylcholine receptor Subject RIV: CE - Biochemistry Impact factor: 4.411, year: 2010

  1. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Guzman, Monica S; De Jaeger, Xavier; Raulic, Sanda; Souza, Ivana A; Li, Alex X; Schmid, Susanne; Menon, Ravi S; Gainetdinov, Raul R; Caron, Marc G; Bartha, Robert; Prado, Vania F; Prado, Marco A M

    2011-11-01

    Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease. PMID:22087075

  2. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  3. Utrophin abundance is reduced at neuromuscular junctions of patients with both inherited and acquired acetylcholine receptor deficiencies

    Slater, CR; Young, C; Wood, SJ; Bewick, GS; Anderson, LVB; Baxter, P; Fawcett, PRW; Roberts, M; Jacobson, L; Kuks, J; Vincent, A; NewsomDavis, J

    1997-01-01

    Congenital myasthenic syndromes are a heterogenous group of conditions in which muscle weakness resulting from impaired neuromuscular transmission is often present from infancy. One form of congenital myasthenic syndrome is due to a reduction of the number of acetylcholine receptors (AChRs) at the n

  4. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M;

    2013-01-01

    The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacologi......The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their...... competitive antagonism and an apparently insurmountable mechanism that only occurs after preincubation with MLA. We hypothesized an additional MLA binding site in the α4-α4 interface that is unique to this stoichiometry. To prove this, we covalently trapped a cysteine-reactive MLA analog at an α4β2 receptor...... containing an α4(D204C) mutation predicted by homology modeling to be within reach of the reactive probe. We demonstrate that covalent trapping results in irreversible reduction of ACh-elicited currents in the (α4)3(β2)2 stoichiometry, indicating that MLA binds to the α4-α4 interface of the (α4)3(β2)2 and...

  5. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors

    Jeon, Jongrye; Nielsen, Ditte Dencker; Wörtwein, Gitta;

    2010-01-01

    Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M(1)-M(5) mAChRs). Like other mAChR subtypes, the M(4) mAChR is widely expressed in different regions of the forebrain. Interestingly, M(4) mAChRs are coexpres...

  6. Determination of anti-acetylcholine receptor antibodies in myasthenic patients by use of time-resolved fluorescence

    Říčný, Jan; Šimková, L.; Vincent, A.

    2002-01-01

    Roč. 48, č. 3 (2002), s. 549-554. ISSN 0009-9147 R&D Projects: GA MZd NF4646 Institutional research plan: CEZ:AV0Z5011922 Keywords : nicotinic acetylcholine receptor * time-resolved fluorescence method * myasthenia gravis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.788, year: 2002

  7. Gamma-lactams--a novel scaffold for highly potent and selective alpha 7 nicotinic acetylcholine receptor agonists.

    Enz, Albert; Feuerbach, Dominik; Frederiksen, Mathias U; Gentsch, Conrad; Hurth, Konstanze; Müller, Werner; Nozulak, Joachim; Roy, Bernard L

    2009-03-01

    A novel class of alpha7 nicotinic acetylcholine receptor (nAChR) agonists has been discovered through high-throughput screening. The cis gamma-lactam scaffold has been optimized to reveal highly potent and selective alpha7 nAChR agonists with in vitro activity and selectivity and with good brain penetration in mice. PMID:19208472

  8. Maximal acetylcholine dose of 200 μg into the left coronary artery as a spasm provocation test: comparison with 100 μg of acetylcholine.

    Sueda, Shozo; Kohno, Hiroaki; Miyoshi, Toru; Sakaue, Tomoki; Sasaki, Yasuhiro; Habara, Hirokazu

    2015-11-01

    As a spasm provocation test of acetylcholine (ACH), incremental dose up (20/50/100 μg) into the left coronary artery (LCA) is recommended in the guidelines established by Japanese Circulation Society. Recently, Ong et al. reported the ACOVA study which maximal ACH dose was 200 μg in the LCA. We compared the angiographic findings between ACH 100 μg and ACH 200 μg in the LCA and also examined the usefulness and safety of ACH 200 μg in Japanese patients without variant angina. As a spasm provocation test, we performed intracoronary injection of ACH 200 μg after ACH 100 μg in 88 patients (55 males, 68.4 ± 11.7 years old) including 59 ischemic heart disease (IHD) patients and 29 non-IHD patients. Positive spasm was defined as >99 % transient stenosis (focal spasm) or 90 % severe diffuse vasoconstriction (diffuse spasm). Positive spasm by ACH 200 μg was significantly higher than that by ACH 100 μg (36 pts: 40.9 % vs. 17 pts: 19.3 %, p LCA was safe and useful. We may reexamine the maximal ACH dose into the LCA. PMID:25179297

  9. Activation of the Macrophage α7 Nicotinic Acetylcholine Receptor and Control of Inflammation.

    Báez-Pagán, Carlos A; Delgado-Vélez, Manuel; Lasalde-Dominicci, José A

    2015-09-01

    Inflammatory responses to stimuli are essential body defenses against foreign threats. However, uncontrolled inflammation may result in serious health problems, which can be life-threatening. The α7 nicotinic acetylcholine receptor, a ligand-gated ion channel expressed in the nervous and immune systems, has an essential role in the control of inflammation. Activation of the macrophage α7 receptor by acetylcholine, nicotine, or other agonists, selectively inhibits production of pro-inflammatory cytokines while leaving anti-inflammatory cytokines undisturbed. The neural control of this regulation pathway was discovered recently and it was named the cholinergic anti-inflammatory pathway (CAP). When afferent vagus nerve terminals are activated by cytokines or other pro-inflammatory stimuli, the message travels through the afferent vagus nerve, resulting in action potentials traveling down efferent vagus nerve fibers in a process that eventually leads to macrophage α7 activation by acetylcholine and inhibition of pro-inflammatory cytokines production. The mechanism by which activation of α7 in macrophages regulates pro-inflammatory responses is subject of intense research, and important insights have thus been made. The results suggest that activation of the macrophage α7 controls inflammation by inhibiting NF-κB nuclear translocation, and activating the JAK2/STAT3 pathway among other suggested pathways. While the α7 is well characterized as a ligand-gated ion channel in neurons, whole-cell patch clamp experiments suggest that α7's ion channel activity, defined as the translocation of ions across the membrane in response to ligands, is absent in leukocytes, and therefore, ion channel activity is generally assumed not to be required for the operation of the CAP. In this perspective, we briefly review macrophage α7 activation as it relates to the control of inflammation, and broaden the current view by providing single-channel currents as evidence that the α7

  10. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    Stromgaard, K; Brierley, M J; Andersen, K; Sløk, F A; Mellor, I R; Usherwood, P N; Krogsgaard-Larsen, P; Jaroszewski, J W

    1999-01-01

    noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...... properties (stepwise macroscopic pK(a) values) were determined by (13)C NMR titrations. All analogues are fully protonated at physiological pH. The effects of these compounds on acetylcholine-induced currents in TE671 cells clamped at various holding potentials were determined. All of the analogues...

  11. [3H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [3H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB2H4 (in model studies) or NaB3H4 in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [2H2]imidacloprid incorporating about 95% of the deuterium or [3H2]imidacloprid (25 Ci/mmol) in 80% radiochemical yield. In studies not detailed here [3H] imidacloprid was found to undergo high affinity, specific and saturable binding to a site in insect brain. (author)

  12. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

    He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.

    2016-05-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

  13. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum

    LIU Yi-peng; LIN Ke-jian; LIU Yang; GUI Fu-rong; WANG Gui-rong

    2013-01-01

    The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identiifed and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression proifles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.

  14. The effect of cooling on the acetylcholine-induced current of identified Helix pomatia Br neuron.

    Nedeljkovic, Miodrag; Kartelija, Gordana; Radenovic, Lidija; Todorovic, Natasa

    2005-05-01

    The Br neuron of the snail Helix pomatia, involved in neuronal regulation of various homeostatic and adaptive mechanisms, represents an interesting model for studying effects of temperature changes on neuronal activity of poikilotherms. The acetylcholine (ACh) induces a transient, inward dose-dependent current in the identified Br neuron. In the work presented, we analyses the effects of cooling on the ACh-induced inward current. The amplitude of ACh-induced inward current was markedly decreased after cooling and the speed of the decay of ACh response was decreased. Sensitivity to cooling of Ach-activated current on the Br neuron is mediated by a mechanism that does not involve change in the apparent receptor affinity or the cooperativity of binding. PMID:15759140

  15. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  16. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Qiang LIU; Jie WU

    2006-01-01

    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  17. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  18. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    AndrewR.Tapper

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  19. Design and synthesis of new agents for neuronal nicotinic acetylcholine receptor (nAChRs) imaging

    Introduction: The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), α4β2, plays a critical role in various brain functions and pathological states. Due to rapid technological progress in chemistry, bioinformatics, structural biology and computer technology, computer aided drug design (CADD) plays a more and more important role in today's drug discovery. Methods: Two novel 3-pyridyl ether nicotinic ligands-3-((pyridine-2-yl)methoxy)-5-iodopyridine, and 3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)-methyl)pyridine were designed and synthesized and radiolabeled with I-125 based on our 3D-QSAR models reported previously. Their ability to label high-affinity brain nicotinic acetylcholine receptors (nAChRs) was evaluated. Results: [125I]3-((pyridin-2-yl)methoxy)-5-iodopyridine shows rapid accumulation and elimination with peak (1.86%ID/g) at 5 min post injection, but has high blood uptake. [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine entered the brain with maximal uptake value 3.01%ID/g at 15 min after injection, and showed approximately 27% inhibition of radioactivity uptake in thalamus in mice pretreated with nicotine. Conclusions: The results of this preliminary study show that [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine shows relatively high uptake to the brain, however, since the in vivo selectivity for α4β2 nAChRs was not enough, [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine does not have the required properties for imaging nAChRs using SPECT. Structure optimization is needed for specific visualization of brain α4β2 nAChRs in vivo.

  20. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  1. Acetylcholine modulates human working memory and subsequent familiarity based recognition via alpha oscillations.

    Eckart, Cindy; Woźniak-Kwaśniewska, Agata; Herweg, Nora A; Fuentemilla, Lluis; Bunzeck, Nico

    2016-08-15

    Working memory (WM) can be defined as the ability to maintain and process physically absent information for a short period of time. This vital cognitive function has been related to cholinergic neuromodulation and, in independent work, to theta (4-8Hz) and alpha (9-14Hz) band oscillations. However, the relationship between both aspects remains unclear. To fill this apparent gap, we used electroencephalography (EEG) and a within-subject design in healthy humans who either received the acetylcholinesterase inhibitor galantamine (8mg) or a placebo before they performed a Sternberg WM paradigm. Here, sequences of sample images were memorized for a delay of 5s in three different load conditions (two, four or six items). On the next day, long-term memory (LTM) for the images was tested according to a remember/know paradigm. As a main finding, we can show that both theta and alpha oscillations scale during WM maintenance as a function of WM load; this resembles the typical performance decrease. Importantly, cholinergic stimulation via galantamine administration slowed down retrieval speed during WM and reduced associated alpha but not theta power, suggesting a functional relationship between alpha oscillations and WM performance. At LTM, this pattern was accompanied by impaired familiarity based recognition. These findings show that stimulating the healthy cholinergic system impairs WM and subsequent recognition, which is in line with the notion of a quadratic relationship between acetylcholine levels and cognitive functions. Moreover, our data provide empirical evidence for a specific role of alpha oscillations in acetylcholine dependent WM and associated LTM formation. PMID:27222217

  2. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  3. The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli

    Victor H Minces

    2013-03-01

    Full Text Available Cholinergic neurons in the basal forebrain innervate discrete regions of the cortical mantle, bestowing the cholinergic system with the potential to dynamically modulate sub-regions of the cortex according to behavioral demands. Cortical cholinergic activity has been shown to facilitate learning and modulate attention. Experiments addressing these issues have primarily focused on widespread cholinergic depletions, extending to areas involved in general cognitive processes and sleep cycle regulation, making a definitive interpretation of the behavioral role of cholinergic projections difficult. Furthermore, a review of the electrophysiological literature suggests that cholinergic modulation is particularly important in representing the fine temporal details of stimuli, an issue rarely addressed in behavioral experimentation. The goal of this work is to understand the role cholinergic projections, specific to the sensory cortex, in learning to discriminate fine differences in the temporal structure of stimuli. A novel visual Go/No-Go task was developed to assess the ability of rats to learn and discriminate fine differences in the temporal structure of visual stimuli (lights flashing at various frequencies. The cholinergic contribution to this task was examined by selectively eliminating acetylcholine projections to visual cortex (using 192 IgG-saporin, either before or after discrimination training.We find that in the face of compromised cholinergic input to the visual cortex, the rats’ ability to learn to perform fine discriminations is impaired, whereas their ability to perform discriminations remains unaffected.These results suggest that acetylcholine serves the role of facilitating plastic changes in the sensory cortices that are needed for an animal to refine their sensitivity to the temporal characteristics of relevant stimuli.

  4. The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli.

    Minces, V H; Alexander, A S; Datlow, M; Alfonso, S I; Chiba, A A

    2013-01-01

    Cholinergic neurons in the basal forebrain innervate discrete regions of the cortical mantle, bestowing the cholinergic system with the potential to dynamically modulate sub-regions of the cortex according to behavioral demands. Cortical cholinergic activity has been shown to facilitate learning and modulate attention. Experiments addressing these issues have primarily focused on widespread cholinergic depletions, extending to areas involved in general cognitive processes and sleep cycle regulation, making a definitive interpretation of the behavioral role of cholinergic projections difficult. Furthermore, a review of the electrophysiological literature suggests that cholinergic modulation is particularly important in representing the fine temporal details of stimuli, an issue rarely addressed in behavioral experimentation. The goal of this work is to understand the role of cholinergic projections, specific to the sensory cortices, in learning to discriminate fine differences in the temporal structure of stimuli. A novel visual Go/No-Go task was developed to assess the ability of rats to learn to discriminate fine differences in the temporal structure of visual stimuli (lights flashing at various frequencies). The cholinergic contribution to this task was examined by selective reduction of acetylcholine projections to visual cortex (VCx) (using 192 IgG-saporin), either before or after discrimination training. We find that in the face of compromised cholinergic input to the VCx, the rats' ability to learn to perform fine discriminations is impaired, whereas their ability to perform previously learned discriminations remains unaffected. These results suggest that acetylcholine serves the role of facilitating plastic changes in the sensory cortices that are necessary for an animal to refine its sensitivity to the temporal characteristics of relevant stimuli. PMID:23519084

  5. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  6. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Avi Ring

    Full Text Available Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase, but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21 and neuronal (SH-SY5Y cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  7. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  8. Acetylcholine muscarinic receptors and response to anti-cholinesterase therapy in patients with Alzheimer's disease

    An acetylcholine deficit remains the most consistent neurotransmitter abnormality found in Alzheimer's disease and various therapeutic agents have been targeted at this. In this study we investigated the action of Donepezil, a cholinesterase inhibitor that has few side-effects. In particular we set out to investigate whether muscarinic acetylcholine receptor (mAChR) availability influences the response to this therapy. We used the novel single-photon emission tomography (SPET) tracer (R,R)[123I]I-quinuclidinyl benzilate (R,R[123I]I-QNB), which has high affinity for the M1 subtype of mAChR. Regional cerebral perfusion was also assessed using technetium-99m hexamethylpropylene amine oxime. We investigated 20 patients on Donepezil treatment and ten age-matched controls. The results showed a reduction in (R,R)[123I]I-QNB binding in the caudal anterior cingulate in patients compared with controls and relatively high binding in the putamen and rostral anterior cingulate, suggesting a relative sparing of mAChR in these regions. The main finding of the study was that mAChR availability as assessed by (R,R)[123I]I-QNB binding did not distinguish responders from non-responders. Interestingly, we found that the extent of cognitive improvement showed no positive correlation with (R,R)[123I]I-QNB binding in any brain region but was inversely related to binding in the insular cortex. This suggests that, within the advised cognitive performance band for use of Donepezil, response is greater in those patients with evidence of a more marked cholinergic deficit. A larger study should investigate this. (orig.)

  9. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells.

    Hoffmann, Carsten; Nuber, Susanne; Zabel, Ulrike; Ziegler, Nicole; Winkler, Christiane; Hein, Peter; Berlot, Catherine H; Bünemann, Moritz; Lohse, Martin J

    2012-08-01

    Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3

  10. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery.

    Leo, Marie Dennis Marcus; Siddegowda, Yeshavanth K B; Kumar, Dinesh; Tandan, Surendra K; Sastry, Kochiganti V H; Prakash, Vellanki Ravi; Mishra, Santosh K

    2008-10-31

    The current study examined the hypothesis that acetylcholine-induced N(omega)-Nitro-L-arginine methyl ester (L-NAME)-resistant endothelium-dependent relaxations in the chicken carotid artery are mediated by nitric oxide and carbon monoxide. Acetylcholine (1 nM-3 microM) caused a concentration-dependent relaxation (pD(2) 6.81+/-0.05, R(max) 115+/-3%) of the artery segments precontracted with phenylephrine (3 microM). L-NAME (1 mM) decreased the sensitivity (pD(2) 6.44+/-0.06), but not the efficacy (R(max) 108+/-3%) of acetylcholine. It also partially decreased the acetylcholine (3 microM)-stimulated nitrite release. While treatment with N(omega)-Nitro-L-arginine (l-NNA; 1 mM) plus L-NAME (1 mM) decreased the acetylcholine-stimulated nitrite release to the basal level, it moderately inhibited (R(max) 77+/-3%) the maximal relaxation elicited with the muscarinic agonist. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO; 100 microM) a specific scavenger of nitric oxide (NO) plus the two NOS inhibitors further decreased the acetylcholine-evoked relaxation (R(max) 34+/-2%). Although soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM) markedly inhibited the acetylcholine-stimulated increase in tissue cGMP to less than the basal levels, it only decreased the sensitivity, but not the efficacy of the agonist either in the presence or absence of L-NAME (1 mM). Zinc Protoporphyrin-IX (ZnPP; 10 microM), a hemeoxygenase (HO) inhibitor, partially inhibited (R(max) 72+/-3%) the L-NAME-resistant acetylcholine-induced relaxations. A combined treatment of the arterial rings with L-NAME, l-NNA, PTIO and ZnPP nearly abolished (R(max) 7+/-0.9%) the vasodilator responses to acetylcholine. Endothelium removal abolished the relaxation response to acetylcholine. In conclusion, it is suggested that the acetylcholine-induced L-NAME-resistant relaxation is primarily, mediated by NO with a small but significant contribution from

  11. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups.

    Rojas, I.; Zañartu, P.; Nieto, S.; Sanhueza, J.; Morgado, N.; A. Valenzuela

    2010-01-01

    Docosahexaenoic acid (DHA) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHAcontaining lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born...

  12. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

    Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta;

    2011-01-01

    's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based......) acetylcholine binding site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands...... to assess the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

  13. Kinetics of Carbamylcholine Binding to Membrane-Bound Acetylcholine Receptor Monitored by Fluorescence Changes of a Covalently Bound Probe

    Dunn, Susan M.J.; Blanchard, Steven G.; Raftery, Michael A.

    1980-01-01

    The fluorescent probe 5-(iodoacetamido)salicylic acid has been used to alkylate acetylcholine receptor enriched membrane fragments from Torpedo californica following their reduction with low concentrations of dithiothreitol. This modification did not affect the equilibrium binding of carbamylcholine to the receptor. The fluorescence of bound 5-(iodoacetamido)salicylic acid was enhanced when the labeled membrane fragments were mixed with carbamylcholine. This increase in fluorescence was ab...

  14. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    Kasheverov, Igor E.; Irina V. Shelukhina; Kudryavtsev, Denis S.; Tatyana N. Makarieva; Spirova, Ekaterina N.; Alla G. Guzii; Stonik, Valentin A.; Tsetlin, Victor I.

    2015-01-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of ch...

  15. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine-seeking: Conditioned and unconditioned contributions to reward and motivation

    You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A.

    2008-01-01

    Microdialysis was used to assess the contribution to cocaine-seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever-pressing for IV cocaine and in cocaine-experienced and cocaine-naïve animals passively receiving similar “yoked” injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to about 160% of baseline and a subsequent plateau of 140% of baseline f...

  16. Effects of extracts from Cordyceps sinensis on M1 muscarinic acetylcholine receptor in vitro and in vivo

    Chiba, Tomohiro

    2010-01-01

    Tomohiro Chiba1, Marina Yamada1, Kosuke Torii2, Masataka Suzuki1, Jumpei Sasabe1, Minoru Ito2, Kenzo Terashita1, Sadakazu Aiso11Department of Anatomy, Keio University, School of Medicine, Tokyo, Japan; 2Department of Research and Development, Noevir Co. Ltd., Tokyo, JapanAbstract: Cholinergic dysfunction is implicated in the pathogenesis of memory impairment related to Alzheimer’s disease (AD). Accordingly, regulation of M1 muscarinic acetylcholine receptor (M1 mAChR) has been one o...

  17. Muscarinic acetylcholine receptor down-regulation limits the extent of inhibition of cell cycle progression in Chinese hamster ovary cells.

    Detjen, K.; Yang, J; Logsdon, C D

    1995-01-01

    Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in t...

  18. The M4 muscarinic acetylcholine receptor play a key role in the control of murine hair follicle cycling and pigmentation

    Hasse, Sybille; Chernyavsky, Alex I; Grando, Sergei A.; Paus, Ralf

    2007-01-01

    Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in ...

  19. Nicotinic Acetylcholine Receptor Agonists Attenuate Septic Acute Kidney Injury in Mice by Suppressing Inflammation and Proteasome Activity

    Chatterjee, Prodyot K.; Yeboah, Michael M.; Oonagh Dowling; Xiangying Xue; Powell, Saul R.; Yousef Al-Abed; Metz, Christine N

    2012-01-01

    Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine...

  20. Microvascular involvement in systemic sclerosis: laser Doppler evaluation of reactivity to acetylcholine and sodium nitroprusside by iontophoresis

    Civita, L; Rossi, M.; Vagheggini, G; F. Storino; Credidio, L; Pasero, G; C. Giusti(INFN, Pavia); Ferri, C

    1998-01-01

    OBJECTIVES—To investigate the skin vasodilatory response to iontophoretically applied acetylcholine (Ach), an endothelium dependent vasodilator, and to sodium nitroprusside (SNP), an endothelium independent vasodilator, in patients with systemic sclerosis (SSc).
METHODS—Eleven SSc patients were preliminarily studied (10 females, mean age 40.5; mean disease duration 6.5 years), and 16 age and sex matched control subjects. By means of laser Doppler flowmetry skin blood flow was evaluated at thi...

  1. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  2. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent

    Greig, Nigel H.; Utsuki, Tadanobu; Ingram, Donald K.; Wang, Yue; Pepeu, Giancarlo; Scali, Carla; Yu, Qian-sheng; Mamczarz, Jacek; Holloway, Harold W.; Giordano, Tony; Chen, DeMao; Furukawa, Katsutoshi; Sambamurti, Kumar; Brossi, Arnold; Lahiri, Debomoy K.

    2005-01-01

    Like acetylcholinesterase, butyrylcholinesterase (BChE) inactivates the neurotransmitter acetylcholine (ACh) and is hence a viable therapeutic target in Alzheimer's disease, which is characterized by a cholinergic deficit. Potent, reversible, and brain-targeted BChE inhibitors (cymserine analogs) were developed based on binding domain structures to help elucidate the role of this enzyme in the central nervous system. In rats, cymserine analogs caused long-term inhibition of brain BChE and ele...

  3. Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system

    Rossi, Francesco Mattia; Pizzorusso, Tommaso; Porciatti, Vittorio; Marubio, Lisa M.; Maffei, Lamberto; Changeux, Jean-Pierre

    2001-01-01

    In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the β2 subunit of the neuronal nicotinic receptor, but not in mice lacking the α4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. ...

  4. Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments

    Asmar-Rovira, Guillermo A.; Asseo-García, Aloysha M.; Quesada, Orestes; Hanson, Michael A.; Nogueras, Carlos; Lasalde-Dominicci, José A.; Stevens, Raymond C.

    2008-01-01

    The nicotinic acetylcholine receptor (nAChR) of Torpedo electric rays has been extensively characterized over the last three decades. However, the molecular mechanisms by which detergents influence membrane protein stability and function remain poorly understood, and elucidation of the dynamic detergent-lipid-protein interactions of solubilized membrane proteins is a largely unexplored research field. This study examined nine detergents upon nAChR solubilization and purification, to assess re...

  5. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-01-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs. PMID:27485575

  6. Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 3′-(Substituted Phenyl)epibatidine Analogues. Nicotinic Partial Agonists⊥

    Carroll, F. Ivy; Ma, Wei; Deng, Liu; Navarro, Hernán A.; Damaj, M. Imad; Martin, Billy R.

    2010-01-01

    In 1992, John Daly et al. reported the isolation and structure determination of epibatidine. Epibatidine’s unique structure and its potent nicotinic agonist activity have had a tremendous impact on nicotine receptor research. This research has led to a better understanding of the nicotinic acetylcholine receptor (nAChR) pharmacophore and to epibatidine analogues with potential as pharmacotherapies for treating various CNS disorders. In this study, we report the synthesis, receptor binding ([3...

