WorldWideScience

Sample records for acetylating myosin light

  1. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  2. Phosphorylation of caldesmon by myosin light chain kinase increases its binding affinity for phosphorylated myosin filaments

    Sobieszek, Apolinary; Sarg, Bettina; Seow, Chun Y.; Lindner, Herbert

    2010-01-01

    Phosphorylation of myosin by myosin light chain kinase (MLCK) is essential for smooth muscle contraction. In this study we show that caldesmon (CaD) is also phosphorylated in vitro by MLCK. The phosphorylation is calcium- and calmodulin (CaM)-dependent and requires a MLCK concentration close to that found in vivo. On average, approximately 2 mol Pi per mol of CaD are incorporated at Thr-626 and Thr-693, with additional partial phosphorylation at Ser-658 and Ser-702. The phosphorylation rate f...

  3. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  4. Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles.

    Reiser, Peter J; Bicer, Sabahattin; Chen, Qun; Zhu, Ling; Quan, Ning

    2009-08-01

    Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style. PMID:19648394

  5. Stretch activates myosin light chain kinase in arterial smooth muscle

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  6. Stretch activates myosin light chain kinase in arterial smooth muscle

    Barany, K.; Rokolya, A.; Barany, M. (Univ. of Illinois, Chicago (USA))

    1990-11-30

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol (32P)phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the (32P)phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in (32P)phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively.

  7. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Steven D Lidofsky

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin ...

  8. Involvement of myosin light-chain kinase in endothelial cell retraction

    Wysolmerski, R.B.; Lagunoff, D. (Saint Louis Univ. School of Medicine, MO (USA))

    1990-01-01

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

  9. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  10. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain.

    Kolodney, M S; Elson, E L

    1995-01-01

    Microtubules have been proposed to function as rigid struts which oppose cellular contraction. Consistent with this hypothesis, microtubule disruption strengthens the contractile force exerted by many cell types. We have investigated alternative explanation for the mechanical effects of microtubule disruption: that microtubules modulate the mechanochemical activity of myosin by influencing phosphorylation of the myosin regulatory light chain (LC20). We measured the force produced by a populat...

  11. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Zubov, Eugene O.; Nikolaeva, Olga P.; Kurganov, Boris I.; Dmitrii I. Levitsky; Markov, Denis I.

    2010-01-01

    We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1) containing different “essential” (or “alkali”) light chains, A1 or A2. We applied differential scanning calorimetry (DSC) to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calor...

  12. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  13. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  14. Identification and characterization of the Bombyx mori myosin II essential light chain and its effect in BmNPV infection

    L Hao

    2015-02-01

    Full Text Available Myosin, as a type of molecular motor, is mainly involved in muscle contraction. Recently, myosin research has made considerable progress. However, the function of Bombyx mori myosin remains unclear. In this study, we cloned the BmMyosin II essential light chain (BmMyosin II ELC gene from a cDNA library of silkworm, which had an open reading frame (ORF of 444 bp encoding 147 amino acids (about 16 kDa. After analyzing their sequences, BmMyosin II ELC was similar to the ELCs of 27 other Myosin II types, which contained EFh domain that bound Ca2+. In addition, 28 sequences had five motifs, motifs 1 and 3 were relatively conserved. We constructed two vectors with BmMyosin to transfect MGC803 or BmN, monolayer wound healing of cells indicated they can promote cell migration successfully. For three fifth instar silkworms, Bm306, BmNB, BmBC8, we mainly analyzed the change of BmMyosin II ELC from transcription and translation after infecting with nucleopolyhedrovirus (BmNPV. We found that gene expression of resistant strains were higher than susceptible strains at 12 h, while the result of the translation level was opposite that of the transcription level. Through in vitro protein interactions, we found BmMyosin II ELC can interact with BmNPV ubiquitin.

  15. Myosin light chain phosphorylation in 32P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation

  16. Thermal Denaturation and Aggregation of Myosin Subfragment 1 Isoforms with Different Essential Light Chains

    Eugene O. Zubov

    2010-10-01

    Full Text Available We compared thermally induced denaturation and aggregation of two isoforms of the isolated myosin head (myosin subfragment 1, S1 containing different “essential” (or “alkali” light chains, A1 or A2. We applied differential scanning calorimetry (DSC to investigate the domain structure of these two S1 isoforms. For this purpose, a special calorimetric approach was developed to analyze the DSC profiles of irreversibly denaturing multidomain proteins. Using this approach, we revealed two calorimetric domains in  the S1 molecule, the more thermostable domain denaturing in two steps. Comparing the DSC data with temperature dependences of intrinsic fluorescence parameters and S1 ATPase inactivation, we have identified these two calorimetric domains as motor domain and regulatory domain of the myosin head, the motor domain being more thermostable. Some difference between the two S1 isoforms was only revealed by DSC in thermal denaturation of the regulatory domain. We also applied dynamic light scattering (DLS to analyze the aggregation of S1 isoforms induced by their thermal denaturation. We have found no appreciable difference between these S1 isoforms in their aggregation properties under ionic strength conditions close to those in the muscle fiber (in the presence of 100 mM KCl. Under these conditions kinetics of this process was independent of protein concentration, and the aggregation rate was limited by irreversible denaturation of the S1 motor domain.

  17. Clinical assessment of serum myosin light chain I in patients with dilated cardiomyopathy

    Serum cardiac myosin light chain I (LCI) levels were quantitated using a radioimmunoassay kit in patients suspected of dilated cardiomyopathy (DCM). In this study, 55 patients were evaluated between 1986 and 1991. They were composed of 40 males and 15 females, and their age was 27-75 years (51±11 years). The patients with renal dysfunction were excluded due to their serum creatinine levels (>2.0 mg/dl). After cardiac catheterization, endomyocardial biopsy and echocardiography, 44 patients were diagnosed as DCM, 2 as ischemic heart disease, 2 as chronic myocarditis, 1 as restrictive cardiomyopathy, 1 as dilated hypertrophic cardiomyopathy, 1 as cardiac amyloidosis, 2 as myopathy, 1 as polymyositis and 1 as hypothyroidism. Only two patients with DCM had elevated LCI. Besides, two patients with myopathy or hypothyroidism had elevated LCI. In the follow-up, one patient died suddenly 6 months later and another showed normal value of LCI four years later. LCI elevation in DCM was not related to either the severity of heart failure or cardiac function and it showed no finding of 201Tl myocardial defect or elevated CPK. The mechanism for elevated LCI in myopathy is related to a crossreaction with myosin light chain in the skeletal muscle. In hypothyroidism, it may be related to decreased clearance of normal LCI concentration or increased myosin light chain from damaged skeletal muscle. In conclusion, it is evident that the measurement of LCI is not helpful in clinical assessment of patients with DCM, but may be useful in detection of secondary cardiomyopathy. (author)

  18. Myosin Light-Chain Kinase Is Necessary for Membrane Homeostasis in Cochlear Inner Hair Cells

    Zhu, Guang-Jie; Wang, Fang; Chen, Chen; Xu, Lin; Zhang, Wen-Cheng; Fan, Chi; PENG, YA-JING; Chen, Jie; He, Wei-Qi; Guo, Shi-Ying; Zuo, Jian; Gao, Xia; Zhu, Min-Sheng

    2012-01-01

    The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a signific...

  19. Dynamic light scattering study of the effect of Mg2+ and ATP on synthetic myosin filaments.

    Takayama, S.; Fujime, S

    1995-01-01

    The dynamic light scattering (DLS) method provides us with information about the apparent diffusion coefficient, Dapp, as well as the static scattering intensity, Is, of particles in solution. For long but thin rods with length L and diameter d, the dependence on L and d of Dapp is quite different from that of Is. By means of DLS we studied synthetic myosin filaments of rabbit skeletal muscle in solution at pH 8.3 and 10 degrees C. It appeared that Mg2+ ions induced thickening and lengthening...

  20. Clinical study on the time courses of serum myosin light chain I levels in patients with acute myocardial infarction

    Changes of serum myosin light chain I (Myosin LCI) concentrations and creatine kinase (CK) activities were serially measured in 23 patients with acute myocardial infarction. Intracoronary thrombolysis was performed in 14 patients (ICT group) while the remaining 9 patients were treated in the conventional manner (non ICT group). The relationships between the maximum levels of serum Myosin LCI or CK and a myocardial infarct size index or left ventricular function were evaluated in 18 patients. The myocardial infarct size index was determined by 201Tl myocardial scintigrams performed in the chronic phase. Multiple peaks of Myosin LCI were observed in 64% (9/14) of the ICT group and the first peak in 6 of these patients appeared much earlier in the same time as CK peak than in the non-ICT group, while multiple peaks were seen only in one case in the non-ICT group. The infarct size index by 201Tl myocardial SPECT correlated with maximum Myosin LCI levels (r=0.88, p<0.001, n=10) and CK activities (r=0.67, p<0.05, n=10). These results indicate that the measurement of serum Myosin LCI is very useful for estimating the extent of myocardial damage and suggest that myocardial degeneration occurs at a very early phase of myocardial infarction. (author)

  1. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  2. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase-2

    Cadete, Virgilio J. J.; Sawicka, Jolanta; Jaswal, Jagdip; Lopaschuk, Gary D.; Schulz, Richard; Szczesna-Cordary, Danuta; Sawicki, Grzegorz

    2012-01-01

    Summary Degradation of myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2) during myocardial ischemia/reperfusion (I/R) injury has been established. However, the exact mechanisms controlling this process remain unknown. I/R increases the phosphorylation of MLC1, but the consequences of this modification are not known. We hypothesized that phosphorylation of MLC1 plays an important role in its degradation by MMP-2. To examine this, isolated perfused rat hearts were subjected to 20 min global ischemia followed by 30 min of aerobic reperfusion. I/R increased phosphorylation of MLC1 (as measured by mass spectrometry). If hearts were subjected to I/R in the presence of ML-7 (a myosin light chain kinase (MLCK) inhibitor) or doxycycline (a MMP inhibitor) an improved recovery of contractile function was seen compared to aerobic hearts and MLC1 was protected from degradation. Enzyme kinetic studies revealed an increased affinity of MMP-2 for the phosphorylated form of MLC1 compared to non-phosphorylated MLC1. We conclude that MLC1 phosphorylation is important mechanism controlling the intracellular action of MMP-2 and promoting the degradation of MLC1. These results further support previous findings implicating posttranslational modifications of contractile proteins as a key factor in the pathology of cardiac dysfunction during and following ischemia. PMID:22564771

  3. Heavy and light roles: myosin in the morphogenesis of the heart

    England, Jennifer; Loughna, Siobhan

    2013-01-01

    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congeni...

  4. Modulation of Myosin Light-Chain Phosphorylation by p21-Activated Kinase 1 in Escherichia coli Invasion of Human Brain Microvascular Endothelial Cells

    Rudrabhatla, Rajyalakshmi S.; Sukumaran, Sunil K.; Bokoch, Gary M.; Prasadarao, Nemani V.

    2003-01-01

    Cytoskeletal dynamics, modulated by actin-myosin interactions, play an important role in Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC). Herein, we show that inhibitors of myosin function, butanedione monoxide and ML-7, significantly blocked the E. coli invasion of HBMEC. The invasive E. coli induces myosin light-chain (MLC) phosphorylation during the invasion process, which gets recruited to the site of actin condensation beneath the bacteria. We also sho...

  5. Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs—functional implications

    Terrak, Mohammed; Wu, Guanming; Stafford, Walter F.; Lu, Renne C.; Dominguez, Roberto

    2003-01-01

    IQ motifs are widespread in nature. Mlc1p is a calmodulin-like myosin light chain that binds to IQ motifs of a class V myosin, Myo2p, and an IQGAP-related protein, Iqg1p, playing a role in polarized growth and cytokinesis in Saccharomyces cerevisiae. The crystal structures of Mlc1p bound to IQ2 and IQ4 of Myo2p differ dramatically. When bound to IQ2, Mlc1p adopts a compact conformation in which both the N- and C-lobes interact with the IQ motif. However, in the complex with IQ4, the N-lobe no...

  6. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities.

    Chang, Audrey N; Mahajan, Pravin; Knapp, Stefan; Barton, Hannah; Sweeney, H Lee; Kamm, Kristine E; Stull, James T

    2016-07-01

    The well-known, muscle-specific smooth muscle myosin light chain kinase (MLCK) (smMLCK) and skeletal muscle MLCK (skMLCK) are dedicated protein kinases regulated by an autoregulatory segment C terminus of the catalytic core that blocks myosin regulatory light chain (RLC) binding and phosphorylation in the absence of Ca(2+)/calmodulin (CaM). Although it is known that a more recently discovered cardiac MLCK (cMLCK) is necessary for normal RLC phosphorylation in vivo and physiological cardiac performance, information on cMLCK biochemical properties are limited. We find that a fourth uncharacterized MLCK, MLCK4, is also expressed in cardiac muscle with high catalytic domain sequence similarity with other MLCKs but lacking an autoinhibitory segment. Its crystal structure shows the catalytic domain in its active conformation with a short C-terminal "pseudoregulatory helix" that cannot inhibit catalysis as a result of missing linker regions. MLCK4 has only Ca(2+)/CaM-independent activity with comparable Vmax and Km values for different RLCs. In contrast, the Vmax value of cMLCK is orders of magnitude lower than those of the other three MLCK family members, whereas its Km (RLC and ATP) and KCaM values are similar. In contrast to smMLCK and skMLCK, which lack activity in the absence of Ca(2+)/CaM, cMLCK has constitutive activity that is stimulated by Ca(2+)/CaM. Potential contributions of autoregulatory segment to cMLCK activity were analyzed with chimeras of skMLCK and cMLCK. The constitutive, low activity of cMLCK appears to be intrinsic to its catalytic core structure rather than an autoinhibitory segment. Thus, RLC phosphorylation in cardiac muscle may be regulated by two different protein kinases with distinct biochemical regulatory properties. PMID:27325775

  7. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  8. Ragweed sensitization-induced increase of myosin light chain kinase content in canine airway smooth muscle.

    Jiang, H; Rao, K; Halayko, A J; Liu, X; Stephens, N L

    1992-12-01

    Previous studies have identified changes of mechanical properties of airway smooth muscle (ASM) from a canine model of atopic airway hyperreactivity. These changes, including increased maximum shortening capacity (delta Lmax) and early shortening velocity (Vo), may be responsible for the airway hyperresponsiveness in asthma. We have suggested that these changes may be due to increased actomyosin ATPase activity, controlled via phosphorylation of the 20 kD myosin light chain (MLC20) by MLC kinase (MLCK). Therefore, ATPase activity, MLC20 phosphorylation, and MLCK content and activity were assessed in tracheal and bronchial smooth muscles (TSM and BSM) of ragweed pollen-sensitized dogs (S) and their littermate controls (C). Specific ATPase activities from STSM and SBSM were significantly higher than their control counterparts (CTSM, CBSM). Phosphorylation of MLC20 in STSM was greater both at rest and during electrical stimulation due to the increased amount of MLCK in STSM and SBSM by 30 and 25%, respectively. MLCK activity was also increased significantly in STSM and SBSM (from 46.99 +/- 8.33 and 42.85 +/- 5.92 to 91.9 +/- 6.43 and 64.12 +/- 7.88 32P mmol/mg fresh tissue weight/min respectively [mean +/- SEM]). When normalized to the amount of MLCK in the tissue, however, specific MLCK activity in STSM and SBSM was similar to that in controls. It is unlikely that myosin phosphatase plays any role in the changes of MLC20 phosphorylation in sensitized animals. Peptide mapping showed no visible change in primary structure of MLCK in STSM and SBSM compared with those of controls. We report that ASM actomyosin ATPase activity is increased in STSM and SBSM. The increased ATPase activity is the result of increased MLC20 phosphorylation, the latter likely resulting from the increased MLCK content, which may account for the hyperresponsiveness found in ASM from these animals. PMID:1449804

  9. Ontogenesis of myosin light chain phosphorylation in guinea pig tracheal smooth muscle.

    Chitano, Pasquale; Worthington, Charles L; Jenkin, Janet A; Stephens, Newman L; Gyapong, Sylvia; Wang, Lu; Murphy, Thomas M

    2005-02-01

    Increased airway responsiveness occurs in normal young individuals compared to adults. A maturation of airway smooth muscle (ASM) contractility is likely a mechanism of this juvenile airway hyperresponsiveness. Indeed, we showed in guinea pig tracheal smooth muscle (TSM) that maximum shortening velocity decreases dramatically after the first 3 weeks of life. Because the phosphorylation of the 20-kDa myosin light chain (MLC(20)) was shown to be a key event in ASM contractility, in the present work we sought to investigate it during ontogenesis. In three age groups (1-week-old, 3-week-old, and adult guinea pigs), we assessed the amount of MLC(20) phosphorylation achieved either in TSM crude protein homogenates exposed to Mg(2+) . ATP . CaCl(2) or in tracheal strips during electrical field stimulation (EFS). Phosphorylated and unphosphorylated MLC(20) were separated on nondenaturing 10% polyacrylamide gels, and the ratio of phosphorylation was obtained by densitometric analysis of chemiluminescent Western immunoblots. Maximum MLC(20) phosphorylation (% of total MLC(20)) in TSM tissue homogenate was, respectively, 32.6 +/- 5.7, 32.2 +/- 5.7, and 46.8 +/- 5.8 in 1-week, 3-week, and adult guinea pigs. Interestingly, in nonstimulated intact tracheal strips, we found a substantial degree of MLC(20) phosphorylation: respectively, 42.2 +/- 5.8, 36.5 +/- 7.8, and 46.4 +/- 4.7 in 1-week, 3-week, and adult guinea pigs. Maximal EFS-induced MLC(20) phosphorylation (% increase over baseline) in the 3-week age group was attained after 3 sec of EFS, and was 161.2 +/- 17.6, while in 1-week and adult guinea pigs, it was attained at 1.5 sec of EFS and was, respectively, 133.3 +/- 9.3 and 110.2 +/- 3.9 (P MLC(20) phosphorylation in guinea pig intact tracheal strips correlates with ontogenetic changes in shortening velocity and changes in myosin light chain kinase content. These results further suggest that the maturation of ASM contractile properties plays a role in the greater airway

  10. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R; Choudhry, Mashkoor A.; Kovacs, Elizabeth J

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory...