  7. Naloxone-insensitive inhibition of acetylcholine release from parasympathetic nerves innervating guinea-pig trachea by the novel opioid, nociceptin

    Patel, Hema J; Giembycz, Mark A; Spicuzza, Lucia; Barnes, Peter J; Belvisi, Maria G

    1997-01-01

    The novel peptide, nociceptin and the μ-opioid agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) produced a concentration-dependent inhibition of electrical field stimulation (EFS)-evoked release of acetylcholine (ACh) from cholinergic nerves innervating guinea-pig trachea. The non-selective opioid receptor antagonist, naloxone, did not antagonize the inhibitory action of nociceptin under conditions where the inhibition of ACh release evoked by DAMGO was completely reversed. It is sugge...

  8. Calcium-dependent effect of the thymic polypeptide thymopoietin on the desensitization of the nicotinic acetylcholine receptor

    The effects of the thymic polypeptide thymopoietin (Tpo) on the properties of the nicotinic acetylcholine receptor (AcChoR) were investigated by patch clamp techniques on mouse C2 myotubes and by biochemical assays on AcChoR-rich membrane fragments purified from the Torpedo marmorata electric organ. At high concentrations (> 100 nM), Tpo inhibits the binding of cholinergic agonists to the AcChoR in a Ca2+-insensitive manner. At lower concentrations (2 nM), Tpo applied on C2 myotubes simultaneously with nondesensitizing concentrations of acetylcholine results in the appearance of long closed times separating groups of openings. This effect depends on the presence of Ca2+ in the external medium. Outside-out recordings, performed with various concentrations of EGTA in the intracellular medium, suggest that Ca2+ acts on the cytoplasmic face of the membrane after entry through acetylcholine-activated channels. Parallel studies with T. marmorata AcChoR-rich membranes show that in the presence of Ca2+ Tpo causes a decrease in the apparent equilibrium dissociation constant of the noncompetitive blocker [3H]phencyclidine, enhances, at low concentrations, the binding of [3H]acetylcholine, and also alters the binding kinetics of the fluorescent agonist 6-(5-dimethylamino-1-naphthalenesulfonamido)-n-hexanoic acid β-(N-trimethylammonium bromide) ethyl ester to the AcChoR. It was concluded that, in the presence of Ca2+, Tpo displaces the conformational equilibrium of the AcChoR towards a high-affinity desensitized state and increases the transition rate towards the same state

  9. Influence of Y151 F mutation in loop B on the agonist potency in insect nicotinic acetylcholine receptor

    Feng Song; Yi-Xi Zhang; Xiang-Mei Yao; Ze-Wen Liu

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels,which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems.The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A-C present in α subunits together with loops D-F present in either non-α subunits or homomer-forrning α subunits.Although Y151 in loop B has been identified as important in agonist binding,various residues at the 151-site are found among vertebrate and invertebrate nAChR ot subunits,such as F151.In Xenopus oocytes expressing N1α1 or N1α1~(Y151F) plus rat β2,Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine,but not imidacloprid,including the decrease of I_(max),the increase of EC_(50)(the concentration causing 50% of the maximum response) and the fast time-constant of decay (τ_f).By comparisons of residue structure,the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between N1α1/β2 nAChRs and acetylcholine,and the phenyl group to be important between N1α1/β2 nAChRs and imidacloprid.

  10. Effect of elevated potassium ion concentrations on electrically evoked release of [3H]acetylcholine in slices of rat hippocampus

    To establish the effect of raising the concentration of extracellular potassium ions on axonal conduction and transmitter release in a mammalian central pathway, the septohippocampal cholinergic tract, the rate of [3H] acetylcholine release evoked by electrical stimulation was measured in rat hippocampal slices superfused with Krebs' solution containing 3-15 mM K+ The evoked release of [3H] acetylcholine was abolished by the presence of tetrodotoxin or by the omission of Ca2+ in the superfusion medium, indicating that it originated from terminals depolarized by conducted action potentials. Potassium concentrations between 3 and 8 mM had no effect but 10-15 mM K+ reduced the rate of evoked release and decreased the size of the releasable pool of [3H] acetylcholine. Decreasing the sodium content of the Krebs' solution to 97 mM or less had effects similar to those of elevated [K+]. Elevated K+ (10-15 mM) reversibly reduced the size of compound action potentials in the fimbria and the alveus. The results suggest that extracellular potassium concentrations occurring under physiological conditions do not affect axonal conduction and transmitter release but that both are reduced in pathological states when extracellular [K+] above 8 mM occur. (author)

  11. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  12. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor α subunit

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the α subunit of the receptor, with little or no change in the levels of γ- and δ-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of α-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of α subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of α-subunit mRNA, with little change in the amount of γ- and δ-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the α-subunit nuclear precursor

  13. Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies

    A high density of galanin binding sites was found by using 125I-labeled galanin, iodinated by chloramine-T, followed by autoradiography in the ventral, but not in the dorsal, hippocampus of the rat. Lesions of the fimbria and of the septum caused disappearance of a major population of these binding sites, suggesting that a large proportion of them is localized on cholinergic nerve terminals of septal afferents. As a functional correlate to these putative galanin receptor sites, it was shown, both in vivo and in vitro, that galanin, in a concentration-dependent manner, inhibited the evoked release of acetylcholine in the ventral, but not in the dorsal, hippocampus. Intracerebroventricularly applied galanin fully inhibited the scopolamine stimulated release of acetylcholine in the ventral, but not in the dorsal, hippocampus, as measured by the microdialysis technique. In vitro, galanin inhibited the 25 mM K+-evoked release of [3H]acetylcholine from slices of the ventral hippocampus, with an IC50 value of ≅ 50 nM. These results are discussed with respect to the colocalization of galanin- and choline acetyltransferase-like immunoreactivity in septal somata projecting to the hippocampus

  14. Studies on the effects of acetylcholine and antiepileptic drugs on 32P incorporation into phospholipids of rat brain synaptosomes

    Studies were conducted on the effects of antiepileptic drugs on the acetylcholine-stimulated 32P labeling of phospholipids in rat brain synaptosomes. Of the four antiepileptic drugs investigated in the present study, namely phenytoin, carbamazepine, phenobarbital, and valproate, only phenytoin blocked the acetylcholine-stimulated 32P labeling of phosphatidylinositol and phosphatidic acid, and the acetylcholine-stimulated breakdown of polyphosphoinositides. Phenytoin alone, like atropine alone, had no effect on the 32P labeling of phospholipids nor on the specific radioactivity of [32P]ATP. Omission of Na+ drastically reduced both the 32P labeling of synaptosomal phospholipids and the specific radioactivity of [32P]ATP and furthermore it significantly decreased the phosphoinositide effect. It was concluded that certain antiepileptic drugs, such as phenytoin, could exert their pharmacological actions through their antimuscarinic effects. In addition the finding that phenytoin, which acts to regulate NA+ and Ca2+ permeability of neuronal membranes, also inhibited the phosphoinositide effects in synaptosomes, support the conclusions that Ca2+ and Na+ are probably involved in the molecular mechanism underlying this phenomenon in excitable tissues

  15. Methanol extract of Tephrosia vogelii leaves potentiates the contractile action of acetylcholine on isolated rabbit jejunum

    Tavershima Dzenda; Joseph Olusegun Ayo; Alexander Babatunde Adelaiye; Ambrose Osemattah Adaudi

    2015-01-01

    To investigate the modulating role of methanol extract of Tephrosia vogelii leaves on acetylcholine (ACh)-induced contraction of isolated rabbit jejunum. Methods: Rabbit jejunum segment was removed and placed in an organ bath containing Tyrode’s solution, and its contractions were recorded isometrically. Results: ACh (2.0 × 10-10 g/mL) and the extract (2.0 × 10-4 g/mL) individually increased the frequency of contraction (mean ± SEM) of the isolated smooth muscle tissue by 47.6% ± 9.5%and 77.8% ± 66.5%, respectively. When ACh and the extract were combined, the frequency of contraction of the tissue was increased by 222.2% ± 25.9%, representing a 366.7% increase (P < 0.001) over the effect of ACh alone. Similarly, ACh (2.0 × 10-9 g/mL) and the extract individually increased significantly (P < 0.001) the amplitude of contraction of the tissue by 685.7% ± 61.1% and 455.2% ± 38.1%, respectively. When ACh and the extract were combined, the amplitude of contraction of the tissue rose by 1263.8% ± 69.0%, representing 84.3% increase over the effect of ACh alone. Conclusions: The findings demonstrate that methanol extract of Tephrosia vogelii leaves potentiates the contractile effect of ACh on intestinal smooth muscle, supporting the traditional claim that the plant is purgative.

  16. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.

    Jennifer L Hellier

    Full Text Available Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7 in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP, an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21, mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.

  17. Thrombin action decreases acetylcholine receptor aggregate number and stability in cultured mouse myotubes.

    Davenport, R W; Lanuza, M; Kim, S; Jia, M; Snyder, E; Nelson, P G

    2000-08-30

    Neurons develop and make very stable, long-term synaptic connections with other nerve cells and with muscle. Synaptic stability at the neuromuscular junction changes over development in that a proliferation of synaptic input are made to individual myotubes and synapses from all but one neuron are lost during development. In an established co-culture paradigm in which spinal motoneurons synaptically contact myotubes, thrombin and associated protease inhibitors have been shown to affect the loss of functional synaptic contacts [6]. Evidence has not been provided which clearly demonstrate whether protease/protease inhibitors affect either the pre- or postsynaptic terminal, or both. In an effort to determine whether these reagents directly affect postsynaptic receptors on myotubes, myotubes were cultured in the absence of neurons and the spontaneous presence and stability of aggregates of acetylcholine receptors (AChR) in control and thrombin-containing media were evaluated. In dishes fixed after treatment and in dishes in which individual aggregates were observed live, thrombin action appeared to increase loss of AChR aggregates over time. Hirudin, a specific inhibitor of the thrombin protease, diminished this loss. Neither reagent affected the overall incorporation or degradation of AChR; therefore, it appears these protease/protease inhibitors affect the state of AChR aggregation. PMID:10960680

  18. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior.

    Crespo, Jose A; Stöckl, Petra; Zorn, Katja; Saria, Alois; Zernig, Gerald

    2008-12-01

    Acquisition of drug-reinforced behavior is accompanied by a systematic increase of release of the neurotransmitter acetylcholine (ACh) rather than dopamine, the expected prime reward neurotransmitter candidate, in the nucleus accumbens core (AcbC), with activation of both muscarinic and nicotinic ACh receptors in the AcbC by ACh volume transmission being necessary for the drug conditioning. The present findings suggest that the AcbC ACh system is preferentially activated by drug reinforcers, because (1) acquisition of food-reinforced behavior was not paralleled by activation of ACh release in the AcbC whereas acquisition of morphine-reinforced behavior, like that of cocaine or remifentanil (tested previously), was, and because (2) local intra-AcbC administration of muscarinic or nicotinic ACh receptor antagonists (atropine or mecamylamine, respectively) did not block the acquisition of food-reinforced behavior whereas acquisition of drug-reinforced behavior had been blocked. Interestingly, the speed with which a drug of abuse distributed into the AcbC and was eliminated from the AcbC determined the size of the AcbC ACh signal, with the temporally more sharply delineated drug stimulus producing a more pronounced AcbC ACh signal. The present findings suggest that muscarinic and nicotinic ACh receptors in the AcbC are preferentially involved during reward conditioning for drugs of abuse vs sweetened condensed milk as a food reinforcer. PMID:18418362

  19. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy. PMID:27468462

  20. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Herholz, Karl [University of Manchester, Wolfson Molecular Imaging Centre, Clinical Neuroscience, Manchester (United Kingdom); University of Cologne, Cologne (Germany)

    2008-03-15

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  1. Synthesis of carbon-11 labeled dexetimide and levetimide for studying muscarinic acetylcholine receptors

    The localization and quantitation of the muscarinic acetylcholine receptor (m-AChR) in the living human brain using a non-invasive method, such as positron emission tomography (PET), may provide valuable information about receptor changes which have been observed post mortem in patients with Huntington's chorea and Alzheimer's dementia, as well as normal brain mechanisms mediated by the m-AChR. Although quinuclidinyl benzilate has been radioiodinated and radiomethylatd, the former is not useful with PET and the latter does not penetrate the blood-brain barrier; therefore, the authors chose to radiolabel dexetimide, a ligand which labels m-AChR in vitro and in vivo, and levetimide, its inactive enantiomer. Carbon-11 labeled carbon dioxide is bubbled through a tetrahydrofuran (THF) solution of phenylmagnesium chloride (1 M, l ml) after which 2 mg of lithium aluminium hydride is added in THF (500 μl). After evaporation of the solvent, 48% hydriodic acid (l ml) is added and the solution is heated for 1 minute. Carbon-11 labeled benzyl iodide is extracted into methylene chloride, added to a solution of nor-benzyl dexetimide or levetimide, and heated for several minutes. Purification is accomplished using semi-preparative reverse phase high performance liquid chromatography (HPLC). Analytical HPLC is used to determine the radiochemical purity and specific activity

  2. Studies of two naturally occurring compounds which effect release of acetylcholine from synaptosomes

    Two naturally occurring compounds which effect the release of neurotransmitter from synaptosomes have been purified to apparent homogeneity. Iotrochotin (IOT) isolated from wound exudate of the Caribbean purple bleeder sponge promotes release in a manner that is independent of the extracellular Ca2+ ion concentration. Leptinotarsin (LPT-d), a protein taken from hemolymph of the Colorado potato beetle, Leptinotarsa decemlineata, stimulates Ca2+-dependent release. IOT is slightly acidic and has a molecular weight of approximately 18 kD. [3H]acetylcholine which has been introduced into synaptosomes as [3H]choline can be released by IOT. The toxin releasable pool of labelled neurotransmitter is not depleted by depolarization of the synaptosomes with high potassium, and therefore seems to be primarily extravesicular. LPT-d is a larger protein (molecular weight = 45 kD) than IOT, and seems to effect primarily vesicular release by opening at least one type of presynaptic Ca2+ channel. The facilitatory effects of the toxin on synaptosomal release can be inhibited by inorganic Ca2+ channel antagonists, but are not generally affected by organic antagonists

  3. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  4. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with 3H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 μM. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table

  5. Evaluation of radioiodinated (-)-o-iodovesamicol as a radiotracer for mapping the vesicular acetylcholine transporter

    We evaluated the potencies of radioiodinated (-)-o-iodovesamicol [(-)-oIV] as a selective vesicular acetylcholine transporter (VAChT) mapping agent. (-)-[125I]oIV exhibited significant accumulation (about 2.8% of the injected dose) in rat brain. The regional brain distribution of radioactivity was similar for both (-)-[125I]oIV and (-)-[3H]vesamicol. The accumulation of (-)-[125I]oIV in the brain was significant reduced by post-administration of unlabeled vesamicol (0.5 μmol/kg-1) and (-)-oIV (0.5 μmol/kg-1). On the other hand, the post-administration of sigma ligands hardly affected the accumulation of (-)-[125I]oIV in the brain. These studies showed that (-)-[125I]oIV, as well as [3H]vesamicol, bound to VAChT with high affinity in the rat brain. Furthermore, (-)-[125I]oIV binding in the ipsilateral cortex to the lesion was significantly reduced by 17.0%, compared with that in the contralateral cortex in a unilateral nucleus basalis magnocellularis (NBM)-lesioned rat. These results suggested that radioiodinated (-)-oIV may potentially be useful for the diagnosis of cholinergic neurodegenerative disorders. (author)

  6. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  7. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  8. Dopamine regulation of [3H]acetylcholine release from guinea-pig stomach

    The involvement of dopamine receptors in cholinergic transmission of guinea-pig stomach was investigated by analyzing the effects of dopamine receptor agonists and antagonists on acetylcholine (ACh) release from this organ. Electrical stimulation (1-20 Hz) of strips of guinea-pig stomach preloaded with [3H] choline induced a [3H]ACh release that was calcium dependent and tetrodotoxin sensitive. Dopamine inhibited this transmural stimulation-induced [3H]ACh release in a concentration-dependent manner (10(-8)-10(-4) M). This effect of dopamine was not altered by 10(-5) M hexamethonium, thereby suggesting that the major dopamine receptors are located on the postganglionic cholinergic neurons. Concentration-response curves for dopamine on [3H]ACh release were inhibited by haloperidol, sulpiride and domperidone but not by prazosin, yohimbine, propranolol and ketanserin. LY 171555, an agonist for the D2 dopamine receptor, but not SKF 38-393, an agonist for the D1 dopamine receptor, to some extent decreased the release of [3H]ACh induced by transmural stimulation. In view of the results, the release of ACh from postganglionic cholinergic neurons is probably required through dopamine receptors antagonized by D2 antagonists but not by adrenergic or serotonin receptor antagonists

  9. Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment.

    Mucchietto, Vanessa; Crespi, Arianna; Fasoli, Francesca; Clementi, Francesco; Gotti, Cecilia

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke. PMID:26845123

  10. Different patterns of nicotinic acetylcholine receptor subunit transcription in human thymus.

    Bruno, Roxana; Sabater, Lidia; Tolosa, Eva; Sospedra, Mireia; Ferrer-Francesch, Xavier; Coll, Jaume; Foz, Marius; Melms, Arthur; Pujol-Borrell, Ricardo

    2004-04-01

    Clinical observations suggest that the thymus is strongly implicated in the pathogenesis of myasthenia gravis (MG), but questions such as the level and location of nicotinic acetylcholine receptor (AChR) subunit expression that are fundamental to postulate any pathogenic mechanism, remain controversial. We have re-examined this question by combining calibrated RT-PCR and real-time PCR to study nicotinic AChR subunit mRNA expression in a panel of normal and myasthenic thymi. The results suggest that the expression of the different AChR subunits follows three distinct patterns: constitutive for, neonatal for gamma and individually variable for alpha1, beta1 and delta. Experiments using confocal laser microdissection suggest that AChR is mainly expressed in the medullary compartment of the thymus but there is not a clear compartmentalization of subunit expression. The different patterns of subunit expression may influence decisively the level of central tolerance to the subunits and explain the focusing of the T cell response to the alpha and gamma subunits. PMID:15020075

  11. Catharanthine alkaloids are noncompetitive antagonists of muscle-type nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2010-09-01

    We compared the interaction of several catharanthine alkaloids including, ibogaine, vincristine, and vinblastine, with that for the noncompetitive antagonist phencyclidine (PCP) at muscle nicotinic acetylcholine receptors (AChRs) in different conformational states. The results established that catharanthine alkaloids: (a) inhibit, in a noncompetitive manner, (+/-)-epibatidine-induced Ca(2+) influx in TE671-halpha1beta1gammadelta cells with similar potencies (IC(50)=17-25microM), (b) inhibit [(3)H]TCP binding to the desensitized Torpedo AChR with higher affinity compared to the resting AChR, and (c) enhance [(3)H]cytisine binding to resting but activatable Torpedo AChRs, suggesting desensitizing properties. Interestingly, PCP inhibits [(3)H]ibogaine binding to the AChR in a steric fashion. This is corroborated by additional docking experiments indicating that the amino groups of neutral ibogaine form hydrogen bonds with the serine ring (position 6'), a location shared with PCP. Since protonated ibogaine forms a salt bridge with one of the acidic residues at the outer ring (position 20'), this ligand could be first attracted to the entrance of the channel by electrostatic interactions. Our data indicate that the catharanthine moiety is a minimum structural requirement for AChR inhibition including, ion channel blocking and desensitization, and that ibogaine and PCP bind to overlapping sites in the desensitized AChR ion channel. PMID:20493225

  12. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D; Wainer, Irving W

    2010-06-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (+/-)-epibatidine-induced AChR Ca(2+) influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [(3)H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6') and valine (position 13') rings, and (c) inhibits [(3)H]TCP, [(3)H]ibogaine, and [(3)H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization. PMID:20303928

  13. Tetrodotoxin effects in the stimulated acetylcholine release by agonist of glutamate in mice striatum tissue

    The toxins of animal venoms have been used as important tools for biochemical studies of physiological and pathological processes of diverse systems. In this work we used the action of tetrodotoxin on sodium channels to map the localization of glutamate receptors in cholinergic neurons from striatum tissue of rats. All glutamate receptors are exciting, so they promote the release of other neurotransmitters. In this work we focus on acetylcholine. The localization of glutamate receptor, on the soma or on the excitatory terminal, may contribute for a better understanding of its function. For this work we applied the in vitro method of tritiated neurotransmitter release. The agonists of glutamate receptors chosen were glutamic acid 500μM, NMDA 100μM, kainic acid 300μM, quisqualic acid 300μM and AMPA 1mM. In the first part of the assay the basal and stimulated releases were measured and in the second, the same protocol was performed in the presence of tetrodotoxin 1μM. The reductions observed in basal and stimulated release in the presence of tetrodotoxin suggested that the receptors type AMPA and NMDA were located in soma of cholinergic cell preferentially and the other ones presented a more equilibrate distribution among the axons and the soma. (author)

  14. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy.

    Wu, Chih-Hsiung; Lee, Chia-Hwa; Ho, Yuan-Soon

    2011-06-01

    The nicotinic acetylcholine receptor (nAChR) was first characterized in 1970 as a membrane receptor of a neurotransmitter and an ion channel. nAChRs have been shown to be involved in smoking-induced cancer formation in multiple types of human cancer cells. In vitro and in vivo animal studies have shown that homopentameric nAChR inhibitors, such as methyllycaconitine and α-Bgtx, can attenuate nicotine-induced proliferative, angiogenic, and metastatic effects in lung, colon, and bladder cancer cells. Recent publications have shown that α9-nAChR is important for breast cancer formation, and in many in vivo studies, α9-nAChR-specific antagonists (e.g., α-ImI, α-ImI, Vc1.1, RgIA, and It14a) produced an analgesic effect. Vc1.1 functions in a variety of animal pain models and currently has entered phase II clinical trials. For cancer therapy, natural compounds such as garcinol and EGCG have been found to block nicotine- and estrogen-induced breast cancer cell proliferation through inhibition of the α9-nAChR signaling pathway. A detailed investigation of the carcinogenic effects of nAChRs and their specific antagonists would enhance our understanding of their value as targets for clinical translation. PMID:21444681

  15. Nicotinic Acetylcholine Receptor α4 Subunit Gene Variation Associated with Attention Deficit Hyperactivity Disorder

    HUANG Xuezhu; XU Yong; LI Qianqian; LIU Pozi; YANG Yuan; ZHANG Fuquan; GUO Tianyou; YANG Chuang; GUO Lanting

    2009-01-01

    Previous pharmacological, human genetics, and animal models have implicated the nicotinic ace-tylcholine receptor a4 subunit (CHRNA4) gene in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). The objective of this study is to examine the genetic association between single nucleotide poly-morphisms in the CHRNA4 gene (rs2273502, rs1044396, rs1044397, and rs3827020 loci) and ADHD. Both case-control and family-based designs are used. Children aged 6 to 16 years were interviewed and as-sessed with the children behavior checklist and the revised conner' parent rating scale to identify probands. No significant differences in the frequency distribution of genotypes or alleles were found between the case and control groups. However, further haplotype analyses showed the CCGG haplotype on dsk for ADHD in 164 case-control samples and the standard transmission disequilibrium test analyses suggest that the allele C of rs2273502 was over-transferred in 98 ADHD parent-offspring tdos. These findings suggest that the CHRNA4 gene may play a role in the pathogenesis of ADHD.

  16. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  17. Synthesis and 125I labelling of a precursor for imaging nicotinic acetylcholine receptors

    Nicotinic Acetylcholine Receptors (nAChRs) are involved in various pharmacological effects or diseases, such as Alzheimer's Disease, Parkinson's Disease and tobacco addiction. It will be very appealing to image nAChRs in vivo, diagnose and treat the above diseases, and probe the mechanism of nAChRs in tobacco addiction if the suitable radioactive labeled compound can be synthesized. In this study, (s)-5-(tri-butylstannyl)-3{[1-(tert-butoxycarbonyl)-2-azetidinyl]methoxy} pyridine, a precursor for imaging nAChRs, was synthesized with commercial 2-furfurylamine and (s)-2-azetidinecarboxylic acid as starting materials, and was further labeled with 125/123I. The whole procedure for radiosynthesis needs 50-55 min and more than 30% of the 125I are found in the purified 5-[125I]-A-85380. Even staying for 3 days at room temperature in vitro, the purified 5-[125I]-I-85380 can maintain its stability, with a radiochemical purity of more than 95%. (authors)

  18. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  19. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 1010 M-1, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r2>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG

  20. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  1. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  2. A radioimmunoassay for the quantitative evaluation of anti-human acetylcholine receptor antibodies in myasthenia gravis

    A radioimmunoassay was developed for the quantitative evaluation of antibodies to the acetylcholine receptor in the serum of myasthenic patients. AcChR was extracted from human muscle. A detailed preparation of the 125I-labelled α-Bgt-AcChR complex used as antigen is reported. Usually, an average of 20 pmol were obtained from 100 g muscle. This preparation is stable for 1 month in presence of an inhibitor of proteolysis and sufficient for performing about fifteen assays. The labelled complex was incubated with increasing amounts of sera and precipitated with anti-human IgG serum. Titres were expressed in pmol 125I-labelled α-Bgt-AcChR complex precipitated per ml serum. Out of thirty-nine sera tested thirty-six had positive titres ranging from 0.1 to 46 pmol/ml. No anti-AcChR were detected in the sera from twenty-seven patients used as controls. (author)

  3. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception

    Jun-Il eKang

    2014-09-01

    Full Text Available The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increasesthe strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting this system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.

  4. Neuronal Nicotinic Acetylcholine Receptors: Neuroplastic Changes underlying Alcohol and Nicotine Addictions

    Allison Anne Feduccia

    2012-08-01

    Full Text Available Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug’s reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs. The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine’s effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

  5. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  6. Meandering and unstable reentrant wave fronts induced by acetylcholine in isolated canine right atrium.

    Ikeda, T; Wu, T J; Uchida, T; Hough, D; Fishbein, M C; Mandel, W J; Chen, P S; Karagueuzian, H S

    1997-07-01

    The mechanism(s) by which acetylcholine (ACh) increases atrial vulnerability to reentry and maintains its activity for longer durations remains poorly defined. In the present study we used high-resolution activation maps to test the hypothesis that ACh promotes meandering of atrial reentrant wave fronts, resulting in breakup and the generation of new wave fronts that sustain the activity. Reentry was induced in 11 isolated canine right atrial tissues (3.8 x 3.2 cm) by a premature point stimulus (S2) before and after superfusion with ACh (15 x 10(-6) M). Endocardial isochronal activation maps were constructed with the use of 509 bipolar electrodes (1.6-mm spatial resolution), and the dynamics of the activation wave fronts were visualized with animation. A vulnerable period was found during which an S2 current strength > 4.4 +/- 2.5 mA [lower limit of vulnerability (LLV)] and vulnerability (ULV)] induced a single stationary reentrant wave front that lasted 3 +/- 2.5 s with a period of 159 +/- 17 ms (16 episodes). AC shortened the refractory period from 100 +/- 12 to 59 +/- 9 ms (P vulnerability to reentry induction by simultaneous decrease in the LLV (0.7 +/- 0.2 mA, P single reentrant wave front, leading to breakup and the generation of new wave fronts. Single meandering and complex wave front dynamics cause fibrillation-like activity and sustain the activity for longer duration. PMID:9249511

  7. Alpha9 alpha10 nicotinic acetylcholine receptors as target for the treatment of chronic pain.

    Del Bufalo, Alessandra; Cesario, Alfredo; Salinaro, Gianluca; Fini, Massimo; Russo, Patrizia

    2014-01-01

    Chronic pain is a widespread healthcare problem affecting not only the patient but in many ways all the society. Chronic pain is a disease itself that endures for a long period of time and it is resistant to the majority of medical treatments that provide modest improvements in pain and minimum improvements in physical and emotional functioning. More co-existing chronic pain conditions may be present in the same individual (patient). The α9α10 nicotinic acetylcholine receptor (nAChR) may be a potential target in the pathophysiology of chronic pain, as well in the development of breast and lung cancers. α-conotoxins (α-CNT) are small peptides used offensively by carnivorous marine snails known as Conus that target nAChR. Among α-CNT there are potent and selective antagonists of α9α10 nAChR such as RgIA and Vc1.1 that produces both acute and long lasting analgesia. Moreover, these peptides accelerate the recovery of nerve function after injury, likely through immune/inflammatory-mediated mechanisms. We review the background, findings, implications and problems in using compounds that act on α9α10 nAChR. PMID:24641230

  8. Effective loci and roles of acetylcholine in temperature regulation of goldfish.

    Crawshaw, L I; Wollmuth, L P

    1992-09-01

    Microinjections of acetylcholine (ACh) and carbachol were made into discrete forebrain loci in goldfish (Carassius auratus) to evaluate the importance of cholinergic mechanisms for behavioral thermoregulation. Injections of 5, 10, 25, and 50 micrograms ACh into the far anterior nucleus preopticus periventricularis (NPP) (R. Peter and V. Gill. J. Comp. Neurol. 159: 69-102, 1975) and immediately adjacent ventral telencephalon led to consistent dose-dependent decrease in selected temperature. No effect was observed following injections of 2 micrograms ACh or 0.7% NaCl. Injections of ACh into a different portion of the ventral telencephalon led to increases in the selected temperature. Lower doses of carbachol (0.5 and 1.0 micrograms) injected into the NPP produced decreases in selected temperature similar to the highest doses of ACh. Injections of ACh into loci other than those mentioned above either had no thermoregulatory effect or had lesser thermoregulatory effects which, in comparison with injections into the most effective sites, were inconsistent and required larger doses to obtain. The site where cholinergic stimulation led to decreases in the selected temperature exactly overlapped the effective site of ethanol hypothermia in the goldfish. PMID:1415647

  9. Impaired acetylcholine release from the myenteric plexus of Trichinella-infected rats

    We examined the release of acetylcholine (ACh) from jejunal longitudinal muscle-myenteric plexus preparations in noninfected control rats and in rats infected 6, 23, or 40 days previously with Trichinella spiralis. ACh release was assessed by preincubating the tissue with [3H]choline and measuring the evoked release of tritium. The uptake of 3H was significantly less in tissue from T. spiralis-infected rats compared with control. In tissues from either infected or control animals, electrical field stimulation (30 V, 0.5 ms, 10 Hz for 1 min), or veratridine (6-30 microM) induced 3H release that was tetrodotoxin sensitive. Depolarization by KCl (25-75 mM) also caused 3H release, but this was only partially reduced by tetrodotoxin. Radiochromatographic analysis indicated evoked release of 3H to be almost entirely [3H]ACh. In rats infected 6 days previously with T. spiralis, [3H]ACh release induced by KCl, veratridine, and field stimulation were decreased at least 80%. The suppression of [3H]ACh release induced by veratridine or KCl was fully reversible after 40 days postinfection, but field-stimulated responses remained approximately 50% of control values. These results indicate that T. spiralis infection in the rat is accompanied by a reversible suppression of ACh release from the longitudinal muscle-myenteric plexus of the jejunum

  10. Elemental maps in human allantochorial placental vessels cells: 1. High K + and acetylcholine effects

    Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.

    2003-09-01

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.

  11. Elemental maps in human allantochorial placental vessels cells: 1. High K+ and acetylcholine effects

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K+ and Ca2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K+ channels, KCa) and of high concentration of K+ (which blocks the voltage-sensitive K+ channels, Kdf). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K+ medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K+ medium, a significant increase in Cl and K concentration. These results indicated the importance of Kdf, KCa and KATP channels in the regulation of K+ intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data

  12. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  13. Dithiocarbamate propineb induces acetylcholine release through cytoskeletal actin depolymerization in PC12 cells.

    Viviani, Barbara; Bartesaghi, Stefano; Binaglia, Marco; Corsini, Emanuela; Boraso, Mariaserena; Grazi, Enrico; Galli, Corrado L; Marinovich, Marina

    2008-11-10

    Neurological complications as well as movement disorders are relevant symptoms in animals and humans chronically exposed to dithiocarbamates. Using rat pheochromocytoma cells differentiated by NGF (PC12), we investigated whether propineb affects acetylcholine (Ach) release and the molecular mechanisms involved. Propineb (0.001-100 nM) dose-dependently increased Ach release from PC12. Thus, 0.001-1 nM propineb-induced Ach release, reaching a maximal effect ( approximately 50%) at 0.1-1 nM. Higher concentrations of propineb (10-100 nM) caused a progressive disappearance of the effect. Chelation of extra- and intracellular Ca(2+) did not affect Ach release by propineb, which was prevented by the actin stabilizer jasplakinolide (500 nM). Accordingly, actin depolymerization was observed after exposure of differentiated PC12 to 0.1-1 nM propineb, a loss of effect was evident at higher concentrations (100 nM), and the effect was Ca(2+)-independent. Disulfiram, a related dithiocarbamate not coordinated with Zn(2+), also depolymerized actin, suggesting the involvement of the organic structure of dithiocarbamates rather than the leakage of Zn(2+). Nevertheless, propineb did not depolymerize actin in a cell-free system. These data suggest that dithiocarbamates, through the activation of intracellular cascade(s), impair cytoskeletal actin. This effect may contribute to affect synaptic vesicles processing resulting in an impaired cholinergic transmission. PMID:18822360

  14. Interaction of bupropion with muscle-type nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Gumilar, Fernanda; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W; Bouzat, Cecilia

    2009-06-01

    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion (a) inhibits epibatidine-induced Ca(2+) influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with approximately 100-fold higher potency compared to that in the open state, (c) increases the desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits binding of [(3)H]TCP and [(3)H]imipramine to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/alpha-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy-driven process, and (f) interacts with a binding domain located between the serine (position 6') and valine (position 13') rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively, our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process. PMID:19334677

  15. Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States†

    Arias, Hugo R.; Gumilar, Fernanda; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.; Bouzat, Cecilia

    2009-01-01

    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process. PMID:19334677

  16. Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Russell, Megan; Jozwiak, Krzysztof

    2010-07-13

    We compared the interaction of fluoxetine and paroxetine, two selective serotonin reuptake inhibitors (SSRIs), with the human (h) alpha4beta2, alpha3beta4, and alpha7 nicotinic acetylcholine receptors (AChRs) in different conformational states, using Ca(2+) influx, radioligand binding, and molecular docking approaches. The results established that (1) fluoxetine was more potent than paroxetine in inhibiting agonist-activated Ca(2+) influx on halpha4beta2 and halpha7 AChRs, whereas the potency of both SSRIs was practically the same in the halpha3beta4 AChR. [corrected] (2) SSRIs bind to the [(3)H]imipramine locus with a [corrected] higher affinity when the AChRs are in the desensitized states compared to the resting states. (3) The different receptor specificity for fluoxetine determined by their inhibitory potencies or binding affinities suggests different modes of interaction when the AChR is in the closed or activated state. (4) Neutral and protonated fluoxetine interacts with a binding domain located in the middle of the AChR ion channel. In conclusion, SSRIs inhibit the most important neuronal AChRs with potencies and affinities that are clinically relevant by binding to a luminal site that is shared with tricyclic antidepressants. PMID:20527991

  17. A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics

    Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro

    2011-09-01

    Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons

  18. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation.

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  19. The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease.

    Pannell, Maria; Meier, Maria Almut; Szulzewsky, Frank; Matyash, Vitali; Endres, Matthias; Kronenberg, Golo; Prinz, Vincent; Waiczies, Sonia; Wolf, Susanne A; Kettenmann, Helmut

    2016-03-01

    Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca(2+) increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer's disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity. PMID:25523105

  20. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  1. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

    Francesca Prestori

    Full Text Available The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

  2. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  3. Synergistic effect between 5-HT4 receptor agonist and phosphodiesterase 4-inhibitor in releasing acetylcholine in pig gastric circular muscle in vitro.

    Lefebvre, Romain A; Van Colen, Inge; Pauwelyn, Vicky; De Maeyer, Joris H

    2016-06-15

    5-HT4 receptor agonists have a gastroprokinetic effect by facilitating acetylcholine release from cholinergic nerves innervating gastrointestinal smooth muscle. The role of phosphodiesterase (PDE) 4 in the signal transduction pathway of the 5-HT4 receptors located on the cholinergic neurons towards the circular muscle layer in pig stomach was investigated by analysis of acetylcholine release. Circular muscle strips were prepared from pig proximal stomach and tritium outflow, induced by electrical field stimulation, was studied as a marker for acetylcholine release after incubation with [(3)H]-choline. The PDE4-inhibitor roflumilast concentration-dependently (0.1-1µM) enhanced the facilitating effect of a submaximally effective concentration of the 5-HT4 receptor agonist prucalopride (0.01µM) on electrically induced acetylcholine release. Roflumilast (0.3µM) enhanced acetylcholine release per se but in the combined presence of roflumilast and prucalopride, acetylcholine release was enhanced more than the sum of the effect of the 2 compounds alone. The 5-HT4 receptor agonist velusetrag concentration-dependently (0.01-0.1µM) enhanced acetylcholine release; the effect of the minimally effective concentration (0.01µM) was significantly enhanced by 1µM of the PDE4-inhibitor rolipram, again to a level higher than the sum of the effect of the 2 compounds alone. The synergistic effect between 5-HT4 receptor agonists and PDE4-inhibitors demonstrates that the intracellular pathway of the 5-HT4 receptors located on cholinergic neurons towards pig gastric circular muscle is controlled by PDE4. Combining a 5-HT4 receptor agonist with a PDE4-inhibitor might thus enhance its gastroprokinetic effect. PMID:27060014

  4. Effect of tissue-specific acetylcholinesterase inhibitor C-547 on α3β4 and αβεδ acetylcholine receptors in COS cells.

    Lindovský, Jiří; Petrov, Konstantin; Krůšek, Jan; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2012-08-01

    The C-547 is the most effective muscle and tissue-specific anticholinesterase among alkylammonium derivatives of 6-methyluracil (ADEMS) acting in nanomolar concentrations on locomotor muscles but not on respiratory muscles, smooth muscles and heart and brain acetylcholine esterases (AChE). When applied systematically it could influence peripheral acetylcholine receptors. The aim of the present study was to investigate the effect of C-547 on rat α3β4 (ganglionic type) and αβεδ (muscle type) nicotinic receptors expressed in COS cells. Currents evoked by rapid application of acetylcholine or nicotine were recorded in whole-cell mode by electrophysiological patch-clamp technique 2-4 days after cell transfection by plasmids coding the α3β4 or αβεδ combination of receptor subunits. In cells sensitive to acetylcholine, the application of C-547 evoked no responses. When acetylcholine was applied during an already running application of C-547, acetylcholine responses were only inhibited at concentrations higher than 10(-7)M. This inhibition is not voltage-dependent, but is accompanied by an increased rate of desensitization. Thus in both types of receptors, effective doses are approximately 100 times higher than those inhibiting AChE in leg muscles and similar to those inhibiting respiratory diaphragm muscles and external intercostal muscles. These observations show that C-547 can be considered for symptomatic treatment of myasthenia gravis and other congenital myasthenic syndromes as an inhibitor of AChE in leg muscles at concentrations much lower than those inhibiting muscle and ganglion types of acetylcholine receptors. PMID:22634638

  5. Different modulation by Ca2+-activated K+ channel blockers and herbimycin of acetylcholine- and flow-evoked vasodilatation in rat mesenteric small arteries

    Thorsgaard, Michael; Lopez, Vanesa; Buus, Niels H; Simonsen, Ulf

    2003-01-01

    The present study addressed whether endothelium-dependent vasodilatation evoked by acetylcholine and flow are mediated by the same mechanisms in isolated rat mesenteric small arteries, suspended in a pressure myograph for the measurement of internal diameter. In pressurized arterial segments contracted with U46619 in the presence of indomethacin, shear stress generated by the flow evoked relaxation. Thus, in endothelium-intact segments low (5.1±0.6 dyn cm−2) and high (19±2 dyn cm−2) shear stress evoked vasodilatations that were reduced by, respectively, 68±11 and 68±8% (P<0.05, n=7) by endothelial cell removal. Acetylcholine (0.01–1 μM) evoked concentration-dependent vasodilatation that was abolished by endothelial cell removal. Incubation with indomethacin alone did not change acetylcholine and shear stress-evoked vasodilatation, while the combination of indomethacin with the nitric oxide (NO) synthase inhibitor, NG,NG-asymmetric dimethyl-L-arginine (ADMA 1 mM), reduced low and high shear stress-evoked vasodilatation with, respectively, 52±15 and 58±10% (P<0.05, n=9), but it did not change acetylcholine-evoked vasodilatation. Inhibition of Ca2+-activated K+ channels with a combination of apamin (0.5 μM) and charybdotoxin (ChTX) (0.1 μM) did not change shear stress- and acetylcholine-evoked vasodilatation. In the presence of indomethacin and ADMA, the combination of apamin (0.5 μM) and ChTx (0.1 μM) increased contraction induced by U46619, but these blockers did not change the vasodilatation evoked by shear stress. In contrast, acetylcholine-evoked vasodilatation was abolished by the combination of apamin and charybdotoxin. In the presence of indomethacin, the tyrosine kinase inhibitor, herbimycin A (1 μM), inhibited low and high shear stress-evoked vasodilatation with, respectively, 32±12 and 68±14% (P<0.05, n=8), but it did not change vasodilatation induced by acetylcholine. In the presence of indomethacin and ADMA, herbimycin A neither

  6. “Warming yang and invigorating qi” acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Huang, Hai-peng; Pan, Hong; Wang, Hong-feng

    2016-01-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. “Warming yang and invigorating qi” acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following “warming yang and invigorating qi” acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that “warming yang and invigorating qi” acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis. PMID:27127487

  7. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis.

    Huang, Hai-Peng; Pan, Hong; Wang, Hong-Feng

    2016-03-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis. PMID:27127487

  8. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  9. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  10. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-01

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation. PMID:25016090

  11. Cognitive effects of dopamine depletion in the context of diminished acetylcholine signaling capacity in mice

    Lilia Zurkovsky

    2013-01-01

    A subset of patients with Parkinson’s disease acquires a debilitating dementia characterized by severe cognitive impairments (i.e. Parkinson’s disease dementia; PDD. Brains from PDD patients show extensive cholinergic loss as well as dopamine (DA depletion. We used a mutant mouse model to directly test whether combined cholinergic and DA depletion leads to a cognitive profile resembling PDD. Mice carrying heterozygous deletion of the high-affinity, hemicholinium-3-sensitive choline transporter (CHTHET show reduced levels of acetylcholine throughout the brain. We achieved bilateral DA depletion in CHTHET and wild-type (WT littermates via intra-striatal infusion of 6-hydroxydopamine (6-OHDA, or used vehicle as control. Executive function and memory were evaluated using rodent versions of cognitive tasks commonly used with human subjects: the set-shifting task and spatial and novel-object recognition paradigms. Our studies revealed impaired acquisition of attentional set in the set-shifting paradigm in WT-6OHDA and CHTHET-vehicle mice that was exacerbated in the CHTHET-6OHDA mice. The object recognition test following a 24-hour delay was also impaired in CHTHET-6OHDA mice compared with all other groups. Treatment with acetylcholinesterase (AChE inhibitors physostigmine (0.05 or 0.1 mg/kg and donepezil (0.1 and 0.3 mg/kg reversed the impaired object recognition of the CHTHET-6OHDA mice. Our data demonstrate an exacerbated cognitive phenotype with dual ACh and DA depletion as compared with either insult alone, with traits analogous to those observed in PDD patients. The results suggest that combined loss of DA and ACh could be sufficient for pathogenesis of specific cognitive deficits in PDD.

  12. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of [3H]-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of [3H]-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. [3H]-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties

  13. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    Buck, M.A.; Fraser, C.M. (National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (USA))

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  14. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  15. α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief.

    McGranahan, Tresa M; Patzlaff, Natalie E; Grady, Sharon R; Heinemann, Stephen F; Booker, T K

    2011-07-27

    Nicotine is the primary psychoactive substance in tobacco, and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the α4β2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal as well as nicotine-induced behaviors. Although α4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addiction, mental illness, and movement control in humans. We developed a unique model system to examine the role of α4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the α4 subunit from dopaminergic neurons in mice. The loss α4 mRNA and α4β2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of α4β2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. α4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. α4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze, and elimination of α4β2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of α4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression; however, nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine-related behaviors. PMID:21795541

  16. (E)-[125I]-5-AOIBV: a SPECT radioligand for the vesicular acetylcholine transporter

    The premise that, over the course of Alzheimer's disease (AD), changes in the levels of the vesicular acetylcholine transporter (VAChT) occur in parallel with changes to other cholinergic marker proteins provides the basis for the applicability of benzovesamicol derivatives as radioligands for AD studies by single photon emission computed tomography or positron emission tomography. We report the synthesis of enantiopure benzovesamicol derivatives: (R,R) or (S,S)-(E)-2-hydroxy-5-(3-iodoprop-2-en-1-oxy)-3- (4-phenylpiperidino)tetralin [(R,R)-AOIBV: Kd=0.45 nM or (S,S)-5-AOIBV: Kd=4.3 nM] and their corresponding tributyltin precursors for radioiodination. (R,R or S,S)-5-AOIBV was labeled with iodine-125 from their corresponding n-tributyltin precursors. Both compounds were obtained with radiochemical and optical purity greater than 97% and in radiochemical yields ranging 34-36%. To determine if these compounds could provide an advantage when compared to [125I]-iodo benzovesamicol (IBVM), IBVM was also labeled and used as the reference compound in all ex vivo experiments. Ex vivo biodistribution experiments in rats revealed that [125I]-(R,R)-5-AOIBV displayed the most suitable pharmacological profile as the radioactivity distribution corresponded well with the known VAChT brain density. Moreover, pre-injection of vesamicol prevented the uptake of [125I]-(R,R)-5-AOIBV in striatum, cortex and hippocampus, demonstrating selectivity for the VAChT. However, even if time activity curves of [125I]-(R,R)-5-AOIBV confirmed that this compound could be used to visualize the VAChT in vivo, at each point of the kinetic study, [125I]-(R,R)-5-AOIBV showed a lower specific binding compared to [125I]-IBVM. These results made [125I]-( R,R)-5-AOIBV inferior to [125I]-IBVM for the VAChT exploration in vivo

  17. Effects of Acetylcholine, Cytochalasin B and Amiprophos methyl on Phloem Transport in Radish (Raphanus sativas)

    Chong-Jun Yang; Zhi-Xi Zhai; Yu-Hai Guo; Peng Gao

    2007-01-01

    We investigated the role of the "sieve tube-companion cell complex" lining the tube periphery, particularly the microfilament and microtubule, in assisting the pushing of phloem sap flow. We made a simple phloem transport system with a living radish plant, in which the conducting channel was exposed for local treatment with chemicals that are effective in modulating protoplasmic movement (acetylcholine, (ACh) a neurotransmitter in animals and insects; cytochalasin B, (CB) a specific inhibitor of many cellular responses that are mediated by microfilament systems and amiprophos-methyl, (APM) a specific inhibitor of many cellular responses that are mediated by microtubule systems). Their effects on phloem transport were estimated by two experimental devices: (i) a comparison of changes in the amount of assimilates in terms of carbohydrates and 14C-labeled photosynthetic production that is left in the leaf blade of treated plants; and (ii) distribution patterns of 14C-labeled leaf assimilates in the phloem transport system. The results indicate that CB and APM markedly inhibited the transfer of photosynthetic product from leaf to root via the leaf vein, while ACh enhanced the transfer of photosynthetic product in low concentrations (5.0×10-4 mol/L) but inhibited it in higher concentrations (2.0×10-3 mol/L) from leaf to root via the leaf vein. Autoradiograph imaging clearly reveals that ACh treatment is more effective than the control, and both CB and APM treatments effectively inhibit the passage of radioactive assimilates. All of the results support the postulation that the peripheral protoplasm in the sieve tube serves not only as a passive semi-permeable membrane, but is also directly involved in phloem transport.

  18. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats. PMID:25468497

  19. Developmental adaptation of central nervous system to extremely high acetylcholine levels.

    Vladimir Farar

    Full Text Available Acetylcholinesterase (AChE is a key enzyme in termination of fast cholinergic transmission. In brain, acetylcholine (ACh is produced by cholinergic neurons and released in extracellular space where it is cleaved by AChE anchored by protein PRiMA. Recently, we showed that the lack of AChE in brain of PRiMA knock-out (KO mouse increased ACh levels 200-300 times. The PRiMA KO mice adapt nearly completely by the reduction of muscarinic receptor (MR density. Here we investigated changes in MR density, AChE, butyrylcholinesterase (BChE activity in brain in order to determine developmental period responsible for such adaptation. Brains were studied at embryonal day 18.5 and postnatal days (pd 0, 9, 30, 120, and 425. We found that the AChE activity in PRiMA KO mice remained very low at all studied ages while in wild type (WT mice it gradually increased till pd120. BChE activity in WT mice gradually decreased until pd9 and then increased by pd120, it continually decreased in KO mice till pd30 and remained unchanged thereafter. MR number increased in WT mice till pd120 and then became stable. Similarly, MR increased in PRiMA KO mice till pd30 and then remained stable, but the maximal level reached is approximately 50% of WT mice. Therefore, we provide the evidence that adaptive changes in MR happen up to pd30. This is new phenomenon that could contribute to the explanation of survival and nearly unchanged phenotype of PRiMA KO mice.

  20. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time. PMID:20684041

  1. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. PMID:21642011

  2. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  3. Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients.

    Morissette, Marc; Morin, Nicolas; Grégoire, Laurent; Rajput, Alex; Rajput, Ali H; Di Paolo, Thérèse

    2016-06-01

    L-DOPA-induced dyskinesias (LID) appear in the majority of Parkinson's disease (PD) patients. Nicotinic acetylcholine (nACh) receptor-mediated signaling has been implicated in PD and LID and modulation of brain α7 nACh receptors might be a potential therapeutic target for PD. This study used [(125)I]α-Bungarotoxin autoradiography to investigate α7 nACh receptors in LID in post-mortem brains from PD patients (n=14) and control subjects (n=11), and from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated with saline (n=5), L-DOPA (n=4) or L-DOPA+2-methyl-6-(phenylethynyl)pyridine (MPEP) (n=5), and control monkeys (n=4). MPEP is the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist; it reduced the development of LID in these monkeys. [(125)I]α-Bungarotoxin specific binding to striatal and pallidal α7 nACh receptors were only increased in L-DOPA-treated dyskinetic MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys; dyskinesia scores correlated positively with this binding. The total group of Parkinsonian patients had higher [(125)I]α-Bungarotoxin specific binding compared to controls in the caudate nucleus but not in the putamen. PD patients without motor complications had higher [(125)I]α-Bungarotoxin specific binding compared to controls only in the caudate nucleus. PD patients with LID only had higher [(125)I]α-Bungarotoxin specific binding compared to controls in the caudate nucleus and compared to those without motor complications and controls in the putamen. PD patients with wearing-off only, had [(125)I]α-Bungarotoxin specific binding at control values in the caudate nucleus and lower in the putamen. Reduced motor complications were associated with normal striatal α7 nACh receptors, suggesting the potential of this receptor to manage motor complications in PD. PMID:27038656

  4. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression. PMID:27474687

  5. [Treatment approach to congenital myasthenic syndrome in a patient with acetylcholine receptor deficiency].