  11. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. (Sigfried and Janet Weis Center for Research, Danville, PA (USA))

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  12. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  13. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers.

    Yamaguchi, Maki; Kimura, Masako; Li, Zhao-Bo; Ohno, Tetsuo; Takemori, Shigeru; Hoh, Joseph F Y; Yagi, Naoto

    2016-04-15

    The phosphorylation of the myosin regulatory light chain (RLC) is an important modulator of skeletal muscle performance and plays a key role in posttetanic potentiation and staircase potentiation of twitch contractions. The structural basis for these phenomena within the filament lattice has not been thoroughly investigated. Using a synchrotron radiation source at SPring8, we obtained X-ray diffraction patterns from skinned rabbit psoas muscle fibers before and after phosphorylation of myosin RLC in the presence of myosin light chain kinase, calmodulin, and calcium at a concentration below the threshold for tension development ([Ca(2+)] = 10(-6.8)M). After phosphorylation, the first myosin layer line slightly decreased in intensity at ∼0.05 nm(-1)along the equatorial axis, indicating a partial loss of the helical order of myosin heads along the thick filament. Concomitantly, the (1,1/1,0) intensity ratio of the equatorial reflections increased. These results provide a firm structural basis for the hypothesis that phosphorylation of myosin RLC caused the myosin heads to move away from the thick filaments towards the thin filaments, thereby enhancing the probability of interaction with actin. In contrast, 2,3-butanedione monoxime (BDM), known to inhibit contraction by impeding phosphate release from myosin, had exactly the opposite effects on meridional and equatorial reflections to those of phosphorylation. We hypothesize that these antagonistic effects are due to the acceleration of phosphate release from myosin by phosphorylation and its inhibition by BDM, the consequent shifts in crossbridge equilibria leading to opposite changes in abundance of the myosin-ADP-inorganic phosphate complex state associated with helical order of thick filaments. PMID:26911280

  14. Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    Chen, Zhang-Fan

    2012-02-13

    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus (= Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca 2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite. © 2012 Chen et al.

  15. Assessment of myocardial damage in hypertrophic cardiomyopathy using cardiac enzymes, myosin light chain and myocardial scintigraphy

    To assess myocardial damage in hypertrophic cardiomyopathy (HCM), CPK-MB, %LDH 1, myoglobin (Mb), and myosin light chain (MLC) were determined in 45 HCM patients. Of these patients, 10 also underwent Tl-201 myocardial scintigraphy and In-111-antimyosin antibody (In-111 Fab-DTPA)(In-AM) myocardial scintigraphy. MLC was 0.56±0.55 ng/ml. An increase in CPK-MB, %LDH 1, and Mb was seen in 6 (14%), 19 (44%), and 7 (18%) patients, respectively. There was no correlation between MLC and any of CPK-MB, %LDH1 or Mb. Perfusion defects were seen on Tl-201 myocardial scintigrams in 4 patients. All of these patients had diffuse tracer uptake on In-AM myocardial scintigrams. The degree of In-AM uptake was not correlated with MLC; however, of 4 patients with intense In-AM uptake, 3 had perfusion defects on Tl-201 myocardial scintigrams and decreased left ventricular function. In 3 patients in whom CPK-MB and %LDH 1 were increased but MLC was not increased, diffuse tracer uptake was seen on In-AM myocardial scintigrams. Because diffuse uptake of In-AM was seen in spite of the lack of increased MLC, In-111-Fab-DTPA is likely to be incorporated by the myocardial damaged cells, as well as necrotic cells. HCM seems to be associated with a high likelihood of myocardial damage. Integrated assessment of myocardial damage is required, including an increase of MLC, CPK-MB, %LDH 1, and Mb, perfusion defects on Tl-201 scintigrams, and tracer uptake on In-AM scintigrams. (N.K.)

  16. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  17. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta (IIT); (Iowa); (Miami-MED)

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  18. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction

  19. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    Lima, V.V. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil); Lobato, N.S.; Filgueira, F.P. [Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO (Brazil); Webb, R.C. [Department of Physiology, Georgia Regents University, Augusta, GA (United States); Tostes, R.C. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Giachini, F.R. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil)

    2014-08-15

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca{sup 2+}/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  20. Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back.

    Alamo, Lorenzo; Li, Xiaochuan Edward; Espinoza-Fonseca, L Michel; Pinto, Antonio; Thomas, David D; Lehman, William; Padrón, Raúl

    2015-08-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  1. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2009-01-01

    To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC pro...

  2. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway. PMID:26634902

  3. Mammalian myosin-18A, a highly divergent myosin.

    Guzik-Lendrum, Stephanie; Heissler, Sarah M; Billington, Neil; Takagi, Yasuharu; Yang, Yi; Knight, Peter J; Homsher, Earl; Sellers, James R

    2013-03-29

    The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and β, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18β species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aβ-S1 molecules bound actin weakly with Kd values of 4.9 and 54 μm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells. PMID:23382379

  4. Isolation of cardiac myosin light-chain isotypes by chromatofocusing. Comparison of human cardiac atrial light-chain 1 and foetal ventricular light-chain 1.

    Vincent, N D; Cummins, P

    1985-04-01

    Cardiac myosin light chain isotypes have been resolved using chromatofocusing, a new preparative column chromatographic technique. The method relies on production of narrow-range, shallow and stable pH gradients using ion-exchange resins and buffers with even buffering capacity over the required pH range. Light chains were resolved in order of decreasing isoelectric point in the pH range 5.2-4.5. Gradients of delta pH = 0.004-0.006/ml elution volume were achieved which were capable of resolving light chains with isoelectric point differences of only 0.03. Analytical isoelectric focusing of light chains in polyacrylamide gels could be used to predict the results of preparative chromatofocusing for method development. Chromatofocusing was capable of resolving human and bovine cardiac light chain 1 and 2 subunits, atrial (ALC) and ventricular (VLC) light chain isotypes and homologous VLC-2 and VLC-2* light chains. The technique was used to purify and resolve the human foetal ventricular light chain 1 (FLC-1) from adult ventricular light chain 1 (VLC-1) present in foetal ventricles and the atrial light chain 1 (ALC-1) in adult atria. Comparative peptide mapping studies and amino acid analyses were carried out on FLC-1 and ALC-1. No differences were detected between FLC-1 and ALC-1 using three different proteases and amino acid compositions were similar with the exception of glycine content. The studies indicate that FLC-1 and ALC-1 are homologous, and possibly identical, light chains. Comparison of human FLC-1/ALC-1 with VLC-1 suggested marked structural and chemical differences in these light chain isotypes, in particular in the contents of methionine, proline, lysine and alanine residues. Differences in the contents of these residues were also apparent in the corresponding bovine atrial and ventricular light chains [Wikman-Coffelt, J. & Srivastava, S. (1979) FEBS Lett. 106, 207-212]. The latter three residues are known to be rich in the N-termini of cardiac and

  5. CLONING AND CHARACTERISATION OF ALKALI MYOSIN LIGHT CHAIN GENE (MLC-3 OF CATTLE FILARIAL PARASITE SETARIA DIGITATA

    Arumugam Murugananthan, Eric Hamilton Karunanayake*, Kamani Hemamala Tennekoon

    2010-11-01

    Full Text Available Lymphatic filariasis is a tropical disease caused by filarial parasites including Wuchereria bancrofti. Although bancroftian filariasis causes severe disabling and debilitating clinical conditions in human, very little is known about the molecular biology of the parasite. The paucity of parasitic material is the main reason for this lack of knowledge. Setaria digitata is a cattle filarial parasite, closely resembling W. bancrofti in many aspects. Therefore it can be used as a model organism to study W. bancrofti. In the present study, the genomic library of S. digitata adult parasites was constructed and probed with a 32P labeled partial mRNA sequence PCR amplified from a previously isolated cDNA clone containing a 661 bp mRNA transcript of S. digitata alkali myosin light chain gene. Isolated positive clones were sequenced and edited by using bioinformatics tools. Though the 5´ flanking region did not reveal any consensus TATA box sequences, a potential CAAT box like sequence, CCAAT and seven possible transcription factor elements were identified. The entire gene had four exons encoding 149 amino acids interrupted by three introns of varying lengths of 87, 295 and 69 bp respectively. Sequences around the splice junctions were fairly conserved and agreed with the general GT-AG splicing rule. The 3´ flanking region consists of three putative polyadenylation signals with the sequence AATAAA. The gene was AT rich with a GC content of 35%. Southern hybridisation studies suggested that this gene is likely to be a single-copy gene. Homology search of amino acid sequences showed more than 80% similarity with Caenorhabditis species and 40-50% with other vertebrate and invertebrate myosin light chains. Analysis of the amino acid sequence with the NCBI conserved domain database for interactive domain family identified the protein as a member of calcium binding protein family as it comprised of two highly conserved EF hand motifs, and may suggest a

  6. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  7. Characterization of the myosin light chain kinase from smooth muscle as an actin-binding protein that assembles actin filaments in vitro.

    Hayakawa, K; Okagaki, T; Ye, L H; Samizo, K; Higashi-Fujime, S; Takagi, T; Kohama, K

    1999-05-01

    In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles. PMID:10231551

  8. Three-dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity

    Alamo, Lorenzo; Wriggers, Willy; Pinto, Antonio; Bártoli, Fulvia; Salazar, Leiría; Zhao, Fa-Qing; Craig, Roger; Padrón, Raúl

    2008-01-01

    Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLC). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that my...

  9. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.; (IIT); (Vermont); (Duke)

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  10. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  11. Molecular and Functional Analyses of the Fast Skeletal Myosin Light Chain2 Gene of the Korean Oily Bitterling, Acheilognathus koreensis

    Hyun Kook Cho

    2013-08-01

    Full Text Available We identified and characterized the primary structure of the Korean oily bitterling Acheilognathus koreensis fast skeletal myosin light chain 2 (Akmlc2f, gene. Encoded by seven exons spanning 3955 bp, the deduced 168-amino acid AkMLC2f polypeptide contained an EF-hand calcium-binding motif and showed strong homology (80%–98% with the MLC2 proteins of Ictalurus punctatus and other species, including mammals. Akmlc2f mRNA was highly enriched in skeletal muscles, and was detectable in other tissues. The upstream regions of Akmlc2f included a TATA box, one copy of a putative MEF-2 binding site and several putative C/EBPβ binding sites. The functional activity of the promoter region of Akmlc2f was examined using luciferase and red fluorescent protein reporters. The Akmlc2f promoter-driven reporter expressions were detected and increased by the C/EBPβ transcription factor in HEK293T cells. The activity of the promoter of Akmlc2f was also confirmed in the developing zebrafish embryo. Although the detailed mechanism underlying the expression of Akmlc2f remains unknown, these results suggest the muscle-specific expression of Akmlc2f transcript and the functional activation of Akmlc2f promoter by C/EBPβ.

  12. Protein kinase C activation and myosin light chain phosphorylation in 32P-labeled arterial smooth muscle

    Experiments using 32P-labeled strips of swine carotid artery medial smooth muscle were performed to define the relative contribution of myosin light chain (MLC) phosphorylation as an activation mechanism mediating contractile responses stimulated by phorbol dibutyrate (PDB). Tryptic phosphopeptide mapping of phosphorylated MLC indicated that near-maximal force responses were associated with increases in functional MLC phosphorylation of less than 10% of the total MLC content following tonic (45 min) stimulation by PDB. Significant phosphorylation of MLC residues, consistent with the specificity of protein kinase C, occurred in response to high concentrations of PDB (greater than 0.1 microM). Histamine (10 microM)-induced MLC phosphorylation after 2 min (72.5% of total MLC) or 45 min (61.7%) was restricted to serine residues on peptides thought to contain serine19. Although agonist (histamine)-induced responses were eliminated under conditions of Ca2+ depletion, near-maximal force in response to 10 microM PDB (89.4% of a standard KCl response) was associated with monophosphorylation of less than 9% of the total MLC on peptides interpreted as containing serine19. A substantial fraction of this was localized to threonine residues. The quantitative analysis of the relation between PDB-stimulated force and the residues in MLC phosphorylated supports the concept that PDB stimulation results in activation of arterial smooth muscle cross bridges by MLC-phosphorylation-independent mechanisms

  13. Protein kinase C activation and myosin light chain phosphorylation in sup 32 P-labeled arterial smooth muscle

    Singer, H.A. (Geisinger Clinic, Danville, PA (USA))

    1990-10-01

    Experiments using 32P-labeled strips of swine carotid artery medial smooth muscle were performed to define the relative contribution of myosin light chain (MLC) phosphorylation as an activation mechanism mediating contractile responses stimulated by phorbol dibutyrate (PDB). Tryptic phosphopeptide mapping of phosphorylated MLC indicated that near-maximal force responses were associated with increases in functional MLC phosphorylation of less than 10% of the total MLC content following tonic (45 min) stimulation by PDB. Significant phosphorylation of MLC residues, consistent with the specificity of protein kinase C, occurred in response to high concentrations of PDB (greater than 0.1 microM). Histamine (10 microM)-induced MLC phosphorylation after 2 min (72.5% of total MLC) or 45 min (61.7%) was restricted to serine residues on peptides thought to contain serine19. Although agonist (histamine)-induced responses were eliminated under conditions of Ca2+ depletion, near-maximal force in response to 10 microM PDB (89.4% of a standard KCl response) was associated with monophosphorylation of less than 9% of the total MLC on peptides interpreted as containing serine19. A substantial fraction of this was localized to threonine residues. The quantitative analysis of the relation between PDB-stimulated force and the residues in MLC phosphorylated supports the concept that PDB stimulation results in activation of arterial smooth muscle cross bridges by MLC-phosphorylation-independent mechanisms.

  14. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  15. Myosin light chain phosphatase activation is involved in the hydrogen sulfide-induced relaxation in mouse gastric fundus.

    Dhaese, Ingeborg; Lefebvre, Romain A

    2009-03-15

    The relaxant effect of hydrogen sulfide (H(2)S) in the vascular tree is well established but its influence and mechanism of action in gastrointestinal smooth muscle was hardly investigated. The influence of H(2)S on contractility in mouse gastric fundus was therefore examined. Sodium hydrogen sulfide (NaHS; H(2)S donor) was administered to prostaglandin F(2alpha) (PGF(2alpha))-contracted circular muscle strips of mouse gastric fundus, before and after incubation with interfering drugs. NaHS caused a concentration-dependent relaxation of the pre-contracted mouse gastric fundus strips. The K(+) channels blockers glibenclamide, apamin, charybdotoxin, 4-aminopyridin and barium chloride had no influence on the NaHS-induced relaxation. The relaxation by NaHS was also not influenced by L-NAME, ODQ and SQ 22536, inhibitors of the cGMP and cAMP pathway, by nerve blockers capsazepine, omega-conotoxin and tetrodotoxin or by several channel and receptor blockers (ouabain, nifedipine, 2-aminoethyl diphenylborinate, ryanodine and thapsigargin). The myosin light chain phosphatase (MLCP) inhibitor calyculin-A reduced the NaHS-induced relaxation, but the Rho-kinase inhibitor Y-27632 had no influence. We show that NaHS is able to relax PGF(2alpha)-contracted mouse gastric fundus strips. The results suggest that in the mouse gastric fundus, H(2)S causes relaxation at least partially via activation of MLCP. PMID:19374871

  16. Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain.

    Huang, Wenrui; Kazmierczak, Katarzyna; Zhou, Zhiqun; Aguiar-Pulido, Vanessa; Narasimhan, Giri; Szczesna-Cordary, Danuta

    2016-07-01

    Using microarray and bioinformatics, we examined the gene expression profiles in transgenic mouse hearts expressing mutations in the myosin regulatory light chain shown to cause hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 58→Glutamine (R58Q) and Aspartic Acid 166 → Valine (D166V), and one benign, Lysine 104 → Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-HCM phenotypes. The correlations between different genotypes were also studied using network-based algorithms. Genes with strong correlations were clustered into one group and the central gene networks were identified for each HCM mutant. The overall gene expression patterns in all mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of genes that were up or downregulated, but most similarities were noted between D166V and K104E mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through diverse mechanisms. PMID:26906074

  17. Evidence for an Interaction between the SH3 Domain and the N-terminal Extension of the Essential Light Chain in Class II Myosins

    Lowey, Susan; Saraswat, Lakshmi D.; Liu, HongJun; Volkmann, Niels; Hanein, Dorit

    2007-01-01

    The function of the src-homology 3 (SH3) domain in class II myosins, a distinct β-barrel structure, remains unknown. Here we provide evidence, using electron cryomicroscopy, in conjunction with light scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41-residue extension contains four conserved lysines followed by a repeating sequence of seven Pro/Ala residues. It is ...