    Ishigaki, Keiko; Murakami, Terumi; Ito, Yasushi; Yanagisawa, Akiko; Kodaira, Kayano; Shishikura, Keiko; Suzuki, Haruko; Hirayama, Yoshito; Osawa, Makiko

    2009-01-01

    Congenital myasthenic syndromes (CMS) are rare heterogeneous disorders of neurotransmission caused by genetic defects of neuromuscular junction molecules. While CMS patients have been reported worldwide, in Japan there have been only a few descriptions of adult CMS patients with acetylcholinesterase (AChE) deficiency and slow channel syndrome. Herein, we report a Japanese CMS patient with acetylcholine receptor (AChR) deficiency, diagnosed during childhood, and our treatment approach to the patient. This 13-year-old Japanese boy had had severe myasthenic symptoms since infancy. Ptosis, his first symptom, appeared at 5 months and nasal voice was recognized at 2 years of age. AchR and anti-muscle-specific tyrosine kinase (Musk) antibody remained negative. A positive tensilon test and decremental response on electromyogram supported the diagnosis of sero-negative myasthenia gravis. Despite thymectomy and strong immunosuppressive therapy including steroid pulse and FK 506, he gradually deteriorated and became wheelchair bound. Genetic analyses for AchR, Rapsyn, Musk and AChE were negative. At age 11 years, a muscle biopsy was performed in the deltoid muscle for neuromuscular junction sampling. Electron microscopic and confocal microscopic analysis of endplates showed almost complete loss of AChR and the diagnosis of CMS with AChR deficiency was confirmed. All immunosuppressive therapies were discontinued. Instead, we started Ubretide and 3,4-diaminopyridine (DAP) after obtaining informed consent. Although not approved in Japan for this use, 3,4-DAP is reportedly effective in refractory cases of CMS. The patient experienced no side effects. Despite all of the objective data were improving, his subjective symptoms and ADL remained poor. There are still many challenges in the treatment of the patient. PMID:19172815

  6. Association of nicotinic acetylcholine receptor subunit alpha-4 polymorphisms with smoking behaviors in Chinese male smokers

    CHU Cheng-jing; YANG Yan-chun; WEI Jin-xue; ZHANG Lan

    2011-01-01

    Background It has been reported that the nicotinic acetylcholine receptor subunit a4 gene (CHRNA4) might be associated with smoking behaviors in the previous studies. Up to now, there are few reports on the relationship between CHRNA4 and smoking initiation. In this study, we tried to explore the role of two polymorphisms in CHRNA4 (rs 1044396 and rs 1044397) in smoking initiation and nicotine dependence in Chinese male smokers.Methods Nine hundred and sixty-six Chinese male lifetime nonsmokers and smokers were assessed by the Fagerstr(o)m test for nicotine dependence (FTND), smoking quantity (SQ) and the heaviness of smoking index (HSI). All subjects were divided into four groups based on their tobacco use history and the FTND scores. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find two polymorphisms of CHRNA4 in these subjects.Results The x2 test showed that rs1044396 was significantly associated with smoking initiation (x2=4.65, P=0.031),while both rs1044396 and rs1044397 were significantly associated with nicotine dependence (x2=5.42, P=0.020; x2=758,P=0.005). Furthermore, the T-G (3.9%) haplotype of rs1044396-rs1044397 showed significant association with smoking initiation (x2=6.30, P=0.012) and the C-G haplotype (58.9%) remained positive association with nicotine dependence (x2=8.64, P=0.003) after Bonferroni correction. The C-G haplotype also significantly increased the HSI (P=0.002) and FTND scores (P=0.001) after Bonferroni correction.Conclusion These findings suggest that CHRNA4 may be associated with smoking initiation and the C-G haplotype of rs1044396-rs1044397 might increase the vulnerability to nicotine dependence in Chinese male smokers.

  7. Physiological and biochemical studies of newly synthesized muscarinic acetylcholine receptors in embryonic chicken heart

    Exposure of either chicken embryos in ovo or cultured embryonic chicken cardiac cells in vitro to the muscarinic agonist carbachol results in a 70-90% decrease in the number of muscarinic acetylcholine receptors (mAChR) expressed in cardiac cells. Block of agonist-receptor interactions in ovo with the antagonist atropine or removal of the agonist in vitro results in a gradual increase in mAChR number, reaching the control level in 14 hr. Measurements of physiological sensitivity of atria or cultured cells show that, even after the complete recovery of receptor number, the sensitivity to agonist is reduced. The sensitivity of the mAChR-mediated inhibition of adenylate cyclase is also decreased at this time. Newly synthesized mAChR which appear following affinity alkylation in cultured cells are also poorly coupled to the stimulation of 86Rb+ efflux, indicating that decreased physiological sensitivity is not due to an unknown effect of long-term agonist exposure on general cellular function, but rather reflects an intrinsic property of newly synthesized mAChR. This increase in sensitivity is also not blocked by cycloheximide. The increase in sensitivity of the mAChR-mediated responses is due neither to a lack of expression of newly synthesized mAChR on the surface nor to reduced agonist affinity of the mAChR. The diminished sensitivity and subsequent maturation observed in cells containing newly synthesized receptors is due either to a small change in mAChR, or to a change in an as-yet-undefined component of the mAChR transduction system; this alteration represents a novel locus for modulation of cholinergic signals in the heart

  8. Inducibility of human atrial fibrillation in an in silico model reflecting local acetylcholine distribution and concentration.

    Hwang, Minki; Lee, Hyun-Seung; Pak, Hui-Nam; Shim, Eun Bo

    2016-01-01

    Vagal nerve activity has been known to play a crucial role in the induction and maintenance of atrial fibrillation (AF). However, it is unclear how the distribution and concentration of local acetylcholine (ACh) promotes AF. In this study, we investigated the effect of the spatial distribution and concentration of ACh on fibrillation patterns in an in silico human atrial model. A human atrial action potential model with an ACh-dependent K(+) current (IKAch) was used to examine the effect of vagal activation. A simulation of cardiac wave dynamics was performed in a realistic 3D model of the atrium. A model of the ganglionated plexus (GP) and nerve was developed based on the "octopus hypothesis". The pattern of cardiac wave dynamics was examined by applying vagal activation to the GP areas or randomly. AF inducibility in the octopus hypothesis-based GP and nerve model was tested. The effect of the ACh concentration level was also examined. In the single cell simulation, an increase in the ACh concentration shortened APD90 and increased the maximal slope of the restitution curve. In the 3D simulation, a random distribution of vagal activation promoted wavebreaks while ACh secretion limited to the GP areas did not induce a noticeable change in wave dynamics. The octopus hypothesis-based model of the GP and nerve exhibited AF inducibility at higher ACh concentrations. In conclusion, a 3D in silico model of the GP and parasympathetic nerve based on the octopus model exhibited higher AF inducibility with higher ACh concentrations. PMID:26807030

  9. Spontaneous release of acetylcholine and acetylhomocholine from mouse forebrain minces: cytoplasmic or vesicular origin

    The objective of this study was to determine the subcellular origin of cholinergic transmitter released spontaneously from mouse forebrain minces. To accomplish this objective, minces were pretreated in ionic media and then loaded with [14C]homocholine, an analog of choline, to form the false transmitter [14Cy]acetylhomocholine [( 14C]AHCh). The ratio of the false transmitter [14C]AHCh to the true transmitter ACh was then used as an index of cholinergic transmitter contents for both the cytoplasmic (S3) and vesicle-bound (P3) fractions. Three different pretreatment procedures were used to cause the following changes in S3 and P3 false to true transmitter ratios prior to spontaneous release: 1) a small increase in the S3 ratio of [14C]AHCh to acetylcholine (ACh) and a large increase in the P3 ratio of [14C] AHCh to ACh; 2) a decrease in the S3 ratio of [14C]AHCh to ACh and an increase in the P3 ratio of [14C]AHCh to ACh; 3) an increase in the P3 ratio of [14C]AHCh to ACh without affecting the S3 ratio of [14C]AHCh to ACh. The influence of each pretreatment on these subcellular ratios was then compared with its influence on the spontaneous release ratio of [14C]AHCh to ACh. In all 3 instances, the influence of pretreatment on the ratio of spontaneously released false and true cholinergic transmitters from minces coincided with the effect of pretreatment on the pre-release ratio of false to true transmitter in the S3 fraction. These results suggest that much of the cholinergic transmitter which is spontaneously released from mouse forebrain occurs from the cytoplasmic fraction

  10. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    Malin Jonsson Fagerlund

    2016-02-01

    Full Text Available Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses.

  11. Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Bhumireddy, Pankaj; Ortells, Marcelo O

    2010-05-01

    Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13') and leucine (position 9') rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20', 21', and 24'. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20') rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization. PMID:20079457

  12. Novel positive allosteric modulators of the human α7 nicotinic acetylcholine receptor.

    Arias, Hugo R; Gu, Ruo-Xu; Feuerbach, Dominik; Guo, Bao-Bao; Ye, Yong; Wei, Dong-Qing

    2011-06-14

    The pharmacological activity of a series of novel amide derivatives was characterized on several nicotinic acetylcholine receptors (AChRs). Ca(2+) influx results indicate that these compounds are not agonists of the human (h) α4β2, α3β4, α7, and α1β1γδ AChRs; compounds 2-4 are specific positive allosteric modulators (PAMs) of hα7 AChRs, whereas compounds 1-4, 7, and 12 are noncompetitive antagonists of the other AChRs. Radioligand binding results indicate that PAMs do not inhibit binding of [(3)H]methyllycaconitine but enhance binding of [(3)H]epibatidine to hα7 AChRs, indicating that these compounds do not directly, but allosterically, interact with the hα7 agonist sites. Additional competition binding results indicate that the antagonistic action mediated by these compounds is produced by direct interaction with neither the phencyclidine site in the Torpedo AChR ion channel nor the imipramine and the agonist sites in the hα4β2 and hα3β4 AChRs. Molecular dynamics and docking results suggest that the binding site for compounds 2-4 is mainly located in the inner β-sheet of the hα7-α7 interface, ∼12 Å from the agonist locus. Hydrogen bond interactions between the amide group of the PAMs and the hα7 AChR binding site are found to be critical for their activity. The dual PAM and antagonistic activities elicited by compounds 2-4 might be therapeutically important. PMID:21510634

  13. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    Arias, Hugo R; Ortells, Marcelo O; Feuerbach, Dominik

    2013-11-01

    The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants. PMID:23917086

  14. Interaction of ibogaine with human α3β4-nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.

    2015-01-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the hα3β4 AChR ion channel with relatively high affinity (Kd = 0.46 ± 0.06 µM), and ibogaine inhibits [3H]ibogaine binding to the desensitized hα3β4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the hα3β4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6′) and valine/phenylalanine (position 13′) rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time. PMID:20684041

  15. Functional and structural interaction of (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor.

    Arias, Hugo R; Fedorov, Nikolai B; Benson, Lisa C; Lippiello, Patrick M; Gatto, Greg J; Feuerbach, Dominik; Ortells, Marcelo O

    2013-01-01

    The interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function. We tested whether (-)-reboxetine binds to the luminal [(3)H]imipramine site. The results indicate that, although (-)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4β2 nAChR ion channels. Patch-clamp results also indicate that (-)-reboxetine progressively inhibits the hα4β2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (-)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6' and 14'. In addition, we found a (-)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (-)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (-)-reboxetine may be produced (at least partially) by its inhibitory action on hα4β2 nAChRs. PMID:23010362

  16. Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis

    Qi-Guang Shi; Zhi-Hong Wang; Xiao-Wei Ma; Da-Qi Zhang; Chun-Sheng Yang; Fu-Dong Shi; Li Yang

    2012-01-01

    Objective To evaluate the frequency,distribution and clinical significance of the antibodies to the fetal and/or adult acetylcholine receptor (AChR) in patients with myasthenia gravis (MG).Methods AChR antibodies were detected by cell-based assay in the serum of ocular MG (OMG) (n =90) and generalized MG (GMG) patients (n =110).The fetaltype (2α∶ β∶ γ∶ δ) and adult-type (2α∶ β∶ ε∶ δ) AChR were used as antigens,and their relevance to disease presentation was assessed.Results The overall frequencies of anti-adult and anti-fetal AChR antibodies were similar in all 200 patients examined,with 14 having serum specific to the AChR-γ subunit,and 22 to the AChR-ε subunit.The overall sensitivity when using the fetal and adult AChR antibodies was higher than that when using the fetal AChR antibody only (P =0.015).Compared with OMG patients,the mean age at disease onset and the positive ratio of antibodies to both isoforms of the AChR were significantly higher in patients who subsequently progressed to GMG.Older patients and patients with both anti-fetal and anti-adult AChR antibodies had a greater risk for developing generalized disease [odds ratio (OR),1.03;95% confidence interval (CI),1.01-1.06 and OR,5.09;95% CI,2.23-11.62].Conclusion Using both fetal-and adulttype AChRs as the antigens may be more sensitive than using either subtype.Patients with serum specific to both isoforms are at a greater risk of progressing to GMG.Patients with disease onset at an advanced age appear to have a higher frequency of GMG conversion.

  17. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  18. Complete definite positive spasm on acetylcholine spasm provocation tests: comparison of clinical positive spasm.

    Sueda, Shozo; Miyoshi, Toru; Sasaki, Yasuhiro; Ohshima, Kousei; Sakaue, Tomoki; Habara, Hirokazu; Kohno, Hiroaki

    2016-02-01

    In the clinical grounds, patients with ≥90 % luminal narrowing during acetylcholine (ACh) testing had variable response. We investigated ischemic findings and chest symptoms in patients with ≥90 % luminal narrowing when performing ACh tests, retrospectively. We performed 763 ACh tests over 13 years (2001-2013). We analyzed chest symptoms and positive ischemic ECG changes during ACh tests. More than 90 % luminal narrowing was found in 441 patients (57.8 %) including 355 patients in the right coronary artery (RCA) and 363 patients in the left coronary artery (LCA). Chest symptom was observed in 386 patients (87.5 %) including 293 patients in the RCA and 304 patients in the LCA. ST elevation was found in 161 patients including 110 in the RCA and 85 patients in the LCA, while ST depression was recognized in 146 patients including 119 patients in the RCA and 117 patients in the LCA. Three quarter of patients with ≥90 % luminal narrowing had significant ischemic ECG changes, whereas two-third of patients with ≥90 % luminal narrowing complained usual chest pain accompanied with significant ischemic ECG changes. Unusual chest symptom was complained in 7.3 % patients with ≥90 % luminal narrowing. Neither chest symptom nor ECG changes were found in 30 patients (6.8 %) with ≥90 % luminal narrowing. A third of these patients had ischemic findings on non-invasive tests before catheterization and six patients had subtotal or total occlusion. We should realize some limitation to define positive coronary spasm based on the ischemic ECG change and chest symptom during ACh tests. PMID:25366988

  19. Gender differences in sensitivity of acetylcholine and ergonovine to coronary spasm provocation test.

    Sueda, Shozo; Miyoshi, Toru; Sasaki, Ysuhiro; Sakaue, Tomoki; Habara, Hirokazu; Kohno, Hiroaki

    2016-03-01

    We examined the sex difference concerning the coronary artery response between ACh and ER in this study. We already reported the difference of coronary response between acetylcholine (ACh) and ergonovine (ER). We performed both ACh and ER tests of 461 patients (male 294 patients, female 167 patients, mean age 64.4 ± 11.3 years) during 23 years. Positive coronary spasm was defined as >99 % transient luminal narrowing with usual chest pain and/or ischemic ECG changes. Firstly, ACh was administered in incremental doses of 20/50/(80) μg into the RCA and 20/50/100/(200) μg into the LCA over 20 s. Secondly, ER was administered in a total dose of 40 μg into the RCA and of 64 μg into the LCA over 2-4 min. Intracoronary injection of ACh and ER provoked spasm in 221 patients consisting of 160 male patients and 61 female patients. In female patients, the spasm provoked by ACh was almost perfect except in two patients (59 patients, 96.7 %), while ER provoked spasm in only 20 patients (32.8 %). In male patients, provoked spasm by ACh (129 patients, 80.6 %) was significantly higher than ER (97 patients, 60.6 %). As a spasm provocation test, ACh is more sensitive than ER in both sexes and especially in females. We may select two pharmacological agents by sex differences to provoke coronary artery spasm in the cardiac catheterization laboratory in the future. PMID:25539623

  20. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity. PMID:25998908

  1. Regional pulmonary ventilation and perfusion studies with sup(81m)Kr after acetylcholine inhalation in bronchial asthma

    sup(81m)Kr is a radioactive noble gas with an ultrashort halflife of 13 seconds, and can be produced in gaseous form or in solution from its parent, 81Rb(T1/2=4.7hours). Using sup(81m)Kr both regional pulmonary ventilation and perfusion were studied simultaneously in 32 asthmatic patients during remission just before and after acetylcholine inhalation. Twenty-five patients were studied in the sitting position and 7 patients supine : the former were examined once, the latter repeatedly after acetylcholine inhalation. The results were as follows : 1. Changes in regional ventilation 1) Ventilatory abnormalities after acetylcholine inhalation appeared to be localized. Their appearances were related to the percentage decrease in FEVsub(1.0). 2) The lower zones were involved most frequently and the upper zones least frequently. 3) On serial examination, the time courses of regional ventilatory function showed the same patterns as those of percentage decrease in FEVsub(1.0). in hypoventilated areas. But regional ventilatory recovery times were different in each area. 2. Regional ventilation and perfusion relationships 1) Hypoventilated areas generally showed hypoperfusion (similar distribution), but ventilatory abnormalities were greater than those of perfusion (low regional ventilation /perfusion ratio). These findings indicate that perfusion abnormalities are secondary to the ventilatory abnormalities. 2) Abnormalities of regional ventilation/perfusion ratios were related to the ventilatory abnormalities but almost never to the percentage decrease in FEVsub(1.0). 3) In upper (middle) zones, there were some cases with increased perfusion in spite of decreased ventilation. 4) Hypoperfusion reached a maximum witnin 2-3 minutes after the start of the hypoventilated plateau. (author)

  2. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. PMID:26049014

  3. Study of acetylcholine and barium receptors in the rat duodeno-jejunum by means of labelled molecules

    The purpose of this work is the determination of the number and the localization of Acetylcholine and Barium receptors in the rat intestine. We used 'radioactive labelled' drugs to reach a high sensitiveness of detection. So we were able to point out the number of 'effective' molecules of drugs, that is to say the only ones combining with receptors. With the aid of some assumptions, we determine on the one hand the receptors localization by an assessment of the drug penetration depth before reaching their level and on the other hand the number of these receptors. (author)

  4. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease: an autoradiographic study

    In Alzheimer's disease (AD) and Parkinson's disease (PD), dysfunction in the basal forebrain cholinergic system is accompanied by a consistent loss of presynaptic cholinergic markers in cortex, but changes in cholinergic receptor binding sites are poorly understood. In the present study, we used receptor autoradiography to map the distribution of nicotinic [3H]acetylcholine binding sites in cortices of individuals with AD and PD and matched control subjects. In both diseases, a profound loss of nicotinic receptors occurs in all cortical layers, particularly the deepest layers

  5. Constitutively Active Acetylcholine-Dependent Potassium Current Increases Atrial Defibrillation Threshold by Favoring Post-Shock Re-Initiation

    Bingen, Brian O.; Saïd F. A. Askar; Zeinab Neshati; Iolanda Feola; Panfilov, Alexander V.; de Vries, Antoine A F; Pijnappels, Daniël A.

    2015-01-01

    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10-20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (I-K,I-ACh -> I-K,I-ACh-c), which is associated with ECV failure. This study investigated the role of I-K,I-ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal ra...

  6. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan

    2009-01-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  7. Acetylcholine sensitivity of biphasic Ca2+ mobilization induced by nicotinic receptor activation at the mouse skeletal muscle endplate

    Dezaki, Katsuya; Kimura, Ikuko

    1998-01-01

    Acetylcholine (ACh) was locally applied onto the endplate region in a mouse phrenic nerve-diaphragm muscle preparation to measure intracellular free calcium ([Ca2+]i) entry through nicotinic ACh receptors (AChRs) by use of Ca2+-aequorin luminescence.ACh (0.1–3 mM, 20 μl) elicited biphasic elevation of [Ca2+]i (fast and slow Ca2+ mobilization) in muscle cells. The peak amplitude of the slow Ca2+ mobilization (not accompanied by twitch tension) was concentration-dependently increased by ACh, wh...

  8. Expression of the α-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants

    Restriction fragments of DNA derived from a cDNA clone of the α subunit of the acetylcholine receptor were subcloned in Escherichia coli by using the trpE fusion vector, pATH2. Transformants expressing the amino acid sequences 166-315 or 166-200 are shown to produce a chimeric protein that bound α-bungarotoxin. Moreover, it is shown that sufficient amounts of toxin-binding proteins can be generated by individual colonies of bacteria. This provides a new approach for gene selection via functional expression-i.e., ligand overlays of colony blots

  9. The regulation of M1 muscarinic acetylcholine receptor desensitization by synaptic activity in cultured hippocampal neurons1

    Willets, Jonathon M.; Nelson, Carl P.; Nahorski, Stefan R; Challiss, R.A. John

    2007-01-01

    To better understand metabotropic/ionotropic integration in neurons we have examined the regulation of M1 muscarinic acetylcholine (mACh) receptor signalling in mature (> 14 days in vitro), synaptically-active hippocampal neurons in culture. Using a protocol where neurons are exposed to an EC50 concentration of the muscarinic agonist methacholine (MCh) prior to (R1), and following (R2) a desensitizing pulse of a high concentration of this agonist, we have found that the reduction in M1 mACh r...

  10. Multiple Transmembrane Binding Sites for p-Trifluoromethyldiazirinyl-etomidate, a Photoreactive Torpedo Nicotinic Acetylcholine Receptor Allosteric Inhibitor*

    Hamouda, Ayman K.; Stewart, Deirdre S.; Husain, S. Shaukat; Cohen, Jonathan B.

    2011-01-01

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [3H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[3H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our unders...

  11. The effect of acetylcholine, LatA and FAA on phloem assimilates translocation of Raphanus sativus L

    The petiole phloem of Raphanus sativus L. is treated with the medicaments of acetylcholine (Ach, the expansionist material of protoplasm), latrunculin A (LatA, the dissolubility of microfilament) and FAA (the regularization of phloem). The effects of treatments are measured by the accumulated content of dissoluble sugar and starch in the leaves, and 14C-labelled assimilates. The regulating role of three medicaments on the translocation of assimilates in the phloem of Raphanus sativus L are investigated. The results indicate that low Ach improves assimilates translocation while LatA and FAA inhibit it in petiole phloem of Raphanus sativus L.. (authors)

  12. A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors

    Jeon, Jongrye; Dencker, Ditte; Wortwein, Gitta; Woldbye, David P.D.; Cui, Yinghong; Davis, Albert A.; Levey, Allan I.; Schütz, Günther; Sager, Thomas; Mørk, Arne; Li, Cuiling; Deng, Chu-Xia; Fink-Jensen, Anders; Wess, Jürgen

    2010-01-01

    Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M1–M5 mAChRs). Like other mAChR subtypes, the M4 mAChR is widely expressed in different regions of the forebrain. Interestingly, M4 mAChRs are coexpressed with D1 dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M4 mAChR subpopulation in modulating dopamine-dependent behaviors, we use...

  13. Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies

    1984-01-01

    A collection of 126 monoclonal antibodies (mAbs) made against acetylcholine receptors (AChRs) from the electric organs of Torpedo californica or Electrophorus electricus was tested for cross-reactivity with AChRs in cryostat sections of skeletal muscle from Rana pipiens and Xenopus laevis by indirect immunofluorescence. 49 mAbs (39%) cross- reacted with AChRs from Rana, and 25 mAbs (20%) cross-reacted with AChRs from Xenopus. mAbs specific for each of the four subunits of electric organ AChR ...

  14. Wash-resistantly bound xanomeline inhibits acetylcholine release by persistent activation of presynaptic M2 and M4 muscarinic receptors

    Machová, Eva; Jakubík, Jan; El-Fakahany, E. E.; Doležal, Vladimír

    Praha : 2.Lékařská fakulta UK, 2007. s. 55-55. [Vědecká konference 2007 - věda, sport a rock ´n´roll. 25.04.2007-26.04.2007, Praha] R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant ostatní: NIH(US) NS25732 Institutional research plan: CEZ:AV0Z50110509 Keywords : spo2 * xanomeline * acetylcholine * presynaptic muscarinic receptors Subject RIV: FH - Neurology

  15. Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists--structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Balle, Thomas;

    2009-01-01

    Compounds based on the 3-(dimethylamino)butyl dimethylcarbamate (DMABC) scaffold were synthesized and pharmacologically characterized at the alpha(4)beta(2), alpha(3)beta(4,) alpha(4)beta(4) and alpha(7) neuronal nicotinic acetylcholine receptors (nAChRs). The carbamate functionality and a small...... hydrophobic substituent in the C-3 position were found to be vital for the binding affinity to the nAChRs, whereas the carbamate nitrogen substituents were important for nAChR subtype selectivity. Finally, the compounds were found to be agonists at the alpha(3)beta(4) nAChR....

  16. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones.

    Eman Y Gohar

    Full Text Available We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS/heme oxygenase (HO pathways. Dose-vasodilatory response curves of acetylcholine (0.01-2.43 nmol were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5-4.0 mg/kg/day, 2 weeks. Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day in contrast to no effect for higher doses (2 and 4 mg/kg/day. The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME or HO-1 (zinc protoporphyrin, ZnPP. The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA and estrogen (E2. Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.

  17. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Zhang Chuan-Xi

    2007-09-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid amplification of cDNA ends (RACE methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.

  20. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  1. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes.

    Wenz, Jorge J; Barrantes, Francisco J

    2005-01-11

    Purified nicotinic acetylcholine receptor (AChR) protein was reconstituted into synthetic lipid membranes having known effects on receptor function in the presence and absence of cholesterol (Chol). The phase behavior of a lipid system (DPPC/DOPC) possessing a known lipid phase profile and favoring nonfunctional, desensitized AChR was compared with that of a lipid system (POPA/POPC) containing the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the AChR. Fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and AChR intrinsic fluorescence by a nitroxide spin-labeled phospholipid showed that the AChR diminishes the degree of DPH quenching and promotes DPPC lateral segregation into an ordered lipid domain, an effect that was potentiated by Chol. Fluorescence anisotropy of the probe DPH increased in the presence of AChR or Chol and also made apparent shifts to higher values in the transition temperature of the lipid system in the presence of Chol and/or AChR. The values were highest when both Chol and AChR were present, further reinforcing the view that their effect on lipid segregation is additive. These results can be accounted for by the increase in the size of quencher-free, ordered lipid domains induced by AChR and/or Chol. Pyrene phosphatidylcholine (PyPC) excimer (E) formation was strongly reduced owing to the restricted diffusion of the probe induced by the AChR protein. The analysis of Forster energy transfer (FRET) from the protein to DPH further indicates that AChR partitions preferentially into these ordered lipid microdomains, enriched in saturated lipid (DPPC or POPA), which segregate from liquid phase-enriched DOPC or POPC domains. Taken together, the results suggest that the AChR organizes its immediate microenvironment in the form of microdomains with higher lateral packing density and rigidity. The relative size of such microdomains depends not only on the phospholipid polar headgroup

  2. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.

    Fernández-Carvajal, Asia M; Encinar, José A; Poveda, José Antonio; de Juan, Entilio; Martínez-Pinna, Juan; Ivorra, Isabel; Ferragut, José Antonio; Morales, Andrés; González-Ros, José Manuel

    2006-01-01

    Ligand-gated ion channels (LGICs) constitute an important family of complex membrane proteins acting as receptors for neurotransmitters (Barnard, 1992; Ortells and Lunt, 1995). The nicotinic acetylcholine receptor (nAChR) from Torpedo is the most extensively studied member of the LGIC family and consists of a pentameric transmembrane glycoprotein composed of four different polypeptide subunits (alpha, beta, gamma, and delta) in a 2:1:1:1 stoichiometry (Galzi and Changeux, 1995; Hucho et al., 1996) that are arranged pseudosymmetrically around a central cation-selective ion channel. Conformational transitions, from the closed (nonconducting), to agonist-induced open (ion-conducting), to desensitized (nonconducting) states, are critical for functioning of the nAChR (Karlin, 2002). The ability of the nAChR to undergo these transitions is profoundly influenced by the lipid composition of the bilayer (Barrantes, 2004). Despite existing information on lipid dependence of AChR function, no satisfactory explanation has been given on the molecular events by which specific lipids exert such effects on the activity of an integral membrane protein. To date, several hypotheses have been entertained, including (1) indirect effects of lipids through the alteration of properties of the bilayer, such as fluidity (an optimal fluidity hypothesis [Fong and McNamee, 1986]) or membrane curvature and lateral pressure (Cantor, 1997; de Kruijff, 1997), or (2) direct effects through binding of lipids to defined sites on the transmembrane portion of the protein (Jones and McNamee, 1988; Blanton and Wang, 1990; Fernández et al., 1993; Fernández-Ballester et al., 1994), which has led to the postulation of a possible role of certain lipids as peculiar allosteric ligands of the protein. In this paper we have reconstituted purified AChRs from Torpedo into complex multicomponent lipid vesicles in which the phospholipid composition has been systematically altered. Stopped-flow rapid kinetics of

  3. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse

    Koepsell Hermann

    2006-04-01

    Full Text Available Abstract Background It has been proposed that serotonin (5-HT-mediated constriction of the murine trachea is largely dependent on acetylcholine (ACh released from the epithelium. We recently demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs, which are also expressed by airway epithelial cells. Hence, the hypothesis emerged that 5-HT evokes bronchoconstriction by inducing release of ACh from epithelial cells via OCTs. Methods We tested this hypothesis by analysing bronchoconstriction in precision-cut murine lung slices using OCT and muscarinic ACh receptor knockout mouse strains. Epithelial ACh content was measured by HPLC, and the tissue distribution of OCT isoforms was determined by immunohistochemistry. Results Epithelial ACh content was significantly higher in OCT1/2 double-knockout mice (42 ± 10 % of the content of the epithelium-denuded trachea, n = 9 than in wild-type mice (16.8 ± 3.6 %, n = 11. In wild-type mice, 5-HT (1 μM caused a bronchoconstriction that slightly exceeded that evoked by muscarine (1 μM in intact bronchi but amounted to only 66% of the response to muscarine after epithelium removal. 5-HT-induced bronchoconstriction was undiminished in M2/M3 muscarinic ACh receptor double-knockout mice which were entirely unresponsive to muscarine. Corticosterone (1 μM significantly reduced 5-HT-induced bronchoconstriction in wild-type and OCT1/2 double-knockout mice, but not in OCT3 knockout mice. This effect persisted after removal of the bronchial epithelium. Immunohistochemistry localized OCT3 to the bronchial smooth muscle. Conclusion The doubling of airway epithelial ACh content in OCT1/2-/- mice is consistent with the concept that OCT1 and/or 2 mediate ACh release from the respiratory epithelium. This effect, however, does not contribute to 5-HT-induced constriction of murine intrapulmonary bronchi. Instead, this activity involves 1 a non

  4. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  5. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype

    Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α7 nAChR ligands, (R)-2-[11C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([11C](R)-MeQAA) and its isomer (S)-[11C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[11C]MeQAA for in vivo imaging of α7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([11C](R)-MeQAA: 7.68 and [11C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [11C](R)-MeQAA was slow in the hippocampus (α7 nAChR-rich region) but was rapid in the cerebellum (α7 nAChR-poor region). On the other hand, the clearance was fast for [11C](S)-MeQAA in all regions. The brain uptake of [11C](R)-MeQAA was decreased by methyllycaconitine (α7 nAChR antagonist) treatment. In monkeys, α7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [11C](R)-MeQAA, while the uptake was rather homogeneous for [11C](S)-MeQAA. Conclusions: [11C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α7 nAChRs in vivo.

  6. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4–8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75–90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content

  7. Habituation-Like Decrease of Acetylcholine-Induced Inward Current in Helix Command Neurons: Role of Microtubule Motor Proteins.

    Vasil'yeva, Natal'ya A; Murzina, Galina B; Pivovarov, Arkady S

    2015-07-01

    The role of kinesin and dynein microtubule-associated molecular motors in the cellular mechanism of depression of acetylcholine-induced inward chloride current (ACh-current) was examined in command neurons of land snails (Helix lucorum) in response to repeated applications of ACh to neuronal soma. This pharmacological stimulation imitated the protocol of tactile stimulation evoking behavioural habituation of the defensive reaction. In this system, a dynein inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, 50 µM) decreased the ACh-current depression rate. Kinesin Eg5 inhibitors (Eg5 inhibitor III, 10 µM and Eg5 inhibitor V, trans-24, 15 µM) reduced the degree of current depression, and Eg5 inhibitor V also reduced the initial rate of depression. The results of electrophysiological experiments in combination with mathematical modelling provided evidence of the participation of dyneins and kinesin Eg5 proteins in the radial transport of acetylcholine receptors in command neurons of H. lucorum in the cellular analogue of habituation. Furthermore, these results suggest that the reciprocal interaction between dynein and kinesin proteins located on the same vesicle can lead to reverse their usual direction of transport (dyneins-in exocytosis and kinesin Eg5-in endocytosis). PMID:25687906

  8. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  9. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases

  10. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  11. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  12. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25582289

  13. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (...

  14. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs; Madsen, Jacob; Nielsen, Elsebet Ø; Palner, Mikael; Timmermann, Daniel B; Peters, Dan; Knudsen, Gitte M

    2011-01-01

    Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)nAChR bind...

  15. A synthetic combinatorial strategy for developing a-conotoxin analogs as potent a7 nicotinic acetylcholine receptor antagonists

    Armishaw, Christopher J; Singh, Narender; Medina-Franco, Jose L; Clark, Richard J; Scott, Krystle C M; Houghten, Richard A; Jensen, Anders Asbjørn

    2010-01-01

    alpha-Conotoxins are peptide neurotoxins isolated from venomous cone snails that display exquisite selectivity for different subtypes of nicotinic acetylcholine receptors (nAChR). They are valuable research tools that have profound implications in the discovery of new drugs for a myriad of...

  16. Solid-phase synthesis and pharmacological evaluation of analogues of PhTX-12-A potent and selective nicotinic acetylcholine receptor antagonist

    Strømgaard, Kristian; Mellor, Ian R; Andersen, Kim;

    2002-01-01

    Philanthotoxin-12 (PhTX-12) is a novel potent and selective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). Homologues of PhTX-12 with 7-11 methylene groups between the primary amino group and the aromatic head-group were synthesized using solid-phase methodology. In vit...

  17. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests

    Andreasen T., Jesper; Olsen, G M; Wiborg, O;

    2009-01-01

    Current literature suggests involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. However, it is controversial whether the antidepressant-like effect of nAChR modulation is induced by activation, desensitization or inhibition of central nAChRs. In addition, the specific n...

  18. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    on these results should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these...

  19. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition ...

  20. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen;

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive m...

  1. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type...

  2. PASSIVE-AVOIDANCE TRAINING INDUCES ENHANCED LEVELS OF IMMUNOREACTIVITY FOR MUSCARINIC ACETYLCHOLINE-RECEPTOR AND COEXPRESSED PKC-GAMMA AND MAP-2 IN RAT CORTICAL-NEURONS

    VANDERZEE, EA; DOUMA, BRK; BOHUS, B; LUITEN, PGM

    1994-01-01

    Changes in neocortical immunoreactivity (ir) for muscarinic acetylcholine receptors (mAChRs), protein kinase C gamma (PKC gamma), microtubule-associated protein 2 (MAP-2), and the calcium-binding protein parvalbumin (PARV) induced by the performance of a one-trial passive shock avoidance (PSA) task

  3. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain

    Jacobsen, Julie; Hansen, Henrik H; Kiss, Alexander;

    2012-01-01

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We...

  4. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.

    Gupta, Praveen K; Subramani, Jaganathan; Leo, Marie Dennis Marcus; Sikarwar, Anurag S; Parida, Subhashree; Prakash, Vellanki Ravi; Mishra, Santosh K

    2008-09-01

    The present study examined the role of voltage-gated potassium (K(v)) channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine-evoked endothelium-dependent relaxation and NO release in the rat carotid artery. The acetylcholine-induced relaxation was drastically inhibited by 94% and 82%, respectively in the presence of either 100 microM N(G)-nitro-l-arginine methyl ester (L-NAME) or 10 microM 1H-[1,2,4]oxadiazolo[4,3,a]quinoxalin-1-one (ODQ), while it was abolished following endothelium removal. 4-aminopyridine (1 mM), a preferential blocker of the K(v) channels significantly decreased the vasodilator potency, as well as efficacy of acetylcholine (pD(2) 5.7+/-0.09, R(max) 86.1+/-3.5% versus control 6.7+/-0.10 R(max) 106+/-3.5%, n=6), but had no effect on the relaxations elicited by either sodium nitroprusside (SNP) or 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP). 4-AP (1 mM) also inhibited acetylcholine (3 microM)-stimulated nitrite release in the carotid artery segments (99.4+/-4.93 pmol/mg tissue weight wt; n=6 versus control 123.8+/-7.43 pmol/mg tissue weight wt, n=6). 18alpha-glycyrrhetinic acid (18alpha-GA, 5 microM), a gap junction blocker, completely prevented the inhibition of acetylcholine-induced relaxation, as well as nitrite release by 4-AP. In the pulmonary artery, however antagonism of acetylcholine-evoked relaxation by 4-AP was not reversed by 18alpha-GA. These results suggest that 4-AP-induced inhibition of endothelium-dependent relaxation and NO release involves electrical coupling between vascular smooth muscle and endothelial cells via myo-endothelial gap junctions in the rat carotid artery, but not in the pulmonary artery. Further, direct activation of 4-AP-sensitive vascular K(v) channels by endothelium-derived NO is not evident in the carotid blood vessel, while this appears to be an important mechanism of acetylcholine-induced relaxation in the pulmonary artery. PMID:18577383

  5. Multiple transmembrane binding sites for p-trifluoromethyldiazirinyl-etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor.

    Hamouda, Ayman K; Stewart, Deirdre S; Husain, S Shaukat; Cohen, Jonathan B

    2011-06-10

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive

  6. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups

    Valenzuela, A.; Nieto, S.; Sanhueza, J.; Morgado, N.; Rojas, I.; Zanartu, P.

    2010-07-01

    Docosahexaenoic acid (Dha) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHA containing lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily.), before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT) activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mothers plasma and increases the pups DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period. (Author) 66 refs.

  7. Automated production of [¹⁸F]VAT suitable for clinical PET study of vesicular acetylcholine transporter.

    Yue, Xuyi; Bognar, Christopher; Zhang, Xiang; Gaehle, Gregory G; Moerlein, Stephen M; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    Automated production of a promising radiopharmaceutical (-)-(1-(8-(2-[(18)F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([(18)F]VAT) for the vesicular acetylcholine transporter(VAChT) was achieved using a two-step procedure in a current Good Manufacturing Practices fashion. The production of [(18)F]VAT was accomplished in approximately 140 min, with radiochemical yield of ~15.0% (decay corrected), specific activity>111 GBq/µmol, radiochemical purity>99% and mass of VAT ~3.4 μg/batch (n>10). The radiopharmaceutical product meets all quality control criteria for human use, and is suitable for clinical PET studies of VAChT. PMID:26408913

  8. Flow- and acetylcholine-induced dilation in small arteries from rats with renovascular hypertension - effect of tempol treatment

    Christensen, Frank Holden; Stankevicius, Edgaras; Hansen, Thomas;

    2007-01-01

    ). In isolated pressurized mesenteric small arteries NO-mediated dilatation was obtained by increasing flow rate and EDHF-mediated dilatation by acetylcholine. In arteries from hypertensive rats, flow-induced dilatation was blunted, as compared to normotensive and tempol-treated rats, while......We investigated whether renovascular hypertension alters vasodilatation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) and the influence of the superoxide dismutase mimetic tempol on vasodilatation. One-kidney one-clip hypertensive Sprague–Dawley rats, treated...... with either vehicle or tempol (from weeks 5 to 10 after placement of the clip), and uninephrectomized control rats were investigated. In renal hypertensive rats systolic blood pressure increased to 171±6 mmHg (n=10), while in tempol-treated rats systolic blood pressure remained normal (139±7 mmHg, n=5...

  9. Modification of the acetylcholine-induced current of the snail Helix pomatia L. by fast temperature changes

    Nedeljković M.

    2005-01-01

    Full Text Available Using the single electrode voltage clamp method, we found that acetylcholine (aCh induces transient inward dose-dependent current on the membrane of the identified Helix pomatia Br neuron. We analyzed the effects of fast cooling and heating as well as thermal acclimation on the aCh inward current. the experiments were conducted on active and dormant snails acclimated to either 20 or 7°C for at least four weeks. the Hill coefficient remained approximately 1 in all cases, which means that there is a single aCh binding site on the membrane. Fast temperature alternations induce binding affinity changes. in the work presented, we analyzed the effects of cooling on the aCh-induced inward current. the amplitude of aCh-induced inward current was markedly reduced after cooling, and the speed of decay of the aCh response was lower.

  10. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents.

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-07-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin- 3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  11. TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects.

    Gatto, Gregory J; Bohme, G Andrees; Caldwell, William S; Letchworth, Sharon R; Traina, Vincent M; Obinu, M Carmen; Laville, Michel; Reibaud, Michel; Pradier, Laurent; Dunbar, Geoffrey; Bencherif, Merouane

    2004-01-01

    The development of selective ligands targeting neuronal nicotinic acetylcholine receptors to alleviate symptoms associated with neurodegenerative diseases presents the advantage of affecting multiple deficits that are the hallmarks of these pathologies. TC-1734 is an orally active novel neuronal nicotinic agonist with high selectivity for neuronal nicotinic receptors. Microdialysis studies indicate that TC-1734 enhances the release of acetylcholine from the cortex. TC-1734, by either acute or repeated administration, exhibits memory enhancing properties in rats and mice and is neuroprotective following excitotoxic insult in fetal rat brain in cultures and against alterations of synaptic transmission induced by deprivation of glucose and oxygen in hippocampal slices. At submaximal doses, TC-1734 produced additive cognitive effects when used in combination with tacrine or donepezil. Unlike (-)-nicotine, behavioral sensitization does not develop following repeated administration of TC-1734. Its pharmacokinetic (PK) profile (half-life of 2 h) contrasts with the long lasting improvement in working memory (18 h) demonstrating that cognitive improvement extends beyond the lifetime of the compound. The very low acute toxicity of TC-1734 and its receptor activity profile provides additional mechanistic basis for its suggested potential as a clinical candidate. TC-1734 was very well tolerated in acute and chronic oral toxicity studies in mice, rats and dogs. Phase I clinical trials demonstrated TC-1734's favorable pharmacokinetic and safety profile by acute oral administration at doses ranging from 2 to 320 mg. The bioavailability, pharmacological, pharmacokinetic, and safety profile of TC-1734 provides an example of a safe, potent and efficacious neuronal nicotinic modulator that holds promise for the management of the hallmark symptomatologies observed in dementia. PMID:15179444

  12. Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters.

    Nassenstein, Christina; Wiegand, Silke; Lips, Katrin S; Li, Guanfeng; Klein, Jochen; Kummer, Wolfgang

    2015-11-01

    In addition to quantal, vesicular release of acetylcholine (ACh), there is also non-quantal release at the motor endplate which is insufficient to evoke postsynaptic responses unless acetylcholinesterase (AChE) is inhibited. We here addressed potential non-quantal release in the mouse trachea by organ bath experiments and (immuno)histochemical methods. Electrical field stimulation (EFS) of nerve terminals elicited tracheal constriction that is largely due to ACh release. Classical enzyme histochemistry demonstrated acetylcholinesterase (AChE) activity in nerve fibers in the muscle and butyrylcholinesterase (BChE) activity in the smooth muscle cells. Acute inhibition of both esterases by eserine significantly raised tracheal tone which was fully sensitive to atropine. This effect was reduced, but not abolished, in AChE, but not in BChE gene-deficient mice. The eserine-induced increase in tracheal tone was unaffected by vesamicol (10(-5)M), an inhibitor of the vesicular acetylcholine transporter, and by corticosterone (10(-4)M), an inhibitor of organic cation transporters. Hemicholinium-3, in low concentrations an inhibitor of the high-affinity choline transporter-1 (CHT1), completely abrogated the eserine effects when applied in high concentrations (10(-4)M) pointing towards an involvement of low-affinity choline transporters. To evaluate the cellular sources of non-quantal ACh release in the trachea, expression of low-affinity choline transporter-like family (CTL1-5) was evaluated by RT-PCR analysis. Even though these transporters were largely abundant in the epithelium, denudation of airway epithelial cells had no effect on eserine-induced tracheal contraction, indicating a non-quantal release of ACh from non-epithelial sources in the airways. These data provide evidence for an epithelium-independent non-vesicular, non-quantal ACh release in the mouse trachea involving low-affinity choline transporters. PMID:26278668

  13. Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress.

    Mineur, Yann S; Fote, Gianna M; Blakeman, Sam; Cahuzac, Emma L M; Newbold, Sylvia A; Picciotto, Marina R

    2016-05-01

    Electrophysiological and neurochemical studies implicate cholinergic signaling in the basolateral amygdala (BLA) in behaviors related to stress. Both animal studies and human clinical trials suggest that drugs that alter nicotinic acetylcholine receptor (nAChR) activity can affect behaviors related to mood and anxiety. Clinical studies also suggest that abnormalities in cholinergic signaling are associated with major depressive disorder, whereas pre-clinical studies have implicated both β2 subunit-containing (β2*) and α7 nAChRs in the effects of nicotine in models of anxiety- and depression-like behaviors. We therefore investigated whether nAChR signaling in the amygdala contributes to stress-mediated behaviors in mice. Local infusion of the non-competitive non-selective nAChR antagonist mecamylamine or viral-mediated downregulation of the β2 or α7 nAChR subunit in the amygdala all induced robust anxiolytic- and antidepressant-like effects in several mouse behavioral models. Further, whereas α7 nAChR subunit knockdown was somewhat more effective at decreasing anxiety-like behavior, only β2 subunit knockdown decreased resilience to social defeat stress and c-fos immunoreactivity in the BLA. In contrast, α7, but not β2, subunit knockdown effectively reversed the effect of increased ACh signaling in a mouse model of depression. These results suggest that signaling through β2* nAChRs is essential for baseline excitability of the BLA, and a decrease in signaling through β2 nAChRs alters anxiety- and depression-like behaviors even in unstressed animals. In contrast, stimulation of α7 nAChRs by acetylcholine may mediate the increased depression-like behaviors observed during the hypercholinergic state observed in depressed individuals. PMID:26471256

  14. Rapid antidepressant actions of scopolamine: Role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors.

    Navarria, Andrea; Wohleb, Eric S; Voleti, Bhavya; Ota, Kristie T; Dutheil, Sophie; Lepack, Ashley E; Dwyer, Jason M; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S

    2015-10-01

    Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. PMID:26102021

  15. The relationship between twitch depression and twitch fade during neuromuscular block produced by vecuronium: correlation with the release of acetylcholine

    Amann Anton

    2007-07-01

    Full Text Available Abstract Background Train-of-four stimulation pattern following the administration of non-depolarizing neuromuscular blocking drugs reveals fade on successive contractions. Fade is caused by the release of fewer acetylcholine molecules by the fourth (A4 than by the first stimulus (A1. The current study was conducted to define the relationship between the clinically observed fade and the simulated decline in acetylcholine release (A4/A1 that would be necessary to produce it. Methods The T4/T1 ratios produced by different doses of vecuronium (15–80 μg·kg-1 were plotted as a function of the concomitant T1. Separately in a model of neuromuscular transmission, T1, T4, and T4/T1 were estimated using simulations in the presence and in the absence of a neuromuscular blocking drug and a stepwise decrease in A4, but constant A1. Results Vecuronium induced neuromuscular block was associated with larger T4/T1 ratios (less fade during the onset than during the offset of the block. All doses caused similar fade during offset. Simulations revealed that the smallest T4/T1 was associated with the nadir of A4/A1 and occurred at the beginning of T1 recovery. The nadir of A4/A1 was only marginally affected by the dose of vecuronium: 15 μg·kg-1 producing the minimum A4/A1 of 0.8 and 80 μg·kg-1 the minimum A4/A1 of 0.7. Conclusion The hysteresis in the fade between onset and offset appears to be caused by a delayed decrease of A4/A1 as compared with the decrease in T1. Tentative estimates of the decrease in A4/A1 during fade produced by vecuronium are offered. However, the validity of these estimates is dependent on the validity of the assumptions made in simulations.

  16. Structural dynamics of the alpha-neurotoxin-acetylcholine-binding protein complex: hydrodynamic and fluorescence anisotropy decay analyses.

    Hibbs, Ryan E; Johnson, David A; Shi, Jianxin; Hansen, Scott B; Taylor, Palmer

    2005-12-20

    The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure. PMID:16342951

  17. Acetylcholine muscarinic receptors and response to anti-cholinesterase therapy in patients with Alzheimer's disease

    Brown, Derek [Department of Psychiatry, Stobhill Hospital, Glasgow (United Kingdom); Chisholm, Jennifer A.; Patterson, Jim; Wyper, David [Department of Clinical Physics, Southern General Hospital, Glasgow, G51 4TF (United Kingdom); Owens, Jonathan; Pimlott, Sally [Department of Clinical Physics, Western Infirmary, Glasgow (United Kingdom)

    2003-02-01

    An acetylcholine deficit remains the most consistent neurotransmitter abnormality found in Alzheimer's disease and various therapeutic agents have been targeted at this. In this study we investigated the action of Donepezil, a cholinesterase inhibitor that has few side-effects. In particular we set out to investigate whether muscarinic acetylcholine receptor (mAChR) availability influences the response to this therapy. We used the novel single-photon emission tomography (SPET) tracer (R,R)[{sup 123}I]I-quinuclidinyl benzilate (R,R[{sup 123}I]I-QNB), which has high affinity for the M1 subtype of mAChR. Regional cerebral perfusion was also assessed using technetium-99m hexamethylpropylene amine oxime. We investigated 20 patients on Donepezil treatment and ten age-matched controls. The results showed a reduction in (R,R)[{sup 123}I]I-QNB binding in the caudal anterior cingulate in patients compared with controls and relatively high binding in the putamen and rostral anterior cingulate, suggesting a relative sparing of mAChR in these regions. The main finding of the study was that mAChR availability as assessed by (R,R)[{sup 123}I]I-QNB binding did not distinguish responders from non-responders. Interestingly, we found that the extent of cognitive improvement showed no positive correlation with (R,R)[{sup 123}I]I-QNB binding in any brain region but was inversely related to binding in the insular cortex. This suggests that, within the advised cognitive performance band for use of Donepezil, response is greater in those patients with evidence of a more marked cholinergic deficit. A larger study should investigate this. (orig.)