  18. Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction

    Wu Li-Ling

    2010-04-01

    Full Text Available Abstract Background Bowel obstruction is a common cause of abdominal emergency, since the patients are at increased risk of septicemia resulting in high mortality rate. While the compartmentalized changes in enteric microfloral population and augmentation of bacterial translocation (BT have already been reported using experimental obstruction models, alterations in epithelial permeability of the obstructed guts has not been studied in detail. Myosin light chain kinase (MLCK is actively involved in the contraction of epithelial perijunctional actinomyosin ring and thereby increases paracellular permeability. In the current study we attempt to investigate the role of MLCK in epithelial barrier defects using a rat model of simple mechanical obstruction. Methods Wistar rats received intraperitoneal injection of ML-7 (a MLCK inhibitor or vehicle at 24, 12 and 1 hrs before and 12 hrs after intestinal obstruction (IO. The distal small intestine was obstructed with a single ligature placed 10 cm proximal to the ileocecal junction in IO rats for 24 hrs. Sham-operated rats served as controls. Results Mucosal injury, such as villous blunting and increased crypt/villus ratio, was observed in the distal small intestine of IO rats. Despite massive enterocyte shedding, intestinal villi were covered with a contiguous epithelial layer without cell apoptosis. Increased transmural macromolecular flux was noticed in the distal small intestine and the proximal colon after IO. The bacterial colony forming units in the spleen and liver of IO rats were significantly higher than those of sham controls. Addition of ML-7 ameliorated the IO-triggered epithelial MLC phosphorylation, mucosal injury and macromolecular flux, but not the level of BT. Conclusions The results suggest that IO-induced premature enterocytic sloughing and enhanced paracellular antigenic flux were mediated by epithelial MLCK activation. In addition, enteric bacteria may undergo transcytotic routes

  19. Phosphorylation and the N-terminal Extension of the Regulatory Light Chain Help Orient and Align the Myosin Heads in Drosophila Flight Muscle

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2009-01-01

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2Δ2-46) or disruption of the phosphorylation sites by substituting alanines (Dmlc2S66A, S67A) decreased the equatorial intensity ratio (I20/I10), indicating decreased myosin mass associated with the thin f...

  20. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle.

    Moore, J R; Dickinson, M H; Vigoreaux, J O; Maughan, D W

    2000-01-01

    The Drosophila myosin regulatory light chain (DMLC2) is homologous to MLC2s of vertebrate organisms, except for the presence of a unique 46-amino acid N-terminal extension. To study the role of the DMLC2 N-terminal extension in Drosophila flight muscle, we constructed a truncated form of the Dmlc2 gene lacking amino acids 2-46 (Dmlc2(Delta2-46)). The mutant gene was expressed in vivo, with no wild-type Dmlc2 gene expression, via P-element-mediated germline transformation. Expression of the tr...

  1. Light-dark regulation of sulfate assimilation in Lemna minor L. in the presence of o-acetyl-l-serine

    The effect of light removal and addition of O-acetyl-l-serine (OAS) on sulfate assimilation in Lemna minor L. was analyzed by measuring the extractable activity of adenosine 5'-phosphosulfate sulfotransferase (APSSTase) and the in vivo incorporation of 35SO42-. After removal of light APSSTase activity decreased to 10% within 24 h in the absence and to 50% in the presence of OAS. Within 24 h total 35SO42- uptake decreased to 60% without and increased to 130% with OAS compared to light controls. The incorporation of 35S into cysteine increased 2 times without and 15 times with OAS, labelling of glutathione decreased to 65% and increased to 140%, the one of the protein fraction decreased to 30% and to 20% of the light control in the absence and presence of OAS. Our results indicate that OAS has a regulatory function on the assimilation of sulfate and that protein synthesis is inhibited in the dark

  2. Tumor necrosis factor-alpha-induced activation of RhoA in airway smooth muscle cells: role in the Ca2+ sensitization of myosin light chain20 phosphorylation.

    Hunter, Irene; Cobban, Hannah J; Vandenabeele, Peter; MacEwan, David J; Nixon, Graeme F

    2003-03-01

    Tumor necrosis factor-alpha (TNF), an inflammatory cytokine, has a potentially important role in the pathogenesis of bronchial asthma and may contribute to airway hyper-responsiveness. Recent evidence has revealed that TNF can increase the Ca(2+) sensitivity of agonist-stimulated myosin light chain(20) (MLC(20)) phosphorylation and contractility in guinea pig airway smooth muscle (ASM). In the present study, the potential intracellular pathways responsible for this TNF-induced Ca(2+) sensitization were investigated. In permeabilized cultured guinea pig ASM cells, recombinant human TNF stimulated an increase in Ca(2+)-activated MLC(20) phosphorylation under Ca(2+) "clamp" conditions. This increased MLC(20) phosphorylation was inhibited by preincubation with the Rho-kinase inhibitor Y27632. TNF also increased the proportion of GTP-bound RhoA, as measured using rhotekin Rho-binding domain, in a time course compatible with a role in the TNF-induced Ca(2+) sensitization. In cultured human ASM cells, recombinant human TNF also activated RhoA with a similar time course. In addition, TNF stimulated phosphorylation of the regulatory subunit of the myosin phosphatase, which was inhibited by Y27632. Although human ASM cells expressed both receptor subtypes, TNF-R1 and TNF-R2, the activation of RhoA was predominantly via stimulation of the TNF-R1, although RhoA did not immunoprecipitate with the TNF-R1. In conclusion, the TNF-induced increase in the Ca(2+) sensitivity of MLC(20) phosphorylation is through stimulation of the TNF-R1 receptor and via a RhoA/Rho-kinase pathway leading to inhibition of the myosin light chain phosphatase. This intracellular mechanism may contribute to TNF-induced airway hyper-responsiveness. PMID:12606782

  3. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  4. Neuregulin1–β decreases interleukin–1β–induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability

    Wu, Limin; Ramirez, Servio H.; Andrews, Allison M.; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H.; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. PMID:26438054

  5. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Rupalatha Maddala

    Full Text Available Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations

  6. Protein multi-scale organization through graph partitioning and robustness analysis: application to the myosin–myosin light chain interaction

    Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding

  7. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    Cian M McCrudden

    Full Text Available Therapeutic inhibition of poly(ADP-ribose polymerase (PARP, as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699, induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  8. Thiol groups of gizzard myosin heavy chains

    Bailin, G.

    1986-05-01

    Proteolysis of phosphorylated and /sup 3/H-labeled dinitrophenylated chicken gizzard myosin with trypsin released major fragments of M/sub r/ 25,000, 50,000 and 66,000 in a 1:1 ratio. They contained 57% of the dinitrophenyl (N/sub 2/ph) group bound to thiols of the heavy chains; 28% of the label was bound to the light chains. The fragments of M/sub r/ 25,000 and M/sub r/ 66,000 were dinitrophenylated predominantly when the K/sup +/-ATPase activity was inhibited. Thiolysis of phosphorylated and dinitrophenylated myosin with 2-mercaptoethanol removed 60% and 25% of the N/sub 2/ph group from the N-terminal and M/sub r/ 66,000 fragments of the heavy chain, respectively, when 48% of the K/sup +/-ATPase activity was restored. Papain proteolysis of the tryptic digest of modified myosin released a C-terminal segment from the fragment of M/sub r/ 66,000 and it contained most of the remaining label. Proteolysis of /sup 3/H-labeled dinitrophenylated myosin alone resulted in the same digestion pattern but less of the label was bound to the heavy chain fragments. In this case, restoration of enzymic activity occurred in thiolyzed dinitrophenylated myosin when the N/sub 2/ph group was removed from the light chains, predominantly. Conformational changes in gizzard myosin, mediated by phosphorylation, altered the reactivity of the thiols in specific fragments of the heavy chain. Thiol groups of the N- and C-terminal heavy chain regions are involved in maintaining the ATPase activity of myosin.

  9. Effects of proteolysis on the adenosinetriphosphatase activities of thymus myosin

    Vu, N.D.; Wagner, P.D.

    1987-07-28

    Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of /sup 32/P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca/sup 2 +/- and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1. Although this subfragment 1 contained intact light chains, its actin-activated ATPase activity was not affected by light chain phosphorylation.

  10. Characterizations of myosin essential light chain’s N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations

    Wang, Li; Muthu, Priya; Szczesna-Cordary, Danuta; Kawai, Masataka

    2013-01-01

    Cross-bridge kinetics were studied at 20 °C in cardiac muscle strips from transgenic (Tg) mice expressing N-terminal 43 amino acid truncation mutation (Δ43) of myosin essential light chain (ELC), and the results were compared to those from Tg-wild type (WT) mice. Sinusoidal length changes were applied to activated skinned papillary muscle strips to induce tension transients, from which two exponential processes were deduced to characterize the cross-bridge kinetics. Their two rate constants w...

  11. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction via tight junction regulation in a rabbit model of atherosclerosis.

    Cheng, Xiaowen; Wang, Xiaobian; Wan, Yufeng; Zhou, Qing; Zhu, Huaqing; Wang, Yuan

    2015-09-01

    Vascular endothelial dysfunction (VED) is an important factor in the initiation and development of atherosclerosis (AS). Previous studies have demonstrated that endothelial permeability is increased in diet‑induced AS. However, the precise underlying mechanisms remain poorly understood. The present study aimed to analyze whether the myosin light chain kinase (MLCK) inhibitor ML7 is able to improve VED and AS by regulating the expression of the tight junction (TJ) proteins zona occludens (ZO)‑1 and occludin via mechanisms involving MLCK and MLC phosphorylation in high‑fat diet‑fed rabbits. New Zealand white rabbits were randomly divided into three groups: Control group, AS group and ML7 group. The rabbits were fed a standard diet (control group), a high‑fat diet (AS group) or a high‑fat diet supplemented with 1 mg/kg/day ML7 (ML7 group). After 12 weeks, endothelium‑dependent relaxation and endothelium‑independent relaxation were measured using high-frequency ultrasound. Administration of a high‑fat diet significantly increased the levels of serum lipids and inflammatory markers in the rabbits in the AS group, as compared with those in the rabbits in the control group. Furthermore, a high‑fat diet contributed to the formation of a typical atherosclerotic plaque, as well as an increase in endothelial permeability and VED. These symptoms of AS were significantly improved following treatment with ML7, as demonstrated in the ML7 group. Hematoxylin & eosin and immunohistochemical staining indicated that ML7 was able to decrease the expression of MLCK and MLC phosphorylation in the arterial wall of rabbits fed a high‑fat diet. A similar change was observed for the TJ proteins ZO‑1 and occludin. In addition, western blot analysis demonstrated that ML7 increased the expression levels of occludin in the precipitate, but reduced its expression in the supernatant of lysed aortas. These results indicated that occludin, which is a dynamic protein at the TJ

  12. Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats

    Zhang, Y.P.; Niu, C.Y.; Zhao, Z.G.; Zhang, L.M.; Si, Y.H. [Institute of Microcirculation, Hebei North University, Hebei (China)

    2013-08-10

    Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca{sup 2+} were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca{sup 2+} at various concentrations. Maximum contractility (E{sub max}) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca{sup 2+} (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca{sup 2+} at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in E{sub max} for NE and from 0.729±0.037 to 0.645±0.056 g/mg in E{sub max} for Ca{sup 2+}, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.

  13. Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats

    Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock

  14. Vincristine enhances amoeboid-like motility via GEF-H1/RhoA/ROCK/Myosin light chain signaling in MKN45 cells

    Eitaki Masato

    2012-10-01

    Full Text Available Abstract Background Anti-cancer drugs are widely used in cancer treatment frequently combined with surgical therapy and/or radiation therapy. Although surgery and radiation have been suggested to facilitate invasion and metastasis of tumor cells in some cases, there is so far little information about the effect of anti-cancer drugs on cellular invasive ability and metastasis. In this study, using four different anti-cancer drugs (vincristine, paclitaxel, cisplatin and etoposide, we examined whether these drugs influence the invasive ability of tumor cells. Methods Human gastric adenocarcinoma MKN45 cells were used to evaluate the effect of anti-cancer drugs. After drug treatment, cellular invasive ability was assessed using the Matrigel invasion chamber. Cytoskeletal changes after treatment were examined microscopically with F-actin staining. In addition, we monitored cellular motility in 3D matrigel environment by time-lapse microscopic analysis. The drug-induced activation of RhoA and ROCK was evaluated by pull-down assay and Western blotting using an antibody against phosphorylated myosin light chain (MLC, respectively. Where necessary, a ROCK inhibitor Y27632 and siRNA for guanine nucleotide exchange factor-H1 (GEF-H1 were applied. Results Among all drugs tested, only vincristine stimulated the invasive ability of MKN45 cells. Microscopic analysis revealed that vincristine induced the formation of non-apoptotic membrane blebs and amoeboid-like motility. Vincristine significantly enhanced RhoA activity and MLC phosphorylation, suggesting the involvement of RhoA/ROCK pathway in the vincristine-induced cytoskeletal reorganization and cellular invasion. Furthermore, we found that Y27632 as well as the siRNA for GEF-H1, a RhoA-specific activator, attenuated MLC phosphorylation, the formation of membrane blebs and the invasive ability after vincristine treatment. Conclusions These results indicate that vincristine activates GEF-H1/Rho

  15. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation.

    Fusi, Luca; Huang, Zhe; Irving, Malcolm

    2015-08-18

    In isolated thick filaments from many types of muscle, the two head domains of each myosin molecule are folded back against the filament backbone in a conformation called the interacting heads motif (IHM) in which actin interaction is inhibited. This conformation is present in resting skeletal muscle, but it is not known how exit from the IHM state is achieved during muscle activation. Here, we investigated this by measuring the in situ conformation of the light chain domain of the myosin heads in relaxed demembranated fibers from rabbit psoas muscle using fluorescence polarization from bifunctional rhodamine probes at four sites on the C-terminal lobe of the myosin regulatory light chain (RLC). The order parameter 〈P2〉 describing probe orientation with respect to the filament axis had a roughly sigmoidal dependence on temperature in relaxing conditions, with a half-maximal change at ∼19°C. Either lattice compression by 5% dextran T500 or addition of 25 μM blebbistatin decreased the transition temperature to ∼14°C. Maximum entropy analysis revealed three preferred orientations of the myosin RLC region at 25°C and above, two with its long axis roughly parallel to the filament axis and one roughly perpendicular. The parallel orientations are similar to those of the so-called blocked and free heads in the IHM and are stabilized by either lattice compression or blebbistatin. In relaxed skeletal muscle at near-physiological temperature and myofilament lattice spacing, the majority of the myosin heads have their light chain domains in IHM-like conformations, with a minority in a distinct conformation with their RLC regions roughly perpendicular to the filament axis. None of these three orientation populations were present during active contraction. These results are consistent with a regulatory transition of the thick filament in skeletal muscle associated with a conformational equilibrium of the myosin heads. PMID:26287630

  16. Myosin phosphorylation triggers actin polymerization in vascular smooth muscle

    Chen, Xuesong; Pavlish, Kristin; Benoit, Joseph N.

    2008-01-01

    A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or β-escin-permeabilized rat small mesenteric arteries. Reductions in the 20-kDa myosin regulatory light chain (MLC20) phosphorylat...

  17. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the hea...

  18. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 00C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain

  19. DNA-binding protein from HeLa cells that binds preferentially to supercoiled DNA damaged by ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene

    A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0-2.5 S, corresponding to a molecular weight of about 20000-25000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100-200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4x10-11 M. There are at least 1x105 DNA-binding protein molecules/HeLa cell. (Auth.)

  20. Canine cardiac myosin with special referrence to pressure overload cardiac hypertrophy. I. Subunit composition.

    Siemankowski, R F; Dreizen, P

    1978-12-10

    In studies of myosin from left and right ventricles of normal hearts and hypertrophic hearts at 5 weeks and 13 weeks after aortic banding, polyacrylamide gel electrophoresis shows intermediate molecular weight components which derive from heavy chains fragmented in the presence of dodecyl sulfate. The proportion of degraded heavy chains is greater in myosin from hypertrophic hearts than normal hearts, with comparable degradation in left and right ventricle myosin. The observed fragmentation of myosin results from proteolysis due to contaminant proteases or a thermally activated, heat-stable nonenzymatic process, or both. The susceptibility of heavy chains to crude myofibrillar proteases differs in normal and hypertrophic cardiac myosin; however, the kinetics of tryptic digestion are identical for both myosins. With precautions to minimize proteolytic artifacts on dodecyl sulfate-polyacrylamide gel electrophoresis, preparations of myosin from left and right ventricles of normal and hypertrophic hearts exhibit comparable subunit composition, with approximately molar ratios of heavy chains, light chain L1, and light chain L2. Comparable stoichiometry for the light chain fraction is determined by high speed sedimentation equilibrium at pH 11 and direct fractionation of the different cardiac myosins. We do not confirm reports (e.g. Wikman-Coffelt, J., Fenner, C., Smith, A., and Mason, D. T. (1975) J. Biol. Chem. 250, 1257-1262) of different proportions of light chains in left and right ventricle myosin of normal and hypertrophic canine hearts. The light chains display microheterogeneity, with L1 generating two isoelectric variants and L2 generating two major and two minor variants, but identical mobilities and isoelectric values are obtained in the different myosin preparations. PMID:152317

  1. Cryo-atomic force microscopy of smooth muscle myosin.

    Y. Zhang; Shao, Z; Somlyo, A. P.; Somlyo, A V

    1997-01-01

    The motor and regulatory domains of the head and the 14-nm pitch of the alpha-helical coiled-coil of the tail of extended (6S) smooth-muscle myosin molecules were imaged with cryo atomic force microscopy at 80-85 K, and the effects of thiophosphorylation of the regulatory light chain were examined. The tail was 4 nm shorter in thiophosphorylated than in nonphosphorylated myosin. The first major bend was invariant, at approximately 51 nm from the head-tail junction (H-T), coincident with low p...