  18. Identification and Functional Characterization of a Novel Acetylcholine-binding Protein from the Marine Annelid Capitella teleta

    McCormack, T.; Petrovich,; Mercier, K; DeRose, E; Cuneo, M; Williams, J; Johnson, K; Lamb, P; London, R; Yakel, J

    2010-01-01

    We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has been implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.

  19. The role of α7 nicotinic acetylcholine receptor in modulation of heart rate dynamics in endotoxemic rats.

    Mazloom, Roham; Eftekhari, Golnar; Rahimi-Balaei, Maryam; Rahimi, Maryam; Khori, Vahid; Hajizadeh, Sohrab; Dehpour, Ahmad R; Mani, Ali R

    2013-01-01

    Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in

  20. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    Denis Kudryavtsev

    2015-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt, and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  1. Effect of anoxia on choline uptake and release of acetylcholine in brain slices estimated with a bioradiographic technique using [11C] choline

    The uptake of choline for the synthesis and release of acetylcholine and the metabolism of glucose under anoxic conditions was investigated in brain slices by bioradiography using [N-methyl-11C]choline ([11C]choline) and [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG). [11C]Choline uptake and the release of accumulated 11C radioactivity in brain slices decreased with anoxic treatment, whereas [18F]FDG uptake increased. The decrease of [11C]choline uptake and the 11C radioactivity accumulated in striatal slices were recovered by acetyl-L-carnitine, an acetyl-donor. However, this effect was not seen in cerebral cortex. These results indicate that choline uptake for the synthesis and release of acetylcholine in brain are energy sensitive. The cholinergic dysfunction in ischemic brain might be improved by compensating for energy loss. (author)

  2. An assessment of radioimmunoassay procedures for determination of anti-acetylcholine receptor antibodies in the sera of patients with myasthenia gravis

    A reproducible radioimmunoassay procedure for the determination of anti-acetylcholine receptor antibodies in the sera of patients with myasthenia gravis is described and examined in detail. The assay combines features of a number of methods previously outlined and allows repeat determinations of antibody titre in a given myasthenic serum sample with coefficient of variation 6%. The mean +- standard deviation for normal human serum anti-acetylcholine receptor antibodies was found by this procedure to be 0.024 +- 0.033 nmol/l α-bungarotoxin binding sites whereas the range for myasthenic patients was 0-139.14 nmol/l with a mean value of 7.55 nmol/l α-bungarotoxin binding sites. (author)

  3. Neutralization og negative charges in F-loop of nicotinic acetylcholine alfa3beta4 receptors impairs the action of agonists and slows receptor desensitization

    Lindovský, Jiří; Kaniaková, Martina; Krůšek, Jan; Vyskočil, František

    Geneva : Swiss Society for Neuroscience, 2008. s. 212-212. ISBN 92-990014-3-X. [FENS. Forum of European Neuroscience /6./. 12.07.2008-16.07.2008, Geneva] R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA100110501; GA AV ČR(CZ) IAA5011411 Institutional research plan: CEZ:AV0Z50110509 Keywords : spo2 * acetylcholine * nicotine Subject RIV: ED - Physiology

  4. Regulated Extracellular Choline Acetyltransferase Activity— The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway

    Vijayaraghavan, Swetha; Karami, Azadeh; Aeinehband, Shahin; Behbahani, Homira; Grandien, Alf; Nilsson, Bo; Ekdahl, Kristina N.; Lindblom, Rickard P. F.; Piehl, Fredrik; Darreh-Shori, Taher

    2013-01-01

    Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely effici...

  5. It's not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood

    Picciotto, Marina R.; Addy, Nii A.; Mineur, Yann S.; Brunzell, Darlene H.

    2007-01-01

    Nicotine can both activate and desensitize/inactivate nicotinic acetylcholine receptors (nAChRs). An ongoing controversy in the field is to what extent the behavioral effects of nicotine result from activation of nAChRs, and to what extent receptor desensitization is involved in these behavioral processes. Recent electrophysiological studies have shown that both nAChR activation and desensitization contribute to the effects of nicotine in the brain, and these experiments have provided cellula...

  6. Direction-Specific Disruption of Subcortical Visual Behavior and Receptive Fields in Mice Lacking the Beta2 Subunit of Nicotinic Acetylcholine Receptor

    Wang, Lupeng; Rangarajan, Krsna V.; Lawhn-Heath, Courtney A.; Sarnaik, Rashmi; Wang, Bor-Shuen; Liu, Xiaorong; Cang, Jianhua

    2009-01-01

    Retinotopic mapping is a basic feature of visual system organization, but its role in processing visual information is unknown. Mutant mice lacking β2 subunit of nicotinic acetylcholine receptor have imprecise maps in both visual cortex (V1) and the superior colliculus (SC) due to the disruption of spontaneous retinal activity during development. Here, we use behavioral and physiological approaches to study their visual functions. We find that β2−/− mice fail to track visual stimuli moving al...

  7. Identifying Barbiturate Binding Sites in a Nicotinic Acetylcholine Receptor with [3H]Allyl m-Trifluoromethyldiazirine Mephobarbital, a Photoreactive Barbiturate

    Hamouda, Ayman K.; Stewart, Deirdre S.; Chiara, David C.; Savechenkov, Pavel Y.; Bruzik, Karol S.; Cohen, Jonathan B.

    2014-01-01

    At concentrations that produce anesthesia, many barbituric acid derivatives act as positive allosteric modulators of inhibitory GABAA receptors (GABAARs) and inhibitors of excitatory nicotinic acetylcholine receptors (nAChRs). Recent research on [3H]R-mTFD-MPAB ([3H]R-5-allyl-1-methyl-5-(m-trifluoromethyldiazirinylphenyl)barbituric acid), a photoreactive barbiturate that is a potent and stereoselective anesthetic and GABAAR potentiator, has identified a second class of intersubunit binding si...

  8. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2010-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of conte...

  9. The Duration of Nicotine Withdrawal-Associated Deficits in Contextual Fear Conditioning Parallels Changes in Hippocampal High Affinity Nicotinic Acetylcholine Receptor Upregulation

    Gould, Thomas J.; Portugal, George S.; André, Jessica M.; Tadman, Matthew P.; Marks, Michael J.; Kenney, Justin W.; YILDIRIM, Emre; Adoff, Michael

    2012-01-01

    A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdawal-induced cognitive deficits. If a relationship be...

  10. Visualizing calcium responses to acetylcholine convection along endothelium of arteriolar networks in Cx40BAC-GCaMP2 transgenic mice

    Bagher, Pooneh; Davis, Michael J.; Segal, Steven S.

    2011-01-01

    Acetylcholine evokes endothelium-dependent vasodilation subsequent to a rise in intracellular calcium. Despite widespread application in human and animal studies, calcium responses to intravascular ACh have not been visualized in vivo. Microiontophoresis of ACh in tissue adjacent to an arteriole activates abluminal muscarinic receptors on endothelial cells within a “local” region of diffusion, but it is unknown whether ACh released in such fashion gains access to the flow stream resulting in ...

  11. The mechanism of acetylcholine receptor in binding MuSK in myasthenia gravis and the role of HSP90 molecular chaperone

    Chen, Rongbo; Chen, Siqia; Liao, Juan; Chen, Xiaopu; Xu, Xiaoling

    2016-01-01

    As an autoimmune disease, myasthenia gravis is caused by the dysfunction of neural transmission. Acetylcholine is known to exert its function after entering into synaptic cleft through binding onto postsynaptic membrane. The role of acetylcholine in binding MuSK in myasthenia gravis, however, remains unknown. A total of 38 myasthenia gravis patients and 27 healthy controls were included in this study for the detection of the expression of MuSK using immunofluorescent method. Expression of both MuSK and interleukin-6 (IL-6) were measured by Western blot, followed by the correlation analysis between heat shock protein 90 (HSP90) and IL-6 which were measured by enzyme-linked immunosorbent assay (ELISA). In myasthenia gravis patients, MuSK was co-localized with acetylcholine at the postsynaptic membrane. Such accumulation of MuSK, however, did not occur in normal people. Meanwhile we also observed elevated expression of IL-6 in myasthenia gravis patients (pmyasthenia gravis patients, with elevated expression. HSP90 in disease people can activate IL-6 mediated signaling pathways. PMID:27186300

  12. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond. PMID:26548495

  13. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    Grandič, Marjana [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia); Aráoz, Romulo; Molgó, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Turk, Tom; Sepčić, Kristina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Benoit, Evelyne [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Frangež, Robert, E-mail: robert.frangez@vf.uni-lj.si [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia)

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  14. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  15. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

    Butcher, Adrian J; Bradley, Sophie J; Prihandoko, Rudi; Brooke, Simon M; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M; Bottrill, Andrew R; Challiss, R A John; Broad, Lisa M; Felder, Christian C; Tobin, Andrew B

    2016-04-22

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. PMID:26826123

  16. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory*♦

    Butcher, Adrian J.; Bradley, Sophie J.; Prihandoko, Rudi; Brooke, Simon M.; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Bottrill, Andrew R.; Challiss, R. A. John; Broad, Lisa M.; Felder, Christian C.; Tobin, Andrew B.

    2016-01-01

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo. Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser228) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser228. These data supported the hypothesis that phosphorylation at Ser228 was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser228 on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser228 phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser228 not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. PMID:26826123

  17. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC50 = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC50 = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α12β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC50 = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α12β1γδ) than for the mouse (α12β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  18. Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-Conotoxin GIC

    Chewook Lee

    2012-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are a diverse familyof homo- or heteropentameric ligand-gated ion channels.Understanding the physiological role of each nAChR subtypeand the key residues responsible for normal and pathologicalstates is important. α-Conotoxin neuropeptides are highly selectiveprobes capable of discriminating different subtypes ofnAChRs. In this study, we performed homology modeling togenerate the neuronal α3, β2 and β4 subunits using the x-raystructure of the α1 subunit as a template. The structures of theextracellular domains containing ligand binding sites in theα3β2 and α3β4 nAChR subtypes were constructed using MDsimulations and ligand docking processes in their free and ligand-bound states using α-conotoxin GIC, which exhibited thehighest α3β2 vs. α3β4 discrimination ratio. The results providea reasonable structural basis for such a discriminatoryability, supporting the idea that the present strategy can beused for future investigations on nAChR-ligand complexes.[BMB reports 2012; 45(5: 275-280

  19. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  20. Future perspectives of a cardiac non-neuronal acetylcholine system targeting cardiovascular diseases as an adjunctive tool for metabolic intervention.

    Kakinuma, Yoshihiko

    2015-11-01

    It has been several years since the function of the non-neuronal cholinergic system was independently reported in cardiomyocytes by several research groups. Although these findings initially seemed to be negligible and insignificant, extraordinary findings about cardiomyocytes were subsequently reported in studies involving the knockdown of the non-neuronal cholinergic system. These studies provide the evidence that this system may be indispensable for maintaining principal cardiac functions. Despite the absence of an appropriate and reliable technology to detect cellular ACh in real time in cardiomyocytes, studies of this system have progressed, albeit very slowly, to gradually consolidate the significance of this system. Based on the many significant findings regarding this system, these will be critical to develop adjunctive intervention therapy against cardiovascular diseases, including peripheral artery disease and heart failure. In this study, previous studies focusing on the non-neuronal cholinergic system are reviewed along with our studies, both indicating the biologically significant roles of the cardiac non-neuronal acetylcholine system from a clinical perspective. PMID:26028150

  1. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor.

    Otvos, Reka A; Mladic, Marija; Arias-Alpizar, Gabriela; Niessen, Wilfried M A; Somsen, Govert W; Smit, August B; Kool, Jeroen

    2016-06-01

    The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer's disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca(2+))-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives. PMID:26738519

  2. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  3. Role of β4* Nicotinic Acetylcholine Receptors in the Habenulo-Interpeduncular Pathway in Nicotine Reinforcement in Mice.

    Harrington, Lauriane; Viñals, Xavier; Herrera-Solís, Andrea; Flores, Africa; Morel, Carole; Tolu, Stefania; Faure, Philippe; Maldonado, Rafael; Maskos, Uwe; Robledo, Patricia

    2016-06-01

    Nicotine exerts its psychopharmacological effects by activating the nicotinic acetylcholine receptor (nAChR), composed of alpha and/or beta subunits, giving rise to a diverse population of receptors with a distinct pharmacology. β4-containing (β4*) nAChRs are located almost exclusively in the habenulo-interpeduncular pathway. We examined the role of β4* nAChRs in the medial habenula (MHb) and the interpeduncular nucleus (IPN) in nicotine reinforcement using behavioral, electrophysiological, and molecular techniques in transgenic mice. Nicotine intravenous self-administration (IVSA) was lower in constitutive β4 knockout (KO) mice at all doses tested (7.5, 15, 30, and 60 μg/kg/infusion) compared with wild-type (WT) mice. In vivo microdialysis showed that β4KO mice have higher extracellular dopamine (DA) levels in the nucleus accumbens than in WT mice, and exhibit a differential sensitivity to nicotine-induced DA outflow. Furthermore, electrophysiological recordings in the ventral tegmental area (VTA) demonstrated that DA neurons of β4KO mice are more sensitive to lower doses of nicotine than that of WT mice. Re-expression of β4* nAChRs in IPN neurons fully restored nicotine IVSA, and attenuated the increased sensitivity of VTA DA neurons to nicotine. These findings suggest that β4* nAChRs in the IPN have a role in maintaining nicotine IVSA. PMID:26585290

  4. On-line anti-acetylcholine esterase activity of extracts of oxystelma esculentum, aerva javanica and zanthoxylum armatum

    Alzheimer's disease (AD), a disease of brain, resulting in memory impairment and the loss of thinking. The main reason of Alzheimer's disease is firmly associated with some impairment in cholinergic transmission. This impairment may be improved by diminishing the breakdown of acetylcholine at the synaptic site in the brain by inhibiting acetylcholinesterase (AChE). In this work, extracts of three different plants Oxystelma esculentum (OEM), Aerva javanica (AJM) and Zanthoxylum armatum (ZAA) have been screened for their anti-AchE activity. Results of the study demonstrate that of the studied extracts, ZAA (IC/sub 50/ 55.5 micro g/ml) acquired stronger anti-AChE activity. While OEM with IC/sub 50/ 107.2 micro g/ml showed moderate and ZAE and AJM showed weaker action (IC/sub 50/ 182.5 and 275.2 micro g/ml). Galanthamine was used as a positive control (IC/sub 50/ 1.47 micro g/ml). (author)

  5. Solution structure of α-conotoxin PIA, a novel antagonist of α6 subunit containing nicotinic acetylcholine receptors

    α-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing α6 and α3 subunits. α-conotoxin PIA displays 75-fold higher affinity for rat α6/α3β2β3 nAChRs than for rat α3β2 nAChRs. We have determined the three-dimensional structure of α-conotoxin PIA by nuclear magnetic resonance spectroscopy. The α-conotoxin PIA has an 'ω-shaped' overall topology as other α4/7 subfamily conotoxins. Yet, unlike other neuronally targeted α4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I β-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in α-conotoxins MII and GIC. By comparing the structure of α-conotoxin PIA with other functionally related α-conotoxins we suggest structural features in α-conotoxin PIA that may be associated with its unique receptor recognition profile

  6. A tale of two receptors: Dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition.

    Philbrook, Alison; Barbagallo, Belinda; Francis, Michael M

    2013-07-01

    Nicotinic or ionotropic acetylcholine receptors (iAChRs) mediate excitatory signaling throughout the nervous system, and the heterogeneity of these receptors contributes to their multifaceted roles. Our recent work has characterized a single iAChR subunit, ACR-12, which contributes to two distinct iAChR subtypes within the C. elegans motor circuit. These two receptor subtypes regulate the coordinated activity of excitatory (cholinergic) and inhibitory (GABAergic) motor neurons. We have shown that the iAChR subunit ACR-12 is differentially expressed in both cholinergic and GABAergic motor neurons within the motor circuit. In cholinergic motor neurons, ACR-12 is incorporated into the previously characterized ACR-2 heteromeric receptor, which shows non-synaptic localization patterns and plays a modulatory role in controlling circuit function.(1) In contrast, a second population of ACR-12-containing receptors in GABAergic motor neurons, ACR-12GABA, shows synaptic expression and regulates inhibitory signaling.(2) Here, we discuss the two ACR-12-containing receptor subtypes, their distinct expression patterns, and functional roles in the C. elegans motor circuit. We anticipate our continuing studies of iAChRs in the C. elegans motor circuit will lead to novel insights into iAChR function in the nervous system as well as mechanisms for their regulation. PMID:24778941

  7. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results. PMID:27085000

  8. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  9. Polymorphisms in the neural nicotinic acetylcholine receptor α4 subunit (CHRNA4) are associated with ADHD in a genetic isolate.

    Wallis, Deeann; Arcos-Burgos, Mauricio; Jain, Mahim; Castellanos, F Xavier; Palacio, Juan David; Pineda, David; Lopera, Francisco; Stanescu, Horia; Pineda, Daniel; Berg, Kate; Palacio, Luis Guillermo; Bailey-Wilson, Joan E; Muenke, Maximilian

    2009-05-01

    The neural nicotinic acetylcholine receptor α4 subunit (CHRNA4), at 20q13.2-q13.3, is an important candidate gene for conferring susceptibility to attention deficit/hyperactivity disorder (ADHD). Several studies have already looked for association/linkage between ADHD and CHRNA4 in different populations. We used the Pedigree Disequilibrium Test to search for evidence of association between ADHD and six SNP marker loci in families from the isolated Paisa population. We found that the T allele of SNP rs6090384 exhibits a deficit of transmission in unaffected individuals (OR = 5.43, IC 1.54-19.13) (global P value = 0.014). We also found significant association and linkage to extended haplotypes rs2273502-rs6090384 (combination of variants C-T, respectively) (P = 0.02) and rs6090384-rs6090387 (P = 0.04) (combination of variants T-G, respectively). SNP rs6090384, variant T, has also been reported to be associated with inattention in a previous study. This makes ours the ninth study to examine the association of CHRNA4 with ADHD and the seventh one to find evidence for association in a population with a different ethnicity. PMID:21432576

  10. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-01-01

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer’s disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments. PMID:27277673

  11. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  12. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p3H](-) quinuclidinylbenzilate ([3H](-)QNB), a specific but nonsubtype selective mAChR antagonist, [3H]pirenzepine ([3H]PZ), a specific M1 mAChR antagonist and [3H]11-2-[[2-[(diethylamino) methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, ([3H]AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (Kd) and density (Bmax) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) [3H](-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity

  13. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B;

    2008-01-01

    Due to the cognitive-enhancing properties of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists, they have attracted interest for the treatment of cognitive disturbances in schizophrenia. Schizophrenia typically presents in late adolescence or early adulthood. It is therefore important...... juvenile and adult rat forebrain using two markers, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos, to map neuronal activity. Acute administration of A-582941 (1, 3, 10 mg/kg) induced a dose-dependent increase in Arc mRNA expression in the medial prefrontal cortex (mPFC) and the ventral...... in the mPFC, VO/LO, and shell of the nucleus accumbens, in both juvenile and adult rats. The A-582941-induced c-Fos protein expression was significantly greater in the mPFC and VO/LO of juvenile compared with adult rats. These data indicate that A-582941-induced alpha7 nAChR stimulation activates...

  14. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  15. Dilatory responses to acetylcholine, calcitonin gene-related peptide and substance P in the congestive heart failure rat

    Bergdahl, A; Valdemarsson, S; Nilsson, T; Sun, X Y; Hedner, T; Edvinsson, L

    1999-01-01

    It was examined to what extent congestive heart failure (CHF) in rats, induced by ligation of the left coronary artery, affects the vascular responses to the vasodilatory substances acetylcholine (ACh), calcitonin gene-related peptide (CGRP), and substance P (SP). After induction of CHF status, the...... basilar, mesenteric and renal arteries and the iliac vein were studied in vitro. Dilatory responses were determined in relation to pre-contraction by the thromboxane mimetic U46619. Sham-operated animals (Sham) served as controls. U46619 induced stronger contraction in CHF basilar and renal arteries...... artery of CHF rats compared with Sham (pEC50: 8.1 +/- 0.2 vs. 9.5 +/- 0.3, P < 0.01). In the CHF iliac vein, CGRP was more potent compared with Sham (pEC50: 9.7 +/- 0.4 vs. 8.3 +/- 0.4, P < 0.05). It can be concluded CHF is accompanied by alterations in the vascular response to the dilatory substances...

  16. Up-regulated expression of the alpha7 nicotinic acetylcholine receptor subunit on inflammatory infiltrates during Dictyocaulus viviparus infection.

    Lazari, O; Kipar, A; Johnson, D R; Selkirk, M E; Matthews, J B

    2006-09-01

    Cholinergic signalling is known to affect immune cell function, but few studies have addressed its relevance during nematode infection. We therefore analysed the anatomical distribution and expression pattern of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in lungs obtained from Dictyocaulus viviparus-infected and uninfected control cattle. The analysis was performed on trachea and lung parenchyma from uninfected animals and animals necropsied at 15, 22 and 43 days post-infection (DPI). Localization of the alpha7 nAChR was evaluated by immunohistology and mRNA expression analysed by gene-specific reverse transcription-polymerase chain reaction (RT-PCR). In uninfected animals, tracheal, bronchial and bronchiolar epithelium and smooth muscle cells constitutively expressed the alpha7 nAChR, as did type I and II alveolar epithelial cells and alveolar macrophages and a few infiltrating leucocytes. By 15 DPI, immunohistology revealed a massive influx of alpha7 nAChR+ inflammatory cells into the lung parenchyma and tracheal wall. This was reflected in the RT-PCR results. At later time points, both parenchyma and tracheal wall contained large numbers of alpha7 nAChR+ leucocytes, but detection of transcript was restricted to the trachea. Recruitment of nAChR-containing leucocytes to the lungs of D. viviparus-infected cattle suggests that these cells may represent possible downstream targets for parasite-secreted acetylcholinesterases. PMID:16916366

  17. Radioligand imaging of α4β2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease

    The α4β2* nicotinic acetylcholine receptors (α4β2*-nAChR) are highly abundant in the human brain. As neuromodulators they play an important role in cognitive functions such as memory, learning and attention as well as mood and motor function. Post mortem studies suggest that abnormalities of α4β2*-nAChRs are closely linked to histopathological hallmarks of Alzheimer’s disease (AD), such as amyloid aggregates/oligomers and tangle pathology and of Parkinson’s disease (PD) such as Lewy body pathology and the nigrostriatal dopaminergic deficit. In this review we summarize and discuss nicotinic receptor imaging findings of 2-[18F]FA-85380 PET, [11C]nicotine PET and 5-[123I]IA-85380 SPECT studies investigating α4β2*-nAChR binding in vivo and their relationship to mental dysfunction in the brain of patients with AD and patients out of the spectrum of Lewy body disorders such as PD and Lewy body dementia (DLB). Furthermore, recent developments of novel α4β2*-nAChR-specific PET radioligands, such as (-)[18F]Flubatine or [18F]AZAN are summarized. We conclude that α4β2*-nAChR-specific PET might become a biomarker for early diagnostics and drug developments in patients with AD, DLB and PD, even at early or prodromal stages.

  18. Regulating role of acetylcholine and its antagonists in inward rectified K+ channels from guard cell protoplasts of Vicia faba

    2000-01-01

    The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%.However,if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.

  19. Regulating role of acetylcholine and its antagonists in inward rectified K~+ channels from guard cell protoplasts of Vicia faba

    冷强; 花宝光; 郭玉海; 娄成后

    2000-01-01

    The inward rectified potassium current of Vicia faba guard cell protoplasts treated with acetylcholine (ACh) or the antagonists of its receptors were recorded by employing the patch clamp technique. The results show that ACh at lower concentrations increases the inward K+ current, in contrast, ACh at higher concentrations inhibits it. Treated with d-Tubocurarine (d-Tub), an antagonist of the nicotine ACh receptor (nAChR) inhibits the inward K+ current by 30%. Treated with atropine (Atr), an antagonist of the muscarine (Mus) ACh receptor (mAChR) also inhibits it by 36%. However, if guard cell protoplasts are treated with d-Tub and Atr together, the inward K+ current is inhibited by 60%-75%. Tetraethylammonium chloride (TEA), a strong inhibitor of K+ channels has no effect on the inward K+ current regulated by ACh, suggesting that there are inward K+ channels modulated by AChRs on the membrane of the guard cell protoplasts. These data demonstrate an ACh-regulated mechanism for stomatal movement.

  20. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  1. A multi-enzyme microreactor-based online electrochemical system for selective and continuous monitoring of acetylcholine.