  2. Effect of Acetylation Treatment on Light Fastness and Thermal Stability of Pinus sylvestris var. mongolica Wood%乙酰化处理对樟子松木材耐光性和热稳定性的影响

    郭洪武; 刘毅; 付展; 胡极航; 张帆

    2015-01-01

    【目的】探讨乙酰化处理对人工林木材耐光性和热稳定性的影响,为木材颜色调控技术及高耐光染色木材的研发提供理论依据。【方法】以樟子松木粉为试样,加入乙酸酐和二甲苯溶液,在120℃条件下分别反应5,10,20,40,60 min,测试乙酰化处理时间对木粉增重率的影响;分别称取1 g经不同时间乙酰化处理的木粉和未处理木粉,置于 UV老化试验箱内辐射100 h,利用红外光谱分析 UV辐射前后乙酰化木粉化学官能团的变化,通过热重和扫描电镜分析乙酰化木粉的热稳定性及其形貌变化。【结果】随着乙酰化处理时间的延长,樟子松木粉的增重率呈现先增加后降低的趋势,在处理40 min 时木粉增重率最大;乙酰化木粉在1741 cm -1和1385 cm -1处的CO,C—H特征吸收峰强度均大于原木粉,处理时间40 min 时木粉的吸收峰强度最大;UV 辐射后,乙酰化木粉在1508 cm -1处木质素苯环特征吸收峰强度明显大于原木粉,处理时间40 min 时木粉的吸收峰强度最大,表明木粉经乙酰化处理后光稳定性得到提升;热重分析显示,经乙酰化处理后,木粉热分解所需的温度明显提高,表明乙酰化木粉的热稳定性好于原木粉;扫描电镜分析表明,乙酰化处理可增强木粉微观构造抵抗光劣化的能力。【结论】乙酰化处理能有效抑制樟子松木材的光降解反应并提升其热稳定性。%Objective]Wood as well as wooden decorative materials produced by dyeing or/and color modulation are easy to be discoloration and degradation when exposed to light radiation. These will decrease its decorative effect and shorten the service life. The objective of this study was to investigate the effect of acetylation treatment on light fastness and thermal stability of plantation wood,and provide a theoretical basis for wood color regulation technology and the

  3. Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias.

    Oertel, Anke; Holzinger, Andreas; Lütz-Meindl, Ursula

    2003-01-01

    Myosin was detected on Western blots of Micrasterias denticulata extracts by use of antibodies from different sources. Inhibitors with different targets of the actomyosin system, such as the myosin ATPase-blockers N-ethylmaleimide (NEM) and 2,3-butanedione monoxime (BDM), or the myosin light chain kinase inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexhydro-1,4-diazapine (ML7), had similar effects on intracellular motility during cell development in the green alga Micrasterias, thus pointing towards a participation of myosin in these processes. The drugs markedly altered the mode of postmitotic nuclear migration, slowed down cytoplasmic streaming, changed cell pattern development and prevented normal chloroplast distribution and spreading into the growing semicell. In addition, an increase and dilatations in ER cisternae and marked morphological changes of the Golgi system were observed by transmission electron microscopy after exposure of growing cells to BDM. Neither BDM nor ML7 exhibited any effect on the distribution or arrangement of the cortical F-actin network nor on the F-actin basket around the nucleus, characteristic of untreated growing Micrasterias cells (J Cell Sci 107 (1994) 1929). This is particularly interesting since BDM caused disintegration of the microtubule system co-localized to the F-actin cage during normal nuclear migration. Together with the fact that other microtubules not connected to the F-actin system remained uninfluenced by BDM, this observation is evidence of an integrative function of myosin between the cytoskeleton elements. PMID:14642529

  4. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. PMID:25445683

  5. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad.

    Ono, Kanako; Ono, Shoichiro

    2016-04-01

    The myoepithelial sheath in the somatic gonad of the nematodeCaenorhabditis eleganshas nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle-like contractile apparatuses, it has a striated muscle-like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath. PMID:26864628

  6. Genetics Home Reference: myosin storage myopathy

    ... myosin rod cause myosin storage myopathy via multiple mechanisms. Proc Natl Acad Sci U S A. 2009 Apr ... PubMed Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 2013 Jan;125(1):3-18. ...

  7. Myosin is involved in postmitotic cell spreading

    1995-01-01

    We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading....

  8. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying f...

  9. Calcium and cargoes as regulators of myosin 5a activity

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins

  10. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  11. Emerging Functions for N-Terminal Protein Acetylation in Plants

    Gibbs, Daniel J.

    2015-01-01

    N-terminal (Nt-) acetylation is a widespread but poorly understood co-translational protein modification. Two reports now shed light onto the proteome-wide dynamics and protein-specific consequences of Nt-acetylation in relation to plant development, stress-response, and protein stability, identifying this modification as a key regulator of diverse aspects of plant growth and behaviour.

  12. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins.

    Pasha, Shaik Naseer; Meenakshi, Iyer; Sowdhamini, Ramanathan

    2016-01-01

    Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes. PMID:27597808

  13. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches.

    Sun, Suling; Zhang, Ganwei; Ma, Chaoyang

    2016-01-01

    Acetylated lotus rhizome starches were prepared, physicochemically characterized and used as food additives in puddings. The percentage content of the acetyl groups and degree of substitution increased linearly with the amount of acetic anhydride used. The introduction of acetyl groups was confirmed via Fourier transform infrared (FT-IR) spectroscopy. The values of the pasting parameters were lower for acetylated starch than for native starch. Acetylation was found to increase the light transmittance (%), the freeze-thaw stability, the swelling power and the solubility of the starch. Sensorial scores for puddings prepared using native and acetylated lotus rhizome starches as food additives indicated that puddings produced from the modified starches with superior properties over those prepared from native starch. PMID:26453845

  14. Myosin II Dynamics during Embryo Morphogenesis

    Kasza, Karen

    2013-03-01

    During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.

  15. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  16. Myosin motor isoforms direct specification of actomyosin function by tropomyosins

    Clayton, Joseph E.; Pollard, Luther W.; Murray, George G.; Lord, Matthew

    2015-01-01

    Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in non-muscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this ...

  17. Native myosin from adult rabbit skeletal muscle: isoenzymes and states of aggregation.

    Morel, J E; D'hahan, N; Taouil, K; Francin, M; Aguilar, A; Dalbiez, J P; Merah, Z; Grussaute, H; Hilbert, B; Ollagnon, F; Selva, G; Piot, F

    1998-04-21

    The globular heads of skeletal muscle myosin have been shown to exist as isoenzymes S1 (A1) and S1 (A2), and there are also isoforms of the heavy chains. Using capillary electrophoresis, we found two dominant isoenzymes of the whole native myosin molecule, in agreement with what has previously been found by various techniques for native and nondenatured myosin from adult rabbits. Findings about possible states of aggregation of myosin and its heads are contradictory. By analytical ultracentrifugation, we confirmed the existence of a tail-tail dimer. By laser light scattering, we found a head-head dimer in the presence of MgATP. Capillary electrophoresis coupled with analytical ultracentrifugation and laser light scattering led us to refine these results. We found tail-tail dimers in a conventional buffer. We found tail-tail and head-head dimers in the presence of 0.5 mM MgATP and pure head-head dimers in the presence of 6 mM MgATP. All the dimers were homodimers. Naming the dominant isoenzymes of myosin a and b, we observed tail-tail dimers with isoenzyme a (TaTa) and with isoenzyme b (TbTb) and also head-head dimers with isoenzyme a (HaHa) and with isoenzyme b (HbHb). PMID:9548927

  18. Photocleavage of myosin subfragment 1 by vanadate

    The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site

  19. The Rho kinases I and II regulate different aspects of myosin II activity

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... persistent ROCK II and guanine triphosphate-bound RhoA. In contrast, the microfilament cytoskeleton was enhanced by ROCK II down-regulation. Phagocytic uptake of fibronectin-coated beads was strongly down-regulated in ROCK II-depleted cells but not those lacking ROCK I. These effects originated in part from...

  20. The Role of Dietary Protein Intake and Resistance Training on Myosin Heavy Chain Expression

    Willoughby Darryn S

    2004-12-01

    Full Text Available Abstract During resistance training the muscle undergoes many changes. Possibly the most profound and significant changes are those that occur in the muscles contractile proteins. Increases in these contractile proteins are one of the primary factors contributing to myofibrillar hypertrophy. The most abundant muscle protein is myosin, which comprises 25% of the total muscle protein. Due to the large amount of skeletal muscle that is composed of myosin, changes in this fiber may have profound effects on skeletal muscle size and strength. The myosin molecule is made up of 6 subunits, 2 very large heavy chains, and 4 smaller light chains. The myosin heavy chain (MHC accounts for 25–30% of all muscle proteins making its size an important factor in skeletal muscle growth. In conjunction with resistance training, dietary protein intake must be adequate to illicit positive adaptations. Although many studies have evaluated the role of dietary protein intake on skeletal muscle changes, few have evaluated the MHC specifically. Research has clearly defined the need for dietary protein and resistance training to facilitate positive changes in skeletal muscle. The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain.

  1. Preparation of human cardiac anti-myosin: a review

    The present communication is a review of the physicochemical characterization and immunological properties of myosin isolated from the cardiac muscle, the production of monoclonal antibody anti-myosin, the radiolabeling of this antibody and its applications as radiopharmaceuticals to imaging myocardial infarcts. The classical example of radioimmunologic diagnosis of non malignant tissues is the detection of myocardial infarction by radiolabeled antibodies to myosin. (author)

  2. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek; Schölz, Christian; Wagner, Sebastian A; Magnes, Christoph; Zechner, Rudolf; Choudhary, Chuna Ram

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  3. Fitting of atomic coordinates of myosin S1 into the envelope of the 3-D reconstruction of muscle thick filaments

    Recently atomic coordinates of myosin S1of hen pectoral muscle have been reported (Rayment et al. Science 261: 50-58, 1993), allowing to know the precise position of the Regulatory Light Chain (RLC), the Essential Light Chain (ELC), as well as the interlacing places of ATP and actin. By means of the use of the Program of Advanced Three-dimensional Visualization AVS (Advanced Visual Systems, Inc., Waltham, M A, USA) we have been able to obtain the surface of the three-dimensional reconstruction of the thick filaments of tarantula muscle (Crowther et al. J. Mol. Biol. 184: 429-439, 1985) which shows a topographical detail associated to each myosin head (subfragment S1) non previously seen, and confirmed in a very evident way the antiparallel arrangement of both heads of a same myosin molecule. In view of the above-mentioned we have carried out an approximate adjustment of reported atomic coordinates of sub fragment S1 to the surface of one myosin head of the three-dimensional reconstruction. This adjustment allows to locate the approximate position of the Light Chains RLC and ELC, as well as the interlacing place of ATP and actin. The precise determination of the position of RLC and its phosphoryl able serine in the three-dimensional reconstruction can be important in terms of the molecular regulation mechanism of the muscular contraction bounded to the myosin that happens through the phosphorylation of RLC

  4. Acetyltransferase and human hemoglobin acetylation

    A minor component of human fetal hemoglobin (Hb F) is acetylated at the amino-terminus of the γ-globin chains. A similar minor component of Hb F is formed during translation of cord blood mRNA in the rabbit reticulocyte lysate system. The acetylation appeared to be enzymatic. This system contains an acetyltransferase capable of acetylating histones and hemoglobins. The enzyme, partially purified by histone-Sepharose affinity chromatography was capable of incorporating labeled acetyl- group from 1-[14C-acetyl]-CoA into both human Hb F0 and HB A0, but at a lower rate than for histones. Characterization of the labeled products indicated that the α-chains of both hemoglobins were being acetylated presumably at a lysyl-residue, but in the case of Hb F0 the amino-terminus of the γ-globin chains was acetylated as well. While histone-Sepharose bound more than 95% of the enzyme, Sepharose linked Hb F0, γ-globin chains, and Hb Bart's bound 14, 5, and 12% of the activity, respectively. Enzyme bound to these resins was not any more active on the hemoglobins than was the enzyme bound to the histone-Sepharose. The histone-Sepharose was also used to detect the enzyme in human cord blood red cells separated by dextran 40 density gradient centrifugation. Activity was found mostly in the young cells, and was directly related to the number of reticulocytes present in any one fraction

  5. Purification and characterization of myosin from wheat mitochondria

    2002-01-01

    Myosin was purified from wheat mitochondria using DE-52 anion exchange chromatography and Sephacryl S-300 gel ffitration. The molecular weight of its heavy chain is about 210 ku, similar to that of muscle myosin Ⅱ (205 ku),and it could be recognized by the polyclonal antibodies against human skeletal muscle myosin Ⅱ. The ATPase activity of the mitochondrial myosin stimulated by F-actin from chicken muscle is 202.5 nmoles Pi/min @ mg. The mitochondrial myosin could be activated by Ca2+ and was not inhibited by Ca2+ at high concentration. The results demonstrate that the myosin of wheat mitochondria shares some similarities with the skeletal muscle myosin Ⅱ.

  6. Regulation of intermediary metabolism by protein acetylation

    Guan, Kun-Liang; Xiong, Yue

    2010-01-01

    Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Convers...

  7. Antiparallel coiled-coil-mediated dimerization of myosin X.

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-10-23

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor's lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC-mediated dimerization may enable myosin X to walk on both single and bundled actin filaments. PMID:23012428

  8. Nuclear myosin I regulates cell membrane tension

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  9. The On-off Switch in Regulated Myosins: Different Triggers but Related Mechanisms

    Himmel, D.; Mui, S; O& apos; Neall-Hennessey, E; Szent-Györgyi, A; Cohen, C

    2009-01-01

    In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long {alpha}-helical 'heavy chain' stabilized by a 'regulatory' light chain (RLC) and an 'essential' light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca{sup 2+} to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca{sup 2+}. Our results indicate that loss of Ca{sup 2+} abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.

  10. Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism

    Mun, Ji Young; Previs, Michael J.; Yu, Hope Y.; Gulick, James; Tobacman, Larry S.; Beck Previs, Samantha; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2014-01-01

    Myosin-binding protein C (MyBP-C) is a component of myosin filaments, one of the two sets of contractile elements whose relative sliding is the basis of muscle contraction. In the heart, MyBP-C modulates contractility in response to cardiac stimulation; mutations in MyBP-C lead to cardiac disease. The mechanism by which MyBP-C modulates cardiac contraction is not understood. Using electron microscopy and a light microscopic assay for filament sliding, we demonstrate that MyBP-C binds to the o...

  11. Fatal Intoxication with Acetyl Fentanyl.

    Cunningham, Susan M; Haikal, Nabila A; Kraner, James C

    2016-01-01

    Among the new psychoactive substances encountered in forensic investigations is the opioid, acetyl fentanyl. The death of a 28-year-old man from recreational use of this compound is reported. The decedent was found in the bathroom of his residence with a tourniquet secured around his arm and a syringe nearby. Postmortem examination findings included marked pulmonary and cerebral edema and needle track marks. Toxicological analysis revealed acetyl fentanyl in subclavian blood, liver, vitreous fluid, and urine at concentrations of 235 ng/mL, 2400 ng/g, 131 ng/mL, and 234 ng/mL, respectively. Acetyl fentanyl was also detected in the accompanying syringe. Death was attributed to recreational acetyl fentanyl abuse, likely through intravenous administration. The blood acetyl fentanyl concentration is considerably higher than typically found in fatal fentanyl intoxications. Analysis of this case underscores the need for consideration of a wide range of compounds with potential opioid-agonist activity when investigating apparent recreational drug-related deaths. PMID:26389815

  12. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides

    Cyr Janet L

    2002-11-01

    Full Text Available Abstract Background Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3 in its neck region; we identified a fourth IQ domain (IQ4, located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. Results In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much weaker. Ca2+ substantially weakened the calmodulin-peptide affinity for all of the IQ peptides except IQ3. To reveal how calmodulin bound to the linearly arranged IQ domains of the myosin-1c neck, we used hydrodynamic measurements to determine the stoichiometry of complexes of calmodulin and myosin-1c. Purified myosin-1c and T701-Myo1c (a myosin-1c fragment with all four IQ domains and the C-terminal tail each bound 2–3 calmodulin molecules. At a physiologically relevant temperature (25°C and under low-Ca2+ conditions, T701-Myo1c bound two calmodulins in the absence and three calmodulins in the presence of 5 μM free calmodulin. Ca2+ dissociated nearly all calmodulins from T701-Myo1c at 25°C; one calmodulin was retained if 5 μM free calmodulin was present. Conclusions We inferred from these data that at 25°C and normal cellular concentrations of calmodulin, calmodulin is bound to IQ1, IQ2, and IQ3 of myosin-1c when Ca2+ is low. The calmodulin bound to one of these IQ domains, probably IQ2, is only weakly associated. Upon Ca2+ elevation, all calmodulin except that bound to IQ3 should dissociate.

  13. Enhanced force generation by smooth muscle myosin in vitro.

    VanBuren, P; Work, S S; Warshaw, D.M.

    1994-01-01

    To determine whether the apparent enhanced force-generating capabilities of smooth muscle relative to skeletal muscle are inherent to the myosin cross-bridge, the isometric steady-state force produced by myosin in the in vitro motility assay was measured. In this assay, myosin adhered to a glass surface pulls on an actin filament that is attached to an ultracompliant (50-200 nm/pN) glass microneedle. The number of myosin cross-bridge heads able to interact with a length of actin filament was ...

  14. Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluorescence and immunogold electron microscopy

    1990-01-01

    Polyclonal antisera have been raised against purified Acanthamoeba myosin II and to a synthetic 26 amino acid peptide that corresponds in sequence to the phosphorylation site of Acanthamoeba myosin IC. These antisera are specific for their respective antigens as determined by immunoblotting after SDS-PAGE of total cell lysates. By using the antisera, localization studies were performed by indirect immunofluorescence and by immunogold electron microscopy. Myosin II occurred in the cell cytopla...

  15. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  16. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Mohanan Valiya Veettil

    Full Text Available KSHV is etiologically associated with Kaposi's sarcoma (KS, an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA, in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex

  17. Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells

    Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    Protein phosphorylation/dephosphorylation and cytoskeletal reorganization regulate the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) during osmotic shrinkage; however, the mechanisms involved are unclear. We show that in cytoplasts, plasma membrane vesicles detached from Ehrlich ascites tumor cells (EATC......) by cytochalasin treatment, NKCC1 activity evaluated as bumetanide-sensitive (86)Rb influx was increased compared with the basal level in intact cells yet could not be further increased by osmotic shrinkage. Accordingly, cytoplasts exhibited no regulatory volume increase after shrinkage. In cytoplasts......, cortical F-actin organization was disrupted, and myosin II, which in shrunken EATC translocates to the cortical region, was absent. Moreover, NKCC1 activity was essentially insensitive to the myosin light chain kinase (MLCK) inhibitor ML-7, a potent blocker of shrinkage-induced NKCC1 activity in intact...

  18. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence

    Reddy, A. S.; Day, I. S.

    2001-01-01

    BACKGROUND: Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS: Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS: Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.

  19. Myosins and cell dynamics in cellular slime molds.

    Yumura, Shigehiko; Uyeda, Taro Q P

    2003-01-01

    Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed. PMID:12722951

  20. Protein Acetylation in Archaea, Bacteria, and Eukaryotes

    Jörg Soppa

    2010-01-01

    Full Text Available Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  1. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A;

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  2. Lighting

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  3. Swelling of acetylated wood in organic liquids

    Obataya, E; Obataya, Eiichi; Gril, Joseph

    2005-01-01

    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.

  4. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. PMID:24136144

  5. Histone Acetylation in Drug Addiction

    Renthal, William; Nestler, Eric J.

    2009-01-01

    Regulation of chromatin structure through post-translational modifications of histones (e.g. acetylation) has emerged as an important mechanism to translate a variety of environmental stimuli, including drugs of abuse, into specific changes in gene expression. Since alterations in gene expression are thought to contribute to the development and maintenance of the addicted state, recent efforts are aimed at identifying how drugs of abuse alter chromatin structure and the enzymes which regulate...

  6. Myosin-I Isozymes in Neonatal Rodent Auditory and Vestibular Epithelia

    Dumont, Rachel A.; Zhao, Yi-Dong; Holt, Jeffrey R.; Bähler, Martin; Gillespie, Peter G.

    2002-01-01

    Myosin isozymes are essential for hair cells, the sensory cells of the inner ear. Because a myosin-I subfamily member may mediate adaptation of mechanoelectrical transduction, we examined expression of all eight myosin-I isozymes in rodent auditory and vestibular epithelia. Using RT-PCR, we found prominent expression of three isozymes, Myo1b (also known as myosin-Ia or myr 1), Myo1c (myosin-Ib or myr 2), and Myo1e (myr 3). By contrast, Myo1a (brush-border myosin-I), Myo1d (myosin lg or myr 4)...

  7. Myosin rods are a source of second harmonic generation signals in skeletal muscle

    Schürmann, Sebastian; Weber, Cornelia; Fink, Rainer H. A.; Vogel, Martin

    2007-02-01

    Intrinsic second harmonic generation (SHG) signals can be used to visualize the three-dimensional structure of cardiac and skeletal muscle with high spatial resolution. Fluorescence labeling of complementary sarcomeric proteins, e.g. actin, indicates that the observed SHG signals arise from the myosin filaments. Recently, the myosin rod domain or LMM - light meromyosin - has been reported to be the dominant source of this SHG signal. However, to date, mostly negative and indirect evidence has been presented to support this assumption. Here, we show, to our knowledge, the first direct evidences that strong SHG signals can be obtained from synthetic paracrystals. These rod shaped filaments are formed from purified LMM. SDS-PAGE protein analysis confirmed that the LMM crystals lack myosin head domains. Some regions of the LMM paracrystals produce a strong SHG signal whereas others did not. The SHG signals were recorded with a laser-scanning microscope (Leica SP2). A ps laser tuned to 880 nm was used to excite the sample through an 63x objective of 1.2 NA. In order to visualize the synthetic filaments - in addition to SHG imaging -, the LMM was labeled with the fluorescent marker 5-IAF. We were able to observe filaments of 1 to 50 μm in length and of up to 5 μm in diameter. In conclusion, we can show that the myosin rod domain (LMM) is a dominant source for intrinsic SHG signals. There seems, however, a signal dependence on the paracrystals' morphology. This dependence is being investigated.

  8. Acute response of airway muscle to extreme temperature includes disruption of actin-myosin interaction.

    Dyrda, Peter; Tazzeo, Tracy; DoHarris, Lindsay; Nilius, Berndt; Roman, Horia Nicolae; Lauzon, Anne-Marie; Aziz, Tariq; Lukic, Dusan; Janssen, Luke J

    2011-02-01

    Despite the emerging use of bronchial thermoplasty in asthma therapy, the response of airway smooth muscle (ASM) to extreme temperatures is unknown. We investigated the immediate effects of exposing ASM to supraphysiologic temperatures. Isometric contractions were studied in bovine ASM before and after exposure to various thermal loads and/or pharmacologic interventions. Actin-myosin interactions were investigated using a standard in vitro motility assay. We found steep thermal sensitivity for isometric contractions evoked by acetylcholine, with threshold and complete inhibition at less than 50°C and greater than 55°C, respectively. Contractile responses to serotonin or KCl were similarly affected, whereas isometric relaxations evoked by the nitric oxide donor S-nitrosyl-N-acetylpenicillamine or the β-agonist isoproterenol were unaffected. This thermal sensitivity developed within 15 minutes, but did not evolve further over the course of several days (such a rapid time-course rules out heat shock proteins, apoptosis, autophagy, and necrosis). Although heat-sensitive transient receptor potential (TRPV2) channels and the calmodulin-dependent (Cam) kinase-II-induced inactivation of myosin light chain kinase are both acutely thermally sensitive, with a temperature producing half-maximal effect (T(1/2)) of 52.5°C, the phenomenon we describe was not prevented by blockers of TRPV2 channels (e.g., ruthenium red, gadolinium, zero-Ca(2+) or zero-Na(+)/zero-Ca(2+) media, and cromakalim) or of Cam kinase-II (e.g., W7, trifluoperazine, and KN-93). However, direct measurements of actin-myosin interactions showed the same steep thermal profile. The functional changes preceded any histologic evidence of necrosis or apoptosis. We conclude that extreme temperatures (such as those used in bronchial thermoplasty) directly disrupt actin-myosin interactions, likely through a denaturation of the motor protein, leading to an immediate loss of ASM cell function. PMID:20395634

  9. Different subcellular localizations and functions of Arabidopsis myosin VIII

    Belausov Eduard

    2008-01-01

    Full Text Available Abstract Background Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB. Results In transgenic plants expressing GFP fusions with ATM1 (IQ-tail truncation, lacking the head domain, fluorescence was differentially distributed: while in epidermis cells at the root cap GFP-ATM1 equally distributed all over the cell, in epidermal cells right above this region it accumulated in dots. Further up, in cells of the elongation zone, GFP-ATM1 was preferentially positioned at the sides of transversal cell walls. Interestingly, the punctate pattern was insensitive to brefeldin A (BFA while in some cells closer to the root cap, ATM1 was found in BFA bodies. With the use of different markers and transient expression in Nicotiana benthamiana leaves, it was found that myosin VIII co-localized to the plasmodesmata and ER, colocalized with internalized FM4-64, and partially overlapped with the endosomal markers ARA6, and rarely with ARA7 and FYVE. Motility of ARA6 labeled organelles was inhibited whenever associated with truncated ATM1 but motility of FYVE labeled organelles was inhibited only when associated with large excess of ATM1. Furthermore, GFP-ATM1 and RFP-ATM2 (IQ-tail domain co-localized to the same spots on the plasma membrane, indicating a specific composition at these sites for myosin binding. Conclusion Taken together, our data suggest that myosin VIII functions differently in different root cells and can be involved in different steps of endocytosis, BFA-sensitive and insensitive pathways, ER tethering and plasmodesmatal activity.

  10. Antiparallel coiled-coil–mediated dimerization of myosin X

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-01-01

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor’s lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or ...

  11. Rod phosphorylation favors folding in a catch muscle myosin.

    Castellani, L; Cohen, C

    1987-01-01

    Myosin from a molluscan catch muscle is unusual in being phosphorylated in the rod by an endogenous heavy chain kinase. The overall structure of the molecule resembles that of other muscle myosins, although the tail is somewhat longer (approximately equal to 1700 A). At low ionic strength the unphosphorylated molecules associate in filaments that display a striking axial repeat of 145 A. Phosphorylation of the rod enhances myosin solubility in the range of NaCl between 0.05 and 0.15 M. Depend...

  12. Expression of non-muscle type myosin heavy polypeptide 9 (MYH9 in mammalian cells

    T Takubo

    2009-06-01

    Full Text Available Myosin is a functional protein associated with cellular movement, cell division, muscle contraction and other functions. Members of the myosin super-family are distinguished from the myosin heavy chains that play crucial roles in cellular processes. Although there are many studies of myosin heavy chains in this family, there are fewer on non-muscle myosin heavy chains than of muscle myosin heavy chains. Myosin is classified as type I (myosin I or type II (myosin II. Myosin I, called unconventional myosin or mini-myosin, has one head, while myosin II, called conventional myosin, has two heads. We transfected myosin heavy polypeptide 9 (MYH9 into HeLa cells as a fusion protein with enhanced green fluorescent protein (EGFP and analyzed the localization and distribution of MYH9 in parallel with those of actin and tubulin. The results indicate that MYH9 colocalizes with actin stress fibers. Since it has recently been shown by genetic analysis that autosomal dominant giant platelet syndromes are MYH9-related disorders, our development of transfected EGFP-MYH9 might be useful for predicting the associations between the function of actin polymerization, the MYH9 motor domain, and these disorders.

  13. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus

    Venit, Tomáš; Dzijak, Rastislav; Rohožková, Jana; Kalendová, Alžběta; Hozák, Pavel

    Debrecen : University of Debrecen, 2013. s. 45-45. [Wilhelm Bernard Workshop on the cell nucleus /23./. 19.08.2013-24.08.2013, Debrecen] R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GAP305/11/2232; GA TA ČR TE01020118; GA MŠk LH12143 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : atomic force microscopy * cell membrane * myosin 1C * NM1 * nuclear myosin I * myosin knock-out Subject RIV: EB - Genetics ; Molecular Biology

  14. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas; Zechner, Rudolf; Choudhary, Chunaram

    2015-11-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3-targeted sites to chemical acetylation in vitro and fasting-induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low-level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues. PMID:26358839

  15. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength

    Anabelle S. Cornachione

    2014-07-01

    Full Text Available Protein arginylation is a posttranslational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 deletion driven by the skeletal muscle-specific creatine kinase (Ckmm promoter. Ckmm-Ate1 mice were viable and outwardly normal; however, their skeletal muscle strength was significantly reduced in comparison to controls. Mass spectrometry of isolated skeletal myofibrils showed a limited set of proteins, including myosin heavy chain, arginylated on specific sites. Atomic force microscopy measurements of contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of myosin filaments, could be fully rescued by rearginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in muscle and exerts a direct effect on muscle strength through arginylation of myosin.

  16. Still and rotating myosin clusters determine cytokinetic ring constriction.

    Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Kruse, Karsten; Riveline, Daniel

    2016-01-01

    The cytokinetic ring is essential for separating daughter cells during division. It consists of actin filaments and myosin motors that are generally assumed to organize as sarcomeres similar to skeletal muscles. However, direct evidence is lacking. Here we show that the internal organization and dynamics of rings are different from sarcomeres and distinct in different cell types. Using micro-cavities to orient rings in single focal planes, we find in mammalian cells a transition from a homogeneous distribution to a periodic pattern of myosin clusters at the onset of constriction. In contrast, in fission yeast, myosin clusters rotate prior to and during constriction. Theoretical analysis indicates that both patterns result from acto-myosin self-organization and reveals differences in the respective stresses. These findings suggest distinct functional roles for rings: contraction in mammalian cells and transport in fission yeast. Thus self-organization under different conditions may be a generic feature for regulating morphogenesis in vivo. PMID:27363521

  17. Internal Motility in Stiffening Actin-Myosin Networks

    Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and sug...

  18. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Bekyarova, T. I.; Reedy, M C; Baumann, B. A. J.; Tregear, R T; Ward, A; Krzic, U.; Prince, K.M.; Perz-Edwards, R. J.; Reconditi, M.; Gore, D.; Irving, T C; Reedy, M K

    2008-01-01

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the “steric blocking” mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca2+ with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence...

  19. A Method to determine lysine acetylation stoichiometries

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  20. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  1. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions

    Weinert, Brian T; Moustafa, Tarek; Iesmantavicius, Vytautas;

    2015-01-01

    Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or...... suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of...... fasted mice, we found that SIRT3-targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3-dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation...

  2. Acetylation of woody lignocellulose: significance and regulation

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  3. Acetylation-Mediated Suppression of Transcription-Independent Memory: Bidirectional Modulation of Memory by Acetylation

    Katja Merschbaecher; Jakob Haettig; Uli Mueller

    2012-01-01

    Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact...

  4. UNIQUE ACETYLATION OF OLIGOSACCHARIDES BY TRICHODERMA REESEI ACETYL ESTERASE IN WATER - VINYL ACETATE MIXTURE

    Purified T. reesei RUT C-30 acetyl esterase catalyzes acetyl transfer to a variety of carbohydrates in water in the presence of vinyl acetate as the acetyl group donor. The degree of conversion and the number of formed acetates depended on the acceptor used. With some acceptors, such as methyl or ...

  5. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  6. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt; Davies, Michael Jonathan

    2008-01-01

    result of the reaction with activated haem proteins (horseradish peroxidase/H2O2) and met-myoglobin/H2O2) has been investigated by EPR spectroscopy and amino-acid consumption, product formation has been characterized by HPLC, and changes in protein integrity have been determined by SDS/PAGE. Multiple...... thiyl and tyrosyl radicals is consistent with the observed consumption of cysteine and tyrosine residues, the detection of di-tyrosine by HPLC and the detection of both reducible (disulfide bond) and non-reducible cross-links between myosin molecules by SDS/PAGE. The time course of radical formation on...

  7. Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides

    Cyr Janet L; Gillespie Peter G

    2002-01-01

    Abstract Background Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3) in its neck region; we identified a fourth IQ domain (IQ4), located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report. Results In the presence of EGTA, calmodulin bound to synthetic peptides corresponding to IQ1, IQ2, and IQ3 with Kd values of 2–4 μM at normal ionic strength; the interaction with an IQ4 peptide was much...

  8. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism

    The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate

  9. Proteomic profiling of lysine acetylation in Pseudomonas aeruginosa reveals the diversity of acetylated proteins.

    Ouidir, Tassadit; Cosette, Pascal; Jouenne, Thierry; Hardouin, Julie

    2015-07-01

    Protein lysine acetylation is a reversible and highly regulated post-translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology. PMID:25900529

  10. Investigation of acetyl migrations in furanosides

    Migaud ME

    2006-07-01

    Full Text Available Abstract Standard reaction conditions for the desilylation of acetylated furanoside (riboside, arabinoside and xyloside derivatives facilitate acyl migration. Conditions which favour intramolecular and intermolecular mechanisms have been identified with intermolecular transesterifications taking place under mild basic conditions when intramolecular orthoester formations are disfavoured. In acetyl ribosides, acyl migration could be prevented when desilylation was catalysed by cerium ammonium nitrate.

  11. Two Regions of the Tail Are Necessary for the Isoform-specific Functions of Nonmuscle Myosin IIB

    Sato, Masaaki K.; Takahashi, Masayuki; Yazawa, Michio

    2007-01-01

    To function in the cell, nonmuscle myosin II molecules assemble into filaments through their C-terminal tails. Because myosin II isoforms most likely assemble into homo-filaments in vivo, it seems that some self-recognition mechanisms of individual myosin II isoforms should exist. Exogenous expression of myosin IIB rod fragment is thus expected to prevent the function of myosin IIB specifically. We expected to reveal some self-recognition sites of myosin IIB from the phenotype by expressing a...

  12. Light

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  13. Histone Acetylation in Fungal Pathogens of Plants

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  14. Acetylation-mediated suppression of transcription-independent memory: bidirectional modulation of memory by acetylation.

    Katja Merschbaecher

    Full Text Available Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs, and the antagonistic histone deacetylases (HDACs play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM. While the majority of studies report on the role of elevated acetylation in memory facilitation, we address the impact of both, increased and decreased acetylation on formation of appetitive olfactory memory in honeybees. We show that learning-induced changes in the acetylation of histone H3 at aminoacid-positions H3K9 and H3K18 exhibit distinct and different dynamics depending on the training strength. A strong training that induces LTM leads to an immediate increase in acetylation at H3K18 that stays elevated for hours. A weak training, not sufficient to trigger LTM, causes an initial increase in acetylation at H3K18, followed by a strong reduction in acetylation at H3K18 below the control group level. Acetylation at position H3K9 is not affected by associative conditioning, indicating specific learning-induced actions on the acetylation machinery. Elevating acetylation levels by blocking HDACs after conditioning leads to an improved memory. While memory after strong training is enhanced for at least 2 days, the enhancement after weak training is restricted to 1 day. Reducing acetylation levels by blocking HAT activity after strong training leads to a suppression of transcription-dependent LTM. The memory suppression is also observed in case of weak training, which does not require transcription processes. Thus, our findings demonstrate that acetylation-mediated processes act as bidirectional regulators of memory formation that facilitate or suppress memory independent of its transcription-requirement.