    Lin, Yuqing; Yu, Ping; Mao, Lanqun

    2015-06-01

    This study demonstrates an online electrochemical system (OECS) for selective and continuous measurements of acetylcholine (ACh) through efficiently integrating in vivo microdialysis, a multi-enzyme microreactor and an electrochemical detector. A multi-enzyme microreactor was prepared first by co-immobilizing two kinds of enzymes, i.e. choline oxidase (ChOx) and catalase (Cat), onto magnetite nanoparticles and then confining the as-formed nanoparticles into a fused-silica capillary with the assistance of an external magnet. The multi-enzyme microreactor was settled between an in vivo microdialysis sampling system and an electrochemical detector to suppress the interference from choline toward ACh detection. Selective detection of ACh was accomplished using the electrochemical detector with ACh esterase (AChE) and ChOx as the recognition units for ACh and Prussian blue (PB) as the electrocatalyst for the reduction of hydrogen peroxide (H2O2). The current recorded with the OECS was linear with the concentration of ACh (I/nA = -3.90CACh/μM + 1.21, γ = 0.998) within a concentration range of 5 μM to 100 μM. The detection limit, based on a signal-to-noise ratio of 3, was calculated to be 1 μM. Interference investigation demonstrates that the OECS did not produce an observable current response toward physiological levels of common electroactive species, such as ascorbic acid (AA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and uric acid (UA). The high selectivity and the good linearity in combination with the high stability may enable the OECS developed here as a potential system for continuous monitoring of cerebral ACh release in some physiological and pathological processes. PMID:25529471

  2. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor.

    Kasheverov, Igor E; Shelukhina, Irina V; Kudryavtsev, Denis S; Makarieva, Tatyana N; Spirova, Ekaterina N; Guzii, Alla G; Stonik, Valentin A; Tsetlin, Victor I

    2015-03-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes. PMID:25775422

  3. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells.

    Xu, Man; Bi, Xueyuan; He, Xi; Yu, Xiaojiang; Zhao, Ming; Zang, Weijin

    2016-05-18

    The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR. PMID:27111378

  4. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway

    AMONYINGCHAROEN, SUMET; SURIYO, TAWIT; THIANTANAWAT, APINYA; WATCHARASIT, PIYAJIT; SATAYAVIVAD, JUTAMAAD

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1–40 μM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth. PMID:25815516

  5. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    Igor E. Kasheverov

    2015-03-01

    Full Text Available 6-Bromohypaphorine (6-BHP has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR. Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM, but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM. To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.

  6. Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    To characterize the interaction of coronaridine congeners with human (h) α3β4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3β4 AChRs with the following potency (IC50's in μM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 μM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., β4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and β4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3β4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites. PMID:26022277

  7. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes.

    Pessôa, Bruno Sevá; Slump, Denise E; Ibrahimi, Khatera; Grefhorst, Aldo; van Veghel, Richard; Garrelds, Ingrid M; Roks, Anton J M; Kushner, Steven A; Danser, A H Jan; van Esch, Joep H M

    2015-08-01

    Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. PMID:26056343

  8. Influence of environmental enrichment and depleted uranium on behaviour, cholesterol and acetylcholine in apolipoprotein E-deficient mice.

    Lestaevel, P; Airault, F; Racine, R; Bensoussan, H; Dhieux, B; Delissen, O; Manens, L; Aigueperse, J; Voisin, P; Souidi, M

    2014-07-01

    Alzheimer's disease is associated with genetic risk factors, of which the apolipoprotein E (ApoE) is the most prevalent, and is affected by environmental factors that include education early in life and exposure to metals. The industrial and military use of depleted uranium (DU) resulted in an increase of its deposition in some areas and led to a possible environmental factor. The present study aims to ascertain the effects on the behaviour and the metabolism of cholesterol and acetylcholine of ApoE-/- mice exposed to enriched environment (EE) and exposed to DU (20 mg/L) for 14 weeks. Here we show that ApoE-/- mice were unaffected by the EE and their learning and memory were similar to those of the non-enriched ApoE-/- mice. ApoE-/- mice showed a significant decrease in total (-16 %) and free (-16 %) cholesterol in the entorhinal cortex in comparison to control wild-type mice. Whatever the housing conditions, the exposure to DU of ApoE-/- mice impaired working memory, but had no effect on anxiety-like behaviour, in comparison to control ApoE-/- mice. The exposure of ApoE-/- mice to DU also induced a trend toward higher total cholesterol content in the cerebral cortex (+15 %) compared to control ApoE-/- mice. In conclusion, these results demonstrate that enriched environment does not ameliorate neurobehaviour in ApoE-/- mice and that ApoE mutation induced specific effects on the brain cholesterol. These findings also suggested that DU exposure could modify the pathology in this ApoE model, with no influence of housing conditions. PMID:23749703

  9. A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily.

    Sulan Luo

    Full Text Available Conotoxins (CTxs selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ''pro'' region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ''pro'' region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR antagonist with greatest potency against the α9α10 subtype. (1H nuclear magnetic resonance (NMR spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.

  10. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion.

    Thany, Steeve H

    2009-11-01

    Clothianidin is new neonicotinoid insecticide acting selectively on insect nicotinic acetylcholine receptors (nAChRs). Its effects on nAChRs expressed on cercal afferent/giant interneuron synapses and DUM neurons have been studied using mannitol-gap and whole-cell patch-clamp techniques, respectively. Bath-application of clothianidin-induced dose-dependent depolarizations of cockroach cercal afferent/giant interneuron synapses which were not reversed after wash-out suggesting a strong desensitization of postsynaptic interneurons at the 6th abdominal ganglion (A6). Clothinidin activity on the nerve preparation was characterized by an increased firing rate of action potentials which then ceased when the depolarization reached a peak. Clothianidin responses were insensitive to all muscarinic antagonists tested but were blocked by co-application of specific nicotinic antagonists methyllicaconitine, alpha-bungarotoxin and d-tubocurarine. In a second round of experiment, clothianidin actions were tested on DUM neurons isolated from the A6. There was a strong desensitization of nAChRs which was not affected by muscarinic antagonists, pirenzepine and atropine, but was reduced with nicotinic antagonist alpha-bungarotoxin. In addition, clothianidin-induced currents were completely blocked by methyllicaconitine suggesting that (1) clothianidin acted as a specific agonist of nAChR subtypes and (2) a small proportion of receptors blocked by MLA was insensitive to alpha-bungarotoxin. Moreover, because clothianidin currents were blocked by d-tubocurarine and mecamylamine, we provided that clothianidin was an agonist of both nAChRs: imidacloprid-sensitive nAChR1 and -insensitive nAChR2 subtypes. PMID:19583978

  11. Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles

    Yasuhiro Ooi

    2008-10-01

    Full Text Available Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC vesicles, and their binding abilities for acetylcholine (ACh were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS. For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100, the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×105 M-1 for Rh6G-3 complex and 1.1×102 M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, L-aspartic acid, L-glutamic acid, L-arginine, L-lysine, L-histamine and ammonium chloride was also evaluated using FCS.

  12. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.

  13. In vitro evaluation of nicotinic acetylcholine receptors with 2-[18F]F-A85380 in Parkinson's disease

    Nicotinic acetylcholine receptors (nAChR) are involved in many physiological functions and appear to be affected in neurodegenerative diseases like Alzheimer's disease and Parkinson's disease (PD). Here, we describe the in vitro evaluation of nAChRs in PD with 2-[18F]F-A85380, a ligand with high affinity to the β2 nAChR subunit. Autoradiography with 2-[18F]F-A85380 in untreated rat brain corresponded to the known distribution of α4β2 nAChRs with high uptake in the thalamus, moderate uptake in the striatum and cortex and low uptake in the cerebellum (47%, 43% and 19% of the thalamus, respectively). The localization of α4β2 nAChRs in the striatum was investigated in rodents with unilateral lesion of the substantia nigra. 2-[18F]F-A85380 binding was significantly reduced in the striatum ipsilateral to the lesion side (to 64% of the contralateral side), indicating that a fraction of α4β2 nAChRs is located on dopaminergic terminals, whereas another fraction resides on striatal interneurons or cortical afferents. Similarly, in human brain sections of PD patients, 2-[18F]F-A85380 uptake was significantly reduced not only in the caudate and putamen but also in the thalamus (approximately 30% of the binding of control brain in all three regions); within the striatum, nAChRs in the putamen were significantly more severely affected as in the caudate. The observed pattern of α4β2* nAChR loss demonstrates the potential of 2-[18F]F-A85380 for further investigations of this positron emission tomography ligand for in vivo studies of α4β2* nAChRs in PD

  14. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    Watson, M.; Ming, X.; McArdle, J.J. (Univ of Medical, Newark, NJ (USA))

    1989-02-09

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assays for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.

  15. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  16. A7DB: a relational database for mutational, physiological and pharmacological data related to the α7 nicotinic acetylcholine receptor

    Sansom Mark SP

    2005-01-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs are pentameric proteins that are important drug targets for a variety of diseases including Alzheimer's, schizophrenia and various forms of epilepsy. One of the most intensively studied nAChR subunits in recent years has been α7. This subunit can form functional homomeric pentamers (α75, which can make interpretation of physiological and structural data much simpler. The growing amount of structural, pharmacological and physiological data for these receptors indicates the need for a dedicated and accurate database to provide a means to access this information in a coherent manner. Description A7DB http://www.lgics.org/a7db/ is a new relational database of manually curated experimental physiological data associated with the α7 nAChR. It aims to store as much of the pharmacology, physiology and structural data pertaining to the α7 nAChR. The data is accessed via web interface that allows a user to search the data in multiple ways: 1 a simple text query 2 an incremental query builder 3 an interactive query builder and 4 a file-based uploadable query. It currently holds more than 460 separately reported experiments on over 85 mutations. Conclusions A7DB will be a useful tool to molecular biologists and bioinformaticians not only working on the α7 receptor family of proteins but also in the more general context of nicotinic receptor modelling. Furthermore it sets a precedent for expansion with the inclusion of all nicotinic receptor families and eventually all cys-loop receptor families.

  17. Different interaction between the agonist JN403 and the competitive antagonist methyllycaconitine with the human alpha7 nicotinic acetylcholine receptor.

    Arias, Hugo R; Gu, Ruo-Xu; Feuerbach, Dominik; Wei, Dong-Qing

    2010-05-18

    The interaction of the agonist JN403 with the human (h) alpha7 nicotinic acetylcholine receptor (AChR) was compared to that for the competitive antagonist methyllycaconitine (MLA). The receptor selectivity of JN403 was studied on the halpha7, halpha3beta4, and halpha4beta2 AChRs. The results established that the cationic center and the hydrophobic group found in JN430 and MLA are important for the interaction with the AChRs. MLA preincubation inhibits JN403-induced Ca(2+) influx in GH3-halpha7 cells with a potency 160-fold higher than that when MLA is co-injected with JN403. The most probable explanation, based on our dynamics results, is that MLA (more specifically the 3-methyl-2,5-dioxopyrrole ring and the B-D rings) stabilizes the resting conformational state. The order of receptor specificity for JN403 is as follows: halpha7 > halpha3beta4 ( approximately 40-fold) > halpha4beta2 ( approximately 500-fold). This specificity is based on a larger number of hydrogen bonds between the carbamate group (another pharmacophore) of JN403 and the halpha7 sites, the electrostatic repulsion between the positively charged residues around the halpha3beta4 sites and the cationic center of JN403, fewer hydrogen bonds for the interaction of JN403 with the halpha3beta4 AChR, and an unfavorable van der Waals interaction between JN403 and the alpha4-beta2 interface. The higher receptor specificity for JN403 could be important for the treatment of alpha7-related disorders, including dementias, pain-related ailments, depression, anxiety, and wound healing. PMID:20377277

  18. Different interaction between tricyclic antidepressants and mecamylamine with the human alpha3beta4 nicotinic acetylcholine receptor ion channel.

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Sullivan, Carl J; Maciejewski, Ryszard; Jozwiak, Krzysztof

    2010-03-01

    The interaction of tricyclic antidepressants (TCAs) with the human (h)alpha3beta4 nicotinic acetylcholine receptor (AChR) in different conformational states was compared with that for mecamylamine by using functional and structural approaches including, Ca(2+) influx, radioligand binding, and molecular docking. The results established that: (a) [(3)H]imipramine binds to a single site with relatively high affinity (K(d) = 0.41 +/- 0.04 microM), (b) imipramine inhibits [(3)H]imipramine binding to the resting/kappa-bungarotoxin-bound AChR (K(i) = 0.68 +/- 0.08 microM) with practically the same affinity as to the desensitized/epibatidine-bound AChR (K(i) = 0.83 +/- 0.08 microM), suggesting that TCAs do not discriminate between these conformational states, and (c) although TCAs (IC(50) approximately 1.8-2.7 microM) and mecamylamine (IC(50) = 3.3 +/- 0.4 microM) inhibit (+/-)-epibatidine-induced Ca(2+) influx with potencies in the same concentration range, TCAs (K(i) approximately 1-3.6 microM), but not mecamylamine (apparent IC(50) approximately 0.2 mM), inhibit [(3)H]imipramine binding to halpha3beta4 AChRs in different conformational states. This is explained by our docking results where imipramine, in the neutral and protonated states, interacts with the leucine (position 9') and valine/phenylalanine (position 13') rings, whereas protonated mecamylamine (>99% at physiological pH) interacts with the outer ring (position 20'). Our data indicate that TCAs bind to overlapping sites located between the serine and valine/phenylalanine rings in the halpha3beta4 AChR ion channel, whereas protonated mecamylamine can be attracted to the channel mouth before blocking ion flux by interacting with a luminal site in its neutral state. PMID:20117161

  19. The α6 nicotinic acetylcholine receptor subunit of Frankliniella occidentalis is not involved in resistance to spinosad.

    Hou, Wenjie; Liu, Qiulei; Tian, Lixia; Wu, Qingjun; Zhang, Youjun; Xie, Wen; Wang, Shaoli; Miguel, Keri San; Funderburk, Joe; Scott, Jeffrey G

    2014-05-01

    Insects evolve resistance which constrains the sustainable use of insecticides. Spinosyns, a class of environmentally-friendly macrolide insecticides, is not an exception. The mode of inheritance and the mechanisms of resistance to spinosad (the most common spinosyn insecticide) in Frankliniella occidentalis (Western flower thrips, WFT) were investigated in this study. Resistance (170,000-fold) was autosomal and completely recessive. Recent studies showed that deletion of the nicotinic acetylcholine receptor α6 subunit gene resulted in strains of Drosophila melanogaster, Plutella xylostella and Bactrocera dorsalis that are resistant to spinosad, indicating that nAChRα6 subunit maybe important for the toxic action of this insecticide. Conversely, a G275E mutation of this subunit in F. occidentalis was recently proposed as the mechanism of resistance to spinosad. We cloned and characterized nAChRα6 from three susceptible and two spinosad resistant strains from China and the USA. The Foα6 cDNA is 1873bp and the open reading frame is 1458bp which encodes 485 amino acid residues with a predicted molecular weight of 53.5-kDa, the 5' and 3' UTRs are 121 and 294bp, respectively. There was no difference in the cDNA sequence between the resistant and susceptible thrips, suggesting the G275E mutation does not confer resistance in these populations. Ten isoforms of Foα6, arising from alternative splicing, were isolated and did not differ between the spinosad-susceptible and resistant strains. Quantitative real time PCR analysis showed Foα6 was highly expressed in the first instar larva, pupa and adult, and the expression levels were 3.67, 2.47, 1.38 times that of the second instar larva. The expression level was not significantly different between the susceptible and resistant strains. These results indicate that Foα6 is not involved in resistance to spinosad in F. occidentalis from China and the USA. PMID:24861935

  20. Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [18F]NS10743, a novel diazabicyclononane derivative targeting α7 nicotinic acetylcholine receptors (α7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [18F]NS10743 under baseline conditions (n = 3) and after blocking of the α7 nAChR with NS6740 (3 mg.kg-1 bolus + 1 mg.kg-1.h-1 continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [18F]NS10743 passed readily into the brain, with peak uptake occurring in α7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUVmax was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUVmax 1.53 ± 0.32). Administration of NS6740 significantly decreased [18F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BPND. The baseline BPND ranged from 0.39 ± 0.08 in the cerebellum to 0.76 ± 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BPND in regions with high [18F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BPND in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [18F]NS10743 as a target-specific radiotracer for the molecular imaging of central α7 nAChRs by PET. (orig.)

  1. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl2) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl2 and MeHg on [3H]-quinuclidinyl benzilate ([3H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse, mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B max) and ligand affinity (K d). Subsequently, samples were exposed to HgCl2 or MeHg to derive IC50 values and inhibition constants (K i). Results demonstrate that HgCl2 is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [3H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies

  2. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes.

    Lu, Gang; Seta, Karen A; Millhorn, David E

    2005-06-10

    Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells. PMID:15824106

  3. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    The N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine previously formed from [{sup 3}H]choline was estimated in striosome- (identified by [{sup 3}H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-d-aspartate (50 {mu}M) stimulated the release of [{sup 3}H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-d-aspartate responses were concentration-dependent, but the 1 mM N-methyl-d-aspartate response was higher in striosomes than in the matrix. The co-application of d-serine (10 {mu}M) enhanced the 10 {mu}M N-methyl-d-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-d-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D{sub 2} and D{sub 1} dopaminergic receptor antagonists, (-)-sulpiride (1 {mu}M) and SCH23390 (1 {mu}M), was without effect on the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, but markedly enhanced the 1 mM N-methyl-d-aspartate + d-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-d-aspartate + d-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D{sub 2} receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-d-aspartate + d-serine-evoked release of [{sup 3}H]acetylcholine. They also show that the stimulation of D{sub 1

  4. Transcriptomic effects of depleted uranium on acetylcholine and cholesterol metabolisms in Alzheimer's disease model; Effets transcriptomiques de l'uranium appauvri sur les metabolismes de l'acetylcholine et du cholesterol chez un modele de maladie d'Alzheimer

    Lestaevel, Ph.; Bensoussan, H.; Racine, R.; Airault, F.; Gourmelon, P.; Souidi, M. [Direction de la radioprotection de l' Homme, service de radiobiologie et d' epidemiologie, laboratoire de radiotoxicologie experimentale, institut de radioprotection et de surete nucleaire, BP no 17, 92262 Fontenay-aux-Roses cedex (France)

    2011-02-15

    Some heavy metals, or aluminium, could participate in the development of Alzheimer disease (AD). Depleted uranium (DU), another heavy metal, modulates the cholinergic system and the cholesterol metabolism in the brain of rats, but without neurological disorders. The aim of this study was to determine what happens in organisms exposed to DU that will/are developing the AD. This study was thus performed on a transgenic mouse model for human amyloid precursor protein (APP), the Tg2576 strain. The possible effects of DU through drinking water (20 mg/L) over an 8-month period were analyzed on acetylcholine and cholesterol metabolisms at gene level in the cerebral cortex. The mRNA levels of choline acetyl transferase (ChAT) vesicular acetylcholine transporter (VAChT) and ATP-binding cassette transporter A1 (ABC A1) decreased in control Tg2576 mice in comparison with wild-type mice (respectively -89%, -86% and -44%, p < 0.05). Chronic exposure of Tg2576 mice to DU increased mRNA levels of ChAT (+189%, p < 0.05), VAChT (+120%, p < 0.05) and ABC A1 (+52%, p < 0.05) compared to control Tg2576 mice. Overall, these modifications of acetylcholine and cholesterol metabolisms did not lead to increased disturbances that are specific of AD, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. (authors)

  5. IL-13R alpha 2 reverses the effects of IL-13 and IL-4 on bronchial reactivity and acetylcholine-induced Ca2+ signaling

    Kellner, Julia; Gamarra, Fernando; Welsch, Ulrich; Joerres, Rudolf A.; Huber, Rudolf M; Bergner, Albrecht

    2007-01-01

    Background: The interleukins IL-4 and IL-13 play a key role in the pathophysiology of asthma. The interleukin receptor IL-13R alpha 2 is believed to act as a decoy receptor, but until now, the functional significance of IL-13R alpha 2 remains vague. Methods: Bronchial reactivity was quantified in murine lung slices by digital video microscopy and acetylcholine (ACH)-induced Ca2+ signaling was measured in human airway smooth muscle cells (ASMC) using fluorescence microscopy. Results: IL-4 or I...

  6. Effect of spontaneous diffusion in micro/nanoporous chemically crosslinked poly (N-vinyl imidazole) gel on the conformational changes of acetylcholine

    Vaganova, Evgenia; Pierola, Ines F.; Ovadia, Haim; Lyshevski, Sergey E.; Yitzchaik, Shlomo

    2009-02-01

    Interdependent structural properties such as molecular conformation, flexibility and charge redistribution control the intermolecular interactions of acetylcholine (ACh) with adjacent molecules. This paper reports the results of an investigation of the effect of the diffusion of ACh through a nano/microporous poly (N-vinylimidazole) (PVI) gel on its structural properties, namely on changes in its conformation. To investigate the conformational changes of ACh during spontaneous diffusion through the gel, the fluorescence lifetime of the label molecule - fluorescein - was monitored. To clarify the results, analogous experiments were conducted with nicotinic acid and dopamine. In contrast to the nicotinic acid and dopamine, ACh can play the role of a regulator in molecular transport.

  7. Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Delta2 -isoxazoline derivatives as potent and selective agonists of alpha7 nicotinic acetylcholine receptors

    Dallanoce, Clelia; Magrone, Pietro; Matera, Carlo;

    2011-01-01

    A set of racemic spirocyclic quinuclidinyl-¿(2) -isoxazoline derivatives was synthesized using a 1,3-dipolar cycloaddition-based approach. Target compounds were assayed for binding affinity toward rat neuronal homomeric (a7) and heteromeric (a4ß2) nicotinic acetylcholine receptors. ¿(2) -Isoxazol...... (-)-dibenzoyl-D-tartaric acid as resolving agents. Enantiomer (R)-(-)-6¿a was found to be the eutomer, with K(i) values of 4.6 and 48.7 nM against rat and human a7 receptors, respectively....

  8. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S.

    1998-01-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subu...

  9. Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands

    Shimomura, Masaru; Okuda, Hiroshi; Matsuda, Kazuhiko; Komai, Koichiro; Akamatsu, Miki; Sattelle, David B

    2002-01-01

    Neonicotinoid insecticides are agonists of insect nicotinic acetylcholine receptors (AChRs) and show selective toxicity for insects over vertebrates. To elucidate the molecular basis of the selectivity, amino acid residues influencing neonicotinoid sensitivity were investigated by site-directed mutagenesis of the chicken α7 nicotinic AChR subunit, based on the crystal structure of an ACh binding protein (AChBP).In the ligand binding site of AChBP, Q55 in loop D is close to Y164 in loop F that...

  10. Repression of slow myosin heavy chain 2 gene expression in fast skeletal muscle fibers by muscarinic acetylcholine receptor and Gαq signaling

    Jordan, Theresa; Li, Jinyuan; Jiang, Hongbin; DiMario, Joseph X.

    2003-01-01

    Gene expression in skeletal muscle fibers is regulated by innervation and intrinsic fiber properties. To determine the mechanism of repression of slow MyHC2 expression in innervated fast pectoralis major (PM) fibers, we investigated the function of the muscarinic acetylcholine receptor (mAchR) and Gαq. Both mAchR and Gαq are abundant in medial adductor (MA) and PM fibers, and mAchR and Gαq interact in these fibers. Whereas innervation of PM fibers was insufficient to induce slow MyHC2 express...

  11. Neuromuscular block after intra-arterially injected acetylcholine. 2. Effects of ACTH treatments as possible detectors of desensitization level in the receptor site.

    Pinelli, P; Tonali, P; Gambi, D

    1973-04-01

    It has been suggested that the effect of ACTH in myasthenia gravis may be ascribed to an action involving neuromuscular transmission which favours repolarization processes, with a tendency towards hyperpolarization of the membranes of muscle fibres and motor nerve endings. A similar mechanism has been postulated for the action of ACTH in epilepsy (Klein, 1970). A direct or indirect action on nerve membrane would interfere with depolarization. There is evidence of raised concentration of intracellular potassium and increased outflow of sodium ions which would cause hyperpolarization of the membrane. This paper studies the effect of ACTH on the late block of neuromuscular transmission caused by acetylcholine (ACTH). PMID:4350704

  12. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber)

    Jørgensen, Kristine B.; Krogh-Jensen, Karen; Pickering, Darryl S;

    2016-01-01

    musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies...... with [3H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in...

  13. Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors

    Jin, Shaoyu; Fredholm, Bertil B

    1997-01-01

    Rat striatal slices, preincubated with [3H]-dopamine and [14C]-choline, were continuously superfused and electrically stimulated. Electrically evoked release of [3H]-dopamine and [14C]-acetylcholine (ACh) was not significantly changed by elimination of Mg2+ from superfusion buffer, but the basal release of [3H]-dopamine was doubled.Kynurenic acid (100–800  μM) caused, in the absence but not presence of Mg2+, a concentration-dependent decrease in the evoked release of these two transmitters. T...

  14. Is the acetylcholine-regulated inwardly rectifying potassium current a viable antiarrhythmic target? Translational discrepancies of AZD2927 and A7071 in dogs and humans

    Walfridsson, Håkan; Anfinsen, Ole-Gunnar; Berggren, Anders; Frison, Lars; Jensen, Steen; Linhardt, Gunilla; Nordkam, Ann-Christin; Sundqvist, Monika; Carlsson, Leif

    2015-01-01

    AIMS: We aimed at examining the acetylcholine-dependent inward-rectifier current (IKAch) as a target for the management of atrial fibrillation (AF). METHODS AND RESULTS: The investigative agents AZD2927 and A7071 concentration-dependently blocked IKACh in vitro with minimal off-target activity. In anaesthetized dogs (n = 17) subjected to 8 weeks of rapid atrial pacing (RAP), the left atrial effective refractory period (LAERP) was maximally increased by 50 ± 7.4 and 50 ± 4.8 ms following infus...

  15. Subtype-selective nicotinic acetylcholine receptor agonists can improve cognitive flexibility in an attentional set shifting task.