  15. Enzymatic changes in myosin regulatory proteins may explain vasoplegia in terminally ill patients with sepsis

    Zheng, Wentao; Kou, Yong; Gao, Feng-lan; Ouyang, Xiu-he

    2016-01-01

    The current study was conducted with the hypothesis that failure of maintenance of the vascular tone may be central to failure of the peripheral circulation and spiralling down of blood pressure in sepsis. Namely, we examined the balance between expression of myosin light chain (MLC) phosphatase and kinase, enzymes that regulate MLCs dephosphorylation and phosphorylation with a direct effect on pharmacomechanical coupling for smooth muscle relaxation and contraction respectively. Mechanical recordings and enzyme immunoassays of vascular smooth muscle lysates were used as the major methods to examine arterial biopsy samples from terminally ill sepsis patients. The results of the present study provide evidence that genomic alteration of expression of key regulatory proteins in vascular smooth muscles may be responsible for the relentless downhill course in sepsis. Down-regulation of myosin light chain kinase (MLCK) and up-regulation of MLCK may explain the loss of tone and failure to mount contractile response in vivo during circulation. The mechanical studies demonstrated the inability of the arteries to develop tone when stimulated by phenylephrine in vitro. The results of our study provide indirect hint that control of inflammation is a major therapeutic approach in sepsis, and may facilitate to ameliorate the progressive cardiovascular collapse. PMID:26772992

  16. Synthesised genes of VH and VL of single-chain antibody of human cardiac myosin heavy chain

    Objective: To synthesize genes of the heavy chain variable region (VH) and light chain variable region (VL) of single-chain antibody of human cardiac myosin heavy chain for the development of myocardial imaging agents: single-chain antibody of human cardiac myosin heavy chain. Methods: To extracted total RNA of the anti-HCMHC McAb hybridoma using TRIZOL reagent, synthesize the first-strand cDNA, using this first-strand cDNA as template, with specific primers, DNA polymerase and four single nucleotides, amplify the genes of the heavy chain variable region (VH) and light chain variable region (VL) by PCR. To identify products of each step and study relationship between RNA stability and storage temperature and optimize cycle selection temperature with MgCl2 concentration. Results: The purity of the first-strand cDNA reached 95%, PCR products by agarose gel electrophoresis showed a single band with a bright swimming, molecular weight of VH and VL genes were 340bp and 320bp, which was consistent with literature reports. Conclusion: Synthesized genes of VH and VL, laid the foundation for the development of myocardial imaging agents: single-chain antibody of human cardiac myosin heavy chain. (authors)

  17. Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles

    Hanson Maureen R

    2007-02-01

    Full Text Available Abstract Background Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2, which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins. Results We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1, myosin XI-6 (At MYA2, myosin XI-8 (At XI-B, myosin XI-15 (At XI-I, myosin XI-16 (At XI-J and myosin XI-17 (At XI-K were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2, previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria. Conclusion 6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and

  18. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI

    Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

    2013-01-01

    Myosin XXI is the only myosin isoform expressed in the Leishmania parasite. The myosin-XXI homozygous knockout is lethal, and a reduction in expression levels leads to loss of endocytosis and affects other intracellular trafficking processes. In this paper we show that myosin XXI can adopt a monomeric or dimeric state. The states are determined by calmodulin binding to an IQ motif that, when bound, prevents dimerization of a coiled-coil motif. In the monomeric state the motor binds phospholip...

  19. Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition.

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D; Padrón, Raúl

    2015-08-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscles and a secondary (modulatory) role in striated muscles, which is regulated by Ca(2+)via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca(2+)4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectory analysis revealed that an inter-domain salt bridge network (R39/E58,E61) facilitates the formation of a stable helix-coil-helix (HCH) motif formed by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of the blocked head on Ser45 does not induce any substantial structural changes. However, phosphorylation of the free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH folding, phosphorylation of Ser35 unlocks a compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by the subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID

  20. Light

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  1. Simultaneous quantification of differently glycosylated, acetylated and 2,3-dihydro-2,5-dihydroxy-6-methyl-4h-pyran-4-one-conjugated soyasaponins using reversed-phase high-performance liquid chromatography with evaporative light scattering detection

    DeCroos, K.; Vincken, J.P.; Heng, L.; Bakker, R.; Gruppen, H.; Verstraete, W.

    2005-01-01

    A novel method utilizing high-performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD) and electrospray ionisation mass spectrometry (ESI-MS) was developed for the analysis of soyasaponins, a divers group of triterpenic compounds with one or two sugar side chains,

  2. Structural evidence for non-canonical binding of Ca2+ to a canonical EF-hand of a conventional myosin.

    Debreczeni, Judit E; Farkas, László; Harmat, Veronika; Hetényi, Csaba; Hajdú, István; Závodszky, Péter; Kohama, Kazuhiro; Nyitray, László

    2005-12-16

    We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity. PMID:16227209

  3. Review: The ATPase mechanism of myosin and actomyosin.

    Geeves, Michael A

    2016-08-01

    Myosins are a large family of molecular motors that use the common P-loop, Switch 1 and Switch 2 nucleotide binding motifs to recognize ATP, to create a catalytic site than can efficiently hydrolyze ATP and to communicate the state of the nucleotide pocket to other allosteric binding sites on myosin. The energy of ATP hydrolysis is used to do work against an external load. In this short review I will outline current thinking on the mechanism of ATP hydrolysis and how the energy of ATP hydrolysis is coupled to a series of protein conformational changes that allow a myosin, with the cytoskeleton track actin, to operate as a molecular motor of distinct types; fast movers, processive motors or strain sensors. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 483-491, 2016. PMID:27061920

  4. Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery

    Melissa H. Jorrisch

    2013-02-01

    Cell motility is a cornerstone of embryogenesis, tissue remodeling and repair, and cancer cell invasion. It is generally thought that migrating cells grab and exert traction force onto the extracellular matrix in order to pull the cell body forward. While previous studies have shown that myosin II deficient cells migrate efficiently, whether these cells exert traction forces during cell migration in the absence of the major contractile machinery is currently unknown. Using an array of micron-sized pillars as a force sensor and shRNA specific to each myosin II isoform (A and B, we analyzed how myosin IIA and IIB individually regulate cell migration and traction force generation. Myosin IIA and IIB localized preferentially to the leading edge where traction force was greatest, and the trailing edge, respectively. When individual myosin II isoforms were depleted by shRNA, myosin IIA deficient cells lost actin stress fibers and focal adhesions, whereas myosin IIB deficient cells maintained similar actin organization and focal adhesions as wild-type cells. Interestingly, myosin IIA deficient cells migrated faster than wild-type or myosin IIB deficient cells on both a rigid surface and a pillar array, yet myosin IIA deficient cells exerted significantly less traction force at the leading edge than wild-type or myosin IIB deficient cells. These results suggest that, in the absence of myosin IIA mediated force-generating machinery, cells move with minimal traction forces at the cell periphery, thus demonstrating the remarkable ability of cells to adapt and migrate.

  5. Nonmuscle myosin dependent synthesis of type I collagen

    Cai, Le; Fritz, Dillon; Stefanovic, Lela; Stefanovic, Branko

    2010-01-01

    Type I collagen is the most abundant protein in human body synthesized in all tissues as the heterotrimer of two α1(I) and one α2(I) polypeptides. Here we show that intact nonmuscle myosin filaments are required for synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds RNA binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle my...

  6. Internal Motility in Stiffening Actin-Myosin Networks

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  7. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  8. Mapping dynamic histone acetylation patterns to gene expression in nanog-depleted murine embryonic stem cells.

    Markowetz, Florian; Mulder, Klaas W; Airoldi, Edoardo M; Lemischka, Ihor R; Troyanskaya, Olga G

    2010-01-01

    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in a concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate. PMID:21187909

  9. Levels of histone acetylation in thyroid tumors.

    Puppin, Cinzia; Passon, Nadia; Lavarone, Elisa; Di Loreto, Carla; Frasca, Francesco; Vella, Veronica; Vigneri, Riccardo; Damante, Giuseppe

    2011-08-12

    Histone acetylation is a major mechanism to regulate gene transcription. This post-translational modification is modified in cancer cells. In various tumor types the levels of acetylation at several histone residues are associated to clinical aggressiveness. By using immunohistochemistry we show that acetylated levels of lysines at positions 9-14 of H3 histone (H3K9-K14ac) are significantly higher in follicular adenomas (FA), papillary thyroid carcinomas (PTC), follicular thyroid carcinomas (FTC) and undifferentiated carcinomas (UC) than in normal tissues (NT). Similar data have been obtained when acetylated levels of lysine 18 of H3 histone (H3K18ac) were evaluated. In this case, however, no difference was observed between NT and UC. When acetylated levels of lysine 12 of H4 histone (H4K12ac) were evaluated, only FA showed significantly higher levels in comparison with NT. These data indicate that modification histone acetylation is an early event along thyroid tumor progression and that H3K18 acetylation is switched off in the transition between differentiated and undifferentiated thyroid tumors. By using rat thyroid cell lines that are stably transfected with doxycyclin-inducible oncogenes, we show that the oncoproteins RET-PTC, RAS and BRAF increase levels of H3K9-K14ac and H3K18ac. In the non-tumorigenic rat thyroid cell line FRTL-5, TSH increases levels of H3K18ac. However, this hormone decreases levels of H3K9-K14ac and H4K12ac. In conclusion, our data indicate that neoplastic transformation and hormonal stimulation can modify levels of histone acetylation in thyroid cells. PMID:21763277

  10. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, V.; Rülicke, T.; Rathkolb, B.; Hans, W.; Bohla, A.; Eickelberg, O.; Stoeger, T.; Wolf, E.; Yildirim, A.Ö.; Gailus-Durner, V.; Fuchs, H.; de Angelis, M.H.; Hozák, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e61406. E-ISSN 1932-6203 R&D Projects: GA ČR GAP305/11/2232; GA TA ČR TE01020022; GA MŠk LH12143; GA ČR(CZ) GD204/09/H084 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : nuclear myosin * myosin isoforms * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  11. The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin*

    Bloemink, Marieke; Deacon, John; Langer, Stephen; Vera, Carlos; Combs, Ariana; Leinwand, Leslie; Geeves, Michael A.

    2013-01-01

    The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecula...

  12. p53 Acetylation: Regulation and Consequences

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer

  13. p53 Acetylation: Regulation and Consequences

    Reed, Sara M. [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Quelle, Dawn E., E-mail: dawn-quelle@uiowa.edu [Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Medical Scientist Training Program, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 (United States)

    2014-12-23

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  14. p53 Acetylation: Regulation and Consequences

    Sara M. Reed

    2014-12-01

    Full Text Available Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.

  15. Arv1 promotes cell division by recruiting IQGAP1 and myosin to the cleavage furrow.

    Sundvold, Hilde; Sundvold-Gjerstad, Vibeke; Malerød-Fjeld, Helle; Haglund, Kaisa; Stenmark, Harald; Malerød, Lene

    2016-03-01

    Cell division is strictly regulated by a diversity of proteins and lipids to ensure proper duplication and segregation of genetic material and organelles. Here we report a novel role of the putative lipid transporter ACAT-related protein required for viability 1 (Arv1) during telophase. We observed that the subcellular localization of Arv1 changes according to cell cycle progression and that Arv1 is recruited to the cleavage furrow in early telophase by epithelial protein lost in neoplasm (EPLIN). At the cleavage furrow Arv1 recruits myosin heavy chain 9 (MYH9) and myosin light chain 9 (MYL9) by interacting with IQ-motif-containing GTPase-activating protein (IQGAP1). Consequently the lack of Arv1 delayed telophase-progression, and a strongly increased incidence of furrow regression and formation of multinuclear cells was observed both in human cells in culture and in follicle epithelial cells of egg chambers of Drosophila melanogaster in vivo. Interestingly, the cholesterol-status at the cleavage furrow did not affect the recruitment of either IQGAP1, MYH9 or MYL. These results identify a novel function for Arv1 in regulation of cell division through promotion of the contractile actomyosin ring, which is independent of its lipid transporter activity. PMID:27104745

  16. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  17. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus.

    Khalid Amari

    2014-10-01

    Full Text Available Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP and to a delay in the MP accumulation in plasmodesmata (PD. The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.

  18. Model of Rho-Mediated Myosin Recruitment to the Cleavage Furrow during Cytokinesis

    Veksler, Alexander; Vavylonis, Dimitrios

    2010-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During cytokinesis, the myosin attached to the cell's cortex progressively disassembles at the flanking regions and concentrates in the equator [1]. This recruitment depends on myosin motor activity and activation by Rho proteins. Central spindle and astral microtubules establish a spatial pattern of differential Rho activity [2]. We propose a reaction-diffusion model for the dynamics of myosin and Rho proteins during cytokinesis. In the model, the mitotic spindle activates Rho at the equator. Active Rho promotes, in a switch-like manner, myosin assembly into cortical minifilaments. Mechanical stress by cortical myosin causes disassembly of myosin minifilaments and deactivates Rho. Our results explain both the recruitment of myosin to the cleavage furrow and the observed damped myosin oscillations in the cell's flanking regions [1]. Spatial extent, period and decay rate of myosin oscillations are calculated. Various regimes of myosin recruitment are predicted. [1] Zhou & Wang, Mol. Biol. Cell 19:318 (2008) [2] Murthy & Wadsworth, J. Cell Sci. 121:2350 (2008)

  19. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism

    Strijbis, K.; Distel, B.

    2010-01-01

    Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming...

  20. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors. PMID:26842936

  1. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles. PMID:26851071

  2. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2

    Schwer, Bjoern; Bunkenborg, Jakob; Verdin, Regis O; Andersen, Jens S; Verdin, Eric

    2006-01-01

    We report that human acetyl-CoA synthetase 2 (AceCS2) is a mitochondrial matrix protein. AceCS2 is reversibly acetylated at Lys-642 in the active site of the enzyme. The mitochondrial sirtuin SIRT3 interacts with AceCS2 and deacetylates Lys-642 both in vitro and in vivo. Deacetylation of AceCS2 b...

  3. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies.

    Picard, B; Leger, J; Robelin, J

    1994-01-01

    Bovine type I muscle fibers were characterized by enzyme-linked immunosorbent assay (ELISA) with a monoclonal antibody specific for slow myosin heavy chains (MHC 1). Two bovine muscles, the Masseter and Cutaneus trunci, were analyzed by different complementary techniques: electrophoresis, immunoblotting and immunohistiology. The results showed that the two muscles have extreme characteristics. The Masseter contains only slow MHC and the Cutaneus trunci is composed solely of rapid MHC (MHC 2a and 2b). A standard for this ELISA was obtained by mixing the two muscles and was used as a reference in the determination of the percentage of MHC 1 in a given muscle. In this study, the Longissimus thoracis of 27 Charolais cattle were examined. The different conditions under which assays were carried out were described and the accuracy of the measurement was calculated. In view of the results, ELISA was chosen for the analysis of muscle fiber types in large numbers of animal specimens. This technique could be used in several research projects to study the muscle characteristics that determine beef quality. PMID:22061628

  4. "Slow" myosins in vertebrate skeletal muscle. An immunofluorescence study

    1980-01-01

    Specific antisera were raised in rabbits against column-purified myosins from a slow avian muscle, the chicken anterior latissimus dorsi (ALD), and a slow-twitch mammalian muscle, the guinea pig soleus (SOL). The antisera were labeled with fluorescein and applied to sections of muscles from various vertebrae species. Two distinct categories of the slow fibers were identified on the basis of their differential reactivity with the two antisera. Fibers stained by anti-ALD appear to correspond in...

  5. The IQ domain drives nuclear translocation of Nuclear myosin I

    Dzijak, Rastislav; Kahle, Michal; Přidalová, Jarmila; Moško, Tibor; Hozák, Pavel

    St Andrews : Wilhelm Bernhard Workshop, 2007. ---. [Wilhelm Bernhard Workshop on the Cell Nucleus /20./. 27.08.2007-31.08.2007, St. Andrews] R&D Projects: GA MŠk LC545; GA ČR(CZ) GA204/07/1592; GA ČR GD204/05/H023 Institutional research plan: CEZ:AV0Z50520514 Keywords : nucleus * nuclear myosin * calmodulin Subject RIV: EB - Genetics ; Molecular Biology

  6. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  7. Mode coupling points to functionally important residues in myosin II.

    Varol, Onur; Yüret, Deniz; Erman, Burak; Kabakçıoğlu, Alkan

    2015-01-01

    Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near-native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non-Gaussian vibrational modes on fluctutational dynamics. We show that an information-theo...

  8. Cardiac myosin heavy chain transition under altered thyroid status

    Arnoštová, Petra; Jedelský, P.; Soukup, Tomáš; Žurmanová, Jitka

    Geneva: Swiss Society for Neuroscience, 2008. s. 125.3-125.3. ISBN 92-990014-3-X. [FENS. Forum of European Neuroscience /6./. 12.07.2008-16.07.2008, Geneva] Grant ostatní: Myores(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : spo2 * cardiac myosin heavy chain * transition * thyroid status Subject RIV: ED - Physiology

  9. Smooth muscle myosin: a high force-generating molecular motor.

    VanBuren, P; Guilford, W. H.; Kennedy, G.; Wu, J.; Warshaw, D.M.