    Wood, Christopher; Kohli, Shivali; Malcolm, Emma; Allison, Claire; Shoaib, Mohammed

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are considered to be viable targets to enhance cognition in patients diagnosed with schizophrenia. Activation of nAChRs with selective nicotinic receptor agonists may provide effective means to pharmacologically treat cognitive deficits observed in schizophrenia. Cognitive flexibility is one aspect of cognition, which can be assessed in a rodent model of the attentional set-shifting task (ASST). The aim of the present study was two-fold, firstly, to evaluate the efficacy of a series of subtype selective nAChR agonists, such as those that target α7 and α4β2 nAChR subtypes in non-compromised rodents. Secondly, nicotine as a prototypic agonist was evaluated for its effects to restore attentional deficits produced by sub-chronic ketamine exposure in the ASST. Male hooded Lister rats underwent habituation, consisting of a simple odour and medium discrimination with subsequent assessment 24 h later. In experimentally naïve rats, α7 subtype selective agonists, compound-A and SSR180711 along with PNU-120596, an α7 positive allosteric modulator (PAM), were compared against the β2* selective agonist, 5IA-85380. All compounds except for PNU-120596 were observed to significantly improve extra-dimensional (ED) shift performance, nicotine, 5IA-85380 and SSR180711 further enhanced the final reversal (REV3) stage of the task. In another experiment, sub-chronic ketamine treatment produced robust deficits during the ED and the REV3 stages of the discriminations; rodents required significantly more trials to reach criterion during these discriminations. These deficits were attenuated in rodents treated acutely with nicotine (0.1 mg/kg SC) 10 min prior to the ED shift. These results highlight the potential utility of targeting nAChRs to enhance cognitive flexibility, particularly the α7 and β2* receptor subtypes. The improvement with nicotine was much greater in rodents that were impaired following the sub-chronic ketamine

  16. Assessment of {alpha}7 nicotinic acetylcholine receptor availability in juvenile pig brain with [{sup 18}F]NS10743

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Funke, Uta; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Leipzig (Germany); Becker, Georg; Sabri, Osama [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Cumming, Paul; Xiong, Guoming [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Peters, Dan [NeuroSearch A/S, Ballerup (Denmark)

    2011-08-15

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [{sup 18}F]NS10743, a novel diazabicyclononane derivative targeting {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [{sup 18}F]NS10743 under baseline conditions (n = 3) and after blocking of the {alpha}7 nAChR with NS6740 (3 mg.kg{sup -1} bolus + 1 mg.kg{sup -1}.h{sup -1} continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [{sup 18}F]NS10743 passed readily into the brain, with peak uptake occurring in {alpha}7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUV{sub max} was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUV{sub max} 1.53 {+-} 0.32). Administration of NS6740 significantly decreased [{sup 18}F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BP{sub ND}. The baseline BP{sub ND} ranged from 0.39 {+-} 0.08 in the cerebellum to 0.76 {+-} 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BP{sub ND} in regions with high [{sup 18}F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BP{sub ND} in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [{sup 18}F]NS10743 as a target-specific radiotracer for the molecular imaging of central {alpha}7 nAChRs by PET. (orig.)

  17. Molecular imaging of acetylcholine vesicular transporter (VAChT) in demented patients with Alzheimer's disease (AD) by IBVM-SPECT

    Alzheimer's disease (A.D.) is characterized by a premature decline of cholinergic neurons. The 5-I.B.V.M. is an analogue of the Vesamicol that binds to the presynaptic vesicular acetylcholine transporter (VAChT). The exploration of this target should be useful to make an early diagnosis of A.D.. Our first aim was to propose a method of non invasive VAChT quantification according to 5-I.B.V.M. kinetic. 5-I.B.V.M. was injected to four A.D. patients (age = 77 ± 3.9 years and M.M.S.E. = 24.5 ± 1.02) were included in this methodological study. The single-photon emission computed tomography (SPECT) images were obtained at five, 20, 35 and 50 minutes, at then at three, five and 22 hours after intravenous injection of 5-I.B.V.M. (185 MBq). The time activity curves were obtained after SPECT images co registration on a MRI masque. Specific volume of interest (S.P.E. SPEcific) were manually drawn on striatum, pons, thalamus and para-hippocampic gyrus including hippocampus; reference volumes of interest (R.E.F. = REFerence) were drawn on frontal and occipital cerebral cortex. On the basis of uptake kinetic, two modeling approaches were considered: transient equilibrium model for reversible ligand (binding potential (B.P.) (S.P.E. - R.E.F.)/R.E.F.) and Patlak graphical analysis for irreversible tracers (slope given by Ki/DVref where Ki is the influx constant and DVref is the distribution volume of the reference region). We observed an inflection or a steady state of the activity curves in the different regions studied between 250 and 1400 minutes, what seems to confirm that the tracer is little reversible. B.P. values obtained at 21 hours with occipital areas as reference and Ki/DVref values were respectively 4.62 ± 0.42 and 0.07 ± 0.01. The S.P.E. classification according to B.P. and Ki/DVref values were similar to the classification according to the compartmental analysis (Kuhl 1994). The transient equilibrium model with late acquisition seems the more suitable because I

  18. Studies for transitional changes of the muscarinic acetylcholine receptor and mRNA distribution by focal ischemia using nuclear medicine

    Assessing stress-induced brain receptor responses is important in understanding clinical brain receptor images for nuclear medicine. It is known that cholinergic neurons are decreased by Alzheimer's disease and that there is a close relationship between cholinergic neurons and muscarinic acetylcholine receptors (mAchR). Thus, this study assessed the response of mAchR to focal ischemia using infarction model rats (prepared by middle cerebral artery occlusion) and sham-operated rats. In the same rats, three kinds of images -- ex vivo regional cerebral blood flow (rCBF) images with 99mTc-hexametyl-propyleneamine oxime (99mTc-HMPAO), in vitro mAchR binding images with [3H] quinuclidinyl benzilate (3H-QNB), and mAchR-mRNA images by in situ hybridization method using 35S-labeled-oligonucleotide probes specific for mAchR gene subtypes of m1 to m5 -- were obtained in acute and chronic phases. Each image datum was digitalized and assessed semi-quantitatively. There were significant changes in global distribution among rCBF, mAchR and mAchR-mRNAs. In the acute phase, there was no significant change in mAchR in the infarcted area, although rCBF markedly decreased. In the chronic phase, there was a significant decrease in mAchR in the infarct-sided thalamus, although there was no change in rCBF; and there was a significant decrease in mAchR of the infarct-sided substantia nigra in spite of increase in rCBF. In the acute phase, mAchR-mRNAs of the infarct-sided caudate-putamen was decreased, suggesting that the ability of cholinergic neuron to synthesize receptor protein had decreased in the acute phase. Because mAchR was not decreased in the acute phase, some viable neurons with no normal function may be preserved in the acute phase. These results were encouraging in understanding mAchR brain images of patients with memory disturbances such as cerebrovascular dementia and Alzheimer's disease. (N.K.)

  19. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro

    K. Peraza-Cruces

    2008-09-01

    Full Text Available The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory and inflammatory activity (immunogenic theory that could affect heart muscarinic acetylcholine receptor (mAChR expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1 in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2 isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC. Using [³H]-quinuclidinylbenzilate ([³H]-QNB binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1 mAChR were significantly (P < 0.05 up-regulated in right ventricular myocardium (means ± SEM; control: 58.69 ± 5.54, N = 29; Chagas: 72.29 ± 5.79 fmol/mg, N = 34 and PBMC (control: 12.88 ± 2.45, N = 18; Chagas: 20.22 ± 1.82 fmol/mg, N = 19, as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 ± 3.83; Chagas: 43.62 ± 5.08 fmol/mg, N = 7 for both or their conditioned medium (control: 37.84 ± 3.84, N = 4; Chagas: 54.38 ± 6.28 fmol/mg, N = 20; 2 [³H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 ± 2321; control 10,940 ± 2385 dpm, N = 7 for both; P < 0.05; 3 plasma IL-6 was increased in chagasic rats, IL-1β, was increased in both plasma of chagasic rats and in the culture medium, and TNF-α level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.

  20. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  1. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons.

    Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J

    2005-01-01

    The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca(2+)](I), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca(2+)](i) transients was 28 microM, close to the estimated clinical EC(50) (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at -60 mV to eliminate any contribution of voltage-gated Ca(2+) channels, thiopental (25 microM) simultaneously inhibited nAChR-induced increases in [Ca(2+)](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by approximately 40% at -120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC(50) were also shown to inhibit nAChR-induced increases in [Ca(2+)](i) by approximately 40%. Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca(2+)](i), indicating that inhibition of Ca(2+) release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca(2+) channel currents were unaffected in the presence of thiopental (25 microM), pentobarbital (50 microM) and ketamine (10 microM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca(2+)](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873

  2. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction.

    Guarracino, Juan F; Cinalli, Alejandro R; Fernández, Verónica; Roquel, Liliana I; Losavio, Adriana S

    2016-06-21

    It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y

  3. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae

    Field Linda M

    2011-05-01

    Full Text Available Abstract Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Results Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR. Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1 genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T. Conclusion Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also

  4. Nicotinic acetylcholine receptor α7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors

    Teresa A MURRAY; Qiang LIU; Paul WHITEAKER; Jie WU; Ronald J LUKAS

    2009-01-01

    Aim: Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR a.7 subunit without compromising formation of functional receptors.Methods: A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplamsic loop between the third and fourth transmembrane domains of the mouse nAChR al sub-unit (a7Y). SH-EP1 cells were transfected with mouse nAChR wild type a.7 subunits (a.7) or with a7Y subunits, alone or with the chaperone protein, hRJC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with 125I-labeled a-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy.Results: Whole-cell currents revealed that a7Y nAChRs and al nAChRs were functional with comparable EC50 values for the a7 nAChR-selective agonist, choline, and IC50 values for the a.7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that a7Y had primarily intracel-lular rather than surface expression. TIRF microscopy confirmed that little a7Y localized to the plasma membrane, typical of a7 nAChRs.Conclusion: nAChRs composed as homooligomers of a7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of a.7 nAChRs. a7Y nAChRs may be used to elucidate properties of a.7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion.

  5. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries

    Buus, Niels H; Simonsen, Ulf; Pilegaard, Hans K; Mulvany, Michael J

    2000-01-01

    The main purpose of the study was to clarify to which extent nitric oxide (NO) contributes to acetylcholine (ACh) induced relaxation of human subcutaneous small arteries. Arterial segments were mounted in myographs for recording of isometric tension, NO concentration and smooth muscle membrane potential. In noradrenaline-contracted arteries, ACh induced endothelium-dependent relaxations. The NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG) had a small significant effect on the concentration-response curves for ACh, and in the presence of L-NOARG, indomethacin only caused a small additional rightward shift in the ACh relaxation. The NO scavenger, oxyhaemoglobin attenuated relaxations for ACh and for the NO donor S-nitroso-N-acetylpenicillamine (SNAP). Inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), and inhibition of protein kinase G with β-phenyl-1, N2-etheno-8-bromoguanosine- 3′, 5′- cyclic monophosphorothioate, Rp-isomer, slightly attenuated ACh relaxation, but abolished SNAP induced relaxation. ACh induced relaxation without increases in the free NO concentration. In contrast, for equivalent relaxation, SNAP increased the NO concentration 32±8 nM. ACh hyperpolarized the arterial smooth muscle cells with 11.4±1.3 mV and 10.5±1.3 mV in the absence and presence of L-NOARG, respectively. SNAP only elicited a hyperpolarization of 1.6±0.9 mV. In the presence of indomethacin and L-NOARG, ACh relaxation was almost unaffected by lipoxygenase inhibition with nordihydroguaiaretic acid, or cytochrome P450 inhibition with 17-octadecynoic acid or econazole. ACh relaxation was strongly reduced by the combination of charybdotoxin and apamin, but small increments in the extracellular potassium concentration induced no relaxations. The study demonstrates that the NO/L-arginine pathway is present in human subcutaneous small arteries and to a limited extent is involved in ACh induced relaxation. The study also suggests a

  6. Acetylcholine-Based Entropy in Response Selection: A Model of How Striatal Interneurons Modulate Exploration, Exploitation, and Response Variability in Decision Making

    Andrea eStocco

    2012-02-01

    Full Text Available The basal ganglia play a fundamental role in decision making. Their contribution is typically modeled within a reinforcement learning framework, with the basal ganglia learning to select the options associated with highest value and their dopamine inputs conveying performance feedback. This basic framework, however, does not account for the role of cholinergic interneurons in the striatum, and does not easily explain certain dynamic aspects of decision-making and skill acquisition like the generation of exploratory actions. This paper describes BABE (Basal ganglia Acetylcholine-Based Entropy, a model of the acetylcholine system in the striatum that provides a unified explanation for these phenomena. According to this model, cholinergic interneurons in the striatum control the level of variability in behavior by modulating the number of possible responses that are considered by the basal ganglia, as well as the level of competition between them. This mechanism provides a natural way to account for the role of basal ganglia in generating behavioral variability during the acquisition of certain cognitive skills, as well as for modulating exploration and exploitation in decision making. Compared to a typical reinforcement learning model, BABE showed a greater modulation of response variability in the face of changes in the reward contingencies, allowing for faster learning (and re-learning of option values. Finally, the paper discusses the possible applications of the model to other domains.

  7. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography

    A high-affinity muscarinic receptor antagonist, 123IQNB (3-quinuclidinyl-4-iodobenzilate labeled with iodine 123), was used with single photon emission computed tomography to image muscarinic acetylcholine receptors in 14 patients with dementia and in 11 healthy controls. High-resolution single photon emission computed tomographic scanning was performed 21 hours after the intravenous administration of approximately 5 mCi of IQNB. In normal subjects, the images of retained ligand showed a consistent regional pattern that correlated with postmortem studies of the relative distribution of muscarinic receptors in the normal human brain, having high radioactivity counts in the basal ganglia, occipital cortex, and insular cortex, low counts in the thalamus, and virtually no counts in the cerebellum. Eight of 12 patients with a clinical diagnosis of Alzheimer's disease had obvious focal cortical defects in either frontal or posterior temporal cortex. Both patients with a clinical diagnosis of Pick's disease had obvious frontal and anterior temporal defects. A region of interest statistical analysis of relative regional activity revealed a significant reduction bilaterally in the posterior temporal cortex of the patients with Alzheimer's disease compared with controls. This study demonstrates the practicability of acetylcholine receptor imaging with 123IQNB and single photon emission computed tomography. The data suggest that focal abnormalities in muscarinic binding in vivo may characterize some patients with Alzheimer's disease and Pick's disease, but further studies are needed to address questions about partial volume artifacts and receptor quantification

  8. Individual response speed is modulated by variants of the gene encoding the alpha 4 sub-unit of the nicotinic acetylcholine receptor (CHRNA4).

    Schneider, Katja Kerstin; Schote, Andrea B; Meyer, Jobst; Markett, Sebastian; Reuter, Martin; Frings, Christian

    2015-05-01

    Acetylcholine (ACh) is a known modulator of several domains of cognition, among them attention, memory and learning. The neurotransmitter also influences the speed of information processing, particularly the detection of targets and the selection of suitable responses. We examined the effect of the rs1044396 (C/T) polymorphism of the gene encoding the nicotinic acetylcholine receptor α4-subunit (CHRNA4) on response speed and selective visual attention. To this end, we administered a Stroop task, a Negative priming task and an exogenous Posner-Cuing task to healthy participants (n = 157). We found that the CHRNA4 rs1044396 polymorphism modulated the average reaction times (RTs) across all three tasks. Dependent on the C allele dosage, the RTs linearly increased. Homozygous T allele carriers were always fastest, while homozygous C allele carriers were always slowest. We did not observe effects of this polymorphism on selective attention. In sum, we conclude that naturally occurring variations within the cholinergic system influence an important factor of information processing. This effect might possibly be produced by the neuromodulator system rather than the deterministic system of cortical ACh. PMID:25639542

  9. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis;

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation...... recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine......,-non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively...

  10. The α4β2 nicotinic acetylcholine receptor modulates autism-like behavioral and motor abnormalities in pentylenetetrazol-kindled mice.

    Takechi, Kenshi; Suemaru, Katsuya; Kiyoi, Takeshi; Tanaka, Akihiro; Araki, Hiroaki

    2016-03-15

    Epilepsy is associated with several psychiatric disorders, including cognitive impairment, autism and attention deficit/hyperactivity disorder (ADHD). However, the psychopathology of epilepsy is frequently unrecognized and untreated in patients. In the present study, we investigated the effects of ABT-418, a neuronal nicotinic acetylcholine receptor agonist, on pentylenetetrazol (PTZ)-kindled mice with behavioral and motor abnormalities. PTZ-kindled mice displayed impaired motor coordination (in the rotarod test), anxiety (in the elevated plus maze test) and social approach impairment (in the three-chamber social test) compared with control mice. ABT-418 treatment (0.05mg/kg, intraperitoneally) alleviated these behavioral abnormalities in PTZ-kindled mice. Immunolabeling of tissue sections demonstrated that expression of the α4 nicotinic acetylcholine receptor subunit in the medial habenula was similar in control and PTZ-kindled mice. However, expression was significantly decreased in the piriform cortex in PTZ-kindled mice. In addition, we examined the expression of the synaptic adhesion molecule neuroligin 3 (NLG3). NLG3 expression in the piriform cortex was significantly higher in PTZ-kindled mice compared with control mice. Collectively, our findings suggest that ADHD-like or autistic-like behavioral abnormalities associated with epilepsy are closely related to the downregulation of the α4 nicotinic receptor and the upregulation of NLG3 in the piriform cortex. In summary, this study indicates that ABT-418 might have therapeutic potential for attentional impairment in epileptic patients with psychiatric disorders such as autism and ADHD. PMID:26868186

  11. A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression.

    Watson, Gerald B; Chouinard, Scott W; Cook, Kevin R; Geng, Chaoxian; Gifford, Jim M; Gustafson, Gary D; Hasler, James M; Larrinua, Ignacio M; Letherer, Ted J; Mitchell, Jon C; Pak, William L; Salgado, Vincent L; Sparks, Thomas C; Stilwell, Geoff E

    2010-05-01

    Strains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6. Subsequently, additional spinosyn-resistant alleles were generated by chemical mutagenesis and were also found to have mutations in the gene encoding Dalpha6, providing convincing evidence that Dalpha6 is a target site for the spinosyns in D. melanogaster. Although a spinosyn-sensitive receptor could not be generated in Xenopus laevis oocytes simply by expressing Dalpha6 alone, co-expression of Dalpha6 with an additional nAChR subunit, Dalpha5, and the chaperone protein ric-3 resulted in an acetylcholine- and spinosyn-sensitive receptor with the pharmacological properties anticipated for a native nAChR. PMID:19944756

  12. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. PMID:27233822

  13. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine

    The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the γ-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist α-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effect on [125I]TID labeling of the AChR. The regions of the AChR α-subunit that incorporate [125]TID were mapped by Staphylococcus aureus V8 protest digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the α-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology

  14. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups.

    Rojas, I.

    2010-03-01

    Full Text Available Docosahexaenoic acid (DHA is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHAcontaining lysophosphatidylcholine (DHA-LPC, obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily., before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mother’s plasma and increases the pups’ DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period.El ácido docosahexaenoico (DHA que requiere el feto y el recién nacido lo aporta la madre desde sus reservas y la dieta, por lo cual se sugiere suplementar a la madre con DHA. No hay consenso sobre la mejor forma de suplementación. Proponemos que un lisofosfolípido que contiene DHA y colina (DHA-LPC obtenido de huevos con alto contenido de DHA es

  15. Acetylcholine receptor antibody

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... 1/2015 Updated by: Daniel Kantor, MD, Kantor Neurology, Coconut Creek, FL and immediate past president of ...

  16. Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane

    Bach, Tinna Brøbech; Jensen, Anders A.; Petersen, Jette G.;

    2015-01-01

    the α4-β2 nAChR interface and by surface plasmon resonance biosensor analysis of binding of the compounds to acetylcholine-binding proteins, where they exhibit preference for Lymnaea stagnalis ACh binding protein (Ls-AChBP) over the Aplysia california ACh binding protein (Ac-AChBP). These results...

  17. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1 Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Ekaterina N Lyukmanova

    Full Text Available SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1 differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM of human oral keratinocytes (Het-1A cells. Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM. It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1 did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the

  18. The effect of calcium-naloxone treatment on blood calcium, beta-endorphin, and acetylcholine in milk fever.

    Rizzo, A; Minoia, G; Ceci, E; Manca, R; Mutinati, M; Spedicato, M; Sciorsci, R L

    2008-09-01

    Milk fever is a postpartum syndrome of cows characterized by acute hypocalcemia, which reduces the release of acetylcholine (ACH), inducing flaccid paralysis and recumbency. Our aim was to evaluate the effect of calcium (Ca2+) combined with naloxone (Nx, an opioid antagonist; Ca2+-Nx) on plasma concentrations of ACH, beta-endorphin (betaE), and Ca2+ just before treatment (T0) and at 15, 30, and 90 min after treatment (T15, T30, and T90, respectively). Thirty cows were divided into 3 groups of 10 cows each. In group A1, cows affected by milk fever were treated (i.v.) with a combination of 0.2 mL/kg of body weight (BW) of Ca2+ borogluconate (20%) and 0.01 mg/kg of BW of Nx hydrochloride dihydrate. In group A2, cows affected by milk fever were treated (i.v.) with 2 mL/kg of BW of Ca2+ borogluconate (20%). In group C, healthy cows were treated (i.v.) with a combination of 0.2 mL/kg of BW of Ca2+ borogluconate (20%) and 0.01 mg/kg of BW of Nx hydrochloride dihydrate. Cows underwent treatments within 24 h of calving. Blood samples were collected at T0 and at T15, T30, and T90 for quantitative determination of ACH, betaE, and Ca2+. The cows in groups A1 and A2 recovered within a mean of 20 +/- 10 min, although 4 cows in group A2 underwent a relapse. Blood Ca2+ concentrations in group C increased slightly at T30 and at T90 (T30: 8.8 +/- 0.6 mg/dL; T90: 8.7 +/- 0.6 mg/dL) after treatment, whereas the response in groups affected by milk fever was similar, even though Ca2+ concentrations showed a sharp increase (A1: 8.9 +/- 0.8 mg/dL; A2: 6.0 +/- 0.7 mg/dL), particularly at T15 in group A1. Concentrations of betaE showed a similar pattern in groups A1 and C, with an increase at T15 (A1: 8.2 +/- 1.0 ng/mL; C: 2.7 +/- 0.4 ng/mL) and a subsequent decrease until T90 (A1: 1.4 +/- 0.3 ng/mL; C: 1.4 +/- 0.4 ng/mL), whereas betaE remained constant throughout in group A2. Concentrations of ACH in group A1 decreased significantly between T0 and T15, T30, and T90 (T0: 7.2 +/- 1.1 nmol

  19. Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex.

    Huang, Mei; Li, Zhu; Ichikawa, Junji; Dai, Jin; Meltzer, Herbert Y

    2006-07-12

    Mood stabilizers (e.g., valproic acid) and antipsychotic drugs (APDs) are commonly co-administered in the treatment of bipolar disorder and schizophrenia. The basis for any synergism between these classes of drugs in either group of disorders has been little studied. Previous studies have shown that atypical APDs (e.g., clozapine) preferentially increases dopamine (DA) and acetylcholine (ACh) efflux in rat medial prefrontal cortex (mPFC) and hippocampus (HIP), both of which have been suggested to contribute to their ability to improve cognition in patients with schizophrenia. We have recently reported that the anticonvulsant mood stabilizers (AMS), valproic acid, carbamazepine, and zonisamide, but not lithium, also preferentially increase DA efflux in the rat mPFC, and that, at subthreshold doses, the AMS also augment the ability of the atypical APDs clozapine and risperidone to increase DA but not ACh efflux in the mPFC. The present study examined the ability of divalproex (DVX), which is chemically related to valproic acid, to enhance DA and ACh efflux in the HIP and to augment the effect of atypical APDs on ACh efflux in the HIP and mPFC. DVX, 500 mg/kg, significantly increased DA and ACh efflux in the HIP, and DA, but not ACh, efflux in the mPFC, whereas a lower dose of DVX, 50 mg/kg, had no effect on DA or ACh in either region. However, DVX, 50 mg/kg, combined with the atypical APDs olanzapine (1.0 mg/kg) or aripiprazole (0.3 mg/kg) significantly potentiated the effect of both APDs on DA, but not ACh efflux in the HIP and mPFC. Pretreatment of olanzapine or aripiprazole with the selective serotonin 5-HT(1A) antagonist, WAY100635 (1.0 mg/kg) partially but significantly blocked the effect of the combination of DVX, 50 mg/kg, and olanzapine or aripiprazole, on DA efflux in both the HIP and mPFC. WAY100635 did not affect the ability of the combination of olanzapine or aripiprazole and DVX to enhance ACh efflux in the HIP or mPFC. Subchronic administration of the

  20. [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine receptors using single photon emission computer tomography; [{sup 123}I]-3-Iodcytisin als moeglicher Radiotracer fuer die Darstellung der nikotinergen Acetylcholin Rezeptoren mittels Single-Photon-Emissions-Computertomographie

    Paulik, Dagmar Julia

    2015-03-06

    For the synthesis of [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine (nACh) receptors using SPECT two different technologies were used: the radio-iodination with iodogen and the radio-iodination with nitric acid. The latter one showed higher efficiency. The radiotracer will allow to detect degenerative processes and other nACh-depending diseases in the brain (Alzheimer, Parkinson) and to observe the progress. The autoradiography is aimed to the imaging of the nACh receptors in the brain bypassing the brain-blood barrier. The highest activity was measured in the thalamus of mice and rat brains.