    1995-01-01

    Smooth muscle generates as much force per cross sectional area of muscle as skeletal muscle with only one-fifth the myosin content. Although this apparent difference could be explained at the tissue or cellular level, it is possible that at the molecular level smooth muscle cross-bridges generate greater average force than skeletal muscle cross-bridges. To test this hypothesis, we used an in vitro motility assay (VanBuren et al., 1994) in which either chicken thiophosphorylated gizzard smooth...

  10. Covalent immobilization of myosin for in-vitro motility of actin

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  11. Immunoblot detection of Myosin and Myosin-Light-Chain-Kinase in trabecular meshwork cells of the eye

    Schlott, Sebastian

    2010-01-01

    Glaucoma is characterised by inbalance of intraocular pressure (IOP) and optic nerve resistance. Findings comprise excavation of the optic nerve disk and characteristic visual field defects (glaucomatous neuropathy of the optic nerve). In industrialised countries glaucoma is the third commonest cause of blindness after age related macula degeneration and diabetes mellitus. Excessive IOP is one of the most important risk factors for optic nerve damage and represents the only avenue for therape...

  12. Structural basis for myopathic defects engendered by alterations in the myosin rod

    Cammarato, Anthony; Li, Xiaochuan; Reedy, Mary C.; Lee, Chi F.; Lehman, William; Bernstein, Sanford I

    2011-01-01

    While mutations in the myosin S1 motor domain can directly disrupt the generation and transmission of force along myofibrils and lead to myopathy, the mechanism whereby mutations in the myosin rod influence mechanical function is less clear. Here, we used a combination of various imaging techniques and molecular dynamics simulations to test the hypothesis that perturbations in the myosin rod can disturb normal sarcomeric uniformity and, like motor domain lesions, would influence force product...

  13. Myosin 5a controls insulin granule recruitment during late-phase secretion.

    Ivarsson, Rosita; Jing, Xing-Jun; Waselle, Laurent; Regazzi, Romano; Renström, Erik

    2005-01-01

    We have examined the importance of the actin-based molecular motor myosin 5a for insulin granule transport and insulin secretion. Expression of myosin 5a was downregulated in clonal INS-1E cells using RNAinterference. Stimulated hormone secretion was reduced by 46% and single-cell exocytosis, measured by capacitance recordings, was inhibited by 42% after silencing. Silencing of Slac-2c/MYRIP, which links insulin granules to myosin 5a, resulted in similar inhibition of single-cell exocytosis. ...

  14. Oxidative Debenzylation and Acetylation of Hexabenzylhexaazaisowutzitane

    2002-01-01

    The oxidative reactivity of hexabenzylhexaazaisowutzitane(HBIW)under different conditions was studied. It was found that the N-benzyl groups were found to form benzoyl group after oxidation. They might also be first debenzylated and then acetylated by potassium permanganate in acetic anhydride/DMF.

  15. Property enhancement of optically transparent bionanofiber composites by acetylation

    Nogi, Masaya; Abe, Kentaro; Handa, Keishin; Nakatsubo, Fumiaki; Ifuku, Shinsuke; Yano, Hiroyuki

    2006-12-01

    The authors studied acetylation of bacterial cellulose (BC) nanofibers to widen the applications of BC nanocomposites in optoelectronic devices. The slight acetylation of BC nanofibers significantly reduces the hygroscopicity of BC nanocomposites, while maintaining their high optical transparency and thermal stability. Furthermore, the degradation in optical transparency at elevated temperature (200°C) was significantly reduced by acetylation treatment. Therefore, the acetylation of bionanofibers has an extraordinary potential as treatment for property enhancement of bionanofiber composites.

  16. Differential patterns of myosin Va expression during the ontogenesis of the rat hippocampus

    L.S. Brinn

    2010-09-01

    Full Text Available Myosin Va is an actin-based, processive molecular motor protein highly enriched in the nervous tissue of vertebrates. It has been associated with processes of cellular motility, which include organelle transport and neurite outgrowth. The in vivo expression of myosin Va protein in the developing nervous system of mammals has not yet been reported. We describe here the immunolocalization of myosin Va in the developing rat hippocampus. Coronal sections of the embryonic and postnatal rat hippocampus were probed with an affinity-purified, polyclonal anti-myosin Va antibody. Myosin Va was localized in the cytoplasm of granule cells in the dentate gyrus and of pyramidal cells in Ammon's horn formation. Myosin Va expression changed during development, being higher in differentiating rather than already differentiated granule and pyramidal cells. Some of these cells presented a typical migratory profile, while others resembled neurons that were in the process of differentiation. Myosin Va was also transiently expressed in fibers present in the fimbria. Myosin Va was not detected in germinative matrices of the hippocampus proper or of the dentate gyrus. In conclusion, myosin Va expression in both granule and pyramidal cells showed both position and time dependency during hippocampal development, indicating that this motor protein is under developmental regulation.

  17. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments

    Hariadi, R. F.; Sommese, R. F.; Adhikari, A. S.; Taylor, R. E.; Sutton, S.; Spudich, J. A.; Sivaramakrishnan, S.

    2015-08-01

    The sarcomere of muscle is composed of tens of thousands of myosin motors that self-assemble into thick filaments and interact with surrounding actin-based thin filaments in a dense, near-crystalline hexagonal lattice. Together, these actin-myosin interactions enable large-scale movement and force generation, two primary attributes of muscle. Research on isolated fibres has provided considerable insight into the collective properties of muscle, but how actin-myosin interactions are coordinated in an ensemble remains poorly understood. Here, we show that artificial myosin filaments, engineered using a DNA nanotube scaffold, provide precise control over motor number, type and spacing. Using both dimeric myosin V- and myosin VI-labelled nanotubes, we find that neither myosin density nor spacing has a significant effect on the gliding speed of actin filaments. This observation supports a simple model of myosin ensembles as energy reservoirs that buffer individual stochastic events to bring about smooth, continuous motion. Furthermore, gliding speed increases with cross-bridge compliance, but is limited by Brownian effects. As a first step to reconstituting muscle motility, we demonstrate human β-cardiac myosin-driven gliding of actin filaments on DNA nanotubes.

  18. Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes

    Heuck, Alexander; Du, Tung-Gia; Jellbauer, Stephan; Richter, Klaus; Kruse, Claudia; Jaklin, Sigrun; Müller, Marisa; Buchner, Johannes; Jansen, Ralf-Peter; Niessing, Dierk

    2007-01-01

    Myosin-motors are conserved from yeast to human and transport a great variety of cargoes. Most plus-end directed myosins, which constitute the vast majority of all myosin motors, form stable dimers and interact constitutively with their cargo complexes. To date, little is known about regulatory mechanisms for cargo-complex assembly. In this study, we show that the type V myosin Myo4p binds to its cargo via two distinct binding regions, the C-terminal tail and a coiled-coil domain-containing f...

  19. Arabidopsis myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin

    Valera V. Peremyslov

    2012-09-01

    Full Text Available Plant myosins XI were implicated in cell growth, F-actin organization, and organelle transport, with myosin XI-K being a critical contributor to each of these processes. However, subcellular localization of myosins and the identity of their principal cargoes remain poorly understood. Here, we generated a functionally competent, fluorescent protein-tagged, myosin XI-K, and investigated its spatial distribution within Arabidopsis cells. This myosin was found to associate primarily not with larger organelles (e.g., Golgi as was broadly assumed, but with endomembrane vesicles trafficking along F-actin. Subcellular localization and fractionation experiments indicated that the nature of myosin-associated vesicles is organ- and cell type-specific. In leaves, a large proportion of these vesicles aligned and co-fractionated with a motile ER subdomain. In roots, non-ER vesicles were a dominant myosin cargo. Myosin XI-K showed a striking polar localization at the tips of growing, but not mature, root hairs. These results strongly suggest that a major mechanism whereby myosins contribute to plant cell physiology is vesicle transport, and that this activity can be regulated depending on the growth phase of a cell.

  20. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  1. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J;

    2011-01-01

    acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  2. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age

    C.C.R. Souza

    2013-02-01

    Full Text Available Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL. In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence.

  3. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  4. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH3+ moiety of doxorubicin and the −COO− moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  5. Dynamic Protein Acetylation in Plant–Pathogen Interactions

    Song, Gaoyuan; Walley, Justin W.

    2016-01-01

    Pathogen infection triggers complex molecular perturbations within host cells that results in either resistance or susceptibility. Protein acetylation is an emerging biochemical modification that appears to play central roles during host–pathogen interactions. To date, research in this area has focused on two main themes linking protein acetylation to plant immune signaling. Firstly, it has been established that proper gene expression during defense responses requires modulation of histone acetylation within target gene promoter regions. Second, some pathogens can deliver effector molecules that encode acetyltransferases directly within the host cell to modify acetylation of specific host proteins. Collectively these findings suggest that the acetylation level for a range of host proteins may be modulated to alter the outcome of pathogen infection. This review will focus on summarizing our current understanding of the roles of protein acetylation in plant defense and highlight the utility of proteomics approaches to uncover the complete repertoire of acetylation changes triggered by pathogen infection. PMID:27066055

  6. Dynamics of the Coiled-Coil Unfolding Transition of Myosin Rod Probed by Dissipation Force Spectrum

    Taniguchi, Yukinori; Khatri, Bhavin S.; Brockwell, David J.; Paci, Emanuele; Kawakami, Masaru

    2010-01-01

    The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic f...

  7. Acetylation Is Indispensable for p53 Activation

    Tang, Yi; Zhao, Wenhui; Chen, Yue; Zhao, Yingming; Gu, Wei

    2008-01-01

    The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its...

  8. p53 Acetylation: Regulation and Consequences

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo ev...

  9. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  10. Laing early onset distal myopathy: slow myosin defect with variable abnormalities on muscle biopsy

    P.J. Lamont; B. Udd; F.L. Mastaglia; M. de Visser; P. Hedera; T. Voit; L.R. Bridges; V. Fabian; A. Rozemuller; N.G. Laing

    2006-01-01

    Background: Laing early onset distal myopathy (MPD1) is an autosomal dominant myopathy caused by mutations within the slow skeletal muscle fibre myosin heavy chain gene, MYH7 It is allelic with myosin storage myopathy, with the commonest form of familial hypertrophic cardiomyopathy, and with one for

  11. My oh my(osin): Insights into how auditory hair cells count, measure, and shape

    Pollock, Lana M.; Chou, Shih-Wei; McDermott, Brian M., Jr.

    2016-01-01

    The mechanisms underlying mechanosensory hair bundle formation in auditory sensory cells are largely mysterious. In this issue, Lelli et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509017) reveal that a pair of molecular motors, myosin IIIa and myosin IIIb, is involved in the hair bundle’s morphology and hearing.

  12. The neurobiology of acetyl-L-carnitine.

    Traina, Giovanna

    2016-01-01

    A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system. PMID:27100509

  13. Fragrance material review on acetyl cedrene.

    Scognamiglio, J; Letizia, C S; Politano, V T; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of acetyl cedrene when used as a fragrance ingredient is presented. Acetyl cedrene is a member of the fragrance structural group Alkyl Cyclic Ketones. The generic formula for this group can be represented as (R1)(R2)CO. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for acetyl cedrene were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (2013) (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients. Submitted with this manuscript.) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. PMID:23907023

  14. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  15. Molecular regulation of skeletal muscle myosin heavy chain isoforms

    Brown, David M.

    2015-01-01

    Research investigating the regulation of muscle fibre type has traditionally been conducted in vivo, analyzing global changes at a whole muscle level. Broadly, this thesis aimed to explore more “molecular” approaches, utilizing molecular and cell biology to understand the expression and regulation of myosin heavy chain (MyHC) isoforms as an indicator of muscle fibre composition. The mRNA expression profile of six MyHC isoform genes during C2C12 myogenesis was elucidated to reveal that the...

  16. Myosin heavy chain gene expression in human heart failure.

    Nakao, K; Minobe, W.; Roden, R; Bristow, M R; Leinwand, L A

    1997-01-01

    Two isoforms of myosin heavy chain (MyHC), alpha and beta, exist in the mammalian ventricular myocardium, and their relative expression is correlated with the contractile velocity of cardiac muscle. Several pathologic stimuli can cause a shift in the MyHC composition of the rodent ventricle from alpha- to beta-MyHC. Given the potential physiological consequences of cardiac MyHC isoform shifts, we determined MyHC gene expression in human heart failure where cardiac contractility is impaired si...

  17. Intra-axonal myosin and actin in nerve regeneration.

    McQuarrie, Irvine G; Lund, Linda M

    2009-10-01

    A focused review of sciatic nerve regeneration in the rat model, based on research conducted by the authors, is presented. We examine structural proteins carried distally in the axon by energy-requiring motor enzymes, using protein chemistry and molecular biology techniques in combination with immunohistochemistry. Relevant findings from other laboratories are cited and discussed. The general conclusion is that relatively large amounts of actin and tubulin are required to construct a regenerating axon and that these materials mainly originate in the parent axon. The motor enzymes that carry these proteins forward as macromolecules include kinesin and dynein but probably also include myosin. PMID:19927086

  18. The energetics of allosteric regulation of ADP release from myosin heads.

    Jackson, Del R; Baker, Josh E

    2009-06-28

    Myosin molecules are involved in a wide range of transport and contractile activities in cells. A single myosin head functions through its ATPase reaction as a force generator and as a mechanosensor, and when two or more myosin heads work together in moving along an actin filament, the interplay between these mechanisms contributes to collective myosin behaviors. For example, the interplay between force-generating and force-sensing mechanisms coordinates the two heads of a myosin V molecule in its hand-over-hand processive stepping along an actin filament. In muscle, it contributes to the Fenn effect and smooth muscle latch. In both examples, a key force-sensing mechanism is the regulation of ADP release via interhead forces that are generated upon actin-myosin binding. Here we present a model describing the mechanism of allosteric regulation of ADP release from myosin heads as a change, DeltaDeltaG(-D), in the standard free energy for ADP release that results from the work, Deltamicro(mech), performed by that myosin head upon ADP release, or DeltaDeltaG(-D) = Deltamicro(mech). We show that this model is consistent with previous measurements for strain-dependent kinetics of ADP release in both myosin V and muscle myosin II. The model makes explicit the energetic cost of accelerating ADP release, showing that acceleration of ADP release during myosin V processivity requires approximately 4 kT of energy whereas the energetic cost for accelerating ADP release in a myosin II-based actin motility assay is only approximately 0.4 kT. The model also predicts that the acceleration of ADP release involves a dissipation of interhead forces. To test this prediction, we use an in vitro motility assay to show that the acceleration of ADP release from both smooth and skeletal muscle myosin II correlates with a decrease in interhead force. Our analyses provide clear energetic constraints for models of the allosteric regulation of ADP release and provide novel, testable insights

  19. Double heterozygosity for mutations in the β-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy

    Richard, P.; Isnard, R.; Carrier, L.; Dubourg, O.; Donatien, Y.; Mathieu, B.; Bonne, G.; Gary, F; Charron, P; HAGEGE, A.; Komajda, M; Schwartz, K.; Hainque, B

    1999-01-01

    Familial hypertrophic cardiomyopathy is a genetically heterogeneous autosomal dominant disease, caused by mutations in several sarcomeric protein genes. So far, seven genes have been shown to be associated with the disease with the β-myosin heavy chain (MYH7) and the cardiac myosin binding protein C (MYBPC3) genes being the most frequently involved.
We performed electrocardiography (ECG) and echocardiography in 15 subjects with hypertrophic cardiomyopathy from a French Caribbean family. Genet...

  20. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with [3H]acetate and [14C]glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with [acetyl-3H]acetyl-coenzyme A, the major labeled products were disialogangliosides. [Acetyl-3H]O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in [3H]N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from [3H]acetate was exclusively in the form of [3H]N-acetyl groups, whereas the 14C-label was at the 4-position

  1. Life without double-headed non-muscle myosin II motor proteins

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  2. Acetylation phenotype variation in pediatric patients with atopic dermatitis

    Rafi A Majeed Al-Razzuqi

    2011-01-01

    Full Text Available Background: Few studies have been done on the relation between acetylator status and allergic diseases. Aim: To determine any possible association between acetylating phenotype in pediatric patients with atopic dermatitis (AD and the disease prognosis. Patients and Methods: Thirty-six pediatric patients and forty two healthy children as a control group were participated in the study. All participants received a single oral dose of dapsone of 1.54 mg/kg body weight, after an overnight fast. Using high performance liquid chromatography (HPLC, plasma concentrations of dapsone and its metabolite (monoacetyldapsone were estimated to phenotype the participants as slow and rapid acetylators according to their acetylation ratio (ratio of monoacetyldapsone to dapsone. Results: 72.2% of pediatric patients with AD showed slow acetylating status as compared to 69.4% of control individuals. Also, 73% of AD patients with slow acetylating phenotype had familial history of allergy. The severity of AD occurred only in slow acetylator patients. The eczematous lesions in slow acetylators presented mainly in the limbs, while in rapid acetylators, they were found mostly in face and neck. Conclusion: This study shows an association between the N-acetylation phenotype variation and clinical aspects of AD.

  3. Mutations of the Drosophila myosin heavy-chain gene: effects on transcription, myosin accumulation, and muscle function.

    Mogami, K; O'Donnell, P T; Bernstein, S I; Wright, T.R.; Emerson, C P

    1986-01-01

    Mutations of the myosin heavy-chain (MHC) gene of Drosophila melanogaster were identified among a group of dominant flightless and recessive lethal mutants (map position 2-52, 36A8-B1,2). One mutation is a 0.1-kilobase deletion in the 5' region of the MHC gene and reduces MHC protein in the leg and thoracic muscles of heterozygotes to levels found in 36AC haploids. Three mutations are insertions of 8-to 10-kilobase DNA elements within the MHC gene and produce truncated MHC transcripts. Hetero...

  4. Minimum energy reaction profiles for ATP hydrolysis in myosin.

    Grigorenko, Bella L; Kaliman, Ilya A; Nemukhin, Alexander V

    2011-11-01

    The minimum energy reaction profiles corresponding to two possible reaction mechanisms of adenosine triphosphate (ATP) hydrolysis in myosin are computed in this work within the framework of the quantum mechanics-molecular mechanics (QM/MM) method by using the same partitioning of the model system to the QM and MM parts and the same computational protocol. On the first reaction route, one water molecule performs nucleophilic attack at the phosphorus center P(γ) from ATP while the second water molecule in the closed protein cleft serves as a catalytic base assisted by the Glu residue from the myosin salt bridge. According to the present QM/MM calculations consistent with the results of kinetic studies this reaction pathway is characterized by a low activation energy barrier about 10 kcal/mol. The computed activation energy barrier for the second mechanism, which assumes the penta-coordinated oxyphosphorane transition state upon involvement of single water molecule in the reaction, is considerably higher than that for the two-water mechanism. PMID:21839658

  5. Acetylation and characterization of spruce (Picea abies) galactoglucomannans.

    Xu, Chunlin; Leppänen, Ann-Sofie; Eklund, Patrik; Holmlund, Peter; Sjöholm, Rainer; Sundberg, Kenneth; Willför, Stefan

    2010-04-19

    Acetylated galactoglucomannans (GGMs) are the main hemicellulose type in most softwood species and can be utilized as, for example, bioactive polymers, hydrocolloids, papermaking chemicals, or coating polymers. Acetylation of spruce GGM using acetic anhydride with pyridine as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale, whereas, as a classic method, it can be potentially transferred to the industrial scale. The effects of the amount of catalyst and acetic anhydride, reaction time, temperature and pretreatment by acetic acid were investigated. A fully acetylated product was obtained by refluxing GGM for two hours. The structures of the acetylated GGMs were determined by SEC-MALLS/RI, (1)H and (13)C NMR and FTIR spectroscopy. NMR studies also indicated migration of acetyl groups from O-2 or O-3 to O-6 after a heating treatment in a water bath. The thermal stability of the products was investigated by DSC-TGA. PMID:20144827

  6. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway.

    Betapudi, Venkaiah; Lominadze, George; Hsi, Linda; Willard, Belinda; Wu, Meifang; McCrae, Keith R

    2013-11-28

    The antiphospholipid syndrome is characterized by thrombosis and recurrent fetal loss in patients with antiphospholipid antibodies (APLAs). Most pathogenic APLAs are directed against β2-glycoprotein I (β2GPI), a plasma phospholipid binding protein. One mechanism by which circulating antiphospholipid/anti-β2GPI antibodies may promote thrombosis is by inducing the release of procoagulant microparticles from endothelial cells. However, there is no information available concerning the mechanisms by which anti-β2GPI antibodies induce microparticle release. In seeking to identify proteins phosphorylated during anti-β2GPI antibody-induced endothelial activation, we observed phosphorylation of nonmuscle myosin II regulatory light chain (RLC), which regulates cytoskeletal assembly. In parallel, we observed a dramatic increase in the formation of filamentous actin, a two- to fivefold increase in the release of endothelial cell microparticles, and a 10- to 15-fold increase in the expression of E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and tissue factor messenger RNA. Microparticle release, but not endothelial cell surface E-selectin expression, was blocked by inhibiting RLC phosphorylation or nonmuscle myosin II motor activity. These results suggest that distinct pathways, some of which mediate cytoskeletal assembly, regulate the endothelial cell response to anti-β2GPI antibodies. Inhibition of nonmuscle myosin II activation may provide a novel approach for inhibiting microparticle release by endothelial cells in response to anti-β2GPI antibodies. PMID:23954892

  7. Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy

    Min, Sang-Won; Cho, Seo-Hyun; Zhou, Yungui; Schroeder, Sebastian; Haroutunian, Vahram; Seeley, William W.; Huang, Eric J.; Shen, Yong; Masliah, Eliezer; Mukherjee, Chandrani; Meyers, David; Cole, Philip A.; Ott, Melanie; Gan, Li

    2010-01-01

    Neurodegenerative tauopathies characterized by hyperphosphorylated tau include frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). Reducing tau levels improves cognitive function in mouse models of AD and FTDP-17, but the mechanisms regulating the turnover of pathogenic tau are unknown. We found that tau is acetylated and that tau acetylation prevents degradation of phosphorylated tau (p-tau). Using two antibodies specific for acetylated ta...

  8. Getting a Knack for NAC: N-Acetyl-Cysteine

    Sansone, Randy A.; Sansone, Lori A.

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway....

  9. Obesity, cancer, and acetyl-CoA metabolism

    Lee, Joyce V.; Shah, Supriya A.; Wellen, Kathryn E.

    2013-01-01

    As rates of obesity soar in the Unites States and around the world, cancer attributed to obesity has emerged as major threat to public health. The link between obesity and cancer can be attributed in part to the state of chronic inflammation that develops in obesity. Acetyl-CoA production and protein acetylation patterns are highly sensitive to metabolic state and are significantly altered in obesity. In this article, we explore the potential role of nutrient-sensitive lysine acetylation in r...

  10. Determination of amphetamine by HPLC after acetylation.

    Veress, T

    2000-01-01

    An analytical procedure has been developed for the HPLC determination of amphetamine by off-line pre-column derivatization. The proposed procedure consists of sample preparation by acetylation of amphetamine with acetic anhydride and a subsequent reversed-phase HPLC separation on an octadecyl silica stationary phase with salt-free mobile phase (tetrahydrofuran, acetonitrile, 0.1% triethylamine in water, 15:15:70 v/v) applying UV-detection. The applicability of the elaborated procedure is demonstrated with results obtained by analysis of real samples seized in the Hungarian black market. PMID:10641931

  11. Molecular biological approaches to study myosin functions in cytokinesis of Dictyostelium.

    Uyeda, T Q; Yumura, S

    2000-04-15

    The cellular slime mold Dictyostelium discoideum is amenable to biochemical, cell biological, and molecular genetic analyses, and offers a unique opportunity for multifaceted approaches to dissect the mechanism of cytokinesis. One of the important questions that are currently under investigation using Dictyostelium is to understand how cleavage furrows or contractile rings are assembled in the equatorial region. Contractile rings consist of a number of components including parallel filaments of actin and myosin II. Phenotypic analyses and in vivo localization studies of cells expressing mutant myosin IIs have demonstrated that myosin II's transport to and localization at the equatorial region does not require regulation by phosphorylation of myosin II, specific amino acid sequences of myosin II, or the motor activity of myosin II. Rather, the transport appears to depend on a myosin II-independent flow of cortical cytoskeleton. What drives the flow of cortical cytoskeleton is still elusive. However, a growing number of mutants that affect assembly of contractile rings have been accumulated. Analyses of these mutations, identification of more cytokinesis-specific genes, and information deriving from other experimental systems, should allow us to understand the mechanism of contractile ring formation and other aspects of cytokinesis. PMID:10816252

  12. Approaches to myosin modelling in a two-phase flow model for cell motility

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  13. Cloning, expression, and characterization of a novel molecular motor, Leishmania myosin-XXI.

    Batters, Christopher; Woodall, Katy A; Toseland, Christopher P; Hundschell, Christian; Veigel, Claudia

    2012-08-10

    The genome of the Leishmania parasite contains two classes of myosin. Myosin-XXI, seemingly the only myosin isoform expressed in the protozoan parasite, has been detected in both the promastigote and amastigote stages of the Leishmania life cycle. It has been suggested to perform a variety of functions, including roles in membrane anchorage, but also long-range directed movements of cargo. However, nothing is known about the biochemical or mechanical properties of this motor. Here we designed and expressed various myosin-XXI constructs using a baculovirus expression system. Both full-length (amino acids 1-1051) and minimal motor domain constructs (amino acids 1-800) featured actin-activated ATPase activity. Myosin-XXI was soluble when expressed either with or without calmodulin. In the presence of calcium (pCa 4.1) the full-length motor could bind a single calmodulin at its neck domain (probably amino acids 809-823). Calmodulin binding was required for motility but not for ATPase activity. Once bound, calmodulin remained stably attached independent of calcium concentration (pCa 3-7). In gliding filament assays, myosin-XXI moved actin filaments at ∼15 nm/s, insensitive to both salt (25-1000 mm KCl) and calcium concentrations (pCa 3-7). Calmodulin binding to the neck domain might be involved in regulating the motility of the myosin-XXI motor for its various cellular functions in the different stages of the Leishmania parasite life cycle. PMID:22718767

  14. 肌球蛋白在生物力学效应中的调控作用%The Accommodative Function of Myosin on Cell Biomechanics Effect

    胡鸣(综述); 洪莉(审校)

    2015-01-01

    细胞骨架是细胞内机械力传递链的一个组分,肌球蛋白作为细胞骨架的主要组成蛋白,对细胞受到外界力作用时产生的效应具有一定的调控作用,当细胞内的肌球蛋白的表达、结构以及活性发生改变时,细胞的力学效能也会发生相应的改变,从而影响细胞的功能以及组织结构的改变。肌球蛋白轻链的磷酸化、重链各亚型间的转化以及Rho GTP酶信号通路在对细胞生物力学效应的调控中起着一定的作用。%Cytoskeleton is a component of mechanical force transmission chain .As the main protein in forming cytoskeleton in cells, myosin plays a role in regulating the effect produced by cells when they are forced by the external force.When the expression, structure and activity of myosin changes, mechanical effi-ciency of cells will have a corresponding change, thus affecting the cell function and organizational structure. Phosphorylated myosin light chain, transformation of subtypes in myosin heavy chain , and Rho GTPases sig-naling pathway play an important role in the regulation of cellular biological effects .In this article, we try to express the advanced research in myosin′s impact on cell biomechanics effect.In addition, we also discuss the generation mechanism of such effects.

  15. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives

    (-)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives were prepared by lipase catalyzed acylation of EGCG with vinyl acetate to improve its lipophilicity and expand its application in lipophilic media. The immobilized lipase, Lipozyme RM IM, was found to be the optimum catalyst. The optimiz...

  16. Protein lysine acetylation in bacteria: Current state of the art.

    Ouidir, Tassadit; Kentache, Takfarinas; Hardouin, Julie

    2016-01-01

    Post-translational modifications of proteins are key events in cellular metabolism and physiology regulation. Lysine acetylation is one of the best studied protein modifications in eukaryotes, but, until recently, ignored in bacteria. However, proteomic advances have highlighted the diversity of bacterial lysine-acetylated proteins. The current data support the implication of lysine acetylation in various metabolic pathways, adaptation and virulence. In this review, we present a broad overview of the current knowledge of lysine acetylation in bacteria. We emphasize particularly the significant contribution of proteomics in this field. PMID:26390373

  17. Differential patterns of histone acetylation in inflammatory bowel diseases

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  18. Probing the acetylation code of histone H4.

    Lang, Diana; Schümann, Michael; Gelato, Kathy; Fischle, Wolfgang; Schwarzer, Dirk; Krause, Eberhard

    2013-10-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein-protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-acetylated at K8/12/16 and fully tetra-acetylated. A set of 29 proteins was found enriched on the fully acetylated H4 tail while specific binders of the mono and bis-acetylated tails were barely detectable. These observations are in good agreement with earlier reports indicating that the H4 acetylation state establishes its regulatory effects in a cumulative manner rather than via site-specific recruitment of regulatory proteins. PMID:23970329

  19. Probing the acetylation code of histone H4.

    Lang, D; Schümann, M; Gelato, K.; Fischle, W; Schwarzer, D; Krause, E.

    2013-01-01

    Histone modifications play crucial roles in genome regulation with lysine acetylation being implicated in transcriptional control. Here we report a proteome-wide investigation of the acetylation-dependent protein–protein interactions of the N-terminal tail of histone H4. Quantitative peptide-based affinity MS experiments using the SILAC approach determined the interactomes of H4 tails monoacetylated at the four known acetylation sites K5, K8, K12, and K16, bis-acetylated at K5/K12, triple-ace...

  20. Quantitation of the distribution and flux of myosin-II during cytokinesis

    Cavet Guy

    2002-02-01

    Full Text Available Abstract Background During cytokinesis, the cell's equator contracts against the cell's global stiffness. Identifying the biochemical basis for these mechanical parameters is essential for understanding how cells divide. To achieve this goal, the distribution and flux of the cell division machinery must be quantified. Here we report the first quantitative analysis of the distribution and flux of myosin-II, an essential element of the contractile ring. Results The fluxes of myosin-II in the furrow cortex, the polar cortex, and the cytoplasm were examined using ratio imaging of GFP fusion proteins expressed in Dictyostelium. The peak concentration of GFP-myosin-II in the furrow cortex is 1.8-fold higher than in the polar cortex and 2.0-fold higher than in the cytoplasm. The myosin-II in the furrow cortex, however, represents only 10% of the total cellular myosin-II. An estimate of the minimal amount of this motor needed to produce the required force for cell cleavage fits well with this 10% value. The cell may, therefore, regulate the amount of myosin-II sent to the furrow cortex in accordance with the amount needed there. Quantitation of the distribution and flux of a mutant myosin-II that is defective in phosphorylation-dependent thick filament disassembly confirms that heavy chain phosphorylation regulates normal recruitment to the furrow cortex. Conclusion The analysis indicates that myosin-II flux through the cleavage furrow cortex is regulated by thick filament phosphorylation. Further, the amount of myosin-II observed in the furrow cortex is in close agreement with the amount predicted to be required from a simple theoretical analysis.

  1. Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction

    A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles made of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement

  2. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha;

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double...... quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently...... in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell...

  3. The SAH domain extends the functional length of the myosin lever

    Baboolal, TG; Sakamoto, T.; Forgacs, E; White, HD; Jackson, SM; Takagi, Y.; Farrow, RE; Molloy, JE; Knight, PJ; Sellers, JS; Peckham, M.

    2009-01-01

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to...

  4. Melanophilin and myosin Va track the microtubule plus end on EB1

    Wu, Xufeng S.; Tsan, Grace L.; Hammer, John A.

    2005-01-01

    In mouse melanocytes, myosin Va is recruited onto the surface of melanosomes by a receptor complex containing Rab27a that is present in the melanosome membrane and melanophilin (Mlp), which links myosin Va to Rab27a. In this study, we show that Mlp is also a microtubule plus end–tracking protein or +TIP. Moreover, myosin Va tracks the plus end in a Mlp-dependent manner. Data showing that overexpression and short inhibitory RNA knockdown of the +TIP EB1 have opposite effects on Mlp–microtubule...

  5. D-loop of Actin Differently Regulates the Motor Function of Myosins II and V*

    Kubota, Hiroaki; Mikhailenko, Sergey V; Okabe, Harumi; Taguchi, Hideki; Ishiwata, Shin'ichi

    2009-01-01

    To gain more information on the manner of actin-myosin interaction, we examined how the motile properties of myosins II and V are affected by the modifications of the DNase I binding loop (D-loop) of actin, performed in two different ways, namely, the proteolytic digestion with subtilisin and the M47A point mutation. In an in vitro motility assay, both modifications significantly decreased the gliding velocity on myosin II-heavy meromyosin due to a weaker generated force but increased it on m...

  6. Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-L-carnitine to mouse fibroblasts in culture

    It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation

  7. Cooperative folding of muscle myosins: I. Mechanical model

    Caruel, Matthieu; Truskinovsky, Lev

    2013-01-01

    Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passiv...

  8. Myosin Vc Is Specialized for Transport on a Secretory Superhighway.

    Sladewski, Thomas E; Krementsova, Elena B; Trybus, Kathleen M

    2016-08-22

    A hallmark of the well-studied vertebrate class Va myosin is its ability to take multiple steps on actin as a single molecule without dissociating, a feature called "processivity." Therefore, it was surprising when kinetic and single-molecule assays showed that human myosin Vc (MyoVc) was not processive on single-actin filaments [1-3]. We explored the possibility that MyoVc is processive only under conditions that resemble its biological context. Recently, it was shown that zymogen vesicles are transported on actin "superhighways" composed of parallel actin cables nucleated by formins from the plasma membrane [4]. Loss of these cables compromises orderly apical targeting of vesicles. MyoVc has been implicated in transporting secretory vesicles to the apical membrane [5]. We hypothesized that actin cables regulate the processive properties of MyoVc. We show that MyoVc is unique in taking variable size steps, which are frequently in the backward direction. Results obtained with chimeric constructs implicate the lever arm/rod of MyoVc as being responsible for these properties. Actin bundles allow single MyoVc motors to move processively. Remarkably, even teams of MyoVc motors require actin bundles to move continuously at physiological ionic strength. The irregular stepping pattern of MyoVc, which may result from flexibility in the lever arm/rod of MyoVc, appears to be a unique structural adaptation that allows the actin track to spatially restrict the activity of MyoVc to specialized actin cables in order to co-ordinate and target the final stages of vesicle secretion. PMID:27498562

  9. Medial temporal N-acetyl-aspartate in pediatric major depression.

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  10. Medial temporal N-acetyl aspartate in pediatric major depression

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320